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MULTI-BASELINE SEARCHES FOR STOCHASTIC SOURCES AND BLACK

HOLE RINGDOWN SIGNALS IN LIGO-VIRGO DATA

Abstract

by Dipongkar Talukder, Ph.D.
Washington State University

August 2012

Chair: Sukanta Bose

We present a framework for the detection of stochastic gravitational-wave

(GW) backgrounds, from cosmological and astrophysical sources, using radiom-

etry with a network of gravitational-wave interferometers. The search statistic

itself is derived from the cross-correlations of the data across all possible base-

lines in a detector network, and reveals how much more sensitive a network is

than any of its component baselines. We model the neutron star distribution in

the Virgo cluster and apply the above framework to search for their stochastic

GW signature in LIGO-VIRGO data.

We also present a template-based multi-detector coherent search for per-

turbed black hole ringdown signals. Like the past “coincidence” ringdown

searches in LIGO data, our method incorporates knowledge of the ringdown

waveform in constructing the search templates. Additionally, it checks for con-

sistency of signal amplitudes and phases in the different detectors with their

different orientations and signal arrival times. We demonstrate the advantages

of implementing a coherent search in the ringdown search pipeline.
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PREFACE

The thesis focuses on the efforts to detect gravitational waves from neutron

stars and black holes. The work presented here is based on three peer-reviewed

journal publications [12, 13, 14], and my direct involvement in two LIGO-VIRGO

searches. My participation in all of these projects has been extensive. In the

context of signal processing, I studied coherent contribution of gravitational-

wave detectors to extracted signal power for different types of sources. In places

where I have presented results derived from LIGO data I have done so with

permission from the LIGO Scientific Collaboration (LSC). A part of the methods

and results presented here is under review and is potentially subject to change.

The opinions expressed here are my own and not necessarily those of the LSC.
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Chapter 1

Introduction: Gravitational waves

and their sources and detection

In 1916, Albert Einstein published his famous paper entitled “Die Grundlage

der allgemeinen Relativitätstheorie (The Foundation of the General Theory of

Relativity)” [1]. General Relativity (GR) describes how matter and energy affects

the curvature of space-time. The existence of gravitational waves is predicted in

GR. A gravitational wave is a fluctuation in the curvature of space-time that

propagates with the speed of light. It transports energy and momentum away

from the source. When two massive objects, like neutron stars, orbit each other,

space-time is stirred by their motion, and gravitational radiation ripples outward

into the universe. The key possible sources of gravitational waves are colliding

compact binaries, rotating non-axisymmetric neutron stars, stellar core collapse,

and stochastic background.

In General Relativity, the lowest mass multipole that produces gravitational

1



waves is the quadrupole. The conservation of energy and momentum forbids

gravitational wave emission associated with the monopole and dipole moments.

Gravitational waves (GWs) decrease in amplitude as the inverse of the distance

from the source. Owing to their extraordinarily weak interaction with matter,

GWs travel cosmological distances with negligible absorption or distortion. This

has made direct detection of gravitational waves extremely challenging. Never-

theless, the weakness of interaction enables us to obtain precise information on

their sources.

Indirect evidence for the existence of gravitational waves was found by Hulse

and Taylor [2]. They discovered a binary system, PSR 1913+16, that is composed

of a pulsar and a companion neutron star (NS). From the long term precise ob-

servations of the pulsar frequency, the decay rate of the orbital period was found

to be consistent with the predicted energy loss due to the emission of gravita-

tional waves. For this discovery, they were awarded the Nobel Prize in physics

in 1993. However, no one has yet succeeded in directly detecting gravitational

waves. Several kilometer-scale gravitational-wave detectors such as LIGO and

VIRGO have been constructed and a few more are in the process of being built

world-wide. Detection of gravitational waves is not only important to test GR

but also because it promises to open a new window for GW astronomy. It will

tell us about the dynamics of large-scale events in the universe like the death of

stars, and the birth of black holes (BHs).

2



1.1 Gravitational waves in general relativity

In this work, we adopt the following notation: The space-time coordinates are

denoted by xµ := (x0, xi) = (x0, x1, x2, x3) = (ct, x, y, z). While the Greek letters

(e.g. µ, ν) are space-time indices (0, 1, 2, 3), the Latin indices (e.g. i, j) denote

the three spatial coordinate labels, 1, 2, 3. Partial derivatives with respect to the

coordinates are abbreviated using the symbols ∂µ ≡ ∂/∂xµ and ∂µ ≡ ∂/∂xµ.

We also define a comma-notation to indicate derivatives, i.e., ∂β f ≡ f ,β and

∂β f ≡ f ,β. Repeated indices are summed over unless otherwise indicated.

The General Theory of Relativity asserts that the curvature of space-time is

gravity. Curved space-time is best described in Riemannian manifolds [3] by a

metric gµν, which is a function of the space-time coordinates xµ. The infinitesi-

mal proper distance dτ between two space-time events separated by coordinate

distance dxµ is given by

dτ2 = gµνdxµdxν, (1.1)

where the Einstein summation convention is understood on the right hand side.

In the limit of flat space-time, the metric gµν becomes the Minkowski metric

ηµν = diag(−1, 1, 1, 1).

The curvature and dynamics of space-time governed by the distribution and

kinematics of energy are expressed geometrically by the Einstein Field Equations

(EFE):

Gµν(g) =
8πG

c4 Tµν , (1.2)

where Gµν is the Einstein tensor, G is Newton’s constant and Tµν is known as

the stress-energy tensor. Due to its inherent nonlinearity, a complete description
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of the solutions of EFE is not yet possible. One class of solutions to the EFE is

obtained in the linearized theory close to flat space-time, i.e., where fields are

everywhere weak.

In weak gravity, the metric is approximately Minkowskian and can be de-

composed into the flat space-time metric plus a small perturbation,

gµν = ηµν + hµν , |hµν| � 1. (1.3)

The most general coordinate transformation of the form

xµ → xµ + ξµ(x) , |ξµ
,ν| � 1, (1.4)

preserves the form of the metric given by (1.3) if the perturbations are trans-

formed using the formula

hµν → hµν − ξµ,ν − ξν,µ . (1.5)

To see the physical effect of a gravitational wave it is useful to choose a gauge.

The Lorentz gauge freedom allows us to choose a coordinate system where the

trace-reversed metric perturbations,

h̄µν := hµν −
1
2

ηµνhα
α , (1.6)

are divergence free,

h̄ ,ν
µν = 0. (1.7)

This reduces the Einstein field equation to a simple wave equation:

�h̄µν = −16πG
c4 Tµν , (1.8)
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where � denotes the d’Alembertian operator:

� := ∂µ∂µ = − 1
c2

∂2

∂t2 +∇2. (1.9)

We now focus on a region of space outside the source where all the components

of the stress-energy tensor are zero, i.e.,

�h̄µν = 0. (1.10)

This allows us to impose the transverse-traceless (TT) gauge, defined by the

conditions:

h ,ν
µν = 0 (transverse) ,

h µ
µ = 0 (traceless) , (1.11)

which assures that the trace-reversed perturbation h̄µν is identical to the physical

perturbation hµν.

The effect of a gravitational wave on a test mass in space can be found by

looking at a plane wave solution of Eq. (1.10) under TT gauge with wave vector

kσ:

hµν(x) = Aµνeikαxα
, (1.12)

with kαkα = 0 and Aµνkν = A µ
µ = 0. Choosing the wave vector ki along the

z-axis, one can completely parameterize the amplitude Aµν by two independent

polarizations, h+ and h×:

Aµν :=



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (1.13)
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h+

hx

0   

Figure 1.1: The effect of the two polarizations h+ (top panel) and h× (bottom

panel) of a complete cycle of sinusoidal gravitational wave propagating through

the page on a ring of test particles.

A gravitational wave with h+ polarization stretches distance along x-axis and

shortens distance along y-axis during the first half cycle and does the opposite

during the second half cycle. The h× polarization does the same thing, but

in a coordinate system rotated by 45 degree. Figure 1.1 shows the effect of a

gravitational wave on a ring of particles.

1.2 Sources of gravitational waves

There are different kinds of “known” and “unknown” sources which generate

GW with different frequency spectra. Interferometric gravitational wave detec-

tors have achieved unprecedented sensitivity to gravitational waves, expected

from sources of different kinds. Depending on lifetimes and other characteris-

tics, the sources can be categorized as follows:

6



Transient: Transient sources are those which produce a very short duration,

a few milliseconds to a few minutes, gravitational wave signal. Brief transients

from violent events like a coalescing compact binary, composed of massive neu-

tron stars and/or black holes and asymmetrical core collapse in supernovae are

in this category. Core collapse in massive stars has long been regarded as likely

to be an important source of gravitational waves.

According to GR a binary system composed of either neutron stars and/or

black holes (NS-NS, BH-NS, BH-BH) emits gravitational radiation at twice the

orbital frequency, causing the orbit to shrink. As a result, the components of

the system spiral in towards one another eventually combining to form a single

object, most likely a black hole, which too radiates gravitational waves as it ap-

proaches a stable state. The time when the two objects orbit around one another

is called “inspiral phase” and the gravitational wave emitted is reasonably well

modeled. However, the final few orbits and plunge in towards one another is

still “poorly” understood. This phase is called the “merger phase”. Numerical

relativity plays an important role in modeling the waveform associated with the

merger phase. The final phase is known as “ringdown phase”, and its gravi-

tational radiation waveform is well modeled in black hole perturbation theory.

However, a large class of transients including the most violent and catastrophic

ones are unmodeled.

Continuous: Periodic sources like pulsars and inspiraling binaries which

emit GW continuously over a long duration without significant change in their

characteristics are called continuous sources. A rapidly spinning neutron star

emits gravitational wave if its shape deviates from axisymmetry or its rotation
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is wobbling. Vibrational modes of a neutron star, if driven by accretion or an

instability, also would emit continuous GW for a long period of time.

Stochastic: Stochastic backgrounds of gravitational waves are produced by a

superposition of a large number of independent, uncorrelated astrophysical and

cosmological origin that are not individually resolvable.

Depending on source characterizations, there exists several search methods.

The GW signals from compact coalescing binaries have been “precisely” mod-

eled using post-Newtonian approximations, hence matched filtering technique

is used for extracting the true GW signal buried in strong detector noise. For

the unmodeled transients, most approaches involve looking for excess power in

certain frequency bands at certain times. A targeted search, by correlating sig-

nals from two detectors with a time dependent phase factor that accounts for

the light travel time delay between two detectors, is the best strategy for the

detection of GW from known radio pulsars. Since the stochastic signals are un-

modeled, the best strategy to detect stochastic sources is by correlating outputs

of two detectors with appropriate time delays.

1.3 Principle of a GW detector

In a nutshell a laser interferometric gravitational-wave observatory is a sensi-

tive interferometer that measures the change in relative spatial distance of sus-

pended test masses induced by an impinging gravitational wave. Figure 1.2 is

a schematic of an earth-based laser interferometric detector. The basic principle

on which a detector works is that of interference of light waves. Each of the two
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orthogonal arms of the interferometer contains a pair of mirrored test masses

which form a Fabry-Perot optical cavity [4]. Laser light is divided at the beam

splitter, and reflected from the cavities in each arm. This reflected light acquires

a phase shift which is very sensitive to the separations of the test masses. These

phase shifts are then compared when the light recombines at the beam splitter.

If there is an impinging gravitational wave it will act to stretch or squeeze the

surrounding space-time, effectively causing distances to shrink in one arm while

stretching in the other. This then leads to an overall phase difference in the light

of the two arms.

Suppose the interferometer in Fig. 1.2 is arranged such that its arms lie along

the x and y axes. Suppose further that test masses are separated by a distance L

along the arms. When a gravitational wave with polarization h+ passes through

the interferometer, the separation between the two masses in the x arm is given

by

Lx(t) =
√

L gxx L ≈
(

1 +
h+(t)

2

)
L , (1.14)

whereas, in the y arm,

Ly(t) ≈
(

1− h+(t)
2

)
L . (1.15)

The wave is thus detectable by measuring the length difference between two

arms. The fractional difference in length of the two arms is given by

δL(t)
L

:=
Lx(t)− Ly(t)

L
= h+(t) . (1.16)

Generally, both polarizations of the wave influence the test masses and hence,

δL(t)
L

= F+h+(t) + F×h×(t) ≡ h(t), (1.17)
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Figure 1.2: Simplified schematic of an earth-based interferometric detector,

showing its primary components.

where F+ and F× are antenna response functions, which depend on the source

location and the detector orientation, which changes with time, as the Earth

spins (see Appendix A.1). Since a gravitational wave induces a strain in the de-

tector, h(t) is often referred to as the “gravitational wave strain”. As an example,

the typical strain induced by a GW from a NS-NS binary in the Virgo cluster is

h ∼ 10−21. To be sensitive to such a strain, we need to measure δL = hL ∼ 10−18

m with 4 km long arms.

The principal noise sources affecting interferometer sensitivity are background
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motions of the test masses, mainly due to seismic noise, thermal noise, and noise

in sensing the test mass motion due to laser noise, quantum fluctuations of the

light, and fluctuations in the number of residual gas molecules traversing the

optical beams. Among them, the seismic noise and the photon shot noise limit

the sensitivity of the interferometers at low and high frequencies, respectively.

The thermal noise associated with thermal vibration of mirrors and their suspen-

sion limits the sensitivity of the detectors in the intermediate band. Figure 1.3

illustrates how the different noise sources contribute to the sensitivity of the first

generation LIGO detectors.

Figure 1.3: An illustration of the sensitivity of the first generation LIGO detectors

along with the different noise sources that impact the sensitivity [9].

Table 1.1 specifies the locations of both existing and planned detectors all
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over the world. Currently, there are three LIGO detectors: Livingston, Louisiana

hosts one detector of arm length 4 km and Hanford, Washington hosts two de-

tectors of arm lengths 2 km and 4 km. The French-Italian 3 km long VIRGO

detector is located at Cascina, Italy. In the past few years, these first generation

detectors have successfully operated at or near design sensitivity [5, 6]. Fig-

ure 1.4 shows the strain amplitude spectral densities of LIGO detectors during

their S5 science runs. The LIGO/VIRGO detectors are currently in the process of

being upgraded to advanced configurations that are due to come on line in 2015.

The new detectors will improve the strain sensitivity of current instruments by

a factor of ten, while also lowering the start of the sensitive frequency range

from 40 Hz down to 10 Hz, resulting in a thousandfold increase in the observ-

able volume of space. Construction of a Japanese second generation 3 km long

cryogenic gravitational-wave detector, KAGRA, has been started [7]. KAGRA

was previously known as LCGT for Large-scale Cryogenic Gravitational-wave

Telescope. There is a proposal for an Indian detector (INDIGO), the site for

which has not been selected yet. The British-German 600 m long GEO is located

near Hannover, Germany and is mainly used for testing optics for LIGO/aLIGO

detectors [8].

Figure 1.5 shows, along with the noise ñ( f ) curves, the estimated signal

strengths h̃( f ) for various sources. The signal strength h̃( f ) is defined in such a

way that, wherever a signal point or curve lies above the interferometer’s noise

curve, the signal, coming from a random direction in the sky and from a source

with a random orientation, is detectable with a false alarm probability of less

than one percent.
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Table 1.1: The geographic location and orientation of an international network of

gravitational-wave interferometers. The orientation is the geographic compass

angle, measured clockwise from north, of the line bisecting the arms of the

detector [10].

Detector Label Longitude Latitude Orientation

LIGO Livingston, LA L (L1) 90◦ 46′ 27.3′′ W 30◦ 33′ 46.4′′ N 208.0◦

LIGO Hanford, WA H (H1 & H2) 119◦ 24′ 27.6′′ W 46◦ 27′ 18.5′′ N 279.0◦

VIRGO, Italy V (V1) 10◦ 30′ 16′′ E 43◦ 37′ 53′′ N 333.5◦

KAGRA, Japan K (K1) 137◦ 18′ 36′′ E 36◦ 24′ 36′′ N 16.69◦

INDIGO, India I 74◦ 02′ 59′′ E 19◦ 05′ 47′′ N 270.0◦

10
1

10
2

10
3

10
4

10
−24

10
−22

10
−20

10
−18

10
−16

Frequency [Hz]

h
(f
)
[1
/
√
H
z]

Final S5 Strain Sensitivity of the LIGO Interferometers

 

 

LHO 4km−(2007.03.18)

LLO 4km−(2007.08.30)

LHO 2km−(2007.05.14)

LIGO I SRD Goal, 4km

Figure 1.4: Strain amplitude spectral densities of LIGO detectors during their

S5 science runs. For comparison, the solid magenta curve shows the design

reference noise budget of first generation LIGO interferometers.
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band (WB) LIGO-II plotted as a function of gravitational wave frequency f , and

compared with the estimated signal strengths h̃( f ) from various sources [11].
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Chapter 2

Detecting an anisotropic stochastic

background with multi-baseline GW

radiometry

The Cosmic Microwave Background (CMB) was first detected, serendipitously, in

1964 by Penzias and Wilson [15]. This discovery supports that the universe had a

beginning permeated by the cosmic microwave background as predicted by ear-

lier theories [16]. The universe is also expected to have Stochastic Gravitational

Wave Backgrounds (SGWBs) of cosmological and astrophysical origin. Incoher-

ent superposition of unmodeled and/or unresolved sources of GWs constitute

a SGWB [17]. The GWs from these sources could be too weak to be detected

separately. But if the number of sources that contribute to each frequency bin is

much larger than one, then searching their GW profiles in LIGO and Virgo data

is an interesting prospect.

15



The LIGO Scientific Collaboration and the Virgo Collaboration are search-

ing for transients, continuous signals and stochastic backgrounds in the data

from their detectors. The search for an isotropic stochastic GW background has

caught significant attention due to its cosmological significance. This primor-

dial GW background is a direct probe of cosmological inflation [18]. It is well

established that the cosmic microwave background is isotropic, which indicates

that the early universe was highly isotropic. But the assumption of isotropy

for SGWB may not be true. For example, if the dominant source of stochastic

gravitational waves in the frequency band of the earth-based detectors is an en-

semble of nearby astrophysical sources, such as low-mass x-ray binaries or, even,

coalescing compact objects, then the stochastic background will have a distinct

anisotropy. The astrophysical GW background (AGWB) is of major interest in

this chapter.

2.1 The stochastic GW backgrounds

In the early universe, inflation produced a stochastic background of gravita-

tional waves through the parametric amplification of primordial quantum fluc-

tuations [19]. Unfortunately this background itself is too weak to be directly

detected with existing ground-based detectors. In the period following inflation

there are a number of mechanisms that may have operated to produce addi-

tional SGWB from inhomogeneities in the fields that populate the early universe.

For example, first-order phase transitions in the early universe can generate a

stochastic background of gravitational waves that may be detectable today [20].
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Figure 2.1: The spectrum of stochastic gravitational waves in inflationary models

is flat over a wide range of frequencies, and is shown as the solid curve [17]. The

horizontal axis is log10 of frequency, in Hz. The vertical axis is log10 ΩGW defined

in Eq. (2.8).

Fig. 2.1 shows the spectrum of a SGWB predicted by inflationary models that

exist today over a wide range of frequencies. The inflationary spectrum rises

rapidly at low frequencies and falls off above the frequency scale fmax asso-

ciated with the fastest characteristic time of the phase transition at the end of

inflation. Because the spectrum falls off as the inverse of the square of frequency

at low frequencies, this is certainly too small to be detectable with either initial

or advanced LIGO. Although LIGO has not yet detected a gravitational wave

signal, it has ruled out some early-universe models that predict a relatively large

stochastic GW background as shown in Fig. 2.2. The data rule out models of
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early universe evolution with a relatively large equation-of-state parameter, as

well as cosmic (super)string models with relatively small string tension that are

favored in some string theory models. This search for the stochastic background

improves on the indirect limits from Big Bang nucleosynthesis and cosmic mi-

crowave background at 100 Hz [18].

Figure 2.2: The 95% Bayesian upper limit of the point estimate of a constant

SGWB spectrum, Ω0 < 6.9× 10−6 is shown by a solid bar denoted as “LIGO

S5”. The upper limit is calculated from LIGO S5 data, using LIGO S4 result

as a prior for Ω0 and is valid for the frequency band 41.5-169.25 Hz [18]. The

projected advanced LIGO sensitivity (aLIGO) is also shown here.

In addition to the cosmological background, an astrophysical contribution

may have resulted from the superposition of a large number of unresolved as-

trophysical sources, whose frequency is expected to evolve very slowly com-

pared to the observation time [21]. These can be either short-lived burst sources,
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such as stellar core collapses to neutron stars or black holes, phase transition

or quickly damped oscillation modes in young neutron stars, the final stage of

compact binary mergers, or long-lived sources, typically non-axisymmetric ro-

tating neutron stars, the early inspiral phase of compact binaries or captures of

stellar mass compact objects by supermassive black holes.

Fig. 2.3 shows the gravitational wave spectra plotted as a function of ob-

served frequency for potentially significant AGWBs and their detectability using

the two upcoming advanced LIGO detectors. The detectability of an AGWB is

determined by the detector sensitivity, which sets the detection horizon. As the

sensitivity of LIGO improves and the next generation of GW observatories come

on line, it is plausible that AGWBs can be observed for the first time, providing

new insights into both the sources generating them and the evolutionary history

of the universe.

2.1.1 The detector strain due to a SGWB

As we saw in Chapter 1, a gravitational wave is the propagation of a metric

perturbation. In the transverse traceless gauge, the spatial part of the metric

perturbations due to a SGWB can be written as a superposition of plane waves

hab(t, r) =
∫ ∞

−∞
d f
∫

S2
dΩ̂ eA

ab(Ω̂) h̃A( f , Ω̂)ei2π f (t+Ω̂·r/c) , (2.1)

where a and b are spatial indices, eA
ab(Ω̂) are the components of the gravitational

wave polarization tensors, A = {+,×} is the polarization index, and Ω̂ is a

unit vector pointing in the direction of wave propagation. Since the GW strain

hab(t, r) is real, the complex Fourier amplitudes h̃A( f , Ω̂) satisfy the reality con-
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Figure 2.3: Gravitational wave spectrum as a function of observed frequency

for potential AGWB sources [21]. Theoretical limits for several primordial GW

background models are plotted as horizontal lines and the detection sensitiv-

ity from correlating two advanced LIGO type interferometers is shown as the

dashed curve (labeled by “2 LIGO ad”).

dition, h̃A(− f , Ω̂) = h̃∗A( f , Ω̂).

The polarization tensors can be defined in terms of the spherical polar coor-

dinates, θ ∈ [0, π], φ ∈ [0, 2π], on the sky. Let us define

Ω̂ = sin θ cos φ x̂ + sin θ sin φ ŷ + cos θ ẑ ,

m̂ = cos θ cos φ x̂ + cos θ sin φ ŷ− sin θ ẑ ,

n̂ = − sin φ x̂ + cos φ ŷ , (2.2)

20



so that {m̂, n̂, Ω̂} form a right-handed system of unit vectors. The axes are de-

fined as follows: For a fixed but arbitrarily chosen origin of time t = 0, x̂ is di-

rected towards the intersection of the equator and the longitude φ = 0, ẑ points

at the Celestial North Pole, and ŷ is chosen orthogonal to the previous two axes,

forming a right-handed triad. Then, the polarization tensor components eA
ab(Ω̂)

are defined as

e+ab(Ω̂) = m̂am̂b − n̂an̂b ,

e×ab(Ω̂) = m̂an̂b + n̂am̂b . (2.3)

in the aforementioned right-handed orthogonal basis.

Understanding the signal excited in an interferometric detector by a SGWB

is helped by specifying the detector’s location and orientation in the above or-

thogonal basis. Let the Ith GW detector be located at rI(t), and let X̂I(t) and

ŶI(t) be the unit vectors pointing along its arms. These three detector location

and orientation vectors are all time-dependent due to the Earth’s rotation. Then,

the components of the Ith detector tensor are given by

dab
I (t) =

1
2

[
X̂a

I (t) X̂b
I (t)− Ŷa

I (t) Ŷb
I (t)

]
, (2.4)

and

hI(t) = hab(t, rI(t)) dab
I (t) , (2.5)

is the strain in it due to the SGWB.

The response of a detector to the polarization component A of a wave inci-

dent from direction Ω̂ is given by the antenna response function

FA
I (Ω̂, t) = dab

I (t) eA
ab(Ω̂) , (2.6)
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where we assumed the Einstein summation convention over the repeated indices

a and b. Contracting Eq. (2.1) with the detector tensors dI , the GW strain signal

in the Ith detector can be expressed as

h(t) ≡ hI(t) =
∫ ∞

−∞
d f
∫

S2
dΩ̂ h̃A( f , Ω̂)FA

I (Ω̂, t)ei2π f (t+Ω̂·rI(t)/c) , (2.7)

in terms of the antenna response functions.

2.1.2 Statistical properties of the signal and detector noise

The intensity of a stochastic GW background is usually characterized by a di-

mensionless quantity, GW spectrum

ΩGW( f ) :=
1
ρc

dρGW

d ln f
, (2.8)

where dρGW is the energy density of the gravitational radiation in the frequency

range f to f + d f and ρc is the critical energy density follows from the Friedman

equation,

ρGW =
c2

32πG
〈ḣab(t, r)ḣab(t, r)〉 ,

ρc =
3c2H2

0
8πG

, (2.9)

where H0 is the Hubble expansion rate for today. Here, ΩGW is not to be con-

fused with the unit vector Ω̂ defined in Eq. (2.2).

