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Abstract

The current generation of interferometric gravitational-wave detec-

tors, LIGO and Virgo, are undergoing upgrade to their so-called ad-

vanced phase. These instruments, together with new instruments in

Japan and India, KAGRA and LIGO India, will form a network of

advanced gravitational-wave detectors with which detections are ex-

pected to become routine. Amongst the prime sources for gravitational-

wave astronomy are coalescing compact binaries consisting of neu-

tron stars and/or black holes. Filtering detector data to detect these

sources relies on precise templates of the expected gravitational-wave

signals. In addition, estimating the parameters encoded in the signals

(masses, spins etc...) requires sophisticated Bayesian inference tech-

niques. Templates are typically computationally expensive to gener-

ate and can be a bottle-neck in data analysis.

Here we focus on two aspects of gravitational-wave astronomy us-

ing coalescing compact binaries. The first part of this thesis fo-

cuses on studying the requirements of template waveforms to detect

intermediate-mass black holes through the coalescence of a stellar-

mass companion into an intermediate-mass black hole in Advanced

LIGO. The second part of this thesis focuses on numerical and an-

alytic techniques to improve the e�ciency of (Bayesian) parameter

estimation on coalescing binaries when parameter estimation is dom-

inated by template waveform generation. Such e�ciency improve-

ments to parameter estimation are crucial for gravitational-wave as-

tronomy using advanced detectors.
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Chapter 1

INTRODUCTION

Gravitational-wave astronomy will open an entirely new observational window to

the Universe with the direct detections of gravitational waves from high energy as-

trophysical phenomena. A network of ground-based interferometric gravitational-

wave observatories (LIGO-Hanford and LIGO-Livingston (USA) and Virgo (Italy)

[1]) are undergoing upgrades to their so-called “advanced” configurations which

will be an order of magnitude more sensitive than their initial configurations

and are scheduled to begin collecting data around 2015 [2]. In addition, two

new ground-based interferometric detectors in Japan and India, KAGRA [3] and

LIGO India [4] respectively, are expected to be online around 2020. This will

usher in the “advanced detector era” in which gravitational-wave detections are

expected to become routine [5].

The advanced detector network is expected to detect gravitational waves from

a variety of fascinating astrophysical and cosmological events; from the late stages

of the coalescence of compact binaries [5; 6; 7; 8] to a stochastic background of

gravitational waves of astrophysical and cosmological origin [9; 10]. Of all the

target sources, coalescing compact binaries are perhaps the the most likely can-

didates for detection [5]. Compact binary systems, consisting of neutron stars

and/or black holes are believed to be in abundance throughout the Universe. In-

deed, the first indirect evidence for the existence of gravitational radiation came

from the observation of the binary pulsar system PSR B1913+16, known as the

“Hulse-Taylor” binary pulsar after its discoverers, which is undergoing orbital

decay through the emission of gravitational waves [11]. For their discovery, Hulse
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1. INTRODUCTION

and Taylor were awarded the Nobel Prize in 1993. The Hulse-Taylor binary pul-

sar is undergoing orbital decay very slowly and will not merge for around three

hundred million years. In contrast the advanced-detector network will directly

observe the gravitational waves from the final minutes to seconds of the coales-

cence of compact binaries before they merge to form a single object. This makes

compact binary coalescence (CBC) an ideal laboratory for probing dynamical,

strong-field gravity.

With observations of gravitational waves from coalescing compact binaries

we will be able to make precise measurements of their masses and spins as well

as of their demographics [12; 13]. These measurements are essential for astro-

physics/astronomy and fundamental physics using gravitational waves from com-

pact binaries. Determination of the masses and spins will distinguish neutron

stars and black holes and can be used to test the null-hypothesis that black holes

are described by the Kerr metric [14; 15]. In addition, determination of source

demographics, together with merger rates, places constraints on the formation

mechanisms of binary systems [16]. While there are around ten known binary

neutron star (NS-NS) systems [17] there are currently no known binary black hole

(BH-BH) or black-hole-neutron-star (BH-NS) systems [18]. Despite this, BH-BH

and BH-NS systems are believed to be fairly common throughout the Universe:

population synthesis models suggest that realistic detection rates of BH-BH and

BH-NS systems in Advanced LIGO/Virgo (aLIGO/Virgo) could be as high as

40 yr�1 [5]. Unsurprisingly, binary black holes are di�cult to observe in the elec-

tromagnetic spectrum and gravitational waves are likely the only means by which

they can be detected.

There are numerous open issues relating to black hole systems which grav-

itational -wave detections will be able to make important contributions to. In

particular gravitational-wave detectors will be able to search for binary systems

with total masses up to around 500M� [19] and will therefore be able to provide

the first unambiguous observations of “intermediate-mass” black holes (IMBHs).

Intermediate-mass is a blanket term which refers to black holes with masses

(roughly) in the range 50 � 103 M�. Believed to form in globular clusters [e.g.,

20; 21; 22], IMBHs are extremely di�cult to observe in the electromagnetic spec-

trum and there are currently only tentative results suggesting their existence.

2



Detecting IMBHs will thus have important implications for globular cluster dy-

namics. In addition, detections of compact binary coalescence will be important

in addressing the so called black hole “mass-gap” problem [23]: The stellar mass-

distribution is continuous in the range 0.1 � 100M� and one would expect the

same to be true of ensuing compact remnants. However, while neutron stars

have been observed to have masses up to around 2M�, the lightest black holes

are observed to have masses around 5M�, with no compact objects with masses

in-between [24]. Gravitational-wave observations of BH-BH or BH-NS systems

will therefore be able to shed light on whether there is a genuine gap between the

heaviest neutron stars and the lightest black holes.

The central theme of the work presented here is the detection of, and param-

eter estimation on gravitational waves from CBC sources. Gravitational-wave

astronomy using compact binaries will ultimately be limited by our ability to ro-

bustly detect and estimate the parameters of the sources. Here we focus on two

challenges for detection and parameter estimation in aLIGO. Firstly, we study the

potential to detect IMBHs using aLIGO through the coalescence of a stellar-mass

companion into an IMBH. We refer to this kind of binary as an “intermediate

mass-ratio coalescence” (IMRAC) source. Secondly, we address the computa-

tional e�ciency of performing parameter estimation on gravitational waves from

CBC sources. Parameter estimation on gravitational waves from CBC sources

is currently highly computationally intensive [25], and the computational cost

of performing parameter estimation on aLIGO data will be exacerbated if not

directly addressed.

Detecting gravitational-wave signals from coalescing com-

pact binaries and estimating the source parameters

Despite the scientific potential of gravitational-wave detectors, detection and pa-

rameter estimation are extremely di�cult in practice. A passing gravitational

wave creates a transverse strain in spacetime which we aim to detect using inter-

ferometers. An interferometric gravitational-wave detector in the path of such a

gravitational-wave thus experiences a relative change in the length of its arms.

This strain is the observable quantity upon which gravitational-wave astronomy

3



1. INTRODUCTION

relies. The exact form of the strain from a gravitational-wave from binary coa-

lescence depends sensitively on the parameters of the binary, e.g. its masses and

spins. However, in general a gravitational-wave signal from a coalescing binary

has a characteristic signature. The coalescence of a binary system can be approx-

imately split into three stages; (i) the so-called “inspiral” phase during which the

components of the binary evolve along a quasi-circular orbit, “spiralling” into one

another, (ii) a rapid merger where the two objects form a single object, and (iii) a

quasi-normal ringing phase where the (merged) object behaves like a damped os-

cillator [26]. While it is possible to have inspiralling binaries on elliptical orbits,

binaries observable over the bandwidth of aLIGO/Virgo are expected to have

circularized, see e.g. [27]. These three stages of coalescence imprint a distinct

signature to the gravitational-wave signal. Schematically it is useful to consider

a gravitational-wave signal h(t), as seen in a detector, to have the form

h(t) = hinspiral(t)⇥(⌧ � t)

+ hmerger�RD(t)⇥(t� ⌧) , (1.1)

where hinspiral(t) is the part of the waveform from the inspiral phase of coalescence

and hmerger�RD(t) is the part of the waveform from the merger and ringdown (RD)

phases of coalescence. Here ⇥(.) is the usual Heaviside step function. The time

t = 0 is taken to be the time at a fiducial gravitational-wave frequency, fgw. The

time ⌧ corresponds to the time from fgw until the binary reaches a point close to

the “inner-most stable circular orbit” (ISCO), after which the binary undergoes a

plunge before the components merge [28]. Typically, ⌧ is referred to as the “chirp

time”. To leading order the chirp time is given by [29]

⌧ = 2.18 s

 
1.12M�

M
c

!5/3 
100Hz

fgw

!8/3

, (1.2)

where M
c

= (m1m2)3/5/(m1+m2)1/5 is known as the “chirp mass” of the binary.

For a binary consisting of two neutron stars, each with mass m1 = m2 = 1.4M�,

at 10 Hz, roughly the low frequency cut o↵ of aLIGO, one has access to around

t ⇡ 20 min of the gravitational-wave signal from the inspiral phase of coalescence.
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At leading order, the gravitational-wave frequency at which the binary reaches

the ISCO is

fISCO = 4.4 kHz

✓
M�

M

◆
, (1.3)

where M is the total mass of the binary. Thus a binary consisting of two neutron

stars with total mass of 2.8 M� will reach ISCO at around 1.5 kHz after which

the components begin to merge.

The inspiral phase of coalescence

To leading order a coalescing binary is a mass-quadrupole radiator and the

gravitational-wave strain from the inspiral phase (at leading order) is controlled

by the second time-derivative of the binary’s quadrupole moment, with a char-

acteristic 1/r fall-o↵ where r is the distance from the source to an observer. For

a binary with chirp mass M
c

, angular frequency ⌦, and orbital phase �(t), the

inspiral phase of the strain signal of a face-on, overhead binary is to leading order

given by [29]

hinspiral(t) = hinspiral
0 (t) cos�(t) ,

hinspiral
0 (t) ⇡ 10�23 1Mpc

r

 
M

c

M�

!5/3

⌦2/3 , (1.4)

It is simple to estimate the typical strain from the inspiral of a compact binary

source using Eq. (1.4). The gravitational-wave frequency is twice the orbital

frequency, hence ⌦ = ⇡ fgw where fgw is the gravitational-wave frequency. Thus

for a binary neutron star system with component masses m1 = m2 = 1.4M�

located at a fiducial distance of 15Mpc (roughly the distance to the Virgo galaxy

cluster) at a gravitational-wave frequency of 10 Hz, around the low frequency

cut o↵ of Advanced LIGO, the strain amplitude is approximately 10�23. For an

interferometric gravitational-wave detector with arms of length l = 4Km, the

strain is �l/l ⇡ 10�23 where � l is the change in the arm length. Thus the change

in length of the arms which one aims to measure is approximately � l ⇡ 10�20 m.

As the binary evolves in time the frequency evolution is driven by the energy

radiated through gravitational waves. The gravitational-wave frequency evolution

5



1. INTRODUCTION

Figure 1.1: Inspiral phase of a gravitational-wave signal emitted from the coales-
cence of a face-on, overhead binary black hole system. The component masses
of the binary are m1 = m2 = 5M�. The waveform’s amplitude and frequency
increase up to the merger. This waveform was generated using the LIGO Scien-
tific Collaboration Algorithm Library’s (LAL) implementation of the TaylorT4
waveform approximant [26].

(to leading order) scales like [29]

ḟgw /
 

M
c

M�

!5/3

f 11/3
gw . (1.5)

As the frequency of the gravitational-wave signal increases, both hinspiral
0 (t) and

ḟgw increase. This endows the inspiral phase of the coalescence signal with a

characteristic “chirp” signature, i.e., a signal which increases in both amplitude

and frequency. An example of the inspiral phase of a gravitational-wave signal

from binary coalescence is shown in Fig. 1.1.
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The merger and ringdown phases of coalescence

After the inspiral phase the components of the binary merge and undergo quasi-

normal ringing, with the gravitational-wave strain amplitude decreasing expo-

nentially over a short time scale. The characteristic time scale is given by [30]

T =
2

⇡

1

f0
,

(1.6)

f0 = 10 kHz
M�

M
. (1.7)

To leading order the ringdown waveform (for a binary with non-spinning compo-

nents) has the form [30]

hringdown(t) ⇡ 10�20 1 Mpc

r

M

M�
e�t/T cos(2⇡f0t) . (1.8)

For a double neutron star binary with component masses m1 = m2 = 1.4M� the

amplitude decreases by an e-fold after time t ⇠ 5⇥ 10�5 s.

Detecting the strain signal from a coalescing binary

Detecting gravitational waves thus requires measuring a signal whose amplitude

is physically very small. Noise sources in the detectors typically cause strains

in the instrument at the frequency of the gravitational-wave strain signal, which

makes the task of detecting the strain from a gravitational wave challenging. The

dominant noise sources for aLIGO include thermal (or Brownian) noise, quantum

noise from the uncertainty in the photon count in the lasers (also called shot noise)

and seismic noise from the Earth’s seismic activity [2]. The strain spectrum

(strain/
p
Hz) of the various noise sources of aLIGO is shown in Fig. 1.2. Each

noise source typically acts over a certain frequency range which is illustrated in

Fig. 1.2. For example, thermal noise in the suspensions and mirrors is present

over a frequency range between O(10Hz) and O(1 kHz). Conversely, seismic noise

typically dominates the noise below frequencies of O(10Hz) which e↵ectively

sets the low frequency cut o↵ of the instruments. The combined noise (shown

as the black curve) is known as the detector noise amplitude spectral density

7



1. INTRODUCTION

Figure 1.2: Anticipated Advanced LIGO noise sources generated using the online
GWINC tool [31]. The combined noise (shown as the black curve) is known
as the detector noise amplitude spectral density (ASD) and defines the overall
sensitivity of the instrument. The noise ASD corresponds to the instrument in
its high-powered zero-detuned configuration.

(ASD) and defines the overall sensitivity of the instrument. The peak strain-

sensitivity of aLIGO can be read o↵ from Fig. 1.2 and is around 10�23 Hz�1/2

over a frequency range 10 Hz . f . 103 Hz. In Fig. 1.3 we show the noise

amplitude spectral densities for various Earth based gravitational-wave detectors.

From Fig. 1.3 one can see the improvement in sensitivity between LIGO/Virgo,

and their advanced configurations aLIGO/Virgo, which are around an order of

magnitude more sensitive.

The problem of detecting signals in noise is a classic of signal analysis. The

noise properties are well understood and over time scales around the typical

length of a gravitational-wave signal it is e↵ectively stationary [1; 29]. In addi-

tion, for many practical purposes it is often assumed that the noise will not be

correlated with a gravitational-wave signal, for example, by considering it to be

Gaussian. However, in practice real noise is not Gaussian and a large e↵ort is

spent on characterizing the non-Gaussian features of the detector noise (see e.g.,

[33; 34; 35]). Secondly, the functional form of gravitational-wave signals from

8



Figure 1.3: Noise amplitude spectral densities of various Earth based
gravitational-wave detectors [32]. Note the increase in sensitivity by around an
order of magnitude between LIGO and Virgo, and Advanced LIGO and Advanced
Virgo.
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1. INTRODUCTION

CBC sources can be modelled accurately [26], and one can filter the data for a

signal of known functional form. This is known as “matched filtering” [5; 6; 7; 8]

and is e↵ective for detecting gravitational waves from CBC sources precisely be-

cause the gravitational-wave signal can be accurately modelled. In the presence

of a gravitational-wave signal h(t), the data d(t) has the form

d(t) = n(t) + h(t) , (1.9)

where n(t) is the noise. To detect gravitational waves using matched filtering

one compares the data with a set of theoretical gravitational waveforms {T (t)}
(known as templates), normalized by the square of the detector’s ASD, which act

as filters of the data. The filter which maximizes the detection-statistic is then

chosen to be the candidate signal. A commonly used detection statistic is the

signal-to-noise ratio (SNR) which is a ratio of the power of the gravitational-wave

signal to that of the noise. The SNR of the data set d in Eq. (1.9) is [29]

SNR = 4< 1

�

Z 1

0

df T̃ ⇤(f) d̃(f)/S
n

(f) , (1.10)

where T̃ (f) is the Fourier-transform of the template T (t) (and similarly for the

data) and S
n

(f) is the detector power spectral density (PSD), which is the square

of the ASD. The normalization � is given by � =
hR1

0
df T̃ ⇤(f) T̃ (f)/S

n

(f)
i1/2

.

The optimal SNR is achieved when the template waveform is same as the signal

in the data set and hence one requires the templates to be a faithful descrip-

tion of real gravitational waveforms. Using templates which are not accurate

descriptions of gravitational waves contained in the data degrades the SNR, as

the optimal SNR is recovered only when the template corresponds exactly to the

signal. Using inaccurate templates also leads to losses in detection rates which

can be understood as follows. The gravitational-wave signal from binary coales-

cence has a 1/r fall-o↵, c.f. Eq. (1.4), where r is the distance from the Earth

to the source. Using a template which degrades the SNR by a fixed fractional

ammount ✏ can be compensated for by increasing the overall amplitude of the

template. This is achieved by reducing the distance to the source by the same

amount as the SNR loss. Reducing the distance to the source by a factor of ✏

10



thus reduces the observable volume to a factor of ✏3 of its original size. Assuming

an isotropic distribution of sources, the fractional loss in detection rates should

thus scale like (1� ✏3)

One of the key considerations for a gravitational-wave search is the templates

one uses to filter the data. For example, searches which target so called “low

mass” systems with total masses less than 25 M� [7] typically only require wave-

forms which describe the inspiral phase of coalescence. This can be understood

by considering the frequency at which the binaries merge; a system with total

mass of 5 M� will merge at around 1 kHz, c.f. Eq. (2.1). For initial LIGO this

inspiral phase sits in the frequency band over which the detector is most sensitive

and hence the inspiral phase can dominate the SNR, c.f. Fig. 1.3. Conversely,

heavier systems are liable to merge at frequencies at which the detector is most

sensitive and so searches for these systems need to employ waveforms which also

describe the merger and ringdown. The so-called “high mass” searches in initial

LIGO [8] which aimed to detect compact binaries with masses up to 100 M� em-

ployed such waveforms. Systems with even higher masses may have a very short

detectable inspiral phase, or may have even merged at the point at which they

are detectable. For such systems, the ringdown can be the dominant source of the

SNR and hence one may require waveforms which describe solely the ringdown.

The “ringdown search” during initial LIGO [30] employed such ringdown-only

waveforms to search for binaries with total masses up to 390 M�.

