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Abstract

Exploring the cosmos with gravitational waves

Stephen R. Taylor

Gravitational-wave (GW) observations of compact-object (CO) binaries will open

up a new frontier in astrophysical studies of neutron stars (NSs) and black-holes

(BHs). Near-future detections will shine a light on the coalescence rate of CO

binaries, present an independent means of constraining cosmological parameters,

and offer a host of other exciting opportunities.

In the first part of this thesis, we develop a technique to probe cosmological pa-

rameters with GWs in the absence of any electromagnetic counterparts. We ex-

ploit the near-future potential of a network of GW interferometers to extract the

distance of each system from the measured gravitational waveform. We use the

observed intrinsic narrowness of the NS-NS mass-distribution, along with GW-

measured redshifted-masses, to deduce candidate redshift distributions for each

system, thereby allowing a probe of the distance-redshift relation. We find that an

advanced LIGO-Virgo network can place independent, complementary constraints

on the Hubble constant, while a third-generation network will be needed to probe

the dark-energy equation-of-state, as well as the star-formation rate of the NS-NS

progenitor population.

In the second part, we study the potential for high-precision timing of millisec-

ond pulsars to infer the perturbing influence of passing GWs. We develop a robust

data-analysis pipeline to constrain the levels of anisotropy in a stochastic GW back-

ground using an ensemble of these pulsars. This technique cross-correlates pulse

time-of-arrival deviations from many pulsars, leveraging the common influence of

a stochastic background against noise sources, and mines the cross-correlation sig-

nature for information on the angular-distribution of GW-power. We also develop

rapid first-cut techniques to perform parameter-estimation and model-comparison

in single-source searches. These sources are most likely supermassive BH binaries,

imprinting a signature of their orbital evolution as they roll past each pulsar. We co-

herently include these signatures within an accelerated pipeline to boost detection

prospects.

March 2014 vii



ABSTRACT Stephen Taylor

viii Institute of Astronomy



Contents

Abstract vii

I Introduction 1

1 Listening To The Cosmos 3
1.1 Gravity - It’s All Downhill From Here. . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Standing On The Shoulders Of Giants . . . . . . . . . . . . . . . . . . 3

1.1.2 The Happiest Thought . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A Brief Primer On Gravitational Waves . . . . . . . . . . . . . . . . . . . . . 6

1.3 The Gravitational Wave Spectrum . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 High frequency (1 Hz . f . 104 Hz) . . . . . . . . . . . . . . . . . . 13

1.3.2 Low frequency (0.1 mHz . f . 0.1 Hz) . . . . . . . . . . . . . . . . 21

1.3.3 Very Low frequency (10−9 Hz . f . 10−7 Hz) . . . . . . . . . . . . . 23

1.4 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 Markov Chain Monte Carlo sampling techniques . . . . . . . . . . . . 33

1.4.2 Nested Sampling & MULTINEST . . . . . . . . . . . . . . . . . . . . 35

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II Cosmography With Gravitational Waves 39

2 Advanced Era Possibilities 41
2.1 Gravitational wave standard sirens . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Source catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.1 System properties from the gravitational waveform . . . . . . . . . . . 45

2.3.2 Network characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3 Signal detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

March 2014 ix



CONTENTS Stephen Taylor

2.3.4 Orientation function, Θ . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.5 NS mass distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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We shall not cease from exploration, and the

end of all our exploring will be to arrive where

we started and know the place for the first time.

T. S. Eliot

Oh! I have slipped the surly bonds of Earth

Put out my hand and touched the Face of God.

John Gillespie Magee, Jr.

1
Listening To The Cosmos

1.1 Gravity - It’s All Downhill From Here. . .

Gravitation is the dominant dynamical influence in the Universe, and yet is the weakest of all

forces. The same force that hugs us tightly to terra firma also governs the formation of galaxies

and the growth of the Universe.

1.1.1 Standing On The Shoulders Of Giants

In the 16th century, Aristotelian and Ptolemaic astronomy was thrown into serious doubt by

the heliocentric model of the Polish astronomer, Nicholaus Copernicus [1, 2], and the precision

observations of Danish astronomer, Tycho Brahe. Kepler, who had been assistant to Brahe,

made use of the unprecedented quantity and accuracy of the stellar catalogues compiled over

more than 20 years of observations at Brahe’s observatory, Uraniborg, to derive his three laws

of planetary motion. In his 1609 book Astronomia nova, Kepler presented the first two of

his laws based on precision observations of the orbit of Mars, and in so doing ushered in the

revolutionary new heliocentric cosmology with elliptical, rather than circular, orbits1.

Arguably the greatest scientific breakthrough of this age came in 1687, when Sir Isaac

Newton published the Principia [3]. Although separately appreciated by contemporaries such

1Kepler’s third law was later published in 1619.
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as Hooke, Wren, and Halley, Newton’s demonstrations of the universal inverse-square law of

gravitation were remarkable for their predictive accuracy and the formulation’s ability to derive

Kepler’s laws of planetary motion. Simply put, this law states that the mutual attraction between

two bodies, whether they be planets or apples, is proportional to the product of their masses, and

the inverse square of their separation. When applied to the motions of celestial bodies it was

extraordinarily successful, and remains so today, even having sufficient accuracy to navigate

humans to the Moon and back. One of its greatest trials also led to the zenith of its success,

when in 1821 Bouvard published predictions of Uranus’ position [4] which were subsequently

found to deviate from observations. Motivated by this peculiarity, Le Verrier and Adams sepa-

rately computed the properties of an additional body which might be perturbing Uranus through

gravitational interaction. Their calculations were sound, with the new planet Neptune quickly

discovered by Galle to be within one degree of Le Verrier’s estimate and twelve degrees of

Adams’.

Although Newtonian gravity had predicted the existence of a new planet, it still did not

propose a mediator to transmit the gravitational influence. Furthermore, the scientist credited

with Neptune’s discovery, Le Verrier, had by 1859 noticed a peculiar precession of Mercury’s

orbit [5]. Various mechanisms were proposed, with precedent leading to the new planet Vulcan

being advanced as a perturbing gravitational influence inside Mercury’s orbit. A concerted

effort was made to find this new planet, with little success. This problem would require a new

way of thinking entirely, and a complete overhaul of the more than 200 years of Newtonian

gravity.

1.1.2 The Happiest Thought

Great leaps forward in understanding necessitate a good anecdote, and for the case of General

Relativity (GR), Einstein commented that the happiest thought of his life involved a Gedanken-

experiment of a man falling from a roof. This led him to realise that the gravitational field is

relative: a man in free fall is weightless and feels no pull of gravity. Cast into the Equiva-

lence Principle, this says that an observer (without outside communication) is unable to tell the

difference between the force felt in a gravitational field, and the fictitious force felt inside an

accelerating reference frame.

In 1907, Minkowski’s geometric formulation of special relativity (including time in the

geometry) made clear that accelerating particles are represented by curved paths through this

new 4-dimensional space-time [6]. Since acceleration is (locally) equivalent to gravitational

influence, Einstein began to build connections between the manifestation of gravitation and non-

inertial reference frames, eventually leading to the geometric emergence of gravity via curved

space-time. Formulated within Riemannian geometry, Einstein’s general theory of relativity [7]

4 Institute of Astronomy



Stephen Taylor 1.1 Gravity - It’s All Downhill From Here. . .

describes how energy-momentum leads to the deformation and curvature of space-time, causing

bodies to follow geodesics of the metric which may themselves appear curved. In searching for

a pithy summary, it’s difficult to beat Wheeler: “Space-time tells matter how to move; matter

tells space-time how to curve” [8]. The theory is enshrined within Einstein’s field equations,

Gµν ≡ Rµν − 1

2
Rgµν = 8πTµν (1.1)

where Gµν is the Einstein tensor, Rµν and R = gµνRµν are the Ricci tensor and scalar, respec-

tively, gµν is the metric, and Tµν is the stress-energy tensor.

The phenomenal success of this new description of gravity, connecting relativistic electro-

dynamics with gravity, overturning notions of static space and time, and showing gravity to

emerge from the curvature of the fabric of space-time itself, can not be understated. It accounts

for the perihelion precession of Mercury as a conservative effect [7], corrects the Newtonian

angular-deflection of light by massive bodies [9, 10], and predicts the redshifting of light prop-

agating in a curved space-time [11].

The theory has passed a huge number of precision tests [12]. Doppler tracking of the Cassini

spacecraft en route to Saturn performed tests of the Shapiro time-delay, showing agreement with

GR to the 10−3 percent level [13]. The satellite Gravity Probe B, launched in 2004, made inde-

pendent verifications of the general relativistic effects of geodetic and Lense-Thirring preces-

sion of a gyroscope’s axis of rotation in the presence of the rotating Earth’s curved space-time,

to an accuracy of 0.28% and 19%, respectively [14]. Furthermore, one of the greatest legacies

of the Apollo project is the positioning of retroreflectors on the Moon, permitting lunar laser

ranging to test the Nordtvedt effect, geodetic precession, etc. [15].

Despite the manifest power of GR, there remain problems and untested predictions of the

theory. Observations of Type Ia supernovae, measurements of temperature fluctuations in the

cosmic microwave background (CMB), and data from Baryon Acoustic Oscillations (BAO),

have constrained the compositional make-up of the Universe, showing that less than 5% is com-

posed of known substances [16]. To explain the current growth and structure of the Universe,

the current concordance cosmology (the ΛCDM model) invokes a form of matter which couples

weakly to electromagnetic radiation (the so-called dark matter), and a cosmological constant

term added to the field equations to produce an accelerated cosmological expansion [17, 18].

The latter effect may be due to the enigmatic dark energy, which exerts a negative pressure to

induce accelerated growth. Despite ΛCDM being in excellent agreement with observations, the

identity of dark energy (Λ) and cold dark matter (CDM) is an open question, even prompting

the development of alternative gravitational theories which mimic these effects (see Ref. [19]

for a comprehensive review).

Another early prediction of GR, which has yet to be directly tested, is the existence of

gravitational radiation [20, 21]. Analogous to the case of electromagnetism, an accelerating
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body would create ripples of gravitational influence via deformations in the dynamic space-

time. Gravitational waves (GWs) have had a colourful history. Their physical existence was the

subject of much early doubt (see Ref. [22]). The complexity of the theoretical problems meant it

took decades to solve for models of GW signals. Finally, the technological challenges to detect

and characterise these signals were such that we are only now in a position to have a chance of

directly measuring them. Measurements of the Post-Keplerian orbital parameters of pulsars in

binary systems (such as the famous PSR B1913+16 [23, 24], and the double-pulsar J0737-3039

[25]) have provided an extraordinary indirect test of the existence of gravitational radiation, and

fascinating astrophysical laboratories with which to probe gravity [26]. Additionally, recent

results hint at the detection of a B-mode (or “curl” mode) signal in the CMB polarisation at

degree angular scales, which is alleged to have a primordial GW origin [27, 28]. However, the

goal now is to directly measure the interaction of GWs with our experiments.

1.2 A Brief Primer On Gravitational Waves

An insight into the nature of gravitational waves (GWs) can be gained by considering Einstein’s

original linearised treatment [20, 21]. We model the space-time as essentially flat with a small

perturbation,

gαβ = ηαβ + hαβ, (1.2)

where ηαβ is the flat Minkowski metric, and hαβ is a small perturbation such that we can use the

flat metric to raise and lower space-time indices. In this approximation, the linearised Einstein

tensor becomes,

Gαβ =
1

2
(∂α∂

µhµβ + ∂β∂
µhµα − ∂α∂βh−�hαβ + ηαβ�h− ηαβ∂µ∂νhµν) , (1.3)

where h = ηαβhαβ is the trace of hαβ , and � = ηαβ∂α∂β is the flat space d’Alembertian

operator. This expression can be tidied up by recasting the right-hand side in terms of the

trace-reversed perturbation (h̄αβ = hαβ − nαβh/2),

Gαβ =
1

2

(
∂α∂

µh̄µβ + ∂β∂
µh̄µα −�h̄αβ − ηαβ∂µ∂ν h̄µν

)
. (1.4)

We now make use of the fact that slowly varying diffeomorphisms are a symmetry of lin-

earised gravity, allowing us to choose an appropriate gauge. If we consider the coordinate

transformation xα 7→ xα + ξα, the transformation of the metric perturbation to first order is

hµν 7→ hµν − (∂µξν + ∂νξµ). Asserting ∂µξν to be of the same order as |hµν |, the transformed

metric perturbation retains the condition |hαβ| � 1. This symmetry allows us to choose the

Lorenz gauge, where ∂µh̄µν = 0, such that the Einstein tensor reduces to the much more com-

pact

Gαβ = −1

2
�h̄αβ, (1.5)
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and the field equations reduce to

�h̄αβ = −16πTαβ, (1.6)

which can be solved using the radiative Green’s function to give wave solutions. Expressed in

this form, we might be led to think that all components of the metric perturbation are radiative.

This is a gauge artefact [29], where, in general, we can split the metric perturbation into (i) gauge

degrees of freedom, (ii) physical, radiative degrees of freedom, and (iii) physical, non-radiative

degrees of freedom. One can show [30] that the only physical, radiative degrees of freedom

in hµν are the spatial, transverse and traceless components. Hence, hµν is usually projected

into the so-called TT (transverse-traceless) gauge, where the components of the perturbation

are orthogonal to the direction of the wave’s propagation. Choosing a coordinate system such

that we have a plane GW propagating in the z-direction in a vacuum, we can write the metric

perturbation as,

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 , (1.7)

where h+ and h× are the amplitudes of the two distinct polarisations of GWs permitted within

general relativity, denoted as “plus” and “cross” modes for how they tidally deform a circular

ring of test masses in the plane perpendicular to the direction of propagation. The tidal acceler-

ation caused by a wave as it propagates is at the heart of all currently planned ground-based and

space-based detection efforts, since what we measure is not an absolute acceleration itself, but

rather its difference across an experiment. The fractional change in the proper distance between

two points separated by ∆x = L on the x-axis of our coordinate system (or experiment) due to

the passage of a GW is given by δL/L ' h+/2 [30], leading to a definition of the GW amplitude

as the strain. For a periodic signal such that h+(z = 0, t) = h0e
2πift, we see that this proper

distance separation oscillates according to δL̈ = (2πf)2Lh0e
2πift [31]. From Eq. (1.7) we see

that the “plus”-polarisation will lengthen distances along the x-axis while simultaneously con-

tracting distances along the y-axis. The influence of the h× mode is similar, but rotated by π/4

degrees anti-clockwise in the xy-plane. This tidal deformation in the plane perpendicular to the

direction of propagation is illustrated for a full wave-cycle in Fig. 1.1.

If we consider the far-field approximation, then the lowest-order contribution to the solution

of Eq. (1.6) is a function of the accelerating quadrupole moment of the source’s energy-density

distribution. The reason for this is stress-energy conservation: the monopole moment gives the

conserved total energy of the system, while the dipole moment gives the conserved momentum

of the system’s centre-of-mass. Therefore the quadrupole radiation formula for the spatial
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Figure 1.1: The periodic deformation of space-time caused by a GW is shown for the two polarisations

permitted within GR. The influence of the GW is entirely in the plane perpendicular to the direction of

propagation. Image credit: Tom Dunne,

www.itp.uzh.ch/˜chuwyler/index.php?page=gravwaves.

components of the metric perturbation is [21],

hij =
2

r

d2Qkl

dt2
Λik,jl, (1.8)

where r is the distance to the source, and Qkl is the reduced quadrupole moment of ρ(t, ~x) (the

source’s energy-density distribution), which is defined as,

Qij =

∫
d3x

(
xixj − 1

3
x2δij

)
ρ(t, ~x), (1.9)

and Λik,jl is the so-called Lambda tensor which projects the metric perturbation in the Lorenz

gauge into the TT gauge [32].

We now take a specific example of a source system (see Ref. [33]). Binary systems consist-

ing of compact objects (COs) were very early on recognised as potential sources of gravitational

radiation [29, 34, 35]. Let us consider two compact objects, each of massM , orbiting each other

at a distance R(t) from their common centre of mass (assumed to be far enough apart that we

can ignore tidal disruption) with slowly varying angular velocity ω(t). The COs are assumed

to be moving at non-relativistic speeds to simplify the calculation of the quadrupole moment

tensor. Kepler’s third law gives us ω2 = M/4R3, such that the total energy of the system is

E = −M2/4R.

We define the coordinate origin at the system’s centre of mass, with the orbit lying in the
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xy-plane. The coordinates of the COs at t = 0 are,

xa = −xb = R cosωt, ya = −yb = R sinωt, za = zb = 0. (1.10)

We further choose to evaluate the field along the z-axis, such that the direction of wave propa-

gation is along the z-direction. In this case the Lambda tensor serves to remove all z-indexed

elements of hµν .

Evaluating the second time-derivative of the reduced quadrupole mass-moment and plug-

ging into Eq. (1.8), one can show that the radiative components of the GWs from this system

are,

hµν = −8MR2ω2

r


0 0 0 0

0 cos 2ωt sin 2ωt 0

0 sin 2ωt − cos 2ωt 0

0 0 0 0

 . (1.11)

Notice that the GW frequency is twice the binary orbital frequency due to the quadrupolar

nature of the emission. Also note that the distance to the source system is directly encoded in

the amplitude of this leading-order radiative term. By evaluating the energy-flux elements of

the Isaacson expression [36], and integrating over the sphere, the GW luminosity of the source

system is given by [37],

LGW =
1

5

〈
d3Qij

dt3
d3Qij

dt3

〉
, (1.12)

which, for a CO binary, gives,

LGW =
128

5
M2R4ω6. (1.13)

By equating the change in the binary’s orbital energy with the GW luminosity, we can

get a qualitative understanding of the frequency and strain-amplitude evolution as the binary

inspirals toward an eventual merger. The binary orbital frequency evolves with the time until

coalescence, τ , as ω ∝ τ−3/8, while the amplitude of the strain in Eq. (1.11) evolves as h0 ∝
τ−1/4. We see that the orbital evolution, driven by GW emission, causes the frequency and

amplitude to characteristically “chirp” as they merge.

This treatment is appropriate when the orbital velocities are small (v � c), however, when

the system evolves closer to the merger phase higher-order corrections to the metric perturba-

tion from the full non-linear structure of the field-equations must be taken into account. In

particular, for binaries of comparable mass the post-Newtonian (pN) formalism has been stud-

ied extensively, where the acceleration of one object due to the gravity of the other includes

corrections to higher-order in (v/c) [e.g., 38, 39]. The lowest order correction modifies this

such that the acceleration a body feels depends on its own mass. This is a manifestation of the

space-time curvature caused by the body itself, which influences the orbital dynamics, and is

known as the self-force. After the pN formalism breaks down, we can model the late-inspiral
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using the effective one-body (EOB) approach [40]. This technique recasts the problem of two

merging COs into the equivalent picture of a single body moving in a deformed BH space-time,

but is still dependent on numerical relativity (NR; discussed later) solutions to calibrate the

computed waveforms.

The self-force is also a crucial feature in the perturbation theory treatment of binaries with

an extreme mass ratio [e.g., 41]. If we have a small body in orbit around a massive black-hole

(BH), then to first approximation we can consider the small body as moving along geodesics of

the black-hole metric. However, if we take into account perturbations to the background space-

time caused by the small body, then it now follows a forced geodesic, where the forcing-term

is of the order of the small body’s correction to the background space-time, and is composed

of conservative and dissipative pieces. Perturbation theory can also successfully model the

waveform of the ringdown phase of the post-merger remnant, where the frequencies and decay-

times of the final BH’s quasinormal-modes depend only on its mass and spin.

The difficult phase to model is the merger. As we get closer to the final merger of the

objects, no iterative expansion or approximation scheme is helpful. In this scenario, where we

have two COs (possibly BHs) in a highly dynamical space-time, we must attempt to solve the

full Einstein field-equations numerically. Up until about 10 years ago the field of numerical

relativity had made little progress, with simulations barely able to model a single binary orbit

before the codes crashed. However several breakthroughs since that time have revolutionised

the field [42–44], allowing the orbital dynamics and GW emission to be computed right through

the merger phase.

We are entering the era of advanced GW detectors equipped with highly successful schemes

to compute waveform templates, where combinations of pN, EOB and NR techniques can stitch

together a full description of the GWs emitted during a binary’s cataclysmic merger [45–48].

1.3 The Gravitational Wave Spectrum

Like electromagnetic radiation, GWs come in a range of frequencies from many different

sources, where, roughly speaking, the characteristic frequency scales inversely with the total

mass of the system. Most electromagnetic radiation from astronomical sources is an incoher-

ent superposition of radiation from sources much larger than the characteristic observed wave-

lengths. However, the situation is rather different for GWs since current detection techniques

are limited to probing sub-kHz frequencies where the sources are of a comparable size to the

emitted wavelengths. As such, near future measurements of GWs will track the coherent motion

of extremely massive, compact objects.

The first pioneering efforts to directly detect GWs began when their theoretical study was
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still in disarray. Joseph Weber developed a strong interest in GWs during the 1950s as a result

of collaborative work with Wheeler [49], even going so far as to propose and build his own

detection apparatus [50]. Known as a Weber bar (or “resonant mass detector”), this instrument

made use of the tidal deformation induced by a passing GW to transfer energy to and elastically

deform an aluminium cylinder, creating longitudinal oscillations which would be measured

by piezoelectric transducers. The detector was tuned to operate around 1660 Hz because of

experimental feasibility, and because this frequency could be swept through during a supernova

core collapse. The community was taken by surprise when Weber reported coincident signals in

detectors which were separated by approximately 1000 km [51], giving tentative evidence of the

first direct GW detection. Unfortunately, follow-up experiments by independent groups failed

to verify his results [52]. Nevertheless Weber deserves credit for kickstarting GW experimental

efforts, and reinvigorating theoretical interest.

Although there are several modern resonant mass detectors (such as AURIGA [53], and

the spherical MiniGRAIL [54]), contemporary efforts focus on the use of precision timing and

interferometry to measure the strain amplitude of a passing GW. The foundations of GW inter-

ferometry were laid by Forward [55] and Weiss [56]. A full review of ground and space-based

interferometry as it pertains to GW detection can be found in Ref. [57].

As a rough guide, the peak sensitivity of our detectors scales inversely with the size of the

experiment itself. Figure 1.2 illustrates the GW strain-spectrum, with the sensitivity of current

and planned detectors overlaid on the bands of compelling astrophysical targets. At the lowest

frequencies we need precisely timed pulsars at kiloparsec distances to probe into the nHz band,

where a stochastic background of merging SuperMassive Black-Hole (SMBH) binaries may be

found. The 1 Hz to 104 Hz band is the terrestrial detector band, where kilometre-scale laser

interferometers are targeting core-collapse supernovae, and the chirping signals of inspiraling

stellar-mass compact binary systems. The lowest frequency we can probe with terrestrial detec-

tors (∼ 1 Hz) is restricted by local gravitational gradients and seismic noise isolation. The only

way to overcome this “seismic wall” is by moving our experiment to space. Space-based laser

interferometers of ∼ 109 m arm-length are planned which will dig into the 0.1 mHz to 0.1 Hz

band, which will allow precision studies of massive BH demographics.

We now discuss these detectors and their targets in more detail, giving particular emphasis

to those of greatest relevance to this dissertation.
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Figure 1.2: A cartoon representation of the GW spectrum, spanning ∼ 14 orders of magnitude in

frequency. Sources are indicated by their characteristic strain-amplitude, while detectors are indicated

by their strain-sensitivity. The question of what the most senstive GW detector is will depend on our

figure-of-merit, where the sensitivities of PTAs, LISA, and LIGO are far more comparable when

considered in terms of GW energy density. Produced using the web-app at

http://www.ast.cam.ac.uk/˜rhc26/sources/, and modified with the help of Christopher

Moore.
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1.3.1 High frequency (1 Hz . f . 104 Hz)

Detectors

This high-frequency band requires long-baseline terrestrial GW-interferometry, achieving a

strain sensitivity of ∼ 10−21 or lower in order to have a realistic chance of detecting likely

astrophysical GW sources. The basic mode of operation is that of a Michelson interferometer,

where laser light is injected into the interferometer and subsequently split into two beams to

propagate along orthogonal arms. Each laser beam reflects off end test-mass optics, followed

by the two beams recombining at the beamsplitter to interfere at a photodiode. The influence of

an impinging GW is through the alternate stretching and compression of the proper-length of

the arms (see Sec. 1.2), inducing a phase-shift in the recombined laser beams. The detectors are

locked on a dark fringe to improve resolution and cancel out laser phase noise [37, 58], however

there are many other interfering noise sources.

To achieve the required design sensitivity for science operation, several sophisticated tech-

nical advances have been implemented, such as power and signal recycling [59–61], which

place additional optics after the laser and before the photodiode, respectively. The aim here

is to impede the reflection of light back into the source laser, and to improve signal strength

for narrow bandwidth or “chirping” binary searches. Optical cavities (such as a Fabry-Pérot)

are also used to increase the effective path-length of laser light within the interferometer, and

to minimise photon shot-noise which is the main instrumental noise source at high frequencies

[62]. One can overcome shot-noise by simply boosting the laser power, which comes at the

price of increasing radiation pressure on the test-mass, but this in turn can be overcome with a

heavier mirror. Another important noise consideration is the thermal motion of the test-mass

mirrors themselves, which can only be remedied by ensuring the materials used have the lowest

feasible mechanical loss factors [63, 64]. The limiting noise sources at the lowest frequencies of

the terrestrial detector band are seismic and gravity-gradient noise. The former can be amelio-

rated by a combination of pendulum isolation, spring suspension, and anti-vibration actuators

[65–67], however gravity-gradient noise is a more difficult problem. This is caused by seismic

waves on the surface of the Earth creating local mass-density fluctuations whose gravitational

influence couples to the test-masses. It can be minimised by monitoring seismic activity to sub-

tract its signal, or moving the detector underground, but below ∼ 1 Hz there is no other choice

but to completely distance the detector from these surface-wave density fluctuations by moving

to space.

The first kilometre-scale detection instrument for GWs was the Laser Interferometer Grav-

itational wave Observatory (LIGO) [68, 69], operated in partnership between the California

Institute of Technology (Caltech) and the Massachusetts Institute of Technology (MIT). There
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are three instruments in total, all located in the USA, with two sited in Hanford, Washington

within a common vacuum envelope (H1, H2 of arm-lengths 4 km and 2 km respectively) and

one in Livingston, Louisiana (L1 of arm-length 4 km). By early 2002 all LIGO interferometers

had achieved lock on a dark fringe, and have since undergone several upgrades and science

runs. By 2005 the detectors had reached their design sensitivities, and it was decided that a

final period of data taking would commence before extensive upgrades would take place. This

run, S5, was completed in late 2007, where the largest angle-averaged horizon distance to an

inspiraling NS-NS system achieved was ∼ 15 Mpc in L1/H1 [70].

Following S5, the LIGO instruments underwent enhancements to improve their strain sen-

sitivity in the shot-noise regime by approximately a factor of two. This was achieved by almost

tripling the laser power of initial LIGO in H1 and L1, however H2 had to be left in its original

configuration as it was still being operated to keep watch while the others were upgraded. This

new configuration, known as Enhanced LIGO [71], involved the implementation of prototype

technologies and methods which were being road-tested for the upcoming major overhaul of

LIGO into Advanced LIGO (aLIGO) [72]. The final science run of Enhanced LIGO was S6

between 2009-2010, where the averaged horizon distance to NS-NS inspirals was ∼ 10 − 20

Mpc [73]. After this period of data-taking the LIGO detectors were taken offline to be upgraded

to its second-generation configuration.

At the time of writing, LIGO is being upgraded to aLIGO, which is due for completion

in ∼ 2015, after which the averaged horizon distance for NS-NS inspiral detection will be

boosted to ∼ 200 Mpc [72], giving an almost thousandfold gain in volume sensitivity of the

detectors. The key improvements for aLIGO are much higher laser power (with improved shot-

noise behaviour), quadruple-pendulum suspensions which lowers the “seismic wall” to just

above 10 Hz, low-mechanical-loss suspension-fibres and mirror materials, and active isolation

of the optical benches. Both H1 and L1 are being upgraded, but the fate of H2 is still slightly

uncertain. It was suggested that moving H2 to another distantly located site would be a huge

advantage, both in terms of common-noise mitigation, and for the increased signal-delays which

would improve source triangulation on the sky [74, 75]. The most favourable option would have

been to re-locate H2 to Australia where it would have been almost antipodal to H1/L1, however

this did not materialise. Fortunately, progress appears to have been made in the prospects for

placing the instrument in India, such that LIGO-India, commissioned and operated by the Indian

Initiative in Gravitational-wave Observations (IndIGO), would be due to come online by∼ 2020

[76–78].

In addition to the LIGO detectors, there is the French/Italian 3 km Virgo interferometer

[79] located at Cascina, near Pisa, in Italy, which began commissioning runs in 2005. Virgo

was designed to be of comparable sensitivity to LIGO, and although not quite able to match
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the peak sensitivity around ∼ 150 Hz, the use of a superattenuator to give aggressive seismic

isolation allowed Virgo to probe GWs down to the ∼ 10− 20 Hz level [80]. Concurrently with

the Enhanced LIGO upgrades, Virgo was being upgraded to Virgo+, whereupon it had boosted

laser power and increased thermal compensation on the optics [81]. During Virgo Science

Run (VSR) 2, Virgo+ achieved close to the design sensitivity of the initial Virgo plans. The

final science run of “initial” Virgo was VSR3 in 2010, after which it was taken offline for its

upgrades to Advanced Virgo (AdV) [82]. This major upgrade is planned to be on a similar

timescale to aLIGO, with the principle modifications being increased laser power and improved

mirror coatings.

Additionally, there is a 600 m arm-length interferometer, known as GEO-600 [83], located

near Hannover, Germany. With a smaller baseline and lower laser power, GEO-600 cannot

match the sensitivity of LIGO/Virgo, but it has been an incredibly useful testbed for advanced

technologies and techniques to be implemented in the future second-generation designs. It

achieved first lock in 2001, followed by the first implementation of dual (power and signal)

recycling in 2003. It has also pioneered the use of multiple pendula suspensions and rod-laser

amplification. From 2009, GEO-600 has been upgraded to achieve higher frequency sensitivity

by injecting “squeezed” light into the output port. This project, known as GEO-HF, permits

the interferometer to operate beyond the standard quantum limit [84]. As of writing, GEO is

currently operating in Astrowatch mode, and is the only large-scale terrestrial GW detector

taking data while LIGO and Virgo are offline for their upgrades.

The first interferometer to start taking regular data with sufficient stability and sensitivity

to have a chance of GW detection was actually the 300 m arm-length TAMA-300 detector

[85]. Located at the Mitaka campus of the National Astronomical Observatory of Japan, it had

undertaken nine observation runs by 2004, but the short arm-length meant its sensitivity was

limited. Attention in Japan has now shifted to the Cryogenic Laser Interferometer Observatory

(CLIO) [86] which is a 100 m prototype operating underneath the Kamiokande mountain. The

aim of CLIO is to develop technologies for the proposed 3 km arm-length KAmioka GRAvita-

tional wave telescope (KAGRA; formerly LCGT [87]) [88, 89], which will also operate in the

Kamioka mine under cryogenic conditions. Placing KAGRA underground dramatically sup-

presses seismic disturbances and gravity-gradient noise, such that, by the time of full operation

in ∼ 2018, it should have a similar sensitivity to aLIGO and AdV.

Throughout the last 10 to 15 years, all of the first-generation detectors have operated at some

level of coincidence with each other. TAMA-300 operated in coincidence with LIGO and GEO-

600 for two data-taking periods [90], while LIGO, Virgo and GEO have been participating in

joint searches since 2006 [91]. The first joint search for compact binary coalescence signals

during the LIGO S5 science run and the Virgo VSR1 data did not result in direct detections
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[70], nor did the “enhanced” detector search during the LIGO S6 science run and the Virgo

VSR2+3 data [73]. Furthermore, the upper limits placed on compact-binary coalescence rates

from the latter search remain roughly two orders of magnitude above best-guess astrophysical

predictions. Nevertheless, in the advanced era we will have a global network of road-tested

instruments which have a realistic chance of regular GW detections, helping to turn the field

from the search for the first detection, towards precision astrophysics.

Beyond these second-generation detector plans, there are concepts for new third-generation

detectors aiming to achieve a broadband order of magnitude improvement in strain-sensitivity

and to push operation down into the∼ 1−10 Hz range. The most notable of these is the Einstein

Telescope (ET) [92], with the European Commission’s FP7 framework recently carrying out a

design study [93] to evaluate the science case and technological hurdles of such a detector. Some

favoured designs emerged, including a triple-interferometer in a 10 km arm-length equilateral

triangle configuration [94–96]. A novel “xylophone” design was also proposed, whereby a high-

power, high-frequency interferometer (ET-HF) would operate above-ground, while a cryogenic

low-power, low-frequency interferometer (ET-LF) would operate underground [97]. There are

significant technological challenges to be overcome if these plans are to be realised.

Sources

Binary systems consisting of two compact objects (COs) whose orbital evolution is entirely

dictated by GW emission have long been of interest to the GW community, and are the chief

target in the high-frequency (terrestrial detector) band. These systems are the final evolutionary

state of massive-star binary systems, and the clean GW signal close to merger provides an im-

portant testbed of gravitation, stellar evolution, CO formation, and the equation of state (EOS)

of nuclear matter. Briefly, the formation of these binaries involves two massive stars evolving

quickly through the main sequence, undergoing successive supernovae to form compact objects

(which may be NSs or BHs), and inspiraling towards an eventual cataclysmic merger through

GW emission. If at least one of the components is a NS, this merger may be associated with an

electromagnetic signature which will aid multi-messenger astronomy. Here, we briefly review

the evolutionary channels for such systems, the stages of the merger process, and the detec-

tion prospects within the next several years. For a more comprehensive discussion see Ref.

[98–100].

The CO binaries of interest are those which may conceivably merge within a Hubble time.

We can estimate the physical parameters of the systems which satisfy this condition using the

quadrupole radiation formula, noting that the emission of GWs should act to circularise the bi-

nary before it enters the terrestrial band such that we can set the eccentricity to be approximately

zero (see Ref. [101, 102] for a more general treatment). The typical GW inspiral timescale is
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[99, 102],

τGW ∼ 4.8× 1010yr

(
Pb
d

)8/3(
µ

M�

)−1(
Mc +Mp

M�

)−2/3

(1− e2)7/2, (1.14)

where Mp, Mc are the masses of the primary and companion remnant COs, respectively; µ =

MpMc/(Mp+Mc) is the reduced mass of the system; Pb is the binary orbital period; and e is the

binary eccentricity. So, in order for an equal-mass circular binary consisting of two 1.4M� NSs

to merge within a Hubble time the binary orbital period should be less than a day. Systems with

BHs can be more massive and so can have a longer orbital period while still merging within

a Hubble time. Hence, we are typically looking for very tight binaries in the very final stages

before merger.

In order to form a binary system with two compact remnants it is necessary that we initially

have a binary with two massive stars, where typically M & 10 − 12M� [100, 103, and refer-

ences therein]2. Stars which exceed this initial mass will undergo core thermonuclear evolution

until iron-peak elements are synthesised, at which point instabilities will lead to gravitational

collapse, resulting in a supernova and the creation of a compact remnant. Above ∼ 30M� it

is more likely that a BH remnant will form rather than a NS, since the binding-energy of the

mantle of a main-sequence star this massive can exceed supernova energies and the ensuing

explosion can not expel it [106]. This results in a more massive fallback onto the proto-NS,

causing it to exceed the maximum mass permitted by neutron degeneracy pressure within re-

alistic EOSs, and collapse to a BH. Interestingly, stars more massive than ∼ 60M� will suffer

from significant stellar wind mass-loss (this is a function of the stellar metallicity), such that the

fallback onto the proto-NS during the supernova explosion may be insufficient to cause collapse

to a BH, and the possibility of forming a NS returns [98, 107].

The standard evolutionary scenario for this massive binary [e.g., 108, 109] is shown as

a cartoon in Fig. 1.3. The two high-mass OB main-sequence stars initially lie within their

Roche lobes, until after a few million years of core thermonuclear burning the more massive

star (the primary) exhausts its central hydrogen supply, leaving a dense helium core, and evolves

off the main sequence. The primary begins to expand rapidly, developing a deep convective

envelope with a polytropic EOS, such that R ∝ M−1/3. It will eventually overfill its Roche

lobe, triggering mass transfer onto the secondary star, which in turn will cause the primary’s

Roche lobe to shrink even further. This phase of mass transfer terminates whenever most of

the primary’s hydrogen envelope has been transferred to the accreting secondary, leaving the

primary as a naked helium core. At this stage, the secondary’s mass now exceeds that of the

primary.
2While the rate of stellar interactions and dynamical capture of COs in stellar clusters may be high, the for-

mation of double CO binaries from this evolutionary path will not constitute a significant detectable population

compared to formation in the stellar field [104, 105].
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Figure 1.3: Cartoon illustrating the various evolutionary stages of a massive binary system.

Reproduced with permission from Ref. [108].
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The primary continues to evolve through successive stages of core burning, eventually

reaching the iron-peak elements, at which point thermonuclear evolution terminates. Gravi-

tational instabilities develop in the core until it eventually collapses, undergoing a Type Ib, Ic

or II supernova, leaving a compact remnant which will be the BH or (the heavier) NS in the

eventual double CO binary. Disruption after this first supernova is possible, and the survival

probability is heavily dependent on the amount of matter ejected during the explosion and the

NS/BH natal-kick distribution. If the first compact remnant formed is a NS then the natal-kick

can be significant, as evidenced by the high space-velocities of radio pulsars [e.g., 110]. The

physical origin of the natal-kick is still uncertain, but a possibility is an asymmetry in the flux of

neutrinos from the newly-formed proto-NS which would cause the final CO to recoil [111, 112,

and references therein].

If the system survives the first supernova then the resulting binary consists of a high-mass

secondary burning core hydrogen, close to Roche lobe overflow, and expelling material in a

stellar wind which is accreted by the CO. In this phase of the evolution the strong X-ray emission

produced by the accretion of wind material onto the CO would identify the system as an X-ray

binary (for a detailed review, see Ref. [109]). Furthermore, if the first compact object was

a rapidly rotating NS with strong radio emission (a pulsar), then the accretion of matter can

spin-up the star, recycling it back into a millisecond pulsar [108].

After the X-ray binary phase, the secondary evolves off the main sequence, expanding be-

yond its Roche lobe to engulf the CO in a common envelope (CE) phase. The CO spirals in

towards the core of the secondary via dynamical friction in the envelope, hardening the binary

as the envelope extracts energy from the binary’s orbit, until eventually the envelope is expelled

[100, and references therein]3. A NS inspiraling within the envelope may actually undergo a

hyper-critical accretion phase, releasing the gravitational energy of accreted envelope-material

by emitting neutrinos [117–119]. Collapse to a BH may follow, although the survival probabil-

ity of a NS inside an envelope is still under study [120, 121]. We note that the CE phase, and the

associated binary hardening via dynamical friction, is essential to the formation of potentially

detectable double CO systems, as without it we would never have binaries which would merge

within a Hubble time [99].

What follows is the secondary (stripped of its hydrogen envelope) undergoing a supernova

to form a CO. Therefore the binary must survive a second explosion, and avoid the possibility

of disruption. If it does so, then we are left with a tight NS-NS, NS-BH, or BH-BH binary,

which evolves towards merger purely via GW emission. We note that, although this is the

3If the CO is a NS and happens to combine with the secondary’s core before envelope expulsion (and does

not exceed the maximum NS mass) then the final object may be the (still hypothetical) Thorne-Zytkow object

[113, 114]. Some candidate systems have recently been identified – see Refs. [115, 116].
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standard scenario for double CO binary-formation, there are many variants on the evolutionary

path described here [e.g., 122–124].

The waveform behaviour during the inspiral phase of the CO binary evolution has long been

well understood, with the pN expansion providing an accurate description up until the last few

orbits before merger (for a review, see Ref. [39]). This allows us to construct reliable waveform

templates, and to coherently track the GW’s phase evolution in our detectors such that optimal

“matched filtering” techniques can be applied [125–127]. The frequency and amplitude of the

GW “chirps” as the binary evolves towards coalescence. In the last few cycles we must take

into account the influence of tidal-deformation of the NS (which depends on the stiffness of the

EOS of nuclear matter) [128, 129] on the phase and amplitude of the inspiral signal.

When the binary separation becomes comparable to the stellar radius the system becomes

unstable, and the COs plunge together. The GW luminosity during this merger-phase can be

∼ 1046 W, or equivalent to outshining (in GWs) the entire visible Universe. If the system is a

double NS (DNS) binary, full GR magnetohydrodynamical simulations are required to model

the merger-phase evolution, where a roughly equal-mass merger resembles a slow collision,

and an unequal-mass binary typically involving tidal disruption and accretion of the low-mass

component [99]. The GW signal is much simpler than previously thought; as discussed in

Sec. 1.2, EOB and NR calculations are making significant headway in modelling this phase.

This signal will encode much important information about the structure and EOS of NSs [130,

131]. In fact, two NSs merging together may in fact delay collapse to a BH if the intermediate

hypermassive NS (HMNS) [132–134] is supported by differential rotation. The HMNS may be

deformed by its rotation into a bar-mode structure, emitting GWs which can encode information

about the intrinsic mass [135] and size [131] of the system.

The ensuing collapse of the system to a BH may be the engine of the most energetic EM

events in the Universe: the short, hard gamma-ray burst (SGRB) [136]. Although the precise

mechanism is still under study, it’s conceivable that neutrinos and anti-neutrinos produced by

shock-heating of collapsing material will annihilate to produce the high-energy gamma-rays

characteristic of a SGRB [137]. In this scheme, if a HMNS has delayed the gravitational col-

lapse then there will be a corresponding delay between the GW and EM signals. There may be

additional EM signatures, in the form of possible radio-afterglows [138], or even kilonova emis-

sion, where, in the latter, r-process synthesis of neutron-rich elements is followed by radioactive

decay and an isotropic afterglow [139–141]. The kilonova emission may in fact present a bet-

ter candidate for EM-counterpart identification than SGRBs, since the beamed emission of the

latter could inhibit the fraction of systems that we see as both GW and EM events [142]. More

speculative EM counterparts are a recently identified population of millisecond radio bursts at

cosmological distances [Fast Radio Bursts (FRBs) or “Lorimer bursts”] [e.g. 143–145] which
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may be associated with the sudden collapse of a magnetised HMNS, causing magnetic-field

lines in the magnetosphere to snap violently, and producing a bright radio flash (“blitzar”)

[146].

The relative fractions and supernova-survival probabilities of NS-NS, BH-NS, and BH-BH

systems depend on a number of factors: (a) the efficiency of binary hardening during the CE

phase, and the corresponding accretion rate onto the NS; (b) the maximum allowed NS mass,

which is a function of the unknown nuclear matter EOS; (c) the natal-kick distribution of NSs

and BHs formed after supernovae. Nevertheless, we can make some estimates of the intrinsic

merger-rate of these systems. A comprehensive literature review can be found in Ref. [147],

but briefly the estimation techniques can be divided into those that make use of empirical cal-

culations and those that rely on the outcome of population-synthesis studies. The empirical

studies either extrapolate the merger-rate based on the observed sample of Galactic DNS sys-

tems [148–150] (of which there are currently 9 known systems [151]), or by assuming that

SGRBs are the EM signature of a double CO merger and correcting for selection-effects via an

appropriate beaming-model, although the latter does not distinguish between NS-NS and NS-

BH [152–154]. The population-synthesis studies directly model the stellar evolution of samples

of (typically) ∼ 106 stars as a function of many tunable parameters, and can be calibrated to

reproduce the Galactic star-formation rate (SFR) or the observed Galactic NS-NS population

[e.g., 155–158]. The actual detection rate of these systems depends on the relative interplay

of the intrinsic merger-rate and the sensitivity of our detectors. However, the number of DNS

systems observed per year by an upcoming advanced network of terrestrial interferometric de-

tectors could be ∼ 0.4 − 400, with a realistic rate of ∼ 40 yr−1 [147]. A coincident SGRB

will be strong evidence of the merging NS-NS/NS-BH model, and may provide strong prior

constraints on the source’s sky-location for GW parameter-estimation [159].

Other candidate GW signals such as modelled/unmodelled bursts (from core-collapse su-

pernovae) [91, 160], continuous waves (from pulsar “bumps” which generate a quadrupole

mass-moment) [161, 162], and stochastic GW backgrounds (discussed thoroughly in Sec. 1.3.3)

[163], are also targeted in the high-frequency band, but will not be discussed further here.

1.3.2 Low frequency (0.1 mHz . f . 0.1 Hz)

Detectors

This band requires much longer interferometer arm-lengths, and a complete suppression of the

seismic/gravity-gradient noise which plagues the low-frequency operation of terrestrial detec-

tors. To this end, detection at these frequencies necessitates space-based laser interferometers.

The canonical design for a mission in this band is the Laser Interferometer Space Antenna
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(LISA) [164], a collaborative project between the National Aeronautics and Space Administra-

tion (NASA) and the European Space Agency (ESA). This mission calls for an arrangement

of three identical satellites in a 5 Mkm arm-length triangular configuration, trailing the Earth’s

orbit by 20◦, and forming 2 optical links along each arm. The total of 6 optical links would have

enabled the interferometer to operate in Sagnac-mode, constructing a data-stream which was

completely insensitive to laser, optical-bench, and clock noise [165, 166].

Following the withdrawal of NASA funding, ESA developed an independent de-scoped

mission concept in the form of the European New Gravitational wave Observatory (NGO) (in-

formally referred to as evolved LISA (eLISA) [167, 168]), which retains the basic LISA design,

but with only 1 Mkm arm-lengths and 4 optical links in a “mother-and-two-daughters” satellite

configuration. As of writing, the eLISA science theme has been chosen for the ESA “Cosmic

Vision” L3 mission slot, due for launch in 2034 at the earliest. Before then, the LISA Pathfinder

satellite will be launched in ∼ 2015 to demonstrate the technological feasibility of the full

eLISA concept [169].

Possible eLISA follow-up missions [170] to bridge the 0.1− 10 Hz gap include the shorter

arm-length Advanced Laser Interferometer Antenna (ALIA) [171], which would target the

mergers of intermediate MBHs, and the Big Bang Observer (BBO) [172], whose highly am-

bitious design of multiple LISA-like satellite constellations would target the cosmological GW

background. Additionally, the Japanese DECi-hertz Interferometer Gravitational wave Obser-

vatory (DECIGO) mission [173, 174], sensitive between 0.1− 10 Hz, may be launched as early

as 2027 contingent upon successful pathfinder missions [175].

Sources

The low frequency band is rich with astrophysical sources, including the Galactic verifica-

tion binaries (primarily WD binaries) whose properties are well-known electromagnetically,

and hence should be detectable within a few weeks or months of instrument operation [176].