The Fourier components of the strain h̃A( f , Ω̂) describing a stochastic GW

background are random variables whose expectation values define the statistical

properties of the background. Without loss of generality we assume that these

components have zero mean:

〈h̃A( f , Ω̂)〉 = 0, (2.10)
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where the angular brackets denote statistical average. In the presence of a signal,

the time series of the Ith detector’s output xI(t) is a sum of the GW signal hI(t)

and the detector noise nI(t):

xI(t) = hI(t) + nI(t). (2.11)

Statistically, the gravitational wave strain hI(t) is uncorrelated with the detector

noise, implying that

〈hI(t) nJ(t′)〉 = 0 , (2.12)

for all I and J. We also assume that the noise is Gaussian with zero mean, i.e.,

〈nI(t)〉 = 0, and is uncorrelated in different detectors, namely,

〈nI( f ) nJ( f ′)〉 = 1
2

δ( f − f ′)δI Jξ(I)( f ) , (2.13)

where ξ(I) is the one-sided noise power spectral density (PSD) of the Ith detector.

The last assumption is not unreasonable when the detectors are widely separated

across the globe.

2.2 Principle of a GW radiometer

Radiometry or aperture synthesis is a well-known technique in radio astronomy

and CMB experiments [22, 23]. The principle of earth rotation aperture synthesis

can be used well for extracting the anisotropies of GW background using pairs

of GW detectors [24]. Since the noise streams in different detectors are uncorre-

lated, the cross correlation between the outputs from a pair of detectors with an

appropriate direction dependent filter is the best statistic for the estimation of

the strength of stochastic signals that may be present in those outputs.
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A gravitational wave radiometer can be thought of as a pair of GW detec-

tors separated by a distance, termed as the baseline (see Fig. 2.4). Owing to the

earth’s rotation, the baseline vector changes direction while keeping its mag-

nitude fixed and hence allows a time-dependent phase delay for a particular

direction of the sky. This delay corresponds to the difference between the times

of arrival between two detector sites of GW signals from that direction. The

cross correlation of the data from the two detectors with appropriate time de-

lays would cause potential GW signals interfere constructively from the same

direction. Whereas signals from other directions will tend to cancel out because

of destructive interference.

.

r

∆ r

Ω̂−

Ω̂−

Ω̂−

Detector 1 Detector 2

(t)

(t)

∆

Figure 2.4: Geometry of an elementary GW radiometer [24].

In Fig. 2.4 two detectors are at locations rI (where, I = 1, 2), and the baseline

vector joining the two sites is 4r := r2 − r1. The unit vector Ω̂ is the direc-

tion to the source, which is fixed in the barycentric frame. The phase difference

−Ω̂ · 4r(t) between signals arriving at two detector sites from the same direc-

tion is shown in the figure. The baseline vector 4r rotates with the rotation

of the earth, while keeping its magnitude fixed. The modulation of the cross-

correlation of the SGWB signals in the detector pair can be modelled for each
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Ω̂. By searching for this modulation pattern in the detectors’ data one can infer

the nature and sky position of the source. A map of the SGWB can be, thus,

constructed by performing this synthesis for each location in the sky, patch by

patch. The sky resolution can be naively estimated from the diffraction formula

4θ ∼ λGW/(|4r| sin θ), where λGW is the GW wavelength and θ is the angle of

incidence. So, e.g., for λGW = c/1000Hz, |4r| = 3000km, and θ = 900 (over-

head source), 4θ ≈ 0.1 radians. A better estimate of the resolution follows from

considerations involving the pixel-to-pixel Fisher information matrix [26, 13], in

which case the solid-angle resolution scales inversely proportional to the square

of the signal-to-noise ratio.

A variety of data analysis strategies to search for an anisotropic GW back-

ground have been proposed and implemented in the past [27, 28, 29, 30, 31, 32].

These searches are usually performed in one of two types of bases in the sky,

namely, the pixel or spherical harmonic basis. Use of the radiometer technique

for searching a GW background was proposed in Ref. [33] and was implemented

in the pixel basis on data from LIGO’s fourth science run [34]. An elaborate

study of this method, including the maximum-likelihood (ML) estimation of the

true anisotropy of GW background by deconvolving the observed sky map, was

presented in [24]. Even though the pixel-based search is promising and simpler

to understand, it is not the best basis for probing sources with angular spreads

greater than the angular resolution of the GW radiometer. The spherical har-

monic basis is expected to be better suited for detecting such sources [14]. Past

attempts at probing the GW anisotropy in the spherical harmonic basis were es-

sentially studies of the periodic modulation of the observed background in the
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detector baselines. Recently, a general ML formalism was developed to search

for the GW anisotropies in any basis, including the spherical harmonic basis, us-

ing a network of ground-based GW interferometers [14]. The pixel-based search

is a specific application of this formalism. One of the main goals of this chapter

is to perform a thorough comparison of the expected performances of individual

baselines and the whole network in detecting an astrophysical stochastic gravi-

tational wave background (SGWB) and in estimating its parameters. The pixel

basis is used for this study.

Even though a pixel-based search is optimal for a localized source, the res-

olution of the source is limited by the length of the radiometer baselines, the

orientation of the detectors, and their individual sensitivities. Probing a stochas-

tic GW background with energy distributed across the pixelated sky demands a

statistically meaningful integration of the energies received in every pixel. In or-

der to accomplish this, we extend the maximized-likelihood ratio (MLR) statistic

for a single baseline to incorporate a network of detectors or, equivalently, mul-

tiple baselines. The rest of the chapter is based on Ref. [13] and devoted to

studying the performance of individual GW detector baselines and the whole

network by comparing different figures of merit for their performance, e.g., sen-

sitivity, accuracy in localizing sources, sky coverage, and faithful extraction from

the data of the sky distribution of a stochastic background.
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2.3 Optimal search statistic

2.3.1 Cross correlation statistic

Since the targeted source is stochastic, we search for its GW signal by looking

for correlated patterns in the data of two or more detectors after accounting for

time delays and detector responses consistent with a given sky location. This

is done by cross-correlating the data xI(t) from the detectors, taken in pairs,

with a sky-position-dependent time-frequency filter Q̃k(t; f ), labeled by the sky-

position index k. The cross correlation statistic combined for the observation

period T for the data x1,2(t) from two detectors or, equivalently, for a baseline is

defined as

Sk = 4 ∆t
T

∑
t=0

∫ ∞

−∞
d f x̃∗1(t; f )x̃2(t; f )Q̃k(t; f ) , (2.14)

where x̃I(t; f ) is the short-term Fourier transform of xI(t), over time interval ∆t,

and is defined as in Ref. [24] as

x̃I(t; f ) :=
∫ t+∆t/2

t−∆t/2
dt′ xI(t′) e−2πi f t′ . (2.15)

The filter that maximizes the signal-to-noise ratio (SNR) associated with this

statistic is a scalar, square-integrable function on the sky [24] and, hence, can be

resolved linearly in an appropriate basis, such as a pixel basis or the spherical

harmonic basis. In the former case, k is the pixel index. The SNR can be ex-

pressed in terms of the filter function and a multiplicative factor [35, 36]. One

of the multiplicative factors is the square root of observation time. This multi-

plicative factor means that we can dig out a weak signal from noise by allowing

a long enough observation time. The observation period could be from one
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sidereal day to several months.

Let an astrophysical GW background be modeled such that the Fourier com-

ponents of its GW strain h̃k
A( f ) of polarization A from the kth sky-position obey

〈h̃k∗
A ( f )h̃k′

A′( f ′)〉 = δAA′ δ( f − f ′)δkk′P k
(A) H( f ) , (2.16)

where P k
(A) is a dimensionless measure of the signal strength, and H( f ) is its

two-sided power spectral density, with units of Hz−1 [24]. Here, we assume the

signal to be stochastic and uncorrelated in the two polarizations, different fre-

quencies, and different sky locations. In the presence of a signal in the detector

data, the cross correlation statistic is

Sk = Bk
+k′P k′

(+) + Bk
×k′P k′

(×) + nk , (2.17)

where the beam function Bk
A k′ is analogous to the point-spread function that maps

the power in the object (or sky) plane to that in the image plane. The exact form

of the beam function is given in Eq. (2.22). The noise in the kth sky position is nk,

and Sk is termed as the dirty map [24]. We define P (A) as a vector, with P k
(A) as

its kth component, and BA as a matrix, with Bk
A k′ as its (k, k′)th element.

2.3.2 Detection statistic

To get a single detection statistic, one must combine the measurements of Sk for

all k. When the detector noises are Gaussian and uncorrelated, an assumption

borne out to sufficient approximation for our purposes, the nk are Gaussian with

a nontrivial covariance matrix, N, determined by the beam functions. The exact

form of N is discussed below.
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If an astrophysical GW background signal, characterized by the pixel-strength

vector P , is present in the data, then the probability density function of the ra-

diometer output S is given by

p(S|P) = (2π)−Npix/2 exp[−1
2
((S−B ·P)T ·N−1 · (S−B ·P)

+Tr[ln N])] , (2.18)

whereas in the absence of a signal it is

p(n) = (2π)−Npix/2 exp[−1
2
(nT ·N−1 · n + Tr[ln N])] . (2.19)

By the Neyman-Pearson criterion, the optimal detection statistic is the likelihood

ratio p(S|P)/p(n) [26].

For an unpolarized background from a source distributed across multiple

pixels and quantified by the signal-strength vector P = P (+) = P (×), the log-

likelihood ratio maximized over P ≡ ‖P‖ is

λ =
Sk(N−1)kk′(B · P̂)k′√

(B · P̂)q(N−1)qr(B · P̂)r
,

=
SkP̂ k√
P̂ qBqrP̂ r

, (2.20)

where P̂ is the unit vector along P . The beam matrix for an unpolarized source

(see Fig. 2.5) is given by

Bpq = B+pq + B×pq , (2.21)

= 8 ∆ f ∆t
T

∑
t=0

Γ(Ω̂q, t)Γ(Ω̂p, t)

×<
[

fu

∑
f= fl

e2πi f (Ω̂q−Ω̂p)·∆r(t)/cG(t, f )

]
, (2.22)
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where Γ(Ω̂q, t) is the time-varying baseline antenna-pattern, and G(t, f ) is a

measure of the spectral strength of the source relative to the baseline’s noise

PSDs:

Γ(Ω̂, t) := F+
1 (Ω̂, t)F+

2 (Ω̂, t) + F×1 (Ω̂, t)F×2 (Ω̂, t) , (2.23)

G(t, f ) :=
H2( f )

ξ(1)(t, f ) ξ(2)(t, f )
. (2.24)

Therefore the fractional energy density in gravitational waves ΩGW( f ) is related

Figure 2.5: Illustration of a GW radiometer beam pattern at declination +120 for

the LIGO detectors at Hanford and Livingston (with white noise, upper cutoff

frequency of 1024 Hz, H( f ) = constant and observation time of one sidereal

day). For low declination, the beam is shaped like the figure 8, while in the

higher declination, the 8 smoothly turns into a tear drop [24].

to the strain power spectrum through 1

ΩGW(| f |) = 8π2

3H2
0
| f |3H( f )

∫
S2

dΩ̂P(Ω̂) . (2.25)

1For an isotropic background the directionality is set to unity, i.e., P(Ω̂) = 1, which simplifies

Eq. (2.25) by
∫

S2 dΩ̂P(Ω̂) = 4π.
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In the weak-signal limit the noise-covariance matrix is approximately equal

to the beam matrix,

Npq ≈ Bpq . (2.26)

Its diagonal elements inform us about the sensitivity of the network to the dif-

ferent pixels in the sky for an SGWB with PSD H( f ).

The statistic λ is the maximized (log-)likelihood ratio for a single-baseline

SGWB search and is the same statistic introduced in Appendix C of Ref. [14].

Here, it is expressed specifically in terms of quantities defined in the pixel basis.

It has zero mean and unit variance in the absence of a signal. When a signal is

present in the data and its parameters are matched exactly by the template’s, the

mean of the statistic is

〈λ〉 = P
√
(B · P̂)k(N−1)kk′(B · P̂)k′ . (2.27)

The variance of the statistic remains unchanged. One can extend this single-

baseline statistic to the case of a multibaseline network. That statistic arises

directly from maximizing the log-likelihood ratio for a network and is given by

λN =
∑Nb
I=1 Sk

I(N
−1
I )kk′(BI · P̂)k′√

∑Nb
I=1(BI · P̂)q(N−1

I )qr(BI · P̂)r
,

=
∑Nb
I=1 SIk P̂ k√

∑Nb
I=1 P̂ qBIqrP̂ r

, (2.28)

where I is the baseline index and the subscript N highlights that this MLR

statistic is for a network of baselines.

The MLR statistic is a detection statistic for SGWBs in the same manner as

the standard matched-filter statistic is for deterministic GW sources. The latter
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is also obtained by maximizing the likelihood ratio with respect to the strength

of the deterministic source. Searching for a signal from a deterministic source

involves maximizing the matched-filter statistic over a bank of templates defined

on the signal’s parameter space. For SGWBs, as well, the detection statistic

can be the MLR, maximized further with respect to different SGWB models

given by P̂ , perhaps parametrized by a smaller number of parameters than

the number of components of P̂ . This is in contrast to the existing searches

for anisotropic GW backgrounds. Past dirty-map-based searches precluded the

presence of a signal by demonstrating that the map is consistent with a Gaussian

distribution, up to statistical fluctuations allowed by the number of independent

“samples” on the sky [34]. However, they did not provide a confidence level

for the presence or absence of a broadband or spatially extended signal. A

better approach is to solve the inverse problem in an orthogonal basis, namely,

the pixel [24] or spherical harmonic [14] basis. This yields an estimate of the

background, i.e., a “clean” (deconvolved) map and the corresponding noise-

covariance matrix. However, this approach depends heavily on how well-posed

the inverse problem is and how accurately it can be implemented numerically.

Consequently, a detection statistic constructed on the deconvolved data can be

affected by similar maladies. To work well, the inverse problem requires that the

network of interferometers is sufficiently nondegenerate, which is not always the

case. Indeed, the deconvolution procedure can enhance spatial noise correlations

and, sometimes, even introduce artifacts, thereby adversely affecting parameter

estimation and signal detection by such a procedure.

As we prove here, the detection problem does not require a well-posed in-
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verse problem and exists even for a degenerate network. A detection statistic

is best defined on the dirty map, as opposed to the clean map. As an added

advantage, a dirty-map-based statistic is faster to compute, since it obviates the

computational overhead required for obtaining the clean map. While it is pos-

sible to use an arbitrary sky model, such as the one-dimensional basis P̂ , and

estimate the strength of the SGWB for that particular model, the MLR statistic

in Eq. (2.20) provides a well-understood construct that can be maximized over a

set of parameters for selecting the model that best fits the data.

To elaborate further on the way the new statistic works, let us consider the

example of a directed pixel-space search, which is performed for only one source

and assumes that the angular extent of the source is, at most, one pixel. In

the standard radiometer search [25, 24], the dirty map Sk is computed for each

pixel k in the sky. The (signal part of the) dirty map is generally peaked at the

source pixel and has broad structures, including large negative patches, around

it. One way of inferring the presence or absence of a source in this image requires

deconvolving it. However, as we show later, deconvolution of a relatively weak

source can result in a clean map with significant errors, especially when the sky

is divided into around 3000 pixels or more. (A network resolution of several

square degrees requires a few thousand pixels across the sky.) Also, computing

the noise-covariance matrix can be numerically challenging. The MLR is a good

choice in this situation, since it combines all the pixel values to provide a single

number for the detection statistic that is simple to use in drawing inferences on

the presence or absence of a signal in the network data.

If a parametrized model of the background is available, one can construct the
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likelihood-ratio statistic from the dirty map and maximize it over the parameter

space. The maximized likelihood-ratio statistic can also be used to perform a

more advanced blind search, where no prior information is available about an-

gular distribution of the power in the SGWB. For each basis component, one can

assert that only that basis component is present in the signal and compute the

statistic with the corresponding sky model. Thus, using the dirty maps of “point

estimate” or SNR obtained by the existing radiometer search, our prescription

takes one step forward and can provide a map of likelihood ratios, which is sta-

tistically a more robust and meaningful quantity, given a set of highly correlated

observations.

The construction of the MLR statistic on a dirty map is simple. Eq. (2.20)

shows that it is the scalar product of the observed map Sk and a sky-model-

dependent normalized “template.” The template is proportional to B ·P , which

is the expected signal in the dirty map for a sky model P̂ . The inverse of the

noise-covariance matrix is the metric in the pixel space. The sky model can

be defined in a straightforward way. For instance, to search for a point source

localized to a single pixel, one would use a P̂ with all but one component,

namely, the component corresponding to that pixel, set to zero. Indeed, B ·P is

simply the point-spread function of the pixel with the nonzero component of P̂ .

Also notice that the inverse of the noise-covariance matrix, being proportional

to the beam matrix, cancels out algebraically in the expression for the MLR.

Therefore, unlike for deconvolution, for MLR construction the computation of

this matrix is not needed. Otherwise, the latter procedure would have been

computationally similar to solving the inverse problem, avoiding which is one
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of the main motivations for this work.

To complete the discussion, we note that the construction of a MLR statistic

is not limited to dirty maps and can be implemented for clean maps. A clean

map can be expressed as

P̃ = P + nc , (2.29)

where P is the true sky map, and nc is Gaussian noise with covariance Σ, which

is related to the dirty-map noise-covariance matrix through the relation Σ =

(BTN−1B)−1. Therefore, following the same procedure as that for the dirty

map, one can write the MLR statistic for a clean map as

λc =
P̃ · Σ−1 ·P√
P · Σ−1 ·P

, (2.30)

and, thereby, obtain model-based or blind likelihood-ratio maps.

2.3.3 Performance of optimal detection statistic

We numerically study the performance of the optimal statistic and compare with

the existing method. We use the LIGO 4km detectors located in Hanford (H1)

and Livingston (L1). Unless otherwise stated, the noise PSDs of all detectors

are taken to be their (smoothed) first-generation design sensitivities as shown

in the solid curves of Fig. 2.6. The frequency band considered here spans 40−

1024Hz, with a bin size ∆ f = 1Hz. The source PSD is taken to be a constant,

H( f ) = 1.516× 10−48/Hz. Note that the spectral index of the source PSD has a

significant effect on the resolution of the network. Predictions from astrophysical

and cosmological models suggest the nominal range of the spectral index to be

between −3 and 1. The higher the spectral index, the higher the resolution, and
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the more computationally expensive the directed search. We take the spectral

index to be zero here by setting H( f ) as a constant.
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Figure 2.6: Designed noise amplitude spectrum of the initial LIGO and VIRGO

(solid curves), advanced LIGO and VIRGO (dashed curves), and the Einstein

Telescope (dotted-dashed curve) [39, 40, 41].

The directed search is performed by dividing the (simulated) strain data from

all detectors into segments with a duration of 192 sec. The noise is taken to

be stationary. The sky is tessellated into 3072 pixels by using the Hierarchical

Equal Area isoLatitude Pixelization [37, 38]. The choice of the signal integration

duration is taken to be a sidereal day, which leads to the azimuthal symmetry of

the baseline sensitivities and sky resolutions. The justification for choosing the

above parameter values can be found in [24].

We first construct simulated data sets of two kinds, one with only noise and

the other with a weak signal from a “polar-cap” source added to that noise. The

sky map of the latter case is shown in the first plot in Fig. 2.7. We make dirty
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maps for these two cases using single-pixel source templates for each of the 3072

pixels. These maps are essentially the maps of SNR for the directed search, as

can be seen by substituting

P̂ k =

 1 for target pixel ,

0 for remaining pixels ,
(2.31)

into Eq. (2.20) [24]. The dirty maps for both cases look very similar, and only

one of them, namely, the one for the polar-cap source, is shown in the second

plot of Fig. 2.7. Not surprisingly, it is also similar to the dirty map presented in

[34] for real data. Indeed, the MLR values over the dirty-map pixels appear to

follow a normal distribution, as shown in Fig. 2.8. This is consistent with the

distribution presented in [34]. Following that reference, we also plot the 1σ error

envelope around the Gaussian fit for 400 degrees of freedom and observe that

the tops of every bar in the histogram lie within that envelope. The important

point to note here is that, for both noise-only and weak-signal (polar-cap) data

sets the distributions in Fig. 2.8 are very similar and consistent with a normal

distribution.

If we now pretend that we know the broad shape of the GWB sky and use

the P̂ k of the polar-cap signal as our template for computing the MLR statistic,

we find that the above two cases can be distinguished better: In the noise-only

case, the MLR statistic equals −0.023, while with the weak polar-cap signal it is

1.400, which is significantly larger than the former, as explained below. To cor-

roborate this claim, we computed the MLRs on an ensemble of 4000 realizations

of noise, with and without the weak polar-cap signal. In Fig. 2.9, we show the

distribution of the MLR statistic (λ) for noise-only (top) and weak-signal (bot-
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(a) Injected map (b) Dirty map

(c) Clean map

Figure 2.7: The P k sky map of a weak polar-cap GWB source is shown in (a).

The dirty (b) and clean (c) maps for this source were constructed using the

radiometer algorithm for the LIGO H1L1 baseline. The last two maps for this

weak source are visually very similar to those for the noise-only case (which is

not shown here).

tom) cases. Clearly, the noise-only λ values are normally distributed with a zero

mean, and the weak-signal λ values are normally distributed with a mean of

∼ 1.4σ, where σ ≈ 1. This experiment confirms that, given our assumptions

on the detector noise and the signal, the MLR statistic can considerably enhance

the detectability of a weak diffuse stochastic background, if a reasonable model
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(b) CAP

Figure 2.8: Histograms of the dirty maps for the noise-only data set (top) and

weak polar-cap signal (bottom), which is depicted in Fig. 2.7, are shown here.

These two histograms are consistent with that of zero-mean Gaussian data (solid

curved line), up to 1σ errors: Following [34], the 1σ error boundaries for 400

degrees of freedom have also been overlaid for a consistency check.
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(b) CAP

Figure 2.9: Monte Carlo simulations with 4000 noise realizations were performed

to study the performance of the MLR statistic. The distribution of the MLR

statistic obtained for dirty maps generated from noise-only (top) and weak polar-

cap injection (bottom) are shown. Clearly, the MLR statistic detects the signal at

∼ 1.4σ level. Notice that the “CAP” histogram has shifted to the right.
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of the background is available. This is true even when the distribution of the

dirty-map pixel values for that source is close to zero-mean Gaussian.

2.4 Performance of multi-baseline radiometers

In this section we define a set of figures of merit to compare the performance of

a network of baselines with that of its individual baselines for a directed search

of a SGWB.

A single figure of merit may not suffice in capturing all the attributes of a

baseline or a network of detectors benefiting a SGWB search. A certain baseline

or network configuration can have good sensitivity if the detectors are optimally

oriented, but have poor resolution if they are proximally located. Optimally

oriented detectors may be very sensitive to certain anisotropy modes, but insen-

sitive to others, making the estimation problem highly degenerate. On the other

hand, a network of detectors that are oriented differently may have moderate,

yet uniform, sensitivity to all spherical harmonic modes of a SGWB, thereby mit-

igating the ill-posedness of the estimation problem. Such a network, however,

will perform worse than one where all the detectors are aligned similarly in a

low-frequency, all-sky isotropic search. Therefore, the relevance of a figure of

merit is determined by the kind of search one is undertaking. Here, we pro-

pose a set of figures of merit that are relevant to current searches of anisotropic

stochastic background and that are special cases of the general ML framework

presented in [14].

For the numerical simulation studies below, we use the same detector char-
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acteristics as mentioned in Scc. 2.3.3, but we now include the Virgo detector (V1)

in Cascina, Italy to construct a three-baseline network. The baselines and their

network are named by concatenating the symbols for the participating detectors;

e.g., the Hanford-Livingston baseline is termed as H1L1, and the network of the

above three detectors is termed as H1L1V1. A similar study for the second and

third generation detectors is presented in Appendix B.1.

2.4.1 Sensitivity

The first figure of merit is the “sensitivity” of a network and is motivated by

a similar quantity defined in [42] for the all-sky isotropic search. In practice, a

greater sensitivity implies a better confidence level, at which detection can be

made or upper limits can be inferred.

We define the single-baseline sensitivity for a directed search as the expecta-

tion value of the MLR in Eq. (2.27) for a SGWB source with P set to unity,

Sensitivity =
√
(B · P̂)k(N−1)kk′(B · P̂)k′ ,

=
√
P̂ kBkk′P̂ k′ . (2.32)

The sensitivity can be expressed in the spherical harmonic basis as follows:

Sensitivity =
√
PlmBlm l′m′Pl′m′ , (2.33)

where

Plm =
∫

dΩ̂ P̂(Ω̂)Y∗lm(Ω̂) , (2.34)

Blm l′m′ =
∫ ∫

dΩ̂ dΩ̂′ Y∗lm(Ω̂)B(Ω̂, Ω̂′)Yl′m′(Ω̂
′) . (2.35)
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Owing to the statistical independence of the baselines, the multibaseline sen-

sitivity squared is the sum of squares of the individual baseline sensitivities, as

was also noted for the isotropic-background baseline sensitivities in [42]:

Sensitivity2
N = ∑

I
Sensitivity2

I . (2.36)

For an unpolarized background from a single pixel, say, labeled k, and with

P̂ r = δr(k), the sensitivity expression simplifies to

Sensitivity(k) =
√
Bq(k)(N−1)qrBr(k) =

√
B(k)(k) . (2.37)

Unless otherwise mentioned, there is no sum over the repeated parenthetic in-

dices in this chapter.

In the top panel of Fig. 2.10, we compare the sensitivities of the baselines and

the whole network as a function of declination. (As noted above, the sensitivities

are azimuthally symmetric.) For a fair comparison, we also replot them after

weighting them with the cosine of the latitude, in effect, to assign equal weight

to every pixel on the sky. It is clear that the H1L1 baseline has much better

sensitivity due to the similar orientations of the two detectors. Still, inclusion

of Virgo, which is oriented quite differently relative to H1 and L1, improves

the sensitivities of the network by ∼ 10% (which corresponds to an increase in

the observational volume by ∼ 30%), especially in the regions where the H1L1

baseline does not perform well. However, this network improvement is highly

superseded by all other performance improvements indicated by corresponding

figures of merit introduced in this section.