Extracting the binary’s parameters

The gravitational waves encode the parameters of the source and for a binary

system with non-spinning components there are nine such parameters: the two

component masses, the distance to the Earth, the two angles which specify the

sky position, the binary’s inclination, the “polarization phase”, the time of co-

alescence and the orbital phase at coalescence. Spinning binaries also have the

two spin-vectors of each component which increases the number of parameters to

fifteen. Because the filters are parameterized, the filter which maximizes the SNR

can be used to estimate the parameters of the source. This is thes maximum like-

lihood estimator of the source parameters [29] and in this fashion one can extract

11



1. INTRODUCTION

information about the source of a candidate gravitational-wave signal.

A limitation of these kinds of parameter estimates is that one only gets a

“point estimate” of the parameters of the gravitational-wave source, the maxi-

mum likelihood estimator. A more informative approach would also provide a

quantitative picture of the uncertainty of parameter estimates over the full do-

main of the parameter space. For this one subjects a stretch of data to a full

Bayesian analysis and computes the posterior probability distributions of the

source parameters of a candidate gravitational-wave signal, see e.g. [12; 36; 37].

This approach allows one to assign meaningful probability distributions to the

measured properties of the candidate source. The Bayesian approach also allows

for “model selection”, by comparing the null hypothesis that the data contains

only noise, to the hypothesis that the data also contains a signal. This is the

ratio of the probability that a data set is described by just noise, to the probabil-

ity that the data contains a gravitational-wave signal. This is commonly known

as the “Bayes factor” [12] and provides a useful way of quantifying the relative

probability that the data contains a gravitational-wave signal.

Challenges of waveform modelling for detection and pa-

rameter estimation

There are a number of theoretical challenges associated with gravitational-wave

detection and (Bayesian) parameter estimation. Firstly, in order to robustly

detect and make parameter estimates of gravitational-wave sources, one requires

templates which are accurate descriptions of real gravitational waves. While there

are several schemes in which gravitational waveforms can be modelled, such as the

post-Newtonian (PN) perturbative expansion and numerical solutions to the Ein-

stein field equations (numerical relativity) [26], there is not yet a complete analytic

description of a gravitational waveform for binary systems with arbitrary mass

ratios and spins. For example, the PN expansion is valid when the binary system

has components with comparable masses and the expansion is itself only formally

valid up to a point before the binary’s components merge, when the expansion

parameter, v/c becomes large. For orbital velocities v/c = (M⇡f)1/3 & 0.2 the

PN energy flux deviates significantly from more accurate numerical expressions,

12



see [e.g., 38; 39]. Hence waveforms computed using the PN expansion only de-

scribe the “inspiral” of the coalescence, ignoring the merger and the subsequent

quasi-normal ringing of the merged objects. In contrast, numerical relativity is an

approach which solves the Einstein field equations numerically and can describe

the full coalescence. However, numerical relativity is extremely computationally

expensive, with a single simulation taking between several hundred, to thousands

of CPU-hours [40].

The limitations of both approaches owe to the di�culty of the two-body prob-

lem in general relativity. Because of this there has been a strong e↵ort to produce

waveforms which are a hybrid of analytic and numerical approaches, stitching

together analytic fits and numerical expressions to produce an approximation

scheme which can describe the full coalescence. An example of such a scheme

which is commonly employed for gravitational-wave detection is the e↵ective one-

body numerical relativity (EOBNR) [26; 41] approach. Despite its success, it is

only known to be accurate for binaries with mass ratios q ⌘ m2/m1 � 1/6 though

it is also formally valid in the test-particle limit q ! 0. For binaries with extreme

mass-ratios (q ⌧ 1), consisting of a stellar-mass black hole and a super-massive

black hole, several authors ([e.g., 42; 43]) have modelled the two body motion

as that of a point particle in Kerr/Schwarzschild space-time, with corrections to

account for the gravitational radiation-reaction from solutions to the Teukolsky

equation. Like the PN approach, this also only describes the inspiral phase of the

coalescence. More recently, the authors in [44] have added high-order-in-mass-

ratio corrections to extreme mass-ratio inspiral waveforms so that they describe

binaries with so called “intermediate mass-ratios”. For the work here we consider

an intermediate mass-ratio q to be in the range 1/200  q  1/10. However, to

date only one numerical simulation of an intermediate mass-ratio binary exists

[45] and analytic approximations to describe intermediate mass-ratio inspirals are

at an early stage of development. This renders the problem of robustly detecting

sources which consist of an intermediate-mass black hole and a small stellar mass

companion di�cult. For matched filtering to be successful, the template must

be able to track the phasing of the gravitational wave in the data to within a

wave-cycle, over many wave cycles. Errors in the phasing of the filters can render

them ine↵ective and can thus lead to losses in detection rates.

13



1. INTRODUCTION

Template waveform generation can be a computational burden to performing

matched-filtered searches or Bayesian parameter estimation. In order to perform

a matched-filtered search for gravitational waves, or a full Bayesian parameter

estimation, one requires a set of template waveforms which have to be computed

numerically, known as a “template bank”. Templates generated using the PN or

EOBNR approach are computed by first solving the underlying two-body equa-

tions of motion from which the gravitational waves are extracted. This is some-

what undesirable for gravitational-wave data analysis because of the sheer number

of template waveforms required to construct a template bank for detection. In

order to e↵ectively search for gravitational waves, one typically constructs a dense

template bank on the intrinsic parameter-space (the two masses and spins which

control the phase evolution) to ensure that one does not lose a significant amount

of SNR through under-dense gridding [46]. The typical number of template wave-

forms required for detection can be on the order of hundreds of thousands [47]. In

addition, the accuracy requirements of Bayesian parameter estimation are some-

what stricter than for detection, and a standard analysis requires computing of

millions of template waveforms [25]. Whereas in a gravitational-wave search one

performs a maximization procedure to find the maximum-likelihood estimator, in

Bayesian parameter estimation one is interested in computing the full posterior

probability density function (PDF) of the source parameters. The PDF p(~✓|d,H)

of a set of parameters ~✓ which parameterize a model, H, assumed to describe

a data set d, is related to the likelihood p(d|~✓,H), the a priori probability dis-

tribution of the source parameters p(~✓|H) and the “evidence” p(d|H) via Bayes’

theorem [48]:

p(~✓|d,H) =
p(~✓|H) p(d|~✓,H)

p(d|H)
. (1.11)

As discussed earlier, the parameter vector ~✓ for coalescing binaries is nine di-

mensional for binaries with non-spinning components and fifteen dimensional for

binaries with spinning components. It is immediately clear that a fine gridding

in each dimension is not feasible and so one must make use of algorithms to

preferentially sample regions of the parameter space where the bulk of the pos-

terior probability is contained. There are currently several stochastic sampling

algorithms which are dedicated to parameter estimation on gravitational waves
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from CBC sources. These include Markov-chain Monte Carlos [13] and nested

sampling [12] algorithms. A typical stochastic Bayesian analysis can take up to

several weeks to run on a single stretch of data, around ten seconds in duration.

The dominant cost of parameter estimation is waveform generation, and the cost

of the analysis scales linearly with the cost of waveform generation.

Methods to improve the e�ciency of detection and parameter estimation are

therefore crucial for gravitational-wave astronomy. On the side of detection it has

recently been shown that there is a large redundancy in the number of filters used

for gravitational-wave searches [49] and the authors employed a singular value de-

composition (SVD) of a template bank of waveforms used for a gravitational-wave

search to show that the total number can be reduced by around an order of mag-

nitude without incurring significant losses in SNR. In addition, the decomposition

of the (discrete) template bank can be used to generate a continuous description

of the bank (e↵ectively an interpolation technique) [50]. The interpolation by-

passes the need to perform ODE solving to generate template waveforms and

could o↵er improvements to the e�ciency of detection and parameter estimation

when the computational cost is dominated by template waveform generation. It

is all the more crucial to address the issue of the computational cost of template

generation in the run-up to the advanced detector era as the in-band signal dura-

tion will be longer than in the initial configurations of the instruments. This will

render computing templates more computationally expensive if not directly dealt

with. For example, a binary neutron star system with total mass of 2.8M� at a

gravitational-wave frequency of 40 Hz, roughly the low frequency cut o↵ of initial

LIGO, would have an in band signal duration of around 25 s (c.f. Eq. (1.2)).

Conversely, the same system at a gravitational-wave frequency of 10 Hz, roughly

the low frequency cut o↵ of aLIGO, has an in band signal duration of around 20

min. Computing hundreds of thousands, or millions of these waveforms will ren-

der detection and parameter estimation an even more computationally expensive

procedure.
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1. INTRODUCTION

Overview of the thesis

Chapter II

Chapter II focuses on the detection of intermediate-mass black holes in aLIGO.

As a detection channel we consider the coalescence of a stellar-mass black hole

into an intermediate-mass black hole (IMBH) which we refer to as an intermediate

mass-ratio coalescence (IMRAC). We consider binaries in which the IMBH has

mass in the range 24M��200M� with a stellar-mass companion having masses in

the range 1.4M� � 18.5M�, and with mass ratios 1/140  q  1/10. This range

is well within the detectable mass-range of aLIGO. We investigate the relative

contribution to the signal-to-noise ratio (SNR) of the three di↵erent phases of

the coalescence - inspiral, merger and ringdown - of IMRACs as would be seen

by aLIGO. We find that merger and ringdown play the dominant role over the

bulk of the mass space though there is a small portion in which the inspiral

portion of the coalescence signal dominates. We identify three regions in the

mass-space in which (i) inspiral-only searches could be performed with losses in

detection rates, L, in the range 10% . L . 27%, (ii) searches based on inspiral-

only templates lead to a loss in detection rates in the range 27% . L . 50%, and

(iii) templates that include merger and ringdown are essential to prevent losses in

detection rates greater than 50%. In addition, we provide a comparison of existing

inspiral-only waveforms over the mass range considered in the study. We consider

waveforms based on the EOBNR and PN approximation schemes, and a waveform

family developed specifically to describe intermediate mass-ratio inspirals [44]

which we refer to as the “Huerta-Gair” waveform family after its authors. We

measure the consistency of waveforms in di↵erent families by computing their

normalized inner-products, maximized over the parameters which control the

phase evolution of the waveforms. We find that the di↵erent families are � 90%

consistent with each other which reinforces the importance of several numerical

relativity simulations in this mass-range with which semi-analytical models of

waveforms could be constructed in order to produce robust templates for detecting

IMRACs. This study is restricted to binaries on (quasi-) circular orbits with non-

spinning components.

The text of Chapter II is based on a paper by Rory Smith, Ilya Mandel and
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Alberto Vecchio [19]. My contribution to this work was: (i) the implementation of

the Huerta-Gair waveform family, (ii) implementation of all the calculations (iii)

organized and led the project (iv) wrote the paper. The paper benefited from

discussions with Eliu Huerta. This paper has arXiv number arXiv:1302.6049

[astro-ph.HE].

Chapter III

Chapter III is the first of three chapters on techniques to improve the e�ciency

of Bayesian parameter estimation. In Chapter III we provide a proof of prin-

ciple of a technique which could be used to improve the e�ciency of Bayesian

parameter estimation on CBC sources when the computational cost of the anal-

ysis is dominated by template waveform generation. The work employs a singu-

lar value decomposition (SVD) of a template bank of waveforms which we use

to interpolate templates for parameter estimation. The interpolated templates

have already been employed in gravitational-wave searches [49; 50]. Interpolat-

ing template waveforms can be a less intensive computational procedure than

generating templates via di↵erential equation solving, for example. Because the

accuracy requirements of gravitational-wave searches are typically less stringent

than for parameter estimation we (a) study the bias in posterior parameter esti-

mates incurred through using interpolated template waveforms, and (b) compute

the relative computational cost of computing interpolated templates and non-

interpolated templates. We find that the bias in mean posterior parameter esti-

mates is negligible on the scale of statistical measurement uncertainty and that

interpolating templates is around an order of magnitude faster than generating

standard time-domain waveforms, e.g., TaylorT4 and EOBNR [26] waveforms.

Our study uses a simple class of interpolated inspiral-only template waveforms

and is restricted to a small patch of the parameter space. We consider future work

required in order for interpolated template waveforms to be integrated within pa-

rameter estimation pipelines.

Chapter III grew out of a collaboration between Rory Smith, Kipp Cannon,

Chad Hanna, Drew Keppel and Ilya Mandel while on a fellowship at the Perimeter

Institute for Theoretical Physics. The text of Chapter III is based on a paper by
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Rory Smith, Kipp Cannon, Chad Hanna, Drew Keppel and Ilya Mandel [51]. My

contribution to this work was: (i) writing the SVD-interpolation software, (ii) in-

tegrating the SVD-interpolation software into the LSC Algorithm Library (LAL),

(iii) the comparison of PDFs generated using interpolated and non-interpolated

waveforms in Sec. 3.5, (iv) the comparison of computational time of waveform

families in Sec. 3.6, (v) organized and led the project, (vi) wrote the paper. This

paper has arXiv number arXiv:1211.1254 [astro-ph.HE].

Chapter IV

Chapter IV builds on the previous chapter and represents continuing work on

improving the e�ciency of Bayesian parameter estimation. Here we extend the

interpolation used in Chapter III to more general classes of template waveforms;

inspiral-only time-domain waveforms, and time-domain waveforms which describe

the full coalescence signal. We find that our implementation of the interpolation

is successful for inspiral-only time-domain waveforms but fails for time-domain

waveforms which describe the full coalescence.

All the work in Chapter IV is my own. It grew out of the work in Chapter III

which was a collaboration with Kipp Cannon, Chad Hanna, Drew Keppel and

Ilya Mandel, and benefited from discussions with the afore mentioned people.

Chapter V

Chapter V builds on the previous two chapters on improving the e�ciency of

Bayesian parameter estimation. While the previous two chapters focussed on in-

terpolating template waveforms, here we show how to e�ciently compute the con-

tinuous likelihood function on the three-dimensional subspace of parameters on

which it has a non-trivial dependence – the chirp mass, symmetric mass ratio and

coalescence time – via interpolation. We show that subsequently, sampling this

interpolated likelihood function is a significantly cheaper computational process

than directly evaluating the likelihood; we report improvements in computational

time of between two and three orders of magnitude while keeping likelihoods ac-

curate to . 0.025%. Generating the interpolant of the likelihood function over

a significant portion of the CBC mass space is computationally expensive but
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highly parallelizable. This suggests that the overall wall time of generating the

interpolant of the likelihood function can in principle be very small compared to

the time of a full parameter estimation analysis.

The work in Chapter V is based on a paper by Rory Smith, Chad Hanna, Ilya

Mandel and Alberto Vecchio. This work benefited from discussions with several

people, in particular Kipp Cannon, Scott Field, Drew Keppel, Vivien Raymond,

Manuel Tiglio and AlanWeinstein. This paper has arXiv number arXiv:1305.3798

[astro-ph.HE].
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Chapter 2

DETECTING INTERMEDIATE

MASS-RATIO BINARIES

WITH ADVANCED

DETECTORS

2.1 Introduction

Observations of ultra-luminous X-ray sources and simulations of globular cluster

dynamics suggest the existence of intermediate-mass black holes (IMBHs) [5;

20; 52; 53; 54; 55]. However, observational evidence for their existence is still

under debate, see e.g. [56; 57]. Gravitational waves from binary coalescences

involving IMBHs with masses 50 M� . M . 500 M� are potentially detectable

by advanced detectors – including Advanced LIGO [58], Advanced Virgo [59], and

KAGRA [60] – with a low frequency cuto↵ of around 10 Hz. If IMBHs do exist,

one likely contribution to gravitational-wave detections is believed to be through

the coalescence of a compact stellar-mass companion (black hole or neutron star)

with an IMBH, at a possible rate of up to ⇠10 yr�1 [5; 14; 61], with masses of

the IMBH in the range 50M� . M . 350M� [14]. We will denote these signals
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as intermediate mass-ratio coalescences (IMRACs)1.

Given that IMBHs in this mass range have proved extremely di�cult to ob-

serve in the electromagnetic spectrum, gravitational-wave detections may provide

the first unambiguous observations of such objects. Such observations would form

an important channel for probing the dynamical history of globular clusters. Fur-

thermore, Advanced LIGO/Virgo (aLIGO/Virgo) may be able to provide mea-

surements of the quadrupole moment of a black hole [14; 15], which would allow

a null-hypothesis test of the Kerr metric for IMBHs.

The gravitational waveform from the coalescence of two compact objects can

be divided into three phases: a gradual inspiral, a rapid merger, and the quasi-

normal ringdown of the resulting black hole. The relative contribution to the

expected coalescence signal from inspiral, merger and ringdown is an important

consideration for gravitational-wave searches. To leading Newtonian order the

gravitational wave frequency at the inner-most stable circular orbit (ISCO) is

fISCO = 4.4 kHz

✓
M�

M

◆
, (2.1)

where M is the total mass of the binary. For advanced detectors with a low

frequency cut-o↵ of ⇠ 10Hz, we may only have access to either the very late

stages of the inspiral, or solely merger and ringdown for the heaviest IMRAC

systems. While the power in the merger and ringdown is suppressed by a factor

of the mass ratio relative to the power in the inspiral [62], the fact that IM-

RAC systems are liable to merge either in-band, or at the low frequency limit

of the bandwidth, means that merger and ringdown may be significant over a

large portion of the detectable mass-space. Additionally, for cases where IM-

RAC waveforms are inspiral-dominated, it is useful to know where inspiral-only

searches could be targeted.

Detecting IMRACs through gravitational waves will require template gravitational-

waveform families adapted to highly asymmetrical mass-ratio systems. However

the development of numerical relativity simulations and perturbative techniques

1 In the literature, the term frequently used for this class of objects is intermediate mass-

ratio inspirals or IMRIs, see e.g. [14; 61]. However, in the context of ground-based observations,
in particular with second-generation instruments, we will show that the full coalescence is
important for these systems, and it therefore seems to be more appropriate to call them IMRAC.
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in this regime is at an early stage which is potentially problematic. The issue

of appropriate template waveform families is thus central to the detection of IM-

RACs through gravitational waves.

The e↵ective-one-body approach, calibrated to numerical relativity, has led

to template waveforms, known as EOBNR [41], that describe the full inspi-

ral, merger and ringdown coalescence-signal for comparable mass-ratio binaries;

EOBNR waveforms should also be accurate at extreme mass ratios. However, to

date only one full numerical simulation exists for mass-ratio q = 1/100 binaries

[45]. EOBNR waveforms have not yet been compared to NR simulations at such

mass ratios, so their validity in the IMRAC regime remains to be demonstrated.

Meanwhile, in the context of extreme mass-ratio binaries, several authors have

modelled the two-body motion by computing radiative and conservative self-force

corrections to Kerr geodesic motion [42; 43]. Waveforms computed within this

scheme are inspiral-only and are only developed to lowest order in the mass ratio.

These waveforms have been adapted to describe intermediate mass-ratio inspirals

by including higher-order-in-mass-ratio corrections in [63] and have been used to

study the detection of intermediate mass-ratio inspirals in the Einstein Telescope

[44]. We refer to these intermediate mass-ratio inspiral waveforms as the “Huerta

Gair” (HG) waveform family after its authors. This waveform family should be

physically well motivated to describe the inspiral of IMRACs.