Additionally, several thousand unknown ultra-compact binary systems may be individually re-

solvable [177, 178], while the remaining several million will create a stochastic GW foreground

signal [179]. The GW signal of the inspiral, merger and ringdown phases of massive BH (MBH)

binary systems in the mass-range 104 − 107M� also lies in this band. Parameter-estimation of

individual systems will be possible, along with detailed studies of the formation and growth of

primordial seed BHs into the population we see today [167, and references therein]. Arguably

the most exciting sources are the Extreme Mass-Ratio Inspirals (EMRIs), where stellar-mass

compact remnants gradually spiral-in towards a much larger BH, and in so doing map out the

geometry of the MBH space-time [180–182, and references therein]. Finally, these frequencies

may show the signature of a cosmological GW background signal, whose origin may be from
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turbulence within the primordial plasma, colliding bubbles of “true vacua” after a first-order

phase-transition, or the emission from cosmic-string “kinks” [183, and references therein].

1.3.3 Very Low frequency (10−9 Hz . f . 10−7 Hz)

Detectors

This band is unusual in that pulsars, an astrophysical population themselves, are used to detect

GWs. Pulsars are extraordinary objects. Not only does the timing stability of their pulsed

emission enable them to act as unique laboratories for exploring the interplay of nuclear matter

with astrophysical environments, but it also enables them to act as standard clocks in space

with which to infer the perturbing influence of passing nanohertz GWs. Since their discovery

in 1967 [184], pulsars have helped to shed light on strong-field gravity, the EOS of nuclear

matter, evolutionary scenarios for massive binary systems, the interstellar medium, the existence

of exoplanets, and much more. It would be difficult to overstate the exquisite astrophysical

laboratories presented to us in the form of isolated and relativistic-binary pulsars. For deeper

reviews, see Ref. [26, 108].

The basic model of a pulsar (known as the “lighthouse” model) is of a rapidly rotating,

highly magnetised NS formed as the result of stellar collapse during a supernova [185, 186].

The magnetic-field (with an axis offset from the rotational-axis) is such that the star acts as a

rotating magnetic-dipole, generating a local electric field along which charged particles within

the co-rotating magnetospheric plasma are accelerated. It is expected that once these particles

exit the velocity-of-light cylinder4 at the polar caps that they excite beams of radio emission,

which we only observe whenever the beam sweeps across our line-of-sight [187, 188]. The

pulse period is then a measure of the rotation period of the NS itself.

Early competing theories of oscillating WDs and NSs were able to account for pulsational

periods of & 1 s and ∼ 1 − 10 ms, respectively [189]. However, the discovery of the Crab

pulsar [190, 191] with its 33 ms period, and the observation of a gradual spindown of the pulsar

(due to rotational energy being extracted to power the EM outflow), cemented the “lighthouse”

model. Additionally, the 1982 discovery of PSR B1937+21, with its 1.5 ms period, was the first

of the millisecond pulsars [192]. Pulsar demographics can be broadly split into the “young” and

the “millisecond/recycled” varieties; the young pulsars are ones which have formed relatively

recently as a result of a supernova, while the millisecond pulsars are ones which have spun-down

and been subsequently recycled back up to millisecond periods via the accretion of material

and angular-momentum during mass-transfer from a binary companion (see Sec. 1.3.1 for a

discussion of this evolutionary path).

4This is the boundary at which the co-rotating plasma would be moving at light speed.
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Figure 1.4: A simple representation of the main stages involved in the precision timing of pulsars.

Reproduced from [108].

The key to a pulsar’s use as an astrophysical probe is that they make excellent standard

clocks5. Each pulsar has its own signature pulse-shape which can fluctuate dramatically be-

tween consecutive rotations, but when we fold (or “integrate”) over hundreds (or even thou-

sands) of pulses the result is a pulse-profile which is remarkably stable and reproducible6. It

is this pulse-profile stability at a given observing frequency that permits precision timing. A

simple cartoon of the main stages involved in pulsar-timing is illustrated in Fig. 1.4.

Upon being accelerated to relativistic energies out through the polar caps of the NS’s magne-

tosphere, high-energy charged particles excite beams of radiation with a steep, negative-slope

radio spectrum. Individual pulses propagate through the ionised interstellar medium (ISM)

where they undergo dispersion (identified in the analysis of the first pulsar [184]) and multipath

scattering. Dispersion arises due to the frequency-dependent refractive index of the ISM, such

that lower frequencies will have a reduced group-velocity and so will arrive at the telescope

later than higher frequency components. The delay is completely determined by the distance

travelled through the ISM, such that, with an appropriate model of the electron-density distri-

bution, we can determine the pulsar’s distance. Dispersion can be overcome either by splitting

the observed band into smaller sub-channels and delaying the higher-frequency components ac-

cording to the dispersion “1/f 2” relationship (incoherent-dedispersion), or by convolving the

raw observations with the inverse transfer-function of the ISM (coherent-dedispersion) [194].

Multipath scattering occurs when electron-density irregularities lead to a delay in arrival times,

giving the measured pulse a one-sided “scattering-tail”. The only way to overcome this is by

observing at higher frequencies.

5Full details of timing procedures can be found in Ref. [193].
6Investigations of the evolution of the standard pulse-profile can yield rich information on the details of the

emission region, and geodetic precession of the pulsar’s spin-axis in a binary system. See Ref. [26].
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After the removal of dispersion, hundreds or thousands of pulses are integrated over several

minutes of observation to give a boost to the signal-strength and to stabilise the measured profile.

This measured profile is then cross-correlated with the standard pulse-profile for the specific

pulsar at the specific observing frequency. The phase offset between the measured pulse-profile

and standard pulse-profile is added to the start (or midway) time of the observation, giving

a pulse “Time Of Arrival” (TOA). We must now convert these TOAs to an inertial reference

frame, which we usually take to be the Solar System Barycentre (SSB). The times are corrected

for (a) Einstein delays due to time-dilation and gravitational redshift in the presence of the Sun

and other bodies in the Solar System; (b) Shapiro delays due to light propagating through the

gravitational potential-well of the Sun; (c) Roemer delays due to the classic light travel-time

across the Solar System from the Earth to the SSB, which (for nearby pulsars) can also factor

in delays due to spherical wavefronts. If we are observing a binary pulsar then the times must

be additionally corrected for the corresponding delays in the binary system.

After all of these corrections, the final model of the pulsar’s phase-evolution is remarkably

simple. The “lighthouse”-model has a beam sweeping into our line-of-sight every time the

pulsar rotates, where the rotational frequency of the pulsar is decreasing due to “spindown”

caused by the EM outflow’s tapping of the rotational kinetic energy. Hence, for a pulsar with

some rotational frequency ν measured at epoch T0, the pulse phase is modelled as,

φ(T ) = φ0 + 2π(T − T0)ν +
1

2
2π(T − T0)2ν̇ + . . . , (1.15)

where T is the SSB time, and φ0 is the pulsar phase at T0. With initial estimates of the

dispersion-measure, rotational frequency, and location of the pulsar, we can perform a least-

squares fit of the collection of TOAs to our model TOAs (typically with the software pack-

age TEMPO2 [195–197]), forming a series of “timing-residuals”. By iterating and refining the

“timing-model” to remove systematic trends, we can construct extraordinarily precise predic-

tions of the pulsar’s phase. This procedure is discussed in further detail in Part III.

Ideally, the timing-model would incorporate all aspects which could conceivably influence

the pulse TOAs. However, despite their incredible pulse-profile stability, some pulsars are

known to exhibit small rotational irregularities. In particular, discrete jumps in the rotational

frequency of the pulsar (“glitches”) are thought to occur as a result of the sudden recoupling

and angular momentum transfer between the neutron-superfluid and the crustal lattice, reduc-

ing the lag in their rotational frequencies which occurs due to the minimal friction between the

two [198]. This glitchy behaviour is suppressed in older and millisecond pulsars [199, 200].

Many pulsars also exhibit “timing-noise” with low-frequency structure (red timing-noise). The

origin of this may be due to the pulsar’s magnetosphere rapidly and sporadically switching be-

tween two stable configurations, leading to different pulse-shapes and spindown rates [201].

The variation in spindown rate causes the rotational frequency to wander over a period of
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Figure 1.5: The measured cumulative shift in the time of periastron passage is compared to the

GR-prediction, where error bars are too small to see. Data and figure courtesy of Michael Kramer and

Christopher Berry, respectively.

years, contributing a source of red timing-noise if unmodelled. While magnetospheric mode-

switching/nulling is not incorporated into the timing-model, it can be accounted for as an extra

stochastic red-noise process [202]. With a model for the deterministic influences on the TOAs,

and the various receiver- and intrinsic pulsar-noise processes factored in, we now have a set of

remarkably stable clocks in the sky.

The discovery of the binary pulsar PSR B1913+16 [23], and its subsequent high-precision

timing, led to an extraordinary indirect verification of the existence of gravitational-radiation

[24, 203, 204]. The determination of three Post-Keplerian (PK) parameters [205, 206] (rate

of relativistic periastron advance, ω̇; gravitational-redshift and time-dilation, γ; rate of orbital-

period decay, Ṗb) meant that the system was “overdetermined”, such that the binary component

masses obtained from two of the PK parameters could be used to predict the GR value of the

remaining parameter. The resulting analysis (from over 30 years of observations) yielded a GR-

prediction for the rate of orbital-period decay which was within 0.2% of the measured value.

Additionally, PSR J0737-3039 is the only known double pulsar [207, 208], with its measured

five PK parameters allowing for a confluence of GR tests to be passed with flying colours

(see Ref. [25]). This is a fascinating system, consisting of young and millisecond pulsars with

interacting magnetospheres, binary eclipses, and relativistic precession of the spin-axes. An

up-to-date illustration of the agreement between the measured cumulative shift of the time of

periastron passage and the GR-prediction is shown in Fig. 1.5, where the error bars are too small

to see.
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The precision-timing of millisecond pulsars can also be exploited for direct GW detection.

We essentially treat the pulsar and the SSB as opposite ends of our experimental setup, where

the influence of a passing GW is to perturb the space-time metric along the Earth-pulsar line-

of-sight [209–212], creating a change in the proper-separation, and thus inducing irregularities

in the perceived pulsar rotational frequency. The fractional frequency-shift (or redshift) of a

signal from a pulsar in the direction of unit vector p̂, induced by the passage of a single GW

propagating in the direction of Ω̂ is [213, 214]

z(t, Ω̂) =
1

2

p̂ap̂b

1 + Ω̂ · p̂∆hab(t, Ω̂), (1.16)

where ∆hab ≡ hab(te, Ω̂) − hab(tp, Ω̂), is the difference in the metric perturbation at the SSB,

hab(te, Ω̂), and at the pulsar, hab(tp, Ω̂).

This frequency-shift is integrated over time to give the induced timing-residuals, which

describe the perturbation to the TOA of pulses from a given pulsar,

r(t) ≡
∫ t

0

z(t′)dt′. (1.17)

The GW-frequencies to which precision pulsar-timing are sensitive lie in the band 1/T .

f . 1/(2∆T ), where T is the total observation time of the pulsar and ∆T is the observational

cadence. For typical observation schedules this is the ∼ 1 − 100 nHz band. The frequency

resolution is given by ∆f ∼ 1/T . As discussed below, the dominant GW signal at these

nHz frequencies may not be from single resolvable sources, but rather from a stochastic GW

background (GWB) of many overlapping, unresolved sources. Therefore, we can not coherently

track the phase evolution of these signals, but rather must measure the statistical properties of

the background as a whole.

After fitting for a timing-model, the timing-residuals will have contributions of stochastic

signals from timing-noise, receiver-noise (etc.), and the stochastic GWB. By timing an ensem-

ble of Galactic millisecond pulsars [a Pulsar Timing Array (PTA); [215]] to sufficient accuracy,

we can cross-correlate the timing-residuals of each pulsar to mitigate nuisance noise processes

(such as intrinsic pulsar noise), and strengthen the detection of a common stochastic GW back-

ground which is bathing all pulsars. Furthermore, for an isotropic stochastic GWB in GR, the

cross-correlation is a simple function of the angular-separation of the pulsars on the sky. The

functional form of this cross-correlation (known as the “Hellings and Downs curve” [216], and

shown in Fig. 1.6) forms the basis of all current PTA searches, providing leverage of the GWB

signal against noise processes.

The tantalising goal of detecting and characterising GWs with millisecond pulsars has led

to the establishment of three major PTA consortia. The Parkes Pulsar Timing Array (PPTA)

[217, 218] in Australia uses the Parkes radio telescope to observe a large sample of Galactic
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Figure 1.6: The “Hellings and Downs curve” [216], showing the cross-correlation of TOA

perturbations induced by an isotropic stochastic GWB in GR.

millisecond pulsars below a declination of +25◦ and the entire southern Galactic plane. The

North American Nanohertz Observatory for Gravitational waves (NANOGrav) [219, 220] is a

collaboration between the National Radio Astronomy Observatories (NRAO) and several US

universities, using the Arecibo and Green Bank telescopes to perform multi-frequency obser-

vations. The European Pulsar Timing Array (EPTA) [221, 222] is a collaboration of European

institutions, using the Lovell telescope at Jodrell Bank, the Effelsberg telescope at Bonn, the

Westerbork Synthesis Radio Telescope, the Nancy Radio Telescope, and the Sardinia Radio

Telescope. These individual PTAs are separate entities with different strategies and techniques,

but are ultimately bound together in the International Pulsar Timing Array (IPTA) [223, 224],

within which the separate PTAs aim to combine datasets and techniques to enable an enhanced

scientific return. The current status of their efforts is given below, after a discussion of their

GW targets.

Sources

The dominant GW signal in the PTA band is expected to be from the superposition of many

nearby (z . 1), massive (M & 108M�) BH binaries in the early-inspiral regime, overlapping

in frequency to produce an unresolved background at the lowest detectable frequencies [225–

227].

It is now well-established that SMBHs are copious in the nuclei of nearby galaxies [e.g.,

228], with observational relationships indicating a strong coupling between the evolution of

the black-hole and galactic host [e.g., 229–231]. The last decade has seen them identified as
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keystones in theoretical models of hierarchical galaxy formation [232, 233], where massive

galaxies form through continued accretion from cosmic web filaments and through galactic

mergers. As such, the massive black-holes we observe in active or nearby galaxies are the

natural by-product of initial proto-galaxies (with BH seeds) undergoing hierarchical clustering

throughout cosmic time. The formation of massive black-hole binaries naturally follows the

ubiquitous galactic mergers in this framework. After a galactic merger, the individual black

holes spiral by dynamical friction into the core of the common merger-remnant, eventually

residing at the centre of a stellar bulge, and potentially surrounded by massive gas inflows

[234]. After the binary becomes hardened via environmental couplings (discussed below) it

enters the GW inspiral regime, where orbital evolution is dominated by the emission of GWs.

If we assume that hardened binaries (with sub-pc separations, and emitting GWs in the PTA

band) are driven purely by GW emission, then the shape of the resulting GWB strain-spectrum

is quite easily determined. For a population of circular inspiraling binaries, the characteristic

strain of GW emission is given by [235]

h2
c(f) =

∫ ∞
0

dz

∫ ∞
0

dM1

∫ 1

0

dq
d4N

dzdM1dqdtr

dtr
d ln fr

δ

[
f − fr

(1 + z)

]
× h2(fr), (1.18)

where h(fr) ∝ M5/3f
2/3
r [236] is the orientation-averaged strain emitted by a binary of chirp-

massM = (m1m2)3/5/(m1 +m2)1/5 at rest-frame frequency fr. The factor d4N/dzdM1dqdtr

is the cosmological rest-frame rate of coalescing binaries per redshift (z), largest SMBH mass

(M1), and mass-ratio (q). The factor dtr/d ln fr encodes the time spent by the binary radiating

at each frequency, which, for a purely GW-driven binary, is ∝ M−5/3f
−8/3
r [102]. The factor

δ
[
f − fr

(1+z)

]
accounts for the cosmological redshift of each constitutent signal contributing to

the background. Collecting the frequency terms together we see that for a GWB composed

of purely GW-driven, circular, inspiraling SMBH binaries, the characteristic strain is hc(f) ∝
f−2/3 [225–227, 234, 237].

This simple treatment is confirmed by averaging many Monte Carlo realisations of the signal

from SMBH binary population models. However, for a single realisation, many millions of

sources might contribute to the signal, but the GW strain budget is actually dominated by only

several hundred [238, 239]. As such the signal can not be described over the entire band as

a Gaussian, isotropic background [240]; rather the stochasticity of the signal gradually breaks

down at higher frequencies, becoming dominated by only a handful of potentially resolvable

binaries [241]. This is not such a terrible issue, since at lower frequencies we still have a steep,

negative-slope strain-spectrum which will show up as a correlated stochastic signal in the pulsar

timing-residuals, while at higher frequencies we can employ single-source searches.

However, recently the degree to which environmental couplings can affect the frequency

evolution of these binaries has been investigated [235, 242], which has significant ramifications
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for the low-frequency strain-spectrum. To counter potential problems with the GW inspiral

timescale of a newly-formed binary being longer than the Hubble time (the “final parsec prob-

lem” [243]), various binary-hardening mechanisms have been proposed (see Ref. [244, 245]),

such as the scattering of “loss-cone” stars [e.g., 234, 246], and interaction with gaseous cir-

cumbinary disks [e.g., 247, 248]7. These may be sufficient to efficiently drive the binary into

the GW-inspiral regime. However, for 109M� SMBH binaries decoupling from the environment

occurs at fGW ∼ 10−9 Hz, or right where we expect the signal to be loudest in near-future PTA

studies. Continued interaction with the environment can drastically suppress the low-frequency

GWB signal, as the binary orbital energy is transferred to stars or gas rather than into GW

emission. The binaries evolve faster, with fewer systems emitting at each frequency than in the

circular, GW-driven case. Additionally, these environmental couplings can induce significant

binary eccentricity [249, 250], distributing radiated GW power into higher harmonics such that

the low-frequency signal is again suppressed [251]. These findings could have major implica-

tions for the timescale of a GW detection with PTAs [235], and also offer unique opportunities

for rich information concerning environmental couplings of the binary population to be mined.

However, in the remainder of this dissertation we adopt the standard approach of assuming that

a GWB composed of many inspiraling SMBH binaries will have a power-law strain-spectrum.

Indeed, we can also use a power-law to approximate the characteristic strain-spectrum of

other potential background sources. Some measurable primordial background contributions

may have a power-law index of −1 [252, 253], while the background produced by a network

of decaying cosmic strings [254–257] may have an index of −7/6 [258]. For most models of

interest, we can describe an isotropic, stochastic GWB by hc(f) = A (f/yr−1)
α [259], where

A is the dimensionless strain amplitude at a frequency of 1/yr. This characteristic strain can be

related to the one-sided power spectrum of the pulsar timing-residuals induced by the GWB,

S(f) ≡ 1

12π2

1

f 3
hc(f)2 =

A2

12π2

(
f

yr−1

)−γ
yr3, (1.19)

where γ ≡ 3− 2α. Additionally, the cross-power spectrum between pulsars a and b is given by,

Sab(f) ≡ ζ(θab)S(f), (1.20)

where ζ(θab) is the “Hellings and Downs” function (shown in Fig. 1.6) for an isotropic stochastic

GWB, describing the overlap reduction function of the “antenna patterns” of pulsars separated

7There are potential problems with stellar-scattering, since the SMBH binary quickly depletes its loss-cone,

ejecting its supply of stars with which to carry away energy and angular-momentum, and causing the binary-

hardening to stall [234]. A possible solution to this, and to ensure continued hardening of the binary down into the

GW-inspiral regime, is that real stellar bulges are likely to exhibit non-axisymmetric features which permit a much

larger loss-cone [249].
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by angle θab on the sky, with form [216]

ζ(θab) =
3

2
f(θab) ln [f(θab)]− 1

4
f(θab) +

1

2
+

1

2
δab, (1.21)

and f(θab) = (1− cos θab)/2.

Finally, we can express the characteristic strain in terms of the GWB’s fractional energy-

density contribution to the Universe [237],

ΩGW(f) ≡ 1

ρc

dρGW(f)

d(ln f)
=
π

4

f 2hc(f)2

ρc
, (1.22)

where ρc = 3H2/8π is the critical energy-density required for closure.

Over the last several years the three major PTAs have published limits on the GWB ampli-

tude, employing a variety of Bayesian/frequentist methods and time-/frequency-domain tech-

niques. Until recently, the tightest constraint on the amplitude A of the strain spectrum was

A ≤ 6 × 10−15 at the 95% level, which was obtained with the robust, unbiased time-domain

Bayesian framework of van Haasteren et al. [260] within the EPTA. This technique will be used

exclusively in Part III, where it is discussed in greater detail. Following this, Demorest et al.

[261] of NANOGrav obtained a limit ofA ≤ 7.2×10−15 at the 95% level. The most recent, and

now tightest, constraint is from Shannon et al. [262] of the PPTA, with a limit on the Gaussian

(non-Gaussian) amplitude equal to A ≤ 2.4(2.7)× 10−15 at the 95% level.

Several recent studies have claimed that PTAs may actually be on the cusp of detecting the

nHz GWB [263–265]. Sesana [265] performed a systematic investigation of the expected GW

signal from a population of SMBH binaries, factorising the cosmological coalescence rate in

Eq. (1.18) in terms of observed galaxy mass-functions and pairing fractions, deriving galactic

merger time-scales from numerical simulations, and employing a prescription for populating

massive galaxies with SMBHs. The findings indicate that recent upper limits on A obtained by

the EPTA and NANOGrav are already in tension with certain SMBH merger scenarios. The

new tightest constraint from the PPTA excludes 46% of the set of expected amplitudes from

Ref. [265]. Additionally, the PPTA constraint rules out the entirely merger-driven SMBH-

growth model of McWilliams et al. [263, 264] at the 91% confidence level. While detection

may be possible within the next few years [266], and could even outpace LIGO/Virgo, precision

science with PTAs will likely require the exquisite timing of∼ O(100) pulsars using the Square

Kilometre Array (SKA) [267, 268].

There is also an ongoing effort to find and localise single GW sources in the PTA band,

where the primary target is the continuous-wave emission from the adiabatic inspiral of SMBH

binaries. The algorithms employed variously search for periodic signals in the timing-residuals

[269, 270], apply matched-filtering [271], maximise the likelihood over binary parameters [272,

273], or execute a full Bayesian parameter-estimation and evidence search [274]. Notably,
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pulsar-timing has completely ruled out the possibility of a binary in the system 3C 66B [269].

Single-source detection will be explored in further detail in Chapter 5.

1.4 Bayesian inference

Bayesian statistics provide a robust framework with which to obtain probability distributions of

model parameters given a set of observations. To implement this, all we need is a likelihood

model describing the probability of observing a dataset given some model parameters, in addi-

tion to a prior probability distribution which incorporates constraints from all previous analyses

or pre-conceived notions. We use Bayesian statistics in all of the following work.

Bayes’ theorem states that the posterior probability density function (PDF), p(~µ|D,H), of

the parameters ~µ describing a hypothesis modelH, and given data D is

p(~µ|D,H) =
p(D|~µ,H)p(~µ|H)

p(D|H)
, (1.23)

where,

p(D|~µ,H) ≡ L(~µ) = likelihood of data given parameters,

p(~µ|H) ≡ π(~µ) = prior PDF of parameters,

p(D|H) ≡ Z = Bayesian evidence. (1.24)

The Bayesian evidence, Z , is the probability of the observed data given the modelH

Z =

∫
L(~µ)π(~µ)dNµ. (1.25)

For posterior inference within a model, Z plays the role of a normalisation constant and can

be ignored. However, if we want to perform model selection then this evidence value becomes

key. In Bayesian model comparison we compute the posterior odds ratio

p(H2| ~D)

p(H1| ~D)
=
p( ~D|H2)p(H2)

p( ~D|H1)p(H1)
=
Z2 × p(H2)

Z1 × p(H1)
. (1.26)

where Z2/Z1 is the Bayes factor, and p(H2)/p(H1) is the prior probability ratio for the two

competing models. This can often be set to one, and we will do so in all of the following.

The posterior odds ratio is then just the Bayes factor. Since the evidence is the average of the

likelihood over the prior volume, it automatically incorporates Occam’s razor: a simpler theory

with a compact parameter space will have larger evidence than a more complicated one, unless

the latter is significantly better at explaining the data. Hypothesis H1 is chosen if the Bayes

factor is sufficiently large. Jeffreys [275] gave a scale interpretation for the Bayes factor, which

is shown in Table 1.1.
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Table 1.1: An interpretation of the Bayes factor to discriminate between models, as given by Jeffreys

[275].

Bayes factor, K ln(K) Strength of evidence

< 1 : 1 < 0 Negative (supportsH1)

1 : 1 to 3 : 1 0− 1.1 Barely worth mentioning

3 : 1 to 10 : 1 1.1− 2.3 Substantial

10 : 1 to 30 : 1 2.3− 3.4 Strong

30 : 1 to 100 : 1 3.4− 4.6 Very strong

> 100 : 1 > 4.6 Decisive

We now describe two techniques for sampling from, in general, complicated probability

distributions. These techniques are Markov Chain Monte Carlo (MCMC) and Nested Sampling

[276] (as implemented in the Bayesian inference package MULTINEST [277–279]).

1.4.1 Markov Chain Monte Carlo sampling techniques

Markov Chain Monte Carlo (MCMC) techniques provide an efficient way to explore a model-

parameter space. An initial point, −→x0, is drawn from the prior distribution and then at each

subsequent iteration, i, a new point, −→y , is drawn from a proposal distribution, q(−→y |−→x ) and the

Metropolis-Hastings ratio evaluated,

R =
π(−→y )L(−→y )q(−→xi |−→y )

π(−→xi )L(−→xi )q(−→y |−→xi ) . (1.27)

A random sample, u, is drawn from a uniform distribution, u ∈ U [0, 1], and if u < R the

move to the new point is accepted and we set −−→xi+1 = −→y . If u > R, the move is rejected and we

set −−→xi+1 = −→xi .
The MCMC samples can be used to carry out integrals of arbitrary functions, f(x), over the

posterior ∫
f(−→x )p(−→x |D,H)d−→x ≈ 1

N

N∑
i=1

f(−→xi ). (1.28)

The 1D marginalized posterior probability distributions for individual model parameters follows

by binning the chain samples in that parameter.

The trick to using this technique efficiently is to choose an appropriate proposal distribution.

In Chapter 3 we employ an adaptive MCMC procedure, which utilises an “in-flight” estimation

of the sampled chain’s covariance matrix to construct an updating proposal distribution. This

covariance matrix is updated at each iteration, with a certain chain memory [280–282]. We use

several of the procedures outlined in Ref. [282].
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For the first n points in the chain (where in the following work n ∼ 100), simple Gaussian

proposal distributions for each individual parameter are used. These points are merely used to

provide a starting point for the covariance matrix evaluation and so the exact proposal distri-

bution in this stage is not important. After these first points are sampled, we begin generating

points via the adaptive procedure. For a D-dimensional target posterior distribution, we sup-

pose that at the ith iteration we have sampled at least H points, where the fixed integer H is

the memory parameter. We then generate a D-dimensional vector of trial parameters, −→y , via a

linear mapping of an H-dimensional vector of unit-variance Gaussian random scalars,
−→
ξ ,

−→y = C1/2−→ξ , (1.29)

where C1/2 is the positive-definite square root of the D ×D covariance matrix evaluated using

the previous H points. The covariance matrix may be calculated by collecting the previous H

points in the chain into an H × D matrix K, with each row representing one sampled point.

Then,

C =
1

H − 1
K̃T K̃, (1.30)

where the centred matrix, K̃, is constructed by centring each column of K around the means of

the respective parameters, calculated from the H samples.

We then generate the trial parameter vector −→y via

−→y ∼ N (−→x , c2
dC) ∼ −→x +

cd√
H − 1

K̃T−→
ξ , (1.31)

where cd is a variable which depends only on the dimensionality of the target distribution. This

variable is used to optimise the efficiency of the sampling process, and we use the value of

≈ 2.4/
√
D [282, 283].

With a memory parameter which is less than the total past history of the chain, this is de-

noted as the Adaptive Proposal (AP) algorithm [280]. Since the proposal distribution is updated

constantly and relies on previous chain information, this procedure is not Markovian, and does

not have the correct ergodicity properties for an MCMC algorithm [280]. In principle this can

bias the reconstruction of the target posterior; however this bias is ignorable in many practical

applications, and for well-behaved target posterior distributions [280, 281]. If the entire previ-

ous chain is used to update the covariance matrix, then this algorithm is known as the Adaptive

Metropolis (AM) algorithm [281]. The AM algorithm does not suffer from the biases which

can occur in the AP algorithm, and ergodicity is retained.8 We use the AM algorithm in our
8In the AM algorithm the covariance of the proposal distribution is actually taken to be C + εID, where ID

is the D-dimensional identity matrix. Choosing ε > 0 allows for the correct ergodicity properties of an MCMC

algorithm to be retained, and in practice is useful if the covariance of the chain has a tendency to degenerate.

However, this parameter can be set very small with respect to the size of the target space, and in practice can be set

to zero.
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Figure 1.7: The running standard-deviation of a Gaussian proposal distribution in an adaptive-MCMC

analysis of noisy data drawn from a Gaussian distribution. The width of the proposal distribution

asymptotically approaches a stable value, driving the acceptance rate towards its optimal value.

work. An example of the AM algorithm applied to a simple test case of noisy data drawn from

an underlying Gaussian probability distribution is shown in Fig. 1.7, where we see the standard-

deviation of the Gaussian proposal PDF asymptotically approaches a stable value as the chain’s

acceptance rate stabilises at its optimal value.

1.4.2 Nested Sampling & MULTINEST

The nested sampling algorithm is a Monte Carlo method, originally proposed by Skilling [276]

for evaluating the Bayesian evidence, Z . For a full description of the MULTINEST algorithm

see Ref. [277–279], but we describe the basics in the following section.

The basic idea is to populate parameter space with “live” points drawn from the prior. These

points move as the algorithm proceeds, climbing together through nested contours of increasing

likelihood. At each iteration, the points are ordered in terms of their likelihood, and the point

with lowest likelihood is removed in favour of a higher likelihood replacement.

The biggest difficulty in nested sampling is to efficiently sample points of higher likelihood

to allow the live-points to climb. If we were to simply draw points from the prior volume,

then the acceptance rate of new points in the live-set would steadily decrease, since at later
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iterations the live-set occupies a smaller and smaller volume of the prior space as it climbs.

MULTINEST overcomes this drawback by using a sophisticated ellipsoidal rejection-sampling

technique, whereby the current live-set is enclosed by (possibly overlapping) ellipsoids, and a

new point drawn uniformly from the enclosed region. This technique successfully copes with

multimodal distributions and parameter spaces with strong, curving degeneracies.

The evidence is calculated by transforming the multi-dimensional integral in Eq. (1.25) into

a one-dimensional integral which is easily numerically evaluated. We define the prior volume,

X as,

dX = π(~µ)dNµ, (1.32)

such that,

X(λ) =

∫
L(~µ)>λ

π(~µ)dNµ, (1.33)

where the integral extends over the region of the N -dimensional parameter space contained

within the iso-likelihood contour L(~µ) = λ. Hence, Eq. (1.25) can be written as,

Z =

∫ 1

0

L dX, (1.34)

where L(X) is a monotonically decreasing function ofX . If we order theX values (0 < XM <

. . . < X1 < X0 = 1), then the evidence, Z , can be approximated numerically using the simple

trapezium rule,

Z =
M∑
i=1

Liwi, (1.35)

where the weights, wi, are given by wi = (Xi−1 −Xi+1) /2.

As a by-product of the exploration of parameter space by the evolving live-set, MULTINEST

also permits reconstruction of the parameter posterior PDFs. Once Z is found, the final live-

set, as well as the discarded points, are collected and assigned probability weights to give the

posterior probability of each point. These points can be binned to give full and marginalised

posterior PDFs.

1.5 Thesis Overview

The first half of this thesis explores the prospects for constraining cosmological parameters

using gravitational-wave standard sirens in the absence of EM counterparts. This technique uses

the apparent intrinsic narrowness of the NS mass-distribution in NS-NS systems, in addition to

measurements of the luminosity distance and redshifted chirp-mass of each system, to construct

a probe of the distance-redshift relation.
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In Chapter 2 we study this for a network of second-generation ground-based interferometers,

such as will come online by the end of this decade. We investigate how the measurement

error on the Hubble constant varies with the intrinsic narrowness of the NS mass distribution.

Some systems may have measurable EM counterparts in the form of SGRBs or kilonovae.

We explore how the constraints on the Hubble constant varies by increasing the fraction of

the NS-NS catalogue associated with precision EM redshift determinations. This technique is

extended in Chapter 3 for a network of third-generation ground-based interferometers, including

the Einstein Telescope. The huge distance reach and detection volume of these instruments

will allow the dark energy EOS to be explored, while the redshift-evolution of the merger-rate

density of NS-NS systems will permit a reconstruction of the background star-formation rate.

The second half of this thesis involves studies of the GW-detection prospects of pulsar-

timing. In Chapter 4, we investigate the prospects for constraining levels of anisotropy within

the nanohertz stochastic GW background, which may indicate the presence of local GW hotspots

on the sky, and help to construct maps of the angular-distribution of the background’s energy-

density. At the high-frequency end of the pulsar-timing band it’s possible that we may be able

to resolve individual SMBH binary systems. Their detection and characterisation poses certain

practical difficulties, since their influence on the arrival-time of pulsar signals encodes a stamp

of the binary’s evolution at the time when the emitted GWs pass each pulsar. Without precision

constraints on the distance to each pulsar we must include each distance as an extra search-

parameter. In Chapter 5 we explore rapid, first-cut techniques for marginalising over these extra

parameters, allowing the problem to collapse to lower dimensions, and enabling fast estimates

of the posterior odds ratio for detection.
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Nobody ever figures out what life is all about,

and it doesn’t matter. Explore the world.

Nearly everything is really interesting if you

go into it deeply enough.

Richard P. Feynman

We know very little, and yet it is astonishing

that we know so much, and still more aston-

ishing that so little knowledge can give us so

much power.

Bertrand Russell 2
Advanced Era Possibilities

Abstract

We investigate a novel approach for measuring the Hubble constant using only near-future

GW observations. GW observations of inspiraling NS-NS systems with a network of

ground-based interferometers will give a direct, independent measurement of their distance,

and if the redshift of the source is known these binary systems can be used as standard

sirens to extract cosmological information. Unfortunately, the redshift is degenerate with

the chirp mass in GW observations. Thus, most previous work has assumed complemen-

tary information from an electromagnetic counterpart. Instead, we exploit the intrinsic

narrowness of the distribution of masses of the underlying NS population to obtain candi-

date redshift distributions. We explore what we can learn about the background cosmology

and the mass distribution of NSs from the set of mergers detected by such a network. We

find that it is possible to constrain the Hubble constant, H0, and the parameters of the NS

mass function using GW data alone, without relying on electromagnetic counterparts. The

detection, and cataloguing, of these compact-object mergers will provide a determination

of H0 which is independent of the local distance scale.

This chapter is based on:

Cosmology using advanced gravitational wave detectors alone

Stephen R. Taylor, Jonathan R. Gair, and Ilya Mandel

Phys. Rev. D 85, 023535 (2012), arXiv:1108.5161
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2.1 Gravitational wave standard sirens

GW signals directly encode the properties of the emitting system, which, in the case of an in-

spiraling compact-binary, include the luminosity distance DL and the redshifted masses of the

binary components. Simultaneous measurements of the redshift and the luminosity distance

would allow GWs to be used as standard distance-markers, probing the cosmic distance ladder

and allowing for measurements of cosmological parameters [284, 285]. However, the redshift

and the intrinsic masses for point-mass objects can not be individually determined from GW ob-

servations alone. Therefore, previous attempts to use GWs as “standard sirens” have generally

relied on the existence of electromagnetic counterparts which can be used to unambiguously

measure the redshift and break the degeneracy [286–288], or at least do so statistically [289].

In this chapter, we demonstrate that such counterparts are not necessary if the intrinsic mass

distribution is sufficiently narrow, as may be the case for double NS (DNS) binaries, although

one can do even better by combining the two approaches.

We show that it is possible to use the statistics from a catalogue of GW observations of

inspiraling DNS systems to simultaneously determine the underlying cosmological parameters

and the NS mass distribution. A given cosmological model determines the redshift as a function

of luminosity distance, making it possible to extract the intrinsic mass of a system from a mea-

surement of DL and the redshifted mass. This permits us to statistically constrain the Hubble

constant and the NS mass distribution via a Bayesian formalism, using only GW data. A nar-

rower intrinsic NS mass distribution will more effectively penalise any model parameters which

are offset from the true values. We investigate how the precision with which we can recover

the underlying parameters scales with the number of detections and the values of the intrinsic

parameters themselves.

For the majority of our analysis, we do not consider difficult-to-detect electromagnetic (EM)

counterparts to the GW detections, which have been relied on in other analyses, e.g., [287,

288]. Nor do we consider tidal coupling corrections to the late-inspiral phase evolution of

DNS inspiral signals, which break the degeneracy between mass parameters and redshift to

probe the distance-redshift relation [290, 291], but which only enter at the fifth post-Newtonian

order [292] and will likely be very difficult to measure with Advanced LIGO. Furthermore,

recent work [135] has explored the possibility of using information from the GW emission of

a post-merger hypermassive NS (HMNS) [293], which can survive for several seconds before

inevitably collapsing to a black hole [294]. This HMNS develops a bar-mode formation and

emits GWs in a narrow frequency range, where the emission spectrum can be used to extract

the intrinsic mass of the system. The frequency of this HMNS emission will be out of the

sensitivity band of advanced detectors, necessitating third-generation instruments such as the

Einstein Telescope.
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Rather, we rely on measurements of the redshifted chirp mass, which is expected to be

the best-determined parameter, and the luminosity distance. This approach was introduced by

Marković [295], where the author extracted candidate source redshifts from the redshifted chirp

mass using a constant intrinsic chirp mass (this is later extended to include some spread around

the assumed intrinsic value). Chernoff and Finn also explored this technique [296], which

was elaborated upon by Finn [297], where the suggestion was made to employ the distribution

of signal-to-noise ratios and chirp masses to probe cosmological parameters. We use up-to-

date cosmology, mass-distribution models, expectations for detector sensitivity and parameter

measurement accuracies to investigate the precision with which the Hubble constant, and NS

mass distribution parameters, could be measured by the advanced GW detector network.

This chapter is organised as follows. In Sec. 2.2, we present a simplified analytical calcu-

lation and derive scaling laws [298]. Section 2.3 describes the assumptions made in creating

a catalogue of sources, including a discussion of the DNS system properties we can deduce

from a GW signal, as well as NS mass distributions and merger rates. Section 2.4 details the

theoretical machinery for analysing a catalogue of detected DNS systems and the details of our

implementation of this analysis. We describe our results in Sec. 2.5, in which we illustrate the

possibility of probing the Hubble constant and NS mass distribution via GW data.

N.B. At the time this research was carried out, the placement of an advanced GW interfer-

ometer in Australia was being mooted. This is no longer the case and the detector’s location is

now expected to be India. However, this does not affect the general conclusions we draw about

the ability to probe cosmological parameters in the advanced detector era, and indeed we have

considered the possibility of a network consisting only of LIGO and Virgo detectors.

2.2 Analytical model

Here, we present a simplified analytical model to show the feasibility of our idea and to derive

the main scaling relationships of measurement precisions [298]. We later provide additional

justification for the various assumptions made in this model.

The network of advanced detectors will be sensitive to GWs from NS-NS binaries only at

relatively low redshifts, z . 0.15 (see Sec. 2.3.1). At such low redshifts, the Hubble law is

nearly linear, so that to lowest order, we can write the Hubble constant as (see Section 2.3.1)

H0 ≈ z

DL

. (2.1)

Therefore, we expect that the uncertainty in the extrapolation of H0 from redshift and distance

measurements will scale as
|δH0|
H0

.
|δz|
z

+
|δDL|
DL

. (2.2)
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The detected NS binaries will yield a catalogue of sources with measured parameters. These

parameters will include estimates of the redshifted chirp massMz = (1 + z)M and luminosity

distance DL. The redshifted chirp mass will be measured very accurately, so we can ignore

measurement errors for this parameter. However, our ability to extract the redshift of an in-

dividual source from the redshifted chirp mass will depend on the narrowness of the intrinsic

chirp mass distribution,

|δz|
z
∼ σM
M

1 + z

z
∼ (σM/M)

z
, (2.3)

where the last approximation follows from the fact that z � 1. On the other hand, the lu-

minosity distance is estimated directly from the GW signal, but with a significant error that is

inversely proportional to the signal-to-noise-ratio (SNR) of the detection.

Existing binary pulsar measurements suggest that the chirp-mass distribution may be fairly

narrow, σM ≈ 0.06M� (see Sec. 2.3.5). Meanwhile, for the most distant sources at the thresh-

old of detectability, z ≈ 0.15 and |δDL|/DL ≈ 0.3 (see Sec. 2.3.1). Therefore, the first term in

Eq. (2.2) is generally larger than the second term (though they become comparable for the most

distant sources), and the intrinsic spread in the chirp mass dominates as the source of error.

The errors described above were for a single detection, but, as usual, both sources of un-

certainty are reduced with more detections as 1/
√
N , where N is the total number of detected

binaries. In principle, we could worry whether a few very precise measurements dominate over

the remaining ∼N , affecting the overall 1/
√
N scaling. The term (σM/M)/z is larger than

|δDL|/DL, so the best measurements will be those where the former term is minimised. The

spread in the intrinsic chirp mass σM/M is independent of the SNR. Thus, we will learn the

most from measurements at high z, even though these will have a worse uncertainty in DL (the

SNR scales inversely withDL). Therefore, somewhat counter-intuitively, the low SNR observa-

tions will be most informative. However, since the detections are roughly distributed uniformly

in the volume in which the detector is sensitive, we expect half of all detections to be within

∼20% of the most distant detection; therefore, we do expect a ∝ 1/
√
N scaling in δH0/H0.1

Using the values quoted above, for N ∼ 100 detections, we may expect that it will be

possible to extract the Hubble constant with an uncertainty of ∼5%. We carry out a rigorous

analysis below, and find that the results of our simplistic model are accurate to within a factor

of ∼2 (see Sec. 2.5).

1This scaling holds whenever the number of detections is increased, either because the merger rate is higher or

because data are taken for longer. On the other hand, if the number of detections increases because the detectors

become more sensitive, the distance or redshift to the furthest detection will also increase, scaling with N1/3. In

that case, as long as the first term in Eq. (2.2) is still dominant, the overall improvement in δH0/H0 scales as

1/N5/6.
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2.3 Source catalogue

2.3.1 System properties from the gravitational waveform

The TT-gauge GW-tensor can be written as,

h = h+e+ + h×e×, (2.4)

where h+,× are the plus/cross polarisation amplitudes, which, for an inspiraling CO binary (and

in the far-field approximation), are [32, 236],

h+ = 4
M5/3

z

DL

(πf)2/3 1 + cos2 ι

2
cos [Φ(t)] , h× = 4

M5/3
z

DL

(πf)2/3 cos ι sin [Φ(t)] , (2.5)

where f is the GW frequency, DL is the system’s luminosity distance, ι is the binary-orbit

inclination angle, and Φ(t) is the signal’s phase. Mz = (1 + z)M is the redshifted chirp

mass, where the chirp mass, M, is a convenient and accurately-measurable parameter which

combines the binary component NS masses,

M =

(
m1m2

(m1 +m2)2

)3/5

(m1 +m2). (2.6)

Analysis of the GW phase evolution yields errors on the deduced redshifted chirp mass which

vary according to the waveform family being used. Regardless, the precision is expected to be

extremely high, even with a single interferometer, where the characteristic error is of the order

of .0.1% [299].

The polarisation basis-tensors, e+,×, in the plane perpendicular to the direction of wave

propagation are defined as,

e+ ≡
(
êRx ⊗ êRx − êRy ⊗ êRy

)
, e× ≡

(
êRx ⊗ êRy + êRy ⊗ êRx

)
, (2.7)

where êRx,y are radiation basis-vectors in the transverse plane.

The GW-induced strain in an interferometer is given by,

h(t) =
δL(t)

L
= h+(t)F+(θ, φ, ψ) + h×(t)F×(θ, φ, ψ), (2.8)

where F+,× are antenna patterns describing the angular response of a detector to the different

modes of GW polarisation, and defined as,

F+ ≡ d : e+, F× ≡ d : e×. (2.9)

The tensor d is known as the detector tensor [300] and defined as d ≡ (êx ⊗ êx − êy ⊗ êy),

where êx,y are unit-vectors along the interferometer arms, and the notation d : h corresponds
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to the Euclidean scalar product (dlmhlm) of tensors d and h. With these definitions, the antenna

patterns can be evaluated explicitly [236, and references therein],

F+ ≡ 1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ,

F× ≡ 1

2
(1 + cos2 θ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ, (2.10)

where (θ, φ) are spherical-polar coordinates describing the angular position of the source rel-

ative to the detector. The angle ψ describes a rotation of the radiation basis-vectors in the

transverse plane, and together with ι describes the orientation of a binary’s orbital plane with

respect to the detector.

We now recast Eq. (2.8) into the form given by Ref. [297], such that the dependence of the

detector response, h(t), on (θ, φ, ι, ψ) is completely encapsulated in one variable, Θ,

h(t) =


M5/3

z

DL
Θ(πf)2/3cos[χ+ Φ(t)], for t < T,

0, for t > T,
(2.11)

where T is taken as the time of binary coalescence, χ is a constant phase, and Θ is defined as

Θ ≡ 2[F 2
+(1 + cos2 ι)2 + 4F 2

× cos2 ι]1/2, (2.12)

where 0 < Θ < 4.

Even though the luminosity distanceDL is imprinted in the gravitational waveform, a single

interferometer cannot deduce this. The degeneracy in the detector response between Θ and DL

must be broken, necessitating a network of three or more separated interferometers for sky-

location triangulation [284]. A network of separated detectors will vary in their sensitivity to

the different GW polarisation states through their specific antenna patterns. Since the two po-

larisation amplitudes have different dependences on the binary inclination angle, the degree of

elliptical polarisation measured by a network can constrain ι [68]. The interferometers com-

prising a network will be misaligned such that their varying responses to an incoming GW can

constrain the polarisation angle, ψ.

Once Θ is constrained, DL can then be deduced from the detector response, giving a typical

measurement error of ∼(300/ρ)%, where ρ is the signal-to-noise ratio of the detection (e.g.,

[299, 301, 302]). The accuracy with which the distance can be measured will depend on the

exact network configuration (for example, a detection by a Southern Hemisphere instrument

would partially break the inclination–distance degeneracy [75]), but we will use the above as a

representative value.