In Fig. 2.11 we plot the narrowband (5Hz) sensitivities at two locations,

namely, the Celestial North Pole (top) and the equator (bottom). Performance
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improvement of a network for a narrow band search at high frequencies is better

than the (frequency integrated) broadband search.
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Figure 2.10: The sensitivities (top) and their area-weighted counterparts (bottom)

of three different baselines and their network are plotted as functions of the

declination of a single-pixel SGWB source. The source PSD (H( f ) = 1.516×

10−48strain/Hz) is chosen such that it has maximum SNR= 10 in the H1L1

baseline. (Note that the source parameter P is set to unity for these plots.) The

signal band considered here is 40-1024 Hz.
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Figure 2.11: The sensitivities of three single baselines and their multibaseline

network plotted as functions of the central frequency of the source band. The

source is chosen to have a constant H( f ) = 1.516× 10−48strain/Hz and a band

width of 5Hz. The top panel represents the sensitivities at the celestial poles,

and the bottom panel represents those at the celestial equator.

2.4.2 Sky coverage

In a directional search, the main advantage of a network lies in the fact that it

vastly improves sky coverage, which, in turn, leads to better parameter estima-
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tion, including localization and sky-map reconstruction considered later in this

section. In this subsection, we illustrate the advantage of using a network of

detectors, as compared to using its individual baselines, to this end.

In general, one radiometer baseline cannot sample the whole sky uniformly;

the measurement errors in some parts of the sky are much worse than those

in the other parts. Introduction of new baselines with different orientations im-

proves filling in these “holes” by scanning the sky with different antenna-pattern

functions. In the first three plots in Fig. 2.12, we show the standard deviation in

measuring the dirty map by the three individual baselines, namely, H1L1, H1V1,

L1V1, and their network H1L1V1 2. The azimuthal symmetry mentioned before

is explicitly observed here. The H1L1 baseline has the least deviation at most

declinations, due to the optimal orientations of the H1 and L1 detectors. Again,

H1V1 and L1V1 baselines have low deviation in the regions where H1L1 does

not perform well. Since the dirty maps from different baselines are operationally

combined with an inverse-noise-variance weight, the harmonic mean of the vari-

ances provides the effective variance of the combined dirty map. The last plot

in Fig. 2.12 shows the effective deviation for a network of detectors. Clearly, the

deviation now has smaller spread and also, by construction (harmonic mean),

the deviations are smaller than those for the individual baselines.

Most importantly, a network also complements the single-baseline observa-

tions in terms of angular resolution. The beam functions for each radiometer

baseline are highly asymmetric, which means that a given position on the sky is

2The absolute scales of the plots are not important since the emphasis here is on relative

performance of the different baselines and their network.
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(a) H1L1 (b) L1V1

(c) H1V1 (d) H1L1V1

Figure 2.12: The standard deviation of dirty maps measured by the three LIGO-

Virgo baselines and the full network for a constant H( f ) are plotted here. The

aim of this figure is to show how individual baselines complement each other,

thereby making the “effective deviation” (i.e., the square root of the harmonic

mean of variances of the individual baselines) of the combined map observed

by the network nearly uniform. Note that the color scale in the network plot has

lesser spread than the individual baselines. The absolute scale of the maps de-

pends on the normalization of the filter, and only the relative scale is important

here. The azimuthal symmetry is present because we are considering a whole

sidereal day’s observation, with stationary noise.
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probed with quite different angular resolutions in the tangential directions. To

illustrate this aspect, the typical beam functions for the three LIGO-Virgo base-

lines in the direction of the Virgo cluster are shown in Fig. 2.13. If we consider

the beam for the H1L1 baseline, the sensitive part of the beam is similar to a

highly eccentric ellipse, suggesting that the angular resolution along the minor

axis is much finer than that along the major axis. The beams for the baselines in a

network involving the Virgo detector provide better resolution due to the longer

baselines: The beams are finer along the major axis of the H1L1 beam, thus

complementing the H1L1 observation, which is a major motivation for using a

network. This, in turn, improves the condition number of the Fisher information

matrix, thereby, reducing the numerical errors in the anisotropy estimation prob-

lem at “high” resolution, i.e., near or beyond the diffraction limited resolution,

and significantly improves source localization accuracy.

Singular value decomposition of the Fisher information matrices provides a

more quantitative verification of the above claim. Figure 2.14 shows the singular

values of the Fisher matrices for the individual baselines and the whole network.

The LIGO baseline has very small singular values at higher resolutions (dashed

curved line), which implies that estimation of anisotropy at those resolutions is

an ill-defined problem. The network reduces the difference between high and

low singular values and regularizes the inverse problem at high resolution (solid

curved line).
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Figure 2.13: The beam functions for the three LIGO-Virgo baselines for H( f ) =

constant are shown here. This figure illustrates that different baselines also com-

plement each other in terms of angular resolution along different tangential sky

directions.

2.4.3 Parameter accuracy

An important figure of merit for a directed search is how well a point source

can be localized or its other parameters be constrained. In a noise-dominated

mapping experiment, it is not easy to identify sources in the observed images.

If there are candidate sources that have been modeled by other astronomical

observations, one can utilize that information to detect or constrain parameters
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Figure 2.14: Singular values of the Fisher matrices for individual baselines and

the whole network are plotted in this figure. The LIGO H1L1 baseline (dashed

curved line) has very small singular values at high resolutions; therefore, esti-

mation of anisotropy at those resolutions is an ill-defined problem. The network

(solid curved line) makes the singular values much more uniform, thereby reg-

ularizing the inverse problem.

of such sources. If the source was very accurately modeled, the optimal strategy

would be to design a specific search focused on that source. But, in practice,

with very limited knowledge of sources, the optimal strategy would be to vary

the parameters within a reasonable range and maximize the log-likelihood ratio.

One of the main advantages of the MLR statistic is that it allows estimation

of parameters of the source, given a model. For example, if there is an extended

source, such as a cluster of galaxies, with an angular scale comparable to the

resolution of the radiometer, and there exists a reasonable model for its mass
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distribution, one can maximize the log-likelihood ratio to find the center of the

cluster 3. Even for a blind search, this method may prove to be advantageous

to perform a finer search around the poorly estimated parameters of a potential

candidate source.

In this section, we assess the accuracy with which a pointlike (single-pixel)

source can be located using a network of GW detectors as compared to its in-

dividual baselines. The parameter estimation accuracy is deduced from the ele-

ments of the Fisher information matrix [26].

For an unpolarized background from a single pixel, labeled k, and with P̂ r =

δr(k), the single-baseline detection statistic follows from Eq. (2.20) to be

λ(k) =
Sp(N−1)pqBq

(k)√
Br
(k)(N

−1)rsBs
(k)

, (2.38)

which can be interpreted as the inner product of the data, S, and a unit-norm

template B̂k. Hence, the match [43] between the unit-norm templates for the kth

and the k′ th pixels is

M =
Bp
(k)(N

−1)pqBq
(k′)√

Br
(k)(N

−1)rsBs
(k)

√
Br′
(k′)(N

−1)r′s′Bs′
(k′)

,

=
B(k)(k′)√

B(k)(k)
√
B(k′)(k′)

, (2.39)

where the inner products are all defined in terms of N−1. Define Θ(k) ≡ {µk, φk}

as the pixel coordinates, where µk ≡ cos θk, with θk and φk being the declination

and right ascension of the kth pixel, respectively. Since the match has a maximum

3Note that the image of the source may be too faint to be visually prominent in the dirty or

clean maps.
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value of unity at k′ = k, one can expand M in a Taylor series about ∆µ(k) = 0

and ∆φ(k) = 0 as

M ≈ 1 +
1
2

(
∂2M

∂Θµ

(k′)∂Θν
(k′)

) ∣∣∣∣∣
Θ(k′)=Θ(k)

∆Θµ

(k)∆Θν
(k) ,

≈ 1−
Γ(k)µν

(SNR)2
(k)

∆Θµ

(k)∆Θν
(k) , (2.40)

where Γ(k)µν ≡ Γµν(Θ(k)) are the components of the Fisher information matrix

Γ(k), and (SNR)(k) is the signal-to-noise ratio in the kth pixel.

For large SNR, the error variance-covariance matrix obeys

(
Γ−1
(k)

)µν
≈
〈

∆Θµ

(k)∆Θν
(k)

〉
. (2.41)

The estimation error in the measurement of the sky-position solid angle (in stera-

dians) is given by [44] 4

∆Ω(k) = 2π

√〈
(∆ cos θ(k))

2
〉 〈

(∆φ(k))
2
〉
−
〈

∆ cos θ(k)∆φ(k)

〉2
. (2.42)

The Fisher information matrix for multiple baselines is just the sum of the Fisher

matrices for the individual baselines,

[
Γ(k)µν

]
N

= ∑
I

ΓI(k)µν , (2.43)

where I is the baseline index, and ΓI(k)µν is the Fisher information matrix of the

I th baseline, as given in Eq. (2.40). Hence, the error variance-covariance matrix

for the network is ([
Γ(k)

]−1

N

)µν

≈
〈

∆Θµ

(k)∆Θν
(k)

〉
N

, (2.44)

4See Appendix A.2 for the detailed expression in terms of beam function and its derivatives.
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for large SNR. Therefore, the 1σ estimation error in solid angle for locating a

pixel source with the multibaseline network is expressed as

[
∆Ω(k)

]
N

= 2π

√〈
(∆ cos θ(k))

2
〉
N

〈
(∆φ(k))

2
〉
N
−
〈

∆ cos θ(k)∆φ(k)

〉2

N
. (2.45)

Note that this error diminishes with SNR as 1/SNR2, i.e., localization is more

accurate at higher SNR.

We present the source-localization errors for the individual LIGO-Virgo base-

lines and the network in the top panel of Fig. 2.15. We also show the correspond-

ing area-weighted plots obtained by multiplying these errors with the cosine of

the latitudinal angle in the bottom panel of Fig. 2.15. The network clearly out-

performs individual baselines by about 1 order of magnitude or more for almost

all declination angles.

The primary focus of this analysis was to obtain statistics that are based on

dirty-map constructs. However, it is straightforward to extend it to be applica-

ble to clean maps. Similarly, although we considered broadband signals, it is

possible to easily extend our study to narrow band signals.

2.4.4 Map making

Finally, we compare the quality of sky maps made by the individual baselines

and their network since they are among the primary products of anisotropic

searches. Here, we consider two figures of merit, namely, the MLR statistic and

the normalized mean square error (NMSE) for comparing maps. To compare the

dirty maps, we use the MLR statistic introduced earlier, and, to compare clean

maps, we use both the MLR statistic and the NMSE (defined below).
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Figure 2.15: The 1σ error (top) and area-weighted 1σ error (bottom) in the solid

angle for locating a source in the sky with three single baselines and the whole

network. The network accuracy is better by about 1 order of magnitude or more

at most of the declinations. Note that an error of 1sr ' 3282.81 sq-degrees, and

that the error here decreases as 1/SNR2.

For an unpolarized and anisotropic gravitational wave background, the max-

imum likelihood estimators of the signal-strength vector are given by

P̃ k = (B−1)k
k′S

k′ , (2.46)
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where Sk are components of the dirty map (2.17) and P̃ k are components of the

deconvolved (clean) map. Note that the clean map, P̃ , are the values of P that

maximize the statistic. We extend this single-baseline analysis to a multibaseline

one by simply adding the dirty maps and beam matrices as Sk
N = ∑Nb

I=1 Sk
I and

Bk
N k′ = ∑Nb

I=1 Bk
Ik′ . So, the maximum-likelihood estimators for a multibaseline

network are given by

P̃ k = (BN−1)k
k′S

k′
N . (2.47)

We simulate the data with signal as [24]

x̃∗1(t, f )x̃2(t, f ) = 〈h̃∗1(t, f )h̃2(t, f )〉+ ñ∗1(t, f )ñ2(t, f ) ,

〈h̃∗1(t, f )h̃2(t, f ′)〉 = δ f f ′H(| f |)∑
i
P i γ(Ω̂i, t, | f |) , (2.48)

where P i is the injected source strength at the ith pixel, and γ is the direction-

dependent overlap reduction function. We use a conjugate gradient (CG) method

to solve the set of linear equations (2.46) and (2.47).

The mismatch between two maps, injected and estimated, is measured using

NMSE :=
|P̃ −P |2
|P |2 , (2.49)

which is called normalized mean square error.

2.4.4.1 Dirty maps and clean maps

We performed numerical comparison of map-making performance for two types

of toy sky patterns – (i) extended, multideclination sky (Fig.s 2.16 and 2.17),

mimicking the (partially masked) image of the sky constructed by the WMAP

satellite [45], where essentially a modified galactic structure stands out; and (ii) a

relatively localized source peaked at the north pole (Fig.s 2.19 and 2.20).
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(a) Injected map (b) H1L1

(c) L1V1 (d) H1V1

Figure 2.16: Toy model of an extended source is shown in (a). Dirty maps made

from simulated data containing signal from that source are shown in the last

three panels for the three LIGO-Virgo baselines.

In both cases, the dirty maps from different baselines are quite distorted com-

pared to the injected maps. (Compare the last three plots with the first one in

Fig. 2.16 and in Fig. 2.19). However, the deconvolution procedure yields rea-

sonably resolved maps for all the baselines (Fig.s 2.17 and 2.20), signifying that

none of the beam matrices are completely degenerate. The clean maps from the

network are, however, of better quality, as can be seen from the corresponding

low NMSE. To demonstrate this visually, we also show the difference between
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(a) H1L1 (NMSE=0.4311) (b) L1V1 (NMSE=0.4171)

(c) H1V1 (NMSE=0.4735) (d) H1L1V1 (NMSE=0.2206)

Figure 2.17: Clean maps obtained by the deconvolution of the dirty maps of

Fig. 2.16, using 20 CG iterations, are shown here.

the clean and injected maps for the respective cases in Fig.s 2.18 and 2.21. As ex-

pected, the difference maps for the network look less noisy and uniform across

the sky than the individual baselines.

2.4.4.2 Maximized-likelihood-ratio statistic

We finally compute the MLR statistic introduced in Scc. 2.3.2 as a figure of merit

and, also, to demonstrate how this statistic can be powerful in identifying signal

in noisy maps. The MLR statistic for both dirty and clean maps for the two types
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(a) H1L1 (b) L1V1

(c) H1V1 (d) H1L1V1

Figure 2.18: Difference between the clean maps of Fig. 2.17 and the injected map

of Fig. 2.16(a).

of sources considered here have been listed in Tables 2.1 and 2.2.

It is intriguing to note that, for both dirty and clean maps, one obtains sim-

ilar values. This suggests that a deconvolution effected with only a few tens of

conjugate-gradient basis vectors does not cause a significant amount of informa-

tion loss.

To understand the significance of the MLR statistic in the present context,

we perform two more exercises. First, we study the no-injection case; that is,

we make dirty maps of simulated noise (Fig. 2.22), deconvolve it (Fig. 2.23), and
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(a) Injected map (b) H1L1

(c) L1V1 (d) H1V1

Figure 2.19: The toy model of a localized source is shown in (a). Dirty maps

made from simulated data from three LIGO-Virgo baselines are shown in the

last three panels.

obtain its MLR (Table 2.3). The similarity of the values of this statistic for the

dirty and clean maps proves the unitarity of our deconvolution method. One

can see that the MLR statistic (Table 2.3) is small (≈ 1) in all these cases. We

then introduce a small signal – the same as the extended (galaxylike) source

considered before, but at a much reduced strength.

Visually, the dirty maps are now weaker (Fig. 2.24), and clean maps almost

do not show the obvious presence of any source (Fig. 2.25), but the MLR statistic
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(a) H1L1 (NMSE=0.6642) (b) L1V1 (NMSE=1.2939)

(c) H1V1 (NMSE=1.4750) (d) H1L1V1 (NMSE=0.4961)

Figure 2.20: Clean maps obtained by the deconvolution of the dirty maps of

Fig. 2.19, using 20 CG iterations, are shown here.

(Table 2.4) provides a clear and reliable indication of the presence of a signal,

thus proving its usefulness in the search for signal in a noisy map.

2.5 Discussion

The search for an anisotropic stochastic gravitational wave background plays an

important role in present GW research. In addition to setting interesting upper

limits on astrophysical and cosmological backgrounds, the simplicity of the con-
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(a) H1L1 (b) L1V1

(c) H1V1 (d) H1L1V1

Figure 2.21: Difference between the clean maps of Fig. 2.20 and the injected map

of Fig. 2.19(a).

comitant analysis reveals invaluable knowledge about the coherent performance

of the GW detector network.

So far, detailed analysis strategies have been developed to search for anisotro-

pic background in pixel and spherical harmonic spaces, and a general maximum-

likelihood-based framework has been established to search in any convenient

basis. The spherical harmonic search has been demonstrated using a network

of detectors [14]. In this paper, for the first time, we numerically implement

the directed radiometer search, including deconvolution, for a network of detec-
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Table 2.1: MLR statistic of dirty maps (λ) versus clean maps (λc) for the simu-

lated maps in Fig.s 2.16 and 2.17.

Baseline λ λc

H1L1 785.555 783.271

L1V1 359.004 358.940

H1V1 315.717 315.662

H1L1V1 919.594 917.600

Table 2.2: MLR statistic of dirty maps (λ) versus clean maps (λc) for the simu-

lated maps in Fig.s 2.19 and 2.20.

Baseline λ λc

H1L1 284.652 284.173

L1V1 39.308 39.377

H1V1 64.129 64.113

H1L1V1 294.419 293.961

tors. These methods, in the past, were focused primarily on showing that the

observed map is consistent with Gaussian noise or in estimating sky maps. The

latter required the inversion of the convolution equation, which itself assumed

the network of detectors to be nondegenerate. Neither of these methods may

work in the presence of excessive noise and weak signal. Most importantly, a

statistically meaningful, all-sky combined statistic, in the form of an optimal

“detection statistic,” was needed in order to make precise statements about the

presence or absence of a given background model in a map. Here, we proposed
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(a) H1L1 (b) L1V1

(c) H1V1

Figure 2.22: Dirty maps made for simulated noise, without any injected signals.

a MLR statistic, which yields a single number when computed on the dirty or the

clean map and can be used as a detection statistic. By computing the MLR statis-

tic for a couple of toy models of the background, we observe that the detection

statistic is much larger than the noise-only case, even in the presence of weak

signals that are barely visible in dirty or clean maps. We corroborated these

statements with results obtained from extensive Monte Carlo simulations of a

diffuse background of known shape in an ensemble of noise realizations. How-

ever, a more detailed study using signals from a variety of background models

is surely worth pursuing in order to determine how accurate the templates need
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(a) H1L1 (b) L1V1

(c) H1V1 (d) H1L1V1

Figure 2.23: Clean maps obtained by the deconvolution of the dirty maps of

Fig. 2.22, using 20 CG iterations.

to be in order to extract meaningful information from weak backgrounds.

We also compared the performance of individual baselines and the whole

network for the directed radiometer search using different figures of merit. Eval-

uating the performance of a network of GW detectors in SGWB searches is rela-

tively straightforward compared to other GW signal searches [46, 47, 48, 49, 50,

51]. This exercise was useful in drawing insights about the characteristics of a

network that are particularly helpful in boosting its performance. Our overall ob-

servation, not surprisingly, is that the network improves performance in mainly
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Table 2.3: MLR statistic of dirty maps (λ) versus clean maps (λc) for simulated

noise (which actually has an extremely weak signal added) in Fig.s 2.22 and 2.23.

Baseline λ λc

H1L1 0.512 0.433

L1V1 -1.549 -1.542

H1V1 1.105 1.120

H1L1V1 0.208 0.149

Table 2.4: MLR statistic of dirty maps (λ) versus clean maps (λc) for the simu-

lated maps in Fig.s 2.24 and 2.25.

Baseline λ λc

H1L1 98.643 98.670

L1V1 43.520 43.536

H1V1 40.432 40.475

H1L1V1 115.132 115.176

three ways, namely, (1) by increasing the sensitivity by observing each direction

a greater number of times, (2) by observing the sky more uniformly, and (3) by

probing each direction on the sky with additional detectors on the globe. The

latter two enhancements lead to better localization of pointlike sources. This can

be understood via the behavior of the Fisher information matrix: More detectors

reduce its degeneracy and improve the well-posedness of the inverse problem.

This, in turn, leads to a more accurate production of clean maps.

Another question worth addressing in the future is about how closely spaced
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(a) Injected map (b) H1L1

(c) L1V1 (d) H1V1

Figure 2.24: The toy model of a very weak extended source is shown in (a). Dirty

maps made from simulated data from three LIGO-Virgo baselines are shown in

the last three panels.

must the templates be on the parameter space to maximize the chances of detec-

tion with available computational resources. Indeed, the proposal for templated

searches for SGWB signals is not new to this paper. For example, it has been

addressed earlier in the context of isotropic searches (see Ref. [53] and the ref-

erences therein). Ref. [53] also introduced a metric on the parameter space of

those signals so as to enable an experimenter to infer what the principle axes are

on that space and how fine a template bank one can afford based on the com-
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(a) H1L1 (NMSE=1.0694) (b) L1V1 (NMSE=3.3557)

(c) H1V1 (NMSE=3.8406) (d) H1L1V1 (NMSE=1.3503)

Figure 2.25: Clean maps obtained by the deconvolution of the dirty maps of

Fig. 2.24, using 20 CG iterations.

putational resources available. A similar study can be carried out for finding a

more optimal spacing of templates for directed searches than the one used here.

Whereas results presented here were derived for Gaussian noise, the codes

used can be applied to real data as well. Indeed, the performance of the pro-

posed statistic in real data sets from the LIGO and Virgo detectors can be de-

termined through hardware injections that were done in the recent science runs,

such as the ones described in Ref. [54], and supplementing them with mul-

tiple software injections to improve the statistics. The expected improvement
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of network sensitivity over individual baselines, as demonstrated here, merits

the investment required for extending the current single-baseline analysis ef-

forts [24, 25] to a multibaseline one. This conclusion is strengthened by the fact

that adding a detector to a baseline can potentially mitigate the contribution of

cross correlated environmental noise that affects only one of the three result-

ing baselines. Including V1, which is on a different continental plate than the

H1L1 baseline, can serve this purpose. Employing a null-stream statistic [52, 51]

to complement the detection statistic might also help in discriminating against

such noise.
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Chapter 3

Searching for a SGWB from the

population of neutron stars in the

Virgo cluster

One of the promising applications of the methods presented in the previous

chapter is to search for a stochastic background from the population of rotating

non-axisymmetric neutron stars (NSs) in the Virgo cluster. The Virgo cluster is

the nearest and best-studied rich cluster of galaxies whose center is at a distance

of about 16.5 Mpc away in the constellation Virgo. At present, more than 1300

member galaxies of the Virgo cluster are known. Estimates suggest that there

are approximately 1011 neutron stars in the Virgo cluster [55], of which a small

fraction would emit GWs with frequencies within the sensitivity band of earth-

based detectors. As such, it offers the best hope to detect a SGWB produced by

the population of the neutron stars in the Virgo cluster, if such a background
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exists and is reachable by the current and advanced detectors.

A recent study [55] suggests that the stochastic nature of gravitational waves

from the population of rotating non-axisymmetric neutron stars/pulsars in the

Virgo cluster can reveal itself as a GW hot spot in our searches. We begin this

chapter by reviewing a series of assumptions made in this reference. We then

detail the steps that are taken towards a meaningful model-based search for

SGWB from NSs in the Virgo cluster.

3.1 Motivation for the directed search

The GW strain due to a rotating neutron star can be expressed as [56]

h = 4π2α
GεI
c4r

f 2 , (3.1)

where α(≤ 1) is the orientation factor, ε is the (equatorial) ellipticity of the

neutron star, I its principal moment of inertia, r is the distance to the source,

G the Newton’s gravitational constant, c the speed of light, and f is the GW

frequency. If the rotation axis is optimally oriented with respect to the detector,

then α becomes unity.

The total number of Galactic neutron stars is estimated to be about 108 −

109 [57]. This is obtained by assuming the mean neutron star birth rate of 10−2

yr−1 and the Galactic age of about 10 Gyr. What is more uncertain for the study

reported in Ref. [55] is the number of neutron stars whose rotation period is of

the order of milliseconds. From the survey of radio pulsars in our Galactic disk,

the population of millisecond pulsars is estimated to be at least 40000 [58]. This

implies a mean birth rate of 4× 10−6 yr−1. To date, roughly 2000 NSs have been
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observed, not all of which are millisecond pulsars and the majority of which are

identified as isolated radio pulsars (PSRs) with ages . 100 Myr.

In Fig. 3.1, we show the distribution of observed radio pulsars. This dis-

tribution indicates two different populations: Each population is Gaussian dis-

tributed and has mean and standard deviation different from the other’s. Hence,

the distribution is approximated as a bimodal Gaussian with the components as

follows:

P1(log fr)d(log fr) =
1√

2πσ1
e−((log fr−log µ1)

2/2σ2
1 )d(log fr) , (3.2)

(for fr > 50Hz) ,

P2(log fr)d(log fr) =
1√

2πσ2
e−((log fr−log µ2)

2/2σ2
2 )d(log fr) , (3.3)

(for fr < 50Hz) ,

where µ1 = 219 Hz, σ1 = 0.238, µ2 = 1.71 Hz and σ2 = 0.42, and fr = f /2. Here,

P1 and P2 are normalized to unity when integrated from fr = 0 to infinity. We

assume a similar bimodal form of distribution of NSs in the Virgo cluster. We

assume that the total number of neutron stars in our Galaxy is 108 for fr < 50

Hz, and 40000 for fr > 50 Hz. Since there are of the order of 103 galaxies in the

Virgo cluster, the total number of NSs in the Virgo cluster is Nlow ∼ 1011 for

fr < 50 Hz, Nhigh ∼ 4× 107 for fr > 50 Hz. So, the distribution of NSs in the

Virgo cluster can be expressed as

N( f )d f =
(

NhighP1(log fr) + NlowP2(log fr)
) d fr

fr ln 10
. (3.4)

For a bandwidth of ∼ 103 Hz, the number of NSs in each mHz frequency bin

is ∼ 10 for f > 100 Hz. In the low frequency regime this number is much larger.
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Figure 3.1: The distribution of observed radio pulsars [59]. The horizontal axis

is log( fr) where fr is the rotational frequency of pulsars. The red solid line is

the two component Gaussian-fit to the distribution [55].