Typically one does not have an exact representation of “true” gravitational-

wave signals but requires templates which are su�ciently e↵ective at filtering

such signals. A common metric for quantifying how well approximate waveform

families are at filtering gravitational-wave signals is known the “e↵ectiveness”,

or fitting factor [26]. This measures the fraction of the theoretical maximum

signal-to-noise ratio (SNR) that could be recovered by using non-exact template

waveforms.

The work in this Chapter focuses on the requirements of template waveforms

for the detection of IMRACs in aLIGO. Firstly, by computing the e↵ectiveness

of inspiral-only template waveforms at filtering the full coalescence signal, we

determine the relative importance of the inspiral and merger-ringdown phases.

We identify three regions in the m1-m2 plane in which: (a) inspiral-only searches

are feasible with losses in detection rates L in the range 10% . L . 27%, (b)
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searches are limited by the lack of merger and ringdown in template waveforms

and are liable to incur losses in detection rates in the range 27% . L . 50%,

and (c) where merger and ringdown are essential for searches in order to prevent

losses in detection rates greater than 50%.

Secondly, to gain insight into the accuracy of the inspiral portion of IMRAC

waveforms we compute the e↵ectiveness of the inspiral-only portion of EOBNR

waveforms at filtering gravitational-wave signals as described by the HG wave-

form family. We find that there is a non-negligible discrepancy between EOBNR

and HG inspirals in the regime where inspiral-only searches could be considered

su�cient. For reference we also compare EOBNR inspirals to a post-Newtonian

(PN) [64; 65] waveform family known as TaylorT4 [26]. The PN expansion is li-

able to be a poor choice of approximant for IMRACs because of the large number

of cycles spent at small radii. We find that EOBNR and HG are in better agree-

ment with each other than to TaylorT4, as might be expected from the previous

observation.

Our approach does not directly address the accuracy of template waveforms,

because none of the waveforms considered have been matched to full numerical

waveforms. However, assuming that the waveform families we consider “bracket”

the correct gravitational waveforms in the IMRAC regime, this approach pro-

vides a useful heuristic for quantifying the e↵ectiveness of existing gravitational

waveforms for IMRAC searches. Further numerical relativity simulations will

be important in the continuing development of accurate template waveforms for

IMRACs.

Our analysis improves upon previous work to determine the detectability of

IMRAC sources [66] which only considered the faithfulness of template waveforms,

i.e., the e↵ectiveness of template waveforms evaluated at the signal parameters.

Additionally, that study only considered inspiral-only waveforms and focused on

the LISA regime.

This chapter is organized as follows. In Sec. 2.2 we review the basics of

matched filtering as applied to gravitational-wave detection. In Sec. 2.3 we de-

scribe the waveform families used in our study. In Sec. 2.4 we compute the

contributions to signal-to-noise ratio (SNR) from the inspiral and merger and

ringdown phases of EOBNR waveforms in the intermediate mass-ratio regime. In
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Sec. 2.5 we study the e↵ectiveness of inspiral-only waveforms to filter inspiral-

merger-ringdown gravitational wave signals from IMRAC sources and identify

the three regions in which di↵erent searches could be conducted. In Sec. 2.6 we

compare the inspiral portion of EOBNR waveforms to HG and TaylorT4 wave-

forms. In Sec 2.7 we consider the implications of our results for future searches

in advanced detectors.

2.2 Matched filtering of gravitational-wave sig-

nals

In order to quantify the requirements of gravitational waveforms for IMRAC

searches, we summarize the key concepts of matched filtering which is the core

principle behind gravitational-wave detection. The fundamental object is the

optimal filter of the data which is used to define the maximum signal-to-noise

ratio achievable from a stretch of data which contains a gravitational-wave signal.

The output of a gravitational-wave detector which contains a gravitational-

wave signal will generally be of the form s(t) = h(t) + n(t). Here s(t) is a

data-stream consisting of a gravitational-wave signal h(t) and noise n(t). We

take the noise to be Gaussian and stationary for simplicity. We note that in

general the noise will not be Gaussian and stationary in the detector network,

though will not consider the e↵ects of non-Gaussianity in the noise here.

One can filter the data for a signal h(t) if we know the form of h(t). Consider

the following filtering procedure. We take a signal containing a rapidly oscillating

function of time, h(t), to be the signal buried in Gaussian and stationary noise.

The convolution of the detector output, s(t), with the signal, averaged over an

observation time T , is

1

T

Z
T

0

dt s(t)h(t) =
1

T

Z
T

0

dt h2(t) +
1

T

Z
T

0

dt n(t)h(t). (2.2)

Both h and n are separately oscillating functions of time. The first term on the

right hand side of Eq. (2.2) is positive definite and grows, for large values of T , as

T . Averaged over the observation time T , its value will be the average amplitude
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of the signal, 1/T
R

T

0
dt h2(t) ⇠ h2

0, where h0 is the average amplitude of h(t).

Conversely, the noise n(t) and the signal h(t) are uncorrelated. The second term

on the right hand side of Eq. (2.2) grows at most, for large T , as T 1/2 so that

1/T
R

T

0
dt n(t)h(t) ⇠ (⌧/T )1/2 n0h0, where n0 is the characteristic amplitude

of the noise and ⌧ is its characteristic period of the noise. Hence in the limit

T ! 1, the second term on the right hand side of Eq. (2.2) averages to zero and

the signal is filtered out of the data-stream.

More formally, we work with the filtered detector output ŝ given by

ŝ =

Z 1

�1
dt s(t)K(t), (2.3)

where s(t) is a data stream and K(t) is the filter function. A commonly used

detection statistic is the “signal-to-noise” ratio (SNR), defined as the ratio of the

expected value of ŝ when a signal is present, S, to the rms value of ŝ when the

signal is absent, N. We thus seek the filter K(t) which maximises the SNR. The

expectation value of the filtered signal, S, is [29]

S =

Z
dt hs(t)iK(t) ,

=

Z
dt h(t)K(t) ,

=

Z
df h̃⇤(f)K̃(f) , (2.4)

where we have used the fact that hn(t)i = 0 on the second line. The Fourier

transform, h̃(f) of h(t), and its inverse are defined in Eq. (A.1). The rms value

of ŝ when the signal is absent, N can be computed from [29]

N2 =
h
hs2(t)i � hs(t)i2

i

h=0
,

= hs2(t)i
h=0 ,

=

Z
df

1

2
S
n

(f)|K̃(f)|2 , (2.5)

where the quantity in the S
n

(f) is known as the detector “power spectral density”
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(PSD), and is defined by the ensemble average of the noise [67]:

1

2
S
n

(f) = h|ñ(f)|2i 1

T
, (2.6)

where T is the duration of an observation time over which the noise would typi-

cally be collected in an experiment. The SNR is thus given by [67]

S

N
=

R1
�1 df h̃(f)K̃⇤(f)

h R1
�1 df (1/2)S

n

(f)|K̃(f)|2
i1/2 . (2.7)

To find the filter K which maximizes Eq. (2.7) we define the “noise-weighted

inner-product”:

(a|b) = 4 <
Z 1

0

df
ã⇤(f)b̃(f)

S
n

(f)
, (2.8)

in terms of which the SNR, Eq. (2.7), is given by

S

N
=

(u|h)
(u|u)1/2 , (2.9)

where u(t) is a function with Fourier transform ũ(f) = (1/2) S
n

(f)K̃(f). Geo-

metrically, we have a vector of unit norm û = u/(u|u)1/2 with which we are taking

the inner-product with h. Thus, the SNR is maximized when û is parallel to h.

The optimal filter, K, which maximizes the SNR is therefore given by

K̃(f) = const.
h̃(f)

S
n

(f)
. (2.10)

The constant is irrelevant and the best filter is thus given by the signal itself. This

is a crucial point as it states that we must know the form of the signal which we

want to detect in order to obtain the optimal SNR. In terms of the noise-weighted

inner-product the optimal SNR is expressed succinctly as

⇣ S
N

⌘

max
= (h|h)1/2. (2.11)

Central to the task of detecting gravitational waves from IMRACs is the choice
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of model waveform h which we require to filter the data. In the section below we

outline three model waveform families which we use in our study.

2.3 Waveforms

In this section we summarise the key concepts entering the construction of the

waveforms used in this study. Throughout the chapter, for a binary system with

individual component masses m1 and m2 (with m2 < m1) we define the total

mass as M ⌘ m1 +m2, and mass ratio and symmetric mass ratio as q ⌘ m2/m1

and ⌘ ⌘ m1m2/(m1 +m2)2, respectively.

We first consider the family of waveforms constructed by calibrating the

e↵ective-one-body approach to numerical relativity (EOBNR) [41; 68; 69]. The

EOBNR family describes the full inspiral-merger-ringdown signal; it is currently

used in searches that reach the IMBH mass range, so far up to 100 M� [8]. The

free coe�cients in the family have been fitted to comparable mass ratio numerical

relativity simulations, and by construction this family is deemed to be faithful in

the test particle limit. For this work, we use the implementation provided by the

LIGO Scientific Collaboration Algorithm Library (LAL) that corresponds to the

approximant EOBNRv2 [41].

We also consider a waveform family based on test particle motion in Kerr

/ Schwarzschild space-time with radiative and conservative self-force corrections

which we refer to as the Huerta-Gair (HG) family [44]. The approximation scheme

is constructed specifically to handle highly-asymmetrical mass-ratio binaries and

is therefore a physically well motivated approximation scheme for intermediate

mass-ratio inspirals. These waveforms have been compared against Teukolsky

based waveforms and the match exceeds 95% over a large portion of the pa-

rameter space [63]. These waveforms have been used to study detection of in-

termediate mass-ratio inspirals in Einstein telescope in [44]. The Huerta-Gair

waveforms describe only the inspiral portion of the coalescence signal. There is

no corresponding LAL approximant for the HG waveform family.

Finally, as a reference we use the standard inspiral-only post-Newtonian ap-

proximation corresponding to the LAL approximant TaylorT4 at three-and-a-half

post-Newtonian order in phase [26].
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The TaylorT4 waveforms used here are computed in the so-called “restricted”

amplitude approximation, which assumes the waveform amplitude to be zeroth

post-Newtonian order and only includes the leading second harmonic of the or-

bital phase. We only include the leading second harmonic of the orbital phase in

the EOBNR waveforms. We do not consider the e↵ects of spin or eccentricity in

any of the waveform families, as we restrict to circular orbits and non-spinning

black holes.

2.3.1 EOBNR

EOBNR uses an e↵ective one body (EOB) Hamiltonian to evolve the system’s

trajectory through the inspiral and plunge phase, while numerical simulations and

black hole perturbation theory are used to construct the merger and ringdown

phases respectively. The PN Hamiltonian generates a waveform hinsp�plunge(t)

which is matched at some time, t
match

, to a merger and ringdown waveform,

hmerger�RD. The full EOBNR waveform is given by (see [26] and references

therein),

h(t) = hinsp�plunge(t)⇥(t
match

� t)

+ hmerger�RD(t)⇥(t� t
match

), (2.12)

where ⇥(.) is the Heaviside step function.

2.3.1.1 Inspiral-plunge waveform

To calculate the inspiral trajectory one solves Hamilton’s equations given the

Hamiltonian of the EOB metric and the inspiral-plunge waveform at leading

Newtonian-order is [26],

h(t)insp�plunge = A !̂1/3 sin [2�(t)] , (2.13)

where the “angular frequency” !̂ is given by Eq. (3.23b) in [26]. The overall

scaling A depends on the source location with respect to the detector. In this
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chapter we will use normalized template waveforms and so we leave this factor

unspecified.

2.3.1.2 Merger-ringdown waveform

The merger-ringdown waveform is made up of a superposition of quasi-normal

modes (QNMs) [41; 70; 71]. We only consider the dominant (2, 2) mode and the

merger-ringdown waveform is given by

hmerger�RD(t) = A
N�1X

n=0

A22n e
�i�

22n

(t�t

22

match

), (2.14)

where n is the overtone number of the Kerr QNM, N is the number of overtones,

t22match is the time at which the (2, 2) mode is matched to the inspiral-plunge

waveform and the coe�cient A22n is found by a matching procedure. We take

�22n ⌘ !
n

� i↵
n

where !
n

> 0 are the oscillation frequencies and ↵
n

> 0 are asso-

ciated with the inverse of the decay times of the QNM. The full inspiral-merger-

ringdown waveform is then given by matching the inspiral- plunge waveform, Eq.

(2.13), to the merger-ringdown waveform, Eq. (2.14), waveform close to the EOB

light-ring [72].

2.3.2 HG waveforms

HG waveforms aim to capture the main features of the binary inspiral when the

mass-ratio of the system is small. Physically, this means we work in a test particle

limit. For non-spinning bodies, this limit guarantees that the inspiralling particle

instantaneously follows Schwarzschild geodesics while the flux of the orbital pa-

rameters is adiabatic. The orbital parameters (E, L
z

) are evolved slowly using a

prescription for the flux of energy, E, and angular momentum projected along the

central black holes spin axis, L
z

. Combining these fluxes with the geodesic equa-

tions for a test particle in Schwarzschild space-time yields the particles trajectory

in Schwarzschild coordinates, (t, p, ✓,�). Here we specialize to (quasi-)circular

orbits around a non-spinning central black hole.

The angular momentum per unit mass of the test particle are

30



L
z

m2

=
⇣ p

M

⌘ Mp
1� (3M/p)

, (2.15)

and the inspiral trajectory is generated by the flux of the above quantity which

is given by [63],

L̇
z

= �32

5

m2
2

M

⇣M
r

⌘7/2⇢
1� 1247

336

M

p
+ 4⇡

⇣M
p

⌘3/2
(2.16)

�44711

9072

⇣M
p

⌘2
+

 
ca1 + cb1

⇣M
p

⌘1/2
+ cc1

⇣M
p

⌘!)

The values of the coe�cients are ca1 = �28.1517, cb1 = 60.9607, cc1 = 40.9998.

Conservative self force corrections modify the orbital frequency and are given

by, [63]

d�

dt
:= ⌦ =

1

M

✓
M

p

◆3/2

+ �⌦,

=
1

M

✓
M

p

◆3/2
(
1 +

+ m2

 
d0 + d1

✓
M

p

◆
+ d1.5

✓
M

p

◆3/2

+ d2

✓
M

p

◆2
!)

. (2.17)

The values of the coe�cients are d0 = 1/8, d1 = 1975/896, d1.5 = �27
10
⇡, d2 =

1152343/451584. To compute the inspiral trajectory at each instant in time we

evolve L
z

and � according to Eq. (2.16) and Eq. (2.17) and compute p from L
z

from Eq. (2.15). The gravitational-wave strain, h(t), is given by,

h(t) = A
�
⌦(t) p(t)

�2
sin [2�(t)] . (2.18)

The overall scaling A depends on the source location with respect to the

detector. In this chapter we will use normalized template waveforms and so we

leave this factor unspecified.
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2.3.3 TaylorT4

The TaylorT4 approximant is based on the post-Newtonian (PN) expansion (see

section III B. of Ref. [26] and references therein). The orbital phase is given by

solving the coupled di↵erential equations of the orbital phase and velocity, �(t)

and v(t), respectively,

d�

dt
� v3(t)

M
= 0, (2.19)

dv

dt
= K(t), (2.20)

where the acceleration K(t) is given Eq. (A.14).

The gravitational wave strain h(t) can then be expressed directly as

h(t) = Av2 sin [2�(t)] . (2.21)

The overall amplitude A depends on the source location with respect to the

detector. The amplitude is given in [73]. In this chapter we will use normalized

template waveforms and so we leave this factor unspecified.

2.4 SNR from inspiral, merger and ringdown

In this section we consider the relative contributions of the di↵erent portions of

the gravitational-wave coalescence signal to the SNR as a function of the IMRAC’s

mass. We take the instrument noise power spectral density (PSD) S
n

(f) to be

the aLIGO high-power, zero-detuned noise PSD [74] which is shown in Fig. 2.1.

The expectation value of the optimal matched filtering SNR, in the case when

the signal and template waveforms are identical, is given by [67]

⇣ S
N

⌘

max
= (h|h)1/2 ,

=

"
4<
Z

f

max

f

min

 
f |h̃(f)|p
fS

n

(f)

!2

d ln f

#1/2
, (2.22)

where limits of integration correspond to the bandwidth of the detector. Writ-
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Figure 2.1: Advanced LIGO high-power, zero-detuned noise PSD [74]
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ing the maximum SNR in the form above clearly separates it into contributions

from the signal strain, f |h̃(f)|, and the root-mean-squared (rms) noise spectral

amplitude,
p

fS
n

(f), which is the strain signal associated with the detector noise.

One can gain insight into the relative contributions to the SNR from inspiral,

merger and ringdown by comparing the gravitational-wave strain to the noise

rms value. In Fig. 2.2 we show the strain for selected overhead and face-on (i.e.,

optimally-located and orientated) IMRAC sources at a fiducial distance of 1Gpc

as described by the EOBNR waveform family, and noise rms amplitude. The

ISCO frequency of each signal is shown as a vertical line. The strain from merger

and ringdown is thus the portion after the ISCO frequency. The contribution

to the strain from merger and ringdown from binaries with component masses

(m1,m2) = [(200, 20) M�, (200, 2) M�], is greater than that of the noise rms

amplitude (black curve with triangles). In general, systems with ISCO frequencies

between 30� 100 Hz, merge in the “bucket” of the noise curve, i.e., where the

detector is most sensitive. For example, for the (m1,m2) = (200, 20) M� system

(red dotted curve in Fig. 2.2), the merger and ringdown contribute the bulk of

the SNR. Conversely, the inspiral contribution to the SNR is strongly suppressed

for such massive systems.

In Fig. 2.3 we show the maximum SNR, Eq. (2.22), as a function of the binary’s

total mass produced by inspiral-only and full EOBNR waveforms at four di↵erent

mass-ratios in the range 1/200  q  1/10. We construct inspiral-only EOBNR

waveforms by Fourier transforming the full waveform into the frequency domain

(see Eq. (A.1) ) and truncating it at the ISCO frequency. We have considered

the SNR for optimally-located and orientated sources at a fiducial distance of 1

Gpc. The lower bound mass of the smaller body is set to m2 = 1.4 M� which is

the canonical neutron-star mass.

We note that the IMRAC systems we are considering are liable to produce an

appreciable SNR at distances greater than 1 Gpc. Such cosmological distances

correspond to red shifts z � 0.2 [75]. Gravitational waves from binaries which

propagate in an expanding FRW universe experience a Doppler shifting of their

frequency such that the observed gravitational-wave frequency fobs is related to

the gravitational-wave frequency at the source, f
s

, by fobs = (1/(1 + z)) f
s

[29].