We don’t include the impact of detector amplitude calibration errors, which could lead to

systematic biases in distance estimates. Unlike statistical measurement errors, these biases

would not be ameliorated by increasing the number of detections. For example, calibration

46 Institute of Astronomy



Stephen Taylor 2.3 Source catalogue

errors of order 10%, as estimated for the LIGO S5 search [303], would translate directly into

10% systematic biases in H0 estimates. Thus, systematic calibration errors could become the

limiting factor on the accuracy of measuring H0 if they exceed the statistical errors estimated in

this analysis. However, a recent study in the context of second-generation detectors has found

that such systematic shifts are likely to be a small fraction of the statistical measurement errors

[304].

2.3.2 Network characteristics

For the purposes of creating a catalogue of sources for our study, we are only interested in

determining which binaries are detectable, and how accurately the parameters of these bina-

ries can be estimated. We use the criterion that the network signal-to-noise ratio, ρnet, must

be greater than 8 for detection. Actual searches use significantly more complicated detection

statistics that depend on the network configuration, data quality, and search techniques, which

might make our assumed detectability threshold optimistic. Here, we are interested only in a

sensible approximation of the detectability criterion.

The network configuration for the advanced detector era is uncertain at present. Possibilities

include the two LIGO 4 km detectors at Hanford and Livingston (HHL), probably sharing data

with Virgo (HHLV). Alternatively, moving one of the Hanford detectors to Australia (AHL

or AHLV) would improve the network’s parameter-estimation accuracy2 [75, 305], while the

Japanese detector KAGRA and/or Indian detector LIGO-India may join the network at a later

date.

In the HHL configuration all of the sites are located in the United States, such that we may

use the approximation of assuming the aLIGO interferometers can be used in triple coincidence

to constitute a super-interferometer. This assumption is motivated by the orientation of the

interferometer arms being approximately parallel [306], and also has precedents in the literature

[e.g., 157, 297]. However, source localisation and DL determination is very poor in HHL, and

would be greatly improved by the inclusion of data from Virgo or an Australian/Indian detector.

The single-interferometer approximation is less obviously valid for networks with distant,

non-aligned detectors, such as AHL(V) or HHLV. In Ref. [307], the authors comment that the

proposed LIGO-Australia site was considered so as to be nearly antipodal to the LIGO sites,

such that all three interferometers in the AHL configuration would have similar antenna pat-

terns. Furthermore, since the same hardware configuration would be used for LIGO-Australia

and aLIGO, the noise spectra would have been expected to be similar [308]. Meanwhile, Virgo

2While this research was being carried out LIGO-Australia was a distinct possibility, and so is considered in

the following. We now expect the H2 instrument to be relocated to India. However, our consideration of a network

including an Australian detector does not affect our general conclusions.

March 2014 47



Advanced Era Possibilities Stephen Taylor

does not have the same antenna pattern as the LIGO detectors, and the AdV noise spectrum [82]

will be somewhat different from the aLIGO spectrum.

In any case, precise comparisons of the sensitivity of different networks depend on assump-

tions about search strategies (e.g., coincident vs fully coherent searches3) and source distribu-

tions (see, e.g., Ref. [75, 307, 309]). We therefore penalise our super-interferometer assumption

in two different ways. Firstly, we set the network SNR threshold to correspond to the expected

SNR from three identical interferometers, as described below, rather than the four interferom-

eters comprising the AHLV or HHLV networks. We further penalise the HHLV network rela-

tive to the network including the more optimally located LIGO-Australia by raising the SNR

threshold from 8 to ∼10. These increases in SNR thresholds have the effect of restricting the

network’s reach in luminosity distance or redshift; however, similar numbers of detections can

be achieved by longer observation times.

With the aforementioned caveats, we proceed with our assumption that a global network

can be approximated as a single super-interferometer. This is to provide a proof of principle for

the ability of such a network to probe the background cosmology and aspects of the source dis-

tribution. We do not anchor our analysis to precise knowledge of the individual interferometer

site locations and orientations, but will attempt to correct for any possible bias.

2.3.3 Signal detection

With prescriptions to model gravitational waveforms from every stage of the binary coales-

cence, we are able to coherently track the phase-evolution of the GW, and employ our wave-

form templates to optimise the SNR of a detection. Matched filtering is a standard technique in

data-analysis to efficiently search for, and extract the properties of, signals with known charac-

teristics (e.g., phase-evolution) in noisy data [125]. Further details on GW data-analysis can be

found in Ref. [310, 311].

We consider noise in our detector to be a continuous zero-mean Gaussian random process,

n(t). The data stream will be

x(t) = h(t) + n(t), (2.13)

where h(t) is the signal of interest. The spectral properties of the noise are described by its

one-sided power spectral density (PSD), Sn(f),

〈ñ(f)ñ∗(f ′)〉 =
1

2
Sn(f)δ(f − f ′), (2.14)

3In a coherent network search the datasets from all interferometers are brought together, an appropriate filter

applied, and the detection statistic integrated coherently across all data. In a coincident network search the data

from each detector is analysed separately, after which coincidences are searched for in the multi-dimensional

source parameter space.
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where 〈·〉 denotes an expectation value, and ñ(f) =
∫∞
−∞ n(t) exp (2πift) df is the Fourier

transform of the noise.

The correlation of the data stream with a waveform template (or “filter”) q(t) is given by,

c(τ) ≡
∫ ∞
−∞

x(t)q(t+ τ)dt, (2.15)

where τ denotes the lag of the template behind the data stream. Our goal is to maximise this

correlation by finding an optimal template. The SNR is defined in terms of c(τ) by,

ρ2 ≡ S2

N2
≡ 〈c(τ)〉2
〈c(τ)2〉 − 〈c(τ)〉2 . (2.16)

We now define a scalar product between waveforms [312],

(a|b) ≡ 2

∫ ∞
0

df

Sn(f)

[
ã(f)b̃∗(f) + ã∗(f)b̃(f)

]
, (2.17)

which allows us to write the SNR in a more compact form,

ρ =
(h exp [2πif∆t] |Snq)√

(Snq|Snq)
, (2.18)

where ∆t is the difference in the template lag-time and the signal arrival-time. Maximising this

with respect to template-choice gives the optimal template, and the optimal SNR,

ρopt = (h|h)1/2 = 2

∫ ∞
0

df

∣∣∣h̃(f)
∣∣∣2

Sn(f)


1/2

. (2.19)

Now, following Ref. [297] (and correcting for a missing square root), we write the optimal

matched-filtering SNR of an inspiraling DNS binary in a single detector as

ρ = 8Θ
r0

DL

( Mz

1.2M�

)5/6√
ζ(fmax), (2.20)

where

r2
0 ≡

5

192π

(
3

20

)5/3

x7/3M
2
�,

x7/3 ≡
∫ ∞

0

df(πM�)2

(πfM�)7/3Sn(f)
,

ζ(fmax) ≡ 1

x7/3

∫ 2fmax

0

df(πM�)2

(πfM�)7/3Sn(f)
, (2.21)

and 2fmax is the GW frequency at which the inspiral detection template ends [313]. The SNR

of a detected system will vary between the individual network sites, as a result of the different
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Sn(f)’s and angular dependencies. In a coincident search, the network SNR of a detected

system is given by the quadrature summation of the individual interferometer SNRs,

ρ2
net =

∑
k

ρ2
k. (2.22)

We approximate the sensitivity of the super-interferometer by assuming 3 identical interferom-

eters in the network with the sensitivity of aLIGO, such that r0,net ≈
√

3r0. Different target

noise curves for aLIGO produce different values for the characteristic distance-reach, r0, which

vary between ∼ 80 − 120 Mpc [308]. We adopt the median value of 100 Mpc for a single

interferometer, yielding r0,net ∼ 176 Mpc for the network.

The SNR also depends on ζ(fmax), which increases monotonically as a function of fmax.

This factor describes the overlap of the signal power with the detector bandwidth [297], which

will depend on the wave frequency at which the post-Newtonian approximation breaks down,

and the inspiral ends. It is usual to assume that the inspiral phase terminates when the evolution

reaches the innermost stable circular orbit (ISCO), whereupon the NSs merge in less than an

orbital period. This gives

fGW
max = 2fmax = 2

(
fISCO

1 + z

)
=

1570 Hz
1 + z

(
2.8M�
M

)
, (2.23)

where M is the total mass of the binary system [147]. fISCO also depends directly on the mass

ratio µ/M (µ is the system’s reduced mass); however this mass asymmetry term has a negligible

effect on fmax for the mass range of NSs considered here [313, 314].

The maximum binary system mass could conceivably be ∼4.2M�.4 The aLIGO horizon

distance for 1.4M�–1.4M� inspirals is∼445 Mpc, which corresponds to z ∼ 0.1 in the ΛCDM

cosmology. Given that we are evaluating different cosmological parameters, we adopt z ∼ 1 as a

generous upper redshift limit to a second-generation network’s reach. This redshift exceeds the

reach of aLIGO in all considered cosmologies5 and chirp masses. With these extreme choices

for the variables, the orbital frequency at the ISCO, fmax, could be as low as ∼262 Hz. For the

zero-detuning-high-power aLIGO noise curve [308], ζ(fmax = 262Hz) & 0.98. Thus, we feel

justified in adopting ζ(fmax) ' 1 for the ensuing analysis.

Thus matched filtering, with an SNR threshold of 8, a characteristic distance reach of ∼176

Mpc and ζ(fmax) ' 1, provides a criterion to determine the detectability of a source by our

network.6

4Both NSs in the binary system would need to have masses 2σ above the distribution mean at the maximum µ

and σ considered in this analysis, where µNS ∈ [1.0, 1.5]M�, σNS ∈ [0, 0.3]M�.
5H0 ∈ [0.0, 200.0] km s−1Mpc−1; Ωk,0 = 0; Ωm,0 ∈ [0.0, 0.5]
6There will be some bias in this approximation, since we are assuming each interferometer records the same

SNR for each event. The fact that the different interferometers are not co-located means that this may overestimate
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2.3.4 Orientation function, Θ

The angular dependence of the SNR is encapsulated within the variable Θ, which varies between

0 and 4, and has a functional form given by Eq. (2.12). From our catalogue of coincident

DNS inspiral detections we will use onlyMz and DL for each system. The sky location and

binary orientation can be deduced from the network analysis, however we will not explicitly

consider them here. Without specific vales for the angles (θ, φ, ι, ψ) we can still write down the

probability density function for Θ [297]. Taking cos θ, φ/π, cos ι and ψ/π to be uncorrelated

and distributed uniformly over the range [−1, 1], the cumulative probability distribution for

Θ was calculated numerically in Ref. [315]. The probability distribution can be accurately

approximated [297] by,

PΘ(Θ) =

 5
256

Θ(4−Θ)3, if 0 < Θ < 4,

0, otherwise.
(2.24)

We can use Eq. (2.24) to evaluate the cumulative distribution of Θ,

CΘ(x) ≡
∫ ∞
x

PΘ(Θ)dΘ '


1, if x ≤ 0

(1+x)(4−x)4

256
, if 0 ≤ x ≤ 4

0, if x > 4.

(2.25)

2.3.5 NS mass distribution

In recent years, the number of catalogued pulsar binary systems has increased to the level that

the underlying NS mass distribution can be probed. There is now a concordance across the

literature that the NS mass distribution is multimodal, which reflects the different evolutionary

paths of pulsar binary systems [316, 317]. However, we are only concerned with NSs in NS-NS

systems for this analysis, and their distribution appears to be quite narrow.

In particular, Valentim et al. [317] found that the NSs in DNS systems populate a lower

mass peak at m ∼ 1.37M� ± 0.042M�, which agrees well with the earlier work of Thorsett

and Chakrabarty [318], who found that an analysis of 26 radio pulsars favoured a very tight

Gaussian distribution of NS masses (1.35±0.04M�). Meanwhile, Kiziltan et al. [316] restricted

their sample of NSs to those with secure mass measurements and found that the maximum-a-

posteriori Gaussian mass distribution for DNS systems had parameters µNS ∼ 1.34M�, σNS ∼
0.06M�. Their posterior predictive density estimate gave a NS mass distribution with µNS =

1.35M�, σNS = 0.13M�, while a recent update to their manuscript has modified this very

the number of coincident detections. We carry out the analysis here aware of, but choosing to ignore, this bias, and

in Sec. 2.5.3 consider raising the network SNR threshold, which has the same effect as reducing the characteristic

distance reach of the network.
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slightly toMNS = 1.33+0.10
−0.12M� [319], where errors denote the 68% posterior predictive interval.

Finally, a recent study by Özel et al. [320] has found that DNS data are consistent with both

pulsar and companion having been drawn from the same underlying distribution of masses.

Population synthesis studies of binary evolution predict similarly narrow mass distributions

for NSs in NS-NS binaries (see, e.g., Ref. [124, 157, 321, 322, and references therein]). Some

models predict that the mass of NSs at formation is bimodal, with peaks around 1.3 and 1.8

solar masses, and any post-formation mass transfer in DNS systems is not expected to change

that distribution significantly. However the 1.8M� mode is anticipated to be very rare for DNS

systems, with the vast majority of merging NSs belonging to the 1.3M� peak. Thus, population

synthesis results support the anticipation that NS binaries may have a narrow range of masses

that could be modelled by a Gaussian distribution.

Further population synthesis and observational studies in the following decade will help to

shed further light on the nature of the NS mass distribution. The assumption of a unimodal (for

DNS systems) Gaussian distribution is an approximation, and if future studies show this to be

inappropriate, then a more suitable ansatz could be readily incorporated within the framework

described here.

To lowest order, the GW signal depends on the two NS masses through the chirp mass,M.

We assume that the distribution of individual NS masses is normal, as suggested above. For

σNS � µNS, this should yield an approximately normal distribution for the chirp mass as well.

We carried out ∼O(105) iterations, drawing two random variates from a normal distribution

(representing the individual NS masses), and then computing M. We varied the mean and

width of the underlying distribution within the allowed ranges (Sec. 2.3.3). Binning the M
values, the resultingM distribution was found to be normal, as expected.

We now postulate a simple ansatz for the relationship between the chirp mass distribution

parameters and the underlying NS mass distribution. If X1 and X2 are two independent random

variates drawn from normal distributions,

X1 ∼ N(µ1, σ
2
1) ; X2 ∼ N(µ2, σ

2
2)

aX1 + bX2 ∼ N(aµ1 + bµ2, a
2σ2

1 + b2σ2
2). (2.26)

Since the NS mass distribution is symmetric around the mean (and all NS masses are∼O(1M�)

with the values spread over a relatively narrow range), then we can assume a characteristic value

for the pre-factor in Eq. (2.6) is the value taken when both masses are equal i.e.∼(0.25)3/5. The

chirp mass distribution should then be approximately normal

M∼ N(µc, σ
2
c ),

with mean and standard deviation

µc ≈ 2(0.25)3/5µNS, σc ≈
√

2(0.25)3/5σNS. (2.27)
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where µNS and σNS are the mean and standard deviation of the underlying NS mass distribution,

respectively.

The accuracy of such an ansatz depends upon the size of mass asymmetries which could

arise in a DNS binary system. We investigated the percentage offset between the actual dis-

tribution parameters (deduced from least-squares fitting to the sample number-density distribu-

tion) and the ansatz parameters, for a few values of µNS and σNS. The largest offset of the ansatz

parameters from the true chirp mass distribution was on the order of a few percent (∼2.5% for

µc, and ∼3.5% for σc when µNS = 1.0M�, σNS = 0.3M�), and the agreement improved with

a narrower underlying NS mass distribution. For the case of σNS ∼ 0.05M�, the agreement

was ∼0.1% for µc and < 0.1% for σc. In the case of σNS ∼ 0.15M�, the agreement was

within a percent for both parameters. The sign of these offsets indicates that µtrue
c < µmodel

c and

σtrue
c > σmodel

c .

Given that the literature indicates an underlying NS mass distribution in DNS systems with

σNS . 0.15M�, we anticipate that Eq. (2.27) will be appropriate for generating data sets and

we use this in the ensuing analysis. The assumption throughout is that for the volume of the

Universe probed by our global network, the NS mass distribution does not change.

The observed data will tell us how wide the intrinsic chirp mass distribution is in reality. If it

is wider than anticipated, we may not be able to measureH0 as precisely as we find here, but we

will know this from the observations. In principle, we could still be systematically biased if the

mass distribution turned out to be significantly non-Gaussian, since we are assuming a Gaussian

model. However, it will be fairly obvious if the mass distribution is significantly non-Gaussian

(e.g., has a non-negligible secondary peak around 1.8 M�), since redshift could only introduce

a ∼10% spread in the very precise redshifted chirp mass measurements for detectors that are

sensitive to z ∼ 0.1. In such a case, we would not attempt to fit the data to a Gaussian model

for the intrinsic chirp mass distribution.

2.3.6 DNS binary merger rate density, ṅ(z)

We assume that merging DNS systems are distributed homogeneously and isotropically. The

total number of these systems that will be detected by the global network depends on the in-

trinsic rate of coalescing binary systems per comoving volume. We require some knowledge of

this in order to generate our mock data sets. Any sort of redshift evolution of this quantity (as a

result of star-formation rate evolution etc.) can be factorised out [297], such that

ṅ(t) ≡ d2N

dtedVc
≡ ṅ(z) = ṅ0ξ(z), (2.28)

where N is the number of coalescing systems, te is proper time, Vc is comoving volume, and ṅ0

represents the local merger-rate density.
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Table 2.1: A compilation of NS-NS merger rate densities in various forms from Tables II, III and IV in

Ref. [147]. The first column gives the units. The second, third and fourth columns denote the plausible

pessimistic, likely, and plausible optimistic merger rates extrapolated from the observed sample of

Galactic binary NSs [149]. The fifth column denotes the upper rate limit deduced from the rate of Type

Ib/Ic supernovae [150].

Source Rlow Rre Rhigh Rmax

NS-NS (MWEG−1Myr−1) 1 100 1000 4000

NS-NS (L−1
10 Myr−1) 0.6 60 600 2000

NS-NS (Mpc−3Myr−1) 0.01 1 10 50

We will consider an evolving merger-rate density, such that,

ξ(z) = 1 + αz = 1 + 2z, for z ≤ 1, (2.29)

which is motivated by a piecewise linear fit [323] to the merger-rate evolution deduced from the

UV-luminosity-inferred star-formation-rate history [324].

The appropriate value for ṅ0 is discussed in detail in Ref. [147]. In that analysis, the authors

review the range of values quoted in the literature for compact binary coalescence rates, i.e. not

only NS-NS mergers but also NS-BH and BH-BH. The binary coalescence rates are quoted per

Milky Way Equivalent Galaxy (MWEG) and per L10 (1010 times the Solar blue-light luminosity,

LB,�), as well as per unit comoving volume. In each case, the rates are characterised by four

values, a “low,” “realistic,” “high” and “maximum” rate, which cover the full range of published

estimates.

The values for the NS-NS merger rate given by Ref. [147] are listed in Table 2.1. The

second row of Table 2.1 is derived assuming that coalescence rates are proportional to the star-

formation rate in nearby spiral galaxies. This star-formation rate is crudely estimated from

their blue-luminosity, and the merger-rate density is deduced via the conversion factor of 1.7

L10/MWEG [325]. The data in the third row is obtained using the conversion factor of 0.0198

L10/Mpc3 [326].

To convert from merger-rate densities to detection rates, Ref. [147] take the product of

the merger-rate density with the volume of a sphere with radius equal to the volume averaged

horizon distance. The horizon distance is the distance at which an optimally oriented, optimally

located binary system of inspiraling 1.4M� NSs is detected with the threshold SNR. This is

then averaged over all sky locations and binary orientations.

ND = ṅ0×4π

3

(
Dhorizon

2.26

)3

, (2.30)

where the (1/2.26) factor represents the average over all sky locations and binary orientations.
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This gives ∼40 detection events per year in aLIGO (using Rre), assuming that Dhorizon =

445 Mpc and all NSs have a mass of 1.4M�.

2.3.7 Cosmological model assumptions

We assume a flat cosmology, Ωk,0 = 0, throughout, for which the luminosity distance as a

function of the radial comoving distance is given by

DL(z) = (1 + z)Dc(z) = (1 + z)DH

∫ z

0

dz′

E(z′)
, (2.31)

where DH = 1/H0 (the “Hubble length scale”) and

E(z) =
√

Ωm,0(1 + z)3 + ΩΛ,0. (2.32)

In such a cosmology, the redshift derivative of the comoving volume is given by

dVc
dz

=
4πDc(z)2DH

E(z)
. (2.33)

At low redshifts, we can use an approximate simplified form for the relationship between red-

shift and luminosity distance. Using a Taylor expansion of the comoving distance around z = 0

up to O(z2), and taking the appropriate positive root, we find Dc(z) = DL(z)/(1 + z) is given

by

Dc(z) ≈ Dc(z = 0) + z
∂Dc

∂z

∣∣∣∣
z=0

+
z2

2!

∂2Dc

∂z2

∣∣∣∣
z=0

+ . . .

≈ DH

[
z − 3

4
Ωm,0z

2

]
. (2.34)

Hence,

DL ≈ DH

[
z +

(
1− 3

4
Ωm,0

)
z2

]
.

Therefore,

z ≈ 1

2
(
1− 3

4
Ωm,0

)
√1 +

4
(
1− 3

4
Ωm,0

)
DL

DH

− 1

 . (2.35)

This approximation is very accurate for the range of parameters investigated (H0 ∈ [0, 200] km

s−1Mpc−1, Ωm,0 ∈ [0, 0.5]), and for DL . 1 Gpc (which is comfortably beyond the reach of

aLIGO for NS-NS binaries). In this parameter range, the largest offset of this approximation

from a full redshift root-finding algorithm is ∼4.6%, at a luminosity distance of 1 Gpc.
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2.3.8 Distribution of detectable DNS systems

The two system properties we will use in our analysis are the redshifted chirp mass,Mz, and

the luminosity distance, DL. Only systems with an SNR greater than threshold will be detected.

Thus, we must include SNR selection effects in the calculation for the number of detections. We

can write down the distribution of the number of events per year withM, z and Θ [157, 297],

d4N

dtdΘdzdM =
dVc
dz

ṅ(z)

(1 + z)
P(M)PΘ(Θ), (2.36)

where t is the time measured in the observer’s frame, such that the 1/(1 + z) factor accounts for

the redshifting of the merger rate [157].

We convert this to a distribution inMz, DL and ρ using,

d4N

dtdρdDLdMz

=

∣∣∣∣∣∣∣∣
∂M
∂Mz

∂M
∂DL

∂M
∂ρ

∂z
∂Mz

∂z
∂DL

∂z
∂ρ

∂Θ
∂Mz

∂Θ
∂DL

∂Θ
∂ρ

∣∣∣∣∣∣∣∣×
d4N

dtdΘdzdM . (2.37)

We use the definitions of the variables in Sec. 2.3.1 and 2.3.2 to evaluate the Jacobian ma-

trix determinant. The redshift is only a function of DL (in a given cosmology); the intrinsic

chirp mass, M, is the redshifted chirp mass divided by (1 + z) (again the redshift is a func-

tion of DL); Θ is a function ofMz, DL and ρ according to Eq. (2.20). The (1,3) component(
∂M/∂ρ ≡ (∂M/∂ρ)

∣∣
Mz ,DL

)
is zero because we are differentiating intrinsic chirp mass (a

function of redshifted chirp mass and distance) with respect to SNR, but keeping distance and

redshifted chirp mass constant. If these variables are held constant then the derivative must be

zero. Similar considerations of which variables are held constant in the partial derivatives are

used to evaluate the remaining elements of the matrix. Hence,∣∣∣∣∣∣∣∣
1

(1+z)
− M

(1+z)
∂z
∂DL

0

0 ∂z
∂DL

0

−5
6

Θ
Mz

Θ
DL

Θ
ρ

∣∣∣∣∣∣∣∣ =
1

(1 + z)

∂z

∂DL

Θ

ρ
. (2.38)

We note that,

Pρ(ρ)δρ = PΘ(Θ)δΘ,

which gives,

Pρ(ρ|Mz, DL) =PΘ(Θ)
∂Θ

∂ρ

∣∣∣∣
Mz ,DL

=PΘ(Θ)
Θ

ρ

=PΘ

[
ρ

8

DL

r0

(
1.2M�
Mz

)5/6
]
× DL

8r0

(
1.2M�
Mz

)5/6

, (2.39)
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such that we finally obtain,

d4N

dtdρdDLdMz

=
1

(1 + z)

∂z

∂DL

dVc
dz

ṅ(z)

(1 + z)
× P(M|z)× PΘ(Θ)

Θ

ρ︸ ︷︷ ︸
Pρ(ρ|Mz ,DL)

=
4πDc(z)2DH

Dc(z)E(z) +DH(1 + z)

ṅ(z)

(1 + z)2
× P

( Mz

1 + z

∣∣∣∣DL

)
Pρ(ρ|Mz, DL).

(2.40)

We may not necessarily care about the specific SNR of a detection; rather only that a system

withMz and DL has SNR above threshold (and is thus detectable). Fortunately the SNR only

enters Eq. (2.40) through Pρ(ρ|Mz, DL), such that we can simply integrate over this term and

apply Eq. (2.25),∫ ∞
ρ0

Pρ(ρ|Mz, DL)dρ =

∫ ∞
x

PΘ(Θ)dΘ ≡ CΘ(x),

where, x =
ρ0

8

DL

r0

(
1.2M�
Mz

)5/6

. (2.41)

In this case, Eq. (2.40) is modified to give,

d3N

dtdDLdMz

∣∣∣∣
ρ>ρ0

=
4πDc(z)2DH

Dc(z)E(z) +DH(1 + z)

ṅ(z)

(1 + z)2
× P

( Mz

1 + z

∣∣∣∣DL

)
CΘ

[
ρ0

8

DL

r0

(
1.2M�
Mz

)5/6
]
. (2.42)

To calculate the number of detected systems (given a set of cosmological and NS mass distribu-

tion parameters, −→µ ) we integrate over this distribution, which is equivalent to integrating over

the distribution of events with redshift and chirp mass, i.e., Nµ = T × ∫∞
0

∫∞
0

(
d3N

dtdzdM

)
dzdM,

where T is the duration of the observation run.

2.3.9 Creating mock catalogues of DNS binary inspiraling systems

The model parameter space we investigate is the 5D space of [H0, µNS, σNS,Ωm,0, α] with a flat

cosmology assumed. To generate a catalogue of events, we choose a set of reference parameters,

motivated by previous analysis in the literature. For our reference cosmology, we adopt values

consistent with the seven-year WMAP observations [327, 328]: H0 = 70.4 km s−1Mpc−1,

Ωm,0 = 0.27 and ΩΛ,0 = 0.73.7 The parameters of the NS mass distribution were discussed

earlier, but as reference we use µNS = 1.35M� and σNS = 0.06M�. The merger-rate density

7After this research was performed, a final revision of the WMAP results was published [329], in addition to

the first Planck results [16]. As seen later, given the typical measurement accuracies achieved in our analysis, our

reference cosmology remains very comfortably consistent with these revised results.
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was also discussed earlier, and we take α = 2.0 and ṅ0 = 10−6 Mpc−3yr−1 as the reference.

Later, we will investigate how the results change if the width of the NS mass distribution is as

large as 0.13M�, as indicated by the predictive density estimate of Ref. [316].

These reference parameters are used to calculate an expected number of events,8 and the

number of observed events is drawn from a Poisson distribution (assuming each binary system

is independent of all others) with that mean. Monte-Carlo acceptance/rejection sampling is used

to draw random redshifts and chirp masses from the distribution in Eq. (2.36) for each of the

No events. The DL andMz are then computed from the sampledM and z.

With a reference rate of ṅ0 = 10−6 Mpc−3yr−1 and a constant merger-rate density, we esti-

mate that there should be ∼90 yr−1 detections, whilst taking into account merger-rate evolution

using Eq. (2.29) boosts this to ∼100 yr−1. These numbers are for a network SNR threshold of

8. If we ignore merger-rate evolution and raise the SNR threshold to 10 (to represent an AdV-

HHL network for which the coincident detection rate is roughly halved relative to the HHL-only

network) we get∼45 events in 1 year, which compares well to the 40 events found in Ref. [147].

2.4 Analysis methodology

Given a catalogue of simulated sources with measured redshifted chirp masses and luminosity

distances, we use Bayesian statistics to compute posterior distribution functions of cosmological

parameters, as well as the mean and standard deviation of the intrinsic NS mass distribution (in

DNS systems).

2.4.1 Modelling the likelihood

Expressing the likelihood

We use a theoretical framework similar to that of Ref. [330]. The data are assumed to be a

catalogue of events for which redshifted chirp mass, Mz, and luminosity distance, DL have

been estimated. These two parameters for the events can be used to probe the underlying cos-

mology and NS mass distribution. In this analysis, we focus on what we can learn about the

Hubble constant, H0, the Gaussian mean of the (DNS system) NS mass distribution, µNS, and

the Gaussian half-width, σNS. We could also include the present-day matter density, Ωm,0, how-

ever we expect that this will not be well constrained due to the low luminosity distances of the

sources. We could also include the gradient parameter, α, describing the redshift evolution of

the merger-rate density.

8The observation time, T , is assumed to be 1 year (but the expected number of detections simply scales linearly

with time) and a network acting as a super-interferometer with r0,net ' 176 Mpc is also assumed.
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The measurement errors were discussed earlier (Sec. 2.3.1) and we will account for these

later. For the first analysis we assume that the observable properties of individual binaries are

measured exactly.

We consider first a binned analysis. We divide the parameter space of Mz and DL into

bins, such that the data is the number of events measured in a particular range of redshifted

chirp mass and luminosity distance. Each binary system can be modelled as independent of all

other systems, so that within a given galaxy we can model the number of inspirals that occur

within a certain time as a Poisson process, with DNS binaries merging at a particular rate (e.g.,

[148, 331]). The mean of the Poisson process will be equal to the model-dependent rate times

the observation time, and the actual number of inspirals occurring in the galaxy is a random-

variate drawn from the Poisson distribution.

A bin in the space of system properties may contain events from several galaxies, but these

galaxies will behave independently and the number of recorded detections in a given bin will

then be a Poisson process, with a mean equal to the model-dependent expected number of

detections in that bin [330]. The data can be written as a vector of numbers in labelled bins in

the 2D space of system properties, i.e. −→n = (n1, n2, . . ., nX), where X is the number of bins.

Therefore, the likelihood of recording data D under model H (with model parameters −→µ ) is

the product of the individual Poisson probabilities for detecting ni events in a bin, i, where the

expected (model-dependent) number of detections is ri(−→µ ). For the ith bin,

p(ni|−→µ ,H) =
(ri(
−→µ ))nie−ri(

−→µ )

ni!
, (2.43)

and so the likelihood of the catalogued detections is,

L(−→n |−→µ ,H) =
X∏
i=1

(ri(
−→µ ))nie−ri(

−→µ )

ni!
. (2.44)

In this work, we take the continuum limit of Eq. (2.44). In this case, the number of events in

each infinitesimal bin is either 0 or 1. Every infinitesimal bin contributes a factor of e−ri(
−→µ ),

whilst the remaining terms in Eq. (2.44) evaluate to 1 for empty bins, and ri(−→µ ) for full bins.

The product of the exponential factors gives e−Nµ , where Nµ is the number of DNS inspiral

detections predicted by the model, with parameters−→µ . The continuum likelihood of a catalogue

of discrete events is therefore

L(
−→−→
Λ |−→µ ,H) = e−Nµ

No∏
i=1

r(
−→
λi |−→µ ), (2.45)

where
−→−→
Λ = {−→λ1,

−→
λ2, . . .,

−→
λNo} is the vector of measured system properties, with

−→
λi = (Mz, DL)i

for system i, and No is the number of detected systems. Finally, r(
−→
λi |−→µ ) is the rate of events

with propertiesMz and DL, evaluated for the ith detection under model parameters −→µ , which

is given by Eq. (2.42).
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Marginalising over ṅ0

We may also modify the likelihood calculation to marginalise over the poorly constrained

merger-rate density, ṅ0.9 This quantity is so poorly known (see Table 2.1), that it is prefer-

able to use a new statistic that does not rely on the local merger-rate density, by integrating the

likelihood given in Eq. (2.45) over this quantity,

L̃(
−→−→
Λ |−→µ ,H) =

∫ ∞
0

L(
−→−→
Λ |−→µ ,H)dṅ0. (2.46)

The expected number of detections described in Sec. 2.3.8 can be expressed as,

Nµ = ṅ0 ×
∫ ∫

I dMzdDL,

where,

I =
4πDc(z)2DH

Dc(z)E(z) +DH(1 + z)

1 + αz

(1 + z)2
× P

( Mz

1 + z

∣∣∣∣DL

)
CΘ

[
ρ0

8

DL

r0

(
1.2M�
Mz

)5/6
]
,

(2.47)

and,

r(
−→
λi |−→µ ) = ṅ0 × Ii, (2.48)

where Ii is the integrand evaluated for the ith system’s properties. Thus,

L̃(
−→−→
Λ |−→µ ,H) =

∫ ∞
0

[
exp

(
−ṅ0 ×

∫ ∫
I dMzdDL

)
×
(

No∏
i=1

ṅ0 × Ii
)]

dṅ0

=

[∫ ∞
0

ṅNo0 × exp

(
−ṅ0

∫ ∫
IdMzdDL

)
dṅ0

]
×

No∏
i=1

Ii. (2.49)

The integral,
∫ ∫ I dMzdDL, depends on the underlying model parameters, −→µ , through I, but

it does not depend on ṅ0. Therefore, defining

γ = ṅ0 ×
∫ ∫

I dMzdDL = ṅ0 × δ.

We note that ṅ0 ∈ [0,∞], hence γ ∈ [0,∞]. Therefore,

L̃(
−→−→
Λ |−→µ ,H) =

(∫ ∞
0

(γ
δ

)No × e−γ dγ
δ

) No∏
i=1

Ii

=

(∫ ∞
0

γNoe−γdγ

)
︸ ︷︷ ︸

independent of −→µ

×δ−(No+1)

No∏
i=1

Ii. (2.50)

9A similar technique was used in Ref. [332], where the total number of events predicted by the model is

marginalised over.
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We will verify in the analysis that this new likelihood does not introduce any systematic bias

with respect to the case where exact knowledge of the merger-rate density is assumed. We note

that we did not include a prior on ṅ0 in the above, which is equivalent to using a flat prior for

ṅ0 ∈ [0,∞]. This reflects our current lack of knowledge of the intrinsic merger rate, although

such a prior is not normalisable. We could implement a normalisable prior by adding a cut-

off, but this cut-off should be set sufficiently high that it will not influence the posterior and

therefore the result will be equivalent to the above.

2.4.2 Calculating the posterior probability

The likelihood statistic L̃ is used to marginalise over the poorly constrained local merger-rate

density. We use a weakly informative prior on the model parameters, so that it doesn’t prejudice

our analysis. We allow µNS to range within the posterior predictive density estimate of the

NS mass distribution in Ref. [316], such that the prior on µNS is a normal distribution with

parameters µ = 1.35M�, σ = 0.13M�. Our prior on α is also a normal distribution, centred at

2.0 with a σ of 0.5. Uniform priors were used for the other parameters.

We made sure that the size of the sampled parameter space was large enough to fully sample

the posterior distribution, so that we could investigate how well GW observations alone could

constrain the cosmology and NS mass distribution. The parameter ranges were H0 ∈ [0, 200]

km s−1Mpc−1, Ωm,0 ∈ [0, 0.5], µNS ∈ [1.0, 1.5]M�, σNS ∈ [0, 0.3]M� and α ∈ [0.0, 5.0].

To calculate L̃ for a given point in the model parameter space we must compute the num-

ber of detections predicted by those model parameters (Nµ), and we need to calculate z(DL)

for that model so that M can be evaluated. For the sake of computational efficiency, some

approximations are used. We have verified that our results are insensitive to these approxima-

tions. Our approximation for z(DL) was described in Sec. 2.3.7. We also used an analytic

ansatz to calculate the model-dependent expected number of detections, based on factorising

the contributions from different model parameters. The agreement between this ansatz and the

full integrated model number is excellent, with the biggest discrepancy being . 3% of the true

value. This allows a direct calculation of Nµ without a multi-dimensional integration for each

point in parameter space.

2.5 Results & Analysis

For our first analysis, we will assume thatMz and DL for each individual merger are measured

perfectly by our observations, so that the Mz and DL recorded for the events are the true

values. This represents the best case of what we could learn from GW observations. Later, we
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will consider how the accuracy of the reconstructed model parameters is affected by including

measurement errors on the recorded event properties.

2.5.1 Posterior recovery

We carried out the analysis discussed in Sec. 2.4 for a data set calculated from the reference

model given in Sec. 2.3.9. With a uniform non-adapting proposal distribution, we found that

∼106 − 107 samples were necessary for burn-in, for the trace-plots of the MCMC chains to

stabilise, and thus for the analysis to recover the underlying posterior distributions.

We found that Ωm,0 and α were not constrained by the observations, but their inclusion in

the parameter space did not affect our ability to recover the other parameters. For this reason,

we kept them in the analysis, but all remaining results will be marginalised over these model

parameters. Given the low redshift range that a second-generation network is sensitive to, it is

not surprising that the matter-density and merger-rate evolution were not constrained.

The recovered 1D posterior distributions in the other parameters are shown in Fig. 2.1 for

a typical realisation of the set of observed events. We have verified that these marginalised

distributions are not biased with respect to those obtained when exact knowledge of the intrinsic

ṅ0 is assumed. We found that the 1D posterior distributions for H0, ln(σNS) and µNS were well

fit by Gaussian distributions of the form A exp (−(x− µ)2/2σ2). These best-fit Gaussians are

also shown in the Figure. Although the distributions do not peak at the model parameters used

to generate the data, those values are consistent with the mean and width of the recovered

distributions.

In Fig. 2.2, we show the corresponding 2D posterior distribution in H0 and µNS parameter

space. We see that a correlation exists between these parameters. Given a catalogued DL value,

a low value of H0 will imply a low model-dependent redshift. When this redshift is used to

computeM fromMz, we calculate a large value of the chirp mass, which implies a chirp mass

distribution (and hence a NS mass distribution) centred at larger values. σNS simply encodes

the width of the mass distribution around the mean, so on average it should have no effect on

H0 and µNS calculations. Indeed we found that σNS showed no correlation with the other model

parameters.

It is clear from Fig. 2.1 that the parameters of the Gaussian fits provide a useful way to

characterise the recovered distributions. We can then describe the recovered distributions in

terms of two best-fit parameters i.e., the Gaussian mean, µ, and Gaussian half-width, σ.
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Figure 2.1: Recovered 1D posterior distributions for H0 (top), σNS (centre) and µNS (bottom),

computed for one realisation. The black lines represent best-fit Gaussian distributions to H0, ln(σNS)

and µNS, which were obtained via a least-squares fitting procedure. The vertical lines indicate the

values of the injected parameters.
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Figure 2.2: Recovered 2D posterior distribution in H0 and µNS space, showing a correlation between

these recovered parameters. The model parameter values used to generate the data are the reference

values. There appears to be negligible correlation of σNS with H0 or µNS.

2.5.2 Random spread of best-fit parameters

No errors in data catalogue

To explore the spread in the best-fit parameters of the recovered posteriors over different re-

alisations of the data catalogue, we generated 100 different realisations, keeping the intrinsic

parameter values the same for each.

In each case, we fit a Gaussian to the 1D posteriors and record the mean, µ, standard devia-

tion, σ, and the “error” in the mean. This last quantity is the number of standard deviations that

the mean is offset from the intrinsic value, i.e. ∆X = (µ −X)/σ, where X is the value of the

parameter used to generate the catalogue [330]. A ±2σ offset encloses ∼95% of the Gaussian

probability distribution, so we would reasonably expect most of the realisations to lie within

this range.

Figure 2.3 shows the distributions of the Gaussian-fit standard deviations and “errors” for

H0, ln(σNS) and µNS over 100 realisations of the aLIGO-network data catalogue. The distribu-

tion of the Gaussian-fit means for each parameter roughly resemble their respective posteriors,

and the distribution of Gaussian standard deviations also appears approximately Gaussian. As

we would have hoped, most of the realisations have a best-fit mean which is offset from the

intrinsic value by less than 2σ. As with the Gaussian-fit parameters, the “error” distribution is

approximately Gaussian and centred around 0 i.e., centred around the intrinsic value.

The most useful quantity here is the standard deviation of the reconstructed posterior dis-

tribution, as it characterises how well we will be able to constrain the model parameters. The

distribution over 100 realisations displays the typical range of this “measurement accuracy.”

Thus, ignoring measurement errors in the data, and with reference parameters used to generate
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Figure 2.3: Distribution of the Gaussian-fit standard deviations (left) and “errors” (right) of the

recovered posteriors over 100 realisations, for H0 (top), ln(σNS) (centre) and µNS (bottom). More

details are given in the text.
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the catalogue, we could conceivably determine H0, σNS and µNS to an accuracy of ∼±10 km

s−1Mpc−1, ∼±0.004M�,10 and ∼±0.012M� respectively.

Including & accounting for errors

As discussed in Sec. 2.3.1, the system properties of each event in the catalogue will include

some error arising from instrumental noise. The data for each event will actually be in the form

of posterior probability density functions (PDFs) for the properties, where previously we have

assumed these are δ-functions at the true values. We repeat the analysis assuming uncertainty

in the source properties. We can add errors to the system properties during the data generation

stage, by choosing the recorded values from a Gaussian distribution centred on the true value,

with a standard deviation of 0.04% forMz and (300/ρ)% for DL, where ρ is the SNR of the

detected event.

When we included errors in the data generation, but ignored them during analysis, we found

that the model parameter posterior distributions were on average biased toward lower values

of H0, with biases also present in the µNS and σNS distributions. When the errors are added,

systems will move both to lower and to higher values of the luminosity distance. However, as

we discussed in Sec. 2.2, the sources at greatest distance have the most influence on our ability

to measure the cosmology. We would therefore expect the sources shifted to greater distances to

have most impact on the cosmological parameter estimation, biasing us toward smaller values

of H0, as we found.

However, we can account for these errors in the analysis by modifying the previous likeli-

hood in Eq. (2.45) [330] to

L(
−→−→
Λ |−→µ ,H) = e−Nµ

∫ ∫
. . .

∫ [
p

(
−→n = −→s −

∑
i

−→
hi (
−→
λi )

)
×

No∏
i=1

r(
−→
λi |−→µ )

]
dk
−→
λ1d

k−→λ2. . .d
k−→λNo ,

(2.51)

where, in our case, each system is associated with two catalogued properties such that k = 2,

and −→s is the detector output, which is a combination of No signals,
−→
hi , and noise, −→n . This

is as an integral over all possible values of the source parameters that are consistent with the

data. The first term inside the square bracket is the computed posterior PDF for the detected

population of sources. Typical LIGO/Virgo DNS inspiral detections last only a few seconds,

whilst aLIGO/AdV inspiral detections may be in-band for several minutes. Regardless, these

detections should be uncorrelated, with independent parameter estimates [333], and so this first

term reduces to the product of the posterior PDFs for each detection.

If the posterior PDF for a given source has been obtained via MCMC techniques, then the

10Evaluated using δ(σNS) = σNS × δ(ln (σNS)), taking σNS to be the reference value and a typical error in

ln (σNS) of 0.072.
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Figure 2.4: A comparison of the best-fit σ distributions over 100 realisations, between the case of no

errors present in the data catalogue, and the case of errors applied to system properties in the catalogue.

We have attempted to compensate for the errors in the data. (i), (iii) and (v) show the best-fit σ

distributions when no errors are applied to the system properties in the data catalogue. (ii), (iv) and (vi)

show the best-fit σ distributions when the received data has errors.
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integral in Eq. (2.51) may be computed by summing over the chain samples. Thus, errors may

be accounted for by making the following replacement in Eq. (2.45),

r(
−→
λi |−→µ ) −→ 1

Ni
Ni∑
j=1

r(
−→
λi

(j)|−→µ ), (2.52)

whereNi is the number of points in the chain for the ith source’s PDF, and λ(j)
i is the jth element

of the discrete chain representing this PDF. This technique does not assume a specific form for

the PDF, and can be used in the case of multimodal distributions.11

In this analysis, we include errors on DL only, as those on the redshifted chirp mass Mz

are very small and can be ignored. (The uncertainty in the redshift estimate, which dominates

the uncertainty in H0 as discussed in Sec. 2.2, arises from the width of the intrinsic chirp-mass

distribution.) We represent the DL posterior PDF for each source by a chain of N points, drawn

from a normal distribution with standard deviation σ = (3/ρ)DL, and a mean equal to the value

in the data catalogue, which in this analysis, as discussed earlier, includes an error to offset it

from the true value. Whilst we adopt a simple Gaussian DL posterior PDF, the methodology we

use here to account for errors is not reliant on the specific form of the PDF.

Through experiment, we found thatN = 75 was sufficient to correct the bias in the posterior

means of H0, σNS and µNS. In Fig. 2.4 we show a comparison of the best-fit σ distributions for

each of the parameters when measurement errors are included (and accounted for), compared to

the case in which they are ignored. It is clear that the presence of measurement errors decreases

the measurement precision that we can achieve. However, the distributions overlap in all cases,

and the peak of the error distributions is shifted only ∼20% higher.

These errors only cause a shift in the measurement precision, so that we can ignore errors

in the catalogued properties, with the knowledge that a full analysis would produce broadly

the same results, but with ∼20% worse precision. The presence of errors (when accounted

for) should therefore not affect our general conclusions about what a second-generation global

network will be able to tell us about the underlying cosmological and source parameters.

2.5.3 Dependence on number of observed events

The next issue we will explore is how the measurement accuracy of the parameters depends

on the number of catalogued events. This can be answered by changing the local merger-

rate density, ṅ0, or the observation time, T , whilst keeping the other model parameters fixed.

11Multimodal distributions may result from partial degeneracies with other waveform parameters [333], such

as the angular variables encapsulated in Θ. Examples of this are shown in Ref. [287], where the sky position

of a detected system is pinned down, and the degeneracy between the inclination angle, ι, and DL can lead to

multimodal posteriors for DL which skew the peak to higher distances than the intrinsic value.
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Figure 2.5: Parameter “measurement accuracy” (standard deviation of a Gaussian-fit to the posterior)

versus the number of observed events, No. Intrinsic parameters are kept fixed whilst the local

merger-rate density, ṅ0, is scaled up and down. The number of observed events scales linearly with the

observation time and the local merger-rate density, such that the same result is achieved for twice the

local merger-rate density if the observation time is halved. We see that a 1/
√
No relation is favoured.

Points and solid lines correspond to the case when we ignore errors, where the curves have gradients

108 km s−1Mpc−1, 0.737, and 0.131M� respectively. Dashed lines are best-fit curves for the case

where measurement errors are incorporated in the data-analysis, for which the gradients are 136 km

s−1Mpc−1, 0.917, and 0.152M�, respectively.
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Table 2.2: The best-fit curves to the plots in Fig. 3.5 are used to compute the percentage measurement

precision of the model parameters. The local merger rates match the range quoted in Ref. [147], where

in our analysis, ṅ0 = 1.0 Mpc−3Myr−1 gives ∼100 detections in 1 year (at a network SNR threshold of

8). In each case, the mean of the posterior distribution is taken at the reference value.