Thus, it is not possible to resolve the signal from each NS and, therefore, the GW

signal from the NS population in the Virgo cluster is expected to be stochastic in

nature.

The spectral density of gravitational radiation from NSs in the Virgo cluster

is given by

H( f ) = 〈h2〉N( f ) , (3.5)

=

[
7.05× 10−34

( ε

10−5

)( I
1.1× 1045g cm2

)]2

〈α2〉 f 4 N( f ) , (3.6)

where the unit of H( f ) is Hz−1, 〈α2〉 represents the average of the orientation

factor with respect to the inclination and polarization angles. Here, we used

r = 16.5 Mpc, the distance to the Virgo cluster. Assuming a uniform distribution

of the sources over those angles, we have 〈α2〉 = 0.4. Figure 3.2 shows the
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Figure 3.2: The spectral density of gravitational radiation from NSs in the Virgo

cluster is plotted as a function of GW frequency for different choices of average

ellipticity, ε ∈ {10−5, 10−6, 10−7, 10−8}. The shaded area labeled “S5 radiometer

upper-limit” illustrates the radiometer upper-limit of GW strain power using S5

LIGO data [60].

spectral density as a function of GW frequency for different choices of average

ellipticity.

In order to obtain a rough idea of how large the H( f ) is compared with

the noise PSD, a figure of merit “effective source spectral density”, Heff( f ), is

defined

Heff( f ) =
√

8 Tobs〈Γ2〉1day f H( f ) , (3.7)

such that the signal-to-noise ratio can be expressed as

ρ =

√√√√∫ fu

fl

d f
f

H2
eff( f )

ξ(1)( f )ξ(2)( f )
, (3.8)
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where Tobs is the observation time and 〈Γ2〉1day is the average of the square

of Γ (see Eq. (2.23)) over a sidereal day. The noise amplitude spectral densities

(ASDs) of various detectors as well as the effective source ASD are plotted in

Fig. 3.3. Here, we assume Tobs = 1 yr and
√
〈Γ2〉1day = 0.2.
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Figure 3.3: The noise amplitude spectral densities of various first, second and

third generation detectors, as well as the effective source ASD,
√

Heff, are plot-

ted here. In this plot, Tobs = 1 yr and 〈Γ2〉1day = 0.04. This figure is reproduced

from Ref. [55].

The analysis results shown here strongly depend on the value of average el-

lipticity of the NSs. If ε ≤ 10−6, it will be difficult to observe stochastic GW

profiles of the NSs in the Virgo cluster with aLIGO, aVIRGO, and KAGRA de-

tectors. Only when detectors have ET like sensitivity will it be possible to detect

such a signal for average ε = 10−6. The detectability improves if we employ

several baselines of a network of detectors and a longer observation time [13].
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3.2 Modeling the neutron stars in the Virgo cluster

Radio pulsars are highly magnetized, rapidly spinning neutron stars which emit

beams of radio waves. The wave is observed only when the beam crosses the

line of sight. It is important to note that the observed distribution of the period

of radio pulsars is not necessarily the true representation of the entire popula-

tion [61]. This is because various selection effects cause the number of detected

pulsars to be much smaller. For example, we can not observe the pulsars whose

radio beams do not cross the earth or whose radio emission is too weak to be

detected. The aperture of the emission cone decreases with the period as well as

the luminosity.

The optimal way of searching for stochastic GW profiles from the neutron

stars in the Virgo cluster is to cross-correlate the data from the detectors, taken

in pairs, with a sky-position dependent time-frequency filter. To do that we need

to assume what the spectral shape is of the targeted source. If the true spectrum

does not match with the modeled spectrum, the statistic becomes sub-optimal.

However, the source spectrum derived in Eq. (3.6) is severely affected by the

radio selection effects. To model such a spectrum a set of corrections needs to

be applied to the known pulsar sample [62]. Here we propose to simulate the

expected spin frequency distribution assuming a power law, and then analyze

the data with a few different spectral index choices. If no detection is made, we

will present the upper limits on the average ellipticity of neutron stars in the

Virgo cluster as a function of the spectral index. In the following sections, we

justify three spectral index choices for the search.

75



There are several mechanisms by which neutron stars generate gravitational

waves. These include free precession, spinning non-axisymmetric deformation,

and unstable oscillation. Free precession occurs if a neutron star’s rotation axis

is misaligned with respect to its symmetry axis. There are a number of mecha-

nisms that may lead to a neutron star being deformed away from axisymmetry.

The non-axisymmetric rotating neutron stars are the most promising sources for

continuous GWs. Unstable oscillation modes in the fluid part of a neutron star

can occur during the birth of the star, close encounter with another star or an

accretion phase.

3.2.1 The gravitar model

We consider a population of non-axisymmetric rotating neutron stars having

negligible magnetic field so that the dominant energy loss, due to a deviation

from axisymmetry, goes into the production of gravitational waves. These objects

are often called “gravitars” [63, 64, 65]. There might exist such a population,

which is electromagnetically invisible. Detecting its GW profile with ground-

based GW detectors is an interesting prospect. Even if gravitars do not exist,

they provide a relevant upper bound on the GW emission by objects that do

exist, such as rapidly-rotating NSs. The GW spin-down due to a gravitar’s non-

axisymmetric shape is given by

ḟ = −32π4

5
GI
c5 ε2 f 5 , (3.9)

where ε = I1−I2
I is the ellipticity of the gravitar, with I1, I2 and I being the mo-

ment of inertia with respect to the three principal axes. Note that the gravitational-
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wave frequency is twice the NS’s spin frequency. Integrating Eq. (3.9) gives the

GW frequency at time t as

f (t) =
(

f−4
0 + β−1ε2t

)−1/4
, (3.10)

where f0 is the initial (birth) GW frequency and

β =
5

128π4
c5

GI
. (3.11)

The constant β approximates to

β1/3 = 5.3
(

1038 kg m2

I

)1/3

kHz . (3.12)

The frequency evolution of gravitars is determined by the distribution of spin

frequencies at birth, ellipticity, and the age since birth.

We considered a model motivated from the observed pulsars for the distribu-

tion of the initial spin frequencies. It is the one found as the maximum likelihood

model by population synthesis [66, 63]. It is described by a standard log-normal

distribution

Pf0( f0)d f0 =
1√

2πσ f0
exp

[
− 1

2σ2

(
ln( f0)− ln( f̄0)

)2
]

d f0 , (3.13)

where the unit of f0 is Hz and the values σ = 0.69 and f̄0 = 400 Hz are taken

from the Ref. [66]. Gravitars with f0 > 4 kHz are excluded from the simulation.

The value of the ellipticity depends on the neutron star properties. The typ-

ical ellipticity of neutron stars is unknown, and the possible maximum value is

very uncertain. At present, the values 10−9 < ε < 10−6 are considered plausible.

Following [63], we use a probability distribution which satisfies the principle of

maximum entropy and is given by

Pε(ε) = a(τ)e−ε/τ , (3.14)
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where

a(τ) =
1

τ(1− e−εmax/τ)
, (3.15)

with εmax being the maximum possible value for ε. The relation between the

parameter τ and the mean value of the distribution, ε̄, is given by

τ = ε̄ +
εmax

exp(εmax/τ)− 1
. (3.16)

It is straightforward to derive an evolved distribution in frequency, given an

initial distribution of frequency, birth rate and ellipticity [65]. We define the

conditional frequency distribution p f ( f |ε, t) at time t such that

dPf = p f ( f |ε, t)d f (3.17)

is the probability of finding a gravitar in the frequency range f to f + d f , as-

suming an ellipticity ε and an age t. Let dPf0 be the probability of the birth

frequency in the frequency range f0 to f0 + d f0. The corresponding probability

density p f0( f0) is defined by

dPf0 = p f0( f0)d f0 . (3.18)

A frequency change by redshift is neglected since all the gravitars considered

here are within the local universe (a few Mpc). To compute p f ( f |ε, t) from

the initial p f0( f0), consider a single gravitar with ellipticity ε whose current

frequency is f , and let f0(ε, f , t) denote the gravitar’s frequency at time t in the

past. Solving Eq. (3.10) for the birth frequency yields

f0( f , ε, t) =
(

f−4 − β−1ε2t
)−1/4

. (3.19)
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The fraction of gravitars at birth in the frequency range f0 to f0 +d f0 is the same

as the fraction at present in the frequency range f to f + d f , so the intensity

p f d f = p f0 d f0 yields

p f ( f |ε, t)d f = p f0( f0( f , ε, t))
∂ f0( f , ε, t)

∂ f
d f , (3.20)

= p f0( f0( f , ε, t))
f 5
0 ( f , ε, t)

f 5 d f . (3.21)

The probability dP of finding a gravitar in a volume characterized by d f dε dt is

dP = p f ( f |ε, t) pt(t) pε(ε)d f dε dt , (3.22)

where pt(t) and pε(ε) are the probability distributions for the time and ellip-

ticity, respectively. Note that the distributions of the initial frequency, time and

ellipticity are assumed to be normalized, such that
∫ ∞

0 px(x)dx = 1. Then the

evolved frequency distribution is obtained by marginalizing dP over t and ε as

pev
f ( f )d f =

∫ T

0
dt
∫ ∞

0
dε p f ( f |ε, t) pt(t) pε(ε)d f . (3.23)

Some of these expressions, between Eqs. 3.14 and 3.23, are re-derived from Ben-

jamin Knispel’s Ph.D. thesis [65]. For a fixed age of all sources, which is obtained

by marginalizing Eq. (3.22) over ellipticity only, the evolved frequency distribu-

tion can be expressed as

pev
f ( f |t)d f =

∫ ∞

0
dε p f ( f |ε, t) pε(ε)d f , (3.24)

=
a(τ)

1.73 f 5

∫ ∞

0

e−1.05(− 1
4 ln( f−4−β−1ε2t)−5.992)

2

f−4 − β−1ε2t
e−ε/τdε (3.25)

=
a(τ) τ

1.73 f
e−1.05(ln( f )−5.992)2

, (3.26)

where the last expression is obtained by setting t = 0 Myr.
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3.2.2 A population synthesis model of millisecond pulsars

The population of the millisecond pulsars (MSPs) was the primary focus of the

study reported in Sec. 3.1. Since MSPs are observed to spin down relatively

slowly, it is unrealistic to consider high ellipticity (ε ≈ 10−5) for such a popula-

tion. Figure 3.4 shows the distribution of observed MSPs and it certainly does

not represent the entire population since only a small fraction of the estimated

Galactic MSPs are observed. Also, the Virgo cluster is an elliptical rich clus-

ter. These facts should be taken into consideration when deriving the estimated

number of MSPs in the Virgo cluster. To take these into account, we begin with

a population synthesis of radio pulsars in the Galactic disk [67, 68].
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Figure 3.4: The distribution of observed millisecond pulsars [59]. The frequency

bin width considered here is 1 Hz.

In a recent study, S. A. Story et al. used a population synthesis to investigate

the initial properties of MSP [67]. This study does not account for the population

of MSP observed in globular clusters. The spatial distribution of millisecond
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pulsars is modeled by assuming their birth in the Galactic disk with a random

kick velocity and by evolving them to the present within the Galactic potential.

Following [67], we derive the distribution of the actual period, by evolving a

set of simulated MSPs from the end of the spin-up phase to present 1. For each

pulsar, we proceed as follows:

• We assume a uniform birth rate distributed between 0 and 12 Gyr.

• The initial magnetic field B0 is drawn from a uniform distribution in the

range from 108 to 1012 Gauss. In this model, there is no dissipation of the

magnetic field.

• The initial period is derived from the formula

P0 = 0.18× 103δ/7B6/7
0 , (3.27)

were P0 is in ms and B0 is in units of 108 G. The dithering parameter δ

varies from 0 to 2.8.

• Finally, having the initial period, magnetic field and age, we calculate the

actual period from the usual dipole formula [71]:

P(t) =
√

P2
0 + 0.154 B2

0 t , (3.28)

where P and P0 are in ms, B0 in units of 108 G, and t in Gyr.

The Monte Carlo simulations for 10000 MSPs with P < 50 ms are done by

Tania Regimbau [72]. One could improve the model considered here by allowing

1Similar studies for normal pulsars can be found in Refs. [69, 70].
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magnetic field decay and simulating them in an elliptical rich galaxy. However,

if we account that one third of the total luminosity of the Virgo cluster comes

from spiral type galaxies and two third from ellipticals, then the total number

of MSPs in the Virgo cluster is about 275 times larger than that in the Milky

Way [73].

3.2.3 A simple power-law

Here we consider a crude approximation that there are equal numbers of NSs in

every frequency bin, i.e, N( f ) = constant.

In Fig. 3.5, we show different SGWB spectra calculated using the models

described above. For comparison, the SGWB spectrum obtained from observed

radio pulsars (without correcting for radio selection effects) is also plotted here.

Note that the quantity H̄( f ) is defined such that H̄( f ) = H( f )/H( f = 100). For

the gravitar model we assumed the average ellipticity to be ε̄ = 10−7, maximum

ellipticity εmax = 2.5× 10−6, and an age in the range [0, 10] Myr. Spectra with

different ages in the range [0, 10] Myr are not much different. This is because we

assume a small average ellipticity for the gravitars. It is interesting to note that

these model-based spectra are not much different from each other. But each of

these three spectra is different from the spectrum of the observed population.

3.3 The directed SGWB search and Olbers’ paradox

Following Olbers’ paradox, for a putative SGWB from NSs in the Virgo cluster,

one may not need to invoke a directional search. An all-sky search should be
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Figure 3.5: Several model-dependent spectral profiles of SGWB from NSs in the

Virgo cluster. Note that H̄( f ) = H( f )/H( f = 100 Hz).

enough to add up coherent cross-power from all such sources thought the uni-

verse, out to a redshift beyond which stars were not yet forming. To address this

concern, let us begin by stating the Olbers’ paradox: Light from the stars should

make the sky as bright as the sun in all directions. The darkness of the night

sky conflicts with the assumption of an infinite and static universe. In other

words, the number of stars per unit solid angle increases with distance-squared.

Whereas, their intensity at the earth decreases as inverse distance-squared. This

means that the intensity per unit area per unit solid angle should be the same in

every direction.

There are many solutions to this paradox depending on the models about the

universe’s structure and/or its evolution. For our case, the solution to Olbers’

paradox becomes obvious when we include the expansion of the universe. The
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gravitational waves themselves are redshifted, which introduces the additional

decrease in flux and makes the distant universe darker. One can compare the

relative strengths of an anisotropic SGWB and the isotropic SGWB created re-

spectively by the local and distant universe. By counting the number of Galaxies

per unit solid angle per unit distance, one finds that the population in the direc-

tion to the Virgo cluster is roughly 8 times denser than that from all-sky up to 4

Gpc [74]. However, a better study considering the expansion of the universe is

done in Ref. [75]. For a universe which is currently dust dominated, it is found

that the Virgo cluster is about 50 times brighter than the background created by

the distant sources (see Appendix C.1 for details). Hence, it makes sense to do a

directed search for GW from the Virgo cluster.

3.4 Setting up the analysis

The choice of basis for an analysis, in principle, should not affect the physical

search results. However, in practice, such a choice can bear on computational

costs of a search and also on the systematic errors affecting observational results.

For these reasons, we expect that while searching for GW from a point source,

pixel basis is the natural choice. Whereas searching for a diffuse background, a

spherical harmonic basis is a better choice.

3.4.1 Methodology

Since the angular extension of the Virgo cluster is about 8 degrees, we carry

out the data analysis using a spherical harmonic (SpH) basis [14]. An extended
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source with an arbitrary angular distribution can be characterized by spherical-

harmonic coefficients Plm such that

P(Ω̂) = ∑
lm
PlmYlm(Ω̂) , (3.29)

which is consistent with Eq. (2.34). The series is truncated at l = lmax, allowing

for angular scale ∼ 2π/lmax. In SpH basis, the MLR statistic introduced in

Eq. (2.20) can be written as

λ =
Pµ†Xµ√
Pν†ΓντPτ

, (3.30)

where µ ≡ {l, m}, Xν is the dirty map, and Γµν is the beam matrix or Fisher

matrix and are given by [14]

Xν = ∑
f t

γ∗ν( f , t)
H( f )

ξ(1)( f , t)ξ(2)( f , t)
C( f , t) , (3.31)

Γµν = ∑
f t

γ∗µ( f , t)
H2( f )

ξ(1)( f , t)ξ(2)( f , t)
γν( f , t) , (3.32)

where γµ( f , t) is the angular decomposition of the overlap reduction function

γ(Ω̂, f , t), which characterizes the orientation and frequency response of the

detectors:

γlm( f , t) ≡
∫

S2
dΩ̂ γ(Ω̂, f , t)Ylm(Ω̂) , (3.33)

γ(Ω̂, f , t) =
1
2

FA
1 (Ω̂, t)F2,A(Ω̂, t)e2πi f Ω̂·∆r(t)/c , (3.34)

and C( f , t) = 2
∆t x̃∗1( f , t)x̃2( f , t) is the cross spectral density generated for each

interferometer pair.
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3.4.2 Angular extension of the Virgo cluster

We model the signal-strength vector of the Virgo cluster such that its non-zero

components follow a Gaussian distribution, centered at 12h 26m 32s RA and

+12◦43′24
′′

Dec, extended over 12h−13h RA and 5◦− 20◦ Dec. Figure 3.6 shows

the map of the signal-strength vector P ≡ Pmodel. The spherical-harmonic

coefficients Plm are set to zero for l > (lmax = 30) as shown in Fig. 3.7. This

corresponds to an angular scale about 12 degrees.

Figure 3.6: The map of a modeled signal-strength vector of the Virgo cluster. In

this map, the spherical harmonic coefficients are set to zero for l > (lmax = 30).

3.4.3 The analysis pipeline

We analyze data from LIGO’s 4 and 2 km detectors (H1, H2 & L1, excluding H1-

H2 pair) and VIRGO’s 3 km detector during their S5 and S6 and VSR1, VSR2,

and VSR3 science runs. The HLV network lifetime is about 3.2 years. The search

bandwidth considered here is 40-1500 Hz. We parse the time series into 60

second intervals, Hann-windowed, 50%-overlapping segments, coarse-grained
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Figure 3.7: The spherical harmonic coefficients of the modeled signal-strength

vector in Fig. 3.6. In the top panel, the real (left) and imaginary (right) parts of

Plm are plotted for different m as a function of l. Whereas in the bottom panel,

the real (left) and imaginary (right) parts of Plm are plotted for different l as a

function of m.

to achieve 0.25 Hz resolution. We also mask frequency bins associated with

instrumental lines. The cross-correlation analysis is performed on each segment.

The results from the segments are then combined into the final result. Figure 3.8

shows a schematic of the stochastic search pipeline used for this search. For each

baseline, given a model P , the MLR statistic is computed based on the dirty

map and beam matrix. The MLR statistics from the different baselines are then
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combined to find a network MLR statistic. The whole process is repeated but

with time-shifted data to estimate the background. The results are collected at

the end and post-processed if needed. Note that the upper stream of the pipeline

is common to both all-sky and directed searches. This pipeline has been tested

with hardware and software injections, and reviewed on many occasions.
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Data­find

Detector 3
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Beam
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Detection 
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Detection 
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Figure 3.8: A schematic diagram of the stochastic search pipeline.

3.4.4 Simulations

It is simple, using the spherical harmonics basis, to specify a resolution cutoff by

only allowing l ≤ lmax. This avoids oversampling and reduces the number of
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required basis vectors. Also, since extending this cutoff to a larger lmax does not

affect the original basis vectors, it is straightforward to run the analysis with a

higher resolution, and later follow up at a lower resolution. The computationally

dominant part of the analysis is the calculation of the Fisher matrix. The Fisher

matrix has (l + 1)4 elements, with (l + 1)2 the number of basis vectors. The sym-

metries in the spherical harmonic basis help to reduce the computational load.

However, reading, writing and saving the Fisher matrices and the dirty maps

are memory and disk space limited. The larger the l, the higher the memory

and disk space requirements.
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Figure 3.9: The MLR statistic of a simulated SGWB in the Virgo cluster is com-

puted and plotted for different harmonic cutoff.

Here we do a Monte Carlo simulation to choose the harmonic cutoff. Fol-

lowing the diffraction formula, the larger the baseline, the higher the resolution.

However, we consider 15 days of data from S5 science run with coincident be-

tween H1 and L1. We inject a signal, following the above Pmodel and simple
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power-law spectrum, into the data stream. The data were first processed with

lmax = 30, and later with different lower lmax. The MLR statistic for different

choices of lmax cutoff is presented in Fig. 3.9. It is obvious form the plot that

λ saturates at lmax = 25. So, we adopt lmax = 25 to search for the SGWB

from NSs in the Virgo cluster. It is also found in a similar study that the known

sky-distribution of the source contributes about 10% more to the signal-to-noise

ratio than the unknown counterpart.

3.5 Discussion

Since the search is ongoing and it requires internal review, we do not report the

data analysis results here. The actual population of NSs in the Virgo cluster is

unknown. Searching for their SGWB profile with current and advanced detec-

tors has a merit if the actual number exceeds our expectation. The analysis itself

is nevertheless interesting, because even if we do not detect the signal, we can

put an upper limit on the average ellipticity of the NSs in the Virgo cluster. In

addition to searching for SGWB targeting the Virgo cluster, we perform an all-

sky search using the same spectra. This will allow us to compare the results from

targeting the Virgo cluster with those from an all-sky search, and hence address

Olbers’ paradox. Extending this analysis to other targets (e.g., NSs in the Coma

cluster) and searching for them in advanced detectors’ data are straightforward.
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Chapter 4

Searching for perturbed black hole

ringdown signals

In this chapter, we study the methods of detecting the ringdown phase of a GW

signal that arises from a perturbed black hole. Such a black hole can result from

the coalescence of a compact binary, a massive object falling into a BH or the

formation of a BH through the asymmetric core collapse of a massive star. This

signal is initially in the form of a superposition of quasi-normal modes [122].

However, at late times the waveform, which is known as a ringdown, is expected

to be dominated by a single mode. The existence of intermediate-mass black

holes (IMBHs), which have masses from hundreds to tens of thousands of solar

masses, has not yet been corroborated observationally. However, these objects

are of great interest for astrophysics and their discovery by LIGO and VIRGO in

the GW spectrum is an interesting possibility.

The optimal method for searching such a signal buried in detector noise is
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to match-filter the detectors’ output with theoretically modeled waveforms. The

coherent network statistic is optimal for detecting these signals in stationary,

Gaussian noise [46, 47]. But in real noise, which is non-Gaussian and non-

stationary, that statistic is sub-optimal unless additional discriminators of noise

artifacts are employed [12]. Here, we describe a hierarchical method for coher-

ently searching ringdown signals in a network of detectors that is aided by such

discriminators.

4.1 Motivation for the search

A black hole itself does not emit any signals from within its horizon classically,

thus making it invisible and difficult to detect directly. However, astronomers

can infer the presence of a black hole by electromagnetically observing the in-

fluence of its strong gravity on nearby matter. In recent years, evidence has

mounted for both stellar-mass black holes and supermassive black holes. Stellar-

mass BHs are born in the collapse of massive stars and have masses in the

range 3 M� ≤ M ≤ 20 M�. From the discovery of a number of bright X-

ray sources, it is evident that there are many binaries in our Galaxy and other

galaxies that consist of a stellar-mass BH, which accretes matter from a stel-

lar companion [76, 77, 78, 79]. Supermassive BHs, which are believed to be

the engines behind quasars, have masses of 106 M� to 1010 M�. Observa-

tions of the stellar environment near galactic centers, especially the high lu-

minosity and small size of active galactic nuclei, provide the strongest empirical

evidence for the existence of massive black holes in the center of most galax-
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ies [80, 81, 82, 83, 84, 85, 86, 87, 88, 89]. The formation of supermassive BHs is

not as well established as the formation of stellar-mass BHs, but it is theorized

that they are produced during collisions between galaxies, or in a series of colli-

sions between BHs that have masses greater than those of stellar-mass BHs, but

significantly less than those of supermassive BHs.

Observations of ultraluminous X-ray sources in galaxies and presence of ex-

cess dark mass in globular-cluster cores suggest that there may exist a popula-

tion of intermediate-mass black holes with masses M ∼ 102 − 104 M� [90]. But

the existence of IMBHs has never been confirmed [91]. Several IMBH formation

mechanisms have been proposed: (a) Formation of IMBHs in young clusters

via runaway collapse of stars [92, 93, 94]. (b) Formation of IMBHs in globu-

lar clusters through repeated mergers of stellar-mass BHs in binaries [95, 96].

(c) Formation of lower mass single IMBHs by the stalled supernova of early

Population III stars [90, 97]. (d) Formation of IMBHs from progressive accu-

mulation of mass into a large seed black hole via coalescence of a population of

smaller-mass BHs [95]. (e) IMBHs could be the relics of very massive metal-free

stars [98]. The existence of binaries with IMBH components remains uncertain

since stellar winds may stall the growth of the IMBH progenitors in the runaway

collision scenario [99], or the merger recoil may also eject a newly formed black

hole from the globular cluster [100, 101].