Such a red shifted frequency corresponds to a binary with a chirp mass which
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Figure 2.2: Strain of optimally-located and orientated IMRAC sources at a
fiducial distance of 1 Gpc as described by EOBNR waveforms, and aLIGO
noise. The corresponding ISCO frequency of each signal is shown as a verti-
cal dashed line. The strain from the merger and ringdown from each source
contributes after the ISCO frequency. For the sources with component masses
(m1,m2) = [(200, 20) M�, (200, 2) M�], the strain from merger and ringdown sits
above the noise spectrum. The SNR from the full EOBNR waveform and from
its inspiral-only portion are shown in Fig. 2.3.
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is larger by a factor of (1 + z) which is typically referred to as the “red shifted

chirp mass” of the binary. Thus, systems at red shift z = 0.2 appear to be 1.2

times heavier. Hence, when we refer to binary masses in the following pages, we

strictly mean the red shifted masses of the binary.

The lowest total mass for the q = 1/50, 1/100 and 1/200 subplots is set by

fixing the mass of the smaller body to m2 = 1.4 M�. For the q = 1/10 subplot

in Fig. 2.3 the smallest total mass is set to M = 35 M� as the inspiral phase

accounts for⇠ 100% of the SNR below this value. The lower limit of integration of

Eq. (2.22) is 10 Hz and the upper limit is 2048 Hz, which is the Nyquist frequency

of discretely sampled EOBNR waveforms generated at a sampling rate of � t =

4096 s in the time-domain. We only consider systems with total masses such

that the ISCO frequency is greater than 10 Hz (our low frequency cut-o↵). The

highest total mass for each of the subplots in Fig 2.3 is set to M = 300 M� which

ensures the ISCO frequency is greater than 10 Hz.

As anticipated from Fig. 2.2 there is a significant di↵erence in the SNR be-

tween inspiral-only and full EOBNR waveforms which can be seen at all four

mass-ratios. We also note that for systems with mass-ratios of q = 1/10 with

total masses below around M = 35 M� the inspiral phase is the dominant source

of SNR. If we consider 3% as a fiducial value of the di↵erence between the full

SNR and the one associated to the inspiral-only waveform – which leads to a loss

in detection rates of 10% – this happens at M ⇡ 35 M� for q = 1/10. For bina-

ries with q = 1/50, 1/100 and 1/200, the minimum di↵erence in SNR between

inspiral-only and full waveforms is ⇡ 6%, 15% and 40% respectively for the mass

ranges considered in Fig 2.3.

In summary, we have shown that inspiral-only templates will miss a signifi-

cant portion of the total SNR of IMRAC signals over the bulk of the detectable

mass-space. Future searches will therefore require templates that can match the

full inspiral-merger-ringdown. However, there is a small region of the parameter

space for which inspiral-only templates may su�ce for searches, without induc-

ing drastic losses in detection rates. In the following section we quantify the

e↵ectiveness of inspiral-only templates for searching for full coalescence signals in

aLIGO.
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Figure 2.3: SNR of optimally-located and orientated IMRAC sources at a
fiducial distance of 1 Gpc vs total mass for four di↵erent mass ratios; q =
(1/10, 1/50, 1/100, 1/200). The solid line is the SNR from full EOBNR wave-
forms and the dashed line from inspiral-only EOBNR waveforms truncated at
the ISCO frequency in the frequency domain. The lower bound mass of the
smaller body is set to m2 = 1.4 M� which is the canonical neutron-star mass.
The lowest total mass for the q = 1/50, 1/100 and 1/200 subplots in Fig. 2.3 is
set by fixing the mass of the smaller body to m2 = 1.4 M�. For the q = 1/10
subplot the smallest total mass is set to M = 35 M� as the inspiral accounts
for ⇠ 100% of the SNR below this value. We only consider systems with total
masses such that the ISCO frequency is greater than 10 Hz (our low frequency
cut-o↵). The highest total mass for each of the subplots in Fig 2.3 is set to M =
300 M� which ensures the ISCO frequency is greater than 10 Hz. We find that
there is a non-negligible contribution to the SNR from merger and ringdown in
IMRAC signals above a total mass of around M = 35 M�. The di↵erence in
SNR between inspiral-only and full waveforms is at the 3% level at around M =
35 M� at q = 1/10. For binaries with q = 1/50, 1/100 and 1/200 , the minimum
di↵erence in SNR between inspiral-only and full waveforms are at the 6%, 15%
and 40% levels, respectively, over our mass range of interest. For IMRACs of as-
trophysical interest, more extreme mass ratios correspond to a greater total mass,
which can place the merger and ringdown at a frequency where the detector has
the greatest sensitivity.
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2.5 E↵ectiveness of inspiral-only templates for

IMRAC searches

We have shown in Sec. 2.4 that the SNR from merger and ringdown will provide

a significant contribution to the total SNR over a broad portion of the IMRAC

mass-space, c.f. Fig. 2.3. There is however a small portion of the parameter

space where the SNR is dominated by the inspiral phase which can be seen,

e.g. for q = 1/10 binaries in Fig. 2.3 with total masses M  35 M�. Thus

it is important to quantify the e↵ect of using inspiral-only templates to search

for IMRAC signals which contain inspiral, merger and ringdown phases. The

use of template waveforms that are not exact representations of the signals they

filter degrades the SNR, as the optimal SNR can be recovered only when the

template waveform corresponds exactly to the signal h, cf. Eq. (2.22). In practice

however, we do not have access to an exact representation for h. Using a non-

exact template waveform T to filter h caps the maximum recoverable SNR to

[76]

⇣ S
N

⌘
= max

~

✓

(h(~�)|T (~✓))
(T (~✓)|T (~✓))1/2

,

= ✏
⇣ S
N

⌘

max

, (2.23)

where ~� and ~✓ represent the parameter vector of the signal and template, re-

spectively. We define ✏ as the e↵ectiveness of a template waveform family T at

recovering the maximum SNR from a gravitational-wave signal h; by definition

0  ✏  1. This quantity is also referred to as the “fitting factor” in the lit-

erature [76]. It is convenient to define waveforms normalized to unit norm as

â(f) = ã(f)/(a|a)1/2 so that (ĥ|ĥ) = (T̂|T̂) = 1 and the e↵ectiveness can be

written succinctly as

✏ = max
~

✓

(ĥ(~�)|T̂(~✓)) . (2.24)

Using normalized waveforms also has the advantage of eliminating the dependence

of the waveforms on the source orientation and distance, which enter as an overall

scaling.
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Calculating the e↵ectiveness, Eq. (2.24), requires maximizing over the com-

ponent masses (m1,m2) and the time and phase at coalescence. We can e�ciently

maximize over the time and phase by Fourier transforming the integrand of the

noise-weighted inner-product [77],

z(t
c

) = 4

Z
f

max

f

min

df
ã(f)b̃⇤(f)

S
n

(f)
e2⇡iftc , (2.25)

which yields a complex time series whose elements correspond to the inner-

product of a and b as one of the signals is time-shifted with respect to the other.

We can e�ciently find the time at coalescence, t
c

, by finding the time at which the

norm of this time series is a maximum. The phase at coalescence �
c

is then auto-

matically given by finding the argument of the time-series at its peak amplitude.

We thus modify the inner product (a|b):

(a|b) ! (a|b)0 = max
t

c

|z(t
c

)| , (2.26)

which we will adopt as the definition of the inner-product for the remainder of

this chapter.

To compute the e↵ectiveness of an inspiral-only IMRAC search we evaluate

Eq. (2.24) for signals covering the IMRAC mass space. We take as our signal

waveform, h, the full inspiral-merger-ringdown EOBNR waveform. We take the

template, T , to be an inspiral-only EOBNR waveform, formed by truncating the

full EOBNR waveform at the ISCO frequency in the frequency domain. With

such signals and templates the e↵ectiveness provides a measure of the maximum

SNR which could be achieved through using an inspiral-only template to filter

full coalescence-signals. To get a broad coverage of the IMRAC mass space we

compute Eq. (2.24) for signals whose source masses cover the ranges 1.4 M�

 m2  18.5 M� and 24 M�  m1  200 M�, with mass ratios spanning the

range q := m2/m1 2 [1/140, 1/10]. For each signal we evaluate the e↵ectiveness,

Eq. (2.24), where the template T describes the inspiral-only portion of an EOBNR

waveform. We maximize over time and phase by maximizing the inner product of

the signal with an inspiral-only EOBNR template, Eq. (2.26). The maximization

over the masses is performed by finding the largest inner product between the
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signal and a bank of template waveforms. The template bank is characterised by

intrinsic parameters (M , ⌘) which are the chirp mass and symmetric mass-ratio

of the system: M = (m1m2)3/5/(m1 + m2)1/5, ⌘ = (m1m2)/(m1 + m2)2, where

m1 and m2 are the component masses of the binary. The bank spans an extended

mass range 3M�  M  30M� and 0.0065  ⌘  0.082. The results of the

e↵ectiveness of an inspiral-only IMRAC search are shown in Fig. 2.5.

Inspiral-only templates are ⇠ 98% e↵ective at filtering full coalescence signals

for total masses M . 30 M�. Such systems have an ISCO frequency 150 Hz .
fISCO which is well within the peak sensitivity of the noise curve. However for the

bulk of the mass space the e↵ectiveness is below 75%. This is unsurprising given

the SNR curves in Fig. 2.3 which clearly show the importance of the contribution

of merger and ringdown to the SNR.

The loss in SNR incurred through using inspiral-only templates directly af-

fects detection rates. Because the SNR scales inversely with the distance, the

observable volume will scale with the cube of the e↵ectiveness. Assuming that

GW sources are isotropically distributed in the sky, the fractional loss in detection

rates will be 1� ✏3. The percentage loss in detection rates through using inspiral-

only EOBNR templates to recover the full coalescence signal is also shown in

Fig. 2.5. Over a broad portion of the mass-space inspiral-only templates incur

losses in detection rates between 60 � 85%. As the total mass of the binary ap-

proaches 440 M� the Schwarzschild ISCO frequency, Eq. (2.1), approaches 10 Hz

which is near the low-frequency cut-o↵ of the detectors. Hence the relative contri-

bution of the inspiral phase to the coalescence signal of heavier systems diminishes

until the only contribution is from the merger and ringdown. This is a striking

indication of the need of merger and ringdown in IMRAC template waveforms.

This suggests the importance of full numerical simulations in this regime in or-

der to construct such a reliable waveform family including inspiral, merger, and

ringdown phases.

We identify three regions in the m1-m2 plane in which various searches could

be constructed. The regions are defined by contours of constant e↵ectiveness

which are approximately given by C = (m1/M�)
p

m2/M�, which are found

purely empirically, with 1.4 M�  m2  18.5 M� and mass-ratios q 2 [1/140, 1/10].

The e↵ectiveness is related to C by ✏ ⇡ 1/100⇥ (1.6 C � 7.3⇥ 10�3 C2).
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Figure 2.4: E↵ectiveness of inspiral-only EOBNR templates to filter full inspiral,
merger and ringdown EOBNR signals as a function of the source component
masses, and corresponding losses in detection rates. The diagonal corresponds
to mass-ratio q = 1/10. Inspiral-only EOBNR templates are constructed by
truncating the full waveform at the ISCO frequency in the frequency-domain.
For the bulk of the parameter space inspiral-only templates are . 75% e↵ective
at filtering inspiral, merger and ringdown signals. Inspiral-only templates are
⇠ 97 � 98% e↵ective for total masses M� . 30 M�. Inspiral-only templates
within the 90%-e↵ectiveness contour should be su�cient for IMRAC searches
without incurring greater than 30% losses in detection rates.
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Between the 97%- and 90%-e↵ectiveness contours, the losses in detection rates

are between 10% . L . 27% and so an inspiral-only search could be su�cient

without incurring drastic losses in detections. The region bound from below in

e↵ectiveness by the 90%-e↵ectiveness contour is defined by C  100, with the

e↵ectiveness increasing with decreasing C. Between the 90%- and 80%- e↵ective-

ness contours the losses in detection rates are around 27% . L . 50%. Thus,

within this region searches will be limited by the lack of merger and ringdown

in template waveforms, though an inspiral-only search would be feasible in prin-

ciple. This contour is defined by 100 . C . 150. Below the 80%-e↵ectiveness

contour inspiral-only searches will incur losses in detection 50% < L and so

merger and ringdown will be crucial for searches. The region bound from above

in e↵ectiveness by the 80%-e↵ectiveness contour which is defined by 150 . C,
with e↵ectiveness decreasing with increasing C. The results are summarized in

Table 2.1.
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2.6 Comparison of inspiral-only waveforms

We have shown that merger and ringdown are crucial for e↵ective searches over

a large portion of the IMRAC mass space, though there is a small region in

which an inspiral-only search could be constructed without incurring losses in

detection rates greater than around 27%. For this region, it is therefore important

to study whether currently available waveforms are su�ciently accurate. The

inspiral phase can be computed using perturbative expansions and thus it is

interesting to quantify the consistency of di↵erent expansions.

To assess the e↵ectiveness of the EOBNR inspiral, we employ a waveform fam-

ily designed to approximate intermediate mass-ratio inspirals which we refer to

as “Huerta-Gair” (HG) waveforms [44]. HG waveforms describe only the inspiral

portion of the coalescence signal.

We repeat the study done in the previous Section using now the HG waveform

family as the signal h and inspiral-only EOBNR as the template T . The results

are reported over the whole parameter space in Fig. 2.5. For completeness, in

Table 2.2 we also show the values of the e↵ectiveness, Eq. 2.24, for selected mass

combinations of EOBNR inspiral-only templates for filtering full EOBNR and

HG signals respectively.
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m1 m2 Signal waveforms
(M�) (M�) full EOBNR Huerta-Gair TaylorT4
50 5 0.90 0.95 0.96
100 5 0.76 0.97 0.97
200 5 0.53 0.99 0.99
50 1.4 0.96 0.96 0.90
100 1.4 0.86 0.98 0.94
200 1.4 0.67 0.98 0.98
5 5 0.99 0.89 0.99
20 20 0.99 0.92 0.99
100 100 0.52 0.51 0.50

Table 2.2: Summary of e↵ectiveness of inspiral-only EOBNR template waveforms
in recovering signals modelled using di↵erent waveform families – full EOBNR,
Huerta-Gair and TaylorT4 – for selected component masses. Merger and ring-
down become more prominent in the coalescence signal as the total-mass of the
system is increased. The EOBNR inspiral is typically better at matching HG
signals in the IMRAC regime than TaylorT4 signals. Results for equal mass-ratio
systems are shown for reference below the horizontal line.

For the high-mass part of the mass-space the e↵ectiveness of the EOBNR

inspirals with respect to the HG waveforms is close to 100%. This is perhaps

unsurprising because very high mass systems will have short inspirals and possible

di↵erences in the waveforms will not produce a significant degradation of SNR

when matched over a small number of wave cycles. However, for lighter systems

the e↵ectiveness can be as low as 90%, which occurs in the region of mass space

in which inspiral-only searches would be most feasible (see Table 2.1).

For reference we also compare inspiral-only EOBNR templates to TaylorT4

signal waveforms (which are inspiral-only). We construct signal waveforms on the

same grid in m1 �m2 as for HG waveforms and use the same template bank of

inspiral-only EOBNR waveforms. The results are summarized in the right panel

of Fig. 2.5, and in Table 2.2 for selected masses. We find that the EOBNR inspiral

has good filtering e�ciency for the TaylorT4 waveform family. However, EOBNR

is clearly a better match to the HG waveform family over a larger range of masses

and mass ratios than to TaylorT4. This can be seen more clearly by comparing

the subplots in Fig. 2.5. This is unsurprising given that the PN expansion is
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unreliable at high velocities and highly asymmetrical mass-ratios. For orbital

velocities v/c = (M⇡f)1/3 & 0.2 the PN energy flux deviates significantly from

numerical results, see [e.g., 38; 39]. A binary at its ISCO frequency has v/c ⇠ 0.4

which is well beyond the region of validity.

2.7 Discussion and conclusion

We have shown that over the bulk of the IMRAC mass space, merger and ring-

down contribute significantly to the gravitational-wave coalescence signal. This

happens despite the suppression of the power in the merger and ringdown in sig-

nals from binaries with very asymmetric mass ratios. The importance of merger

and ringdown is due to the greater sensitivity to these waveform portions for

high-mass signals, for which most of the inspiral may fall at frequencies below

the detector’s sensitive band.

However there is a relatively large patch in mass space in which the inspiral-

only waveforms are more than 90% e↵ective. We identified three regions in which

di↵erent searches could be considered appropriate based on thresholds of ac-

ceptable losses in detection rates. The mass space splits into a region in which

inspiral-only searches could be feasible, incurring losses in detection rates of up

to ⇠ 27%; a region in which searches would be limited by lack of merger and ring-

down in template waveforms, incurring losses in detection rates up to 50%; and

a region in which merger and ringdown are critical to prevent losses in detection

rates over 50%. The search regions are summarized in Table 2.1.

We have further shown that in the region of the IMRAC mass space in which

inspiral-only searches are feasible, approximants adapted to asymmetric mass-

ratio binaries are important, as here the binary is liable to have highly relativis-

tic velocities v & 0.2. We considered a waveform family designed to describe

intermediate mass-ratio binaries which we referred to as the “Huerta-Gair” (HG)

waveform family By computing the e↵ectiveness of inspiral-only EOBNR wave-

forms to filter signals described by the HG waveform family, we showed losses

in recovered SNR could be as great as 10%. In Table 2.2 we summarize the

e↵ectiveness of the signal–template combinations used in the chapter.

We believe that template waveforms for IMRAC searches will benefit from
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calibration to several numerical simulations. We note that there already exists

one very short numerical waveform of a q = 1/100 binary which we have not used

in our study, and which EOBNR is not currently calibrated to [45].
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Chapter 3

TOWARDS RAPID COMPACT

BINARY PARAMETER

ESTIMATION USING

INTERPOLATED

WAVEFORMS

3.1 Introduction

Astronomy and tests of fundamental physics with gravitational waves from com-

pact binary coalescence (CBC) will ultimately be limited by our ability to es-

timate the binary’s source parameters from the gravitational-wave signal [e.g.,

78; 79; 80]. CBC sources with total masses in the range 2 M� . M . 500 M�

will be amongst the prime sources for Advanced LIGO [58] and Advanced Virgo

[59] when they begin operating around 2015 [5].

In a Bayesian treatment of parameter estimation, one is interested in the

posterior probability distribution of the set of source parameters of the underlying

model given an observed stretch of data. Waveform computation represents the

majority of the computation cost in the Bayesian analysis of CBC sources, so the

total computational cost scales roughly linearly with waveform generation. This
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becomes burdensome when one needs to explore a large dimensional parameter

space as the number of waveform computations is large, e.g., O(106) [25].