ṅ0 / Mpc−3Myr−1

Accuracy (σX/X) / %

H0 σNS µNS

No errors Errors No errors Errors No errors Errors

0.01 150 200 80 100 10 11

1.0 15 20 7 9 1.0 1.1

10.0 5 6 2 3 0.3 0.35

50.0 2 3 1.0 1.3 0.14 0.16

We analysed catalogues with different values of ṅ0 around the previously used realistic value

(2.5×10−7, 5.0×10−7, 1.0×10−6 and 2.0×10−6 Mpc−3yr−1), injecting 10 realisations in each

case.

In Fig. 2.5 we show the standard deviation of the recorded posterior distribution versus the

number of catalogued events for each realisation of each ṅ0. The distributions are well fit by a

function of the form,

σX ∝ 1√
No

, (2.53)

which one might expect; we have a population of No events which we are using to statistically

constrain a parameter, so we expect that the rms error on the parameter should scale as∼1/
√
No.

The points and solid lines are the data and best-fit curves when we ignore measurement errors

in the data generation, whilst the dashed lines are best-fit curves to data where we account for

measurement errors, as in the previous section.

Table 2.2 shows the percentage fractional accuracy to which we could measure each model

parameter, in both the case where we ignore errors and when we account for them. The range

of local merger-rate densities reflects the quoted values in Ref. [147], and the means of the

posterior distributions are taken as the reference values.

The number of detected events will also depend on the SNR threshold, ρ0,net [157]. The

result of increasing the threshold SNR to 10 is to approximately halve the detection rate. If

the expected detection rate is ∼100 yr−1 in the ρ0,net = 8 case, this becomes ∼50 yr−1 in the

ρ0,net = 10 case. This halving of the detection rate is expected since,

Vc,eff(ρ0,net = 10)

Vc,eff(ρ0,net = 8)
'
(

8

10

)3

= 0.512, (2.54)

where Vc,eff is the effective comoving volume to which the network is sensitive. We can achieve

the same number of detections at higher SNR thresholds by increasing the observation time.
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Figure 2.6: The variation of measurement accuracy with instrumental distance reach is shown. Each

point represents the weighted mean of the H0 measurement accuracy from 10 realisations at a particular

r0,net, where the error bars show the maximum and minimum values of σ out of the 10 values. All other

parameters are at their reference values, and the total number of detections is scaled to 100. The

reference distance reach is r0,net ∼ 176 Mpc. The curve is a (1/r0,net) fit to the data, with gradient

10.8± 0.2 km s−1Mpc−1.

Using a higher network SNR threshold is equivalent to assuming a lower characteristic distance

reach for the network. By increasing ρ0 to 10, we cut the detection rate in half, which is roughly

the decrease in the number of coincident detections when we shift from the HHL to HHLV

network [309]. A network SNR threshold of 12 reduces the detection rate to ∼30 yr−1.

To investigate the dependence of the H0 measurement accuracy on the characteristic dis-

tance reach of the network (a prediction of our scaling arguments), we computed 10 realisations

at each of 10 different network SNR thresholds, ranging from 6 to 15. The detection rates were

kept the same at each SNR threshold by rescaling ṅ0. The reference values were ρ0,net = 8 and

r0,net = 176 Mpc, as used previously. At each ρ0,net we calculated the mean of the Gaussian-fit

half-widths of the parameter posteriors, with error bars determined by the maximum and mini-

mum half-widths out of the 10 realisations. The results for H0 are shown in Figure 2.6. The fit

favours a (1/r0,net) relationship, as expected from scaling arguments. There appears to be no

effect on the measurement accuracy of the NS mass distribution parameters. No measurement

errors were included on either the recorded DL orMz values, and the detection rate was fixed

in this analysis, so it is unsurprising that the measurement precision of the NS mass distribution

parameters is unaffected by the reach of the network. In this particular investigation, given that

the total number of events is unchanged, and therefore the number of masses to which we fit the

NS mass distribution is unchanged, we do not expect the precision of the fit to change either.

This indicates that the measurement accuracies of σNS and µNS quoted in this analysis will
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be achievable at different ρ0,net and r0,net by scaling the observation times, or if the Universe

has a different ṅ0 than expected. However, the measurement accuracy of H0 is crucially linked

to the characteristic distance reach of the network.

2.5.4 Dependence of measurement accuracy on intrinsic parameters

It is also interesting to investigate how the constraints on the parameters of the underlying

distributions depend on the values of the injected parameters. This was done by generating 10

data realisations at each of 24 different combinations of the intrinsic µNS and σNS. The intrinsic

values of H0, Ωm,0 and α were fixed at their reference values. The recorded measurement

precision for a given intrinsic parameter combination was the weighted mean of this value over

10 realisations. Figure 2.7 shows the results of this analysis. One can see that the measurement

precision depends on the width of the intrinsic NS mass distribution. An increase in the intrinsic

σNS by a factor of 6 leads to a reduction in the measurement accuracy onH0 and µNS by a factor

of ∼6, but only leads to a modest 10% reduction of the measurement accuracy for ln (σNS).

The improvement of the measurement accuracy with a narrower intrinsic DNS mass distri-

bution is a key result. In order to constrain the Hubble constant to within ∼±10% with ∼100

observations, we require the Gaussian half-width of the DNS mass distribution to be smaller

than 0.04M�. The explanation for this is that we estimate the system chirp mass,M, by divid-

ing the redshifted chirp mass, Mz, by (1 + z), where the z is model-dependent (having been

calculated from DL with given cosmological parameters). Thus, a narrower NS mass distribu-

tion will more effectively penalise model parameters which deviate from the intrinsic values.

For σNS = 0.13M� [316], an accuracy of ∼±10% on H0 would require ∼O(1000) detections.

The dependence of the measurement precision on µNS is not very clear from the top and

bottom panels, but the effect on σNS is evident in Fig. 2.7(b). Varying the intrinsic µNS from

1.33M� to 1.39M� provides a ∼5 − 10% gain in ln (σNS) precision. The variation of the ex-

pected number of detections with σNS is less than one event, whilst for µNS it is more significant.

So, all the posterior fit σ values were scaled to the average number of detections for a given µNS.

This varies by ∼15 detections over the range of µNS investigated.

To explain the improvement in measurement precision with larger values of µNS, we note Eq.

(2.20). We see that a larger mass distribution mean will, on average, imply larger individual NS

masses. For a fixed SNR threshold, this allows detections to be made from larger DL values,

thereby raising the effective comoving volume to which the network is sensitive. This raises

the number of detections, and hence the parameter measurement accuracy. Rescaling all the

measurement accuracies to 100 events confirms that this is the dominant effect, as the different

µNS curves in Fig. 2.7 then overlap. Factorising out the dependence onNo also confirms that the

variation of the measurement accuracy with the width of the underlying NS mass distribution is
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Figure 2.7: The variation of the weighted mean (over 10 realisations) of the Gaussian-fit standard

deviations with the parameters of the underlying NS mass distribution. All other parameters are fixed at

their reference values. The variation of the expected number of detections with σNS is less than one

event, whilst for µNS it is more significant. Thus all the posterior fit σ values are scaled to the average

number of detections for a given µNS e.g. for µNS = 1.33M� this average event number is ∼95, whilst

for 1.39M� it is ∼110, in 1 year.
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Figure 2.8: Plots of the measurement precision versus the beaming fraction of SGRBs, f .

Approximately fNo events in the catalogue were denoted as SGRBs, while the remaining ∼(1− f)No

events in the catalogue were assumed to be GW-only events. A single data catalogue was used

repeatedly, with larger and larger fractions of it assumed to be observable as SGRBs. The data was

generated with the reference parameters. The fitted curves are of the form a exp(−b√x) + c, where

(a, b, c) = (9.04, 3.64, 1.59) and (0.00932, 4.46, 0.00439) for the H0 and µNS precisions respectively.

The corresponding plot for σNS shows no obvious trend.

a real feature.

Repeating the above analysis for fixed µNS, but with different combinations of H0 and σNS

confirms the variation of precision with σNS. However, there appears to be no strong dependence

on H0 as it is varied by ±10 km s−1Mpc−1 around the reference value.

2.5.5 Complementing GW data with GRB redshift data

In the above, we have assumed that only GW observations are available. However, if the redshift

of the system is somehow known, then the background cosmological parameters can be directly

probed using the luminosity distance, DL, measured from the GWs [284].

Merging CO binary systems, such as NS-NS or NS-BH, are leading candidates for the en-

gine behind short-duration gamma ray bursts (SGRBs). SGRB events are among the most lu-

minous explosions in the universe, releasing in less than one second the energy emitted by our

Galaxy over one year [334], and involving intense outflows of gamma rays. There is therefore

a good chance that EM counterparts to GW-detected DNS mergers will be observed. There is

strong evidence that the emission from GRBs is not isotropic [335–337], which may be due to

the formation of relativistic jets in these systems [334]. The redshift can be determined from

the longer-wavelength SGRB afterglow [338].
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Therefore, we may only observe the event electromagnetically if we happen to lie within the

cone of the radiative outflow, whilst we should be able to detect the GW signal from any DNS

merger within the aLIGO-network horizon. We denote the beaming fraction, f , for SGRBs with

a double-jet of opening angle θj by [337, 339],

f =
Ω∗
4π

= 1− cos

(
θj
2

)
. (2.55)

If we assume the population of SGRBs is randomly oriented on the sky, that their progenitors

are all NS-NS mergers, that we will detect all SGRBs that are beamed toward us, and that the

required SNR for a GW detection is independent of the existence of a counterpart, then the

beaming fraction, f , is also the fraction of DNS inspiraling systems for which we would be

able to gather redshift data. In practice, GW searches that are triggered by electromagnetic

observations of SGRBs would have a greater distance reach than blind analyses, which would

tend to increase the fraction of counterparts. However, gamma-ray telescopes operating in the

advanced detector era might not have 100% sky coverage, which would tend to reduce the

fraction of counterparts. In addition, even with an SGRB counterpart we might not be able to

determine the redshift, as this requires observation of an afterglow. However, all of the GW

sources for advanced detectors will be at low redshift, for which the chances of measuring the

redshift are significantly higher. In the following, when we refer to the beaming fraction, we

will mean the fraction of GW detections with electromagnetically determined redshifts, which

will be similar to the intrinsic beaming fraction, but not exactly the same for the reasons just

described.

We performed a simple analysis to see how the measurement accuracy would improve if

some fraction, f , of redshift data was available. A single data set was generated with the

redshift, luminosity distance and redshifted chirp mass of each event recorded (with reference

intrinsic parameters). The measuredMz and DL were drawn from Gaussian distributions cen-

tred at the true value, as described previously. However, as before the small error onMz was

ignored. When only a GW signal is available the system properties are analysed as previously,

with the measured values assumed to be the true values.

If an event is included in the SGRB fraction (with an associated redshift), then the likelihood

is the product of the GW likelihood with the redshift posterior PDF, which we take to be a delta

function (since spectroscopic redshift determination will be much more precise than GW deter-

minations of DL). The DL posterior was taken to be a Gaussian, centred around the measured

value, and with a standard deviation of 30% of this distance. This percentage error is a worst

case, corresponding to a detection near the threshold SNR, i.e. (300/ρ)% for ρ = 10. Using a

constant percentage of the distance as the width of the DL posterior is pessimistic, since closer

events will be measured with greater accuracy. Integrating over redshift in Eq. (2.51) picks
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out the value of the integrand at the true system redshift, since the redshift posterior is a delta

function. Thus, the product in Eq. (2.50) splits into two components,[
No∏
i=1

d3N

dtdMzdDL

∣∣∣∣
i

]
→
[
fNo∏
j=1

(
d3N

dtdMzdz

∣∣∣∣
j

×N
[
(D

(j)
L −DL(zj,

−→µ )), 0.3D
(j)
L

])]

×
[

No∏
k=fNo

d3N

dtdMzdDL

∣∣∣∣
k

]
. (2.56)

The identification of the SGRB as an EM counterpart will vastly improve sky localisation

of the source, helping to beat down the degeneracies in the GW observations between DL and

the inclination angle, ι. A fuller investigation could also consider a prior on the inclination

angle, given that the source is an SGRB with a collimated outflow [287, 335, 336], and that

emission has been observed. This would further help to improve the measurement precision of

the luminosity distance.

If f = 1, we find the precision for H0 is ∼2.0 km s−1Mpc−1, compared to ∼11.0 km

s−1Mpc−1 when f = 0. The results are shown in Fig. 2.8, along with fits to the data of the

form a exp(−b√x) + c. The important result here is that the accuracy with which we are able

to constrain H0 and µNS improves markedly with the beaming fraction. This is to be expected,

since by recording z andMz we know exactly what the intrinsic chirp mass,M, of the system

is. The high accuracy of the redshift measurements restricts the space of model parameters

through the Gaussian factor in Eq. (2.56). The same plot for σNS shows no trend at all. This

may be because the measurement accuracy of σNS is most strongly linked to the number of

catalogued events, rather than whether we include extra system information.

This analysis could be sensitive to the errors we include in the data catalogue, since the

normal distribution in the left square-bracket of Eq. (2.56) will favour model parameters, −→µ ,

such that D(j)
L = DL(zj,

−→µ ). D(j)
L is the mean of the DL posterior PDF for the jth event, which

may be skewed away from the true value. However, the intrinsic values were always consistent

with the mean and width of the recovered posteriors, so this does not seem to be a significant

problem.

The SGRB jet opening angle is poorly constrained by observations. In Ref. [340], the

authors quote the inverse beaming fraction to be in the range, 1� f−1 < 100, giving f & 10−2

or a jet opening angle θj & 16◦, which is consistent with theoretical constraints on the jet half-

opening angle [334]. Such models permit the jet half-opening angle to be as large as 30◦, for

which the beaming fraction becomes∼0.13 [334]. This would allowH0 and µNS to be measured

with a precision more than twice that of their GW-only values (see Figure 2.8).

In Ref. [287], the authors performed an analysis on multiple DNS inspirals detections in

the aLIGO-AdV network with associated EM signatures. They assumed the sky location of

the sources were known, and that DL and z were measured, so that they directly probed the
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distance-redshift relation. With 4 SGRBs they predictedH0 could be measured with a fractional

error of ∼13%, improving to ∼5% for 15 events. With f = 1, and scaling the measurement

precision as 1/
√
No, we find 4 SGRBs gives ∼12.5% precision, whilst 15 gives ∼6.5% pre-

cision. Figure 2.8 indicates an H0 precision of ∼5% when f = 0.15; thus the second square

bracket on the right of Eq. (2.56) slightly improves the measurement accuracy of H0 compared

to the first square bracket alone. These results are dependent on the modelled DL errors, but

are broadly consistent with Ref. [287]. In contrast, we expect we can constrain H0 to within

∼±15% using∼100 GW events, with no EM signatures recorded for any of the GW detections.

15 SGRB events out of the ∼100 GW events requires a beaming fraction of ∼0.15, which is

rather optimistic given the current constraints on the jet opening angle. However this could con-

ceivably be achieved over observation times longer than one year; additionally, the detection of

an electromagnetic transient could allow the sensitivity volume to be increased in a triggered

search.

In this study we have not considered the possibility of redshift determination of the DNS

inspiraling system via its association with a host galaxy. This could prove difficult in practice,

since the sky error box is sufficiently large as to contain many candidate galaxies. In Ref. [341]

the authors comment that over 100 galaxies can be found in a typical LIGO/Virgo GW signal

error box at a distance of 100 Mpc. However, in the same work they introduced a ranking

statistic which successfully imaged the true host of a simulated GW signal ∼93% of the time,

if 5 wide-field images were taken. The caveat here is that this statistic has only been tested

out to 100 Mpc, since comprehensive galaxy catalogues are lacking beyond this range. The

catalogue completeness is not 100% at 100 Mpc, and even if more distant, complete catalogues

were available, the number of potential host galaxies in an aLIGO/AdV sky error box would be

much greater. DL determination via network analysis may help to restrict the redshift range of

these searches, but this is an area in need of future attention.

A novel method was proposed in Ref. [289] in the context of LISA EMRI detections. In that

case, instead of precisely identifying the host galaxy of a GW detection (and thus the redshift

of the source), the value of H0 was averaged over all galaxies present in LISA’s sky error box.

Each galaxy in the box was weighted equally, and the chosen host galaxy was not included in

the likelihood calculation to take into account the fact that the true host galaxy may not even

be visible in available catalogues. They showed that sub-percent accuracies on H0 would be

possible if 20 or more EMRI events are detected to z . 0.5. This method has recently been

investigated in the context of DNS inspirals in the advanced detector era, where a precision of

a few percent on H0 was claimed to be possible with 50 detections [342].
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2.6 Summary

We have explored the prospects for an advanced global network of GW interferometers to probe

aspects of the background cosmology and the nature of the NS mass distribution (for NSs in

DNS systems). Current rate estimates suggest these systems could be a strong candidate for the

first direct GW detection. With the reach of advanced detectors it may be possible to produce

catalogues of tens of these systems along with their associated properties over the first few years

of operation.

We simulated catalogues of 100 detected binaries (corresponding to a few years of ob-

servation for a local merger-rate density of 10−6 Mpc−3yr−1 [147]) for reference parameters

H0 = 70.4 km s−1Mpc−1, Ωm,0 = 0.27, µNS = 1.35M�, σNS = 0.06M�, α = 2.0 (where α

is the gradient of the redshift evolution of the NS-NS merger-rate density). From our analysis,

we found that it should be possible to measure H0 to ∼±10 km s−1Mpc−1, ln(σNS) to ∼±0.07

and µNS to ∼±0.012M�. Taking into account typical luminosity distance measurement errors

degraded the parameter measurement accuracies by ∼ 20%, but this can be compensated for by

longer observation times.

Keeping the intrinsic parameters fixed, and scaling the merger-rate density (or the observa-

tion time) allowed us to investigate how this precision varied with the number of catalogued

events. We found that precisions varied as N−1/2
o for all three parameters. We also investigated

the effect of increasing the network SNR threshold, which has the same effect as reducing the

distance reach of the network. Scaling the local merger-rate densities to give equal numbers of

detections was enough to achieve the same precision on the NS mass distribution parameters,

but the uncertainty in measuringH0 also scales inversely with the distance reach of the network.

We also checked how the values of the intrinsic parameters themselves affected our abil-

ity to constrain them. Varying H0 over a range of reasonable values had little impact on the

measurement precision, but the effect of σNS was considerable. Changing σNS from 0.12M�

to 0.02M� led to a factor of ∼6 increase in the precision on H0 and µNS, but a modest ∼10%

improvement on ln (σNS). Our key result is that for H0 to be constrained to within ∼±10%

using ∼100 events (with the intrinsic H0 and mean of the DNS mass distribution fixed at their

reference values), then the half-width of the intrinsic DNS mass distribution would have to be

less than 0.04M�.

Finally, considering that NS-NS and NS-BH merger events are leading candidates for the

progenitors of short-duration gamma-ray bursts [334, 339], we investigated how the measure-

ment precision would improve if redshift data were available for some fraction of the catalogue.

The redshift could be deduced from the afterglow of the SGRB or from the closest projected

galaxy. The fraction of GW detections that have observable EM counterparts will depend on the

opening angle of the SGRB jets. The most recent GR-MHD simulations permit a half-opening
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angle of 30◦, giving an upper limit of ∼ 0.13 on the fraction of DNS inspiraling systems which

could have an observable SGRB counterpart [334] (this fraction could be further increased by

the greater sensitivity of GW searches triggered on EM transients). This would permit a sig-

nificant improvement on the measurement precision of H0 and µNS to more than double their

GW-only precisions. There appears to be no effect on the measurement precision of σNS.

We have shown the significant potential for a network of second-generation detectors to

provide an independent measurement of the Hubble constant, and to determine the NS mass

distribution for those NSs found in DNS systems. Independent means of inferring the Hub-

ble constant using a technique such as that studied here (which is calibrated entirely by our

understanding of gravitation) are crucial given the continued tension between Planck CMB

measurements and more direct H0 determinations [343]. However, the restricted cosmological

reach of second-generation detectors is such that the evolution of the NS-NS coalescence rate

can not be probed, nor can other cosmological parameters. More powerful constraints should

be possible with the Einstein Telescope (ET), a proposed third generation ground-based inter-

ferometer with an arm-length of 10 km [96]. In the next chapter, we study the prospects for

a third-generation ground-based network, incorporating ET, to probe the dark energy EOS and

the DNS-progenitor star-formation rate.

In this analysis we have considered a global second-generation GW-interferometer network.

The improvement offered by a Southern Hemisphere GW detector would be significant for sky

localisation (though only moderate for distance estimates), but we now know that this will not

be realised in the near-future. However, even with the HHLV network we will still be able to

place constraints on the underlying model parameters by overcoming the reduced coincident

detection rate with a longer duration network science run.
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The most beautiful experience we can have

is the mysterious - the fundamental emotion

which stands at the cradle of true art and true

science.

Albert Einstein

The only way to discover the limits of the pos-

sible is to go beyond them into the impossible.

Arthur C. Clarke

3
Astrophysics In The Third-generation

Abstract

Building on our previous work, we explore the prospects for the Einstein Telescope (ET; a

proposed third-generation ground-based GW interferometer) to constrain the dark-energy

equation of state, and the star-formation rate appropriate to double-NS (DNS) progenitor

systems. DNS systems are expected to be detected at a rate of a few tens per year in the ad-

vanced era, but the Einstein Telescope could catalogue tens, if not hundreds, of thousands

per year. Combining the measured source redshift distributions with GW-network distance

determinations will permit not only the precision measurement of background cosmologi-

cal parameters, but will provide an insight into the astrophysical properties of these DNS

systems. Of particular interest will be to probe the distribution of delay-times between

DNS-binary creation and subsequent merger, as well as the evolution of the star-formation

rate density within ET’s detection horizon. Modelling the merger delay-time distribution

as a power-law (∝ tα) and the star-formation rate (SFR) density as a parametrised version

of the Porciani and Madau SF2 model, we find that the associated astrophysical parameters

are constrained to within ∼ 10%.

This chapter is based on:

Cosmology with the lights off: Standard sirens in the Einstein Telescope era

Stephen R. Taylor and Jonathan R. Gair

Phys. Rev. D 86, 023502 (2012), arXiv:1204.6739
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3.1 Introduction

In our previous analysis, the cosmological parameters that we could constrain were restricted

by the sub-Gpc reach of an advanced-era network. We now extend this technique to a third-

generation network, which could have a reach out to tens of Gpcs. Proposed third-generation

detectors aim for a broadband factor of 10 sensitivity improvement with respect to advanced

detectors, and to increase sensitivity in the range ∼ 1− 10 Hz, compared to the ∼ 10− 20 Hz

lower frequency cutoff of advanced detectors. As a prototypical third-generation detector we

use the Einstein Telescope, consisting of three overlapping 10 km arm-length interferometers

in a triangular configuration [94, 95, 344]. Each interferometer may actually be two detectors:

a cryogenically cooled, underground detector with good low-frequency sensitivity, and a high

laser power detector with good high-frequency sensitivity [345]. Keeping H0, Ωm,0 and ΩΛ,0

fixed, we use the techniques introduced in the previous chapter to probe the dark-energy EOS

and NS mass-distribution, as well as the astrophysical distribution of the progenitor systems.

The latter will inform us about the average time delay between the formation of these compact-

binary systems and their merger, as well as the shape of the underlying star-formation rate

density.

Third-generation detectors are unlikely to come online before the late-2020s, but, if realised,

the ambitious and novel design for the Einstein Telescope will have far-reaching scientific ad-

vantages. Such a detector could detect as many as hundreds of thousands of DNS inspirals per

year, which, along with the distance reach of the detectors, will permit precision GW astron-

omy. In this analysis, we will not consider other methods that have been proposed for using GW

observations as cosmological probes. In particular, we do not consider association of GW de-

tections with an electromagnetic (EM) counterpart, which has been studied in Ref. [346, 347],

nor do we consider tidal-coupling corrections to the phase evolution of the strain signal [291].

The latter method is also a GW-only technique with significant potential, in that these phase-

evolution corrections break the mass-redshift degeneracy at 5PN order and, assuming the NS

equation-of-state is well known, will permit the distance-redshift relation to be probed. It may

also be possible to apply the method used by Ref. [348], which was investigated in the context of

future space-based detectors (e.g., DECIGO/BBO), to third-generation ground-based detectors.

Their method relies on the measurement of cosmologically-induced shifts in the GW-phase at

4PN order.

This chapter is laid out as follows. Section 3.2 describes the characteristics of the Einstein

Telescope, as well as possible third-generation networks and detection criteria. In Sec. 3.3 we

discuss aspects of DNS systems, including the mass distribution of the constituent NSs, and

the redshift distribution of DNS mergers. Section 3.4 describes the effect of the dark-energy

equation-of-state parameter on catalogued luminosity distances, while Sec. 3.5 describes how
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Figure 3.1: Comparison of the different noise curves for aLIGO (high-power-zero-detuning) [308], the

initial Einstein Telescope noise curve based on conventional techniques (ET-B [349]), the initial

“xylophone” noise curve (ET-C [97]), and the improved, more realistic xylophone noise curve (ET-D

[345]). These noise curves are for one 10km right-angled interferometer.

we construct and analyse catalogues of detected DNS-system inspirals. Results are shown in

Sec. 3.6, followed by a summary in Section 3.7.

3.2 Detector characteristics and networks

3.2.1 The Einstein Telescope

The Einstein Telescope (ET) is a proposed third-generation ground-based interferometer. A re-

cent design study has been carried out within the European Commission’s FP7 framework [92]

to evaluate the science case for such a detector, and to consider the technological advances re-

quired for the science goals to be achieved. Through this three-year design study, some favoured

designs and configurations have emerged.

The aim for third-generation ground-based detector designs is to achieve a broadband factor

of 10 sensitivity improvement with respect to advanced detectors, and to push the sensitivity

down into the ∼ 1 − 10 Hz range. Early designs examined the prospects for pushing con-

ventional techniques used in advanced detectors to their limits to construct a third-generation

interferometer [349]. This gave the ET-B noise curve in Fig. 3.1. Beyond the extension of the

arm-length to 10 km, several techniques were proposed to suppress high- and low-frequency
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noise, including siting the detector underground.

Crucially, the techniques used to suppress high-frequency noise are not necessarily com-

patible with the suppression of low-frequency noise. Increasing the laser power will reduce

the photon shot noise which dominates the high-frequency range, but this worsens the thermal

noise which dominates at low frequencies. The “xylophone” design was proposed to address

this issue. Instead of having a single broadband instrument, the xylophone design comprises a

high-power, high-frequency interferometer (ET-HF) and a cryogenic low-power, low-frequency

interferometer (ET-LF) [97]. ET-LF would be an underground instrument, and limited at low

frequencies by gravity-gradient noise, while ET-HF would be colocated and co-oriented with

ET-LF but surface-sited. ET-HF would employ high-power lasers to suppress high-frequency

photon shot noise. The initial xylophone design gave the ET-C curve [97] in Fig. 3.1, which

was refined to give the ET-D xylophone design [345]. We will use the ET-D noise curve in the

ensuing analysis.

Initial, enhanced, and advanced era ground-based interferometers are right-angled, since an

arm opening-angle of 90◦ maximises their sensitivity. However, if both GW polarisation states

are to be measured at a single site, then two or more colocated non-aligned interferometers are

required. Furthermore, at least three colocated interferometers are required to construct a null-

stream, i.e., a sum of individual interferometer responses that is insensitive to GWs and can be

used to identify noise transients in the data stream.

Taking these goals into account, the design requiring the shortest total length of tunnels

is a triangular configuration with three identical interferometers positioned at each vertex of

the triangle, an arm-opening angle of 60◦ and rotated relative to each other by 120◦ [94, 95,

344]. A triangular configuration also provides redundancy, since polarisation constraints are

still possible with only two vertices operational.

In the following we consider three ET-D interferometers in the triangular configuration,

which we denote as a “single ET”. More than one ET would be very optimistic, so we comple-

ment our single ET with a network of individual third-generation right-angled interferometers

(also with ET-D sensitivity) to permit source distance determination. While different locations

are being mooted, we choose the Virgo location as the reference ET site [350].

3.2.2 Signal-to-noise ratio

As before, we employ a coincident search between widely separated detectors, and use optimal

matched-filtering techniques to maximise detection prospects. The SNR formalism used here is

described in further detail by Eq. (2.13-2.22) in Sec. 2.3.3 of Chapter 2.

The SNR of a detected system will vary between the individual network sites, as a result

of the different Sn(f)’s and angular dependencies. However, following Ref. [297, 313], we
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Table 3.1: The characteristic distance sensitivities [as given by evaluating Eq. (2.21)] of some

advanced-detector configurations and various design studies for the third-generation Einstein Telescope.

Second-generation Third-generation

Detector r0 / Mpc Detector r0 / Mpc

aLIGO1 80 ET2 1527

aLIGO3 110 ET-B4 1587

aLIGO5 119 ET-C6 1918

AdV7 85 ET-D8 1591

assume the network SNR of a detected system is given by the quadrature summation of the

individual interferometer SNRs,

ρnet =

√∑
k

ρ2
k =

8

DL

( Mz

1.2M�

)5/6

×
√∑

k

(r0,kΘkζk(fmax))2, (3.1)

where r0,k, ζk(fmax) and Θk encode the distance, frequency and angular sensitivities of the kth

detector. Definitions for all parameters in this equation were given in the previous chapter.

A comparison of the characteristic distance sensitivities of some second- and third-generation

detectors is shown in Table 3.1.

3.2.3 Network antenna patterns

The angular dependence of the SNR is encapsulated by the variable Θ. The sky location and

binary orientation can be deduced from the network analysis, however in our analysis we will

use only DL andMz measurements. We calculate the probability density function for Θ [297]

numerically using Eq. (2.12) by choosing cos θ, φ/π, cos ι and ψ/π to be uncorrelated and

distributed uniformly over the range [−1, 1].

It is unlikely that more than one ET will be constructed. A more likely network configuration

will involve a single ET with single third-generation right-angled detectors at other sites. In

the interest of verisimilitude we take into account possible detector locations for such a third-

generation network. Table 3.2 contains the locations and arm-bisector orientations of various

current and planned detectors.
1Low-power zero detuning [308]
2Polynomial noise-curve approximation [127]
3High-power zero detuning [308]
4Conventional technology [92]
5NS-NS optimised [308]
63rd-generation technology, xylophone configuration [92]
7Ref. [82]
83rd-generation technology, xylophone configuration (updated and more realistic) [92]
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Table 3.2: A reproduction of the GW-interferometer geographical locations, and arm-bisector

orientations from Ref. [351]. We include updated LIGO-India information [352].

Detector Label Longitude Latitude Orientation

LIGO Livingston, LA, USA L 90◦46′27.3′′ W 30◦33′46.4′′ N 208.0◦(WSW)

LIGO Hanford, WA, USA H 119◦24′27.6′′ W 46◦27′18.5′′ N 279.0◦(NW)

Virgo, Italy V 10◦30′16′′ E 43◦37′53′′ N 333.5◦(NNW)

KAGRA (formerly LCGT), Japan J 137◦10′48′′ E 36◦15′00′′ N 20.0◦(NNE)

LIGO-India, India I 76◦26′ E 14◦14′ N 45.0◦(NE)

To write down the antenna pattern function as a function of the detector position,9 we use the

notation and formalism of Ref. [351]. For a GW source at spherical-polar coordinates (θ, φ) on

the sky, with polarisation angle ψ, and a detector with opening angle η at latitude β, longitude

λ and such that the bisector of its arms points at an angle χ, counter-clockwise from East, the

antenna pattern functions are(
F+

F×

)
= sin η

(
cos (2ψ) sin (2ψ)

− sin (2ψ) cos (2ψ)

)(
a

b

)
, (3.2)

where,

a =
1

16
sin (2χ)[3− cos (2β)][3− cos (2θ)] cos [2(φ+ λ)]

+
1

4
cos (2χ) sin β[3− cos (2θ)] sin [2(φ+ λ)] +

1

4
sin (2χ) sin (2β) sin (2θ) cos (φ+ λ)

+
1

2
cos (2χ) cos β sin (2θ) sin (φ+ λ) +

3

4
sin (2χ) cos2 β sin2 θ,

b = cos (2χ) sin β cos θ cos [2(φ+ λ)]−1

4
sin (2χ)[3− cos (2β)] cos θ sin [2(φ+ λ)]

+ cos (2χ) cos β sin θ cos (φ+ λ)−1

2
sin (2χ) sin (2β) sin θ sin (φ+ λ). (3.3)

As a reference, we use a network comprising three 60◦ ET-D sensitivity interferometers

at the Virgo location (a single ET), plus right-angled interferometers at the LIGO-Livingston

and LIGO-India locations. The characteristic distance reach of all of the interferometers in the

network is taken as 1591 Mpc, corresponding to ET-D sensitivity [345]. This is the sensitivity of

a 10 km right-angled interferometer. We account for the different detector arm-opening angles

in the antenna pattern functions.

The network SNR given by Eq. (3.1) also depends on ζ(fmax), which describes the over-

lap of the signal power with the detector bandwidth [297]. The frequency at the end of the

9We do not consider modulation of the antenna patterns due to the rotation of the Earth. We justify this in Sec.

3.6.6.
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inspiral (taken to correspond to the frequency at ISCO) is given by Eq. (2.23). The maximum

binary-system mass could conceivably be ∼ 4.2M�.10 The ET horizon distance for a system

with a total mass of ∼ 4M� is ∼ 25 Gpc [346]. In the ΛCDM cosmology this corresponds

to a redshift of ∼ 2.9, and from Eq. (2.23) this gives fmax ∼ 134 Hz. Given the ET-D noise

curve [345],
√
ζ(fmax = 134Hz) & 0.98. Extending the redshift reach out to z ∼ 5 still gives√

ζ(fmax = 87Hz) & 0.96. Thus, we feel justified in adopting ζ(fmax) ' 1 for all interferome-

ters in the ensuing analysis.

Using these expressions we were able to numerically estimate the probability distribution

for the effective Θ,

Θeff =

√∑
k

Θ2
k, (3.4)

where the sum is over all detectors in the network. We use this Θeff distribution to choose SNRs

for each source in the catalogue via Eq. (2.20) and then impose a detection criterion. As a

reference, we adopt the detection criterion that the network SNR must be greater than 8.

3.3 NS-NS merger-rate density

In this analysis, we aim to probe not only the background cosmology and NS mass-distribution

parameters, but the astrophysical properties of the binary NS population. To this end, we now

consider the factors contributing to the coalescence of a binary NS system.

Following several theoretical [353, 354], population synthesis (e.g., Ref. [157, 355]) and

observational studies (e.g., Ref. [356]), we define the merger rate per comoving volume as

ṅ(t) =

∫ t

t∗

λ
dPm
dt

(t− tb)dρ∗
dt

(tb)dtb, (3.5)

where λ is a mass efficiency, defined as the number of coalescing DNS binaries per unit star-

forming mass [157]. dPm/dt is the probability distribution for a DNS binary to merge at a time

(t − tb) after formation, and dρ∗/dt is the star-formation rate (SFR) density at cosmological

time tb.

Star formation, and the efficiency of double compact-object formation from the progeni-

tor system, may be sensitive to the host-galaxy morphology and environment (e.g. metallic-

ity). Furthermore, the distribution of delay times between star formation and the correspond-

ing DNS-system coalescence may have contributions from several different evolutionary paths.

However, we are interested here only in a third-generation GW-interferometer network’s ability

to constrain various astrophysical and cosmological parameters. As such we consider a single

10Both neutron stars in the binary system would need to have masses 2σ above the distribution mean at the

maximum µ and σ considered in this analysis, where µNS ∈ [1.0, 1.5]M�, σNS ∈ [0, 0.3]M�.
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component star-formation distribution, delay-time distribution and mass efficiency, deferring

considerations of the other dependencies to a future study. We now discuss the various terms in

Eq. (3.5) in more detail.

3.3.1 Mass efficiency, λ

We use values for λ obtained from the population synthesis calculations of Ref. [355]. Smoothed

histograms of the mass efficiency are shown in Fig. 4 of that paper, with modes at ∼ 10−5M−1
�

for DNS systems formed in both elliptical and spiral conditions. However the distribution

of λ ranges over several orders of magnitude, with 10−7M−1
� . λ . 10−3M−1

� . We adopt

λ = 10−5M−1
� as the reference value for our analysis.

3.3.2 Merger-delay distribution, dPm/dt

Massive stars in high-mass binary systems evolve into DNS systems on much shorter timescales

than typical galaxy evolution or Hubble timescales, such that dPm/dt is essentially determined

by the initial orbital separation, a, of the DNS system [357]. The evolutionary time delay

between the formation of the progenitor system (with component masses between∼ 8−20M�)

and the corresponding DNS system is typically ∼ 50 Myr [324].11 This is negligible compared

to the GW inspiral timescale, which scales as τgr ∝ a4, and can be O(Gyrs). Assuming the

number of binaries, N , born with separation a scales as dN/da ∝ aγ [357], we obtain

dPm
dt
∝ dN

dτgr

=
dN

da

da

dτgr

∝ tα, (3.6)

where α = (γ−3)/4. If DNS systems retain the same orbital separation distribution as normal-

abundance main-sequence stars [353, 358], then dN/d ln(a) ∼ const., and therefore γ = α =

−1.12 This scaling is not well constrained, so we adopt the approach of allowing α to be a free

parameter that we attempt to fit from our observations and ask with what precision this can be

determined. We use the value α = −1 for our reference model, which is justified by current

(albeit sparse) analysis of Galactic DNS systems [359–361], and various population synthesis

calculations [124, 324, 355, 362–364]. For normalisation purposes, we assume a minimum

11This evolutionary time scale is an approximate main-sequence lifetime for an 8M� star, burning ∼ 10% of its

core hydrogen, and obtained via the simple scaling relationship, τevol ∼ 104(M/M�)−2.5 Myr.
12This assumes circular orbits, however eccentricity can have a significant effect on inspiral timescales. Also it

is not obvious that DNS systems should retain the same orbital separation distribution as main-sequence binaries,

since the system must survive two supernovae which are likely to modify this distribution. Furthermore, strictly

speaking the joint probability distribution of evolutionary and merger timescales should be considered here [324],

since the latter depends on the compact-binary’s chirp mass, which depends on the progenitor’s component masses,

which in turn influences the evolutionary timescale.
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delay-time of 50 Myr, and model only DNS systems formed via the classical formation channel

[109, 362, 365] for which the ∼ t−1 delay-time distribution is an appropriate approximation

over several orders of magnitude. The power-law index will have a greater impact on merger-

rate density calculations than the lower cutoff time. We adopt a maximum delay-time equal to

the cosmology-dependent age of the Universe.

3.3.3 Star-formation rate density, dρ∗/dt

The star-formation rate density is also rather uncertain, so we are only looking for a reasonable

model which can be easily parametrised. The SF2 model of Ref. [366] attempts to factor in

the uncertainties in the incompleteness of data sets and the amount of dust extinction at early

epochs. The SF2 model has the form

dρ∗
dt

(z) ≈ 0.16×
(

exp (β1z)

exp (β2z) + 22

)
× E(z)

(1 + z)3/2
M�Mpc−3yr−1, (3.7)

where

E(z) =
√

Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ(z), (3.8)

and β1 = β2 = 3.4. In this model, the SFR density remains roughly constant at z & 2, which

may be incompatible with recent observations [367–369]. This is discussed in more detail in

Appendix 3.A. To allow for some uncertainty, we treat β1 and β2 as free parameters and explore

how precisely we can measure them. While this simple ansatz does not cover all possible forms

for the SFR density, using it will provide an indication of what GW observations could tell us.

The framework is easily adaptable to more complex SFR models.

We must also specify t∗, the lower integration bound in Eq. (3.5), which represents the time

of the earliest period of star formation. Among the highest known redshift objects are GRB

090429B, a long-duration gamma-ray burst (GRB) with a photometric redshift of ∼ 9.4 [370],

and UDFj-39546284, a candidate z ∼ 10 galaxy [371]13. We therefore use z = 10 as the

earliest time of star formation. Future observations, for instance with the James Webb Space

Telescope, may be able to probe back to the first phases of galaxy formation at z ∼ 15 and if

objects are found at that epoch, this assumption should be revised. However, our results are

fairly insensitive to this choice.

3.3.4 Calculating ṅ(z)

Evaluating Eq. (3.5) to give the merger-rate density as a function of redshift requires a cosmology-

dependent calculation of the cosmological time in terms of redshift, followed by an integral over
13After this research was carried out, the existence of this protogalaxy was confirmed, with an associated pho-

tometric redshift of ∼ 11.8± 0.3 [372].
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Figure 3.2: Merger-rate densities computed for the reference cosmology (solid line) and for

cosmological parameters chosen randomly from within the prior range (red crosses).

the delay-time distribution. This procedure created a bottleneck in our analysis. However, since

the priors on the cosmological parameters are narrow (see Sec. 3.5.4), there is little variation in

the merger-rate density across this range, as shown in Fig. 3.2. We therefore fixed the cosmo-

logical parameters at their reference values for the cosmological time calculation, which made

the merger-rate density calculation considerably faster. Although this throws away some of the

cosmological information, it did not significantly affect the results and made the analysis more

tractable.

3.4 Cosmological models

In the previous chapter, we considered only a flat cosmology with a cosmological constant, but

here we allow for curvature and an evolving dark-energy EOS. For a full review of the evidence

and models of accelerated expansion of the Universe, see Ref. [373]. From the cosmological

field equations we have

ρ̇+ 3

(
ȧ

a

)(
ρ+

p

c2

)
= 0, (3.9)

where ρ and p are the density and pressure of a cosmological fluid respectively, while a is the

scale factor of the universe. Derivatives are with respect to physical time. For a perfect fluid
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(p = wρc2, where w is the EOS parameter), this reduces to(
ρ̇

ρ

)
= −3(1 + w)

(
ȧ

a

)
. (3.10)

Hence,

ρ(a) = ρ(atoday = 1)× e−3
R a
1 (1+w)(da′/a′). (3.11)

The last decade has seen many proposals for the origin of accelerated expansion [373], ranging

from vacuum energy to modified gravity, or even unmodified gravity within an inhomogeneous

Universe. One approach attempts to explain dark-energy as a minimally coupled scalar field

(“quintessence”) slowly rolling down its potential such that it can exert negative pressure. While

it is possible to have a constant EOS in this formalism, this requirement places severe constraints

on the potential and so it is natural to expect a time-varying EOS [374].

The simplest approximation is to assume a linear model (w(z) = w0 + w1z), but this is

only appropriate for local studies due to the divergence at high redshift. The Shafieloo-Sahni-

Starobinsky ansatz [375] models the EOS evolution as a “tanh” form that ensures w = −1 at

early times and w → 0 at low z. This ansatz prevents the crossing of the “phantom divide” at

w = −1, desirable since phantom fluids can not be explained by a minimally coupled scalar

field [374]. The ansatz we adopt in this work is the Chevallier-Polarski-Linder ansatz [374, 376]

w(a) = w0 + wa(1− a), w(z) = w0 + wa

(
z

1 + z

)
. (3.12)

This ansatz was adopted by the Dark Energy Task Force [377], and has several desirable fea-

tures: (i) it depends on only two free parameters; (ii) it reduces to the linear model at low z; (iii)

it is well-behaved at high redshift, tending to w0 + wa. Using this EOS,

ΩΛ(z) = ΩΛ,0 × (1 + z)3(1+w0+wa) × e−3wa( z
1+z ). (3.13)

For different global geometries of the Universe the luminosity distance, DL, is given by

DL(z|C) = (1 + z)×F(z|C),

where

F(z|C) =


DH√
Ωk,0

sinh
(√

Ωk,0
Dc(z|C)
DH

)
, Ωk,0 > 0,

Dc(z|C), Ωk,0 = 0,

DH√
|Ωk,0|

sin
(√|Ωk,0|Dc(z|C)DH

)
, Ωk,0 < 0,

(3.14)

in which DH is the Hubble scale (1/H0) and C={H0,Ωm,0,ΩΛ,0,Ωk,0, w0, wa} is the set of

cosmological parameters describing the large-scale characteristics of the universe.
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The comoving radial distance, Dc(z), is given by

Dc(z) = DH

∫ z

0

dz′

E(z′)
, (3.15)

where E(z) is given by Eq. (3.8). The redshift derivative of the comoving volume is given

generally by
dVc
dz

= 4πDH
DL(z)2

(1 + z)2E(z)
. (3.16)

3.5 Making & Analysing DNS catalogues

Full details of the techniques we employ to construct and analyse catalogues of merging DNS

systems can be found in the previous chapter, but we reiterate the salient details here.

3.5.1 Distribution of detectable DNS systems

The two system properties we will use in our analysis are the redshifted chirp mass,Mz, and the

luminosity distance,DL. We assume that only systems with an SNR greater than a given thresh-

old will be detected. The distribution of the number of events per unit time in the observer’s

frame withM, z and effective Θ is given by Eq. (2.36). As in Sec. 2.3.8 of the previous chapter,

we convert this to a distribution inMz, DL and ρ,14 and integrate over ρ to find the distribution

of detectable systems (i.e., systems above SNR threshold).

To calculate the number of detected systems (given a set of model parameters, −→µ ) we inte-

grate over this distribution, which is equivalent to integrating the distribution over redshift and

chirp mass, i.e. Nµ = T × ∫∞
0

∫∞
0

(
d3N

dtdzdM

)
dzdM, where T is the duration of the observation

run. We found that assuming the NS mass-distribution was a δ-function centred at the mean

given by the trial parameters allowed at least a tenfold speed-up in this calculation by halv-

ing the dimensionality of the integral. This gave results consistent with the full 2D integration

procedure.

3.5.2 Creating mock catalogues of DNS binary inspiraling systems

The model parameter space we investigate is the 7D space of [w0, wa, µNS, σNS, α, β1, β2]. To

generate a catalogue of events we choose a set of reference parameters which are motivated

by previous analysis in the literature. For our reference cosmology we adopt H0 = 70.4

kms−1Mpc−1, Ωm,0 = 0.2726, ΩΛ,0 = 0.728, w0 = −1.0 and wa = 0.0 [328]. The refer-

ence parameters of the neutron-star mass distribution are µNS = 1.35M� and σNS = 0.06M�

14The distribution inMz , DL and ρ is generalised for an arbitrary curvature Universe through dz/dDL via Eq.

(3.14).
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[316]. The delay-time distribution and SFR density were discussed in Sec. 3.3. We adopt a

power-law merger-delay distribution with reference power-law index α = −1.0, and we take

the SFR density to be given by the SF2 ansatz [366], with β1 = 3.4 and β2 = 3.4.