Some recent observations indicate that IMBHs could exist in the core of glob-

ular clusters [102, 103, 104, 105]. These objects are thought to grow from accre-

tion of smaller compact objects [106]. It has been suggested that IMBHs are the

engines powering ultraluminous X-ray sources, such as M82 X-1 [107, 108, 109]
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and NGC 1313 X-2 [110, 111]. Ultraluminous X-ray sources are found off-center

in young star clusters in starburst galaxies: X41.4 + 60 in M82 has approximate

mass range of 500− 105 M� [112, 113] and HLX-1 in ESO 243-49 has a lower

mass limit of approximately 500 M� [114].

The detection of GWs from IMBHs could have important consequences for

theories about the formation of supermassive black holes and the dynamics and

evolution of globular clusters [115, 116] and could ascertain information about

their masses and spin parameters. The merger and ringdown phases of the

GW signal are important for detection of IMBH sources because for massive

systems the characteristic frequencies of the inspiral phase are usually outside a

detector’s frequency band.

4.2 Quasi-normal modes of black holes

According to GR, a black hole (BH) is a region of space-time where gravity is so

strong that nothing, not even light, can escape it. At the center of a black hole,

space-time has a curvature singularity. That singularity is enclosed by an “event

horizon”, a mathematically defined surface that marks the point of no return

for an object falling in. Black holes can have masses varying from a few solar

masses to millions of solar masses. In general, a black hole can be completely

characterized by three parameters, namely, its mass, spin and charge. And only

the mass and spin are likely to be significant for any astrophysical black hole.
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4.2.1 Schwarzschild and Kerr black holes

The Kerr-Newman metric is a stationary and axisymmetric solution of the Ein-

stein-Maxwell equations, describing the space-time geometry in the region sur-

rounding a charged, rotating black hole [117]. The other stationary black hole

solutions can be obtained as particular cases of the Kerr-Newman solutions. The

space-time geometry outside an uncharged non-spinning spherical black hole of

mass M is given by the Schwarzschild metric

ds2 = −
(

1− 2GM
c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 . (4.1)

And the space-time geometry outside an uncharged spinning black hole of mass

M and angular momentum J is described, in terms of the Boyer-Lindquist coor-

dinates (r, θ, φ), by the Kerr metric

ds2 = −
(

1− 2GMr
c2Σ

)
c2dt2 − 4GM r a sin2 θ

c Σ
dφ dt +

Σ
∆

dr2 + Σ dθ2

+

(
r2 + a2 +

2GM r a2 sin2 θ

c2Σ

)
sin2 θdφ2 , (4.2)

where a ≡ J/cM is the spin parameter, Σ ≡ r2 + a2 cos2 θ and ∆ ≡ r2 −

2GMr/c2 + a2. From this point on, unless otherwise mentioned, we refer to

the spin by a dimensionless spin parameter â = Jc/GM2. This parameter can

take values ranging from 0 (Schwarzschild BH) to 1 (extreme Kerr BH).

4.2.2 Black hole perturbation

The theory of black hole perturbations and the associated radiation has a long

history. The study of BH perturbations was initiated by the pioneering work of
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Regge and Wheeler [118] and was continued by Zerilli [119] and Chandrasekhar

and Detweiler [120, 121]. Their study found that black holes remain stable if sub-

jected to a small perturbation. Their study also showed that the solution to the

linearized Einstein Equation can be expressed in terms of spherical harmonics

Ylm. The existence of quasi-normal modes (QNMs) of a BH was first pointed out

by Vishveshwara [122] in calculations of the scattering of gravitational waves by

a Schwarzschild black hole. In GR, quasi-normal modes arise as perturbations

of stellar or black hole space-time. QNM oscillations have been found in pertur-

bation calculations of particles falling into Schwarzschild [123] and Kerr black

holes [124, 125] and in the collapse of a star to form a black hole [126, 127, 128].

A nice review of quasi-normal modes can be found in Ref. [129]. A BH can

be perturbed in a variety of ways, e.g., by the incidence of GWs, by an object

falling into it, by the interaction with a companion, by the accretion of matter

surrounding it, or by the formation process in a gravitational collapse. There

are no normal mode oscillations associated with non-radial perturbations. This

is in contrast with the normal modes of Newtonian gravity, because in GR they

are damped by the emission of GWs and, hence, they are called quasi-normal

modes. Each mode has a characteristic complex frequency, whose real part rep-

resents the actual frequency of the oscillation and whose imaginary part repre-

sents the inverse of the damping time. We express the angular frequency ωlm in

terms of the oscillation frequency flm and the quality factor Qlm as

ωlm = 2π flm − iτ−1
lm = 2π flm − i

π flm
Qlm

, (4.3)

where τ is the damping time.
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4.2.3 The ringdown waveform

Numerical simulations (see for example, Refs. [130, 131]) have demonstrated

that the fundamental mode, l = m = 2, dominates the GW emission. Far from

the source, the plus and cross polarizations of a ringdown waveform can be ex-

pressed in terms of the central frequency f0 ≡ f22 and the quality factor Q ≡ Q22

as [132, 133, 134, 135]

h+(t) = A (1 + cos2 ι) e−
π f0t

Q cos(2π f0t) , (4.4)

h×(t) = A (2 cos ι) e−
π f0t

Q sin(2π f0t) , (4.5)

where A is the amplitude of the l = m = 2 mode, and ι is the inclination angle

of the source. The strain produced in the detector is then

h(t) = h+(t)F+(θ, φ, ψ) + h×(t)F×(θ, φ, ψ) , (4.6)

where F+,× are the detector antenna-pattern functions (see Appendix A.1 for

more details), with ψ being the wave-polarization angle and (θ, φ) being the

sky-position of the source. For a given source at a distance r, one defines the

effective distance as

Deff =
r√

F2
+(1 + cos2 ι)2/4 + F2

× cos2 ι
. (4.7)

The effective distance gives the distance to a BH as if it were optimally located

and oriented.

Following Refs. [136, 133, 135], the ringdown waveform is approximated by

h0(t− t0) = A e−
π f0t

Q cos(2π f0t− ϕ0) , (4.8)
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were ϕ0 is the signal’s initial phase and t0 is the time of arrival at the detector.

If ε is the fraction of the black hole’s mass radiated as gravitational waves, then

the amplitude is given by [134]

A =

√
5
2

ε

(
GM
c2r

)
Q−1/2F(Q)−1/2g(â)−1/2 , (4.9)

where g(â) =
[
1.5251− 1.1568(1− â)0.1292] and F(Q) = 1 + 7

24Q2 , M is the black

hole mass, c is the speed of light, G is the gravitational constant, and r is the

distance to the source. An example of a ringdown waveform is shown in Fig. 4.1.

The frequency and quality factor for each quasi-normal mode can be related
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Figure 4.1: Ringdown waveform for a black hole of mass M = 100 M� and spin

â = 0.7 corresponding to frequency f0 = 172.8109 Hz and quality Q = 3.2871, at

a distance of r = 100 Mpc.

to the black hole mass M and dimensionless spin parameter â through fitting
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formula [141, 142, 143, 144, 145]. For the l = m = 2 mode, we have

Q = 0.7000 + 1.4187(1− â)−0.4990 , (4.10)

f0 =
1

2π

c3

GM

[
1.5251− 1.1568(1− â)0.1292

]
, (4.11)

and the inverse relationship is given by

â = 1−
(

Q− 0.7000
1.4187

)−2.0040

, (4.12)

M =
1

2π

c3

G f0

[
1.5251− 1.1568

(
Q− 0.7000

1.4187

)−0.2589
]

. (4.13)

Note that Q is determined by â and f0 is determined by M and â. Figure 4.2

shows how frequency and quality factors are related to mass and spin.
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Figure 4.2: Central frequency of the ringdown waveform is plotted as a function

of mass for three spin values (left). The mass range (above a few solar masses)

reflects the sources that earth-based detectors are most sensitive to. Quality

factor is plotted as a function of the dimensionless spin parameter (right).
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4.3 Ringdown searches with matched filtering

When the signal is known, the optimal method of extracting the signal from

Gaussian noise is matched filtering [26]. We filter the strain data from a detector

with each template characterized by either mass and spin or frequency and qual-

ity factor. A trigger is generated when the signal-to-noise ratio (SNR) yielded

by matched filter crosses a pre-defined threshold for a given filter. Of course,

the threshold is chosen carefully so as to minimize the false dismissal rate for a

given false-alarm rate. The higher the threshold, the more significant the trigger.

However, as the noise in the data stream is non-stationary and non-Gaussian,

matched filtering alone is not enough to establish the significance of a trigger as

a GW signal. Noise can often mimic the signal we are searching for, and so a

large effort goes into characterizing the noise to best separate it from a potential

gravitational wave signal.

4.3.1 Matched filter

In GW data analysis, the data from multiple detectors is match-filtered with

templates derived from theoretical waveforms to test the presence or absence of

signals in the data. Filtering the data x(t) with an elliptically-polarized template

hep(t; µi) characterized by the source parameters µi yields the SNR statistic given

by

ρep(hep) =
|〈x, hep〉|√
〈hep, hep〉

≡ |〈x, hep〉|
σep

, (4.14)

where 〈x, hep〉 denotes the noise-weighted scalar product of the data and the

template defined in Eq. (5.10). The data x(t) may or may not contain a signal
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and is expressed as

x(t) =

 n(t) , if signal is absent.

n(t) + h(t) , if signal is present.
(4.15)

Far from the source, the ringdown template can be expressed as

hep(t) = e−
π f0t

Q {cos(2π f0t)− i sin(2π f0t)} . (4.16)

This choice is equivalent to modeling the template as e−
π f0t

Q cos(2π f0t− ϕ0) in

matched filter searches. For each template, triggers that have SNRs greater than

a pre-defined threshold are retained. These triggers are used for determining

coincidence across different detectors.

4.3.2 Template banks

Although the form of the signal is known, the exact values of the intrinsic pa-

rameters are unknown. For the ringdown waveform, these parameters are the

central frequency f0 and the quality factor Q. We create a bank of templates to

search over the range of intrinsic parameters of interest. We then filter the data

with each of the templates in the bank. The templates are placed discretely in

the parameter space. If the signal parameters match those of a template and the

SNR crosses the pre-defined threshold, we record the template parameter, the

time of the trigger and other relevant information. In general, more than one

template in the bank can generate a trigger for a given signal. We then obtain an

estimate of the intrinsic parameters for the source of the signal from the template

that provided the largest SNR.
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In order to understand how to place templates in the parameter space, we de-

fine two templates ũ( f ;µ,λ) and ũ( f ;µ+∆µ,λ+∆λ) characterized by intrinsic

parameters λ and extrinsic parameters µ, such as time of arrival and phase. The

match, M, between two templates is defined as the inner product maximized

over the extrinsic parameters:

M(λ, ∆λ) ≡ maxµ,∆µ〈u(µ,λ), u(µ+ ∆µ,λ+ ∆λ)〉 . (4.17)

This is the fraction of the SNR achieved by filtering a signal with parameters λ

against a template with parameters λ+ ∆λ [43]. Expanding M in a power series

about ∆λ gives

M(λ, ∆λ) ≈ 1 +
1
2

(
∂2M

∂∆λi∂∆λj

)
∆λk=0

∆λi∆λj . (4.18)

The metric in the template bank is defined by the mismatch, (1− M), which is

just the square of the proper distance between templates

ds2 ≡ 1−M = gij∆λi∆λj , (4.19)

where the metric is given by

gij(λ) = −
1
2

(
∂2M

∂∆λi∂∆λj

)
∆λk=0

. (4.20)

Having defined this metric on the intrinsic parameter space, we can now use it

to calculate the spacing of the discrete template family required to retain a given

fraction of the ideal event rate.

4.4 A coincident multi-detector search

The first LSC ringdown search was carried out by Creighton [136] with a single

filter on data from the LIGO 40 m prototype in 1994 using the GRASP soft-
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ware [137]. In 2004, Adhikari [138] performed a coincident ringdown search

on 300-hour-long data from the LIGO S2 science run using LAL software [176].

The TAMA collaboration also carried out a search for ringdown signals using

data from their 300 m interferometer [139]. In 2009, a 90%-confidence upper

limit was placed on the rate of ringdowns from black holes with mass between

85 M� and 390 M� in the local universe, assuming a uniform distribution of

sources, of 3.2× 10−5 yr−1Mpc−3 [133, 134]. This search was carried out on data

from LIGO S4 science run, which took place between February 22 and March

24, 2005. Let us name it the “LIGO S4 ringdown search”. This includes a to-

tal of 567.4 hours of analyzable data from H1, 571.3 hours from H2, and 514.7

hours from L1. This yielded 360 hours of data in coincidence among H1, H2,

and L1. To check whether a signal is in coincidence between detectors, a test is

applied separately on time, frequency and quality factor. The upper limit was

presented based on the study of simulated ringdown only signals added in the

data stream by software. A weakly modeled burst search for GWs from mergers

of non-spinning intermediate-mass binary black holes was performed on data

from LIGO S5 and VIRGO VSR1 science runs. A 90%-confidence upper limit

of 0.13 Myr−1Mpc−3 is placed on the rate of non-spinning sources with compo-

nent masses m1 = m2 = 88 M� [140]. In the following sections, we present the

method for searching for GWs from perturbed BH ringdown signals in the data

from LIGO S5/S6 and VIRGO VSR2/VSR3 science runs. We refer to it as the

“LIGO-VIRGO S5/S6 ringdown search”.
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4.4.1 The coincidence search pipeline

The “ringdown search pipeline”, illustrated in Fig. 4.3, is a multi-detector data

analysis pipeline designed for searching the l = m = 2 quasi-normal mode of

gravitational waves from perturbed black holes [134, 133]. Here we summarize

the main steps. The first stage of the pipeline involves reading in and condi-

tioning the data from each of the detectors. We read in uncalibrated data at a

sampling rate of 16384 Hz, low-pass filter it to remove any power above 4096 Hz

as a part of downsampling it to 8192 Hz to reduce the computational cost. The

data is then high-pass filtered to remove power below 40 Hz. This is converted to

strain by applying the detector response function. The one-sided power spectral

density is calculated for each 2176s long segment of the calibrated data. The data

is then broken further into sets of 16 overlapping blocks, each 256s in length, and

filtered using a bank of ringdown templates. This segmentation is discussed in

more detail in Ref. [185]. Once the triggers are generated, we require coincidence

of a trigger from at least two detectors in waveform parameters to increase the

confidence level for the presence of a signal. At this stage we also veto triggers

occurring during times when data quality flags are on.

4.4.1.1 Data set

The search uses data from LIGO S5 and S6 science runs and from VIRGO VSR2

and VSR3 science runs. LIGO S5 science run took place between 2005 November

4 and 2007 October 1, during which time the detectors reached the initial LIGO

(iLIGO) design sensitivity. The detectors had duty factors of 78% for H1, 79%

for H2, and 66% for L1. We exclude data from VIRGO VSR1 science run. That
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Figure 4.3: A schematic diagram of the coincidence and coherent (see Section 4.5)

stages of the ringdown search pipeline. The LIGO detectors (H1, H2 and L1) are

considered as an example of this diagram.

means we only analyze data from H1, H2, and L1 detectors during S5/VSR1.

We sometimes refer to this as the ”LIGO S5 ringdown search”. LIGO S6 science

run was held from 2009 July 07 to 2010 October 20. During this run, the 4 km

H1 and L1 detectors were operated at sensitivities that surpassed that of the

previous S5 run, with duty factors of 52% and 47%. The 2 km H2 detector

was not operated during S6. VIRGO VSR2 science run was held from 2009 July

07 to 2010 January 08 with an improvement in sensitivity roughly a factor of
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2 over VIRGO VSR1 science run. VIRGO VSR3 was held from 2010 August

11 to 2010 October 20. The overall Virgo duty cycle over VSR2 and VSR3 was

78%. Figure 1.4 shows the best sensitivities, in terms of noise spectral density, of

the LIGO interferometers during S5 science run. Using the power spectrum we

can estimate a detector’s horizon distance, DH, which is the distance at which

a specified source with optimal location and orientation produces a SNR of 8

in that detector. We consider a spinning black hole with â = 0.7 and ε = 0.01

(where ε is the fraction of BH mass emitted as GWs). Figure 4.4 shows the

horizon distance as a function of mass for LIGO/VIRGO detectors at the best

sensitivities during their joint S5/VSR1 science run.

4.4.1.2 Template placement

The ringdown analysis pipeline constructs a two-dimensional lattice template

bank in the ( f0, Q) space where the mismatch between two templates differ-

ing in ringdown frequency by d f0 and in quality factor by dQ is given by the

metric [133].

ds2 =
1
8

[
3 + 16Q4

Q2(1 + 4Q2)2 dQ2 − 2
3 + 4Q2

f0Q(1 + 4Q2)
dQd f0 +

3 + 8Q2

f 2
0

d f 2
0

]
, (4.21)

which assumes white noise. The mismatch is defined in terms of φ ≡ log( f0) so

that the metric coefficients in the (Q, φ) variables are independent of f0:

ds2 =
1
8

[
3 + 16Q4

Q2(1 + 4Q2)2 dQ2 − 2
3 + 4Q2

Q(1 + 4Q2)
dQdφ + (3 + 8Q2)dφ2

]
, (4.22)

= gQQdQ2 + gQφdQdφ + gφφdφ2 . (4.23)

Currently, the population algorithm uses only the diagonal terms containing

d f 2
0 and dQ2. Starting with the smallest central frequency and quality factor, the

106



Figure 4.4: The ringdown horizon distance as a function of mass for a black hole

with spin â = 0.7 and ε = 0.01 plotted for LIGO and VIRGO detectors. For

LIGO 4 km detectors during S5 science run, the ringdown horizon distance for a

black hole of mass 210 M� reached about 600 Mpc. The quantity in parentheses

represents date in YYMMDD format when the horizon distance shown here was

measured.

algorithm places templates along Q in steps of [145, 146]

dQ =
dseffQ(1 + 4Q2)√

3 + 16Q4
, (4.24)

and along dφ = d log( f ) in steps of

dφ =
dseff√
3 + 8Q2

, (4.25)

where dseff = 4
√
(1−MM) and MM is the specified minimal match between

the template and signal. The templates are placed in log( f0) and Q space such

that the mismatch between any signal and its closest template is 3% or less. Fig-

ure 4.5 shows the ringdown template bank for f0 ∈ [50, 2000] Hz, Q ∈ [2.1187, 20]
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used in this study. For this bank, ds2 = 0.03 and it has a total of 615 templates.

The frequency spacing of the templates is finer for lower frequencies and for

higher quality factors. The template placement can be well understood by look-

ing at the contours of constant mismatch around each template in the bank.

These contours form overlapping ellipses in the template parameter space. Each

contour covers a region in the template parameter space so that any given signal

in that region will match a template by no less than 97%. Figure 4.6 illustrates

the contours around templates for a single frequency and for a snippet of the

template bank.

10
2

10
3

0

5

10

15

20

f [Hz]

Q

Figure 4.5: The template bank for the LIGO-VIRGO S5/S6 ringdown search.

Following Refs. [133, 136, 134], the template used in this search is given by

hc(t) = e−
π f0t

Q cos(2π f0t) , 0 ≤ t ≤ tmax (4.26)

with a length of 10 e-folding times, tmax = 10τ, where τ = Q/π f0. In order

to illustrate the parameter space covered in this search, we plot expected signals
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Figure 4.6: Contours of ds2 = 0.03 around templates of a constant frequency

(left) and for a portion of the template bank (right).

in time domain (see Fig. 4.7), in the extremes of the parameter space. Figure 4.7

shows the signals in the extremes of the parameter space characterized by fre-

quency and quality factor. Using the relations given in Eqs. (4.12) and (4.13),

we tabulate the masses and spins, corresponding to the extreme frequencies and

quality factors, in Table 4.1.

4.4.1.3 Trigger generation

For the ringdown template given in Eq. (4.26), the SNR is

ρc(hc) =
|〈x, hc〉|√
〈hc, hc〉

≡ |Zc|
σc

. (4.27)

In practice, the detector output is not continuous but is a discretely sampled

quantity with sampling interval ∆t seconds,

xj ≡ x(tj) , (4.28)
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f0 = 2000 Hz, Q = 2.1187

Figure 4.7: Ringdown waveforms in the extremes of the parameter space, char-

acterized by central frequency and quality factor. To illustrate the short nature

of these waveforms, the e-folding time is also marked with a dashed line.

where tj = j∆t. Thus, in order to filter the data we need to recast the expressions

described above. The digital matched filter operates on a single data segment

consisting of N consecutive samples of x(tj). The length of this data segment

is T = N∆t s. The frequency domain quantity x̃( fk) denotes the value of the

continuous function x̃( f ) at a particular frequency, labeled

fk =
k

N∆t
. (4.29)
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Table 4.1: Extreme (pair) values for frequency and quality factor of the ringdown

template bank, together with their corresponding masses and spins.

f0 (Hz) Q M (M�) â

50 2.1187 237.9536 0

2000 2.1187 5.9488 0

50 20 605.1196 0.9947

2000 20 15.1280 0.9947

If the units of xj are counts, then x̃( fk) has units of counts/Hz. We define x̃k by

x̃k =
x̃( fk)

∆t
, (4.30)

which has units of counts. Negative k defines negative frequencies. Since x(tj) is

sampled at intervals of ∆t, the sampling theorem implies that x(tj) is bandwidth

limited to the frequency range − fNy ≤ f ≤ fNy, where fNy = 1/(2∆t) is the

Nyquist frequency. Any power in x(t) at frequencies above fNy will be aliased

into the range − fNy ≤ f ≤ fNy, thus, corrupting the data. To prevent this, data

of frequency higher than fNy are removed using analog low-pass filters before

the data is digitized. Therefore, x(tj) completely determines the data x(t) in the

band of interest. Thus the Fourier transformed data is expressed as

x̃k =
N−1

∑
j=0

xje−i2π jk/N , (4.31)

and its inverse Fourier transform is given by

xj =
1
N

N−1

∑
k=0

x̃jei2π jk/N . (4.32)
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Similarly, the template used in this search is given in its discrete form by

hcj ≡ hc(tj) = e−
π f0 j∆t

Q cos(2π f0 j∆t) , (4.33)

The template time series is Fourier transformed to get h̃c k ≡ h̃c( fk).

The filtering is done in Fourier domain template by template for each of the

sixteen 256s overlapping block of data in a 2176s analysis segment. Then the

filter output is inverse Fourier transformed to get the time series

|Zcj| =
2

N∆t
<
{

N/2−1

∑
k=1

S−1
v

dyn R
(∆t x̃∗k )

(
∆t h̃c k

)
e−i2π jk/N

}
, (4.34)

where the inverse calibrated power spectrum

1
ξ( f )

=
1

dyn2 R2 S−1
v (4.35)

is expressed in terms of uncalibrated spectral density Sv( f ), response function

R( f ), and the “dynamical range factor” dyn = 1020 [134]. The numerical value

of the response function is very small, so to save the computational cost of extra

precision we scale this quantity by the dynamical range factor. Note that in

Eq. (4.34) we set the DC (k = 0) term and the Nyquist frequency (k = N/2)

term to zero. The variance of the template is evaluated as

σ2
c =

4
N∆t

N/2−1

∑
k=1

S−1
v

dyn2 |R|2
[(
<
{

∆t h̃c k
})2

+
(
=
{

∆t h̃c k
})2
]

dyn2 . (4.36)

Using the pre-defined threshold on the SNR, ρc∗, we calculate the equivalent

threshold on the filter output, |Zc|∗. For a given template we compute

|Zc|∗ = ρc∗
σc

2 dyn
(4.37)

and compare it with |Zc|. We cluster those triggers above threshold in time of 1s

sliding window [134]. The trigger with the loudest SNR in a cluster of triggers
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is marked as the trigger to be recorded. The SNR of the clustered triggers is

calculated as

ρc(tj) = |Zc(tj)|
2 dyn

σc
. (4.38)

The amplitude A is calculated (according to Eq. (4.9)) from the template pa-

rameters f0 and Q, and with ε = 0.01 and the distance to the source r = 0.5

Mpc. The effective distance is a derived quantity based on the amplitude and

the sensitivity of the detector to a source at 1 Mpc. This sensitivity is calculated

as

σ2 = (1 Mpc) σ2
cA2, (4.39)

from which the effective distance of the trigger is estimated

Deff = (1 Mpc)
σ

ρc
. (4.40)

All of the parameters mentioned here are recorded for each trigger.

4.4.1.4 Coincidence analysis

Once triggers are found in one detector they are checked for parameter consis-

tency and time delay with triggers from other detectors, operating concurrently.

This is commonly known as a coincidence test. Triggers failing this test are dis-

carded. Whereas, triggers fulfilling the test are recorded as coincidences and are

followed up further because they can be signals.

Random noise is considered to be uncorrelated between geographically sepa-

rated detectors. Thus, requiring coincidence between triggers of separated detec-

tors lowers the false alarm rate significantly [150]. In LIGO S4 ringdown search,

the coincidence test was composed of two separate stages. The time requirement
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is enforced first, only allowing triggers that appear within 4 ms of each other for

co-located detectors (H1-H2 pair) and 14 ms for the H1-L1 pair. Note that H1

and L1 observatories are separated by 10 ms of light travel time. The second

coincidence test is based on the metric used for template placement to measure

the distance between the triggers’ template parameters [133]. However, it was

found that the time of arrival difference of recovered coincidences is actually fre-

quency dependent, which led to having a frequency dependent time-difference

cut, instead of a flat dt cut. In this S5 search, we apply a coincidence test that

uses the 3D metric in ( f0, Q, t) space to compute the distance between coincident

triggers [146]:

ds2 =
1 + 6Q2 + 16Q4

4 f 2
0 (1 + 2Q2)

d f 2
0 +

1 + 28Q4 + 128Q6 + 64Q8

4Q2(1 + 6Q2 + 8Q4)2 dQ2

+
π2 f 2

0 (1 + 4Q2)

Q2 dt2 − 1 + 2Q2 + 8Q4

2 f0Q(1 + 6Q2 + 8Q4)
d f0 dQ

−2πQ(1 + 4Q2)

1 + 2Q2 dt d f0 +
2π f0(1− 2Q2)

(1 + 2Q2)2 dt dQ . (4.41)

Using this metric allows us to specify a single threshold that simultaneously

covers variations in f0, Q, and t. By using the 3D coincidence test, we recover

the same number of signal triggers, compared to S4 coincident test, while re-

ducing the level of false triggers. Simulation experiments were used to set the

coincidence threshold at ds2 = 0.4.