Recently, Cannon et al. [49] showed that a truncated singular value decom-

position (SVD) can be applied to gravitational-wave template banks which span

the two parameters describing the masses of the coalescing binary. The SVD de-

composes the bank into a set of “basis templates” and projection coe�cients. In

general, the number of basis templates is much less than the total number of tem-

plates in the bank. Furthermore, the projection coe�cients can be interpolated

across the domain of the bank [50]. Template waveforms can thus be interpo-

lated. Because the intrinsic parameter space of CBC sources with non-spinning

components is two-dimensional (the two mass parameters), it is possible to set

up the waveform computation for parameter estimation such that the waveform

calculations are done by interpolation alone. However, the errors incurred from

interpolation could, in principle, a↵ect parameter-estimation accuracy.

In this chapter, we describe the application of SVD-interpolated waveforms to

CBC parameter estimation. For a simulated data set containing a gravitational

wave signal we provide a proof of principle that SVD-interpolated waveforms can

be used for parameter estimation without significantly a↵ecting the accuracy of

the inferred probability distributions of the source parameters. We further show

that the computational cost of using interpolated waveforms is around an order

of magnitude less than that of commonly-used time-domain waveform families.

This technique has the potential to increase the computational e�ciency of CBC

parameter estimation when the computational cost is dominated by waveform

computation. Our application of the SVD is limited to a small patch of parameter

space about the injected signal value.

This chapter is organized as follows. In Sections 3.2 and 3.4 we outline the

principles of parameter estimation for CBCs and interpolating template wave-

forms based on the SVD, respectively. In Sec. 3.5 we describe the application

of SVD-interpolated waveforms to parameter estimation. In Sec. 3.6 we com-

pare the results of using interpolated and non-interpolated waveforms for param-

eter estimation and compare the computational cost of interpolation to using

non-interpolated waveform families. In Sec. 3.7 we consider the future of using

SVD-interpolated waveforms for parameter estimation and discuss the technical
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requirements of implementing these waveforms in parameter-estimation pipelines.

3.2 CBC parameter estimation

The central quantity of interest in Bayesian parameter estimation is the posterior

probability density function (PDF) of a set of parameters ~✓ which parameterize a

model, H, assumed to describe a data set d. The PDF is related to the likelihood

function and prior probability via Bayes’ theorem and is given by

p(~✓|d,H) =
P(~✓|H) L(d|~✓,H)

p(d|H)
, (3.1)

where L(d|~✓,H) is the likelihood function and P(~✓|H) is the prior probability

which encodes our a priori belief in the distribution of ~✓. The quantity in the

denominator, p(d|H), is known as the evidence and is an overall normalization

factor which we will not deal with here.

The CBC parameter vector ~✓ is high-dimensional. The phasing and amplitude

of a waveform from a non-spinning coalescing compact binary source is controlled

by two mass parameters, the chirp mass M = (m1m2)3/5/(m1+m2)1/5 and sym-

metric mass ratio ⌘ = (m1m2)/(m1 +m2)2, where m1 and m2 are the component

masses of the binary. In addition, a gravitational wave source with respect to the

Earth is specified by location dependent parameters. These are the distance from

the Earth D, inclination ◆, right ascension ↵, declination �, polarization phase '

and time and phase at coalescence, t
c

and �
c

. In general, the CBC parameter

vector ~✓ is nine-dimensional for circular binaries with non-spinning components.

An illustration of a coalescing binary system, with the set of source parameters is

shown in Fig. 3.1. One of the goals of gravitational-wave astronomy is to estimate

the PDF of the parameters of a candidate gravitational wave source in order to

assign a meaningful probability to our measurements of the source properties and

demographics. To compute the right hand side of Eq. (5.1), we directly evalu-

ate the likelihood function, L(d|~✓,H). Under the hypothesis that the data, d,

consists of Gaussian, stationary noise n and a gravitational-wave signal h(~✓), the
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Figure 3.1: Cartesian coordinate system (x, y, z) attached to a ground based
interferometer and a coalescing binary system in that frame [81]. The binary’s
components are labelled by two mass parameters m1,m2. The sky position is
determined by the two polar angles (✓,�) which fixes the position vector N̂ . The
inclination is given by cos ◆ = N̂ .L̂ where L̂ is the orbital angular momentum
vector of the binary.
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likelihood is a Gaussian [12]:

L(d|~✓,H) = e�(d�h(~✓)|d�h(~✓))/2, (3.2)

In the above, (a|b) is the usual noise-weighted inner-product,

(a|b) = 4<
Z

f

max

f

min

df
ã(f)b̃⇤(f)

S
n

(f)
, (3.3)

and S
n

(f) is the detector’s noise power spectral density (PSD). The limits of inte-

gration correspond to the bandwidth of the detector. A significant computational

cost of evaluating the likelihood comes from computing the template waveform

h(~✓) at each point in the parameter space.

The full PDF is multi-dimensional and to get estimates on an individual pa-

rameter we work with the marginalized PDF of a single parmeter ✓
A

2 ~✓. Writing
~✓ = (✓

A

, ~⇥), the marginalized one-dimensional PDF of ✓
A

is thus:

p(✓
A

|d,H) =

Z

~⇥

d~⇥ p(~✓|d,H). (3.4)

To e�ciently evaluate the likelihood function we typically use a stochastic sam-

pling algorithm. Here we employ Markov-chain Monte Carlo (MCMC), whose

application to gravitational-wave parameter estimation is described in detail in

[13], and in Sec. 3.2.1.

We use the stationary phase approximation (SPA) inspiral waveforms for both

our simulated signal and template model. This allows us to directly “inject”

the signal waveform into simulated frequency-domain noise without performing

an additional Fourier transformation, which could introduce spurious artifacts

related to the abrupt in-band termination of a time-domain waveform. The post-

Newtonian frequency-domain waveform for a face-on, overhead binary has the

form

h̃(f) =
A(M; f)

D
e2⇡iftc�i�

c

+i (M,⌘;f), (3.5)

where expressions for the phase  (M, ⌘; f) is given by Eq. (A.11) for TaylorF2

post-Newtonian waveforms at 3.5 post-Newtonian order and the amplitude is
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given by [29]

A(M; f) =
1

⇡2/3

⇣ 5

24

⌘1/2
M5/6f�7/6 , (3.6)

in geometric units, G = c = 1. In general, the template model will be determined

by the needs of a particular analysis. Below, we describe the MCMC algorithm

which we use to compute the posterior PDF, Eq. 5.1.

3.2.1 MCMC

Our goal is to compute the posterior PDF of the set of astrophysical parameters
~✓ which describe a compact binary, given a data set containing a gravitational-

wave signal from such a source. The posterior PDF is given by Eq. (5.1). In

principle, one could simply grid up the parameter space of interest, and compute

the posterior PDF at each grid point. However, a number of problems become

immediately apparent with this approach. Firstly, the compact binary parameter

space is high dimensional (9 dimensional for binaries with non-spinning compo-

nents, and 15 dimensional for binaries with spinning components). Assuming an

equally spaced grid of N points in each dimension, one would require between

N9 � N15 computations. Even a modest grid with N ⇠ O(100) points in each

of the nine dimensions would require a minimum of 1009 ⇠ 1018 computations.

This coupled with the fact that evaluating the posterior PDF is an expensive

computation renders this approach hopeless. Furthermore, the problems with

the approach are exacerbated when the dimensionality is increased to 15, for

obvious reasons. Hence, it is useful to consider algorithms which stochastically

sample the parameter space preferentially, in regions of high posterior probability.

Ultimately we want the output of such an algorithm to be a set of sample

points {P} which are drawn from the posterior PDF. In the context of MCMC,

this set is known as a “Markov chain” [82], and the goal of the MCMC is to

produce such a Markov chain via a stochastic process. The stochastic process

we will consider is the classical Markovian random walk through the parameter

space. By “Markovian” we mean that the random walk is such that given the ith

state in the Markov chain, the next state (i + 1) is determined solely by i, and

no others. In the context of parameter estimation this means that the (i + 1)th

sample of the posterior PDF in the Markov chain, P (~✓
i+1), depends only on the
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ith sample, P (~✓
i

). Thus, by Bayes’ theorem we have

P (~✓
i+1) =

P (~✓
i

)P (~✓
i

|~✓
i+1)

P (~✓
i+1|~✓i)

. (3.7)

The above equation provides a criterion known as “detailed balance” [82] which

the Markovian random walk must obey:

P (~✓
i+1)P (~✓

i+1|~✓i) = P (~✓
i

)P (~✓
i

|~✓
i+1) . (3.8)

In order to utilize the random walk, encoded in the detailed balance condition

Eq. (3.8), to form the Markov chain of samples, we need to be able to specify

a means of computing the conditional probability of state (i + 1) given state i,

P (~✓
i+1|~✓i), and vice versa. For practical purposes one ought to be able to propose

a transition from state i to state (i + 1) and accept the proposal provided that

detailed balance is satisfied. The proposal should be arbitrary in the sense that

it should reflect the requirements of a particular analysis. For example, when

estimating the parameters of compact binaries we may want to explore known

correlations or degeneracies between parameters, or pairs of parameters. We

thus require that we have an additional distribution g(~✓
i+1|~✓i) which proposes

which point in parameter space should be explored next. This is often referred

to as a “jump proposal” in the literature [13; 25]. However, this alone is not

su�cient to satisfy detailed balance, Eq. (3.8), because not all transitions will

be allowed. Hence we can only accept transitions with a particular probability

A(~✓
i+1|~✓i) which is known as the “acceptance probability”. Thus we can write

the conditional probability of state (i+ 1) given state i as

P (~✓
i+1|~✓i) = g(~✓

i+1|~✓i)A(~✓i+1|~✓i) (3.9)

and the detailed balance condition, Eq. (3.8), is given by

P (~✓
i+1) g(~✓i+1|~✓i)A(~✓i+1|~✓i) = P (~✓

i

) g(~✓
i

|~✓
i+1)A(~✓i|~✓i+1) (3.10)
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Defining the ratio of acceptance probabilities,

r :=
A(~✓

i+1|~✓i)
A(~✓

i

|~✓
i+1)

=
P (~✓

i+1) g(~✓i|~✓i+1)

P (~✓
i

) g(~✓
i+1|~✓i)

, (3.11)

we accept a transition with probability

acceptance probability = min
⇣
1, r
⌘
. (3.12)

We denote the ratio r as the “acceptance ratio”. Together with a (user specified)

jump proposal, the above condition provides us with all the information required

to draw samples from the posterior distribution. We can compute the ratio

P (~✓
i+1)/P (~✓

i

) as this is just a ratio of likelihoods, which can be computed from

Eq (3.2), and once we specify a jump proposal g(.), we can evaluate the acceptance

ratio.

The method for drawing samples from the posterior PDF which we have ex-

plained above was first proposed by Metropolis and Hastings [83; 84] and hence

is referred to as the Metropolis-Hastings algorithm for MCMC. In practice, spec-

ifying good jump proposals is extremely di�cult and we do not discuss this topic

here. For the purposes of using MCMC for compact binary parameter estimation,

we use the implementation within the LAL library [85], known as lalinference.

3.3 Singular value decomposition of gravitational-

wave template banks for CBC sources

The SVD which we will apply to gravitational waveforms for parameter estimation

is adapted from a technique used for gravitational-wave detection [49; 50]. To de-

tect gravitational-waves from binaries with non-spinning components, one filters

the data with a large number of templates which span the space of the CBC chirp-

mass and symmetric mass-ratio. The component masses of the gravitational-wave

signal source are not known a priori and so one must scrutinize the continuous

mass space of CBC signals to high fidelity. Templates in the space are distributed

such that there is a fixed loss in SNR between nearest-neighbour templates which
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is small. This is the so called “minimal match” between neighbouring templates,

which is typically set to be greater than 97% [6; 7; 8; 49; 50] and corresponds to a

loss in SNR of less than 3%. With such a template bank one might expect some

correlation between the templates as the SNR between neighbouring templates

di↵ers by only 3% [49]. These correlations can be exploited by performing a SVD

of a template bank which is used to generate an orthogonal set of basis templates

and coe�cients from which the original bank can be recovered. In particular,

we will demonstrate that many of the basis vectors are redundant and hence the

original bank can be recovered using a relatively small number of bases. Below

we illustrate the SVD as applied to template waveforms. In Appendix B we pro-

vide supplementary material on the singular value decomposition, including an

example of the SVD of a simple matrix.

The optimal filter for a matched filtered search is a gravitational-wave tem-

plate, weighted by the inverse of the amplitude spectral density, a process known

as “whitening”. We define the whitened frequency series as

ãw(f) =
ã(f)p
S
n

(f)
, (3.13)

where a(f) is the un-whitened frequency series. The study in this chapter deals

exclusively with discretely sampled data and template waveforms. Because of

this we find it useful to adopt the following notation for the data and waveforms.

We denote the discretely sampled whitened data-stream, and the ↵th template

waveform in a discrete template bank, as ~d and ~h
↵

respectively, where it is under-

stood that these correspond to whitened versions of the raw, un-whitened data

and template respectively. Both the data-stream and template are discretely sam-

pled at a fixed sampling rate, �t, in the time-domain. The elements of the data

and waveforms at time i�t are d
i

and h
↵i

respectively. We adopt the convention

of [49] and define the SNR of the ↵th template as the vector inner product

⇢
↵

= <~h
↵

. ~d , (3.14)

where the definition of the vector inner product is given by Eq. (A.10). Note that

this definition of the SNR implicitly assumes that the templates ~h
↵

are normalized
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to unit norm.

For non-spinning CBC sources the gravitational-wave phasing is controlled by

the component masses of the binary. The template bank for a CBC search is

generated by constructing a grid in the M� ⌘ plane such that for neighbouring

templates indexed by ↵ and ↵0 we have ~h
↵

. ~h
↵

0 > 0.95. Instead of filtering the

data using N real-valued filters we wish to remove the redundancy in the set of

templates by reproducing ⇢
↵

to the desired accuracy ⇢0
↵

by linearly combining the

output of a smaller set of real-valued filters, ~u
µ

. Hence, we want to truncate the

number of unique filters such that [49]

⇢0
↵

=
N

0�1X

µ=0

A
↵µ

(~u
µ

. ~d) , (3.15)

where A is a real-valued “reconstruction matrix” and the total number of inner

products required for the matched-filtered search is reduced from N to N 0. To

find the basis vectors ~u
µ

we compute the SVD of a real-valued N ⇥ L matrix H,

with N  L, whose columns are template waveforms:

H = {~h0, ~h1, . . . , ~hN�1} . (3.16)

The SVD factors H as [49]

H
⌫j

=
N�1X

µ=0

v
⌫µ

�
µ

u
µj

, (3.17)

where v is a unitary matrix of reconstruction coe�cients, ~� is a vector of singular

values and u is a matrix of orthonormal basis vectors ~u
µ

. The matrix H can be

approximately reconstructed such that there are fewer basis vectors than tem-

plates in the original template bank. We define the approximate reconstruction

of H, H0, as

H 0
⌫j

:=
N

0�1X

µ=0

v
⌫µ

�
µ

u
µj

, (3.18)

where N 0 < N which reduces the number of columns of u. The reconstructed
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SNR, Eq. (3.15), is then given by

⇢0
↵

=
⇣
~H 0
↵

⌘
. ~d (3.19)

=
N

0�1X

µ=0

�
v
↵µ

�
µ

�
(~u

µ

. ~d) . (3.20)

Comparing the above expression with Eq. (3.15), it follows that the SVD allows

the ↵th template waveform, ~h
↵

, to be written as

~h
↵

=
N

0�1X

µ=0

M
µ↵

~u
µ

, (3.21)

where we have defined the “projection coe�cient” M
⌫↵

as

M
µ↵

:= v
↵µ

�
µ

. (3.22)

The number of bases N 0 can be set by fixing the fractional loss in SNR which is

incurred through truncating the sum in Eq. (3.18). The expected fractional loss

in recovered SNR of any filter is given by [49]

D�⇢
⇢

E
=

1

2N

N�1X

µ=N

0

�2
µ

, (3.23)

and the required number of filters N 0 is thus fixed by Eq. (3.23).

3.4 Interpolating template waveforms using the

SVD

The accuracy requirements for gravitational-wave parameter estimation are typi-

cally higher than for searches. While a (dense) discrete template bank is su�cient

for searches, parameter estimation requires that we are able to stochastically sam-

ple from a continuous parameter space in order to map the full likelihood-surface

where the bulk of the posterior support is contained. Constructing a discrete tem-
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plate bank is impractical for parameter estimation because one does not know a

priori the shape of the surface. Conversely, for detection one is only interested

in a single number, the maximum SNR, and the fractional loss in SNR of any

stretch of data can be estimated from the error associated with the finite gridding

of the bank.

We can construct a continuous representation of any template waveform in

a given domain using the SVD of a template bank of gravitational waveforms.