These reference parameters are used to calculate an expected number of events15, and the

number of observed events, No, is drawn from a Poisson distribution (assuming each binary

system is independent of all others) with that mean. Monte-Carlo acceptance/rejection sampling

is used to draw random redshifts and chirp masses from the distribution in Eq. (2.36) for each

event. The DL andMz are then computed from the sampledM and z.

For these reference parameters, which give a local merger-rate density of ∼ 2 × 10−7

Mpc−3yr−1, and assuming detected systems must have a network SNR greater than 8, we find

that the expected number of detections in 1 yr is ∼ 105.16

3.5.3 Likelihood statistic

In the measurement-parameter space of redshifted chirp mass and luminosity distance, the mea-

sured number of detections in a given bin will be a Poisson random variate with a model-

dependent mean. If we take the continuum limit of this, such that bin sizes are infinitesimally

small and contain either 0 or 1 events, then we can formulate the likelihood of a catalogue of

discrete events,

L(
−→−→
Λ |−→µ ,H) = e−Nµ

No∏
i=1

r(
−→
λi |−→µ ), (3.17)

where
−→−→
Λ = {−→λ1,

−→
λ2, . . .,

−→
λNo} is the vector of measured system properties, with

−→
λi = (Mz, DL)i

for system i. No is the actual number of detected systems, while Nµ is the number of DNS in-

spiral detections predicted by the model with parameters −→µ . Finally, r(
−→
λi |−→µ ) is the rate of

events with propertiesMz and DL, evaluated for the ith detection under model parameters −→µ ,

which is given by (d3N/dtdMzdDL) |ρ>ρ0 , and discussed in Sec. 3.5.1. The trial cosmological

parameters are used to calculate a model-dependent redshift from the catalogued luminosity

distance, and, in turn, this redshift is used to infer a model-dependent intrinsic chirp mass from

the catalogued value ofMz. These values ofMz, DL, as well as the model-dependent values

of z and M, are used to calculate r(
−→
λi |−→µ ) for each source, and combined to to compute the

15The observation time, T , is assumed to be 1 yr, and the mass efficiency is assumed to be λ = 10−5M−1
� (as

mentioned earlier).
16This reference local merger-rate density is roughly five times smaller than the realistic value quoted in Ref.

[147], but 20 times larger than the pessimistic estimate. Whilst we could scale our merger-rate density calculations

to match the realistic value of 10−6 Mpc−3yr−1, our modified likelihood statistic makes our analysis insensitive

to such scalings. A rescaling to the realistic local merger-rate density of Ref. [147] would lead to an expected

detection rate of approximately half a million sources.
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likelihood.

In the previous chapter we employed a modified likelihood statistic which marginalised

over the local merger-rate density of DNS systems. This approach reflects our current lack of

knowledge of this quantity, estimates of which vary over several orders of magnitude. We adopt

the same approach in this analysis to eliminate the dependence on poorly known scaling factors.

This includes the mass-efficiency parameter, λ, which is a quantity derived from population

synthesis studies and can vary over several orders of magnitude.

The modified likelihood statistic is

L̃(
−→−→
Λ |−→µ ,H) ∝ Nµ

−(No+1)
No∏
i=1

r(
−→
λi |−→µ ). (3.18)

We note that we have not included a prior on the scaling factors in the above, which is

equivalent to using an improper flat prior over the range [0,∞]. This reflects our current lack of

knowledge of the mass-efficiency. A proper prior could be implemented by setting lower and

upper bounds on the mass-efficiency, giving a finite range which is large enough not to affect

the likelihood, and leading to results consistent with Eq. (3.18).

3.5.4 Calculating the posterior probability

Given that ET will most likely not be operational until the late-2020s, we must consider what

constraints conventional observational cosmology can put on cosmological parameters. In the

recent study by Ref. [347], the authors investigated how the dark-energy EOS could be probed

by ET observations of DNS systems to provide distance measurements, complemented by elec-

tromagnetic measurements of the associated short gamma-ray burst (SGRB) to provide the red-

shift. They estimated that a combination of the Planck cosmic microwave background (CMB)

prior, JDEM BAO results, and future Type Ia supernova observations could provide cosmolog-

ical constraints by the ET-era of

∆Ωm,0 = 3.46× 10−3, ∆Ωk,0 = 5.91× 10−4,

∆H0 = 0.336, ∆w0 =0.048, ∆wa = 0.184. (3.19)

Hence, we assume that H0, Ωm,0 and Ωk,0 are precisely known quantities, with values of 70.4

kms−1Mpc−1, 0.2726 and −0.0006, respectively. As a prior on w0 and wa, we adopt the con-

straint that w(z) < −1/3 at all redshifts. Hence we use uniform priors on the EOS parameters

with w0 < −1/3 and w0 +wa < −1/3 and lower bounds set low enough so as not to affect the

posterior probability distribution. We also adopt uniform priors for all other parameters under

investigation.
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3.6 Results

3.6.1 Posterior recovery

An analysis using the full 105 observations expected in a year of ET data is computationally

prohibitive, so we use a working reference sample of ∼ 4500 detections (corresponding to a

shorter observation time or a lower merger rate density) and extrapolate to the expected number

of detections, as discussed in Sec. 3.6.3. For each analysis, we ran 120 independent adaptive

MCMC chains (see Sec. 1.4) of 5000 points on the same data catalogue. We then used the

last point from each chain to initialise a follow-up run of another 5000 iterations. The first

2000 points from each chain of the follow-up run were discarded as burn-in. This procedure

therefore generated 360, 000 points, with an average acceptance rate of ∼ 30%. The analysis of

the 4500-event reference catalogue took ∼ 3.5 hrs in total. Our sampled points were analysed

using the COSMOLOGUI package [378].

3.6.2 Marginalised posterior distributions

In Fig. 3.3 we show the recovered marginalised 2D posterior distributions (with 68% and 95%

confidence contours) for the reference catalogue. In Fig. 3.3(c) we observe a correlation be-

tween the recovered dark-energy parameters. This is easily explained by the fact that a given

catalogued luminosity distance may be consistent17 with a range of w0 and wa values, the com-

binations of which will depend on the redshift of the source. Since the majority of detected

systems will be centred around z ∼ 1, the w0 − wa correlation will be dominated by these

sources.18 In Fig. 3.3(a) a negative correlation is observed between the recovered values for w0

and µNS. For a given catalogued luminosity distance and fixed wa, a low value of w0 will imply

a low redshift in that model. When this redshift is used to computeM fromMz, we obtain a

large value of the chirp mass, which is consistent with a chirp-mass distribution (and hence a

NS-mass distribution) centered at larger values. Figure 3.3(b) merely shows the combined in-

formation of Figures 3.3(a) and 3.3(c) (where the recovered wa values are negatively correlated

with the w0 values); therefore the correlation observed in Fig. 3.3(b) is positive.

A strong positive correlation is observed between the SFR-density SF2 ansatz parameters,

β1 and β2, as seen in Fig. 3.3(d), while Fig. 3.3(e) shows a weak negative correlation between

α and β1. These correlations correspond to keeping the merger-rate density approximately

constant. For a variety of redshifts we calculated which combinations of α, β1 and β2 were

17Here, by “consistent” we mean within ±1% of the reference value.
18The correlation between the two dark-energy EOS parameters can be reduced by rebinning the MCMC sam-

ples using the Wang parametrisation [379]. This simply involves a tranformation from the (w0, wa) parametrisation

to (w0, w0.5), where w0.5 = w0 + (wa/3).
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consistent with a given merger-rate density. We found that there was a strong positive correla-

tion in these points between β1 and β2, but the correlation between α and β1 changed sign as

the redshift increased. The greatest change occurred as the redshift was increased from 0 to 1,

where the correlation then flipped sign; however at z = 4 the magnitude of the correlation was

still not as large as it was at z = 0.1. This leads us to believe that although the DL distribution

of detected sources is peaked around ∼ 6 Gpc, with a long tail to ∼ 45 Gpc, the lower distance

sources dominate the α− β1 correlation, giving an overall negative correlation.

In Fig. 3.4, we show the marginalised 1D posterior distributions for the model parameters

which have been inferred from our reference catalogue. The dotted lines in the plots indicate

the 68% and 95% confidence regions of the marginalised distributions.19

3.6.3 Precision scaling with number of detections

We performed similar analyses on catalogues containing various numbers of detections, culmi-

nating in a run with 105 detections. We can characterise the precision with which we can mea-

sure the various model parameters by the 95% confidence intervals. Recording these intervals

for all parameters for varying catalogue sizes, and dividing by the reference sample intervals

gave the results shown in Fig. 3.5. This clearly shows that the precisions scale as 1/
√
No as

we would expect. Parameter measurement accuracies for the 105-event catalogue are shown in

Table 3.3. We see that the measurement precisions of the dark-energy EOS parameters are the

same order of magnitude as those forecast for CMB+BAO+SNIa [347], as discussed in Sec.

3.5.4.

3.6.4 Including and accounting for errors

Distance measurements from a third-generation GW-interferometer network will not be error-

free. Whilst a network consisting of a single ET plus one other right-angled interferometer can

place constraints on a source’s sky location and luminosity distance, the precisions of these

properties are improved to almost the 3-ET network level by the inclusion of a second addi-

tional right-angled interferometer [350]. The redshifted chirp mass is expected to be very well

constrained (. 0.5% error [380]), and so we ignore measurement errors in this parameter. We

assume the error in the luminosity distance arising from instrumental noise scales as ∼ 1/ρ,

19While these results were computed using the fast merger-rate approximation, we also analysed a catalogue

using the full merger-rate density. The 95% confidence intervals of the marginalised posterior distributions were

consistent with our approximate analysis, justifying the use of the approximation to compute the rest of our results.

No correlations between the merger-rate density parameters and the dark-energy EOS parameters were found,

which supports our earlier statement that the dependence of the merger-rate density on the underlying cosmological

parameters is weak within the applied priors.
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Figure 3.3: Marginalised 2D posterior distributions for the reference catalogue of 4500 detections.

Only those 2D distributions showing correlations between parameters are shown. The reference

parameters are µNS = 1.35M�, σNS = 0.06M�, w0 = −1, wa = 0, α = −1 and β1 = β2 = 3.4.
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Figure 3.4: Marginalised 1D posterior distributions for the reference catalogue of 4500 detections.

Dotted lines indicate the boundaries of the 95% and 68% confidence intervals. The reference

parameters are µNS = 1.35M�, σNS = 0.06M�, w0 = −1, wa = 0, α = −1 and β1 = 3.4.
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4500-event reference catalogue, shown as a function of the number of catalogued events. The same

intrinsic parameters of the underlying distributions are used to create the mock catalogues. The

expected ∼ 1/
√
N relationship is overlaid on the plot.

Table 3.3: 95% confidence intervals obtained from a catalogue of 105 detections, with reference

parameters used to generate the data. ∆X gives the width of the 95% confidence interval.

Parameter Reference value 95% conf. interval ∆X

σNS/M� 0.06 [0.059688 , 0.060254] 0.000566

µNS/M� 1.35 [1.347408 , 1.351789] 0.00438

w0 -1.0 [-1.036403 , -0.949623] 0.0869

wa 0.0 [-0.195630 , 0.073602] 0.269

α -1.0 [-1.026691 , -0.961659] 0.0650

β1 3.4 [3.318136 , 3.605810] 0.288

β2 3.4 [3.310287 , 3.582895] 0.273
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and include the effects of weak lensing as a further source of error. The weak-lensing error on

luminosity distance measurements at z ∼ 1 is approximately 5%, and we linearly extrapolate

this to all other redshifts [346, 347, 381, 382]. While several techniques have been proposed

to reduce this weak-lensing error [e.g. Ref. [383, 384] and references therein], we assume no

correction has been done, corresponding to a worst-case scenario.

Errors on the distance-redshift relation from binary-system peculiar velocities are much

smaller than instrumental and weak-lensing errors at all but the lowest redshifts, becoming

comparable with these at z ∼ 0.1 where the error is . 1%, and decreasing sharply at higher

redshifts [Ref. [348] and references therein]. The lowest redshift in our reference catalogue is

∼ 0.05, where the peculiar velocity errors will dominate, but only lead to an error of . 2%.

The sensitivity of the luminosity distance to the dark-energy EOS parameters is very weak in

this redshift regime; hence peculiar velocities are unlikely to introduce significant parameter

bias/inaccuracy, and we ignore them here.

We also ignore the effect of detector calibration errors, which, unlike statistical measurement

uncertainties, would not be mitigated by boosting the detection rate. Such systematic biases

have recently been studied in the case of advanced-era detectors [304], and found to induce a

systematic shift in the estimated system parameters which is a small fraction of the statistical

measurement errors. We ignore waveform-modelling errors in our analysis, since current post-

Newtonian models will only break down close to the onset of the merger-phase, and for the

neutron-star binaries considered in this analysis this is at frequencies where the instrumental

noise is high and which therefore do not contribute much to the overall signal-to-noise of the

system. Furthermore, luminosity-distance determination comes primarily from the network

triangulation which will not be significantly affected by modelling uncertainties, and so the

distance error will be dominated by instrumental-noise and weak-lensing, as discussed earlier.

Similarly, the error in the distribution of possible source-redshifts arising from the measured

redshifted chirp mass will be dominated by the intrinsic width of the NS mass distribution

rather than the small error in the redshifted chirp mass coming from instrumental noise and

modelling uncertainties.

We repeat the analysis of the working reference sample, offsetting the catalogued luminosity

distance by an amount drawn from a Gaussian distribution, with mean at the true distance, and

standard deviation,

σ = DL ×
√

(1/ρ)2 + (0.05z)2. (3.20)

The data collected for each event will actually be in the form of posterior probability density

functions (PDFs) for the parameters, where previously we have assumed these are δ-functions

at the true values. We found that if the offset luminosity distances were assumed to be the true

values with a δ-function posterior PDF, then the chain does not move away from its starting
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point. Hence we must take these errors into account in the likelihood calculation stage.

We can account for these errors in the analysis using the techniques of the previous chap-

ter (see Eq. (2.51)), which involves integrating the likelihood over the posterior PDFs of the

measured data. Concern has been raised that the high event rate of ET detections may lead to

a confusion background, however the noise-weighted signals are short enough that there is not

expected to be significant overlap [346, 380]. Hence, these detections should be uncorrelated,

with independent parameter estimates, and so the posterior PDF for the detected population of

sources reduces to the product of the posterior PDFs for each detection.

We represent the DL posterior PDF for each source by a chain of 50 points, drawn from a

normal distribution with standard deviation as in Eq. (3.20), and a mean equal to the value in

the data catalogue, which in this analysis, as discussed earlier, includes an error to offset it from

the true value. Results are shown in Table 3.4. We see that a significant bias in the reconstructed

model parameters still exists. We suspected that this bias arose from using only 50 points to

evaluate the distance posterior PDFs. We therefore repeated the analysis with an increasing

number of points sampled from the distance posterior PDF.20 With 100 points, all biases are

corrected expect for that in σNS, and the ratio of the 95% confidence interval widths to the

reference widths is not significantly different from the 50 point case. This suggests that a larger

number of points in the error averaging technique will be necessary to correct all biases, but

this is not necessary to estimate parameter measurement accuracies in the presence of distance

errors. Using 400 points sampled from the distance posterior PDF all biases in the parameter

posterior distributions appear to be corrected, in the sense that the reference parameters then lay

within the 95% confidence intervals of the 1D marginalised posterior distributions.

Overall, we find that the result of properly accounting for instrumental and weak-lensing

errors is that parameter measurement precisions are, at worst, approximately halved. Thus

instrumental and weak-lensing induced errors should not affect our general conclusions about

the science capabilities of a third-generation GW-interferometer network. We carry out the

remainder of this study using catalogues which are generated and analysed without including

errors.

3.6.5 Precision scaling with intrinsic parameters

We now investigate how the ability of ET to constrain the parameters of the underlying distri-

butions is affected by the values of the intrinsic parameters themselves. This is similar to the

20The posterior distributions obtained via this analysis should be considered estimates of the true distributions,

since the long likelihood computation time required by this error-analysis means that we did not collect as many

samples as when errors are ignored. We performed burn-in runs, and then follow-up runs to estimate the posterior

distributions as well as feasible.
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Figure 3.6: The variation of measurement precision with different choices of the intrinsic parameters of

the underlying distributions. One parameter is varied at a time, and in the interest of testing how the

precision of parameter recovery is affected by the underlying distribution of events, all catalogues are

generated with the same number of events (4500 to match the reference catalogue). Each point in each

panel represents the average 95% confidence interval width of 3 realisations of the catalogue.
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kind of analysis performed in the previous chapter for second-generation interferometers. We

analyse catalogues generated with different intrinsic parameter combinations; multiple runs are

performed on each parameter combination. We vary one parameter at a time, fixing all others

to the reference values.

Varying the intrinsic parameters with fixed SNR threshold will alter the expected detection

rate. This is illustrated in Table 3.5, where the model with reference parameters has an expected

detection rate of ∼ 105 yr−1. The expected ∼ 1/
√
N relationship is well established, as shown

in Fig. 3.5. Hence, we remove this number effect by generating catalogues with the same

number of events (4500 each in order to compare against the reference catalogue). Therefore we

are testing how the cosmological, astrophysical and intrinsic-mass distributions of coalescing

DNS binaries impact the precision of parameter recovery.

The results of these analyses are shown in Fig. 3.6. We see that as σNS is increased the

measurement precision of both the NS mass distribution and dark-energy EOS parameters de-

creases. We found a similar trend in our second-generation study. This makes sense, since if

we have an intrinsically narrow NS mass distribution, then we have a good idea of what the

intrinsic masses of the systems are and the range of candidate redshifts produced from a mea-

sured redshifted chirp mass will be narrow, improving the precision with which we can recover

cosmological parameters.

A variation in the intrinsic µNS (not shown) produces accuracies comparable to the refer-

ence accuracies. Hence, the impact of the intrinsic value of the NS mass-distribution mean on

parameter accuracies is predominantly through the change to the expected detection rates i.e., a

larger mean, on average, will lead to larger chirp masses, so that detections can be made from a

larger volume (see Eq. (2.20)).

Increasing the value of the EOS parameter w0 increases the precision with which we can

recover w0, wa and µNS. As w0 is increased, while the intrinsic wa is fixed at zero, the re-

covered posteriors for these parameters are squeezed by the prior restrictions, w0 < −1/3 and

(w0 + wa) < −1/3. A larger intrinsic w0 increases the horizon distance of detections, which

permits greater sensitivity to the dark-energy EOS parameters. Furthermore, a narrowed range

of cosmological parameters means that the range of candidate redshifts is also narrowed, such

that the precision of the recovered NS mass-distribution mean (deduced from the redshifted

chirp mass) improves. We also notice these effects when the intrinsic wa is increased with the

intrinsic w0 fixed at the reference value. However, the effect is less pronounced in this case,

since wa is a first-order correction to w0.

As the power-law index, α, is increased the average delay between the formation of the

massive progenitor system and the merging of the final compact-system increases. This means

that more systems formed at higher redshifts survive to merge at lower redshifts, and hence the
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Figure 3.7: We show the variation of the expected detection rate as the SNR threshold, ρ0, is raised.

This can also be interpreted as lowering the characteristic distance reach of the network. Since ρ scales

as 1/DL (see Eq. (2.20)), and the difference between the luminosity distance and radial comoving

distance becomes smaller at lower redshift, one would expect that at high enough values of ρ0 the

comoving detection volume (and hence detection rate) would scale as 1/ρ3
0. This is approximately valid

for ρ0 & 15.

merger-rate density is boosted to higher values at lower redshifts. In addition, as α increases

the merger-rate density tracks the underlying SFR-density to a lesser extent, so it becomes more

difficult to extract the details of the SFR-density. Hence the β1,2 distributions widen to reflect

this reduced sensitivity to the underlying SFR-density.

When we keep the intrinsic values of β1 and β2 equal (not shown), we find that varying these

by ±0.4 around the reference value has a negligible impact on the measurement precision of

the parameters. A higher common β1,2 value leads to a larger expected detection rate, but this

is a small effect.

Lowering the intrinsic value of β1, with β2 fixed, shifts the distribution of events to lower

distances, and changes the shape of the underlying merger-rate density. This distribution is

consistent with a wider range of α values than the reference distribution, since the sensitivity

of the merger-rate density to α is reduced at lower redshifts. This causes the marginalised

α-posterior distribution to widen. The same is true when the intrinsic value of β2 is increased.
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Figure 3.8: The reduction of the characteristic distance reach associated with raising the low-frequency

cutoff, fl, of 3rd-generation detectors. This can also be interpreted as raising the network SNR

threshold. The figures were produced using the ET-D noise curve [92].
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Figure 3.9: The variation of the parameter measurement precisions with the network SNR threshold.

The left panel shows precisions, characterised by the width of the 68% confidence intervals, for the

merger-rate density parameters, while the right panel shows precisions, characterised by the 95%

confidence intervals used elsewhere, for all other parameters. We use the narrower confidence intervals

for the merger-rate parameters to mitigate the effect of poor sampling in the low-α region which was

observed in some AM-MCMC chains in this particular analysis. All catalogues contain the same

numbers of events at each threshold value, which, as in the previous subsection, is 4500 to match the

reference catalogue.
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Figure 3.10: We show the redshift distribution of the DNS merger-rate density for various choices of

the power-law index of the delay-time distribution, α (all other parameters are fixed at their reference

values). The merger-rate density is relatively featureless beyond z ∼ 2.5, making it difficult for our

analysis (which is insensitive to linear scalings of the merger-rate density) to discriminate between

values of α in this range. Overlaid on this figure we show the redshift distribution of detections for

various SNR thresholds.
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3.6.6 Varying the SNR threshold

We also generated catalogues for different values of the SNR threshold. Multiple catalogues

were analysed for each SNR threshold, but once again the number of events was fixed at 4500

to match the reference catalogue (see Fig. 3.7). An increase in the SNR threshold is equivalent

to the characteristic distance reach of the detectors decreasing. Hence we would expect the

sensitivity of the data to varying dark-energy EOS parameters, which have a greater influence

at larger redshifts, to be reduced. A reduced characteristic reach would also result from a

larger low-frequency cutoff, fl, in the detector’s noise spectrum. In the recent mock ET data

challenge, Ref. [380] found that confusion between two or more signals rarely affected the

analysis performance when fl = 25 Hz. Standard algorithms currently employed for LIGO-

Virgo analyses cannot handle templates longer than a few minutes; however multiband filter

methods are being developed which will allow fl to be pushed below 25 Hz. In Fig. 3.8 one can

see that with fl = 25 Hz, the effective SNR threshold is raised from the reference value of 8

(with fl = 1 Hz) to ∼ 12.4.

From Fig. 3.9(a), we see that as the SNR threshold is increased, with the number of cata-

logued events fixed, the accuracies of β1 and β2 degrade sharply. At higher SNR thresholds (or,

equivalently, at lower distance reaches) the sensitivity of the merger-rate density to varying β1,2

is reduced; hence the wider posterior distributions. The measurement precision of α increases

slightly as the SNR threshold is increased from 6 − 12. One might expect α to show the same

trend as β1 and β2, since an increasing SNR threshold pushes the events to lower redshifts where

the sensitivity of the merger-rate density to α is reduced. However, we see in Fig. 3.10 that the

merger-rate density, for various choices of α (but all other parameters fixed), is relatively fea-

tureless beyond ∼ 2.5. The distribution of the merger-rate density in the redshift window of

∼ 2.5 − 7 could be approximately linearly scaled to satisfy a large range of α.21 Therefore,

given that our likelihood statistic is insensitive to linear scalings of the merger-rate density [see

Eq. (3.18)], the significant number of high-redshift detections in a ρ0 = 6 catalogue will widen

the α posterior distribution, while most α-information is found in the redshift window ∼ 1− 2,

where the merger-rate density has more features.

In Fig. 3.9(b), we see that the measurement accuracy of w0 and wa is slightly reduced

for higher SNR thresholds; this is a small effect, and is expected with a catalogue shifted to

lower redshifts, where distances are less sensitive to varying dark-energy EOS parameters. The

accuracy of w0 only varies by ∼ ±5%, since we remain sensitive to detections at tens of Gpcs

even with an SNR threshold of 12. However, wa shows a stronger variation since it is a higher

21The same argument did not apply when β1,2 was varied, since this not only shifted the distribution to lower

redshifts but altered the shape of the merger-rate density in a way that could not be equated with a linear scaling in

any redshift window.
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Figure 3.11: The redshift dependence of the sensitivity of the luminosity distance to w0. This

parameter has a very weak intrinsic impact on DL at low redshifts, whilst distance errors from

instrumental noise and weak-lensing dominate at higher redshifts. This results in a redshift

“sweet-spot”, where these effects are minimised for lines of constant SNR. We also plot the individual

∆w0 values calculated for the reference catalogue events.

order correction to the EOS parameter, and distances become sensitive to this parameter at

higher redshifts than they do to w0. We also see that the measurement precision of µNS and σNS

is increased slightly as we move to larger SNR thresholds. This small effect is probably due to

the fact that a lower redshift range in the data catalogue will mean that the redshifted chirp mass

is closer to the intrinsic chirp mass.

Although this suggests that a greater distance reach will improve the precision of cosmo-

logical parameter recovery, we have so far ignored distance errors. In fact, instrumental and

weak-lensing errors impart an interesting redshift evolution to the w0-sensitivity, which we ap-

proximate as [385]

∆w(z) ∼
∣∣∣∣ ∂w0

∂DL

∣∣∣∣×DL ×
√

(1/ρ)2 + (0.05z)2. (3.21)

In Fig. 3.11 we see that the sensitivity of the luminosity distance to the cosmological param-

eter w0 is greatest at z ∼ 1, since w0 has a very weak intrinsic impact onDL at low redshifts and

distance errors dominate at higher redshifts. Increasing a detector’s distance reach will raise the

fraction of high-redshift catalogued events. We calculate the effective measurement precision

of w0 from our reference catalogue by adding the ∆w0 values from each event in quadrature

i.e. 1/∆w0,eff =
√∑

(1/∆w0,i)2. This is repeated for various lower and higher SNR threshold
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Table 3.6: The events from catalogues with different SNR thresholds are used to compute an effective

w0 precision, by adding the ∆w0 values of each event in quadrature. This analysis is performed for

catalogues with the same number of events, and for catalogues with the numbers of events scaled to

match the expected detection rate for each SNR threshold.

ρ0,net f = N/Nref

∆w0,eff/10−3

(No = Nref) (No = f ×Nref)

6 1.64 8.08 6.33

8 1.00 6.82 6.82

12 0.399 5.33 8.35

20 0.0936 4.00 13.1

30 0.0271 3.38 20.6

values. We perform these calculations for catalogues containing the same number of events

(4500 to match the reference catalogue), and for catalogues with the number of events scaled by

the ratio of the expected detection rate for each SNR threshold to the reference threshold (which

in this analysis is 8). The results are shown in Table 3.6, where we see that for catalogues with

the same number of events, lowering the SNR threshold actually worsens the precision of w0

recovery since the distribution of events is weighted to higher redshifts, where distance errors

degrade the precision. Increasing the SNR threshold reduces the number of events at high red-

shift and hence mitigates the degradation of precision due to distance errors (see Fig. 3.11).

However, this effect slows down with increasing SNR threshold. For catalogues with numbers

of events scaled to match the expected detection rate for each SNR threshold, we see that the

increased number of events associated with a lower SNR threshold is enough to compensate for

degradation of precision from higher redshift events. However this loss of precision means that

lowering the SNR threshold does not lead to the 1/
√
N , or 1/ρ

3/2
0 improvement in parameter

measurement precision which one would naively expect.

Finally we address the issue of having assumed that Earth motion does not modulate the

antenna patterns of the detectors. The time spent “in-band” by an inspiraling-event scales as

[380]

τ ∼ 5.4

( Mz

1.22M�

)−5/3

f
−8/3
l days. (3.22)

Hence, a detector with a low-frequency cutoff of 1 Hz (as we have assumed) could have events in

band for as long as∼ 5 days. In this case, a correct treatment of the antenna pattern modulation

would be needed. However, if we increase fl to ∼ 8 Hz, then the maximum time spent in-band

is less than 30 minutes, and ignoring the antenna pattern modulation is reasonable. In Fig. 3.8

we see that a low-frequency cutoff of 8 Hz is equivalent to raising the SNR threshold to ∼ 9,
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and from Fig. 3.9 we see that the precision of parameter recovery is within ∼ ±10% of the

reference precisions for an SNR threshold of 9. Therefore our approximate treatment of the

network antenna patterns would seem reasonable.

3.7 Summary

We have built on the previous chapter, which explored the capabilities of an advanced (i.e.

second-generation) GW-interferometer network to constrain aspects of the NS mass distribu-

tion in DNS systems, as well as the Hubble constant. The technique we employed used only

information obtained via analysis of the GWs detected in such a network. In this chapter we

extended the analysis to a possible third-generation network, consisting of the proposed Ein-

stein Telescope, and complemented by third-generation right-angled interferometers at LIGO

Livingston and LIGO-India. The sources of interest in this study are inspiraling double NS

systems, which could be observed at rates of ∼ 40 yr−1 by advanced detectors [147] and rates

of O(105 − 106) yr−1 by a third-generation network [344, 346, 380].

We used a Bayesian theoretical framework to assess the capability of a third-generation

network to measure cosmological and astrophysical parameters. We performed 7-dimensional

adaptive MCMC analysis on the catalogues of detections, using reference parametersH0 = 70.4

kms−1Mpc−1, Ωm,0 = 0.2726, Ωk,0 = −0.0006, w0 = −1, wa = 0, µNS = 1.35M� and

σNS = 0.06M�. Keeping H0, Ωm,0 and ΩΛ,0 fixed, we found that the measurement precisions

of the dark-energy EOS parameters possible with a 105-event catalogue were of the same order

of magnitude as forecasted constraints from future CMB+BAO+SNIa measurements [347].

Furthermore the power-law index of the merger delay-time distribution, α, and the parameters

of the underlying star-formation-rate (SFR) density were constrained to within ∼ 10%. Ac-

counting for measurement errors degraded precisions by a factor of . 2, while increasing the

network SNR threshold required for detection from 8 to 9 (which is equivalent to considering

only the ∼ 30 minute section of inspiral above 8 Hz) changed the precisions by only ∼ 10%.

We also investigated how the precision of parameter recovery scaled with the values of the

intrinsic parameters themselves, keeping the number of detected events fixed to factor out pure

number-of-event effects. Varying the intrinsic σNS showed a linear scaling of parameter pre-

cision, with narrower intrinsic NS mass distributions favouring tighter parameter constraints.

The precisions of the merger-rate density parameters did not appear to be affected in this case.

Increasing the intrinsic w0 and wa had the effect of increasing their measurement precision, as

well as that of µNS. This was probably due to the fact that larger w0 and wa give detections

out to greater distances, where the sensitivity to these parameters is higher. Tighter cosmologi-

cal constraints implies narrower candidate redshift distributions from the catalogued distances,
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which improves µNS precision. Increasing the intrinsic value of α meant that the merger-rate

density tracked the underlying SFR density to a lesser extent and hence worsened the precision

of SFR-density parameter recovery. As we changed the shape of the underlying SFR density to

favour closer detections, the measurement precision of α worsened, since the sensitivity of the

merger-rate density to α is reduced at lower redshifts.

Finally, we varied the criterion for a network detection, which we denoted by a threshold

value of the network SNR. This could also be interpreted as varying the characteristic distance

reach of the network, which, in turn, could be caused by varying the detector’s low-frequency

cutoff. Varying the SNR threshold between 6 − 12 caused a slight decrease in w0 and wa pre-

cision, as catalogues with lower distance events will be less sensitive to these cosmological

parameters. However, catalogues with, on average, closer events will provide better NS mass-

distribution parameter precision, since the redshifted chirp mass will be less offset with respect

to the intrinsic chirp mass. Increasing the SNR threshold, and hence decreasing the charac-

teristic distance reach of the network, caused a significant decrease in SFR-density parameter

precision, since the merger-rate density is less sensitive to the SFR-density parameters at lower

redshift.

While the sensitivity of distances to the dark-energy EOS will obviously be intrinsically

weak at low redshifts, distance-measurement errors begin to dominate at higher redshifts. We

found that for a fixed number of events in a catalogue, lowering the SNR threshold actually

worsened the precision of w0 recovery since events are weighted to higher redshifts, where dis-

tance errors degrade the measurement precision. The larger expected detection rate associated

with lower SNR thresholds is enough to reverse this effect, but means that lowering the SNR

threshold (or increasing the network’s distance reach) does not lead to the great improvement

in parameter measurement precision which one would naively expect.

We have not considered association of GW detections with an EM counterpart, either through

precise SGRB [346, 347] or host-galaxy association. The latter technique may only be possible

with ∼ 0.01% of detectable GW events [348]. However, as shown in the previous chapter, our

techniques are well complemented by precision redshift information.

This chapter completes our proof-of-principle study of this GW-only cosmographic tech-

nique. We have shown the significant potential for a third-generation network including the

Einstein Telescope to place interesting constraints on: (i) the NS mass distributions in DNS

systems; (ii) the dark-energy EOS; (iii) the average delay between the formation of the DNS-

system progenitors and the final merger; (iv) the underlying SFR density in the Universe. Over

the following decade tighter constraints will be derived for the NS mass distribution, delay-time

distribution of DNS systems, and the SFR density, which can be readily incorporated within

this technique. Unshackling GW cosmography from its reliance on EM counterparts will be an
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important step in establishing DNS systems as physical distance indicators, and contribute to

GW-analysis becoming a precision astrophysical tool.

3.A Star-formation rate density, dρ∗/dt

For a comprehensive review of the cosmic star-formation history, see Ref. [386] and references

therein. High-redshift star-formation rate estimates are obtained via measurements of UV lumi-

nosity functions, which tell us how many galaxies emit light in the UV-band in a given epoch.

For all but the oldest galaxies, UV-continuum emission has been shown to be a good tracer

of the SFR since it is dominated by short-lived massive stars (Ref. [367, 387] and references

therein). Dust-extinction of UV light can be investigated, and hence corrected for, via the mea-

surement of the UV-continuum slope, which has been shown to be well-correlated with dust

extinction in the local Universe (Ref. [367] and references therein).

A systematic study of the high-redshift SFR density was undertaken by Ref. [369] using

Hubble Space Telescope data. Correcting their UV luminosity density calculations for dust

extinction, and converting this to an estimate of the SFR density, yielded significant evolution

of the SFR density between 0 < z . 10. The SFR density is shown to rise out to z ∼ 2 − 4,

followed by a decrease out to z ∼ 8− 10 (e.g., Ref. [368, 369]).

Given that only a handful of techniques exist to probe the high-redshift star-formation his-

tory, we will have to wait until further studies are carried out, or new techniques are developed,

to complement the analyses in Ref. [368, 369]. In our present study, we are only interested in

a sensible model of the redshift evolution of the SFR density, which we can parametrise for a

Bayesian inference analysis. Several of the studies (e.g., Ref. [360, 361, 388]) mentioned in

Sec. 3.3.2, as well as several other studies which attempt to fit GRB densities to delayed SFR-

density models (e.g., Ref. [389]), employed the SF2 model of Ref. [366]. Of the three models

considered in the aforementioned paper, the SF2 model attempts to factor in the uncertainties in

the incompleteness of data sets and the amount of dust extinction at early epochs. As such, the

SFR density remains roughly constant at z & 2.

Obviously, if studies in the following decade confirm the SFR-density trends found in Ref.

[368, 369] we would not attempt to fit any ET data with the SF2 model. This model would need

to be updated with a more realistic parametrisation. But for now, we adopt the SF2 model as a

useful ansatz.
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To myself I seem to have been only like a boy

playing on the sea-shore, [. . .] whilst the great

ocean of truth lay all undiscovered before me.

Sir Isaac Newton

Somewhere, something incredible is waiting

to be known.

Carl Sagan

4
Anisotropy In The GW Background

Abstract

The dominant signal in the nanohertz GW band will likely be the incoherent superposi-

tion of inspiral signals from many SMBH binaries, overlapping in frequency to produce

a stochastic GW background (GWB). Deviations of the background energy-density from

isotropy may be indicative of local hotspots or continuous anisotropy in the angular dis-

tribution of GW power. We present the first Bayesian pulsar-timing pipeline capable of

investigating the angular structure of such a background. The overlap of pulsar “antenna

patterns” leads to a distinctive angular signature in the cross-correlation of TOA devia-

tions induced by a GWB. For an isotropic background this signature is the Hellings and

Downs curve, and depends only on the angular separation of the pulsars. If the background

is anisotropic, the signature is different, but predictable, and also depends on the absolute

position of the pulsars. By simulating data sets containing GWBs with various anisotropic

configurations, we have explored the prospects for constraining anisotropy using near fu-

ture data.

This chapter is based on:

Searching for anisotropic gravitational-wave backgrounds using PTAs

Stephen R. Taylor and Jonathan R. Gair

Phys. Rev. D 88, 084001 (2013), arXiv:1306.5395
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4.1 Introduction

If a GWB is produced by processes occurring in the early Universe, or a superposition of high-

redshift signals, then one would expect the resulting background to be reasonably isotropic.

However, if the background signal is dominated by close, bright sources (such as SMBH bi-

naries) over the entire PTA-sensitivity band [240], or even just at high frequencies [241], the

breakdown of stochasticity and resulting deviation from isotropy motivates a more general char-

acterisation of the angular distribution of GW-power on the sky.

As discussed in Sec. 1.3.3, the EPTA, NANOGrav, and PPTA have all performed searches

for GW signals in the nanohertz band, targeting either an isotropic stochastic GWB, or single

resolvable sources. The stochastic GWB searches use techniques which rely on the fact that a

GWB is bathing all pulsars in our array, and hence induces correlated TOA-deviations between

pulsars which are widely separated on the sky. This provides leverage against noise processes

which may have similar spectral properties to the GWB, but which are uncorrelated. In fact, for

an isotropic GWB (with GR polarisation modes) this cross-correlation has a unique, distinctive

angular signature dependant only on the angular-separation of the pulsars: this is the famous

Hellings and Downs curve [216].

Recently, Ref. [390] proposed a cross-correlation statistic aimed at targeting the bright-

est sources in each frequency-bin to account for anisotropy in the signal power. This statistic

modifies the existing isotropic correlation techniques to account for finiteness of the source

population. Essentially, instead of integrating the directional correlation function over the sky

to produce the Hellings and Downs curve, this modified statistic sums the cross-correlation

function over the brightest sources to infer their sky-positions.

Alternatively, we can extend the techniques of Ref. [391, 392] (developed in the context of

ground-based detectors) to PTAs. By decomposing the angular power distribution in terms of

spherical harmonics, Ref. [393, 394] have generalised the existing isotropic cross-correlation

technique to account for arbitrary levels of anisotropy in a GWB. Isotropy is represented by the

monopole solution. For higher multipoles, the cross-correlation is no longer a simple function

of pulsar angular separation, but rather depends on the position of each pulsar relative to the

orientation of the background anisotropy. Thus the concept of a one-parameter relationship

to describe correlations induced by a GWB is no longer appropriate, and the relationship will

instead become PTA- and GWB-specific, depending on the observed pulsars and the angular

distribution of background power.

In this chapter we develop and test the first anisotropic Bayesian search-pipeline for the char-

acterisation of a GWB using PTAs, employing the previously mentioned generalised spherical-

harmonic decomposition of the cross-correlation. We have developed a suite of new plugins

[395] for the popular pulsar-timing analysis package TEMPO2 [195–197], which can be used
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to inject GWBs with any user-defined anisotropy. For this first investigation we inject back-

grounds composed of typically 104 sources, with sources placed according to various tested

angular distributions. As such, we are investigating continuous anisotropy in the distribution of

source-positions, rather than anisotropy through finiteness of the background, which we defer

to future work.

This chapter is organised as follows. In Section 4.2 we perform some theoretical estimates

of the expected level of anisotropy in a background composed of a superposition of many GW-

signals, where the anisotropy either derives from varying source brightness or sparseness of the

source-population. In Section 4.3 we review the theory of time- and angular-correlations of

GWB-induced timing-residuals in pulsar signals, and outline a generalised formalism for mod-

elling correlations in anisotropic backgrounds. The standard Bayesian time-domain formalism

for stochastic GWB searches is reviewed in Sec. 4.4. A pipeline for producing simulated pulsar

datasets containing an anisotropic GWB signal is described in Sec. 4.5, followed by the results

of Bayesian parameter-estimation and evidence-evaluation on these simulated datasets in Sec.

4.6, with a summary in Sec. 4.7.

4.2 The expected level of anisotropy

We wish to motivate a Bayesian search-pipeline which is generalised to arbitrary levels of

anisotropy in the energy-density of the GW background. We take a realistic population of

SMBH binaries, generated by grafting baryonic physics onto the dark-matter haloes of a Mil-

lennium Simulation realisation, and extract those systems with observed GW frequencies which

fall within PTA observation-frequencies [238]. These are typically massive and close systems

(z < 2). A typical catalogue contains ∼ 2 × 104 sources, each with associated chirp masses,

M, observed GW-frequencies, f , and redshifts, z. Most importantly, the source positions are

distributed isotropically on the sky. Hence, with this many sources making up our background

we would expect any anisotropy to derive from varying source brightnesses. The radiated GW-

power of each binary in the source rest-frame is estimated using the quadrupole formula [102],

dE

dt
=

32

5
[πMf(1 + z)]10/3 . (4.1)

The radiated energy flux in the observer frame is then given by,

F =
dE

dt
× 1

4πDL(z)2
, (4.2)

where DL is the source luminosity distance. The energy-density in GWs, ρ, received from each

source is then simply given by F/c.
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(a) (b)

Figure 4.1: Skymaps of GW source-populations generated by evolving a population of SMBH binary

systems. There are ∼ 2× 104 systems in each catalogue, which are typically massive (107 − 1010M�)

and close (z < 2). The relative size and colour of points within each skymap is indicative of the GW

energy-flux from each system, where larger and redder denotes a bright source. The GW signal from the

first dataset in (a) is clearly dominated by one very bright source. In the second dataset (b) we have

several bright sources, however no outliers as in the first dataset.

We now perform a spherical-harmonic decomposition of the energy density from a GW-

population, for the purposes of evaluating the angular power-spectrum. Thus,

ρ(Ω̂) =
∞∑
l=0

l∑
m=−l

clmYlm(Ω̂). (4.3)

where Ylm(Ω̂) are spherical-harmonic functions evaluated at the source positions, Ω̂. We then

extract the anisotropy coefficients,

clm =

∫
S2

dΩ̂ ρ(Ω̂)Ylm(Ω̂). (4.4)

We define the observed angular power-spectrum as Cl =
∑

m |clm|2/(2l + 1). Since we are

dealing with a population of point sources, the energy-density distribution is just a sequence

of delta-functions at the source positions, such that the spherical-harmonic decomposition be-

comes

clm =
N∑
i=1

ρiYlm(Ω̂i), (4.5)

which is just a summation over the spherical-harmonic functions evaluated at the N source-

positions, and weighted by the GW energy-density of each source.

We analyse two catalogues, whose skymaps are shown in Fig. 4.1. The first dataset clearly

includes a source which swamps the signal, while the second dataset is dominated by several

bright sources. Figure 4.2a shows the angular power-spectrum of the first dataset, evaluated up

to l = 50. We see that the single brightest source swamps the power at all l, such that we are

almost trivially satisfying Unsöld’s Theorem by having [Cl/C0] = 1 at each l. If we remove
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Figure 4.2: We perform a spherical-harmonic decomposition of the distribution of the GW energy

density on the sky resulting from a population of inspiraling SMBH binary systems, and compute the

angular power spectrum, Cl. In (a) the influence of one very bright source in Fig. 4.1a clearly swamps

all other influences. Removing the brightest source causes the anisotropic power to drop to less than 0.1

relative to the monopole (isotropic). Even this level of anisotropy is most likely due to the

second-brightest sources, since if we assume equal brightness sources the l 6= 0 power drops to ∼ 10−5.

In (b) we analyse Fig. 4.1b. The full dataset is predominantly isotropic, however if we simulate source

sparseness or intrinsic anisotropy by analysing sub-populations, then the level of anisotropy can be

quite high.
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the brightest source, then we get a power-spectrum in which the power is predominantly in the

monopole (isotropic), with typically less than 10% of the isotropic power in the other l values.

This small level of power in other l values most likely derives from the few next-brightest

sources, since if we fix all source brightness to the same value we obtain a power fraction of

∼ 10−5 in l 6= 0 values, which is what we expect when analysing a large population of equal-

brightness sources which have been isotropically distributed on the sky.

The second dataset has several very bright sources, but no outliers like in the first dataset.

When analysed, most of the power lies in the monopole, with typically less than 10% of the

isotropic power in modes with l 6= 0. However, if we simulate source sparseness, or some form

of intrinsic anisotropy through source-clustering, then the potential level of anisotropy is much

higher. In Figure 4.2b the dataset has been shuffled and split into sub-populations. We compute

the angular power-spectrum of each sub-population, and display the 95% upper limit of the

power in each l derived from the ensemble of sub-populations. With a very sparse population

the power in the modes with l 6= 0 could conceivably be . 80% of the isotropic power. This

anisotropic power fraction tends to the value for the full dataset as we include more sources in

the sub-populations.

Thus, if we have several very bright sources dominating our background, or some form of in-

trinsic anisotropy through source-clustering, then the level of anisotropy in the sky-distribution

of GW energy-density could conceivably be high. In the following, we simulate anisotropic

backgrounds through a continuous anisotropy in GW source-positions, and test the robustness

of a Bayesian anisotropic search-pipeline.

4.3 Correlations induced by a GWB

In this section we provide a brief overview of the correlations found in pulsar timing-residuals

which are induced by a stochastic GWB. We reiterate some of the formalism of Ref. [393] for

ease of reference.

4.3.1 Cross-correlating the timing-residuals

As discussed in Sec. 1.3.3, the perturbation to the space-time metric along the Earth-pulsar line-

of-sight induced by the passage of a GW causes a change in the perceived rotational-frequency

of the pulsar [209–212]. The fractional frequency-shift of a signal from a pulsar in the direction

of unit vector p̂, induced by the passage of a single GW propagating in the direction of Ω̂ is

[213, 214],

z(t, Ω̂) =
1

2

p̂ap̂b

1 + Ω̂ · p̂∆hab(t, Ω̂), (4.6)
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where ∆hab ≡ hab(te, Ω̂) − hab(tp, Ω̂), is the difference in the metric perturbation at the SSB,

hab(te, Ω̂), and at the pulsar, hab(tp, Ω̂).