At this stage of the coincident search pipeline we also veto triggers occurring

during times when data quality flags were on. Data quality flags are intended

to indicate periods of data taking which suffer from environmental and instru-

mental effects, inducing noise into the data [147, 148, 149]. We differentiate

among three categories of environmental and instrumental vetoes: a) CAT1 -
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Data marked as CAT1 indicate severe malfunctions of the detector. Data seg-

ments surviving the CAT1 veto are used in the analysis. b) CAT2 - Data marked

as CAT2 indicate well-understood short duration noise transients. Data seg-

ments flagged by this category should not be used for upper limit calculations

but are used for searching detection candidates. An example of a CAT2 flag is

when simulated waveforms are present in the data in the form of “hardware

injections”, which are made for calibration purposes. c) CAT3 - Data marked as

CAT3 denote periods when the GW strain channel is only weakly correlated to

environmental and instrumental artifacts. Detection candidates found at these

times should be followed up with care.

4.4.2 Tuning the search

In any experiment, there will always be false triggers that mimic the behavior

of signals. Typically, a detector’s false alarm rate due to the background can

be determined simply by turning off the source or changing the orientation of

the detector. However, these are not options for GW detectors, which are more

or less omni-directional and cannot be shielded from gravitational waves. So,

we estimate the background due to accidental coincidences of noise by shifting

triggers in one detector relative to those in another by durations greater than

the light-travel-time between those detectors. The shifts minimize the chance

of putting an actual GW trigger in the background sample. We refer to these

as background triggers or slide triggers, as opposed to the in-time coincident

triggers (i.e., zero-lag triggers or foreground triggers) obtained without such

time shifts. Background triggers corresponding to times which are flagged by
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data quality studies are discarded. In LIGO S5 ringdown search, H2 data is not

slid with respect to H1 data because the correlation of noise in these co-located

detectors under-estimates the rate of false alarms [146]. However, we slide L1

data on a ring fifty times in steps of 5s and fifty times in steps of -5s, forming

100 experimental trials with no true signals [185, 134].

In order to test the sensitivity of our search to GWs from black holes, we add

various simulated signals to the data stream. These are known as ”software in-

jections”. We then run the search pipeline to find them in the noise. To measure

the efficiency of the search we simulate three different populations of wave-

forms [146]. These include (a) PHENOM - phenomenologically motivated post-

Newtonian inspiral-merger-ringdown (IMR) gravitational waveforms for binary

black holes [152, 153, 154, 155, 156], (b) EOBNR - effective-one-body (EOB) post-

Newtonian model fitted to numerical-relativity simulations [157, 158], and (c)

RINGDOWN - quasi-normal modes of the perturbed black hole as discussed in

Sec. 4.2.3. The injection parameters are chosen in such a way that they cover

a wide range of signal parameter space. The injections are placed at random

times within an interval of 300s distributed both uniformly in distance and in

logarithmic distance between 1 Kpc and 1 Gpc and uniformly in initial phase,

sky position, inclination and polarization angles.

We utilize the injection and the slide triggers to find a balance between re-

covering as many simulated signals in coincidence between multiple detectors

as possible while keeping the rate of false coincidences to a minimum. This

process is known as tuning a search pipeline. We finished tuning the LIGO S5

ringdown search recently. We find the SNR thresholds to be 5.5, 4.0, and 5.5 for
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H1, H2, and L1 detectors, respectively, and the 3D coincidence threshold to be

ds2 = 0.4 for each detector. We found that the SNR thresholds for the LIGO

S4 ringdown search were set at higher values (see Appendix D.1). This was

one of the main reasons why no triple-coincident background trigger was found

in H1, H2 and L1 detectors. It is also found that the number of slide triggers

grows exponentially as the SNR threshold is lowered. So, to strike a balance

between the computational cost and the detection efficiency, we only lowered

the SNR threshold for the H2 detector. This is also motivated by the fact that the

sensitivity of H2 detector is roughly half of the sensitivity of H1 or L1 detector.

We have not opened any boxes on the analysis yet. So, here we present some

preliminary results from the tuning exercise. These results are produced using

a portion of the LIGO S5 data. The results presented here contain only soft-

ware injections and time-slides after CAT1, CAT2 and CAT3 vetoes have been

applied. In Fig. 4.8, we show the sensitivity of the search pipeline to GWs from

black holes by comparing made and found software injections in about 30 days

of LIGO S5 data when H1, H2 and L1 detectors were operating in science mode.

These plots include RINGDOWN as well as IMR (i.e., EOBNR and PHENOM)

injections. Note that in the following plots, "Sim." means simulated parameters,

and "Sngl." means estimated signal parameters. In Figs. 4.9 and 4.10, we sepa-

rately study the PHENOM injections. Estimated effective distance is higher than

simulated effective distance for a large number of IMR injections. We under-

stand that the parameter estimation is bad for unequal mass binaries and the

estimated ringdown mass is consistently higher than the simulated ringdown

mass. And in Figs. 4.11, 4.12, and 4.14, we study the RINGDOWN injections.
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We find bias in frequency recovery for higher mass black holes. Better mass

recovery is found for signals with higher quality factor. This is because signals

with higher quality factor have more cycles than signals with lower quality fac-

tor. The ringdown templates match earlier with the ringdown phase of the IMR

signal, i.e, they match with the merger. Thus, effectively, they pick up a longer

”ringdown” signal with a larger quality factor and lower frequency. We also find

that inclusion of IMR waveforms improves detection efficiency. This is because

the ringdown only signals at high frequency are more difficult to recover than

those at low frequency because detector sensitivity decreases at higher frequen-

cies. However, the inspiral and merger phases preceding the ringdown phase

sweep up through the detector band, finding a significant match with ringdown

templates.

The coincidence statistic is a ranking mechanism using the SNRs of coinci-

dent triggers. The exact form of the statistic for a given population depends on

the properties of the SNR distributions of simulated and background signals (see

Figs. 4.14, 4.15, and 4.16). In the LIGO S4 ringdown search, no triple-coincident

event was found. However, a ranking statistic was proposed, which was moti-

vated by Gaussian distribution of triggers, and is given by [133]

ρD,S4 =
√

ρ2
H1 + ρ2

H2 + ρ2
L1 . (4.42)

Note that the original equation in Ref. [133] does not have the square root and

was named the detection statistic there. This was done in order to enhance the

likelihood of ranking the triple-coincident (injection) triggers higher than the
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Figure 4.8: Decisive distance of missed and found injections is plotted against

chirp mass (top) and frequency (bottom). The stars are injections found with

zero combined false-alarm rate (FAR), and the circles are injections found with

non-zero combined FAR. The red crosses are missed injections (vetoed injections

are excluded). Note that the decisive distance is the second smallest effective

distance. Chirp mass is defined in Sec. 5.2.1.
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Figure 4.9: Scatter plots of simulated and estimated effective distance of found

PHENOM injections. The color-bar represents estimated frequency (top left),

quality factor (top right), mass (middle left), and spin (middle right). The color-

bar of the bottom plot represents simulated mass-ratio. These parameters are

estimated in H1 detector.

120



Figure 4.10: Scatter plots of simulated mass 2 versus mass 1 of made and found

PHENOM injections (left). Histogram of number of made PHENOM injections

per mass-ratio bin is compared with histogram of number of found PHENOM

injections per mass-ratio bin (right).

double-coincident ones; the double coincident statistic was introduced as

ρDS = min
{

ρifo1 + ρifo2 , 2ρifo1 + 2.2 , 2ρifo2 + 2.2
}

. (4.43)

The optimal statistic is the sum of SNR squares if the distribution is Gaussian.

However, the distribution in real data was found to have long "tails", i.e, coin-

cidences with a very loud SNR in one detector and a much lower SNR in the

other, which motivated the form in Eq. (4.43). For the LIGO S5 ringdown search,

the distribution of double-coincident triggers follow the same distribution as in

the LIGO S4 ringdown search. So, we use this statistic to rank double-coincident

triggers. However, by lowering the SNR threshold and with better understand-

ing of systematics, sources and the pipeline, we managed to generate hundreds

of triple-coincident background triggers. Their SNR distributions are shown in
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Figure 4.11: Scatter plots of simulated and estimated effective distance of found

RINGDOWN injections. The color-bar represents difference between simulated

and estimated parameters: Frequency (top left), quality factor (top right), mass

(bottom left), and spin (bottom right). These parameters are estimated in H1

detector.
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Figure 4.12: Scatter plots of simulated and estimated frequency of found RING-

DOWN injections. The color-bar represents simulated mass (top left) and dif-

ference between simulated and estimated mass (top right). The scatter plots of

simulated and estimated mass of found RINGDOWN injections (bottom). Here,

the color-bar represents simulated quality factor. These parameters are estimated

in H1 detector.
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Figure 4.13: Scatter plots of simulated quality factor and frequency (left), and

spin and mass (right) of made and found RINGDOWN injections.

Figs. 4.14 and 4.16, along with the injection distributions in Figs. 4.15, and 4.16.

We find the background triggers tend to tail along L1 SNR. Since we do not

have any signal-based veto for this pipeline, we down-weight triggers in the tail

of one IFO significantly. This was done by defining a new triple-coincidence

ranking statistic (see Fig. 4.16):

ρTR =
[
min

{√
ρ2

H1 + ρ2
H2 + ρ2

L1 , ρH1 + ρH2 + 0.75 ,

ρH1 + ρL1 + 0.75 , ρH2 + ρL1 + 0.75
}]∣∣∣∣

ρH1/ρH2>1
. (4.44)

This new triple-coincidence ranking statistic is compared with the old triple-

coincidence ranking statistic in Fig. 4.17. There are hundreds of injection triggers

which become louder than the loudest background trigger in this new ranking

statistic, that otherwise would not have been achieved. This shows significant

improvement in detection efficiency. More quantitatively, the detection probabil-

ity of this new statistic is higher than that of the old statistic at low false-alarm
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probability (see Fig. 4.18).

4.5 The coherent multi-detector search

A study performed on data from LIGO S4 science run shows that the Coherent

WaveBurst (cWB) search is more sensitive to ringdown signals than the ring-

down search. Note that the cWB pipeline is designed to search for unmodeled

burst signals [151]. We understand that this gap in performance is due to the

fact that the templated ringdown search described above did not have the in-

frastructure for checking the coherence of signals from a common astrophysical

source in multiple detectors. To improve this scenario we implement several

consistency checks. For example, we check for consistency of signal amplitudes

and phases in the different detectors with their different orientations and with

the signal arrival times in them. In the following sections, we discuss the utilities

for the coherent stage, namely the coherent SNR and null-stream statistic, of the

ringdown pipeline.

4.5.1 Elliptically-polarized ringdown template

Traditionally, the coincidence search pipeline has not searched for the initial

phase of the ringdown signal. In other words, it uses only single-phase ring-

down templates (see Eq. 4.26) to filter the data. However, this makes the pipeline

limited from having enough information to check for signal amplitude and

phase consistency across the detectors. A convenient way to search for the un-

known phase of a signal is to filter the data with both phases of the template
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Figure 4.14: Contour plots of H2 SNR versus H1 SNR (top let), L1 SNR versus

H1 SNR (top right), and L1 SNR versus H2 SNR (bottom) for triple coincident

time-slide events. The color-bar represents log10(N), where N is the number of

triggers.
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Figure 4.15: Contour plots of H2 SNR versus H1 SNR (top let), L1 SNR versus

H1 SNR (top right), and L1 SNR versus H2 SNR (bottom) for triple coincident

injection events. The color-bar represents log10(N), where N is the number of

triggers.
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Figure 4.16: The H1-H2 (top left), H1-L1 (top right), and H2-L1 (bottom)

SNR distributions for time-slide (black crosses) and injection triggers (red

pluses). The curves represent the contours of constant values of the new triple-

coincidence ranking statistic defined in Eq. 4.44.
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Figure 4.17: Scatter plots of the old and new triple-coincidence ranking statistics.

Time-slide triggers are represented by the black crosses and injection triggers are

represented by the red pluses.

separately [47]. This straightforwardly applies to the frequency domain inspiral

signal in the stationary phase approximation [185]. This is because the sine and

the cosine phases of the inspiral template are exactly orthogonal. But this is not

true for a generic damped sinusoid. In the following sections, we justify this

statement.

4.5.1.1 Fourier transformation of a generic decaying sinusoid

In general, a decaying sinusoid can be expressed as a real function

x(t) = A e−αt cos(ωt− ϕ) u(t) (0 ≤ t ≤ ∞) , (4.45)
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Figure 4.18: The efficiency of finding injections using the old triple-coincidence

ranking statistic is compared with that of using the new triple-coincidence rank-

ing statistic (top). The maximum achievable efficiency, for the injections con-

sidered here, is shown in "InjFindEff”. In this case, we assume that all found

injections are louder than the loudest background. The ROC curve of the old

triple-coincidence ranking statistic is compared with the ROC curve of the new

triple-coincidence ranking statistic (bottom).
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where u(t) is the Heaviside step function

u(t) =

 1 for t ≥ 0 .

0 otherwise .
(4.46)

Let us define a complex function

z(t) = A e−αtei(ωt−ϕ)u(t) (4.47)

such that x(t) is the real part of z(t). The Fourier transformation of z(t) is given

by

z̃( f ) =
∫ ∞

−∞
z(t) e−2πi f tdt (4.48)

=
A e−iϕ

α + i(2π f −ω)
, (4.49)

and hence,

z̃∗(− f ) =
A eiϕ

α + i(2π f + ω)
. (4.50)

Now, the Fourier transform of the real part of z(t) is given by

x̃( f ) =
1
2
[z̃∗(− f ) + z̃( f )] (4.51)

=
A
2

[
eiϕ[α + i(2π f −ω) + e−iϕ[α + i(2π f + ω)]

α2 + 4iπ f α− 4π2 f 2 + ω2

]
. (4.52)

In the next section, we show how the above relations are used to get the Fourier

transform of an elliptically-polarized ringdown template.

4.5.1.2 Fourier transformation of an elliptically-polarized ringdown template

The elliptically-polarized ringdown template is expressed as

hep(t) = hc(t)− ihs(t) , (4.53)
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where hc(t) and hs(t) are two damped sinusoid functions given by

hc(t) = e−π f0t/Q cos(2π f0t) , (4.54)

hs(t) = e−π f0t/Q sin(2π f0t) . (4.55)

The real part of hep(t) can be found from Eq. (4.45) by setting A = 1, α =

π f0/Q, ω = 2π f0 and ϕ = 0. Hence, the Fourier transformation of hc(t) is

found Eq. (4.52), and is given by

h̃c( f ) =
π f0
Q + i2π f

4π2 f 2
0 − 4π2 f 2 +

π2 f 2
0

Q2 + i 4π2 f f0
Q

. (4.56)

Similarly, the imaginary part of hep(t) is found from Eq. (4.45) by setting A =

1, α = π f0/Q, ω = 2π f0 and ϕ = π/2. Hence, the Fourier transform of hs(t) is

found from Eq. (4.52), and is given by

h̃s( f ) =
2π f0

4π2 f 2
0 − 4π2 f 2 +

π2 f 2
0

Q2 + i 4π2 f f0
Q

. (4.57)

By combining Eqs. (4.56) and (4.57), one gets the Fourier transformation of hep(t).

4.5.1.3 The template normalization

Filtering the data x(t) with an elliptically-polarized template hep(t; µi) character-

ized by the source parameters µi yields the SNR statistic

ρ(hep) =
|〈x, hep〉|√
〈hep, hep〉

, (4.58)

=
|〈x, {hc − ihs}〉|√
〈hep, hep〉

, (4.59)

=

√
〈x, hc〉2 + 〈x, hs〉2√
〈hep, hep〉

. (4.60)
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Note that the noise-weighted scalar product introduced above is defined for the

two vectors X(t) and Y(t) by

〈X, Y〉 ≡ 2
∫ ∞

−∞
d f

X̃( f )Ỹ∗( f )
ξ(| f |) . (4.61)

The detailed calculation for the template normalization is as follows:

σ2
ep = 〈hep, hep〉 , (4.62)

= 〈{hc − ihs}, {hc − ihs}〉 , (4.63)

= 2
∫ ∞

−∞
d f
[
h̃c( f )− ih̃s( f )

] [
h̃∗c ( f ) + ih̃∗s ( f )

]
ξ(| f |) , (4.64)

= 2
∫ ∞

−∞
d f

h̃c( f )h̃∗c ( f )
ξ(| f |) + 2

∫ ∞

−∞
d f

h̃s( f )h̃∗s ( f )
ξ(| f |)

−2i
∫ ∞

−∞
d f

h̃s( f )h̃∗c ( f )
ξ(| f |) + 2i

∫ ∞

−∞
d f

h̃c( f )h̃∗s ( f )
ξ(| f |) , (4.65)

= 2
∫ ∞

−∞
d f

h̃c( f )h̃∗c ( f )
ξ(| f |) + 2

∫ ∞

−∞
d f

h̃s( f )h̃∗s ( f )
ξ(| f |) , (4.66)

= 〈hc, hc〉+ 〈hs, hs〉 . (4.67)

The justification for canceling the last two terms in Eq. (4.65) is numerically

shown in Fig. 4.19. It is important to note that

〈hc, hc〉 6= 〈hs, hs〉 , for a range of µi . (4.68)

This is because hc and hs are not orthogonal due to the damping factor. In the

following section, we numerically justify this statement.

4.5.1.4 Numerical analysis

To discretize the elliptically-polarized template we consider N data points (as-

sume N to be even) sampled over a given time. When one Fourier transforms a
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function one seeks a discrete frequency array

fk =
k

N∆t
; k = −N

2
, ....,

N
2

, (4.69)

where k is an integer and ∆t is the inverse of the sampling frequency fs, i.e,

∆t = 1/ fs. We choose the sampling frequency 4096 Hz, with 256 data points. For

simplicity, we consider noise to be white Gaussian, and set its power spectrum,

which is constant, to unity, i.e, ξ(| f |) = 1. In Fig. 4.19 we consider an elliptically-

polarized template characterized by the central frequency f0 = 1200 Hz and the

quality factor Q = 4. We plot the integrands of the last two terms of Eq. (4.65) as

functions of frequency: The top left panel represents their real parts and the top

right panel represents their imaginary parts. Their sum (integration) over the

frequencies is also noted. So, the last two terms of Eq. (4.65) together contribute

zero (except for negligible numerical errors) in the template norm expression. In

the bottom panel, we plot and compare the integrands of the first two terms of

Eq. (4.65). It proves that the first two terms are not equal.

We now consider a bank of templates that includes both sine and cosine

phases and characterized by a range of central frequencies f0 ∈ [50− 2000] Hz

and quality factors Q ∈ [2.1187− 20]. For each template, we define a quantity

called “fractional difference” as

Fractional difference ≡ 〈hs, hs〉 − 〈hc, hc〉
〈hc, hc〉

. (4.70)

Figure 4.20 shows the contours of the fractional difference in the template pa-

rameter space. For higher central frequencies and lower quality factors, the

fractional difference is significant. Therefore, in order to coherently search for
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Figure 4.19: The integrands of the sine and cosine template variances (Eq. (4.65))

are plotted as functions of frequency for a given point in the parameter space.

Here, the frequency plotted in the x-axes is meant to be the frequency fk defined

in Eq. (4.69). The top left and the top right panels depict the frequency behavior

of the last two terms in expression (4.65), whereas the bottom panel depicts the

same aspect of the first two terms in that expression.

ringdown signals in a network of detectors, it is necessary to model the template

by incorporating both phases.
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elliptically-polarized ringdown template. The color bar represents the fractional

difference as defined in Eq. (4.70).

4.5.1.5 SNR statistic

The coherent stage (see Fig. 4.3) follows up on triggers that survive the coinci-

dent stage by computing their coherent and null-stream statistics. We construct

small snippets of C-data around the peak-time of every trigger that is found to

be coincident in multiple detectors in a network. The detailed prescription is

given in the next chapter. However, this construction is done by filtering the

data around the trigger peak-time with elliptically-polarized templates from the

ringdown template bank, and the SNR is given by

ρep(hep) =
|〈x, hep〉|√
〈hep, hep〉

≡ |Zep|
σep

. (4.71)
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Following the same procedure as in Sec. 4.4.1.3, we find

|Zepj| =
2

N∆t

[(
<
{

N/2−1

∑
k=1

S−1
v

dyn R
(∆t x̃∗k )

(
∆t h̃ck

)
e−i2π jk/N

})2

(4.72)

+

(
<
{

N/2−1

∑
k=1

S−1
v

dyn R
(∆t x̃∗k )

(
∆t h̃sk

)
e−i2π jk/N

})2 ]1/2

, (4.73)

and the template variance is given by

σ2
ep =

4
N∆t

(
N/2−1

∑
k=1

S−1
v

dyn2 |R|2
[(
<
{

∆t h̃ck
})2

+
(
=
{

∆t h̃ck
})2
]

(4.74)

+
N/2−1

∑
k=1

S−1
v

dyn2 |R|2
[(
<
{

∆t h̃sk
})2

+
(
=
{

∆t h̃sk
})2
] )

dyn2 . (4.75)

The SNR-threshold procedure introduced in Sec. 4.4.1.3 is also followed here,

but with the quantities defined in terms of Zep, ρep, and σep.

4.5.2 Coherent statistics

In this section we briefly outline the basic expressions for the coherent SNR and

the null-stream statistics for use in the ringdown search pipeline. We postpone

the more detailed discussion of those statistics (see, e.g., Eqs. (5.31) and (5.39)) to

the next chapter. Specifically, we focus on three cases of detector networks most

relevant to the S5 coherent ringdown searches:

Case-1: Two co-aligned detectors with different noise PSDs.

The coherent SNR for two co-aligned detectors with different noise power

spectral density is given by

$12 =
|C1 σ1 + C2 σ2|√
(σ1)2 + (σ2)2

, (4.76)
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where σI is the template-norm

σI ≡ σepI =
√
〈hepI , hepI〉 , (4.77)

and

CI ≡ ρIeiΦI =
〈xI , hepI〉

σepI
, (4.78)

is the matched-filter output against an elliptically-polarized template in the Ith

detector. The null-stream statistic is given by

η12 =

∣∣∣C1
σ1
− C2

σ2

∣∣∣√(
1
σ1

)2
+
(

1
σ2

)2
. (4.79)

Case-2: Three detectors with two of them coaligned and colocated at one site

and the third one located at a second site, and all with different noise PSDs.

Let detectors I = 1, 2 be at the same site. The coherent SNR for this network

is given by

$123 =
√
($12)2 + (ρ3)2 . (4.80)

And the null-stream η123 is the same as the null-stream defined for Case-1.

Case-3: Three detectors at different sites with different orientations and noise

PSDs.

The antenna response functions are expressed as F+

F×

 =

 cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ


 u

v

 , (4.81)

with u(θ, φ) and v(θ, φ) being detector orientation (and source-location) depen-

dent functions. For a network of three detectors, we introduce the following
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shorthand notations for the quantities involving these functions:

A12 ≡ (u1v2 − u2v1) , (4.82)

A23 ≡ (u2v3 − u3v2) , (4.83)

A31 ≡ (u3v1 − u1v3) , (4.84)

where, uI and vI are the Ith detector orientation-dependent functions. We also

define Aij = −Aji. Then the coherent and null-stream statistics for this network

are given by

$123 =

√√√√∣∣B12C1 + B32C3
∣∣2 + ∣∣B31C3 + B21C2

∣∣2 + ∣∣B23C2 + B13C1
∣∣2

(B12)2 + (B23)2 + (B31)2 , (4.85)

and

η123 =

√√√√√√
∣∣∣ C1
B12
− C3
B32

∣∣∣2 + ∣∣∣ C3
B31
− C2
B21

∣∣∣2 + ∣∣∣ C2
B23
− C1
B13

∣∣∣2(
1
B12

)2
+
(

1
B23

)2
+
(

1
B31

)2 ,

(4.86)

where

B12 ≡ A12σ1σ2 , (4.87)

B23 ≡ A23σ2σ3 , (4.88)

B31 ≡ A31σ3σ1 , (4.89)

are the shorthand notations for the quantities involving detector orientation,

source-location, and template normalization. Like Aij, we also have Bij = −Bji.
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4.5.3 Performance study

The coherent stage for the LIGO-VIRGO S5/S6 ringdown search is in the process

of tuning, and the results discussed here are preliminary and may change. So,

we do not present them here. However, there is preliminary evidence that the

coherent statistic performs better than the coincident statistic. To study the util-

ity of the coherent statistics, we ran the ringdown search pipeline (see Fig. 4.3)

on a month of data from LIGO S4 science run. For this example, we consider

only H1 and H2 detectors. A total of 225 simulated ringdown signals were

injected into the data, of which 86 were found by the pipeline. The injection

finding efficiency is low because most of the injections were too weak. A to-

tal of 143 background triggers, obtained through time-slide experiments, were

found. Figure 4.21 scatter plots the coincident statistic (bitten-L) against the

coherent statistic (effective-coherent SNR) for the found injection and the slide

triggers. The effective-coherent SNR defined here is the quadrature sum of the

coherent SNR and null-stream. The curved lines in the top panel of Fig. 4.21

represent constant effective-coherent SNR values. In Fig. 4.22, we compare the

efficiency of finding injection triggers using the coincidence statistic with the co-

herent statistic. Note that both the amplitude and phase consistency are applied

in this analysis. In Fig. 4.23 we plot and compare the ROC (receiver operative

characteristic, see Ref. [26]) curve for these two statistics. We find that the coher-

ent statistic performs better than the coincidence statistic in the low false-alarm

regime.
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4.6 Discussion

We have demonstrated using simulated signals that the ringdown pipeline is an

efficient search pipeline for detecting gravitational waves from perturbed black

holes. As discussed above, we also show that the added-coherent-stage ring-

down pipeline performs better than the coincidence-only ringdown pipeline.