Recall that the SVD allows any template waveform to be written as a linear

combination of basis waveforms and projection coe�cients, c.f. Eq. (3.21). While

this representation is discrete, the set of basis waveforms ought to be complete

over the entire domain of the (discrete) template bank provided that neighbouring

templates are su�ciently similar. It therefore follows that a template waveform
~h
↵

0 , which is not in given template bank, should also be expressible as a sum

of the same basis waveforms and its own projection coe�cients. The projection

coe�cients can be found as follows. By the orthonormality of the bases, the inner

product of ~h
↵

0 with a basis template ~u
µ

produces the µth projection coe�cient

associated with ~h
↵

0 :
~h
↵

0 . ~u
µ

= M
µ↵

0 . (3.24)

This suggests that there is a continuous description of the projection coe�cients

across the domain of the template bank, and hence they ought to be amenable

to interpolation. Because the template bank spans the M � ⌘ plane a single

index ↵ is somewhat cumbersome for enumerating the projection coe�cients,

which are function of two variables, M and ⌘. Without loss of generality we alter

the notation of the projection coe�cients and re-define the SVD of a template

waveform as

~h(M
k

, ⌘
l

) =
N

0�1X

µ=0

M
µ

(M
k

, ⌘
l

) ~u
µ

, (3.25)

where k and l enumerate points on a grid in the M� ⌘ plane. An “interpolated

waveform”, ~h0, can thus be constructed according to Eq. (3.25) from a linear

combination of interpolated coe�cients and basis waveforms:

~h0(M, ⌘) =
X

µ

M 0
µ

(M, ⌘) ~uµ , (3.26)
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whereM 0
µ

(M, ⌘) is an interpolated projection coe�cient evaluated at an arbitrary

point (M, ⌘) within the domain of the template bank. In order to interpolate

the projection coe�cients, we follow [50] and use Chebyshev polynomials of the

first kind, although in principle other interpolation schemes could be used. The

Chebyshev polynomials of the first kind are defined as [50]

T
J

(x) =
(x�

p
x2 � 1)J + (x+

p
x2 � 1)J

2w
, (3.27)

where w =
p

(1 + �
J0)(Jmax + 1)/2 is a normalization constant and �

J0 is the

Kroenecker delta. The polynomials T
J

(x) satisfy the discrete orthogonality con-

dition
J

maxX

j=0

T
I

(x
j

)T
J

(x
j

) = �
IJ

. (3.28)

For interpolation, we use a net of points, scaled such that each dimension covers

the interval [�1, 1], located at the J th

max root of the Chebyshev polynomials, com-

monly referred to as interpolation nodes. This net of points is used in order to

mitigate oscillatory behaviour at the boundary of the interpolation interval. For

a single dimension, the nodes occur at the locations

x
j

= cos

 
⇡

j + 1
2

Jmax + 1

!
. (3.29)

In order to obtain the reconstruction coe�cients at these locations, we project

waveforms from these locations (scaled to the appropriate points in M and ⌘)

onto the basis vectors. We generate waveforms at the (scaled) Chebyshev nodes

using the following maps

M [x
j

] = Mmin +

 
x
j

+ 1

2

!
�M , (3.30)

⌘ [y
l

] = ⌘min +

 
y
l

+ 1

2

!
�⌘ , (3.31)

which project Chebyshev nodes on the interval [�1, 1] onto the M and ⌘ di-

mensions. Here Mmin is the lower boundary in the M-dimension and �M =
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Mmax � Mmin where Mmax is the upper boundary of the M-dimension, and

vice versa for the ⌘-dimension. From the values on the net, we interpolate to

other positions in the M � ⌘ plane using 2D-Chebyshev interpolation for each

set of reconstruction coe�cients M
µ

(M, ⌘). These reconstruction coe�cients are

projected onto the Chebyshev polynomials [50]

C
KLµ

=
K

maxX

k=0

L

maxX

l=0

T
K

(x
k

)T
L

(y
l

)M
µ

(M [x
k

] , ⌘ [y
l

]) , (3.32)

which provide weights for the 2D-Chebyshev interpolation. The values of Kmax

and Lmax correspond to the number of templates in the M and ⌘ directions

respectively. The interpolated reconstruction coe�cients are then given by a

combination of the weights together with the Chebyshev polynomials [50]

M 0
µ

(M, ⌘) =
K

maxX

K=0

L

maxX

L=0

C
KLµ

T
K

(x [M])T
L

(y [⌘]) , (3.33)

where the inverse maps x [M] and y [⌘] project points on M and ⌘ onto the

interval [�1, 1]. The inverse maps are given by

x [M] =

 
M�Mmin

�M

!
� 1 , (3.34)

y [⌘] =

 
⌘ � ⌘min

�⌘

!
� 1 . (3.35)

Below we illustrate the application of the SVD to parameter estimation.

3.5 Parameter estimation using interpolated wave-

forms

We will compare the marginalized one-dimensional PDFs, Eq. (3.4), obtained

by using an interpolated template waveform family to those generated using the

standard, non-interpolated template waveform family for the same data set. For

illustration we consider a toy example with five free parameters. In addition,
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we consider data from a single detector, as opposed to a network, for simplicity.

We generate a single-detector data set ~d containing a signal waveform h(~✓) and

Gaussian stationary noise n with a power spectral density typical of initial LIGO

[1]. By only having five free parameters we e↵ectively set the prior on the other

four to be delta functions centered on the signal values. We chose to fix the sky

position (↵, �) and the inclination and polarization angle (◆,') of the template

waveforms such that they are not searched over.

Because interpolation is carried out in the mass space only, we focus on ex-

ploring the e↵ects of interpolation on mass parameters and parameters that are

known to be very strongly correlated with masses (time and phase of coalescence

and distance). If the accuracy of the recovery of these parameters is una↵ected

by interpolation, we do not expect the angular parameters to be a↵ected, either.

However, it is important to realize that the absolute accuracy with which some

parameters, particularly distance, are estimated is improved by fixing sky loca-

tion and orientation parameters and lifting corresponding degeneracies. Thus,

the measurement uncertainties inferred below should not be considered typical.

Since we demand that systematic biases from using interpolated templates are

smaller than statistical measurement uncertainties, the improvement in the accu-

racy of distance measurement means that we are being conservative in evaluating

the quality of SVD-interpolated parameter estimation.

The signal contained in the data set has source parameters (M, ⌘, D, t
c

, �
c

) =

(7.45 M�, 0.247, 33 Mpc, 0 s, 2.16) and we have omitted the others which are

not searched over. The signal has a signal-to-noise ratio SNR = 14.8. The

frequency-domain data is sampled at �f = 1/32 Hz with a maximum frequency

of 512 Hz.

The choice of prior distribution is an important factor in Bayesian inference.

The prior incorporates the ranges of the model parameters, and the a priori

probability distribution on those parameters before the data are analysed. We

use a uniform prior on logD and ⌘ with ranges D 2 [1 Mpc, 100 Mpc] as we have

no a priori preferred distance to the source. We similarly use uniform priors on

�
c

and t
c

over the range 0  �0  2⇡ and �0.1 s  t
c

 0.1 s, respectively.

We use a prior on M of the form P(M|H) / M�11/6 in the range M 2
[7.20 M�, 7.60 M�] and a uniform prior on ⌘ in the range ⌘ 2 [0.175, 0.250]. The
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prior on M corresponds to the Je↵reys prior for the waveform family described

by Eq. (3.5) [12]. The Je↵reys prior is used to assign equal prior volume to points

in the parameter space, which is necessary when dealing with a space which has

non-trivial curvature.

For the mock data set we ran a MCMC comprising five parallel Markov chains

in order to compute the PDF p(~✓ = (M, ⌘, D, t
c

, �
c

)|d,H). The limits of

integration of the likelihood function, Eq. (3.2), are fixed to fmin = 40 Hz, fmax =

512 Hz. To extract the posterior samples from the raw MCMC output we discard

the first 10, 000 samples as burn-in.

We measure the convergence of the parallel chains using the Gelman-Rubin

R-statistic [86]. For well converged chains this should be close to R = 1 and we

regard the MCMC to be complete once R  1.001 for all parameters.

SVD Setup

Figure 3.2: Noise PSD used to whiten template waveforms, Eq. (3.13), roughly
matching that of initial LIGO [1].
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The input to the SVD is a set of discretely sampled, whitened time-domain

waveforms [50]. The frequency-domain SPA waveforms are first whitened in the

frequency domain with the ASD and transformed into the time-domain (see

Eq. (A.4) for our definition of the discrete Fourier transform and its inverse).

We use a noise PSD roughly matching that of initial LIGO [1] shown in Fig. 3.2.

To improve the interpolation we chose to align the waveforms such that they all

go through frequency at which the noise PSD is a minimum at the same time.

This is achieved by shifting the waveforms by a time tshift in the frequency domain

via the transformation

h̃(f) ) h̃(f)e�2⇡ift
shift . (3.36)

The value of tshift is computed from the time is takes for the binary to reach

coalescence from the frequency at which the PSD is a minimum. This time is

known as the “chirp time” and for the SPA waveform family it is given in [87].

The frequency at which the noise PSD is a minimum is fmin = 152.84 Hz.

By carrying out the interpolation in the time domain, we show that the tech-

nique can be applied to time-domain waveform families. Time-domain waveforms

are typically computationally expensive for parameter estimation (see Sec. 3.6), so

this approach allows us to assess the computational savings associated with inter-

polating them. It is also consistent with the work in [49; 50], where time-domain

waveforms generated by Fourier transforming frequency-domain waveforms were

interpolated.

We ensure that all templates are of the same length, equal to the next highest

power of two of the longest time-domain waveform in the set, which in our case

is 2 s. For the proof of principle we apply the SVD to a small patch in M � ⌘

space bounding the signal parameters. This region is set by the prior range on

M and ⌘ described above, chosen to be broad enough so that, for our data set,

there is no likelihood support near the boundaries.

The number of computations for the SVD of a N ⇥ L matrix with N  L

scales like O(LN2). For the purposes of constructing the SVD we have found it

e�cient to split the M� ⌘ space into four equally sized patches, with a separate

SVD applied to each patch. The waveforms in each bank lie on an evenly spaced

(15 + 1)⇥ (15 + 1) grid. We add one to the grid in each dimension because the
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interpolation can be unpredictable at the boundaries of the space. The grid is

chosen by requiring that the normalized inner product between non-interpolated

waveforms and interpolated waveforms generated within each patch is at least

99.9%. Such normalized mismatches of < 0.001 between interpolated and non-

interpolated waveforms should ensure that parameter-estimation accuracy is not

compromised as long as the the signal-to-noise ratio does not exceed ⇠ 20 (so

that twice the mismatch times the square of the SNR is less than unity [88; 89]),

although parameter estimation could remain accurate at even higher SNRs. The

patching is shown in Fig. 3.3. Each waveform in the template bank corresponds to

a face-on, overhead binary generated at a fiducial distance of 1 Mpc. We choose

to truncate the SVD so that the norm of any reconstructed template is conserved

to a level of ⇠ 10�5 (c.f. Eq. (3.23)). The truncated-SVD of the template bank

in each patch uses 20 basis waveforms.

One subtlety of the implementation is that the interpolated waveforms are

whitened time-domain filters. The likelihood function Eq. (3.2) is computed using

un-whitened frequency series which in our example correspond to the Fourier

transform of a time series. To recover the appropriate frequency series we first

have to Fourier transform the interpolated waveform back into the frequency

domain.

We further note that we do not use waveforms nomalized to unit norm as

input to the SVD, as was done in [49; 50]. Over large areas of the mass-space it is

necessary to normalize the waveforms because there may be significant di↵erences

in the power of waveforms across the space and so the SVD can disproportionally

weight waveforms with more power if they are not normalized to unit norm. We

are not a↵ected by this issue because all the waveforms in our example have

roughly the same power due to the limited extent of the template bank in mass

space. In general one would use waveforms normalized to unit norm for SVD

over a larger parameter space; however, to recover the overall amplitude of the

interpolated waveforms the normalization coe�cients would themselves have to

be interpolated.

66



Figure 3.3: Patching of the parameter space. The space is patched into four
regions. The SVD is applied to each patch (shown in red) which is padded at the
boundary by one waveform and so contains a (15+1)⇥(15+1) grid of template
waveforms. The SVD of the template banks consists of 20 basis templates in each
patch.

3.6 Results: Comparison of parameter estimates

using interpolated and non-interpolated wave-

forms

The marginalized PDFs for complete MCMC runs using non-interpolated and

interpolated waveforms are shown in Fig. 3.4. We have omitted the marginalized

one-dimensional PDF of the coalescence phase �
c

as it of little physical interest.

Each run required around 1.5⇥ 106 waveform computations. The mean posterior

values of the distributions along with the signal values are shown in Table 3.1.

The chirp-mass distribution computed using interpolated waveforms is clearly

biased. This is corroborated by a two-sample KolmogorovSmirnov (K-S) test [90]

which reveals that the two sets of samples are not consistent with arising from

the same distribution with overwhelming odds. Nevertheless, the systematic bias

in the mean posterior parameter estimate of chirp mass is a factor of four smaller

than the statistical measurement uncertainty. Thus, we pass a commonly-used

threshold for su�cient waveform-model accuracy [e.g., 89]. We note that the

accuracy could be increased by, for example, using a higher density template bank
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Figure 3.4: Marginalized PDFs, Eq. (3.4), produced using non-interpolated SPA
waveforms (blue or dark grey) and interpolated SPA waveforms (red or light
grey). The signal value is shown as the dashed red vertical line.

Param Mean pos-
terior value
(interpolated
SPA)

Mean pos-
terior value
(SPA)

Signal Value

M (M�) 7.472
(2.5⇥10�2)

7.467
(2.5⇥10�2)

7.450

⌘ 0.2457
(7.1⇥10�3)

0.2457
(7.2⇥10�3)

0.2473

D (Mpc) 32.39 (2.11) 32.40 (2.13) 33.00
t
c

(s) 1.0 ⇥ 10�3

(4⇥10�4)
1.0 ⇥ 10�3

(4⇥10�4)
0

Table 3.1: Mean posterior parameter estimates (and standard deviations) of
the marginalized PDFs using interpolated and non-interpolated SPA waveforms
(Fig. 3.4).
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or using waveforms normalized to unit norm as input to the SVD. In general the

required accuracy can be estimated from the detection trigger SNR [89].

The two-sample K-S test marginally fails for the coalescence-time distribution,

but there is no evidence of a systematic bias on the scale of statistical measure-

ment errors. We find that the sets of posterior samples for the other two PDFs

in Fig. 3.4, symmetric mass ratio and distance, are consistent with arising from

same distribution as quantified by the K-S test.

Computational cost of template waveform generation

Two commonly-used time-domain waveform families which are relevant for pa-

rameter estimation are the inspiral-only post-Newtonian approximant TaylorT4

[26] and the e↵ective-one-body family calibrated to numerical relativity (EOBNR,

[26]) that includes inspiral, merger, and ringdown phases. The latter are typically

more computationally intensive.

For technical reasons, our comparison uses interpolated waveforms which are

based on the SPA approximation rather than time-domain waveform families.

This is inconsequential because we Fourier transformed the SPA waveforms into

the time-domain for the SVD procedure. We have observed that applying the

truncated SVD to TaylorT4 time-domain templates in the mass space used to

construct the SVD in Sec. 3.5 yields the same number of basis vectors as when

applying it to inverse-FFT’d SPA templates. The computational cost of interpo-

lation will therefore be identical.

Our measure to compare the computational costs of interpolated TaylorT4

and EOBNR waveforms is the time it takes to compute a single interpolated

waveform. While this does not estimate the theoretical minimum number of

FLOPs of the process, and is also hardware dependent, it does provide a useful

heuristic for comparing the relative speed of each waveform family. Recall that

the interpolated waveforms are a time-domain approximant and hence the com-

parison is to determine the computational savings for time-domain waveforms.

We restrict our comparison to waveforms generated in the mass space in Fig. 3.3.

The length of TaylorT4 and EOBNR waveforms will in general depend on the

specific source masses. For a fair comparison we compare waveforms which have
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approximately the same number of data points. Because EOBNR must be gener-

ated at a sampling rate of 4096 Hz, we ensure that the interpolated and TaylorT4

waveforms are sampled at this frequency. Each waveform is approximately 2 s in

duration.

The results of the comparison are shown in Table 3.2. For reference we also

show the computational time of standard SPA waveforms. We find that on aver-

age, the interpolated waveforms are ten times faster to generate than TaylorT4

and fifteen times faster than EOBNR, a significant increase in computational

e�ciency. However, for the waveform parameters considered here, inspiral-only

waveforms could be generated at lower sampling rates than the 4096 Hz required

for EOBNR waveforms; therefore, the cost of constructing interpolated or Tay-

lorT4 waveforms can be around four times smaller relative to EOBNR than the

values quoted in Table 3.2.

Waveform Family Computational Time (T )
SPA 0.2
Interpolated 1
TaylorT4 10
EOBNR 15

Table 3.2: Computational time of template waveform generation in units of com-
putational time of interpolated waveforms, T. EOBNR, TaylorT4 and interpo-
lated waveform families are generated at a sampling rate of 4096 Hz and have
a duration of 2 s. The interpolated waveforms consist of 20 pre-computed basis
vectors. SPA waveforms are generated in the frequency domain; to ensure the
SPA waveforms contain the same number of sample points they are generated at
a sampling frequency �f = 1/2 Hz and have a maximum frequency of 2048 Hz.

We also estimate the cost of pre-computing the SVD interpolation. We have

previously noted that the computational cost of an SVD of an N⇥L matrix with

(N  L) scales like O(N2L). One also needs to compute the N ⇥ L matrix of

template waveforms as input to the SVD. The cost of computing a waveform of

length L is typically O(L), possibly with a very large pre-factor. Thus, the total

cost of pre-computing interpolation coe�cients will be less than O(N2) times

the cost of an individual waveform computation. For instance, in our example,

N = 16 ⇥ 16 = 256, so interpolation can reduce overall MCMC costs for any
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time-domain waveform templates by an order of magnitude or more when the

typical MCMC chain length of & 106 samples is taken into account.

3.7 Discussion and conclusion

We have provided a proof of principle that interpolated waveforms can be used

for parameter estimation without unacceptable loss of accuracy. Our example

was restricted to a five-dimensional search over the source chirp mass M and

symmetric mass ratio ⌘, the distance to the source D and the time and phase at

coalescence t
c

and �
c

. We further restricted the prior ranges on M and ⌘ to M 2
[7.20 M�, 7.60 M�] and ⌘ 2 [0.175, 0.250], respectively. The systematic biases

observed when using interpolated waveforms are demonstrated to be smaller than

statistical measurement uncertainties. Thus, SVD-interpolated waveforms satisfy

the stringent waveform-model accuracy criteria imposed by parameter-estimation

requirements.

The relative computational times of generating interpolated waveforms and

time-domain TaylorT4 and EOBNR waveforms are shown in Table 3.2. Interpo-

lated waveforms can be generated at around an order of magnitude more cheaply

than TaylorT4 or EOBNR. This suggests that the computational cost of pa-

rameter estimation can be significantly reduced by employing SVD-interpolated

waveforms for likelihood computation when the latter is dominated by the cost

of waveform generation.

In order for interpolated templates to be viable for parameter estimation

pipelines we need to apply the SVD-interpolation technique to a significantly

larger region of the CBCmass space than in the example considered here. Searches

of gravitational waves from low-mass systems look for binaries with a maximum

total mass of 25 M� and a minimum component mass of 1 M� [7] and high mass

searches target binaries with total masses between 25 M� and 100 M� [8]. To be

able to apply our parameter estimation technique to triggers from such searches

in a single step, without first determining the more limited mass region where

there is significant likelihood support, we will need to e�ciently patch the param-

eter space over a large mass range so that the computational cost of generating

the SVD can be minimized. A necessary condition for setting up the SVD in all
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patches is that its computational cost, plus the cost of generating interpolated

waveforms, must be less than the cost of performing the parameter estimation

with non-interpolated waveforms. This will be the subject of future work.

For simplicity, we have considered analysing a single-detector data set. If

one were to extend the use of interpolated waveforms to analysing data from a

network of interferometers, one would require independent sets of interpolated

waveforms for each data set of the network. This is because our technique relies

on a SVD of template waveforms, whitened by the detector noise PSD. Because

each detector in general has a di↵erent PSD, one would thus require separate sets

of whitened filters, each whitened with the appropriate noise PSD. For a typical

detector network of three interferometers, one would thus need to generate three

template banks and perform three SVDs. While this increases the computational

cost, we note that computing independent sets of template banks and SVDs is

highly parallelizable, and hence the wall-time of computing three banks could

easily be made the same as computing a single template bank.