This frequency-shift is integrated over time to give the induced timing residuals, which

describe the perturbation to the TOA of pulses from a given pulsar,

r(t) ≡
∫ t

0

z(t′)dt′. (4.7)

In the TT-gauge, the GW-tensor can be expressed as in Eq. (2.4), such that a plane-wave

expansion of the polarisation amplitudes leads to the metric perturbation at a position ~x having

the form,

hab(t, ~x) ≡
∑

A=+,×

∫ ∞
−∞

df

∫
S2

dΩ̂ hA(f, Ω̂)e2πif(t−Ω̂·~x)eAab(Ω̂), (4.8)

where e+,×
ab (Ω̂) are the polarisation basis-tensors, defined in terms of orthonormal basis vectors

around Ω̂,

e+
ab(Ω̂) = m̂am̂b − n̂an̂b, e×ab(Ω̂) = m̂an̂b + n̂am̂b, (4.9)

where m̂ = (Ω̂× q̂)/|Ω̂× q̂|, n̂ = (Ω̂× m̂), and q is a polarisation axis, which, because we have

a background composed of independent sources, we are free to fix as [0, 0, 1]. If the direction

of GW-propagation is Ω̂ = [sin θ cosφ, sin θ sinφ, cos θ], the polarisation basis vectors are,

m̂ = [sinφ,− cosφ, 0], n̂ = [cos θ cosφ, cos θ sinφ,− sin θ]. (4.10)

We choose a co-ordinate system centred at the SSB, with the pulsar some distance L away

(such that tp = te − L = t − L, x̂e = 0, and x̂p = Lp̂). Integrating the ∆hab(t, Ω̂) term in Eq.

(4.6) over all positions of sources constituting the stochastic GWB gives,

∆hab(t) =
∑

A=+,×

∫ ∞
−∞

df

∫
S2

dΩ̂ eAab(Ω̂)hA(f, Ω̂)e2πift ×
[
1− e−2πifL(1+Ω̂·p̂)

]
. (4.11)

where hA(f, Ω̂) are complex random fields (h∗A(f, Ω̂) = hA(−f, Ω̂)) whose moments define the

statistical properties of the background.

The redshift of a signal induced by a stochastic GWB can now be written as,

z(t) =
∑

A=+,×

∫ ∞
−∞

df

∫
S2

dΩ̂ FA(Ω̂)hA(f, Ω̂)e2πift ×
[
1− e−2πifL(1+Ω̂·p̂)

]
, (4.12)

where the “antenna pattern” for each polarisation in the PTA formalism is,

FA(Ω̂) ≡ 1

2

p̂ap̂b

1 + Ω̂ · p̂e
A
ab(Ω̂), (4.13)

corresponding to,

F+(Ω̂) =
1

2

(m̂ · p̂)2 − (n̂ · p̂)2

1 + Ω̂ · p̂ , F×(Ω̂) =
(m̂ · p̂)(n̂ · p̂)

1 + Ω̂ · p̂ . (4.14)
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Now, explicitly evaluating Eq. (4.7) we find,

r(t) =
i

2π

∑
A=+,×

∫ ∞
−∞

df

∫
S2

dΩ̂ FA(Ω̂)
hA(f, Ω̂)

f
×
[
1− e−2πifL(1+Ω̂·p̂)

] [
1− e2πift

]
. (4.15)

We now compute the correlation between the timing-residual at time t in pulsar a with

timing-residual at time (t+ τ) in pulsar b (removing the unobservable constant offset in r(t))1,

〈r∗a(t)rb(t+ τ)〉 =

1

4π2

[∑
A

∑
A′

∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫
S2

dΩ̂

∫
S2

dΩ̂′ FA
a (Ω̂)FA′

b (Ω̂′)
〈h∗A(f, Ω̂)hA′(f

′, Ω̂′)〉
ff ′

×
(

1− e2πifLa(1+Ω̂·p̂a)
)(

1− e−2πif ′Lb(1+Ω̂′·p̂b)
)
e2πi(f ′t+f ′τ−ft)

]
. (4.16)

For a stationary, unpolarised, Gaussian stochastic background, the expectation value of the

Fourier amplitudes, hA(f, Ω̂), is given by [396, 397],

〈h∗A(f, Ω̂)hA′(f
′, Ω̂′)〉 = δAA′δ(f − f ′)δ2(Ω̂, Ω̂′)P(f, Ω̂) (4.17)

where P(f, Ω̂) describes the spectral and angular properties of the GWB. In this analysis we

only consider backgrounds whose angular properties are frequency-independent, thusP(f, Ω̂) =

H(f)P (Ω̂).

So,

〈r∗a(t)rb(t+ τ)〉 =
1

2π2

[∑
A

∫ ∞
0

df

∫
S2

dΩ̂ P (Ω̂)FA
a (Ω̂)FA

b (Ω̂)
H(f)

f 2

×
(

1− e2πifLa(1+Ω̂·p̂a)
)(

1− e−2πifLb(1+Ω̂·p̂b)
)
e2πifτ

]
=

1

2Nπ2

[∫ ∞
0

df Γab(f)
H(f)

f 2
e2πifτ

]
, (4.18)

where,

Γab(f) ≡ N
∫
S2

dΩ̂ P (Ω̂)κab(f, Ω̂)

[∑
A

FA
a (Ω̂)FA

b (Ω̂)

]
,

κab(f, Ω̂) ≡
[
1− e2πifLa(1+Ω̂·p̂a)

] [
1− e−2πifLb(1+Ω̂·p̂b)

]
. (4.19)

In this case Γab(f) takes on the role of the “overlap reduction function” (ORF) due to sepa-

rated and non-aligned detectors, which is often seen in the LIGO/LISA literature. As discussed

in Ref. [393], in the large fL limit applicable to PTAs, the κab(f, Ω̂) term can be well approx-

imated by (1 + δab), where δab is the Kronecker delta. Therefore Γab(f) is in fact frequency

independent.
1The pulsar labels a and b should not be confused with the spatial indices of the metric-perturbation in hab.
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The function H(f) can be related to the fractional energy-density in GWs through,

ΩGW(f) ≡ 1

ρc

dρGW

d ln f
=
f

ρc

d

df

[
1

32π
〈ḣabḣab〉

]
. (4.20)

Plugging the plane-wave expansion into this definition, and using the expectation value of

the Fourier amplitudes, gives,

ΩGW(f) =
32π3

3H2
0

f 3H(f), (4.21)

where we see by comparison with Eq. (1.22) that H(f) = h2
c(f)/(16πf).

Finally,

Cab(τ) ≡ Re {〈r∗a(t)rb(t+ τ)〉} = Γab

[∫ ∞
0

df
hc(f)2

32Nπ3f 3
cos(2πfτ)

]
. (4.22)

4.3.2 Angular-correlations induced by a GWB

We now shift attention to the cross-correlation Γab between pulsars a and b. If we have a

GWB composed of a superposition of individually unresolvable single-sources, then we can

express their angular distribution on the sky as a decomposition in spherical harmonics. For the

remainder of this analysis we decompose in terms of the real spherical harmonics, Ylm, which

are formed by the following linear combinations of their complex analogues, Y m
l ,

Ylm =


1√
2

[
Y m
l + (−1)mY −ml

]
m > 0,

Y 0
l m = 0,

1
i
√

2

[
Y −ml − (−1)mY m

l

]
m < 0,

(4.23)

such that the angular distribution of the GWB radiation is expressed as,

P (Ω̂) ≡
∞∑
l=0

l∑
m=−l

clmYlm(Ω̂), (4.24)

with normalisation
∫
S2 P (Ω̂)dΩ̂ = 4π. Examining the form of Γab in Eq. (4.19), we see that the

overlap reduction function can also be decomposed into a set of “correlation basis-functions”,

Γab =
∞∑
l=0

l∑
m=−l

clmΓ
(ab)
lm , (4.25)

where,

Γ
(ab)
lm ≡ N

∫
S2

dΩ̂ Ylm(Ω̂)κab(f, Ω̂)

[ ∑
A=+,×

FA
a (Ω̂)FA

b (Ω̂)

]
, (4.26)

are the generalised ORFs, or “correlation basis-functions”.
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Using the formalism of Ref. [391], we define a “cosmic-frame” and a “computational-

frame”. In the former, pulsars have their usual RA and DEC positions on the sky. The latter

frame places one pulsar along the z-axis of the coordinate system, and the other pulsar in the

(x − z) plane. This choice permits simple analytic expressions for the Γ
(ab)
lm to be determined,

but we must remember that each distinct pair of pulsars defines a unique computational-frame,

so we must rotate the computed values of Γ
(ab)
lm back into the common cosmic-frame.

We now quote the computational-frame correlation basis-functions from Ref. [393], which

have been converted to their real-form. Let the angular-separation between pulsars a and b be

ζ , with α = (1 + cos ζ) and β = (1 − cos ζ). The monopole (l = m = 0) correlation function

is then

Γ00 = N
√
π

2

[
1 +

cos ζ

3
+ 4(1− cos ζ) ln

(
sin

ζ

2

)]
κab. (4.27)

which is the Hellings and Downs solution, as expected. We choose the normalisation to beN =

3/8π such that an isotropic background with c00 = 2
√
π will have Γaa(f) = c00Γ

(aa)
00 (f) = 1.

In the following we refer to Γlm as Γl,m to easily distinguish negative m values. The dipole

correlation basis-functions have the following form,

Γ1,−1 = 0,

Γ1,0 = −N 1

2

√
π

3

[
α + 3β

(
α + 4 ln

(
sin

ζ

2

))]
κab,

Γ1,1 = N 1

2

√
π

3
sin ζ ln

[
1 + 3β

(
1 +

4

α
ln

(
sin

ζ

2

))]
κab. (4.28)

An alternative phrasing of the correlation induced by a dipole anisotropy in the GWB was

derived in Ref. [213], but as shown in Ref. [393] it is completely consistent with the formalism

above:

Γab,dip =Nπ(cos γa + cos γb)

(
cos ζ − 4

3
− 4 tan2

(
ζ

2

)
ln

(
sin

ζ

2

))
κab, (4.29)

where γa and γb are the angular separations between pulsars a, b and the direction of the dipole

moment of the GWB.

The quadrupole correlation basis-functions have the following form in the computational

frame,

Γ2,−2 =0 = Γ2,−1,

Γ2,0 = N 1

3

√
π

5

[
cos ζ +

15β

4

(
α(3 + cos ζ) + 8 ln

(
sin

ζ

2

))]
κab,

Γ2,1 = N 1

2

√
π

15
sin ζ

[
5 cos2 ζ + 15 cos ζ − 21− 60

β

α
ln

(
sin

ζ

2

)]
κab,

Γ2,2 =−N 1

4

√
5π

3

β

α

[
α(cos2 ζ + 4 cos ζ − 9)− 24β ln

(
sin

ζ

2

)]
κab. (4.30)
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The reason why the negative-m Γlm values are zero can be easily understood from the form of

the negative-m real spherical-harmonic functions. These are proportional to sin(|m|φ), which

is an odd function. Since the evaluation of Γlm involves integrating over φ between 0 and 2π,

then this will trivially yield zero.

We rotate these computational-frame functions back into the cosmic-frame by using the ro-

tational transformations of the real-form spherical harmonics. Finally, for a prescribed array

of pulsars with known positions, we can completely pre-compute the cosmic-frame correla-

tion basis-functions. These can be read-in to a search pipeline to be multiplied with model-

dependent anisotropy coefficients, clm. The clm values will be the search parameters in such a

pipeline.

4.4 Pulsar-timing Analysis

Repeated observation and study of a pulsar leads to a catalogue of the arrival-times of its pulses.

After the actual radio-telescope observations are performed, the data is processed into the form

of pulsar parameter files (“.par”) and timing files (“.tim”). The parameter file contains first

estimates of the pulsar timing-model parameters; these parameters describe deterministic con-

tributions to the arrival times. The vector of measured arrival times will be composed of a

deterministic and a stochastic contribution (from time-correlated stochastic signals which are

modelled by a random Gaussian process),

~tarr = ~tdet + δ~trgp. (4.31)

The stochastic process is characterised by its auto-correlation,

Cab(τij) = 〈δtrgp
(a,i)δt

rgp
(b,j)〉. (4.32)

where τij = 2π|ti − tj|. Using Eq. (4.22) we can write down the cross-correlation induced by a

GWB,

Cab(τij) = Γab

[∫ ∞
0

df
hc(f)2

12π2f 3
cos(2πfτij)

]
. (4.33)

An analytic expression for the auto-correlation of a time-series influenced by an underlying

power-law PSD was first derived in Ref. [398], and has the form,

Cab(τij) =
A2

12π2
Γab

(
1yr−1

fl

)γ−1
[

Γ(1− γ) sin
(πγ

2

)
(flτij)

γ−1 −
∞∑
n=0

(−1)n
(flτij)

2n

(2n)!(2n+ 1− γ)

]
,

(4.34)

where A and γ are defined in Sec. 1.3.3, and fl is a low-frequency cut-off, chosen such that

flτ � 1. A discussion of fl and a complete derivation of this expression is given for complete-

ness in Appendix 4.A.
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We now describe the stages of pulsar-timing analysis in terms of offline and online proce-

dures, depending on whether they are performed before or during the sampling of parameter-

space via likelihood evaluations.

4.4.1 Processing raw arrival-times (offline)

The “.par” and “.tim” files are fed to the TEMPO2 software package [195–197] which processes

the raw arrival-times. A vector of “pre-fit” timing-residuals are computed using the first guesses,

β0,i, of the “m” timing-model parameters from the “.par” files. This first guess is usually precise

enough to allow a linear approximation to be used in the TOA fitting procedure. The post-fit

timing residual are then given by

δ~t = δ~tprf +M~ξ, (4.35)

where δ~tprf are the pre-fit timing-residuals (length n), ~ξ is the vector of deviations from the

pre-fit parameters (length m) defined as ξa = βa− β0,a, and M is the (n×m) “design-matrix”,

describing how the residuals depend on the timing-model parameters. TEMPO2 does not take

into account the possible time-correlated stochastic signal in the TOAs, but performs a weighted

least-squares fit for the timing-model parameter values. Hence it is possible that some of the

time-correlated stochastic signal is removed by this fitting procedure, which is undesirable.

The TEMPO2 analysis provides output-residuals and the design matrix, M . The output-

residuals form the input data vector for further study.

4.4.2 The time-domain likelihood (online)

We now use the TEMPO2 output-residuals to search for the presence of any correlated stochastic

signal affecting the pulse arrival times. We assume that the part of the stochastic signal removed

by the fitting procedure is small, so that the TEMPO2 output-residuals are related linearly to the

stochastic contribution to the residuals [399]

δ~t = δ~trgp +M~ξ, (4.36)

where, in this case, δ~t refers to the output-residuals from TEMPO2. We note that the ~ξ appearing

in this equation is different from that appearing in Eq. (4.35).

The stochastic timing residuals, δ~trgp, arise from a time-correlated stochastic process with

covariance matrix C (see Eq. (4.32)). This covariance matrix may contain contributions from

the GWB, white-noise from TOA-errors, and possibly red-timing noise which is uncorrelated

between different pulsars. The likelihood of measuring post-fit residuals δ~t, given stochastic
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parameters ~φ, and marginalising with flat-priors over all timing-model parameters is [399],

L(δ~t|~φ) =
1√

(2π)n−mdet(GTC(~φ)G)
× exp

(
−1

2
δ~tTG

(
GTC(~φ)G

)−1

GT δ~t

)
, (4.37)

whereG is the matrix constructed from the final (n−m) columns of the matrix U in the SVD of

the design matrix, M = UΣV †. The matrix G can be pre-computed and stored in memory for

use in each likelihood calculation (hence the computation of G is offline). Equation (4.37), with

appropriate priors on the stochastic parameters, not only provides a robust, unbiased Bayesian

framework for the search for correlated signals in PTAs, but also incorporates a lossless data

compression through the G-matrix projection [400]. For completeness, a full derivation of the

origin of this G-matrix expression is given in Appendix 4.B.

In the case of multiple pulsars processed independently with TEMPO2, the total covariance

matrix, total G matrix and total residual vector are given by,

C =


C11 C12 . . .

C21 C22 . . .
...

... . . .

 , G =


G1

G2

. . .

 , δ~t =


δ~t1

δ~t2
...

 ,

where Cab is the covariance matrix between pulsars a and b, Ga are the individual pulsar timing-

model marginalisation-matrices, and δ~ta are the individual pulsar residual vectors. We can split

Cab into contributions from various stochastic sources. In this analysis we consider only the

stochastic influence due to a GWB (which has correlation Γab between pulsar a and b), TOA

error-bars (white and uncorrelated between different pulsars), and intrinsic pulsar red-noise

(uncorrelated between different pulsars). So, the covariance between the ith residual of pulsar

a and the jth residual of pulsar b is,

C(ai)(bj) = CGW
(ai)(bj) + CTOA

(ai)(bj) + CRN
(ai)(bj), (4.38)

where CGW
(ai)(bj) is given by Eq. (4.34); CTOA

(ai)(bj) = ∆t2(ai)δabδij , where ∆t(ai) is the error-bar of

the ith TOA in pulsar a; and CRN
(ai)(bj) has the same form as CGW

(ai)(bj), but with Γab replaced by

δab. These matrices are block-symmetric, diagonal, and block-diagonal, respectively.

4.5 Simulating an anisotropic background

To simulate anisotropy in a GWB we have developed a suite of new TEMPO2 plugins [395].

These permit a user to define not only the amplitude and spectral-index of the underlying char-

acteristic strain spectrum of the background, as in the GWbkgrd plugin, but also the angular

distribution of the sources comprising the background. We can also define the polarisation of the
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(a) (b)

Figure 4.3: Screenshots from the TEMPO2 plugins. The title of each plot is “Gravitational wave

sources and pulsar positions”, with a test-pulsar shown as a light-blue star and GW sources shown as

black points. Lines of declination and right-ascension are [0◦,±30◦,±60◦] and [4h, 8h, 12h, 16h, 20h],

respectively. In (a) the over- and under-density of sources in the different regions of the sky indicate the

user-specified dipole direction using the GWdipolebkgrd plugin. Likewise, the density of sources in

(b) follows the user-specified multipolar structure of GW-power using the GWanisobkgrd plugin.

sources comprising the background, which we have not limited to the Einsteinian polarisation

states.

To generate an anisotropic background we define a probability density function for the

placement of sources on the sky,

P(θ ∈ [Θ,Θ + dθ], φ ∈ [Φ,Φ + dφ]) = P (Θ,Φ)dθdφ, (4.39)

where we enforce P (Θ,Φ) ≥ 0.

The background structure is user-defined, and is set by entering a multipolar decomposition

of the sky-location PDF, as well as the usual dimensionless background-amplitude, A, and

strain-spectrum slope, α. We now give a brief description of the individual plugins.

GWdipolebkgrd - Generates a background with a dipolar angular distribution of the GW-

power. The user specifies the multipole coefficients, {c00, c1−1, c10, c11}, or the direction of the

dipole moment.

GWanisobkgrd - Generates a background with arbitrary angular distribution of the GW-

power. The user specifies the multipole coefficients, {clm}.
GWgeneralbkgrd - Generates an isotropic background composed of source-populations

with different GW-polarisations, i.e. TT (GR modes), ST (scalar transverse, or breathing, mode),

SL (scalar longitudinal) or VL (vector longitudinal) [401]. User specifies A and α for each po-

larisation.

GWgeneralanisobkgrd - Same as GWgeneralbkgrd, but with an arbitrary angular distri-

bution of sources for each polarisation, specified by a set of multipole coefficients, {cAlm}, for
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each polarisation state A.

Figure 4.3 shows screen-shots displaying the distribution of sources comprising several ex-

amples of user-specified backgrounds. These plugins were written by Jonathan Gair, and can be

downloaded from https://github.com/jonathangair/tempo2-anisotropy-plugins.

4.6 Results

We generated datasets similar to those used for Open Dataset 1 of the first IPTA Mock Data

Challenge [223], which contained 36 pulsars distributed across the sky and timed fortnightly

for 5 years. The injected signal was consistent with a GW background of inspiraling SMBH

binaries (i.e., γ = 13/3), and the pulsars were timed to 100 ns accuracy.

For a full dataset this amounts to 4680 timing-residuals. Even with highly-tuned libraries

and multi-threading, the required matrix operations are very costly. We employ a high-fidelity

data-compression technique developed by Ref. [400] for the purposes of throwing away un-

wanted high-frequency information and retaining as much information about the GWB as pos-

sible, which has a steep, red spectrum.

The data-compression is based on diagonalising the expected signal covariance-matrix, and

determining which basis vectors have the greatest contribution to the Fisher information. A set

of reduced basis vectors are then found which capture as much information about the signal-of-

interest as possible. In the lexicon of Ref. [400], we demand a minimum fidelity of 0.99. With

A = 5 × 10−14, σWN = 100 ns and 0.99 fidelity we can compress the number of residuals by

approximately a factor of 5. Matrix multiplications and inversions are O(n3) operations, such

that we achieve significant acceleration.

All evidence evaluation and parameter estimation was performed using nested sampling

with the MULTINEST package.

4.6.1 Dipole injections

A dipole anisotropy in a GW-source distribution is shown in Fig. 4.3a, where we see an over-

density of sources in a particular sky-location, as well as a paucity of sources in the op-

posite sky-direction. Figure 4.4 shows the angular-correlations of pulsar-pairings with non-

zero angular-separation, Γab, for all pulsars in our array. We also show the isotropic angular-

correlation, which is the familiar Hellings and Downs curve [216] and only depends on the

angular-separation of the pulsars. However if we have a dipole anisotropy in the angular dis-

tribution of GW-sources on the sky, then the resultant pulsar angular-correlations depend not

only on the angular-separation between the pulsars, but also on the absolute positions of the
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Figure 4.4: Angular-correlations for all pulsar-pairings with non-zero angular-separation in the IPTA

Mock Data Challenge array of 36 pulsars. Black points indicate the angular-correlation induced by an

isotropic distribution of GW-sources, which follows the expected Hellings and Downs curve. Red

points show the angular-correlations when the angular-distribution of sources is proportional to

(1 + cos θ), which corresponds to a dipole in the +z-direction.

pulsars relative to the GW-source anisotropy. Hence pulsar-pairs which may have equal angu-

lar separations will not necessarily have equal angular-correlations if there is anisotropy in the

GW-source population. Fig. 4.4 shows the angular-correlation when the angular distribution of

sources has the maximum dipole amplitude that satisfies Eq. (4.39) and the dipole-direction is

along the +z-axis. Such a maximal dipole distribution is proportional to (1 + cos θ). We see

that a dipole anisotropy induces a small deviation away from the isotropic Hellings and Downs

curve, which encodes information about the angular structure of the GWB.

We generated datasets with dipole anisotropies in various different directions on the sky, and

used the formalism of Sec. 4.3.2 to constrain the properties of the underlying GWB spectrum,

as well as the direction of the dipole. For the latter, the alternative phrasing of dipole anisotropy

of Ref. [213] is useful, since the dipole-correlation is simply expressed as a function of the

pulsar-pulsar separations and the pulsar-dipole separations.

The results of these injections are shown in Fig. 4.5, where we show the recovered posterior

probability distributions for the search-parameters. These posterior probability distributions

show the ability of a Bayesian analysis to constrain the direction of a dipole in the GW-source

population. As we can see there is negligible correlation between γ and the dipole-direction,

which indicates that we can fix γ to its injected value without biasing the anisotropy constraints.

Fixing γ accelerates the analysis since we can pre-compute various matrices and avoid some ex-

pensive matrix multiplications. We repeated the analysis of Fig. 4.5 with γ fixed to its reference
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Figure 4.5: Recovered posterior probability distributions for a Bayesian parameter-estimation of four

different dipolar GWBs in simulated PTA data. The strain-spectrum is a power-law in all cases, with

(A = 5× 10−14, γ = 13/3), and the injected dipole-direction is (a) (RA= 0◦,DEC= 90◦), (b)

(RA= 90◦,DEC= 45◦), (c) (RA= 270◦,DEC= 45◦), (d) (RA= 180◦,DEC= −45◦).
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value, and saw that the strain-amplitude and dipole-direction were recovered without bias.2

There is also the question of the significance of accounting for the anisotropy. In other

words, does the anisotropic model provide a significantly better fit to the data than standard

isotropic search would? We answer this question by inspecting the difference in ln(Z) between

models which account for anisotropy, and for models which assume isotropy. The results are

shown in Table 4.1, where we see that in all cases the true model is favoured, despite it having

two extra dimensions compared to the isotropic model. However, we emphasise that the large

Bayes factors are partially the result of our injections being in the very strong-signal regime.

To test the robustness of the generalised anisotropy formalism, we repeated the analysis of

a maximal-dipole dataset in the direction (RA= 0◦, DEC= 90◦), but attempt a reconstruction

of all the c1,m coefficients. We sample the anisotropy coefficients uniformly over the range

∈ [−5, 5]. Since this is a strong anisotropic signal, and we expect to be likelihood-dominated,

we adopt this uniform sampling range as a prior over the anisotropy coefficients and defer

discussion of a physically-motivated prior (required for the analysis of real data) until Sec.

4.6.3.

We fix c0,0 to 2
√
π, and absorb the variation of the isotropic-power into the overall ampli-

tude A. So, in this sense, we are searching for deviations from isotropy, rather than highly

anisotropic backgrounds. Furthermore, by freely searching over c1,m we are removing our as-

sumption of the anisotropy being maximal dipole. The results are shown in Fig. 4.6, where

we see that the recovered dipole-coefficients are completely consistent with the injected values

of {c1,−1 = 0, c1,0 = 2
√
π/3, c1,1 = 0}, which correspond to a maximal-dipole in the +z-

direction. The results of an analysis where we relax the assumption of dipole anisotropy, and

perform a search over all anisotropy coefficients up to and including quadrupole, are shown

in Fig. 4.7. The posterior is consistent with the injected anisotropy, however the increased di-

mensionality degrades the precision of parameter recovery such that we could conceivably be

consistent with a large range of anisotropic distributions.

We now investigate the degree to which an isotropic search is sub-optimal, and deleteri-

ous to detection prospects, by generating many dipole-anisotropy datasets with different GWB

amplitudes. The white-noise level is fixed at 100 ns, such that we are effectively varying the

signal-to-noise ratio (SNR) in the datasets. We form a simple proxy for the SNR in the form of

the single-pulsar ratio of the post-fit timing-residual rms induced by the GWB to the rms of the

noise,

SNR ∼ σGW

σWN

, (4.40)

2The only inconsistency in the reconstructed direction was found when the dipole-direction was (RA=0.0,

DEC=90.0). This arose because we sample uniformly in cos θ so there is little prior-weight at high declinations.
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Table 4.1: Bayes factors for a comparison between an anisotropic and isotropic model when analysing

datasets which have dipole-anisotropies injected in various different directions. In each case we favour

the model which accounts for this anisotropy rather than the isotropic model. This is true even when the

direction of the dipole is searched over, which adds an extra two dimensions to the parameter space.

The Bayes factor varies little when the spectral-index γ ≡ 3− 2α is fixed to 13/3, which is the

expected value for a background composed of inspiraling SMBH binaries.

Dipole direction / degrees ln(B) = ln(Ztrue)− ln(Ziso)

γ = 13/3 γ varied

RA=0.0 DEC=90.0 7.0 7.2
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Figure 4.6: A search over strain-amplitude and dipole anisotropy coefficients. The injected anisotropy

was maximal-dipole with c0,0 = 2
√
π and c1,0 = 2

√
π/3, corresponding to a dipole-direction of

RA= 0.0◦, DEC= 90◦.
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Figure 4.7: A search over all anisotropy coefficients, clm, up to, and including, quadrupole order. The

injected anisotropy was maximal-dipole with c0,0 = 2
√
π and c1,0 = 2

√
π/3, corresponding to a

dipole-direction of RA= 0.0◦, DEC= 90◦.
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Figure 4.8: Evidence for anisotropy versus isotropy as a function of GWB strain-amplitude in the range

5× 10−16 − 5× 10−14, and with γ fixed to 13/3. We generate 10 datasets at each SNR with

dipole-anisotropy such that the angular-distribution of GW-sources is ∝ (1 + cos θ). We compute the

“injected-anisotropy vs. isotropy” Bayes factor [ln(B) = ∆ ln(Z)]. The shaded area is the region of

model ambiguity, however even at SNR = 0.1 the GWB is loud enough to be detected with substantial

evidence (see text for details). The blue, dotted point is a calibration-point for more general searches

over {A, c1,m} at SNR = 10, but offset on the x-axis for ease of viewing (see text for details).

where,

σGW ∼ 1.37×
(

A

10−15

)(
T

yr

)5/3

ns, if γ = 13/3,

σWN = 100 ns, (4.41)

and σGW is determined from an evaluation of the post-fit covariance function for power-law

spectral densities. An estimate of this is obtained analytically by projecting the pre-fit covari-

ance function into a new basis, which replicates the effect of fitting for quadratics. Given that

fitting for the pulsar’s quadratic-spindown is the dominant influence on the covariance matrix,

Eq. (4.41) provides a good estimate of σGW for given A (and vice versa) [399, 400, 402].

Varying the amplitude of the GWB between 5 × 10−16 − 5 × 10−14 gives a proxy SNR

span of 0.1− 10. At each SNR in this range we generated 10 dataset realisations and evaluated

the difference in ln(Z) values for an anisotropic and an isotropic model. This was performed

with an optimal correlation filter, with the GWB correlations fixed to those corresponding to

the injected level of anisotropy, which in this case was the maximal-dipole in the +z-direction

described earlier. These results are shown in Fig. 4.8. We note that this figure does not show
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the true odds ratio for the anisotropic versus isotropic model, since the degrees of freedom

corresponding to the dipole direction have not been included in the parameter space for the

anisotropic model. Instead, this figure indicates a best case scenario for when the evidence

would start to favour the anisotropic model. Also, one should note that because the injected

noise is white-uncorrelated, and we have compressed to preserve information about a steep

red-noise process, even with a proxy SNR of 0.1 the GWB is loud enough to be detected with

substantial evidence. At this SNR the largest noise-versus-(isotropic-)GWB log-Bayes factor

is 0.03, with a mean and median of −6.30 and −2.62, respectively. So, we can detect a GWB

with angular-correlation of approximate Hellings and Downs form, but the background is not

yet loud enough for anisotropy-induced deviations to be visible.

In these idealised circumstances the anisotropic model is marginally favoured for SNRs

above∼ 1 and decisively favoured for SNRs above∼ 5. Including the dipole direction parame-

ters (or searching over c1,m) in the parameter space reduces the anisotropic evidence by several

and so in practice SNRs of ∼ 5–10 would be required before the presence of anisotropy would

become clearly visible to an analysis of this type (see also Fig. 4.10 below). We provide a cali-

bration point at SNR = 10, where we search over {A, c1,m} for the 10 dataset realisations at this

SNR. We see that the increased dimensionality of the search penalises the recovered Bayes fac-

tors, however the average log-Bayes factor implies that the presence of anisotropy may become

clearly visible at proxy SNRs greater than 10.

The datasets described so far have contained only white-noise. Now we generate datasets

with an additional red-noise component uncorrelated between different pulsars. The red-noise

shares a common spectrum, but with a different realisation for each pulsar. The spectral-index

was taken to match that of the IPTA Open3 dataset (γred = 1.7) which is similar to the expected

red-noise spectrum arising from pulse phase-noise [202]. As before, we include an uncorrelated

white-noise component of 100 ns in each pulsar. Following Eq. (4.41), we parametrise the SNR

as,

SNR ∼ σGW

σRED

∼ 0.4×
(

A

Ared

)
×
(
T

yr

)79/60

, (4.42)

where σRED follows from the more general form of the post-fit rms-residual induced by a

stochastic process with power-law spectrum of arbitrary slope [399].

The analysis is more expensive than a GWB-only analysis, since we must also characterise

and constrain the red-noise properties. Furthermore, the red-noise has a shallower spectrum,

such that our residuals contain more high-frequency noise, and we can not compress to the

same degree as in the case of a GWB-only dataset. Figure 4.9 shows the results of a proxy

SNR ∼ 4 analysis. We see that at this SNR we can characterise the GWB, red-noise and

anisotropy properties. In fact, for this dataset realisation, the value of ln(B) for anisotropy

versus isotropy was ∼ 4.4, which is borderline decisive evidence for anisotropy. Since the
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Figure 4.9: An example of anisotropy reconstruction when uncorrelated red-noise is present in the

dataset. The anisotropy is maximal-dipole, with direction (RA= 90◦, DEC= 45◦). The injected GWB

parameters are (A = 5× 10−14,γ = 13/3). The red-noise is uncorrelated between different pulsars, but

shares a common spectrum, with (Ared = 4.2× 10−14,γred = 1.7), such that we have an effective SNR

of ∼ 4.2. In this dataset, the ln(B) for anisotropic versus isotropic was ∼ 4.4, which is borderline

decisive evidence for anisotropy.
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Figure 4.10: As Fig. 4.8, but now for datasets containing red-noise. We generate 5 datasets per SNR

with dipole-anisotropy, varying the SNR by fixing the GW amplitude, A, at 5× 10−14 and varying Ared

between ∼ 1.8× 10−12 − 1.8× 10−14 to give a proxy SNR span of 0.1− 10. In the analysis the

spectral slopes γ and γred are fixed to 13/3 and 1.7, respectively. We evaluate the evidence for models

which assume a maximal-dipole anisotropy (direction searched over) and isotropy.

analysis is quite computationally expensive, and we wish to perform a more systematic study

over many background realisations, we repeat this analysis but fix γ and γred to the injected

values of 13/3 and 1.7, respectively. Fixing these spectral indices accelerates the analysis, does

not bias the parameter reconstruction, and only raises the value of ln(B) = ∆ ln(Z) by ∼ 0.8.

We perform a similar study to Fig. 4.8, generating 5 datasets per SNR, each with common

GWB properties (A = 5 × 10−14,γ = 13/3), γred = 1.7, but varying the red-noise amplitude,

Ared to simulate the different SNRs. The injected anisotropy is maximal-dipole in the (RA=

90◦, DEC= 45◦) direction in all cases. We search over the parameters {A,Ared,RA,DEC}.
The results are shown in Fig. 4.10, where we see that the presence of uncorrelated red-noise

in the datasets can be accounted for, but its presence means that the SNR required to identify

the presence of anisotropy in the data appears somewhat higher. However, in this case we

include a search over the dipole direction in the evaluation of the evidence, so these results are

much closer to what might be achievable in practice (although fixing the slope of the red-noise

spectrum in particular might not be a valid assumption). Fig. 4.10 suggests that even in the

presence of pulsar red-noise the evidence for anisotropy will become apparent for proxy SNRs

around 3 and will become decisive for proxy SNRs of ∼ 6.

For the remainder of this analysis we ignore red-noise and inject only uncorrelated white-
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(a) (b)

(c) (d)

Figure 4.11: Skymap screenshots from the GWanisobkgrd TEMPO2-plugin showing the quadrupolar

angular-distribution of GW sources constituting various GWB realisations. The title of each plot is

“Gravitational wave sources and pulsar positions”, with pulsars shown as light-blue stars and GW

sources shown as black points. Lines of declination and right-ascension are [0◦,±30◦,±60◦] and

[4h, 8h, 12h, 16h, 20h], respectively. The anisotropy-coefficients for each dataset are (a)

{c0,0 = 2
√
π; c2,0 = 4

√
π/5} (b) {c0,0 = 2

√
π; c2,−2 = −0.9c0,0; c2,0 = −0.3c0,0} (c)

{c0,0 = 2
√
π; c2,−1 = −0.8c0,0; c2,0 = 0.5c0,0; c2,2 = −0.3c0,0} (d) {c0,0 = 2

√
π; c2,−2 =

0.56c0,0; c2,−1 = 0.20c0,0; c2,0 = −0.32c0,0; c2,1 = 0.27c0,0; c2,2 = −0.40c0,0}.

noise in the form of TOA error-bars, but expect that the effect of red-noise will be to slightly

increase the SNR (by a few) required for a confident detection of anisotropy.

4.6.2 Quadrupole injections

A GWB with a maximal quadrupole-anisotropy (corresponding to an angular distribution ∝
3 cos2 θ) is shown in Fig. 4.11a. Figure 4.12 shows the distinct angular-correlations for all

pulsars in the array when there is a quadrupole anisotropy in the GW-source population.

We perform a similar analysis to Fig. 4.8, varying the GWB amplitude between 5×10−16−
5× 10−14, thus giving an effective SNR span of 0.1− 10. At each SNR we generate 10 dataset

realisations of a quadrupole GWB-anisotropy in white uncorrelated noise. The only parameter

we search for in the analysis of each dataset is the amplitude, A, of the background. Hence,

as before, this study represents a best case assessment of when we will be able to identify the
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Figure 4.12: Angular-correlations for all pulsar-pairings with non-zero angular-separation in the IPTA

Mock Data Challenge array of 36 pulsars. Black points indicate the angular-correlation for an isotropic

GW background, which follows the expected Hellings and Downs curve. Red points show the

correlations when the angular-distribution of sources follows ∝ 1 + (3 cos2 θ − 1), which corresponds

to a maximal quadrupole anisotropy.

presence of a quadrupole anisotropy (of the form P (θ, φ) = 3 cos2 θ) in the data. In reality,

we will not know the direction of the quadrupole anisotropy in advance, which introduces extra

dimensionality into the parameter space that must be searched over. This will tend to reduce

the log-evidence value and so larger SNRs will be required to identify quadrupole anisotropies

in practice. As in the dipole case, one should note that because the injected noise is white-

uncorrelated, and we have compressed to preserve information about a steep red-noise process,

even at SNR= 0.1 the GWB is loud enough to be detected with substantial evidence. At this

SNR the largest noise-versus-(isotropic-)GWB log-Bayes factor is 0.3, with a mean and median

of−9.3 and−5.8, respectively. As discussed previously, at SNR = 0.1 the GWB is loud enough

such that we can detect a background which has approximate Hellings and Downs form, but not

yet loud enough to allow inference of anisotropy-induced deviations.

The results of this study can be seen in Fig. 4.13, and are quite similar to the dipole case –

the presence of anisotropy becomes identifiable at a proxy SNR of about 1, while the evidence

is decisive for a proxy SNR of ∼ 5. We provide a calibration point at SNR = 10, where we

search over {A, c2,m} for the 10 dataset realisations at this SNR. As expected, we see that the in-

creased dimensionality of the search penalises the recovered Bayes factors, however the average

log-Bayes factor implies that the presence of anisotropy may become visible with substantial

evidence at proxy SNR = 10, but we will require SNR > 10 for it to be clearly visible.

As in the dipole case, we test the robustness of the generalised anisotropic formalism by

142 Institute of Astronomy



Stephen Taylor 4.6 Results

-4

-2

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

∆l
n(

Z
)

SNR = ( σGWB / σWN )

10 quadrupole realisations per SNR
c2,m search

Figure 4.13: As Fig. 4.8, but now for datasets containing a maximal quadrupole-anisotropy such that

the angular-distribution of GW-sources is ∝ 1 + (3 cos2 θ − 1). We compute the “injected-anisotropy

vs. isotropy” Bayes factor [ln(B) = ∆ ln(Z)]. The shaded area is the region of model ambiguity. The

blue, dotted point is a calibration for more general searches over {A, c2,m} at SNR = 10, but offset on

the x-axis for ease of viewing (see text for details).
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generating datasets with quadrupole anisotropies in a variety of configurations. The GW-source

distribution for each of the tested configurations is shown in Figure 4.11. As can be seen in

Fig. 4.14, the generalised anisotropic-search pipeline recovers anisotropy coefficients which are

consistent with the injected values. However the dimensionality is significantly larger than an

isotropic search, and even in these high SNR datasets the posterior probability distributions are

consistent with a wide range of possible anisotropies. Finally, we repeat the analysis of the

maximal-quadrupole dataset (with P (θ, φ) = 3 cos2 θ), but relax the assumption of quadrupole-

anisotropy in the analysis. The results of this analysis are shown in Figure 4.15, where we

have accurately recovered the nature of the injected anisotropy. However, as observed in the

case where we performed an arbitrary-anisotropy search on a pure-dipole dataset, the increased

dimensionality of the arbitrary-anisotropy search widens the recovered posterior distributions

to be consistent with a wide range of anisotropies.

4.6.3 Arbitrary anisotropy

Arbitrary anisotropy search, and a physical prior

We now test our search-pipeline on a dataset with power spread between monopole, dipole and

quadrupole components. The coefficients characterising the anisotropy are {c0,0 = 2
√
π; c1,−1 =

−0.4c0,0; c1,0 = 0.4c0,0; c2,0 = 0.20c0,0; c2,2 = −0.45c0,0}, with all other anisotropy coeffi-

cients set to zero. The sky-map for the distribution of GW-sources on the sky corresponding to

these anisotropy coefficients is shown in Fig. 4.16a.

Taking a wide flat prior on the anisotropy coefficients as before, the results of a search are

shown in Fig. 4.17. The injected anisotropy coefficients all lie within the 2σ contours of the

posterior distributions for the recovered coefficients. However the high search-dimensionality

degrades the precision with the coefficients can be recovered so that the posterior is consistent

with a wide range of anisotropic distributions.

We now address this with a more physically-motivated prior choice. Until now we have

assumed that all combinations of anisotropy-coefficients are a priori equally likely. However,

when generating these anisotropic-datasets we have had to take into account that some combi-

nations do not represent physical anisotropies, since they fail the condition in Eq. (4.39) that the

PDF for the distribution of GW-sources on the sky is positive at all sky-locations,

P (Ω̂) ∝ dN

dΩ̂
∝
∑
l,m

clmYlm(Ω̂) ≥ 0, ∀ Ω̂. (4.43)

Therefore, if we are to correctly perform parameter estimation on anisotropic datasets, this

condition is the only physically meaningful prior on the anisotropy-coefficients. We impose it

by setting the likelihood of any combination of cl,m which fails this condition to be very low, so
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Figure 4.14: The results of constraining the quadrupole-anisotropy coefficients, c2,m in datasets

containing quadrupole anisotropies with a variety of configurations. The GW-source distributions

corresponding to the injected anisotropies in each of these datasets are visualised in Figure 4.11. The

parameters of the injected anisotropies are (a) {c0,0 = 2
√
π; c2,0 = 4

√
π/5} (b)

{c0,0 = 2
√
π; c2,−2 = −0.9c0,0; c2,0 = −0.3c0,0} (c)

{c0,0 = 2
√
π; c2,−1 = −0.8c0,0; c2,0 = 0.5c0,0; c2,2 = −0.3c0,0} (d) {c0,0 = 2

√
π; c2,−2 =

0.56c0,0; c2,−1 = 0.20c0,0; c2,0 = −0.32c0,0; c2,1 = 0.27c0,0; c2,2 = −0.40c0,0}.
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Figure 4.15: A search over all anisotropy coefficients, clm, up to, and including, quadrupole order. The

injected anisotropy was maximal-quadrupole with c0,0 = 2
√
π and c2,0 = 4

√
π/5, and all other

dipole/quadrupole coefficients set to zero.
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as to prevent sampling in these regions. In practice this is achieved by pixelating the sky with

a 20 × 20 grid in [cos θ, φ], and testing the condition in each pixel.3 If the condition is not met

in every pixel, then the sample is rejected. The result of such an application of this prior on the

previously analysed arbitrary-anisotropy dataset is shown in Fig. 4.18. For the most part, the

recovered posterior distributions are consistent with the injected anisotropy. The exception is

for the c2,2 coefficient, where the injected amplitude lies in the tails of the recovered posterior

distribution. The reason for this apparent inconsistency is actually quite straightforward. If we

attempt to generate a dataset with all anisotropy coefficients as before, except for c2,2, which we

lower from−0.45c0,0 to−0.47c0,0, then the GWanisobkgrd plugin fails, since this PDF for the

placement of GW-sources on the sky is negative in some sky-locations. Thus the reason that the

injected c2,2 amplitude is in the tails of the recovered posterior distribution is because this value

is a priori disfavoured, and very close to the boundary of non-physicality.

Despite the apparent inconsistency of the c2,2 coefficient, we are still able to accurately

recover the distribution of GW-sources on the sky. In Figure 4.16 we compare the sky-maps

of GW-background realisations for: (a) the injected anisotropy; (b) maximum a posteriori

anisotropy of an analysis with the physical-prior imposed on the cl,m coefficients; (c) the maximum-

likelihood anisotropy where the relative power in l = 0 has been boosted to ensure physicality

over the entire sky. As can be seen, the anisotropic-search pipeline has correctly recovered

the features of this background. Even the maximum-likelihood anisotropic configuration, de-

spite being unphysical, can have the relative power of its isotropic component boosted to ensure

physicality over the entire sky, producing a GW source-distribution which is adequately close

to the injected distribution.

Anisotropy misfits

We now test the ability of the anisotropic-search pipeline to recover the nature of the GW-

background anisotropy. Taking isolated realisations of isotropic, dipole, quadrupole and ar-

bitrary anisotropy datasets with a proxy SNR = 10, we computed the evidence for isotropic,

dipole, quadrupole and arbitrary models. We also computed the evidence for the true injected

anisotropy, searching only over the amplitude of the background. The results are shown in Table

4.2, where all numbers indicate log-Bayes factors relative to an isotropic model.

For these evidence calculations we adopt flat priors on the anisotropy coefficients. Although

in practice we should be imposing the physicality conditions, we have found that the physical-

prior studied in the previous sub-section is actually highly informative, and can truncate regions

of high-likelihood. The anisotropic configurations we have studied are close to maximal, which

3Each pixel corresponds to ∼ 41 deg2, which, upon using the relationship l ∼ 180/
√

∆Ω/deg2 [394], means

that this pixelation-scheme is fine enough to discriminate the physicality of proposed angular PDFs up to l ∼ 28.
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(a)

(b)

(c)

Figure 4.16: Skymap screenshots from the GWanisobkgrd TEMPO2-plugin showing the

angular-distribution of GW sources constituting various GWB realisations. The title of each plot is

“Gravitational wave sources and pulsar positions”, with pulsars shown as light-blue stars and GW

sources shown as black points. Lines of declination and right-ascension are [0◦,±30◦,±60◦] and

[4h, 8h, 12h, 16h, 20h], respectively. In (a) we show the skymap for the distribution of GW sources

implied by a GWB with anisotropy-coefficients {c0,0 = 2
√
π; c1,−1 = −0.4c0,0; c1,0 = 0.4c0,0;

c2,0 = 0.20c0,0; c2,2 = −0.45c0,0}. In (b) we plot the skymap implied by the maximum a posteriori

anisotropic configuration from an analysis with our Bayesian search-pipeline, where we have imposed a

hard physical-prior (discussed in text). Finally, (c) shows the skymap implied by the maximum

likelihood anisotropic configuration, where we see that, despite not having the extra constraining

influence of the physical-prior, we are still able to adequately recover the distribution of GW sources.
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Figure 4.17: A full anisotropic-search on an arbitrary-anisotropy dataset. The details of the dataset are

{c0,0 = 2
√
π; c1,−1 = −0.4c0,0; c1,0 = 0.4c0,0; c2,0 = 0.20c0,0; c2,2 = −0.45c0,0}. The prior is wide

and flat, where cl,m ∈ [−5, 5], such that all anisotropy-coefficient combinations are a-priori equally

likely.