We expect its performance to be boosted for triple-site searches (LIGO-VIRGO S6

ringdown search). It is decided to use multivariate statistical classifier (MVSC) as

a detection statistic for the LIGO-VIRGO S5/S6 ringdown searches [146]. It is an

implementation of the random forest of bagged decision trees algorithm. MVSC

combines information from many statistics. So, the amalgamated information

should be better than any individual statistic alone. MVSC’s performance is the

best for a best set of parameters that best separate background from signals.

The effective-coherent SNR and the new triple-coincidence ranking statistic are

found to be the members of the best set of MVSC’s parameters.
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Figure 4.21: The scatter plots for the null-stream and coherent SNR (top panel),

and the chopped-L and effective-coherent SNR (bottom panel). The injection

triggers are denoted by red pluses, and the background triggers (slide triggers)

are denoted by black crosses. All background triggers have been retained. The

curved lines in the top figure are the contours of constant effective-coherent

SNR, which is a combination of the null-stream and coherent SNR. There are

10 found injection triggers, marked by green circles, which are quieter than the

loudest background in the coincidence search whereas louder than the loudest

background in the coherent search.
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Figure 4.22: Here we compare the efficiency of finding signals using the coinci-

dence search with that of using the coherent search. In the top panel, we focus

on a set of stronger injections, with distance from 10 Mpc to 100 Mpc. In the bot-

tom panel, a similar study was performed but with weaker signals, i.e, injections

were made allowing distance from 50 Mpc to 100 Mpc. The overall performance

of the coherent search is quite a bit better than the coincidence search. In the last

distance bin, from 85 Mpc to 100 Mpc, the coherent search above does not show

any improvement over the coincidence search simply because no coincidence

trigger was found in that bin.
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Figure 4.23: The ROC curve of the coincidence search is compared with the ROC

curve of the coherent search. The overall performance of the coherent search

is better than that of the coincident search. This is because there are 10 found

injections that are weaker than the loudest background trigger in the coincidence

search as shown in Fig. 4.21. In the low false-alarm region, detection probability

of coherent search is higher than the coincident search.
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Chapter 5

Aspects of a blind hierarchical

coherent search for coalescing

compact binaries

We describe a hierarchical data analysis pipeline for coherently searching for

GW signals from non-spinning compact binary coalescences (CBCs) in the data

of multiple earth-based detectors. This search assumes no prior information on

the sky position of the source or the time of occurrence of its transient signals

and, hence, is termed “blind”. The pipeline computes the coherent network

search statistic that is optimal in stationary, Gaussian noise and more advanced

than the current state-of-the-art approach, called coincident statistics. More im-

portantly, it allows for the computation of a suite of alternative multi-detector

coherent search statistics and signal-based discriminators that can improve the

performance of CBC searches in real data, which can be both non-stationary
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and non-Gaussian. Also, unlike the coincident multi-detector search statistics

that have been employed so far, the coherent statistics are different in the sense

that they check for the consistency of the signal amplitudes and phases in the

different detectors with their different orientations and with the signal arrival

times in them. Since the computation of coherent statistics entails searching in

the sky, it is more expensive than that of the coincident statistics that do not re-

quire it. To reduce computational costs, the first stage of the hierarchical pipeline

constructs coincidences of triggers from the multiple interferometers, by requir-

ing their proximity in time and component masses. The second stage follows up

on these coincident triggers by computing the coherent statistics. Here, we com-

pare the performances of this hierarchical pipeline with and without the second

(or coherent) stage in Gaussian noise. Whereas introducing hierarchy can be

expected to cause some degradation in the detection efficiency compared to that

of a single-stage coherent pipeline, nevertheless it improves the computational

speed of the search considerably. The two main results of this work are: (1) The

performance of the hierarchical coherent pipeline on Gaussian data is shown to

be better than the pipeline with just the coincident stage. (2) The three-site net-

work of LIGO detectors, in Hanford and Livingston (USA), and VIRGO detector

in Cascina (Italy) cannot resolve the polarization of waves arriving from certain

parts of the sky. This can cause the three-site coherent statistic at those sky po-

sitions to become singular. Regularized versions of the statistic can avoid that

problem, but can be expected to be sub-optimal. The aforementioned improve-

ment in the pipeline’s performance due to the coherent stage is true in spite of

this handicap. This work (see Ref. [12]) was the result of a collaboration that in-
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cluded two other graduate students, Thilina Dayanga and Shaon Ghosh, at the

Washington State University.

5.1 Introduction

Signals from binaries of neutron stars and black holes (BHs) enjoy the prospect

of being the first signals to be detected by GW detectors [159]. They are among

the best understood of all GW sources and a large enough number of them are

expected to appear in the data of second generation detectors [160]. The last

several science runs at LIGO [161], GEO600 [162], and VIRGO [163] revealed

that searches for signals from these compact binary coalescences (CBCs) benefit

from the networking of multiple detectors because of the reduction in the rate

of accidentals or false alarms, especially, from non-stationary and non-Gaussian

noise artifacts. Further, studies with injection of simulated signals show that the

estimation of source parameters, such as sky position and wave polarization,

is also helped by networks involving detectors at three or more sites around

the globe [41, 164, 165]. This is important since CBCs may not always emit

electromagnetic signals that are strong enough to be observable.

This chapter describes blind CBC search strategies, which must be contrasted

with a targeted search method [166]. An example of the latter case is a search

for GW signal triggered by a short-duration gamma-ray burst (GRB). Short GRBs

have been conjectured to be associated with NS-NS or NS-BH coalescences [167,

168]. Owing to an electromagnetic counterpart, the sky-position of the short

GRB and the time of arrival of its gamma-ray signal are known in advance for
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offline searches. This implies that searches for GW signals from these sources

require three less parameters to scan, and are, therefore, computationally less

expensive. (In reality, one searches over a several-second window around the

arrival time of the gamma-ray signal because it is not clear yet how separated the

emission of the gamma-ray burst and the binary-object merger are in time [169,

170].) Perhaps more significantly, it reduces the probability of false-alarms and,

therefore, increases our detection confidence.

In this chapter, we address how one tackles both these issues, namely, of

increased computational costs and false-alarm rates, affecting a blind search for

signals from CBCs with non-spinning components. To reduce the excess compu-

tational cost arising from scanning the arrival time, one introduces hierarchical

stages in the search pipeline, whereby, first, the triggers of interest are identified

in the detectors individually. This is followed by recognizing triggers that are

coincident in multiple detectors and then computing network-based statistics for

them that reveal their significance as GW candidates. (These hierarchical steps

were introduced in Ref. [171] and have been used in multiple CBC searches ever

since.) The final stage is used to compute the coherent network statistics for these

coincident triggers. To address the second problem of increased false-alarms, es-

pecially, from non-stationary noise transients, we introduce signal-based multi-

detector discriminators that check for consistency of the signals appearing in

individual detectors with a CBC source, after accounting for the different orien-

tations of the detectors and the delays in their times of arrival in them.

Past experiments with multi-detector searches for gravitational-wave signals

from CBCs have shown that the statistics that are optimal in Gaussian and sta-
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tionary noise (OGSN) cease to be so in real data, in general [171, 172, 173]. In-

stead a function of the chi-square-weighted [174] matched-filter [175] outputs

has been found to deliver a better performance [171, 172]. This function is

arrived at empirically by comparing the distribution of the matched-filter and

chi-square statistics for simulated CBC signal injections with that of the back-

ground. These statistics did not, however, use the phase of the matched-filter

output to discriminate signals from noise, which a coherent statistic [46, 47] is

equipped to do. We will call the former coincident statistics. Their construction

has nevertheless helped inspire techniques for obtaining empirically an effective

coherent statistic that performs better in real data than the coherent statistic of

Refs. [46, 47]. It is this statistic and its variants, which can be useful in search-

ing for non-spinning CBC signals in real data, that we discuss in detail in this

chapter.

5.2 Multi-detector statistics

We begin by describing the statistic that is optimal for coherently searching for

non-spinning CBC signals in data from multiple detectors when their noise is

Gaussian and stationary. The first part of this section gives an alternative deriva-

tion of this statistic, as compared to that available in the literature [46]. In the

process, it introduces notation and convention followed here. It also introduces

signal parameters and variables used in the coherent search code available in

the LIGO (Scientific Collaboration) Algorithm Library LAL [176]. We then com-

pare that statistic with the aforementioned empirically-motivated multi-detector
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coincident statistics, which have been applied in real data.

5.2.1 Signal and noise

Consider a non-spinning coalescing compact binary with component masses

m1,2, such that its total mass is M = m1 + m2 and its reduced mass is µ =

m1m2/M. In the restricted post-Newtonian approximation, the two polarizations

determining the GW strain are:

h+(t; r, M, µ, ι, ϕc, tc) =
GM
c2r

(
tc − t

5GM/c3

)−1/4 1 + cos2 ι

2

× cos[ϕ(t; tc, M, µ) + ϕc] , (5.1)

h×(t; r, M, µ, ι, ϕc, tc) =
GM
c2r

(
tc − t

5GM/c3

)−1/4

cos ι

× sin[ϕ(t; tc, M, µ) + ϕc] , (5.2)

which depend on M, µ, the luminosity distance to the source r, the inclination

angle of the source’s orbital-momentum vector to the line of sight ι, the time of

coalescence of the signal tc, and the coalescence phase of the signal ϕc. Above,

ϕ(t; tc, M, µ) is the orbital phase of the binary [177, 178], M = µ3/5M2/5 is the

chirp mass, G is the gravitational constant and c is the speed of light in vacuum.

The GW strain in a detector can then be modeled as,

h(t) = F+h+(t) + F×h×(t) , (5.3)

where F+,× are antenna response functions that quantify the sensitivity of the

detector to the sky-position and polarization of the source, F+

F×

 =

 cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ


 u

v

 , (5.4)
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with ψ being the wave-polarization angle and u(α, δ) and v(α, δ) being detector-

orientation dependent functions of the source sky-position angles (α, δ): [179, 47]

u(α, δ) ≡ −1
2

(
1 + cos2 α

)
cos 2δ , (5.5)

v(α, δ) ≡ − cos α sin 2δ . (5.6)

Following Ref. [41], let us map the CBC signal parameters (r, ψ, ι, ϕc), into

new parameters, a(k), with k =1,...,4, such that the strain in any given detector

has a linear dependence on them:

h(t) =
4

∑
k=1

a(k)hk(t) , (5.7)

where the hk(t)’s are completely independent of those four parameters. By

comparing the above expression for the GW strain with that defined through

Eqs. (5.1), (5.2), and (5.3), we find

h1(t) ∝ u(α, δ) cos[ϕ(t; M, µ, α, δ, tc)] ,

h2(t) ∝ v(α, δ) cos[ϕ(t; M, µ, α, δ, tc)] ,

h3(t) ∝ u(α, δ) sin[ϕ(t; M, µ, α, δ, tc)] ,

h4(t) ∝ v(α, δ) sin[ϕ(t; M, µ, α, δ, tc)] , (5.8)

where the proportionality factor is [GM/c2][(tc− t)/(5GM/c3)]−1/4. This meth-

od of resolving the GW strain signal in a basis of four time-varying functions

was first found in Ref. [56] for pulsar signals.

The new parameters, a(k), with the index k taking four values, are defined in
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terms of (r, ψ, ι, ϕc) as,

a(1) =
1
r

(
cos 2ψ cos ϕc

1 + cos2 ι

2
− sin 2ψ sin ϕc cos ι

)
,

a(2) =
1
r

(
sin 2ψ cos ϕc

1 + cos2 ι

2
+ cos 2ψ sin ϕc cos ι

)
,

a(3) = −1
r

(
cos 2ψ sin ϕc

1 + cos2 ι

2
+ sin 2ψ cos ϕc cos ι

)
,

a(4) = −1
r

(
sin 2ψ sin ϕc

1 + cos2 ι

2
− cos 2ψ cos ϕc cos ι

)
. (5.9)

These constitute an alternative set of parameters that define the likelihood ra-

tio. We used parenthetic indices above to avoid confusing them with numerical

exponents.

5.2.2 The network detection statistic

Let the inner-product of two temporal functions p(t) and q(t) be defined as

〈p, q〉(I) = 4<
∫ ∞

0
d f

p̃∗( f ) q̃( f )
ξ(I)( f )

, (5.10)

where p̃( f ) and q̃( f ) are the Fourier transforms of p(t) and q(t), respectively,

and ξ(I)( f ) is the one-sided noise PSD of the Ith detector [26], with I = 1, ..., M

for a network of M detectors. The angular brackets denoting the inner-product

are subscripted with the detector index since that product depends on the noise

PSD of the detector. Assuming that detector noise nI(t) is additive, the strain in

a detector in the presence of a CBC signal is

xI(t) = nI(t) + hI(t) , (5.11)

where hI(t) is given by Eq. (5.3), but now with the antenna response functions

superscripted with the detector index. (The polarization components h+,×(t)
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also depend on I through the coalescence time, as explained below.) Moreover,

if the noise is zero-mean Gaussian and stationary, the log-likelihood ratio (LLR)

is [26]

log ΛI = 〈xI , hI〉(I) −
1
2
〈hI , hI〉(I) , (5.12)

which can serve as a statistic for detecting signals in a single detector.

To explore the properties of the LLR, it will be useful to define the (complex)

unit-norm template SI(t) associated with the circular-polarization component of

a GW, namely, h+(t) + ih×(t). It can be shown [47] that

SI(t) = g−1
(I)

[
τ I (tc − t)

]−1/4
eiϕ(t) , (5.13)

where g(I) (with units of
√

Hz) is a normalization factor, such that 〈SI , SI〉 = 1,

and

τ I =
5

256 f I
s

[
GM f I

s
c3

]−5/3

(5.14)

is the time spent by the signal in the detector band, in the Newtonian approx-

imation. Above, f I
s is the seismic cut-off frequency of the Ith detector below

which it has little sensitivity for GW signals. The single detector matched-filter

output against SI(t) can then be defined as

CI = 〈SI , xI〉 ≡
(

cI
+ + icI

−
)
= ρIeiφI

, (5.15)

where cI
±, ρI and φI are all real; ρI = |CI | is often termed as the signal-to-noise

ratio (SNR) in the Ith detector. Since the detector strain due to a GW signal is

expected to be tiny, one has g(I) � 1. Therefore, for computational efficiency,

we define a new factor that is closer to unity,

σ(I) ≡
(

GM/c2

1 Mpc

)(
5GMτ

c3

)1/4

g(I) , (5.16)
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with τ computed for a reference detector selected from one of those in the net-

work. This is convenient since, as explained below, the detection statistics and

the parameters {ψ, ι, ϕc} are all independent of the above parenthetic scale fac-

tors; only the source distance depends on them, and is computed after account-

ing for them.

Using the strain expression in Eq. (5.7), the LLR for a network of multiple

detectors can be recast in terms of a(k), provided one knows how the strain from

the same CBC signal varies from one detector to the other. This was explained

in Refs. [46, 47]. Here, it suffices to note that this dependence arises owing to:

(a) The spatial separation of the detectors, which can cause relative delays in the

arrival of the signal. These delays are determined by the source’s sky-position

and can be accounted for in Eqs. (5.1) and (5.2) by adding those delays to tc.

(b) The different orientations of the detectors, which change u and v. Assuming

that the noise in the different detectors are statistically independent, the joint

log-likelihood ratio for a network of M detectors is

log
(
(M)Λ

)
=

M

∑
I=1

log ΛI

= Nka(k) − 1
2

Mija(i)a(j) , (5.17)

where, in the last expression, the sum over detectors has been absorbed in Nk

and Mij, as defined below:

N1

N2

N3

N4


= χ



∑M
I=1 σ(I)uIcI

+

∑M
I=1 σ(I)vIcI

+

∑M
I=1 σ(I)uIcI

−

∑M
I=1 σ(I)vIcI

−


= χ



uσ · c+
vσ · c+
uσ · c−
vσ · c−


. (5.18)
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Above, uσ and vσ are network vectors with components σ(I)uI and σ(I)vI , re-

spectively, c± are network vectors with components cI
±, and

χ ≡ π2/3
[

GM�/c2

1Mpc

]3/4

Mpc (5.19)

is a normalization factor with dimensions of length. Also,

M =



A B 0 0

B C 0 0

0 0 A B

0 0 B C


(5.20)

with 
A

B

C

 = χ2


‖uσ‖2

uσ · vσ

‖vσ‖2

 , (5.21)

which define the network template-norm, namely, twice the second term on

the right-hand side of Eq. (5.17); the first term there can be interpreted as the

matched-filter output of the network data-vector, x ≡ {x1, x2, ..., xM} [47].

Maximizing 2 log (M)Λ with respect to a = {a(1), a(2), a(3), a(4)} yields

2 log (M)Λ
∣∣∣
ā
= NT ·M−1 ·N , (5.22)

which is still a function of {M, µ, α, δ, tc}. (Note that the above statistic is in-

dependent of χ.) The concomitant maximum likelihood estimates (MLEs) of the

complementary set of four parameters are denoted with an overline:

ā = M−1 ·N . (5.23)
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These estimates are also functions of {M, µ, α, δ, tc}, and are determined by the

data through cI
± as follows:

ā(1)

ā(2)

ā(3)

ā(4)


=

χ

∆



‖vσ‖2 (uσ · c+)− (uσ · vσ) (vσ · c+)

− (uσ · vσ) (uσ · c+) + ‖uσ‖2 (vσ · c+)

‖vσ‖2 (uσ · c−)− (uσ · vσ) (vσ · c−)

− (uσ · vσ) (uσ · c−) + ‖uσ‖2 (vσ · c−)


, (5.24)

where ∆ ≡ AC − B2. The MLE of a parameter will be denoted by placing an

overline on its symbol.

It is important to note that the maximization in Eq. (5.22) assumes that the

network matrix M is invertible. This is not true, in general. Indeed, M is sin-

gular when uσ is aligned with vσ. These two vectors are determined by how

the interferometers in the network are oriented with respect to the wave prop-

agation vector, but are not affected by the polarization angle ψ. In addition to

this singularity, M can be rank deficient, thus, making the problem of invert-

ing it ill-posed [180]. Physically, this implies that the network does not have

enough linearly independent basis detectors to be able to resolve the source pa-

rameters a. Note that these maladies of M are dependent on the sky-position

angles. This means that a network that is able to resolve the signal parame-

ters for certain source sky-positions may not be able to do so for others. These

problems can be tackled by regularizing M in a variety of ways that have been

explored in the context of searches of transient signals from unmodeled sources,

also called “burst” searches [180, 181, 182]. These methods obviate the rank-

deficiency problem at the cost of making the search statistic sub-optimal. Thus,

any deficiencies arising from potential singularities in M or its regularization
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method adopted by a search pipeline will affect its performance. Since M is

independent of the detector strain data, such effects will arise in searches in

simulated Gaussian data sets as well, such as the ones studied here. Since our

results below are devoid of these maladies, we are confident that they will not

arise in real data searches as well.

The maximum-likelihood estimates for the four physical parameters (r, ψ, ι, ϕc)

can now be expressed in terms of the above estimates by inverting Eq. (5.9) and

replacing a with ā. Specifically, for the luminosity distance we get:

r̄ =

√
1 + 6 cos2 ῑ + cos4 ῑ

2‖ā‖ , (5.25)

where ‖ā‖ ≡
√

∑4
i=1
(
ā(i)
)2 is the norm of the four-parameter vector MLE, and

ῑ is defined below along with the other MLEs. Since those angular parameter

estimates should not depend on an overall scaling of ā, it helps to define the

dimensionless unit-norm components ˆ̄a(k) ≡ ā(k)/‖ā‖. In terms of the ˆ̄a(k), the

maximum-likelihood estimates for the three angular parameters are,

ψ̄ =
1
4

sin−1

2
(

ˆ̄a(1) ˆ̄a(2) + ˆ̄a(3) ˆ̄a(4)
)

√
1− ζ2

 ,

φ̄c = −1
2

sin−1

2
(

ˆ̄a(1) ˆ̄a(3) + ˆ̄a(2) ˆ̄a(4)
)

√
1− ζ2

 ,

ῑ = cos−1

(
1−
√

1− κ2

κ

)
, (5.26)

where ζ ≡ 2
(

ˆ̄a(1) ˆ̄a(4) − ˆ̄a(2) ˆ̄a(3)
)

and

κ =
ζ

1 +
√

1− ζ2
. (5.27)
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Note that the expression for ψ̄ goes over to that of φ̄c under the transformation

ψ̄ −→ (−φ̄c)/2 and ˆ̄a(2) ↔ ˆ̄a(3). This relation arises from a similar symmetry

exhibited by the a(k) defined in Eq. (5.9). Expressions for the CBC MLEs and the

coherent statistic were first obtained in Refs. [46, 47]. Above, we reexpress them

in terms of the four parameters a(k) since the search code in LAL uses them [176].

Substituting for M and N, the MLR can be expanded as,

2 log Λ
∣∣∣
ā
= (w+ · c+)2 + (w− · c+)2 + (w+ · c−)2 + (w− · c−)2 , (5.28)

where w± are network vectors with components wI
±, wI+

wI−

 =

 O11 O12

O21 O22


 σ(I)uI

σ(I)vI

 , (5.29)

and O11 O12

O21 O22

 =
1√
2∆

 √C + A + D/G1
√

C + A + D(C− A− D)/(2BG1)
√

C + A− D/G2
√

C + A− D(C− A + D)/(2BG2)

 ,

(5.30)

with D ≡
√
(A− C)2 + 4B2 and G1,2 ≡

√
(C− A∓ D)2 + 4B2 /(2B). The above

matrix diagonalizes M and, in so doing, identifies the dominant polarization

basis, first identified in [46] and named as such in [181].

The coherent search statistic is just 2 log Λ
∣∣∣
ā

maximized over {M, µ, α, δ, tc},

namely,

ρ2
coh = 2 log Λ

∣∣∣
ϑ̄

, (5.31)

where ϑ = {a(1), a(2), a(3), a(4), M, µ, α, δ, tc} is a set of nine parameters for the

non-spinning CBC signal. The last five parameters are searched for numerically,

by using a grid for the masses and the sky-position and by using the fast Fourier
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transform [183] to search for the coalescence time. ϑ̄ denotes the MLE values

of these parameters. Searching over (α, δ) requires the flexibility to delay cI
±

relative to cJ
± by an interval that can be anywhere between zero and the light-

travel-time between the locations of the Ith and Jth detectors or the negative of

it. This is why we construct small snippets of CI(t) called C-data around the

end-time of every trigger that is found to be coincident in multiple detectors in

a network. The statistic defined above will be termed as the coherent network

SNR and is the detection statistic optimal in stationary, Gaussian noise [47].

On the other hand, the combined signal-to-noise ratio, which was used as

a detection statistic in the past and is used here in Fig. 5.2 for comparison, is

defined as

ρ2
comb =

M

∑
I=1

(
ρI
)2

= ‖ρ‖2 , (5.32)

which is devoid of two significant pieces of information present in the coherent

search statistic in Eq. (5.31). The first piece of information is in the form of

the wI± factors, which assign more weight to the matched-filter output of the

detector that is more sensitive to a given sky-position and has a lower noise

PSD (or bigger σ(I)). The second piece of information is in the form of the

cross-detector terms that check for the consistency of the phases φI with those

expected of a real signal.

5.2.3 Alternative statistics

The last several science runs at LIGO, GEO600, TAMA, and VIRGO have shown

time and again that real detector data is both non-stationary and non-Gaussian.

Consequently, neither the single-detector matched-filter-based SNR nor the co-
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herent network SNR are optimal in that data. It is also known that empiri-

cally constructed search statistics perform better there. These alternative search

statistics are based on signal discriminators such as the chi-square [174] and rho-

square tests [184], and their performances are compared against the statistics that

are optimal in Gaussian and stationary noise. These performances are evaluated

in terms of their receiver-operating characteristics, which in turn are constructed

from detection efficiencies of simulated signals injected into network data and

from the background rates obtained through multiple time-slide experiments.

The statistic that performs better in single-interferometric detector searches

is the matched-filtered output weighted by a function of the χ2 (or chi-square)

statistic [171],

ρeff ≡ ρ

 χ2(
2pχ2 − 2

) (1 +
ρ2

ρ2
o

)−1/4

, (5.33)

where ρ0 and pχ2 are empirical parameters that are deduced by examining the

performance of ρeff in real data. In the latest low-mass LIGO search, with 2M� <

M < 35M�, they were chosen to be 250 and 16, respectively [173]. For the high-

mass (25M� < M < 100M�) search studied below, these choices are 50 and 10,

respectively. Here, pχ2 is the number of degrees of freedom of the chi-square

statistic, and ρo is chosen so that for small ρ and average chi-square values,

ρeff ≈ ρ. A large chi-square value indicates that the disagreement between the

PSDs of the search template and the putative signal (or noise artifact) in the data

is large, and imparts a greater penalty on ρeff by reducing its value relative to ρ.

The network equivalent of the effective SNR is

(M)ρeff =

√√√√ M

∑
I=1

(
ρI

eff

)2 (5.34)
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and is defined this way simply because it works in real data in discriminating

signal injections from background. A coherent statistic that can perform better

in real data than its OGSN kin is constructed straightforwardly by replacing cI
±

with

cI
±eff ≡ cI

±

 χ2
I(

2pχ2
I
− 2
) (1 +

(
ρI)2

(ρI
o)

2

)−1/4

, (5.35)

in Eq. (5.28). Since the ρI and χ2
I statistics are computed in the CBC search

pipeline when the data from the individual detectors are filtered, their values

are available to the coherent stage for computing the chi-square-weighted coherent

statistic defined above at little additional computational cost.