Furthermore, we have to be able to extend the SVD to generic waveform fam-

ilies. Particularly interesting is the potential to extend the technique to EOBNR

waveforms, which are currently expensive to generate, and waveform families

which describe binaries with spinning components. The latter class of waveforms

have an intrinsic parameter space with up to six more independent parameters

(two spin vectors) and the current technique of interpolation within the intrin-

sic parameter space of waveforms may become costly in large-dimensional spaces.

However, it is interesting to consider the potential to apply the technique to spin-

aligned/anti-aligned waveforms [e.g., 87; 91] as this class of waveforms have only

one extra parameter, the reduced spin of the binary.The analysis of data from

advanced LIGO and Virgo detectors, which may have lower-frequency cuto↵s

close to 10 Hz [58], will require template waveforms that are several minutes in

duration. This technique is likely to be highly relevant to parameter estimation

in that context.
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Chapter 4

PARAMETER ESTIMATION

USING INTERPOLATED

TIME-DOMAIN TEMPLATE

WAVEFORMS

4.1 Introduction

Techniques to improve the e�ciency of Bayesian parameter estimation are crucial

in the run-up to the advanced-detector era. Interpolated gravitational waveforms

based on the singular value decomposition have the potential to significantly in-

crease the e�ciency when parameter estimation is dominated by waveform com-

putation.

For interpolated waveforms to be viable for parameter estimation on real data,

a number of extensions of the technique demonstrated in Chapter III are required.

While it has been demonstrated that interpolated waveforms can be used for pa-

rameter estimation without incurring significant bias in parameter estimates, the

proof-of-principle study was limited to one waveform family and a small patch of

parameter space. We begin this chapter by investigating the extension to generic

waveform families which describe CBC sources with non-spinning components. In

Chapter III we interpolated a waveform family constructed by Fourier transform-
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ing frequency-domain SPA waveforms into the time-domain, which we used as

templates for parameter estimation. We demonstrated that because the interpo-

lation technique is the same regardless of the waveform family being interpolated

one could expect to reduce the computational cost of generating time-domain

waveforms, e.g. TaylorT4 and EOBNR [26], via interpolation.

It is occasionally useful for parameter estimation to utilize time-domain wave-

forms. For example, the NINJA project [92], and its sequel (NINJA2 [93]) cur-

rently underway, is an exercise in detecting and performing parameter estimation

on (time-domain) waveforms generated within the framework of numerical rela-

tivity. Here EOBNR waveforms should be useful as a template waveform family

because they have been matched to similar numerical waveforms. One of the rea-

sons we did not initially apply the interpolation technique in Chapter III directly

to time-domain waveforms was due to a number of potential issues which could

complicate the interpolation. For example, because the waveforms are whitened

in the frequency domain one first has to Fourier transform a time-domain wave-

form into the frequency domain to perform the whitening process. This will

introduce artifacts into the Fourier series which can compromise the accuracy of

the SVD, and hence interpolated waveforms. In addition, EOBNR waveforms

may be di�cult to interpolate because of the relative time-scales of the inspiral

phase and the ringdown.

We first demonstrate that parameter estimation can be performed using in-

terpolated TaylorT4 waveforms, which are inspiral-only time-domain waveforms.

We find that while there are clear biases in the recovered posterior probabil-

ity density functions, the bias of the mean posterior parameter estimates are

much less than the scale of the statistical uncertainty and so we pass a common

threshold for model waveform accuracy [89]. Furthermore, the improvement in

computational time of generating interpolated TaylorT4 waveforms is around a

factor of 10 with respect to non-interpolated TaylorT4 waveforms. In general,

we find that applying the SVD to time-domain waveforms which describe the

full inspiral, merger and ringdown phases of coalescence is challenging and the

quality of interpolated EOBNR waveforms is too low for parameter estimation,

but could su�ce for gravitational-wave searches.
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4.2 Interpolating inspiral-only time-domain wave-

forms

To demonstrate the subtleties of interpolating time-domain waveforms we first

consider a simple inspiral-only time-domain waveform family known as TaylorT4.

We refer the reader to Sec. 2.3.3 for details on the construction of the TaylorT4

waveform family. Spectral leakage is a general feature of Fourier transforming a

time-series which has discontinuities from a hard beginning and ending. (Such a

time-series can be thought of as the convolution of an infinite, smooth time-series

with a box window). Thus, the Fourier transform of the convoluted time-series

will contain additional high- and low-frequency components from the box window,

which is a linear superposition of oscillating functions. This can be ameliorated

by generating the time series at a lower sampling frequency which can move many

of the artifacts to a region in which one is not interested.

There is also another problem associated with using time-domain waveforms

which is symptomatic of our implementation. Inspiral-only time-domain wave-

forms are integrated from an initial frequency up to the ISCO frequency. Time-

domain waveforms generated within the LIGO Scientific Collaboration Algorithm

Library (LAL) are aligned such that the phase at last time-sample of di↵erent

waveforms is the same. However, because the time series are discretely sampled,

the frequency at the last time sample is in general not the same and is a reflection

of inaccurate time-frequency evolution of the waveforms. This may be an issue for

interpolating time-domain waveforms because the waveforms have to be aligned

in frequency domain with the minimum of the noise PSD and so there may be

inconsistencies in the alignment of the waveforms for the SVD. This can be ame-

liorated by noting that in the limit that the sampling frequency is infinitely fine,

the frequency at the last sample will tend to the same value. Hence at higher

sampling frequencies we may expect the time-frequency evolution of time-domain

waveforms to be more accurate.

To study the e↵ects of discrete sampling on interpolated waveforms, we com-

pute the SVD of the waveforms over a range of sampling rates. As a measure

of the quality of the interpolated waveforms we compute the inner products be-

tween interpolated and non-interpolated TaylorT4 waveforms on a uniform grid.
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We chose to work with the “mismatch” between (normalized) interpolated and

non-interpolated waveforms which is simply

MM = 1� (hinterp|hnon�interp) , (4.1)

and is zero when hinterp = hnon�interp.

Recall that the input to the SVD is a set of whitened waveforms, in this case

waveforms described by the TaylorT4 family. The waveforms are first whitened in

the frequency domain with the square root of the noise PSD and transformed back

into the time-domain for interpolation. We use the same noise PSD as in Chapter

III which is typical of initial LIGO [1] and is shown in Fig. 3.2. The waveforms

are generated from a starting frequency of 30 Hz in the time-domain which we use

to mitigate the e↵ects of spectral leakage in the Fourier-domain waveform when

whitening, and are truncated at a low frequency cut-o↵ of 40 Hz before back

transforming into the time-domain for the SVD. To improve the interpolation we

chose to align the waveforms such that they all go through frequency at which

the noise PSD is a minimum at the same time. The frequency at which the noise

PSD is a minimum is fmin = 152.844 Hz. This is achieved by time-shifting the

waveforms in the frequency domain by an amount �tshift which can be calculated

from the time is takes for the binary to reach coalescence from fmin. This time is

calculated by computing Eq. (A.14) to find the frequency evolution of the binary

as a function of time.

To compute the SVD, we work within the region of parameter space used

in Chapter 3, which is defined by 7.2 M�  M  7.6 M�, 0.175  ⌘  0.250.

We divide the parameter space into four equally sized patches as in Fig. 3.3.

In each patch we construct a template bank of (25 + 1) ⇥ (25 + 1) whitened

waveforms on a uniform grid. In Fig. 4.1 we histogram the set of mismatches

between interpolated and non-interpolated waveforms, for waveforms generated

at three di↵erent sampling rates: 512 Hz, 1024 Hz, 2048 Hz and 4096 Hz. The

SVD in each case uses 20 basis templates per patch of parameter space.

To compute the mismatch between interpolated and non-interpolated Tay-

lorT4 waveforms we generate the waveforms on a uniform 50 ⇥ 50 grid in the

region of parameter space defined by 7.2 M�  M  7.6 M�, 0.175  ⌘  0.250.
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Figure 4.1: Histogram of mismatches between (normalized) interpolated and non-
interpolated TaylorT4 waveforms generated on a uniform (50 ⇥ 50) grid in a
patch of (M, ⌘) defined by 7.2 M�  M  7.6 M�, 0.175  ⌘  0.250. Each
panel corresponds to waveforms generated at di↵erent sampling rates: 512 Hz,
1024 Hz, 2048 Hz and 4096 Hz. We set a threshold mismatch of 10�3 between
interpolated and non-interpolated waveforms, shown as a red vertical line, above
which we deem interpolated waveforms to be insu�ciently accurate for parameter
estimation. The best case occurs for a sampling rate of 4096 Hz for which the
majority of mismatches are less than the threshold.
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We set a threshold mismatch of 10�3 above which the accuracy of interpolated

waveforms may seriously compromise parameter estimation accuracy [89]. We

find that the most accurate interpolated waveforms are those generated at a

sampling frequency of 4096 Hz for which the vast majority of waveforms are

more accurate than the threshold value. We note that there are around ⇠ 20

waveforms which are less accurate than the threshold, however this is unlikely to

have a large impact over the bulk of the parameter space. We further note that

increasing the number of templates in the template bank on which we perform

the SVD has almost no e↵ect in improving the quality of interpolated templates.

Below we demonstrate the use of interpolated TaylorT4 waveforms as templates

for parameter estimation.

4.2.1 Parameter estimation using interpolated TaylorT4

waveforms: 5-dimensional case

Our goal is to estimate the parameters of a gravitational-wave signal contained

in Gaussian stationary noise using both the interpolated and non-interpolated

TaylorT4 waveform family as templates. The gravitational-wave signal contained

in the data is described by the non-interpolated TaylorT4 waveform family. We

generate waveforms in the time-domain at a sampling frequency of� t = 1/4096 s.

The signal contained in the data set has source parameters (M, ⌘, D, t
c

, �
c

) =

(7.45 M�, 0.247, 33 Mpc, 0 s, 2.16) and we have omitted the others which are

not searched over. The signal has a signal-to-noise ratio SNR = 14.8. We use the

same prior distributions as in Sec. 3.5. To recap, the prior distributions are set

as follows.

4.2.1.1 Prior distributions

We use a uniform prior on logD and ⌘ with ranges D 2 [1 Mpc, 100 Mpc] as we

have no a priori preferred distance to the source. We similarly use uniform priors

on �
c

and t
c

over the range 0  �0  2⇡ and �0.1 s  t
c

 0.1 s, respectively.

We use a prior on M of the form P(M|H) / M�11/6 in the range M 2
[7.20 M�, 7.60 M�] and a uniform prior on ⌘ in the range ⌘ 2 [0.175, 0.250]. The
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prior on M corresponds to the Je↵reys prior for the waveform family described

by Eq. (3.5) [12].

For the mock data set we ran a MCMC comprising five parallel Markov chains

in order to compute the PDF p(~✓ = (M, ⌘, D, t
c

, �
c

)|d,H). The limits of

integration of the likelihood function, Eq. (3.2), are fixed to fmin = 40 Hz, fmax =

2048 Hz. The upper limit of integration is the nyquist frequency of waveforms

sampled in the time-domain at � t = 1/4096 s. To extract the posterior samples

from the raw MCMC output we discard the first 10, 000 samples as burn-in.

We measure the convergence of the parallel chains using the Gelman-Rubin

R-statistic [86]. For well converged chains this should be close to R = 1 and we

regard the MCMC to be complete once R  1.001 for all parameters.

4.2.1.2 SVD set up

To generate interpolated template waveforms we take the SVD of a template

bank of whitened TaylorT4 waveforms over a region of parameter space defined

by our prior range in M and ⌘: M 2 [7.20 M�, 7.60 M�], ⌘ 2 [0.175, 0.250]. We

patch the parameter space into four equally sized regions as in Fig. 3.3 in which

we generate a separate template bank. The waveforms in the template banks are

generated at a sampling frequency of � t = 1/4096 s. Each template bank uses

(25 + 1) ⇥ (25 + 1) waveforms.

4.2.1.3 Results

The marginalized PDFs for complete MCMC runs using non-interpolated and

interpolated TaylorT4 waveforms are shown in Fig. 4.2. We have again omitted

the marginalized one-dimensional PDF of the coalescence phase �
c

as it of little

physical interest. Each run required around 1 ⇥ 106 waveform computations to

be fully converged. The mean posterior values of the distributions along with the

signal values are shown in Table 4.1.

As with interpolated stationary phase approximation (SPA) waveforms, the

chirp-mass distribution computed using interpolated TaylorT4 waveforms is clearly

biased. However it is encouraging that the systematic bias in the mean posterior

chirp mass estimate is around a factor of forty smaller than the statistical mea-
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Figure 4.2: Marginalized PDFs, Eq. (3.4), produced using non-interpolated Tay-
lorT4 waveforms (blue or dark grey) and interpolated TaylorT4 waveforms (red
or light grey). The signal value is shown as the dashed red vertical line.
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Param Mean pos-
terior value
(interpolated
TaylorT4)

Mean pos-
terior value
(TaylorT4)

Signal Value

M (M�) 7.424
(3.7⇥10�2)

7.425
(3.3⇥10�2)

7.450

⌘ 0.236
(1.3⇥10�2)

0.236
(1.2⇥10�2)

0.247

D (Mpc) 31.03 (2.4) 31.09 (2.6) 33.00
t
c

(s) 1.0 ⇥ 10�3

(4⇥10�4)
1.0 ⇥ 10�3

(4⇥10�4)
0

Table 4.1: Mean posterior value parameter estimates (and standard deviations) of
the marginalized PDFs using interpolated and non-interpolated TaylorT4 wave-
forms (Fig. 4.2).

surement uncertainty. Again we pass a commonly-used threshold for su�cient

waveform-model accuracy [e.g., 89] and at a higher threshold than with interpo-

lated SPA waveforms. In addition, the time distribution is also clearly biased,

however as with the chirp mass, there is no bias of the mean posterior time pa-

rameter estimate on the scale of statistical measurements errors. This is also the

case with the other two parameters, distance and symmetric mass ratio. We find

that none of the sets of posterior samples for the PDFs in Fig. 3.4 are consistent

with arising from same distribution as quantified by the K-S test.

We find that the reduction in computational time in using interpolated Tay-

lorT4 waveforms is around a factor of 10, which is consistent with Table 3.2.

4.3 Interpolating inspiral-merger-ringdown wave-

forms

We now extend the interpolation technique to waveforms which describe the full

inspiral, merger and ringdown phases of coalescence. We take as our model time-

domain waveform EOBNR which was used in Sec. 2.3 and is described in detail

in [26]. Unlike TaylorT4 the EOBNR family of waveforms must be generated
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at a minimum sampling rate of 4096Hz in order to accommodate the ringdown

phase. We use the implementation provided by the LIGO Scientific Collaboration

Algorithm Library (LAL) that corresponds to the approximant EOBNRv2 [41].

An clear subtlety in applying the SVD to EOBNR is the alignment of the

waveforms. Unlike SPA or TaylorT4 waveforms, there is no well defined end of

EOBNR waveforms. Because of this we chose to align the peak amplitude of

the waveforms with the minimum of the noise PSD in the frequency-domain.

We use the same noise PSD as in Chapter III which is typical of initial LIGO

[1] and is shown in Fig. 3.2. In order to perform the alignment we first have

to compute the time-frequency evolution associated with EOBNR waveforms.

This is computed within the waveform generation routine within LAL for the

approximant EOBNRv2 [41].We again take the reference frequency to be fmin =

152.84375 Hz, which is the frequency at which the PSD is a minimum.

To determine the quality of interpolated EOBNR waveforms we compute the

mismatch , Eq. (4.1), between interpolated and non-interpolated EOBNR wave-

forms. We apply the SVD to a set of whitened EOBNR waveforms generated in

the same region of parameter space shown in Fig. 3.3 defined by 7.2 M�  M 
7.6 M�, 0.175  ⌘  0.250. We divide the parameter space into four equally sized

patches as in Fig. 3.3. As input to the SVD, we use (35+1) ⇥ (35+1) whitened

waveforms in each patch’s template bank. The waveforms are generated from

a starting frequency of 30 Hz in the time-domain which we use to mitigate the

e↵ects of spectral leakage in the Fourier-domain waveform when whitening, and

are truncated at a low frequency cut-o↵ of 40Hz before back-transforming into the

time-domain for the SVD. The SVD of each template bank uses 22 basis wave-

forms. To compute the mismatches we use a uniform grid of 50⇥50 waveforms

over the parameter space defined by 7.2 M�  M  7.6 M�, 0.175  ⌘  0.250.

We compute the mismatch for waveforms generated at the following sampling

frequencies: 4096 Hz, 8192 Hz, 16384 Hz and 32768 Hz.

We observe that for the range of sampling frequencies the mismatches have a

wide distribution about the threshold mismatch of 10�3 as is shown in Fig. 4.3.

These mismatches suggest that the interpolated EOBNR waveforms are not suit-

able for parameter estimation as they are not su�ciently accurate. The wave-

forms we have considered have a relatively long (⇠ 2 s) inspiral followed by a
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Figure 4.3: Histogram of mismatches between (normalized) interpolated and non-
interpolated EOBNR waveforms generated on a uniform (50⇥50) grid in a patch
of (M, ⌘) defined by 7.2 M�  M  7.6 M�, 0.175  ⌘  0.250. Each panel
corresponds to waveforms generated at di↵erent sampling frequencies: 4096 Hz,
8192 Hz, 16384 Hz and 32768 Hz. We set a threshold mismatch of 10�3 between
interpolated and non-interpolated waveforms, shown as a red vertical line, above
which we deem interpolated waveforms to be insu�ciently accurate for parameter
estimation. The best case occurs for sampling rate of 32768 Hz, though it is nearly
identical to the 16384 Hz case. In all cases there is a wide distribution about
the threshold mismatch of 10�3 which indicates that these interpolated EOBNR
waveforms are not suitable for parameter estimation. We note that while these
mismatches indicate that the interpolated EOBNR waveforms are not suitable
for parameter estimation, they would be suitable to form a template bank for
gravitational-wave searches.
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short (⇠ 10�2) ringdown. We note that increasing the number of basis vectors

used for interpolation, and increasing the number of waveforms in the template

bank on which we perform the SVD yields almost no improvement in the quality

of interpolated waveforms.

While this is a set back for parameter estimation, there are alternative ap-

proaches to parameter estimation in which arbitrary waveforms could be used

while still significantly decreasing its computational cost. We discuss these in the

following chapter.

We note that while the interpolated EOBNR waveforms are insu�cient for

parameter estimation, they are su�cient to form a template bank for detection

where the accuracy requirements are typically lower. For example, gravitational

wave template banks are constructed such that neighbouring templates have a

mismatch of around 3%.