March 2014 149



Anisotropy In The GW Background Stephen Taylor

4.6 5.2

x 10
−14

−2 −1.5 −1 −0.5

0 1 2

−1 0 1

−0.5 0 0.5 1

−2 −1 0 1

−0.5 0.5 1.5

−1 0 1

−1.5 −1 −0.5 0
c

2,2

c 1,
−

1

4.6 5.2

x 10
−14

−2
−1.5

−1
−0.5

c 1,
0

4.6 5.2

x 10
−14

0

1

2

c 1,
1

4.6 5.2

x 10
−14

−1

0

1

c 2,
−

2

4.6 5.2

x 10
−14

−0.5
0

0.5
1

c 2,
−

1

4.6 5.2

x 10
−14

−2

−1

0

1

c 2,
0

4.6 5.2

x 10
−14

−0.5
0

0.5
1

1.5

c 2,
1

4.6 5.2

x 10
−14

−1

0

1

A

c 2,
2

4.6 5.2

x 10
−14

−1.5
−1

−0.5
0

−2 −1.5 −1 −0.5
0

1

2

−2 −1.5 −1 −0.5
−1

0

1

−2 −1.5 −1 −0.5

−0.5
0

0.5
1

−2 −1.5 −1 −0.5
−2

−1

0

1

−2 −1.5 −1 −0.5

−0.5
0

0.5
1

1.5

−2 −1.5 −1 −0.5
−1

0

1

c
1,−1

−2 −1.5 −1 −0.5

−1.5
−1

−0.5
0

0 1 2
−1

0

1

0 1 2

−0.5
0

0.5
1

0 1 2
−2

−1

0

1

0 1 2

−0.5
0

0.5
1

1.5

0 1 2
−1

0

1

c
1,0

0 1 2

−1.5
−1

−0.5
0

−1 0 1

−0.5
0

0.5
1

−1 0 1
−2

−1

0

1

−1 0 1

−0.5
0

0.5
1

1.5

−1 0 1
−1

0

1

c
1,1

−1 0 1

−1.5
−1

−0.5
0

−0.5 0 0.5 1
−2

−1

0

1

−0.5 0 0.5 1

−0.5
0

0.5
1

1.5

−0.5 0 0.5 1
−1

0

1

c
2,−2

−0.5 0 0.5 1

−1.5
−1

−0.5
0

−2 −1 0 1

−0.5
0

0.5
1

1.5

−2 −1 0 1
−1

0

1

c
2,−1

−2 −1 0 1

−1.5
−1

−0.5
0

−0.5 0.5 1.5
−1

0

1

c
2,0

−0.5 0.5 1.5

−1.5
−1

−0.5
0

c
2,1

−1 0 1

−1.5
−1

−0.5
0

Figure 4.18: Analysis of the same dataset as in Fig. 4.17, but employing a physically-meaningful prior

on possible anisotropic distributions, corresponding to only sampling in regions where∑
l,m clmYlm(Ω̂) ≥ 0, ∀ Ω̂.
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means the maximum-likelihood parameter regions will be close to non-physicality. Employ-

ing flat priors can therefore help improve the evidence for anisotropy since the high likelihood

region stretches beyond the boundary imposed by physicality. Thus, for these cases, the un-

physical evidence seems to be a better statistic to use to distinguish models than the physical

evidence. Further investigations will be required to determine if this is true more generally, in

particular for cases in which the anisotropy is weak. However, we expect that for the weak

levels of anisotropy expected in real datasets the physical-prior will be an excellent tool for

parameter-estimation and evidence evaluation.

Interpreting the unphysical distributions on the coefficients is more difficult, since they give

rise to negative probabilities for certain regions of the sky. However, increasing the relative

power of the isotropic l = 0 mode can always be used to make the distribution physical, and

provide source distributions which are adequately close to the injected distribution. The effect

of the unphysical anisotropic coefficients, clm, on our search is to allow the GWB-correlations

to deviate more from the Hellings and Downs curve, allowing some of the noise to be absorbed

into these coefficients. This seems to help for the limited number of cases we have considered

but further work is required to understand which prior works better in more general situations.

Referring to Table 4.2, we see that the isotropic model is highly favoured when describ-

ing the isotropic dataset. The true dipole anisotropy is substantially favoured over an isotropic

model when describing the dipole-dataset, and likewise the quadrupole anisotropy is substan-

tially favoured over an isotropic model when describing the quadrupole-dataset. Finally, in the

model-comparison of the arbitrary anisotropy dataset, any form of anisotropy is favoured over

the isotropic model. The evidence for a quadrupole-anisotropy is actually quite close to the

favoured model, which is the true arbitrary-anisotropy. We suspect the reason for this can be

understood in terms of how the different anisotropies affect the scatter of correlations around the

Hellings and Downs curve, particularly for angular-separations where there are many distinct

pulsar-pairings. This is shown in Fig. 4.19, where we see that in the region where there are many

distinct pulsar-pairings the quadrupole-anisotropy induces a larger deviation from the Hellings

and Downs curve than the dipole-anisotropy. Thus, in this case, a quadrupole-only model is

almost as good at describing the arbitrary-anisotropy dataset as the true arbitrary-anisotropy

model.

These anisotropy “misfit” examinations confirm that the behaviour of the recovered Bayesian

evidence in this formalism conforms to our expectations, and that we would be able to dis-

criminate not only between isotropic and anisotropic backgrounds, but also between different

anisotropic models.
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Figure 4.19: We show the angular correlations for pulsar-pairings with non-zero angular-separation in

an arbitrary-anisotropy dataset, for the cases where we ignore the contribution from the dipole

anisotropy and when we ignore the quadrupole anisotropy. In the region of pulsar angular-separation

where there are many distinct pulsar-pairings, the quadrupole-only anisotropy dominates the deviation

of correlations from the isotropic Hellings and Downs curve. This may explain why a quadrupole-only

model is almost as good as an arbitrary-anisotropy model when describing the arbitrary-anisotropy

dataset. Note that zero angular-separation pairings are not shown on the angular-correlation sub-plot,

but are included in the pulsar-pairing histogram.
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4.7 Summary

We have systematically investigated a robust Bayesian search-pipeline capable of probing anisotropic

gravitational-wave backgrounds (GWBs) using pulsar-timing arrays (PTAs). If we have contin-

uous anisotropy in the energy-density of such a GWB, or anisotropy through sparseness of

sources comprising our background, then the assumption of isotropy may no longer be an ap-

propriate model with which to perform searches. Recent work has focused on developing new

formalisms and techniques with which to generalise the search methodologies [390, 393, 394,

403]. The standard techniques in usage are either stochastic isotropic searches or single-source

searches, although the anisotropic pipeline discussed in this chapter will be used in forthcoming

EPTA and IPTA searches. Additionally, there have been proposals to directly map out the GW

background using either a spherical-harmonic or pixel basis for the stochastic signal [394, 403].

We employed the formalism of Ref. [393], which generalises the cross-correlation of GWB-

induced TOA-deviations to anisotropic backgrounds. In an isotropic GWB this cross-correlation

has a unique, distinctive signature, being a function only of the angular separation between pul-

sars on the sky. It is commonly referred to as the Hellings and Downs curve [216]. In the

more generalised formalism, the distribution of GWB-power is decomposed as a function of

spherical-harmonics, and a set of correlation basis-functions uniquely defined for a particular

PTA configuration, although the aforementioned authors have identified useful analytic expres-

sions for these basis-functions up to quadrupole order. Unsurprisingly, the monopole solution,

describing the induced correlation for an isotropic distribution, is the usual Hellings and Downs

curve. Crucially, the correlation basis-functions for dipole and beyond are no longer indepen-

dent of the absolute sky-location of the pulsar, being strongly dependent on the placement of

the pulsars relative to the distribution of GWB-power.

To thoroughly investigate this formalism, we have developed a suite of new plugins [395]

for the popular pulsar-timing analysis software package, TEMPO2. This permits the user to have

complete control over the generation of realistic-format datasets, including specifying the array

of pulsars, the various noise processes affecting these pulsars, and the ability to inject a GWB

signal into these simulated datasets. We have generalised this to inject continuous anisotropies

into the GWB signals, and also to permit the inclusion of non-Einsteinian polarisation modes in

the GW-signals.

By generalising the cross-correlation of pulsar-timing residuals in a time-domain Bayesian

search, we have probed the level of anisotropy in the distribution of GW source-populations

making up many background realisations. In particular, we have found that our pipeline can

infer the direction of a strong dipole-anisotropy in a loud GWB. Furthermore, by performing

Bayesian model-comparison with MULTINEST, a strong dipole or quadrupole anisotropy can be

favoured over the standard isotropic search, where we see that the latter is no longer an appro-
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priate model to use. By evaluating the “true-anisotropy vs. isotropy” Bayes factor we find that

the best-case scenario for having decisive evidence for a strong dipole or quadrupole anisotropy

(in a 36 pulsar dataset) occurs when the rms-residual induced by the GWB is approximately five

times greater than the noise rms-residual in each pulsar (proxy SNR & 5). When a more gen-

eral search over the anisotropy-coefficients is performed, the log-Bayes factors are degraded,

but substantial evidence for the anisotropic signal may become visible at proxy SNRs≥ 10. We

performed a similar analysis with uncorrelated red-noise affecting the pulsars, finding a similar

level of required GWB-loudness in order to begin having convincing evidence of anisotropy.

Finally, we tested our search-pipeline on a dataset with the distribution of GWB-power

spread over monopole, dipole and quadrupole. As we move to higher multipoles, and hence

search dimensions, we propose a hard prior on the anisotropy-coefficients corresponding to the

physicality of the implied probability distribution of source-placement on the sky. If this PDF

happens to be negative anywhere on the sky for a proposed set of anisotropy-coefficients, then

this point is discarded in the sampling process. This is actually quite an informative prior, such

that if we are studying a dataset with an anisotropy close to non-physicality then the prior may

actually truncate regions of high likelihood in parameter space. This could conceivably have a

negative impact on evidence evaluation, however it is very useful for parameter-estimation and

will be an excellent tool in real searches where the level of anisotropy is expected to be weak.

When this physicality-prior is imposed the maximum a posteriori GW-source distribution shows

an excellent match to the injected anisotropy.

The search for angular structure in the GWB is the next step in PTA-searches, opening

the door to investigations of source-clustering and localisation of GW-hotspots. The author is

currently leading both the EPTA and IPTA in their flagship efforts to constrain the levels of

anisotropy in a stochastic GWB with arrays of typically ∼ 40− 50 millisecond pulsars. In this

chapter, we robustly tested an anisotropic stochastic search-pipeline on datasets with a contin-

uous anisotropy in the angular-distribution of sources constituting the injected background. We

intend to follow up this first study with a further investigation of the consequences of imposing

a hard physical-prior, as well as applying this search-pipeline to datasets with GWBs consisting

of realistic populations of inspiraling SMBH binaries. This latter investigation will allow us to

understand the effects of source-sparseness and background-finiteness (which occur at higher

GW frequencies as the stochasticity of the strain signal breaks down) on the ability to constrain

the properties of a GWB. We also intend to perform a systematic investigation of the expected

level of anisotropy in realistic source-populations, testing how SMBH binary environment cou-

plings depletes the strain-spectrum at low frequencies and causes a breakdown in stochasticity

which may necessitate an anisotropic search. We also plan to investigate the maximum mul-

tipole that our current PTAs are sensitive to, as well as a frequentist approach to studying the
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deleterious effect of using isotropic correlation filters to search for anisotropic backgrounds.

4.A Auto-correlation of GWB-induced timing-residuals

In the following, we give an analytic expression for the auto-correlation of timing-residuals in-

duced by a stochastic GWB with a power-law strain-spectrum. This expression was first derived

in Ref. [398], and is currently used in all time-domain Bayesian PTA-pipelines searching for a

stochastic background.

The standard approximation for the characteristic strain spectrum of a stochastic GW back-

ground is that it is of the form,

hc(f) = A

(
f

1yr−1

)α
, (4.44)

where A is the dimensionless amplitude, and α is the strain spectral index. The one-sided PSD

of the GWB-induced timing-residuals is then given by,

S(f) ≡ 1

12π2

1

f 3
hc(f)2 =

A2

12π2

(
f

yr−1

)−γ
yr3, (4.45)

where γ ≡ 3 − 2α. Using the Wiener-Khinchin theorem, which relates the PSD and the auto-

correlation of a wide-sense stationary process (i.e., a stochastic process which depends only

on |ti − tj|), we can deduce an analytic expression for the auto-correlation of timing residuals

induced by a GWB with a power-law PSD,

C(τij) = Re

[∫ fh

fl

exp (ifτij)S(f)df

]
=

A2

12π2

∫ fh

fl

cos (fτij)f
−γdf (4.46)

where τij = 2π|ti − tj|. The bounds fl and fh denote the sensitivity band of PTA observations:

1/T . f . 1/(2∆T ), where T is the total time span of observations and ∆T is the obser-

vational cadence. For all real observational scenarios, T � ∆T , so in the following we take

fh ∼ ∞.

Evaluating this integral (with x = fτij) gives,

τ γ−1
ij

∫ ∞
flτij

cos(x)x−γdx =
(flτij)

1−γ

(γ − 1)τ 1−γ
ij

× 1F2

({
1

2
− γ

2

}
;

{
1

2
,
3

2
− γ

2

}
;−(flτij)

2

4

)
+ Γ(1− γ) sin

(πγ
2

)
τ γ−1
ij , (4.47)

where the term of form pFq(a1, . . . , ap; c1, . . . , cq; z) is a generalised hypergeometric function,

defined as,

pFq(a1, . . . , ap; c1, . . . , cq; z) =
∞∑
n=0

a
(n)
1 . . . a

(n)
p

b
(n)
1 . . . b

(n)
q

zn

n!
, (4.48)
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where y(n) refers to the rising factorial y(y + 1)(y + 2) . . . (y + n − 1). A useful property of

rising factorials is that y(n) = Γ(y + n)/Γ(y), which reduces the hypergeometric function in

Eq. (4.47) to

1F2

({
1

2
− γ

2

}
;

{
1

2
,
3

2
− γ

2

}
;−(flτij)

2

4

)

=
∞∑
n=0

(−1)n
(

1
2
− γ

2

)(n)(
1
2

)(n) (3
2
− γ

2

)(n)

(flτij)
2n

4nn!

=
∞∑
n=0

(−1)n
Γ
(

1
2
− γ

2
+ n
)

Γ
(

1
2

)
Γ
(

3
2
− γ

2

)
Γ
(

1
2
− γ

2

)
Γ
(

1
2

+ n
)

Γ
(

3
2
− γ

2
+ n
) (flτij)

2n

4nn!
. (4.49)

Now, using the properties Γ(y+1) = yΓ(y), Γ(1/2) =
√
π, and Γ(1/2+n) = (2n)!

√
π/(4nn!),

this becomes,
∞∑
n=0

(−1)n
1− γ

2n+ 1− γ
(flτij)

2n

(2n)!
. (4.50)

Finally, the analytic expression for the auto-correlation function of a wide-sense stationary

process with power-law PSD is,

C(τij) =
A2

12π2

(
1yr−1

fl

)γ−1
[

Γ(1− γ) sin
(πγ

2

)
(flτij)

γ−1 −
∞∑
n=0

(−1)n
(flτij)

2n

(2n)!(2n+ 1− γ)

]
.

(4.51)

It is clear that any terms in C(τij) which are dependent on fl will diverge when fl tends to

zero. Considering the spindown of a pulsar due to the conversion of its rotational energy into

EM energy, the phase evolves as φ(t) ∼ A1 + A2t + A3t
2, where A2 ∝ ν and A3 ∝ ν̇. Fitting

a timing-model to the pulse arrival-times effectively (amongst other things) fits out a quadratic

to remove the pulsar spindown contributions to the residuals.

This fitting procedure means that we could make A1,2,3 arbitrarily large and the measured

post-fit residuals would be the same. The same is true if A1,2,3 were not fixed numbers but

random numbers drawn from a Gaussian distribution. The correlation due to a random quadratic

spindown is,

〈δtiδtj〉 = 〈A2
1〉+〈A1A2〉(ti+tj)+2〈A2

2〉titj+〈A1A3〉(t2i +t2j)+〈A2A3〉titj(ti+tj)+〈A2
3〉t2i t2j .
(4.52)

Up to n = 1 the fl-dependent terms in C(τij) have the same functional dependence on ti,j
as a “random” quadratic spindown. A1,2,3 can be made arbitrarily large such that fl-dependent

terms (up to n = 1) are absorbed into the quadratic spindown (with stochastic coefficients).

These terms in C(τij) would then be fitted out by the timing-model analysis.

Hence, provided fl is small enough that n ≥ 2 terms are negligible, all fl-dependence in

C(τij) is removed [399, 402, 404]. We retain knowledge of the fitting-process (essential in

reconstructing A, γ in a Bayesian analysis) through the use of the design matrix, M .
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4.B Timing-model marginalisation as a projection

A given (n×m) matrix M can be decomposed into a product of several matrices via a singular-

value decomposition (SVD), i.e. M = UΣV †, where U = (n × n), Σ = (n × m) and V =

(m × m). The matrices U and V are unitary, and hence the columns of these matrices form

orthonormal bases.

In the context of pulsar-timing, M is the design matrix, which describes how the TOAs

depend on the deterministic timing-model. This timing-model has dimension m, and the pulsar

TOAs form a vector of dimension n. We now explicitly separate U into the range- and left

null-space of M ,

M = UΣV † = (F G)

(
σ

0

)
V †, (4.53)

where F = (n×m), G = (n× (n−m)) and σ = (m×m).

The likelihood of measuring a set of post-fit timing residuals ~δt, given a GWB (with model

parameters ~φ) which induces TOA-deviations with covariance 〈~δtGW
~δt
T

GW〉 = C(~φ), and a

pulsar timing-model with parameters ~ξ is,

L(δ~t|~φ, ~ξ) =
1√

(2π)ndet(C)
× exp

(
−1

2

(
δ~t−M~ξ

)T
C−1

(
δ~t−M~ξ

))
. (4.54)

We now rotate all vectors and matrices into an orthonormal basis defined by the columns

of matrix U in the SVD of M . So, C → UTCU , ~δt → UT ~δt, and M~ξ → UTM~ξ. Thus,(
~δt−M~ξ

)
becomes

(
UT ~δt− UTM~ξ

)
=

(
F T

GT

)
~δt−

(
F T

GT

)
(F G)

(
σ

0

)
V †~ξ

=

(
F T ~δt− σV †~ξ

GT ~δt

)
. (4.55)

Likewise,

UTCU =

(
F T

GT

)
C (F G) =

(
F TCF F TCG

GTCF GTCG

)
. (4.56)

Now we require some block-matrix algebra. The inverse of a (2× 2) block-matrix is,(
N O

P Q

)−1

=

(
W X

Y Z

)
, (4.57)

W =
(
N −OQ−1P

)−1
= N−1 +N−1O

(
Q− PN−1O

)−1
PN−1,

X = − (N −OQ−1P
)−1

OQ−1 = −N−1O
(
Q− PN−1O

)−1
,

Y = −Q−1P
(
N −OQ−1P

)−1
= − (Q− PN−1O

)−1
PN−1,

Z =
(
Q− PN−1O

)−1
= Q−1P

(
N −OQ−1P

)−1
OQ−1 +Q−1. (4.58)
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The argument of the exponential in the likelihood expression is then,(
F T ~δt− σV †~ξ

GT ~δt

)T (
UTCU

)−1
(
F T ~δt− σV †~ξ

GT ~δt

)

=
(
~δt
T
F −

(
σV †~ξ

)T
~δt
T
G
)(F TCF F TCG

GTCF GTCG

)−1(
F T ~δt− σV †~ξ

GT ~δt

)

= ~δt
T
FWF T ~δt− ~δt

T
FW

(
σV †~ξ

)
−
(
σV †~ξ

)T
WF T ~δt+

(
σV †~ξ

)T
W
(
σV †~ξ

)
+ ~δt

T
GY F T ~δt− ~δt

T
GY

(
σV †~ξ

)
+ ~δt

T
FXGT ~δt−

(
σV †~ξ

)T
XGT ~δt+ ~δt

T
GZGT ~δt.

(4.59)

Collecting the terms which have an explicit dependence on the timing-model parameters, ~ξ,

gives,

− ~δt
T
FW

(
σV †~ξ

)
−
(
σV †~ξ

)T
WF T ~δt+

(
σV †~ξ

)T
W
(
σV †~ξ

)
− ~δt

T
GY

(
σV †~ξ

)
−
(
σV †~ξ

)T
XGT ~δt

= −~δtT (FW +GY )
(
σV †~ξ

)
−
(
σV †~ξ

)T (
WF T +XGT

)
~δt+

(
σV †~ξ

)T
W
(
σV †~ξ

)
= −~δtT

(
FW −G (GTCG

)−1 (
GTCF

)
W
)(

σV †~ξ
)

−
(
σV †~ξ

)T (
WF T −W (

F TCG
) (
GTCG

)−1
GT
)
~δt+

(
σV †~ξ

)T
W
(
σV †~ξ

)
= −~δtTHW

(
σV †~ξ

)
−
(
σV †~ξ

)T
WHT ~δt+

(
σV †~ξ

)T
W
(
σV †~ξ

)
=
[(
σV †~ξ

)
−HT ~δt

]T
W
[(
σV †~ξ

)
−HT ~δt

]
− ~δt

T
HWHT ~δt, (4.60)

whereH = F −G (GTCG
)−1 (

GTCF
)
. The final term is left over from completing the square

in [. . .]T W [. . .]. It will contribute to the “non-~ξ” terms, which, when collected give,

~δt
T
FWF T ~δt+ ~δt

T
GY F T ~δt+ ~δt

T
FXGT ~δt+ ~δt

T
GZGT ~δt− ~δtHWHT ~δt

= ~δt
T

(. . .) ~δt, (4.61)

where,

(. . .) = FWF T +GY F T + FXGT +GZGT −HWHT

= FWF T −G (GTCG
)−1 (

GTCF
)
WF T − FW (

F TCG
) (
GTCG

)−1
+GZGT

−
[
F −G (GTCG

)−1 (
GTCF

)]
W
[
F T − (GTCF

)T (
GTCG

)−1
GT
]

= GZGT −G (GTCG
)−1 (

GTCF
)
W
(
GTCF

)T (
GTCG

)−1
GT . (4.62)

Referring to the block-matrix algebra relations, we see that,

Z =
(
GTCG

)−1 (
GTCF

)
W
(
F TCG

) (
GTCG

)−1
+
(
GTCG

)−1
. (4.63)
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Finally, the “non-~ξ” terms reduce to,

~δt
T

(. . .) ~δt = ~δt
T
G
(
GTCG

)−1
GT ~δt. (4.64)

We can write down the posterior distribution marginalised over all timing-model parameters,
~ξ, as ∫

P (~φ, ~ξ|~δt)dmξ =

∫
L(~δt|~φ, ~ξ)π(~φ)π(~ξ)dmξ. (4.65)

As mentioned previously, we rotate all the n-dimensional vectors and (n× n) matrices into

the orthonormal basis defined by the columns of U , which is the result of an SVD on the design

matrix, M . Hence,

L ≡ L′ = 1√
(2π)ndet (UTCU)

×exp

(
−1

2

(
UT δ~t− UTM~ξ

)T (
UTCU

)−1
(
UT δ~t− UTM~ξ

))
.

(4.66)

This transformation splits the likelihood into a product of two components; one term with

an explicit dependence on the timing-model parameters, and one without,

L′ = `1 × `2(~ξ), (4.67)

where,

`2 = exp

(
−1

2

((
σV †~ξ

)
−HT ~δt

)T
W
((
σV †~ξ

)
−HT ~δt

))
. (4.68)

Assuming that we have uniform priors on ~ξ, integrating over these parameters gives,∫
`2(~ξ)Π(~ξ)dmξ =

√
(2π)mdet(σTWσ)−1. (4.69)

We now consider the normalisation pre-factor in L′, which is 1/
√

(2π)ndet(UTCU). This

can be evaluated using block-matrix algebra,

det
(
UTCU

)
= det

(
N O

P Q

)
= det

(
QN −QOQ−1P

)
= det(Q)× det

(
N −OQ−1P

)
=

det(Q)

det
[
(N −OQ−1P )−1] =

det
(
GTCG

)
det(W )

. (4.70)

Finally, we see that marginalising the posterior distribution over uniform-prior timing-model

parameters can be described by a projection of quantities into the left null-space of the design

matrix, and written as,∫
P (~φ, ~ξ|~δt)dmξ

= π(~φ)×
√

(2π)mdet(W )det(σTWσ)−1

(2π)ndet (GTCG)
× exp

(
−1

2
~δt
T
G
(
GTCG

)−1
GT ~δt

)
=

π(~φ)

det(σ)
× 1√

(2π)n−mdet(GTCG)
× exp

(
−1

2
δ~tTG

(
GTCG

)−1
GT δ~t

)
. (4.71)
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A dreamer is one who can only find his way by

moonlight, and his punishment is that he sees

the dawn before the rest of the world.

Oscar Wilde

The noblest pleasure is the joy of understand-

ing.

Leonardo da Vinci

5
Rapid Searches For Continuous GWs

Abstract

We describe several new techniques which accelerate Bayesian searches for continuous

gravitational-wave emission from supermassive black-hole binaries using pulsar timing ar-

rays. These techniques mitigate the problematic increase of search-dimensionality with the

size of the pulsar array which arises from having to include an extra parameter per pulsar

as the array is expanded. This extra parameter corresponds to searching over the phase

of the gravitational-wave as it propagates past each pulsar so that we can coherently in-

clude the pulsar-term in our search strategies. Our techniques make the analysis tractable

with powerful evidence-evaluation packages like MULTINEST. We find good agreement of

our techniques with the parameter-estimation and Bayes factor evaluation performed with

full signal templates, and conclude that these techniques make excellent first-cut tools for

detection and characterisation of continuous gravitational-wave signals with pulsar timing

arrays.

This chapter is based on:

Accelerated Bayesian model-selection and parameter-estimation in continuous

gravitational-wave searches with pulsar-timing arrays

Stephen R. Taylor, Justin A. Ellis and Jonathan R. Gair

submitted to Phys. Rev. D (2014), arXiv:1406.5224
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5.1 Introduction

The current focus of PTA searches is to uncover evidence for a nanohertz stochastic GW back-

ground, most likely composed of many inspiraling SMBH binary signals overlapping in the

frequency-domain which cannot be resolved separately [225–227]. While this background may

dominate at the lowest detectable frequencies (where the characteristic strain is expected to be

largest) at higher frequencies the stochasticity of the signal begins to break down, and in indi-

vidual Monte Carlo realisations of SMBH binary populations we see single bright sources rising

above the level of the unresolved background to become the dominant signal [238, 240, 241].

It stands to reason then that several massive nearby binaries may be bright enough to resolve

with PTAs, presenting a unique opportunity to probe the very early inspiral regime of their coa-

lescence, and thereby offering a complementary probe of the massive black-hole population to

eLISA/NGO [e.g., 239, 405].

The earliest attempts to constrain the properties of single resolvable sources with PTAs

focused on nearby candidate systems. Ref. [406] investigated the level of timing-residuals ex-

pected from a binary system in Sgr A∗, finding that such a system would be beyond the sensitiv-

ity of near-future observations, while other nearby systems may offer a better chance of hosting

a detectable binary. A much lauded result of pulsar-timing analysis was when the nearby radio

galaxy 3C 66B was ruled-out as hosting a 1.05 year orbital-period1 SMBH binary system at

greater than 95% confidence [269].

Techniques to infer the presence of the expected periodic TOA-deviations induced by a

binary source have included both frequentist and Bayesian approaches. Due to the irregular

sampling of pulsar TOAs, methods which have implemented power spectral summing [270] or

“harmonic summing” [269] have used a Lomb-Scargle periodogram to avoid undesirable spec-

tral leakage. We can also maximise our likelihood statistic over nuisance amplitude parameters

to form the F-statistic [407], which has been applied to the detection of nearly-periodic signals

in LIGO/Virgo/GEO data [e.g., 408–410], in the eLISA band [e.g., 411], and more recently in

the nanohertz-sensitive PTA band [272, 273]. Time-domain techniques are now the favoured

approach, and it has been realised that coherently including the “pulsar-term” contribution to

the timing-residuals from when the GW passed the pulsar is hugely important for detection,

sky-localisation, and distance determination [412, 413].

This pulsar-term arises when we integrate the response of pulsar-timing measurements to a

GW over the path of the photons, giving contributions to the redshift of signals (and hence de-

viations to the TOAs) from either end of the Earth-pulsar timing baseline. The Earth-term adds

coherently, but in previous analyses the pulsar-terms have been ignored as a form of self-noise

1Alarm bells always ring in pulsar-timing analysis when periodicities close to 1 year appear, since a necessary

step involves converting topocentric TOAs to barycentric TOAs.
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whose contributions sum incoherently from separate pulsars. However, coherently including

the pulsar-term can be regarded as the temporal equivalent of aperture synthesis [412], increas-

ing the baseline of PTA observations by thousands of years, and hence allowing us to track

the orbital evolution of binary sources via the imprint of the GW in each distinct pulsar. Full

Bayesian parameter estimation and evidence techniques now exist which include the pulsar-

term by searching over each pulsar distance [274]. However these typically require significant

computational resources to explore the large-dimensional parameter space, and highly-tuned

search algorithms to ensure phase coherence when searching over the distance. We side-step

these issues by presenting fast techniques designed for a rapid first-analysis of the data, re-

turning Bayes factor and parameter-estimation results which are in good agreement with full

searches.

This chapter is arranged as follows. In Sec. 5.2 we review the theory of timing-residuals

induced by single resolvable GWs, along with templates to search for binaries which may or

may not be evolving over the Earth-pulsar light travel-time. We also introduce our techniques,

based on marginalising over the phase variables from each distinct pulsar, thereby collapsing

the dimensionality of searches and accelerating evidence recovery. In Sec. 5.3 we compare the

results of our model-selection with full searches, and investigate any potential biases in our

parameter estimation. We state our conclusions in Section 5.4.

5.2 The signal

The transverse-traceless (TT) gauge GW-tensor can be described as a linear superposition of

“plus” and “cross” polarisation modes, with associated polarisation-amplitudes, h{+,×}, and

basis-tensors, e{+,×}ab (Ω̂). In the context of single-source searches, the direction of GW-propagation,

Ω̂, is written as [−(sin θ cosφ)x̂− (sin θ sinφ)ŷ − (cos θ)ẑ] such that (θ, φ) = (π/2−DEC,RA)

denotes the sky-location of the source in spherical polar coordinates.

As the GW propagates between the Earth and pulsar it creates a perturbation in the metric

which causes a change in the proper distance to the pulsar, which in turn leads to a shift in the

perceived pulsar rotational frequency. This fractional frequency shift of a signal from a pulsar

in the direction of unit vector p̂, induced by the passage of a single GW propagating in the

direction of Ω̂ is [213, 214],

z(t,Ω) =
1

2

p̂ap̂b

1 + Ω̂ · p̂∆hab(t,Ω), (5.1)

where ∆hab ≡ hab(te, Ω̂) − hab(tp, Ω̂) is the difference in the metric perturbation evaluated

at time te when the GW passed the solar system barycentre (SSB) and time tp when the GW

passed the pulsar. From simple geometrical arguments, we can write tp = te − L(1 + Ω̂ ·
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p̂), where L is the distance to the pulsar. The integral of this redshift over time gives the

GW contribution to the recorded pulse TOA. Consequently, this means that the timing-models

which have been constructed to describe deterministic contributions to the pulsar TOAs (e.g.,

quadratic spindown) will be slightly mismatched because we have not factored in the influence

of GWs. This effect is observed in the timing-residuals which are the difference between the

raw measured TOAs and the best-fit deterministic timing-model. These residuals encode the

influence of noise and all unmodelled phenomena which influence the pulsar TOAs. The pulsar

timing-residuals induced by a single GW source can be written as,

s(t, Ω̂) = F+(Ω̂)∆s+(t) + F×(Ω̂)∆s×(t) (5.2)

where ∆sA(t) = sA(tp)− sA(te), and t{p,e} denote the times at which the GW passes the pulsar

and the Earth, respectively. The functions FA(Ω̂) are “antenna pattern” functions encoding the

geometrical sensitivity of a particular pulsar to a propagating GW, defined as,

FA(Ω̂) ≡ 1

2

p̂ap̂b

1 + Ω̂ · p̂e
A
ab(Ω̂). (5.3)

SMBH binaries are the primary candidate for nanohertz GWs. The population in this band

are typically massive (& 108M�), and in the early, adiabatic inspiral portion of their orbital

evolution. Assuming circular orbits, the typical orbital velocity of these systems scales as [412],

v ' 2.5× 10−2

(
f

10−8 Hz

)1/3(
M

108M�

)1/3

, (5.4)

such that we are dealing with only mildly-relativistic binaries, with v � 1. Hence, the influ-

ence of BH-spin on the GW signal, which modifies the waveform at 1.5 pN (∝ v3), will be

completely negligible for PTA observations, while orbital plane precession due to spin-orbit

coupling may only be a consideration for the SKA [414, 415]. Preliminary assessments of the

importance of binary eccentricity indicate that the majority of the GW power will remain con-

fined to the harmonic at twice the binary orbital frequency [414], however there is a growing

concern that couplings between a binary and its environment can induce significant eccentricity,

which may require this parameter to be included in waveform templates [235, 242, 416]. We

ignore this effect here, and concentrate on circular, non-spinning SMBH binaries.

The periodically varying pulsar timing-residuals induced by a SMBH binary are derived

from the quadrupolar waveform, and have the form [273, 412, 417],

s+(t) =
M5/3

DLω(t)1/3

[− sin [2 (Φ(t)− φn)]
(
1 + cos2 ι

)
cos 2ψ

−2 cos [2 (Φ(t)− φn)] cos ι sin 2ψ]

s×(t) =
M5/3

DLω(t)1/3

[− sin [2 (Φ(t)− φn)]
(
1 + cos2 ι

)
sin 2ψ

+2 cos [2 (Φ(t)− φn)] cos ι cos 2ψ] , (5.5)
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where ψ is the GW polarisation angle, ι is the binary orbital-inclination angle, φn is the orbital

phase at the line of nodes (defined as the intersection of the orbital plane with the tangent plane

of the sky [417]), M = (m1m2)3/5/(m1 + m2)1/5 is the binary chirp mass, and DL is the

luminosity distance to the source.

The rate of change of the binary orbital frequency due to GW emission is,

ω̇ =
96

5
M5/3ω11/3, (5.6)

with which we can derive the orbital frequency and phase,2 at a given time, t,

ω(t) = ω0

(
1− 256

5
M5/3ω

8/3
0 t

)−3/8

,

Φ(t) ≡
∫ t

0

ω(t′)dt′ = Φ0 +
1

32M5/3

(
ω
−5/3
0 − ω(t)−5/3

)
. (5.7)

The characteristic chirp timescale of an inspiraling binary is [274],

τchirp ∼ ω0

ω̇0

= 3.2× 105 yr

( M
108M�

)−5/3(
f0

10−8 Hz

)−8/3

, (5.8)

which shows us that frequency and amplitude chirping of the binary over the course of typical

PTA observation times (10 − 20 years) will be negligible compared to PTA frequency reso-

lution (∼ 1/T ) [270, 414], and can be safely ignored. Hence, we are looking for essentially

monochromatic signals, and as such the Earth-term orbital frequency and phase are,

ωe(t) = ω0, Φe(t) = Φ0 + ω0t. (5.9)

The corresponding variables for the pulsar-term must take into account the fact that the

GW imprints a snapshot of the binary’s orbital evolution as it passes each pulsar. As such,

we deal with the retarded time tp which causes the pulsar-term to differ in phase from the

Earth-term (and all other pulsar-terms) even if there is negligible frequency evolution over the

Earth-pulsar light travel-time (highly unlikely). Frequency chirping is a long timescale effect

for these systems. Indeed the value of (ω0 − ω(tp))/ω0 for a 108M� chirp mass binary with

ω0 = 10−7 Hz and L(1 + Ω̂ · p̂) = 2 kpc is ∼ 0.03. For the highest-mass system considered in

this work (7× 108M� chirp mass binary with ω0 = 2π × 10−8 Hz, and most pulsars satisfying

L(1+Ω · p̂) ≤ 1 kpc) the fractional difference between the Earth- and pulsar-term frequencies is

< 10%. Hence we can Taylor-expand Eq. (5.7) (and ignore evolution over the PTA observation

window) to give,

ωp(t) ' ω0 − ω̇0L(1 + Ω̂ · p̂),
Φp(t) ' Φ0 + ω0t− ω0L(1 + Ω̂ · p̂)− ω̇0L(1 + Ω̂ · p̂)t, (5.10)

2We assume the phase evolution is driven entirely by GW emission.
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where L is the pulsar distance. We note that ωp(t) is always less than or equal to the Earth-term

frequency, such that a coherent measurement of the pulsar-term would afford an insight into the

history of the binary’s evolution.

We now have all the definitions we need to construct signal templates describing the pulsar-

timing residuals induced by either a non-evolving or evolving SMBH binary. In all of the

following we collect Φ0 and φn into one constant initial phase variable, φ0 = φn − Φ0.

5.2.1 Non-evolving template

Consider the low-frequency (or low chirp-mass) regime, where evolution of the source fre-

quency is small, such that the frequencies of the GW when it passes the pulsar and the Earth

are approximately the same. We can include the pulsar-term in our single-source template by

modelling the signal in a single pulsar as the sum of two sinusoids of different phases. The

signal template in the αth pulsar is [273],

sα =
2∑
i=1

aiα(ζ, ι, ψ, φ0, φα, θ, φ)Aiα(t, ω0), (5.11)

where,

a1α = [q1α (1− cosφα)− q2α sinφα]

a2α = [q2α (1− cosφα) + q1α sinφα] (5.12)

q1α =
(
F+
α a1 + F×α a3

)
q2α =

(
F+
α a2 + F×α a4

)
, (5.13)

(5.14)

and,

a1 = ζ
[(

1 + cos2 ι
)

cos 2φ0 cos 2ψ + 2 cos ι sin 2φ0 sin 2ψ
]

a2 = −ζ [(1 + cos2 ι
)

sin 2φ0 cos 2ψ − 2 cos ι cos 2φ0 sin 2ψ
]

a3 = ζ
[(

1 + cos2 ι
)

cos 2φ0 sin 2ψ − 2 cos ι sin 2φ0 cos 2ψ
]

a4 = −ζ [(1 + cos2 ι
)

sin 2φ0 sin 2ψ + 2 cos ι cos 2φ0 cos 2ψ
]
. (5.15)

In the above equations, φα = 2ω0Lα(1 + Ω̂ · p̂) and ζ = M5/3/DL. The signal basis-

functions are defined as,

A1
α =

1

ω
1/3
0

sin(2ω0t), A2
α =

1

ω
1/3
0

cos(2ω0t). (5.16)

We employ the log-likelihood ratio as a statistic for parameter-estimation and detection. This

statistic is defined as the logarithm of the ratio of the likelihood of a signal being present to the
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signal being absent,

ln Λ ≡ ln p(~r|~s)− ln p(~r|~0) =

Np∑
α=1

[
(rα|sα)− 1

2
(sα|sα)

]
, (5.17)

where we have defined an inner product such that (x|y) = xTG(GCG)−1GTy, where: (i) C is a

covariance matrix describing stochastic influences to the pulsar TOAs; (ii) G is a timing-model

marginalisation matrix [399]; and (iii) rα is a vector of timing-residuals in the αth pulsar. With

well-constrained pulsar noise properties (fixed C) we can use Λ within a Bayesian search to

recover parameter posterior distributions. In this way we can also use Λ to substitute for the full

likelihood in the Bayesian evidence evaluation to recover the Bayes factor, allowing for a direct

recovery of detection significance in a Bayesian way. Implicit in the derivation of Eq. (5.17)

is the cancellation of the normalisation factor of the full likelihood (which is a function of C).

This remains true when we form the evidence ratio, since we integrate over the deterministic

signal parameter space and assume that stochastic noise properties are fixed. Explicitly,

B =
Zsignal

Znull

=

∫
exp [−(r − s(~µ)|r − s(~µ))/2]π(~µ)dNµ∫

exp [−(r|r)/2]π(~µ)dNµ
(5.18)

=

∫
exp [(r|s(~µ))− (1/2)(s(~µ)|s(~µ))]π(~µ)dNµ∫

π(~µ)dNµ

=

∫
Λ(~µ)π(~µ)dNµ.

For the purposes of later analysis, we now write ln Λ explicitly in terms of the pulsar-phase

parameters, φα. Defining

N i
α = (rα|Aiα),

M ij
α = (Aiα|Ajα), (5.19)

and

εi
j =

(
0 1

−1 0

)
, (5.20)

such that

ln Λ =

Np∑
α=1

{ [
qiαqjαM

ij
α − qiαN i

α

]
cosφα +

[
qkαqjαM

ij
α − qkαN i

α

]
εi
k sinφα

− 1

2
qiαqjαM

ij
α cos2 φα − 1

2
qkαqlαM

ij
α εi

kεj
l sin2 φα

− qiαqkαM ij
α εj

k sinφα cosφα + qiαN
i
α −

1

2
qiαqjαM

ij
α

}
. (5.21)
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where Np is the number of pulsars in our array. With negligible frequency evolution, the bi-

nary’s parameters are {ζ, ω0, θ, φ, ι, ψ, ψ0}, however we must also take into account an addi-

tional phase variable per pulsar, φα. Hence, in a parameter-estimation search or an evaluation

of the Bayes factor, conventional techniques would require a search over 7 + Np dimensions.

For large arrays or expensive likelihood evaluations this can be a costly exercise, necessitat-

ing multi-threading linear-algebra operations to accelerate the likelihood evaluations, or multi-

core machines to perform efficient parallel-tempering for the evaluation of Bayes factors. One

should also note that the popular and effective Bayesian inference tool MULTINEST can strug-

gle in these kinds of high-dimensional problems (even in constant efficiency mode) when we

have complicated parameter spaces or lengthy likelihood evaluation times, as the set of live-

points used in the nested sampling algorithm very slowly accumulates the last few units of

log-evidence.3

5.2.2 Evolving template

We can also write down an evolving-signal template which takes into account the orbital evo-

lution of the SMBH binary during the Earth-pulsar light travel-time, but still assumes evolution

during the actual PTA observation window is negligible. For this evolving-signal template, we

define,

A1
α =

1

ω
1/3
0

sin(2ω0t), A2
α =

1

ω
1/3
0

cos(2ω0t)

B1
α =

1

ω
1/3
p,α

sin(2ωp,αt), B2
α =

1

ω
1/3
p,α

cos(2ωp,αt), (5.22)

where ωp,α = ω0− ω̇0Lα(1 + Ω̂ · p̂α), ω̇0 = (96/5)M5/3ω
11/3
0 , and Lα is the distance to the αth

pulsar.

In addition to M ij and N i for the non-evolving case, we define,

Oij
α = (Bi

α|Bj
α),

P i
α = (rα|Bi

α),

Qij
α = (Aiα|Bj

α). (5.23)

Now, expressing the log-likelihood ratio explicitly in terms of the pulsar-phase parameters,

3Certain alternative approaches to this have been proposed for MULTINEST, such as the use of importance

nested sampling in constant-efficiency mode [279], or employing a trained neural network [418] to accelerate the

final stages of sampling.
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φα, gives the following,

ln Λ =

Np∑
α=1

{ [
qiαqjαQ

ij
α − qiαP i

α

]
cosφα +

[
qkαqjαQ

ji
α − qkαP i

α

]
εi
k sinφα

− 1

2
qiαqjαO

ij
α cos2 φα − 1

2
qkαqlαO

ij
α εi

kεj
l sin2 φα

− qiαqkαOij
α εj

k sinφα cosφα + qiαN
i
α −

1

2
qiαqjαM

ij
α

}
. (5.24)

5.2.3 Techniques for maximisation and marginalisation over φα

By explicitly exposing φα in our expressions for the likelihood-ratio, we have developed sev-

eral alternative approaches designed to approximate maximisation or marginalisation of the

likelihood-ratio over these pulsar-phase variables.

Firstly, in the context of non-evolving templates, Ref. [273] noted that one can avoid the

formalism of the Fp statistic (which maximises the likelihood-ratio over 2Np “amplitude” pa-

rameters [aiα in Eq. (5.11)] despite there being only 7+Np independent parameters). Improving

upon the Fp statistic is desirable, since as we expand the number of pulsars in our array the dis-

parity between the dimensionality of the parameter-space assumed by the Fp statistic and the

true physical parameter-space grows larger. Rather than maximising over these nuisance “am-

plitude” parameters, we can instead analytically maximise over the physical φα parameters.

This requires solving a quartic equation in x = cosφα which is guaranteed to have at least one

unique solution, although whether that solution satisfies the requirement −1 ≤ x ≤ 1 must be

ascertained on the fly. We can of course, avoid this completely by numerically maximising over

the pulsar-phase parameters. This is Technique #1, and constitutes a more appropriate maximi-

sation than Fp. Nevertheless, we are still left with the problem of searching over the remaining

7-dimensional parameter space; this is a much more tractable problem and can be handled with

many off-the-shelf MCMC or nested-sampling algorithms. In this case, we should not be sur-

prised if a bias is observed in the posterior distributions of the final 7 parameters, since we are

after all maximising over Np other parameters.

The second option is to avoid maximising entirely, and instead marginalise the likelihood-

ratio over the pulsar-phase parameters. Note that we can analytically marginalise over the am-

plitudes of the signal basis-functions in Eq. (5.11) with uniform-priors to get the Bayes factor

for a common-frequency signal in pulsar TOAs. We do not discuss this further here, but pro-

vide the derivation and a brief analysis in Appendix 5.B. The approach we follow here is to

numerically marginalise over the pulsar-phase parameters, such that we actually sample the

marginalised likelihood-ratio in our MCMC or nested-sampling algorithms. In particular, if we

can do this without increasing the likelihood evaluation time significantly, then the collapse of

the dimensionality makes this problem tractable with MULTINEST. There are many benefits
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to this; for example, MULTINEST is an excellent tool for sampling multimodal distributions,

it has inbuilt parallelisation, and in low-dimensionality provides an efficient means to evaluate

the Bayesian evidence. Hence, the numerical marginalisation of the non-evolving template over

pulsar-phase parameters is our Technique #2.

As a final point of interest for non-evolving templates, we note that if there are sufficiently

many wave cycles during the observation time of the pulsars in our array, then it is possible

to maximise over the pulsar-phase parameters analytically without the need to solve a quar-

tic. More interestingly, it is also possible to analytically marginalise over the pulsar-phase

parameters. The noise behaviour of real pulsars and the GW frequencies to which we are most

sensitive will likely prohibit us from making the assumptions required to analytically max-

imise/marginalise in this fashion. However, we provide the derivation and a brief analysis in

Appendix 5.A, where we find that this analytic marginalisation may be able to place useful

constraints on the values of ζ = M5/3/DL and the orbital frequency of a SMBH binary, but

sky-localisation and Bayesian evidence recovery is biased.