Scrutinizing expression (5.28) of ρcoh, one finds that it can be decomposed

into two parts. The first part is

ρ2
auto−coh =

M

∑
I=1

(
w2

I+ + w2
I−
) ∣∣∣CI

∣∣∣2 (5.36)

and is a sum of auto-correlation terms in each detector. This part of the coherent

statistic is less discriminatory between signal and noise triggers. The second

part,

ρ2
cross−coh =

M

∑
I=1

M

∑
J=1
(J 6=I)

(wI+wJ+ + wI−wJ−)
[
cI
+cJ

+ + cI
−cJ
−
]

, (5.37)

by contrast, is a sum of cross-correlation terms across pairs of detectors, or base-

lines, and is critical in checking for phase consistency among signals appearing

in the detectors from a GW source. Once again, both of the above statistics can

be made more robust against noise glitches by replacing cI
± with cI

± eff to obtain

their chi-square-weighted counterparts.

Another statistic that is helpful in discriminating signals from noise glitches
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in multi-detector data is the null-stream [51]. If C̃I( f ) is the Fourier transform

of CI(t), then one can show that for GW signals in the data, the mean of

Y ≡
M

∑
I=1

KIσ
(I)
invSh(I)( f )C̃I( f ) (5.38)

is zero. Above, KI = εI JKF J
+FK
×, with εI JK being the Levi-Civita symbol, and

σ
(I)
inv ≡ (σ(I))

−1. For non-stationary artifacts, however, this need not be true,

thereby, motivating the following discriminator:

η =
〈|Y|〉√

Var (|Y|)
, (5.39)

where 〈x〉 and Var(x) denote the statistical average and variance of x, respec-

tively. The above construct is called the null-stream statistic. Just like the

coherent SNR, it can be decomposed into two parts as well, comprising auto-

correlation and cross-correlation terms, respectively. The former is akin to the

incoherent energy defined in Ref. [52] for burst searches and will be denoted

as ηauto. For GW signals one expects ηauto to be large while η itself is small.

On the other hand, for noise artifacts, η is expected to be large, on the average,

even when ηauto itself is not very strong. This analysis argues for a new statistic,

namely,

R = ηauto/η , (5.40)

which we call the ratio-statistic.

5.3 Coherent hierarchical inspiral analysis pipeline

The coherent hierarchical inspiral analysis (CHIA) pipeline mainly comprises

two stages, namely, the coincident and coherent stages, respectively. Both in-
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volve multiple steps. The coincident stage has been discussed in the past in

Refs. [171, 172] and is described here briefly for completeness. It includes the

following steps: (a) Compute noise PSDs and generate template-banks of the

two component masses for each detector in the network. The noise PSDs vary

from one detector to another, and in time. A template bank is constructed for

every 2048s chunk of data from every detector [185]. (b) Use the template bank

for each detector to filter the data from that detector and output the parameters

of triggers crossing the chosen SNR threshold. For the injection studies, simu-

lated software-injections are added in software to the data in this step, before the

data are match-filtered. (c) Parameters of the triggers from the participating de-

tectors are then compared to identify coincidences [186]. Before these coincident

triggers are considered as detection candidates, in real data one usually applies

data-quality vetoes. For our study in simulated data, we forego this stage of the

pipeline and, instead, apply the coherent stage directly to the triple-coincident

triggers. For the computation of the coherent and null-stream statistics the C-

data time-series, which include both the amplitude and the phase time-series of

the matched-filter outputs, are required. These time-series are computed in the

coherent stage and not upstream in the pipeline since it is computationally less

expensive to identify coincidences and construct the C-data only for them.

The coherent stage in the CBC search pipeline is constituted of 4 steps. In

the first step, a “coherent bank” of templates is constructed from the parameters

of the coincident triggers. Triggers in different detectors that are coincident and

arise from the same GW source can have different mass pairs owing to the pos-

sibility that the noise PSDs of the detectors they arise in are somewhat different

163



and because of the random nature of noise. For every coincident trigger we con-

struct a network template with a single mass-pair, namely, the one correspond-

ing to the loudest SNR among all the detectors, to search coherently around the

end-time of that putative signal. This mass-pair will be termed as the max-SNR

pair and the corresponding detector the max-SNR detector. For example, con-

sider a triple-coincident trigger with {ρ, m1/M�, m2/M�} = {10.0, 1.43, 1.39},

{10.9, 1.40, 1.36}, and {8.9, 1.51, 1.32} in the first, second, and third interferomet-

ric detector (or IFO), respectively. Then the max-SNR detector is IFO-2 and the

max-SNR mass-pair is {m1/M�, m2/M�} = {1.40, 1.36}, which is the template

included in the coherent bank to represent this coincident trigger in the coherent

stage.

While this mass pair will not necessarily give the loudest SNR in the two

other detectors, it has been found to yield a better performance for the coherent-

statistic and null-stream than when they are computed using the original and,

often, non-identical mass pairs in the different detectors. (Note, however, that

simulated software injections in real data must be used to determine empirically

if the detection efficiency is helped by using the same mass pair across all detec-

tors in any given science run.) Also, since error-covariances are known to exist

between the mass parameters and the trigger end-time, we search at and around

the end-times of the single-detector triggers that constitute a given network trig-

ger.

The second step in the coherent stage is the construction of trigger-banks,

whereby the coherent-bank template for every coincident trigger is copied as

a single-detector template. (See Fig. 5.1.) In the subsequent step, the single-
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detector templates are used to filter the data from the individual IFOs. This

step outputs the time-series of C-data around the trigger end-times in that de-

tector. Additionally, this step computes the template normalization factor and

chi-square for the max-SNR mass-pair across all detectors per coincident trigger.

Note that the values of these constructs are not available earlier in the pipeline

for the triggers in the detectors complementary to the max-SNR detector since, in

general, the mass-pairs would be somewhat different in the preceding coincident

stage of the search pipeline. In summary, this step outputs a C-data time-series

and the corresponding signal parameters, such as the template normalization

factor, for every trigger listed in the coherent-bank output file.

The final step of the coherent stage is the coherent-statistics step, which matches

the parameters of each triple-coincident trigger to the C-data time-series output

by the matched-filtering step and uses them and the corresponding template-

norms, chi-square values for the respective detectors to compute a variety of

multi-detector statistics, such as the coherent SNR, null-stream, the chi-square-

weighted coherent SNR, and other alternative statistics.

5.4 Results

To study the performance gain arising from using the coherent stage, we ran

the CBC search pipeline with and without that stage on simulated Gaussian

noise, with LIGO-I noise PSD [176] in the 4km LIGO detectors in Hanford (H1),

Livingston (L1), and in the VIRGO detector (V1), for the duration of approxi-

mately a month. Specifically, this search pipeline was run once with signal in-
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Figure 5.1: A schematic diagram of the coherent stage in the compact binary

coalescence search pipeline.

jections and again (parallelly) without injections but with time-slid data so that

the background could be estimated. The top plot in Fig. 5.2 compares the per-

formance of the coherent statistics and the combined effective SNR. The bottom

plot compares the coherent SNR and null-stream statistics. For these simula-

tions, 1051 signals were injected in software in all three detectors. The source

distances of all injections were between 100-500 Mpc. The total masses of these

sources were chosen to be in the range 25-100 M�, and component masses be-

tween 1-99 M�. A total of 55 of those injections were found, above the single-
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interferometer detection thresholds of 5.0 and coherent SNR threshold of 3.751.

The latter threshold was intentionally chosen to be lower since we anticipated

that some coincident background triggers will have negative cross-terms owing

to incoherent phases, thereby, yielding lower coherent SNRs.

All injections recovered by the coincident stage were also found by the coher-

ent stage, and are symbolized by red pluses. The black crosses depict the back-

ground triggers that are found by the coincident stage and survive the coherent

stage. The blue circles, on the other hand, denote background triggers in the co-

incident stage that got vetoed by the choice of the threshold on the coherent SNR

in the coherent stage. To include them in the top plot, we arbitrarily assign all of

them ρcoh = 3.0. Comparing the sets of black crosses and blue circles reveals that

the coherent stage not only reduces the number of background triggers but, in

this case, also vetoes some of the loudest ones (in combined-effective SNR). Fur-

thermore, whereas all found injections have coherent SNR greater than that of

the loudest background trigger, 13 of them have combined-effective-SNR weaker

than that of the loudest background trigger (shown in blue circles). When com-

pared to the loudest black cross, that number drops to 7. It drops further when

some of the background triggers with the loudest null-stream (as shown in the

bottom plot) are vetoed. The resulting performance improvement is depicted in

the blue dash-dotted Receiver-Operating-Characteristic (ROC) curve in Fig. 5.3;

1The detection probabilities are small because, first, all injections made were weak and, sec-

ond, here we focused only on triggers that are coincident in all three detectors. Owing to

sensitivity disparities, it is more likely to find injection trigger coincidences in two of the three

detectors. Only weak injections were made since that is where the coherent code can help im-

prove the performance of current searches.
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its performance is better than that of the coincident stage (shown in red), with-

out the null-stream vetoes. The former is asymptotic to the ROC curve of the

coherent stage (shown in black dashes) for higher false-alarm probabilities.

Finally, Fig. 5.2 reveals the existence of a gap between the loudest background

and the weakest injection ρcoh values. One might argue that this is owing to the

lack of a sufficient number of weak signal injections made into the data. We have

verified that, indeed, one can get some injection triggers to show up in that gap

by making multiple weak injections (say, with source distances between 500-750

Mpc) in the data. Those studies also reveal that the detection efficiency in that

region is very low (i.e., less than 1 in 250). We believe that this low efficiency

is partly caused by the coincident stage, in the way it has been designed and

tuned, acting as a bottleneck for the coherent stage.

5.5 Discussion

The main advantage of implementing a blind coherent search in the hierarchi-

cal manner explained above is that it has a lower computational cost compared

to that of a fully coherent search pipeline. This is primarily because it reduces

the number of time-of-arrival values for the coherent code to search for, and

because recognizing coincidences is relatively cheaper computationally. There

are additional reasons, such the inherent detector-bound nature of data-quality

cuts, which are best implemented in the matched-filtering stage. This in turn

can reduce an otherwise triple-coincident trigger into a double-coincident one if

the third IFO data-points around the concurrent time get vetoed. Since the co-
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incident and coherent statistics are the same for two-site CBC searches, it makes

sense to not follow them up with the coherent stage.

There are, however, some demerits of searching hierarchically. The first one

came to the fore in the results presented above, where the coincident stage is

potentially affecting the efficiency of the coherent stage in finding injections. In-

deed, it may be possible to improve the injection finding efficiency by reducing

the SNR thresholds in the matched-filtering step of the coherent stage. While

that may happen, it is also likely that the overall performance of the pipeline

will be hurt since it will tend to increase the background rate as well. An al-

ternative solution is to retain the original mass-pairs of the coincident triggers

in the coherent stage instead of replacing them with max-SNR mass-pairs. This

will ensure that injection-finding efficiency of the matched-filtering stage is un-

affected, but may hurt the coherence of the triggers and, therefore, ultimately

affect the injection finding efficiency of the coherent stage. It may also cause the

false-alarm rate to rise, owing to the less stringent requirements on the agree-

ment of the mass-pair values across the network of detectors.

A more optimal solution that addresses the drawbacks of the last two so-

lutions is to assign to every coincident trigger multiple mass-pair templates to

search the data with in the coherent stage. This approach makes sense since sta-

tistical errors alone are known to cause substantially different mass-templates

to be triggered by signals in different detectors arising from the same (injected

simulated) source. However, as was shown by the work in Ref. [186] on iden-

tifying coincidences, the separation in the mass parameter-space between trig-

gers in two detectors from the same source can be wide enough to allow for
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multiple other mass templates to fit in between. Some of these intermediate

mass-templates can have a greater chance of not only passing the SNR threshold

in individual detectors but also appearing as coherent. The main problem to

attack here is to find what the optimal density and size are of these relatively

small template banks localized around the coincident mass-pairs. Too small a

density or size can hurt signal-finding efficiency and too large a density or size

can increase the background rate.
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Figure 5.2: These are scatter plots of the combined and coherent SNRs of in-

jection triggers, represented by red plus symbols, and background (or “slide”)

triggers, represented by the black crosses. The coherent SNR was used to cluster

the triggers, from both injections and slides. The coherent SNR performs no-

ticeably better than the combined effective SNR in discriminating signals from

background: In the top plot, at a detection threshold of a little above 6 in the

coherent SNR all the injections found in the coincident stage are recovered with

a vanishing false-alarm probability. For the same false-alarm probability, the

combined effective SNR detects a lesser number of injected signals.
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Figure 5.3: The receiver operating characteristic (ROC) curves of three CBC

searches are compared above. The ROC of the search with the coincident stage

alone is plotted in solid red line, and has the weakest performance owing to the

13 found injections that are weaker than the loudest background trigger in that

search. On the other hand, the ROC curve for the hierarchical pipeline, with

coherent stage included, is shown in black dash-dotted line and has the best

performance. It has a constant detection probability because all found injections

are louder than the loudest background trigger for this pipeline. Finally, the

third ROC curve, shown as a blue dashed line is the coincident stage, with the

null-stream veto applied. This veto improves the performance of the coincident

pipeline, so much so that for low detection-thresholds (or high false-alarm prob-

ability) its ROC curve rises to match that of the pipeline with the coherent stage.

The average error in the detection probabilities plotted here is less than 3× 10−4.
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Appendix A

Technical details

A.1 Antenna response

The gravitational wave strain is the linear combination of the strains induced by

plus and cross polarizations. The antenna response functions F+ and F× encode

the detector responses to the plus and cross polarizations defined in the radiation

basis. Their functional forms are given by [187]

F+(θ, φ, ψ) = −1
2
(1 + cos2 θ) cos 2φ cos 2ψ− cos θ sin 2φ sin 2ψ , (A.1)

F×(θ, φ, ψ) =
1
2
(1 + cos2 θ) cos 2φ sin 2ψ− cos θ sin 2φ cos 2ψ , (A.2)

where θ and φ are the spherical polar coordinates of the source in the detector

frame, and ψ is the polarization angle defined in Fig. A.1. Since the polarization

angle ψ is unknown a priori, it is often useful to use the quadrature sum of

antenna response functions, also called antenna-pattern:

Fsum(θ, φ) =
√

F2
+(θ, φ, ψ) + F2

×(θ, φ, ψ) , (A.3)
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which is independent of ψ. The antenna response functions and the antenna-

pattern are shown in Fig. A.2.

θ

ϕ

ψ

ι

x'

z'

y'

z''

y''

x''

X

Y

Z

source 
frame

radiation
frame

detector
frame

Figure A.1: Definition of source location and orientation angles relative to the

inertial frame of a GW detector with arms along X and Y axes. Wave propagates

along z′′-axis from a source at an arbitrary sky position defined by (θ, φ) and

subtending an inclination angle ι. The polarization angle ψ, subtended by the

wave, is also shown here.
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Figure A.2: The antenna response of interferometric gravitational wave detectors

to gravitational waves with plus (top left), and cross (top right) polarizations.

For making these plots, we have chosen ψ = 0. The bottom plot depicts the

antenna-pattern (for an unpolarized wave.)
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A.2 Parameter accuracy

The match can be rewritten as

M = 1− gαβ ∆Θα
(k)∆Θβ

(k) , (A.4)

where

Γ(k)αβ = (SNR(k))
2 gαβ(Θ(k)) , (A.5)

gαβ = −1
2

 ∂2M

∂Θα
(k′)∂Θβ

(k′)

 ∣∣∣∣∣
Θ(k′)=Θ(k)

= gαβ(Θ(k)) ,

:=

gµ(k)µ(k) gµ(k)φ(k)

gφ(k)µ(k) gφ(k)φ(k)

 . (A.6)

The components of the above gαβ matrix are obtained from the derivatives of the

beam matrix:

gµ(k)µ(k) =

1
2(B(k)(k))2

[
(B(k)(k))

(
∂2

∂µk′∂µk
Bk′k

∣∣∣
k′=k

)

−
(

∂

∂µk′
Bk′k

∣∣∣
k′=k

)2
]

, (A.7)

gµ(k)φ(k) = gφ(k)µ(k) =

1
2(B(k)(k))2

[
(B(k)(k))

(
∂2

∂µk′∂φk
Bk′k

∣∣∣
k′=k

)

−
(

∂

∂µk′
Bk′k

∣∣∣
k′=k

)(
∂

∂φk′
Bk′k

∣∣∣
k′=k

)]
, (A.8)
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gφ(k)φ(k) =

1
2(B(k)(k))2

[
(B(k)(k))

(
∂2

∂φk′∂φk
Bk′k

∣∣∣
k′=k

)

−
(

∂

∂φk′
Bk′k

∣∣∣
k′=k

)2
]

. (A.9)

The estimation error (2.42) is obtained from Eqs. (A.5) and (2.41) by utilizing the

fact that the inverse of the determinant of a matrix is the same as the determinant

of the inverse of that matrix. Above, we assumed that B is nonsingular.
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Appendix B

Advanced detectors studies

B.1 Performance of multi-baseline radiometers

We assess the improvement in performance of a LIGO-VIRGO network gained

by adding detectors in Japan and India, namely, KAGRA and INDIGO, respec-

tively. The source PSD is taken to be a constant, H( f ) = 1.516× 10−48/Hz. The

signal band considered here is 40-1024 Hz. For the second-generation configura-

tion, the noise PSDs of LIGO, INDIGO, and KAGRA are taken to be the aLIGO

noise PSD. The noise PSD of VIRGO is chosen to be the aVIRGO one. And for

the third-generation configuration, the noise PSDs of all detectors are taken to

be that of ET, as shown in Figure 2.6.
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Figure B.1: The sensitivities (left) and their area-weighted counterparts (right)

of different LIGO-VIRGO-INDIGO-KAGRA networks in their second (top) and

third (bottom) generation configurations are plotted as functions of the declina-

tion of a single-pixel SGWB source.
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Figure B.2: The beam functions of different second-generation LIGO-VIRGO-

INDIGO-KAGRA baselines for a source at declination +0.25 radian and with a

constant PSD are shown here.
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Figure B.3: Singular values of the Fisher matrices for different second-generation

LIGO-VIRGO-INDIGO-KAGRA networks are plotted in this figure.
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Figure B.4: The 1σ error (left) and area-weighted 1σ error (right) in the solid an-

gle of locating a source in the sky with different LIGO-VIRGO-INDIGO-KAGRA

networks in their second (top) and third (bottom) generation configurations.
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Appendix C

A directed SGWB search and Olbers’

paradox

C.1 Virgo cluster versus the isotropic background

We explicitly compute the ratio between the effective number of sources in the

nearby Virgo cluster to that in the distant universe in the same solid angle sub-

tended by the Virgo cluster. This is taken from the Ref. [75].

Consider the flat (k = 0) model of the universe which is currently dust dom-

inated. Then the scale factor is given by

a(t) = α t2/3 . (C.1)

The Hubble parameter H := ȧ(t)/a(t) at the current epoch t = t0 from Eq. (C.1)

becomes

H0 := H(t0) =
ȧ(t0)

a(t0)
=

2
3t0

, (C.2)
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which gives t0 = (2/3)H−1
0 . Setting the present scale factor to 1, i.e., a(t0) = 1,

one gets

a(t) = α t2/3 = a(t0)

(
t
t0

)2/3

=

(
3H0t

2

)2/3

. (C.3)

The cosmological redshift z, defined as 1 + z := a(t0)/a(t) = 1/a(t), is a

very useful measure of distance. From the Friedmann-Robertson-Walker metric

for flat space-time, the proper radius r, from which light emitted at the epoch t

reaches us at the epoch t0, can be written as

r =
∫ t0

t

cdt
a(t)

=
∫ t0

t

dt
(t/t0)2/3 , (C.4)

= 3c t0

[
1−

(
t
t0

)1/3
]
=

2c
H0

[
1−

√
a(t)

]
. (C.5)

Then, introducing the definition of redshift, one can write,

r =
2c
H0

[
1− 1√

1 + z

]
. (C.6)

Therefore,

dr =
c

H0
(1 + z)−3/2 dz . (C.7)

Since there are n(1+ z)3 galaxies per unit volume at a redshift z, the effective

number of sources in a solid angle ∆Ω can be expressed as

∆neff =
∫ ∞

0

n(1 + z)3r2∆Ω dr
r2(1 + z)5 , (C.8)

= n∆Ω
c

H0

∫ ∞

0

dz
(1 + z)7/2 = n∆Ω

2c
5H0

, (C.9)

where n is the average number density of sources in a homogeneous universe,

the (1 + z)5 factor signifies the decrease in radiation energy density by a factor

of (1 + z)4 and increase in time interval by a factor of 1 + z (which reduces the
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effective luminosity of the source). Assuming cH−1
0 = 3× 103h−1 Mpc, where

h ∼ 0.72, and n ∼ 0.004 Mpc−3, the effective number of galaxies at 1 Mpc

distance per unit solid angle becomes ∼ 7.

The number of sources (galaxies) at the Virgo cluster is nVirgo ∼ 1500, spread

over a solid angle of ∆ΩVirgo ≈ 0.015 (that is 50 square degrees). The Virgo

cluster is rVirgo ∼ 16.5 Mpc away. The redshift to the Virgo cluster is negligible.

Thus, for the Virgo cluster the effective number of sources at 1 Mpc distance per

unit solid angle is

∆nVirgo
eff =

nVirgo

∆ΩVirgor2
Virgo

∼ 360 . (C.10)

This is of course a very rough estimate. However, the Virgo cluster is about 50

times brighter than the background created by the distant sources.
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Appendix D

Notes on SNR threshold

D.1 SNR thresholds for the S4 ringdown search

In the low-mass CBC search, the two orthogonal phases of the binary inspiral

waveform are expressed as [185]

hc(t) =
2
c2

(
µ

M�

)
[πGM f (t)]2/3 cos[2φ(t)− 2φ0] , (D.1)

hs(t) =
2
c2

(
µ

M�

)
[πGM f (t)]2/3 sin[2φ(t)− 2φ0] . (D.2)

The normalized filter-output is found by filtering the data x(t) against the elliptic-

ally-polarized template hep(t) = hc(t)− ihs(t) and is expressed as

ρep(hep) ≡
|〈x, hep〉|√
〈hep, hep〉

=
|〈x, hc〉+ i〈x, hs〉|√
〈hc − ihs, hc − ihs〉

, (D.3)

=

√
〈x, hc〉2 + 〈x, hs〉2√
〈hc, hc〉+ 〈hs, hs〉

, (D.4)

=
1√
2

√
〈x, hc〉2 + 〈x, hs〉2√

〈hc, hc〉
, (D.5)

≡ 1√
2

ρD(hep) . (D.6)
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The quantity ρD defined above is termed as SNR in the low-mass CBC search.

Any triggers having ρD ≥ 5.5 are kept, which is equivalent to having ρep ≥ 3.9.

Contrastingly, for the ringdown search the normalized filter-output is given

by Eq. (4.27) as

ρc(hc) =
|〈x, hc〉|√
〈hc, hc〉

. (D.7)

The quantity ρc is termed as SNR in the ringdown search. That means the

quantity ρc in the ringdown search is equivalent to the quantity ρep in the low-

mass CBC search.
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Appendix E

List of abbreviations

AGWB: Astrophysical Gravitational-Wave Background

aLIGO: Advanced Laser Interferometer Gravitational-Wave Observatory, the sec-

ond generation LIGO detectors

ASD: Amplitude Spectral Density

aVIRGO: Advanced VIRGO, a second generation European GW observatory

BH: Black Hole

CBC: Compact Binary Coalescence

CG: Conjugate Gradient

CHIA: Coherent Hierarchical Inspiral Analysis

CMB: Cosmic Microwave Background

cWB: Coherent WaveBurst

Dec: Declination

EFE: Einstein Field Equations
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EOB: Effective-One-Body

EP: Equatorial Plane

ET: Einstein Telescope, a third generation gravitational-wave observatory

FAR: False Alarm Rate

GEO: British-German 600 m long gravitational-wave observatory

GR: General Relativity

GRB: Gamma-Ray Burst

GW: Gravitational Wave

HEALPix: Hierarchical Equal Area iso-Latitude Pixelization

H1: The LIGO detector with 4 km arm-length at Hanford

H1L1: The baseline constructed from H1 and L1

H1L1V1: The triple-baseline network constructed from H1, L1 and V1

H1V1: The baseline constructed from H1 and V1

IFO: Interferometric detector

IMBH: Intermediate-Mass Black Hole

IMR: Inspiral-Merger-Ringdown

INDIGO: Proposed Indian Gravitational-Wave Observatory

KAGRA: Japanese second generation 3 km long cryogenic gravitational-wave

detector (previously known as LCGT for Large-scale Cryogenic Gravitational-

wave Telescope)

LIGO: Laser Interferometer Gravitational-wave Observatory

LLR: Log-Likelihood Ratio

LMXB: Low-Mass X-ray Binary

L1: The LIGO detector with 4 km arm-length at Livingston
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LSC: LIGO Scientific Collaboration

ML: Maximum Likelihood

MLE: Maximum Likelihood Estimate

MLR: Maximized-Likelihood Ratio

MSP: Millisecond Pulsar

NMSE: Normalized Mean Square Error

NS: Neutron Star

OGSN: Optimal in Gaussian and Stationary Noise

PSD: Power Spectral Density

PSR: Pulsar

RA: Right Ascension

ROC: Receiver Operating Characteristic

S5: The fifth LIGO science run

S4: The fourth LIGO science run

SGWB: Stochastic Gravitational-Wave Background

SNR: Signal-to-Noise Ratio

S6: The sixth LIGO science run

TT: Transverse-Traceless

VIRGO: European gravitational-wave observatory located at Cascina, Italy

V1: The “European gravitational-wave observatory" with 3 km arm-length at

Cascina

VSR: VIRGO Science Run
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