There are two ways to proceed with an evolving template, but both involve numerical

marginalisation over the pulsar-phase parameters. In Technique #3 we compute ωp,α by fixing

Lα to its catalogued value, while in Technique #4 we internally average over the prior dis-

tribution of Lα by drawing the distance used to compute ωp,α from a Gaussian centred on the

catalogued value with standard-deviation given by the catalogued error-bars.

Even though the pulsar-phase has an explicit dependence on the pulsar-distance, including

the distance in parameter estimation can produce practical difficulties, as a small change in the

distance may have a relatively small effect on the pulsar-term frequency, ωp,α, but can have a

huge impact on the phase coherence [274, 412]. Without sub-pc precisions on measured pulsar-

distances the possibility of including the pulsar-term in a coherent analysis might seem beyond

reach. However, Ref. [274] overcomes this by sampling the distances on two scales; one is very

small to maintain phase coherence, while the other is larger (on the order of kpc) to solve for

the pulsar-term frequency. Regardless, highly-tuned jump proposals for any stochastic sampling

approach seem necessary when trying to incorporate the pulsar-term in a coherent analysis. Our

approximation side-steps this problem by marginalising over the pulsar-phase and drawing Lα
from within its prior to calculate ωp,α. We achieve significant accelerations with respect to the

full search in two ways: (1) we perform an 8D search with a likelihood that executes Np×1D

numerical integrations, as opposed to having to stochastically sample from an (8+Np)D space;

(2) this 8D search can be highly parallelised with MULTINEST to minimise search times, as

opposed to the lengthy burn-in times and prohibitive autocorrelation lengths associated with

high-dimensional MCMC searches.
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Table 5.1: Pulsar distances taken from Ref. [419] if available, or otherwise from the ATNF catalogue

[420].

Pulsar White-noise RMS / ns Time-span / yr Pulsar distances / kpc

J0030+0451 792 12.7 0.28± 0.1

J0437-4715 69 14.8 0.156± 0.001

J1640+2224 410 14.9 1.19± 0.238

J1713+0747 136 18.3 1.05± 0.06

J1744-1134 366 16.9 0.42± 0.02

J1857+0943 402 14.9 0.9± 0.2

J1909-3744 100 9.0 1.26± 0.03

J1939+2134 141 16.3 5.0± 2.0

J2317+1439 412 14.9 1.89± 0.38

5.3 Results

While a full analysis of these techniques in all conceivable situations is beyond the scope of this

study, we rigorously test what we expect to be the most promising new technique. Technique
#4 (which from now we denote as the Mp statistic) is subjected to a program of systematic

injection and recovery of simulated signals, using the PALSIMULATION code which is part of

the PAL package [421] being developed as a unifying suite of tools for pulsar timing analysis.

The performance of Technique #3 closely follows that of Technique #4, which is unsurprising

since they involve similar methods. Furthermore, we expect no systematic bias from Technique
#2 other than that which is introduced by analysing an evolving signal with a non-evolving

formalism.

The datasets we generated were of the following configurations;

• Type I: 36 pulsars, 5 years of observations, 2 week cadence, 100 ns RMS white-noise

per pulsar, Lpsr = 1± 0.1 kpc ∀ pulsars; equivalent to the assumptions of the first OPEN

dataset in the IPTA MDC.

• Type II: 9 pulsars, variable observation time-span, average 2 week cadence, realistic

white-noise, Lpsr equal to catalogued values.

• Type III: 9 pulsars, variable observation time-span, average 2 week cadence, realistic

white-noise, Lpsr drawn from Gaussian distribution (mean=catalogued-value, standard-

deviation=catalogued-error).

The observation time-spans, white-noise RMS values, and distances for the 9 pulsars in

Type II and Type III datasets are shown in Table 5.1.
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5.3.1 Model selection

We evaluate the accuracy of the Bayes factors returned by these pulsar-phase marginalisation

techniques by injecting signals into various noise realisations at various SNRs. The SNR in

these cases is defined as SNR2 =
∑

α (s (~µinj) |s (~µinj))α. We compare the recovered Bayes

factors with those obtained by employing parallel-tempering and thermodynamic integration

with the full signal template (and searching for the pulsar-distances). Parallel tempering is a

method of launching many MCMC chains of varying “temperature” designed to aggressively

search parameter space, and avoid trapping of chains in local likelihood maxima. Each chain

has a different target distribution, p(~µ|D, β) ∝ p(~µ)p(D|~µ)β , where β is the inverse temperature

and varies between 0 and 1. Higher temperatures effectively flatten out the likelihood surface,

and explore regions far from maximum. A multi-temperature Hastings ratio is employed to

ensure mixing of the chains and rapid localisation of the global maximum. After exploration

the different chains can be processed via thermodynamic integration to give an estimate of the

Bayesian evidence [e.g., 422]. The evidence for a chain with inverse temperature β is simply,

Zβ =

∫
d~µ p(~µ)p(D|~µ)β, (5.25)

such that,

lnZ =

∫ 1

0

dβ
∂ lnZβ
∂β

=

∫ 1

0

dβ

∫
d~µ

p(~µ)p(D|~µ)β

Zβ ln p(D|~µ)

=

∫ 1

0

dβ 〈ln p(D|~µ)〉β, (5.26)

where 〈·〉β denotes an expectation value with respect to the target posterior of inverse tem-

perature β. For details on the parallel tempering and thermodynamic integration techniques

employed here, see Ref. [274, 423] and references therein.

The signal we inject matches that explored in Ref. [274], which is at the sky-location of the

Fornax cluster. Recent work has shown that there may be potential single GW source “hot spots”

in the Virgo, Fornax and Coma clusters [424]. Regardless, we are only interested in sensible pa-

rameters to form an injected signal. These parameters are {M, DL, f0, φ, cos θ, cos ι, ψ, φ0} =

{7× 108M�,−, 10−8Hz, 0.95,−0.56, 0, 1.26, 2.65}, where the luminosity distanceDL is scaled

to suit the desired SNR.

Another important aspect is our choice of prior onM, DL and f0. We employ log-uniform

priors on these variables, but also apply a cut on the characteristic-strain induced by the binary,

where we define h0 = 4
√

2/5ω
2/3
0 ζ and require h0 ≤ h0,c (fgw/10−8Hz)

2/3, where h0,c =

10−13. We use Monte Carlo integration to compute the prior re-normalisation, which only leads
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Figure 5.1: A comparison of the computed posterior odds-ratios (lnB) evaluated using thermodynamic

integration of the full signal model (solid lines), and the technique of numerically marginalising over

the pulsar-phase parameters while sampling from the pulsar-distance prior (Mp statistic; dashed lines).

Different SNR signals are injected into a variety of realisations of Type I and Type III datasets. The

agreement found between the two methods is excellent.
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Figure 5.2: For a given realisation of noise, we repeat the analysis of Type I/II/III datasets with a

non-evolving template. We see that the mismatch between the assumption of a non-evolving signal and

the reality of an evolving-binary injection leads to Bayes factors which can be significantly below the

optimal evolving-model values.

to a change in log odds-ratio of. 0.1. However, this cut had practical value in limiting the high-

strain parameter space which was inhibiting our thermodynamic integration from converging to

the true evidence value with a reasonable number of temperature chains. Also, this is a cheap

way to impose a correlated prior on chirp mass, luminosity distance and GW frequency [423].

The comparison between an evaluation of the posterior odds ratio performed by the full

thermodynamic integration (solid lines) and theMp statistic (dashed lines) for Type I and Type

III datasets of various injected SNR is shown in Fig. 5.1, where we see excellent agreement for a

variety of different noise realisations. For realistic Type III datasets, we in fact see that theMp

statistic gives a mildly conservative estimate of the full Bayes factor. We find that the speed

of the numerical-marginalisation techniques depend on the SNR of the injection, where for

low to moderate SNR (∼ 0− 2) the evidence and parameter-estimation stages of MULTINEST

completed within only a few minutes of wall-time on 48 computational cores. The highest SNR

injections (SNR = 10) required longer, but still finished within ∼ 45 minutes of wall-time on

48 cores. The reason for this trend is that the likelihood at low SNR is broad and featureless

in the pulsar-term phase parameters, allowing the numerical integration routines to converge

rapidly to a solution. In comparison, thermodynamic integration took more than a day for a

single dataset analysis with similar computational resources.

Analysing these datasets using the numerical phase marginalisation with a non-evolving
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template (Technique #2), we find that the mismatch between the model and the evolving-signal

injections leads to Bayes factors which can be significantly below the optimal evolving-model

values. This is illustrated for a single noise realisation in Figure 5.2. We will revisit this in the

next section.

5.3.2 Parameter estimation

To ascertain whether numerical marginalisation techniques introduce any systematic bias in

parameter recovery, we inject SNR = 8 signals into various white-noise realisations. The in-

jected binary orbital frequency is chosen to be 10−8 Hz such that the GW frequency lies close

to the peak sensitivity of an array of pulsars observed over a period of & 5 years (see Ref.

[425] for a full discussion of Bayesian and frequentist continuous-wave sensitivity curves, and

Ref. [423] for the latest NANOGrav continuous-wave sensitivity curves.). We choose injected

chirp masses of 7 × 108M� and 1.8 × 108M� in order to model a strongly evolving (over the

Earth-pulsar light-travel time), and weakly evolving binary respectively, where the lower mass

injection will have an ω̇ which is ∼ 10% of the higher mass.

These evolving and weakly-evolving binaries are injected into 100 different noise-realisations

of Type II datasets. This type of dataset is used because we want the characteristics of the PTA to

remain fixed, such that the injected binary’s luminosity distance,DL, (which is scaled to accom-

modate the desired SNR) is constant over each realisation. The remaining binary parameters are

injected with the following values into each dataset; {φ = 1, cos θ = 0.48, cos ι = 0.88, ψ = 0.5,

φ0 = 2.89}.
We present results for the case of the Mp statistic, which should be applicable regard-

less of whether the binary is evolving or not. We again note that no bias would be expected

within Technique #2, which numerically marginalises over the pulsar-phase variables in the

non-evolving formalism. The only bias expected here derives from the inherent limitations of

applying an inappropriate non-evolving model to a possibly evolving signal.

Our method of testing for systematic bias in the use of theMp statistic is an extension of

a method used in Ref. [426] to validate the accuracy of a first-order likelihood approximation

in a stochastic background search. As discussed there, the benchmark of internal consistency

is when, in x% of realisations, the set of injected parameters lies within the inner x% of the

marginalised posterior distribution. The inner high-probability region is defined as,∫
W

p(~θ)dNθ = a, (5.27)

W = {θ1, θ2, . . . , θN ∈ R : p(~θ) > La},
where La > 0 is some value unique to each a corresponding to a curve of equal probability in

the N dimensional parameter space.
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Figure 5.3: The fraction of injections which are “closer” in the chi-squared sense (see text) to the set of

points lying inside credible-interval, a, is plotted against the credible-interval. The line of zero-bias is

shown as a thick, black-line, while the results of an analysis of 100 realisations of

evolving/non-evolving Type II datasets using numerical-marginalisation (theMp statistic) are shown as

solid-red and dashed-blue. The dashed-green line shows the result for when we offset our catalogue of

distances from their true values by an amount consistent with their error-bars. While some bias is

present, this plot does not indicate how that manifests in the physical parameter-space.
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Figure 5.4: We show the distribution of maximum-a-posteriori values (filled grey circles) from an

analysis of 100 realisations of an evolving signal injected into a Type II dataset, and analysed with the

Mp statistic. As a further step towards real dataset analysis, we offset our catalogue of pulsar distances

from their true values by an amount consistent with error bars. As can be seen, in the parameters of

interest (M, DL, fgw, φ, cos θ, cos ι) this technique recovers the injected values (blue stars and blue

dashed lines) quite comfortably. Additionally, we overplot the 68%, 95% and 99% contours of the

posterior probability distributions averaged over all noise realisations. On average the distribution of the

maximum-a-posterior values follows the average posterior, except perhaps in the case of cos ι. All

injected values lie within the 68% credible interval.
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Figure 5.5: We show the distribution of maximum-a-posteriori values (filled grey circles) from an

analysis of 100 realisations of a weakly evolving signal injected into a Type II dataset, and analysed

with theMp statistic. The injected values of (M, DL) appear to be offset from the distribution of

maximum-a-posteriori values, but are fully consistent with the overplotted average posterior probability

distributions (see Fig. 5.4 for additional details). We note that all injected values lie within the 68%

credible interval.
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Figure 5.6: We inject an evolving signal into 100 realisations of Type II datasets at various SNRs

(including SNR=0), recovering the posterior-odds ratio via theMp statistic in each case. Setting the

threshold of detection at varying values of the posterior odds ratio, we compute the fraction of

realisations which are classified as false-positive and true-positive detections. We see that for this

binary, and using this technique, the posterior odds ratio is an almost perfect classifier at SNR=6. With

these numerical marginalisation techniques, the run-time is fast enough to permit detailed analysis of

detection requirements within a Bayesian context.

To find all points satisfying p(~θ) > La we rank the recovered posterior samples in order of

decreasing posterior weight, then integrate over all samples until we reach the desired credible

interval. For each realisation, we can then define two sets of points; the set of points inside the

high-probability region (HPR) Sa, and the complementary set S̄a.
We now extend the dimensionality of the definitions of the χ2 variables in Ref. [426] to give

a measure of the distance of the posterior samples in each set from the true injected parameters,

χa(~θi)
2 =

(
log10(Mi)− log10(Mtrue)

log10(Mtrue)

)2

+

(
log10(DL,i)− log10(DL,true)

log10(DL,true)

)2

+

(
φi − φtrue

φtrue

)2

+

(
cos θi − cos θtrue

cos θtrue

)2

+

(
cos ιi − cos ιtrue

cos ιtrue

)2

+

(
ψi − ψtrue

ψtrue

)2

+

(
φ0,i − φ0,true

φ0,true

)2

,

(5.28)

where ~θi are elements of Sa. We also define a corresponding expression for χ̄a(~θj)2 in terms of

the elements, ~θj , of the complementary set, Sā.
Finally, we define the empirical distribution function (EDF) as,

Fk(a) =
1

k

k∑
n=1

Θ
(
minχ2

ā −minχ2
a

)
, (5.29)

where k is the number of noise realisations, and Θ(x) is the Heaviside step-function. This
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summation gives the fraction of all noise-realisation in which the injected values are “closer”

(in the χ2 sense) to one of the elements of the HPR than to any element of the complementary

set.

The results of such an analysis are shown in Fig. 5.3 for the evolving and weakly-evolving

binary injections. The line of internal consistency is shown as a thick, black diagonal line. We

see that this technique does indeed present bias, with a worst-case sag of ∼ 0.25. However, the

EDF does not give an insight into how this bias manifests itself in the parameter space.

In Fig. 5.4 we show the distribution of maximum-a-posteriori values over all 100 noise-

realisations, with the injected signal parameters also indicated. It is clear that while the Mp

statistic may fail the formal EDF test, in practical terms it quite comfortably recovers the true

parameters of the injected signal. This holds even when the catalogue of pulsar distances is

offset from the true values by an amount consistent with their error-bars. Additionally, we show

how the injected parameters and maximum-a-posteriori values are distributed with respect to the

68%, 95% and 99% contours of the realisation-averaged posterior. On average the distribution

of the maximum-a-posterior values follows the average posterior, except perhaps in the case of

cos ι, which may be the source of the bias seen in the formal EDF test. Regardless, all injected

values lie within the 68% credible interval. The Mp statistic also recovers the true injected

parameter values when the GW source is weakly evolving. Figure 5.5 shows a similar analysis

to Fig. 5.4 for a weakly evolving injection, where, despite some offset of the injected values of

(M, DL) from the distribution of maximum-a-posteriori values, all injected values lie within the

68% credible interval of the overplotted realisation-averaged posterior probability distributions.

A further test we carry out is to assess the performance of the Mp-computed Bayesian

posterior odds-ratio as a detection classifier. We do so by producing a receiver operator char-

acteristic (ROC) plot, illustrating the fraction of true positive detections versus false positive

detections as we vary the detection threshold. We inject various SNR signals into 100 different

noise-realisations, recovering the evidence in each case. The injected binary parameters are the

same as the evolving case above. We see from Fig. 5.6 that the posterior odds-ratio becomes

a virtually perfect detection classifier at an SNR of 6. Although we cannot draw truly general

conclusions from this, the aim of this exercise is to show that these numerical marginalisation

techniques are accurate enough to allow detailed statistical tests within a Bayesian context with

much lower computational expenditure than existing techniques. The question of what is re-

quired for an unambiguous claim of GW detection using Bayesian statistics has been hitherto

out of reach due to high computational expenditure, but can be rigorously assessed by employ-

ing these fast and accurate techniques in large injection studies.

Finally, we assess the importance of using an evolving versus non-evolving template when

establishing detection criteria. For evolving and weakly-evolving sources, we inject SNR=8
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signals into 100 different noise-realisations. We analyse each dataset using both the numer-

ical phase marginalisation in the evolving-model (Mp statistic) and the non-evolving model,

recovering the evidences in each case. The results are shown in Fig. 5.7, where we see that the

evolving template is more general, capturing the behaviour of the gravitational-waveform even

when the signal is non-evolving, and giving a Bayes factor which is comparable to the value re-

turned by the non-evolving analysis. However, as seen in the previous section, the non-evolving

template recovers a Bayes factor which can be significantly lower than the evolving-model tem-

plate whenever the signal is truly evolving. This shows that the evidence values returned by

these numerical phase marginalisation techniques conform to expected behaviour, and allow us

to infer whether the GW signal is evolving based on the evolving versus non-evolving posterior

odds ratio.

Figure 5.7: Evolving and weakly-evolving signals are injected into 100 different noise-realisations with

an SNR of 8. We analyse all datasets using both the non-evolving and evolving templates (with

numerical phase marginalisation), recovering the evidence in each case. We find that evidence

recovered using the numerical phase marginalisation conforms to expected behaviour. On average,

when the injected signal is weakly-evolving there is no difference in the evidence for an evolving or

non-evolving template. However, when the signal is evolving the distribution of evidence will on

average favour the evolving template.
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5.4 Summary

Near-future GW searches which exploit the high-precision timing of millisecond pulsars may

open a new observational window onto the early-inspiral phase of SMBH binaries. These sys-

tems are expected to be ubiquitous in the current picture of hierarchical structure formation,

where massive galaxies grow via accretion from cosmic web filaments and galactic mergers

[232, 233]. Supermassive BHs are thought to reside within the nuclei of most galaxies [e.g.,

228], evolving symbiotically with the host [e.g., 229–231], such that galactic mergers, followed

by the inspiral of BHs via dynamical friction into the post-merger remnant, leave a large popu-

lation of SMBH binary systems.

While the dominant nanohertz GW signal accessible to PTAs will likely be a stochastic

background formed from the incoherent superposition of signals from the inspiral of these sys-

tems, massive nearby binaries may be visible as single resolvable sources. Detecting these

systems, and determining their properties, will offer a complementary probe to eLISA/NGO of

the massive BH-population, in addition to a cross-check of system parameters from possible

electromagnetic counterparts [see 427, and references therein]. These counterparts may in fact

aid detection, as we no longer need to perform completely blind searches and can collapse the

parameter space of our search algorithms.

In this chapter we have presented several new approaches to single-source searches in PTAs.

The need to include the pulsar-term in analyses for accurate sky-localisation leads to practical

difficulties, as distances to pulsars are poorly constrained, requiring us to introduce an extra

search-parameter per pulsar. In evolving-template searches we must also take into account the

inspiral of the binary over Earth-pulsar light travel-times, which (when we coherently include

the pulsar-term) effectively extends the baseline of our observations by thousands of years,

allowing our searches to reconstruct the orbital-evolution of the system and disentangle its chirp

mass from the luminosity distance.

By numerically marginalising “on-the-fly” over the phase of the GW as it passes each pulsar,

and sampling the distance to each pulsar from prior electromagnetic constraints, we can collapse

the dimensionality of our searches. Our likelihood is fast enough, and our search space small

enough, to bring the powerful Bayesian inference package MULTINEST to bear on the problem.

We achieve significant accelerations with respect to the full search in two ways: (1) we perform

an 8D search with a likelihood that executes Np×1D numerical integrations, as opposed to

having to stochastically sample from an (8 + Np)D space; (2) this 8D search can be highly

parallelised with MULTINEST to minimise search times, as opposed to the lengthy burn-in times

and prohibitive autocorrelation lengths associated with high-dimensional MCMC searches. For

low to moderate SNRs we can perform parameter-estimation and recover the Bayesian evidence

within a few minutes, whereas a full search utilising thermodynamic integration can take as long
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as a day with similar computational resources. We find excellent agreement of our Bayes factors

with those returned by full searches, and, although the parameter estimation shows some small

level of systematic bias in formal EDF tests, in practical terms we quite comfortably recover

injected parameters. Analytic marginalisation of the likelihood over the pulsar-term phases may

be able to place useful constraints on the values of ζ =M5/3/DL and the orbital frequency of

a SMBH binary, although sky-localisation and Bayesian evidence recovery is biased.

We will apply these techniques to upcoming continuous GW searches with EPTA and IPTA

datasets. Our techniques are fast enough to allow systematic injection and recovery of many

signals, permitting an exploration of the criteria required to make an unambiguous Bayesian

detection claim.

5.A Analytic marginalisation/maximisation over φα

In the following we refer to the non-evolving template of Sec. 5.2.1. Assuming we have suf-

ficiently many wave cycles during the observation time-span, we can use the following as-

sumptions for the signal basis-function overlaps in Eq. (5.16): (A1|A2) = (A2|A1) ' 0, and

(A1|A1) ' (A2|A2) ' N (ω0). In practice, the ratio of the cross-terms of the basis-function

overlaps to the diagonal terms may not be small enough to permit these approximations to be

used. For example, Fig. 5.8 shows the ratio (A1|A2)/(A1|A1) for one of the pulsars in the IPTA

MDC Open1 dataset, and for a real NANOGrav J0613-0200 dataset [261]. The ratio dimin-

ishes at higher frequencies, and for the mock dataset gets to . 10−2 at the highest detectable

frequencies. However, for a real pulsar dataset the ratio stays around 10−1 even at the highest

frequencies. Furthermore, the GW frequencies to which we are most sensitive are ∼ a few

×10−8, diminishing as we move to the higher frequencies required for these approximations to

hold.

Nevertheless, these analytic expressions may have some value as rapid first-pass tools, and

we provide the derivations below.

5.A.1 Marginalising

Given the overlap approximations and the non-evolving template defined in Eq. (5.11-5.16) we

have,

(sα|sα) ' [a1αa1α + a2αa2α]N (ω0),

' 2N (ω0)
(
q2

1α + q2
2α

)
(1− cosφα) , (5.30)
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perfect classifier at SNR=6. With these numerical marginalisation techniques, the run-time is fast enough to permit

detailed analysis of detection requirements within a Bayesian context.
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shown for (a) an IPTA MDC Open1 pulsar; 100 ns RMS white-noise, 2 week cadence; (b) a real NANOGrav dataset

for J0613-0200 [16], where the noise is also fairly white.
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Figure 5.8: The ratio of the basis-function overlaps in the cross-terms and the diagonal terms,

(A1|A2)/(A1|A1), is shown for (a) an IPTA MDC Open1 pulsar; 100 ns RMS white-noise, 2 week

cadence; (b) a real NANOGrav dataset for J0613-0200 [261], where the noise is also fairly white.

such that,

ln Λ =

Np∑
α=1

[
(rα|sα)− 1

2
(sα|sα)

]

'
Np∑
α=1

{[
q1α(rα|A1

α) + q2α(rα|A2
α)− (q2

1α + q2
2α

)N (ω0)
]

− [q1α(rα|A1
α) + q2α(rα|A2

α)− (q2
1α + q2

2α

)N (ω0)
]

cosφα

− [q2α(rα|A1
α)− q1α(rα|A2

α)
]

sinφα
}

'
Np∑
α=1

[−Xα +Xα cosφα + Yα sinφα] . (5.31)

Hence, marginalising the likelihood-ratio over each pulsar-phase parameter, assuming flat-

priors, gives,

∫
Λ dNpφ ∝

(
1

2π

)Np Np∏
α=1

∫ 2π

0

exp[(rα|sα)− 1

2
(sα|sα)]dφα

∝
(

1

2π

)Np
exp

(
−

Np∑
α=1

Xα

)
×

Np∏
α=1

∫ 2π

0

exp(Xα cosφα + Yα sinφα) dφα

∝
Np∏
α=1

exp(−Xα)I0

(√
X2
α + Y 2

α

)
, (5.32)

where I0 is a modified Bessel function of the first kind. Note that this technique of analytic

marginalisation of nuisance phase parameters has previously been used in different contexts
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[428, 429], but has never been applied to PTA data-analysis. Finally, we have the PML (Phase

Marginalised Likelihood) statistic,

ln Λ̃ ∝
Np∑
α=1

{
−Xα + ln

[
I0

(√
X2
α + Y 2

α

)]}
. (5.33)

If we have a high SNR signal, such that the argument of the modified Bessel function is

large, then directly computing I0(x) can be very difficult. However, we can use a large argument

expansion of the modified Bessel function to aid this calculation,

ln [I0(x)] ∼ x− 1

2
ln (2πx) + ln

(
1 +

1

8x
+

9

128x2
+

225

3072x3
+

11025

98304x4
. . .

)
. (5.34)

We applied this statistic to the SNR=8 evolving and weakly-evolving datasets discussed in

Sec. 5.3.2. The analysis proceeded very quickly with minimal computational resources, since

we are only searching over 8 parameters without any expensive stages in the likelihood evalua-

tion. In Fig. 5.9 we show the distribution of maximum-a-posteriori values from the analysis of

100 noise realisations. The injected values ofM, DL, and fgw are consistent with the distribu-

tion of maximum-a-posteriori values, however other parameters showed significant bias. The

recovered Bayes factors were also highly biased. Hence the PML statistic may be useful in plac-

ing constraints on the binary’s ζ = M5/3/DL and orbital frequency, although sky-localisation

and Bayesian evidence recovery is unreliable.

5.A.2 Maximising

Going back to the original ln Λ in Eq. (5.31), it is possible to maximise the likelihood-ratio over

the pulsar-phase parameters. As indicated in Ref. [273], the solution to the maximum-likelihood

value of φα requires evaluating a quartic. However, if we use the overlap approximations from

the previous section then the solution is more simple. Maximising gives

∂ ln Λ

∂φβ
' −Xβ sinφβ + Yβ cosφβ = 0, (5.35)

where

tanφβ =
Yβ
Xβ

, (5.36)

so that we can define the log-likelihood ratio maximised over all φα, which we call the Tp-
statistic,

Tp =

Np∑
α=1

[
−Xα +

√
X2
α + Y 2

α

]
. (5.37)

We may be able to go further, and to maximise over other parameters, but we do not consider

this here. Regardless, we have a rather compact form for the log-likelihood ratio maximised
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Figure 5.9: We show the distribution of maximum-a-posteriori values (filled grey circles) from analyses

of 100 realisations of (a) evolving and (b) weakly-evolving signals injected into Type II datasets (see

Sec. 5.3.2 for details). These datasets were analysed with the Phase Marginalised Likelihood (PML)

statistic, which involves an analytic marginalisation over pulsar-term phase parameters. In both cases

the injected values (blue stars and blue dashed lines) ofM, DL, and fgw are consistent with the

distribution of maximum-a-posteriori values, however other parameters showed significant bias.
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over all the pulsar-phase parameters. The remaining 7-D single-source parameter space can

easily be explored using MCMC.

Note that if we use the large argument expansion of the modified Bessel function to approx-

imate the PML we get,

ln Λ̃ ∝
Np∑
α=1

{
−Xα +

√
X2
α + Y 2

α −
1

2
ln
(

2π
√
X2
α + Y 2

α

)}
. (5.38)

For sufficiently large arguments,
√
X2
α + Y 2

α increases faster than ln
(

2π
√
X2
α + Y 2

α

)
. Hence,

in the infinite SNR limit the PML statistic is proportional to the maximum-likelihood estimator

Tp statistic,

ln Λ̃ ∝
Np∑
α=1

{
−Xα +

√
X2
α + Y 2

α )
}
∝ Tp. (5.39)

5.B Bp statistic

Rather than analytically maximising over the amplitude parameters, aiα [see Eq. (5.12)], to

produce the Fp statistic, if we assume uniform priors on these parameters then it is trivial to an-

alytically marginalise and calculate the Bayes factor. We re-write the likelihood as the following

and complete the square in the amplitude parameters, such that

ln Λ =

Np∑
α=1

(rα|sα)− 1

2
(sα|sα)

=

Np∑
α=1

aiα(rα|Aiα)− 1

2
aiαajα(Aiα|Ajα)

=

Np∑
α=1

aiαN
i
α −

1

2
aiαajαM

ij
α ,

=− 1

2

Np∑
α=1

[(
aα −M−1

α Nα

)T
Mα

(
aα −M−1

α Nα

)−NT
α

(
M−1

α

)T
Nα

]
. (5.40)

Now we integrate over the amplitude parameters with uniform priors, and permit the maximum

strain to be large enough such that the likelihood is unaffected by the prior boundary. We can

therefore set the limits of integration to be between [−∞,+∞], such that

Bp = C exp

(
Np∑
α=1

NT
α (M−1

α )
T
Nα

2

)
Np∏
α=1

[
det
(
2πM−1

α

)]1/2
= C (2π)Np exp (Fp)

Np∏
α=1

(det Mα)−1/2 , (5.41)
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Figure 5.10: A Type I dataset with an SNR=10 injection (with injected parameters equal to those in

Sec. 5.3.1) was analysed with the Fp statistic and the Bp statistic. The injected GW frequency is

2× 10−8 Hz and is shown as a dotted line. The Fp statistic performs very well and finds the true signal

frequency. The Bp statistic also shows a small peak at this frequency, however the extra determinant

factor in Eq. (5.41) leads the shape of the frequency trend to closely resemble the noise curve. The grey

regions around ∼ 6.34× 10−8 Hz and ∼ 3.17× 10−8 Hz correspond to a loss of sensitivity of the PTA

due to conversion of topocentric TOAs to barycentric TOAs and fitting for parallax, respectively.
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where C denotes the prior volume.

In Fig. 5.10 we show the results of an application of the Bp statistic to a Type I dataset

with an injected GW frequency equal to 2 × 10−8 Hz. The Fp statistic performs very well and

unambiguously locates the correct signal frequency. While the Bp statistic also shows a small

peak at this frequency, the extra determinant factor in Eq. (5.41) causes the trend in frequency

to show significant features of the noise curve. Hence, in this isolated case, Bp significantly

underperforms Fp.
The form of the Bp statistic has been previously arrived at in the context of LIGO data anal-

ysis [430], where uniform priors for aiα was shown to be very unphysical, and more physically-

motivated priors were suggested. This was further explored in Ref. [431], where a new set of

coordinates was found which are linear combinations of aiα, but which have a closer relation-

ship to the physical parameter space. This improved the accuracy of the approximate analytic

Bayes factor calculation with respect to the full numerical result. We do not explore this coor-

dinate transformation here, but will consider this promising route in future work.
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Then he waited, marshaling his thoughts and

brooding over his still untested powers. For

though he was master of the world, he was not

quite sure what to do next. But he would think

of something.

Arthur C. Clarke, 2001: A Space Odyssey

6
A New Window On The Cosmos

6.1 Cosmology & astrophysics with gravitational waves

The third millennium began with exciting steps forward for gravitational wave astrophysics.

On the theoretical front, breakthroughs in numerical relativity (in addition to NR-calibrated

EOB waveforms) have allowed the first explorations of the complex merger phase of black-

holes (BHs). By stitching these approaches together with highly successful post-Newtonian

waveform templates for the early-inspiral phase, we are now in a position to model the orbital-

evolution, dynamics, and GW emission of CO mergers right through their coalescence to the

ring-down of the resulting BH. There is a growing international community of researchers com-

mitted to investigating the prospects for GWs to act as a completely new tool with which to

explore the cosmos, and to develop sophisticated data-analysis techniques to tackle the chal-

lenging problem of detection. On the experimental front, the first kilometre-scale ground-based

GW interferometers were brought online and achieved design sensitivity, creating a global net-

work of instruments which have the near-future potential to make the first direct detections

of GWs. Precision timing of Galactic millisecond pulsars may offer insights into the nanohertz

band of GWs, where a stochastic background signal bathes all pulsars in our observed ensemble

and creates correlated deviations of the pulse arrival-times from precisely constructed models.

Within ∼ 20 years we may also see a space-borne GW laser interferometer with ∼ 109 m
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arms, which will have a guaranteed source population, as well as the ability to test fundamental

physics in the 0.1 mHz to 0.1 Hz band.

In this thesis we have attempted to explore the prospects for near-future GW observations

to complement existing astrophysical probes and to offer unique insights into GW source pop-

ulations. In Part I we reviewed GW theory, providing a concise introduction to the spectrum

of GW sources and detectors. In the context of ground-based efforts, Part II describes our ex-

plorations of the potential for inspiraling NS-NS binaries (which are the best bet for the first

direct detection) to act as cosmological standard sirens, allowing a measure of the source lu-

minosity distance calibrated entirely by our understanding of gravitation. With the distance,

and candidate redshift distributions obtained via prior knowledge of the intrinsic distribution of

masses of these systems, we can probe cosmological parameters in addition to the star-formation

rate of the progenitor population. An intriguing approach to detecting GWs is the method of

pulsar-timing, which is an area experiencing rapid growth to which the author has been fortu-

nate enough to contribute. Our efforts to fully characterise the nanohertz GW-sky by probing

the level of anisotropy in a stochastic GW background are reviewed in Part III, along with

new techniques to accelerate parameter-estimation and model-comparison for single resolvable

SMBH binaries affecting the arrival-times of pulsar signals.

6.1.1 Cosmology without counterparts

GW signals from inspiraling stellar-mass CO binary systems pose the greatest chance of the

first direct detection of GWs. In the advanced-era of kilometre-scale ground-based detectors,

we will have Advanced LIGO operating in the US, Advanced Virgo in Italy, GEO-600 in Ger-

many, LCGT in Japan, and possibly a LIGO-type detector in India. This will form a global

network of precision large-scale instruments sensitive in the 10 Hz to 10 kHz range of GW fre-

quencies, where the dominant source population will be these stellar-mass COs. In particular,

a range of population-synthesis simulations and extrapolations of observed Galactic systems

give a realistic detection rate of ∼ 40 NS-NS binaries per year by a network of detectors op-

erating within this decade. Additionally, these systems are thought to be the best candidate

for short GRB progenitors, where the cataclysmic release of energy in a GRB may have merg-

ing COs as the engine driving the collimated outflow. As such, a coincident observation of an

inspiraling NS-BH or NS-NS binary in GWs with electromagnetic detections of a short GRB

will be strong evidence that these phenomena are one and the same. Other electromagnetic

signatures, such as radio afterglows or observations of the radioactive decay of r-process syn-

thesised heavy-elements (kilonovae), will drive forward multi-messenger astronomy, where EM

detections inform GW searches, and vice versa.

A network of GW interferometers will be able to use time-delay information to triangulate
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sources on the sky, disentangling angular factors in the GW strain-amplitude from the lumi-

nosity distance, and thus permitting a measure of source distances which will be completely

independent of the current cosmic-distance ladder. These GW standard sirens would be cali-

brated entirely by our understanding of gravitation. With an associated redshift measurement

we can use these systems to probe the distance-redshift relation for constraints on cosmological

parameters. This redshift information may come from electromagnetic counterparts, however

the beaming angle of short GRBs may be such that only a small fraction of GWs will have

observable electromagnetic signatures. With their isotropic emission, kilonovae offer better

counterparts for redshift determination. We may also be able to extract the source redshift from

tidal coupling corrections to the GW phase at 5 pN order, although these corrections will be

manifest in the late inspiral where the sensitivity of advanced detectors will be low. Instead, we

developed a technique based on the observed intrinsic narrowness of the distribution of masses

in NS-NS systems. By measuring the redshifted chirp mass from the GW phase evolution in our

interferometers, we can use prior constraints on the NS mass distribution to construct candidate

redshift distributions.

In Chapter 2 we studied this technique in the context of an advanced interferometer network.

With a catalogue of∼ 100 detections (corresponding to a few years of observations) giving red-

shifted chirp mass and luminosity distance information, we found that if the underlying NS

mass distribution was a Gaussian with mean 1.35M� and half-width 0.06M�, then our tech-

nique could constrain the Hubble constant, H0, to within ∼ 15%. This search also constrained

the mean and half-width of the NS mass distribution, thereby providing insights on cosmolog-

ical and astrophysical scales. Although our reference mass-distribution width of 0.06M� is a

reasonable choice based on the observed Galactic sample, we also investigated how the preci-

sion of H0 recovery scales with the width of the underlying distribution. In this case, we found

the trend was linear, such that if the width of the distribution was really ∼ 0.12M� then we

would require∼ 400 detections for the same precision on H0. We found that the effect of incor-

porating distance measurement errors in an advanced-era network only degraded measurement

precisions of the Hubble constant by ∼ 20%, which can be mitigated through increased obser-

vation time. Furthermore, when we restricted the horizon-distance of our network by increasing

the SNR detection threshold, then the corresponding precision on the Hubble constant was de-

graded, roughly obeying the relationship δH0/H0 ∝ ρthreshold. We can improve our technique

by including precision redshift information from EM counterparts. By associating a fraction of

a our catalogue with electromagnetic signatures, we found that a counterpart-fraction of∼ 10%

could more than double the precision of Hubble constant recovery.

We extended our technique in Chapter 3, where we explored the prospects for a third-

generation network, including the proposed Einstein Telescope, to probe the dark energy equation-
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of-state and the star-formation rate of the NS-NS progenitor population. The Einstein Telescope

has a rather novel design, consisting of an underground, cryogenically-cooled and seismically-

isolated low-frequency instrument, as well as a surface-sited high laser-power high-frequency

instrument, all in a 10 km arm-length equilateral triangle configuration. Third-generation in-

terferometers aim for a broadband order of magnitude increase in strain-sensitvity, as well as

pushing the sensitivtiy down to ∼ 1 Hz. The huge cosmological volume to which these instru-

ments would be sensitive would potentially create detection rates of the order of ∼ 105 yr−1,

and push the horizon-distance out to Gpc-scales. With this we found that we could constrain

evolving dark energy EOS parameters to a similar precision as conventional EM techniques in

forthcoming experiments. However, the real breakthrough is our ability to probe the delay-time

between formation of the double CO binary and the resulting merger, and consequently the star-

formation rate (SFR) of the progenitor popululation. The parameters describing the slope of the

delay-time distribution and the shape of the SFR density were constrained to within ∼ 10% in

our reference catalogue of ∼ 105 detections.

It will be an interesting extension of this work to fix our cosmological parameters at the

values given by the current concordance framework, and to directly reconstruct the mass dis-

tribution of the double CO systems. This method could be applied to NS-NS, NS-BH and

BH-BH binaries. Population synthesis studies indicate that BHs formed from lower metallic-

ity progenitor stars tend to be heavier. A lower metallicity star will have a lower abundance

of heavy-elements in the stellar atmosphere, resulting in a lower wind mass-loss rate than in a

solar metallicity environment, and permitting the star to remain more massive during its evo-

lution. This results in a heavier post-supernova compact-remnant. Hence an investigation of

the mass distribution of double CO systems offers the potential to investigate the properties and

environment of the progenitor population.

6.1.2 The Milky Way as a gravitational wave antenna

A novel approach to GW detection utilises the high-precision timing of the exquisitely stable

pulsed emission of Galactic millisecond pulsars. These are rapidly rotating neutron stars which

have been spun-up by binary mass-transfer, with misaligned magnetic-field and rotational axes.

The rotating magnetic-field generates a local electric-field along which charged particles from

the co-rotating magnetospheric plasma are accelerated to produce beamed radio emission. The

rotation of the pulsar sweeps this beam into our line-of-sight, creating a lighthouse effect. Re-

peated observation of these pulsars allows a timing-model to be constructed which describes all

deterministic influences on the pulse time-of-arrivals (TOAs). Subtracting a timing-model from

the raw TOAs leaves a collection of timing-residuals, encoding all unmodelled phenomena,

such as receiver noise, intrinsic pulsar-noise from rotational instabilities, and, most tantalis-
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ingly, GWs.

A gravitational wave passing between the Earth and a pulsar perturbs the space-time metric

along the Earth-pulsar line-of-sight, inducing irregularities in the phase of the received radio

pulses. We search for GWs in the stream of residuals after a timing-model has been fit. The

GW frequencies to which our techniques are sensitive is set by the total observational base-

line and the regularity of observation, respectively, corresponding to ∼ 10−9 − 10−7 Hz. The

dominant GW sources to which pulsar-timing may be sensitive are a cosmological population

of inspiraling SMBH binaries, formed via the ubiquitous mergers of massive galaxies in the

current hierarchical structure formation paradigm. In fact, there are so many of these mas-

sive (& 108M�), nearby (z . 2) systems that they stack up in the frequency-domain beyond

the resolution of pulsar-timing, thereby forming an unresolved stochastic GW background. At

higher frequencies the stochasticity of the signal breaks down, which opens up the possibility

of detecting and characterising individual SMBH binaries. There are now three major consortia

timing pulsars to sub-µs precision in the effort to detect GWs: NANOGrav (North America),

PPTA (Australia), and EPTA (Europe; of which the author is a member). These organisations

work together under the umbrella consortium of the IPTA.

The work in Chapter 4 introduced new techniques to constrain the levels of anisotropy in a

nanohertz stochastic GW background. By timing arrays of these Galactic millisecond pulsars,

we use the fact that the GW background will be bathing all pulsars in its influence, which

induces correlated deviations in the pulse TOAs between pulsars separated on the sky. This

creates a “smoking-gun” signature that leverages our search for GWs against other stochastic

noise processes. In fact, for an isotropic background the induced cross-correlation signature

depends exclusively on the angular separation of the pulsars, giving the famous Hellings and

Downs curve. When the background is anisotropic, however, the correlation signature is no

longer a simple function of the angular separation of the pulsars, but rather becomes strongly

dependent on the absolute positions of the pulsars relative to the angular distribution of GW

power.

By expanding the energy-density of the GW background in terms of spherical-harmonics, it

is possible to generalise the cross-correlation signature into a set of correlation basis-functions,

whose amplitudes become parameters in a stochastic background search. Building on the

theoretical work of Mingarelli et al. [393], we implemented this formalism to create the first

Bayesian data-analysis pipeline capable of constraining anisotropy in the nanohertz GW back-

ground. We tested this pipeline by developing a set of plugins for the pulsar-timing software

package TEMPO2 which allow the user to inject arbitrary levels of anisotropy into simulated

datasets. Our pipeline was able to constrain the coefficients of a spherical-harmonic decom-

position of the power in the background. Through Bayesian model-comparison, we found that
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very bright signals will be needed to infer the presence of anisotropy, where in an array of 36

pulsars, and for a decisive detection, we required the post-fit rms residual induced by the GW

background to be at least five times larger than the noise rms in each pulsar. The techniques we

developed will be applied to real searches in EPTA and IPTA data.

We plan to continue our efforts in this area with frequentist methods, by investigating how

detrimental our current assumptions of an isotropic background are with respect to realistic lev-

els of anisotropy, and if this may be harming our detection prospects. Developing a formalism

to describe the minimum angular scale to which current and future pulsar-timing arrays are

sensitive will also be a crucial issue when assessing the detection prospects of anisotropy.

Detections of single resolvable SMBH binaries in the nanohertz band will offer a comple-

mentary probe to eLISA/NGO of the massive BH population. Furthermore, reconstructing the

parameters of these systems may shed light on their environmental couplings in the early in-

spiral phase of the orbital evolution. The timing-residuals induced by an individual source are

composed of a pulsar-term and an Earth-term, corresponding to the signature of the metric per-

turbation as it passes the pulsar and Earth, respectively. When timing an array of pulsars, the

Earth-terms will add coherently together, while the pulsar-terms will all have different phases

as a result of their differing positions with respect to the source and distances from the Earth.

Although challenging, coherently including the pulsar-term in search algorithms is desirable

since it effectively extends the baseline of our observations by thousands of years, where each

pulsar-term records a snapshot of the SMBH binary evolution as the GW passes each pulsar. It

improves sky-localisation, and allows us to disentangle the binary chirp mass from its luminos-

ity distance.

Current Bayesian pipelines which incorporate the pulsar-term must search over the distance

to each pulsar, posing problems of high-dimensionality as we move into the era of large pulsar

arrays. In Chapter 5 we presented new techniques which numerically marginalise “on-the-

fly” over the phase offset of each pulsar-term from the Earth-term, in addition to sampling the

pulsar-distances from their prior electromagnetic constraints to compute the binary orbital fre-

quency of each pulsar-term. This collapses the dimensionality of the search space, allowing

rapid parameter-estimation and Bayesian-evidence evaluation which we showed to be in com-

fortable agreement with full searches. The computation time of these searches was reduced

from more than a day for the full search, to less than an hour (and in low SNR cases less than

five minutes) with our new techniques. The speed with which we can perform these analyses

will allow an exploration of the criteria required to make an unambiguous Bayesian claim of

GW detection, which we intend to address in the future. These techniques will be applied to

real data in upcoming EPTA and IPTA searches.
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BAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Baryon acoustic oscillation

BH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Black hole

CDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cold dark matter

CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Common envelope

CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Compact object

CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cosmic microwave background

DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Double neutron star

EOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effective one-body

EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electromagnetic

EOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation of state

EMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extreme mass-ratio inspiral

GRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gamma-ray burst

GR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General relativity

GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gravitational wave

GWB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Gravitational wave background

HMNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Hypermassive neutron star

ISCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Innermost stable circular orbit

ISM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interstellar medium

MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Markov chain Monte Carlo

MBH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Massive black-hole

MHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetohydrodynamic

MSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Millisecond pulsar

NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Neutron star

NR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Numerical relativity

ORF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overlap reduction function

PK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Post-Keplerian

PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Post-Newtonian

PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probability density function

PSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulsar

PTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulsar timing array
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PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power spectral density

RMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Root mean square

SGRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Short gamma-ray burst

SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal-to-noise ratio

SSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Solar system barycentre

SFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Star formation rate

SMBH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supermassive black-hole

TOA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time of arrival

TT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transverse-traceless

WD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . White dwarf
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107–132, 1985. 26
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[292] É. É. Flanagan and T. Hinderer, Phys. Rev. D, 77, 2, p. 021502, (2008), 0709.1915. 42

[293] L. Baiotti, B. Giacomazzo, and L. Rezzolla, Phys. Rev. D, 78, 8, p. 084033, (2008), 0804.0594. 42

[294] L. Rezzolla, L. Baiotti, B. Giacomazzo, D. Link, and J. A. Font, Classical and Quantum Gravity, 27, 11,

p. 114105, (2010), 1001.3074. 42
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