4.4 Future work and Discussion

We have considered in detail the potential to use interpolated waveforms as one

means to do this. For inspiral only waveforms we have found that the using in-

terpolated waveforms leads to biases in the posterior probability distributions of

the parameters. However, the bias in the mean posterior parameter estimates are

negligable on the scale of statistical measurement uncertainties. In general, pa-

rameter estimation on real gravitational-wave signals from CBC sources requires

that we are also able to use waveforms which describe the full inspiral merger and

ringdown phases of coalescence. Our attempt to interpolate such waveforms has

failed in this sense because the quality of the interpolated waveforms is insu�-

cient for parameter estimation, though in principle could be used for searches. In

the following chapter we consider how to circumvent the problems encountered

in interpolating time-domain template waveforms by directly interpolating the

likelihood function, without first computing an intermediate template waveform.
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Chapter 5

RAPIDLY EVALUATING THE

COMPACT BINARY

LIKELIHOOD FUNCTION VIA

INTERPOLATION

5.1 Introduction

In the previous two chapters we considered using interpolated template wave-

forms as a means to reduce the computational cost of parameter estimation.

While the technique is promising in principle, we found that our implementation

of interpolated waveforms is somewhat limited as we were unable to successfully

interpolate time-domain waveforms which describe the full inspiral, merger and

ringdown phases of compact binary coalescence. While there may be other, more

robust, interpolation techniques which would allow generic template waveforms

to be interpolated, we will not pursue them here. Instead, we will consider an-

other means with which one could significantly reduce the computational cost of

parameter estimation, again based on interpolation using the SVD.

We demonstrate that the SVD can be applied directly to the likelihood func-

tion itself which in turn allows the likelihood function to be directly interpolated.

With this formulation of the likelihood function the only waveform computations
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required for parameter estimation are those needed to construct the SVD of the

likelihood function. We find that for a test-case, we are able to speed up the

evaluation of the likelihood function by two orders of magnitude, whilst keeping

likelihoods accurate to . 0.025%. In addition, we will demonstrate that this im-

provement in computational time is conservative, and we discuss how additional

computational savings would be achieved in practice. Crucially, the method we

will present is totally transparent to the form of the template waveforms used for

the likelihood computation.

Recall that the goal of Bayesian parameter estimation is to compute the pos-

terior probability density function (PDF) of a set of parameters, ~✓, which underlie

a model assumed to describe a data set d. The PDF is related to the likelihood

function and prior probability via Bayes’ theorem:

p(~✓|d) = P(~✓) L(d|~✓)
p(d)

, (5.1)

where L(d|~✓) is the likelihood and P(~✓) is the prior probability which encodes our

a priori belief in the distribution of ~✓. The quantity in the denominator, p(d), is

known as the “evidence”. Computing (5.1) requires evaluating the likelihood.

For binaries with non-spinning components ~✓ is nine dimensional. Exploring

such a high dimensional space requires sophisticated stochastic Bayesian inference

techniques [12; 13; 25] which preferentially sample the parameter space in regions

of high posterior probability. The bulk of the computational cost of evaluating the

likelihood function comes from computing template waveforms. Analyses on first-

generation interferometer data require computing O(106) such waveforms [25; 51].

Sampling techniques such as Markov chain Monte Carlo (MCMC) [13; 25] and

nested sampling [12; 94] evaluate likelihoods, and hence compute template wave-

forms, serially. Thus the total computational time to fully sample the parameter

space scales linearly with the total time spent generating template waveforms. It

can take hours to weeks to analyse a single stretch of data of a few seconds in

duration, depending on the choice of the template waveform family. This problem

will be exacerbated when analysing second-generation interferometer data as the

waveforms will be forty times longer in duration if the starting frequency fmin is

changed from 40Hz to 10Hz.
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For binaries with non-spinning components, the frequency-domain waveform

h̃(~✓ ; f) has the schematic form

h̃(~✓ ; f) =
X

µ=+ ,⇥
A

µ

(~✓
L

)h̃0(M , ⌘; f)e2⇡iftc , (5.2)

where A+ ,⇥ denotes the (scalar) amplitudes of the “plus-” and “cross-” polariza-

tion states of the waveform. In general h̃0 depends on the waveform family being

used and can be computed by Fourier transforming the associated time-domain

representation of the waveform family. The parameters which describe the binary

are the chirp mass and symmetric mass-ratio, M and ⌘, the time at coalescence t
c

and a set of parameters which describe the location and orientation of the binary
~✓
L

.

Evaluating the likelihood function on the three-dimensional subspace of pa-

rameters (M , ⌘ , t
c

) represents the largest computational burden to parameter es-

timation on gravitational waves from CBC sources with non-spinning components

because the likelihood function depends non-trivially on these parameters, and so

requires a new waveform evaluation. In [51], we considered interpolation between

waveforms over the mass parameter space as a way to reduce computational cost.

Here, we demonstrate that the evaluation of an interpolated likelihood function

over the (M , ⌘ , t
c

) subspace is a much faster computational procedure than the

standard calculation of the likelihood (5.3) by using either full or interpolated

waveforms. For the purposes of parameter estimation, one is not interested in

template waveforms per se, but rather in the posterior probability distributions

of the underlying parameters of the template waveforms that are assumed to

describe the data. By directly using interpolated likelihood functions, one e↵ec-

tively bypasses template waveform generation during the sequential steps of an

MCMC. This likelihood-interpolation technique is robust and could, in principle,

be generalized to arbitrary template waveform families, in particular those that

describe CBCs with spinning components.
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5.1.1 Directly interpolating the likelihood function

We wish to generate a representation of the likelihood function over the contin-

uous M, ⌘ and t
c

subspace. To achieve this we will interpolate the likelihood

function over M, ⌘ and t
c

. The likelihood function that describes the probability

of observing a data stream d = h+n containing a given gravitational-wave signal

h(~✓; t) and Gaussian and stationary noise n(t) is [12]

log L(d|~✓) = (d|h(~✓))� 1

2

h�
h(~✓)|h(~✓)) + (d|d)

i
, (5.3)

where (a|b) is the usual noise-weighted inner product [46]. We define the complex-

valued time-series corresponding to the inner product between two time series a(t)

and b(t) as one is shifted by an amount t
c

with respect to the other:

z[a , b](t
c

) := 4

Z
f

max

f

min

df
ã(f)b̃⇤(f)

S
n

(f)
e�2⇡ift

c , (5.4)

In the above, ã(f) is the Fourier transform of a(t) and S
n

(f) is the detector noise

power spectral density (PSD). The limits of integration are in general specified

by the bandwidth over which an analysis is being conducted. In terms of z(t
c

)

the inner products in (5.3) are succinctly expressed as

(h(~✓)|h(~✓)) = <A(~✓
L

)z[h0(M, ⌘), h0(M, ⌘)](0), (5.5)

(d|h(~✓)) = <B(~✓
L

)z[d , h0(M, ⌘)](t
c

) , (5.6)

and A(~✓
L

) and B(~✓
L

) are known projections which contain the ~✓
L

dependence in

the likelihood function.

We have previously interpolated template waveforms over the mass parameters

[50; 51], and here we show that the same technique can be applied to interpolating

the time series z[d , h0](tc). The interpolation of z[d , h0](tc) is based on the SVD

of a set of (discretely sampled) time series distributed on a two-dimensional grid.

In this case the two-dimensional grid spans M and ⌘ and the time parameter is

t
c

. We use the notation ~z [d , h0] to describe the discretely sampled z[d , h0](tc).

Recall that the SVD of the discretely sampled time series ~z [d , h0] allows it to be

written as a linear superposition of orthonormal basis vectors ~u
µ

and projection
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coe�cients M
µ

[49]:

~z [d , h0(M, ⌘)] =
X

µ

M
µ

(M , ⌘) ~u
µ

. (5.7)

The coe�cients M
µ

can be interpolated over M and ⌘ and we follow the method

in [50] which uses Chebyshev polynomials of the first kind.

Interpolation of z[h0 , h0](0) over M and ⌘ is simple as it is scalar valued

and we again use Chebyshev polynomials of the first kind. Below we provide an

example of the interpolation technique outlined here.

5.1.2 Likelihood interpolation: Examples

We compare interpolated likelihood functions to those generated by direct eval-

uation of waveforms and inner products. We consider two test cases: (i) the

coalescence of binary black holes, and (ii) the coalescence of binary neutron stars.

We generate a discretely sampled, simulated data set ~d for a single interfer-

ometer consisting of Gaussian and stationary noise ~n and a gravitational-wave

signal ~h. The data set is 32 s in duration and has a sampling rate in the time

domain of 4096Hz. For binary black holes we model the gravitational-wave sig-

nal ~h using the e↵ective one-body approach calibrated to numerical relativity

simulations (EOBNR) [41]. Such a gravitational-wave signal describes the full

inspiral, merger and ringdown phases of coalescence. For binary neutron stars we

model the gravitational waveform using a post-Newtonian (PN) model computed

to 3.5 PN order in phase [26], which describes the inspiral phase of the coales-

cence only. We use an implementation of EOBNR and post-Newtonian waveforms

from the LSC Algorithms Library (LAL) [85] corresponding to the approximants

EOBNRv2 and TaylorT4 respectively.

Generating the interpolant of the likelihood function requires the following

stages: (i) patch the mass space into smaller domains, (ii) generate a set of

waveforms over a dense grid in each patch, (iii) filter the data with the template

waveforms to compute the likelihoods, (iv) pack the likelihoods into a matrix and

perform the SVD, (v) build the interpolant in each patch. Only after these stages

have been completed can the interpolated likelihood function be sampled.
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We first construct a discrete, uniform grid of template waveforms in M � ⌘

parameter space. We will use a small region around the parameters of the signal,

asM and ⌘ are typically constrained to . 1% and. 10%, respectively, depending

on the signal parameters and signal-to-noise ratio (SNR) [51; 95]. The region in

M�⌘ where the posterior has significant support can be found quickly during the

burn-in phase of the MCMC, which requires a small fraction of the total number

of samples necessary to evaluate the posterior probability distribution function.

We use the Chebyshev interpolation described in [50] to interpolate z[h0 , h0](0)

for waveforms across the grid. To interpolate ~z [d , h0] we first find the basis vec-

tors ~u
µ

by constructing a matrix from the set of {~z [d , h0]}, the columns of which

correspond to a unique ~z [d , h0] on the grid of waveforms, which we factor using

the SVD. After performing the SVD, we truncate the number of basis vectors

such that on average the norm of each ~z is conserved to one part in 105 [50].This

can significantly reduce the number of basis vectors.We then apply the Chebyshev

interpolation [50] to interpolate projection coe�cients across the M� ⌘ grid.

5.1.2.1 Example 1: High-mass binary black holes

The signal is parameterized by ~✓s = (M = 15.01M� , ⌘ = 0.205 , D = 100Mpc , ◆ =

0 , = 0 ,↵ = 0 , � = 0 , t
c

= 0.1 s ,�
c

= 0). We use a noise PSD typical of initial

LIGO [1]. The signal has an SNR of ⇡ 15. In order to interpolate the likelihood

function across M , ⌘ and t
c

, we work within a small region of M�⌘ space whose

boundaries are given by 14.56M�  M  15.46M� and 0.143  ⌘  0.25.

Assuming a statistical measurement uncertainty on M and ⌘ of 1% and 10%,

respectively, the parameter ranges correspond to a ⇠ 3� range about the signal

value. Note that we cannot go about ⌘ = 0.25 in the ⌘ interval. We further

restrict our range in t
c

to be in a ±0.2 s window about the trigger time, which is

a common time prior in Bayesian parameter estimation [12].

In Fig. (5.1) we compare a likelihood function generated via direct evaluation

of inner products, to one which we have generated via SVD-interpolation. We

find that we are able to reconstruct the log likelihood function by interpolation

to within a fractional percentage error of at most 0.025%. While we have only

plotted an interpolated likelihood function at the signal values of M and ⌘, the
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Figure 5.1: Interpolated and non-interpolated log likelihoods (top), and percent-
age error (bottom) for a data set containing a gravitational-wave signal from the
coalescence of binary black holes.
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errors quoted here are typical across the mass range we have considered. Mean-

while, for this waveform model and parameters, computing the likelihood via the

interpolation procedure is around two orders of magnitude faster than generating

a template waveform and directly evaluating the inner products in (5.3).

5.1.2.2 Example 2: Binary neutron stars

The signal is parameterized by ~✓s = (M = 1.217M� , ⌘ = 0.2497 , D = 20Mpc , ◆ =

0 , = 0 ,↵ = 0 , � = 0 , t
c

= 0.1 s ,�
c

= 0). We again use a noise PSD typical

of initial LIGO [1], and the signal has SNR ⇡ 15. We interpolate the likeli-

hood function over a small region of M � ⌘ space whose boundaries are given

by 1.199M�  M  1.235M� and 0.212  ⌘  0.25. Assuming a statistical

measurement uncertainty of 0.5% on M and 5% on ⌘, these parameter ranges

correspond to a ⇠ 3� range about the signal value. Note that we cannot go about

⌘ = 0.25 in the ⌘ interval. We restrict our range in t
c

to be in a ±0.2 s window

about the trigger time.

Again, we find that we are able to reconstruct the log likelihood function

to within a fractional percentage error of at most 0.025%. For the binary neu-

tron star case, we find that computing the likelihood via interpolation is around

three orders of magnitude faster than direct evaluation. This di↵erence is larger

than for the higher-mass binary black hole case because the waveform duration

is significantly longer for binary neutron stars, whereas the cost of computing

interpolated likelihoods remains fixed.

Below we discuss practical issues pertaining to incorporating interpolated like-

lihoods into real gravitational-wave parameter-estimation pipelines.

5.1.2.3 Practical considerations

For our interpolation technique to be viable for real data analyses, the total

computational time of first constructing the interpolated likelihood function, and

then sequentially sampling the interpolated likelihood function, must be less than

the time for sequentially sampling the likelihood function directly.

Parameter estimation requires sampling the parameter space until the sampler

has met its convergence criterion. The total number of likelihood evaluations
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for convergence is typically ⇠ O(106) [25; 51]. When directly evaluating the

likelihood function, the number of likelihood evaluations is a reasonable proxy

for the number of waveform evaluations, which dominate the computational cost.

To sample the interpolated likelihood function there is an additional upfront

cost of constructing the interpolant of the likelihood function. This cost will

depend on the region of the parameter space over which the likelihood function

needs to be interpolated and template waveforms must be computed. However,

building the interpolant is highly parallelizable and computing it over an extended

region of parameter space could be split into multiple independent subsets. This

could greatly reduce the wall time of computing the interpolant. We have noted

that one can restrict the range in parameter space over which the interpolant is

built by using an MCMC to sparsely explore the parameter space in regions of

high posterior probability. In practice, the number of samples for this “burn-in”

is often ⇠ O(104) [51], and the likelihood has significant support in a relatively

small patch in parameter space. The likelihoods computed during the burn-in

evaluation could thus be stored for future interpolation.

One could also interpolate ~z(t
c

) over many patches covering the parameter

space in parallel. We have not investigated optimal patching, nor the required

denseness of likelihood template calculation in order to generate a good basis for

~z(t
c

); this will be the subject of future work.

Once the interpolant is constructed, the cost of sampling the parameter space

will depend on that of computing the interpolated likelihood function. In our

example we found that computing the interpolated likelihood function is between

two and three orders of magnitude cheaper than directly evaluating the likelihood

function, depending on the region in parameter space in which the likelihood

function is being computed. The actual improvement will depend on the typical

cost of waveform computation, which is a function of both the template waveform

family used and the waveform parameters.

Here we had used the SVD to find a basis for the set of ~z(t
c

). The SVD is

not a unique technique for finding a basis set, and we note that the authors in

[96] and [97] employ a greedy algorithm to e�ciently generate a set of bases for

gravitational waveforms which could in principle be applied to a set of ~z(t
c

).

We have so far discussed interpolation in the mass parameters. It may also be

93



5. RAPIDLY EVALUATING THE COMPACT BINARY
LIKELIHOOD FUNCTION VIA INTERPOLATION

necessary to interpolate the quantities z[d , h0](tc) in the t
c

direction, because the

coalescence time in a particular interferometer may lie in between discretely sam-

pled time points. Second-order interpolation provides su�cient accuracy when

the waveform is sampled at 4 kHz.

5.1.2.4 Discussion and conclusion

We have demonstrated a method to sample the CBC likelihood function via

interpolation, with improvements of two to three orders of magnitude in e�ciency.

Our method utilizes a SVD of the likelihood function on a three-dimensional

subspace of parameters: the chirp mass M, symmetric mass-ratio ⌘ and time

at coalescence t
c

. The SVD factors the likelihood function into a set of scalar

coe�cients which describe a surface in M and ⌘, and a set of orthonormal basis

vectors which describe how the surface is translated along t
c

. The projection

coe�cients can be interpolated on the M � ⌘ plane and then trivially scaled

by elements of the basis vectors to generate the likelihood at (M , ⌘ , t
c

). This

provides an e�cient means to interpolate in three dimensions.

We note that while we have chosen an interpolation technique based on the

SVD, it is by no means unique and other interpolation techniques have been ap-

plied to gravitational-wave data analysis [e.g., 97]. Notably, Mitra et al. [98] con-

sidered interpolating the matched-filtered output of gravitational-wave searches.

They interpolated the signal-to-noise ratio, which is e↵ectively a component of

the likelihood function, and so their method could, in principle, be extended to

interpolate likelihood functions. The key di↵erence with our approach is that we

use a decomposition of the likelihood as a function of time, while [98] treat it as

a scalar quantity. This provides us with an e�cient means of reducing the total

data needed for interpolation, exploiting correlations along the t
c

direction by

ranking the basis vectors in order of importance in reconstructing the likelihood

function. Hence, we can e↵ectively exorcise redundant information based on our

accuracy requirements. The number of bases needed to approximately recon-

struct the likelihood to high accuracy using the SVD is generally small compared

to the number of raw likelihood vectors which we decompose.

Likelihood interpolation appears to be more robust than waveform interpola-
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tion [51], and so utilizing interpolated likelihood functions may also be a stepping

stone to tackling the more di�cult issue of rapidly estimating the parameters of

binaries with spinning components.
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Chapter 6

SUMMARY

We have considered two aspects of gravitational-wave astronomy; the ability

to detect intermediate-mass ratio coalescences (IMRACs) with Advanced LIGO

(aLIGO), and methods to improve the e�ciency of parameter estimation on grav-

itational waves from coalescing compact binaries using the singular value decom-

position (SVD).

In Chapter II we studied the requirements of model waveforms for detect-

ing IMRACs using aLIGO. We considered binaries in which the intermediate-

mass black hole has mass in the range 24M� � 200M� with a stellar-mass

companion having masses in the range 1.4M� � 18.5M� and with mass ratios

1/140  q  1/10. In this mass space we studied the contributions to the signal-

to-noise ratio (SNR) from the three stages of binary coalescence; inspiral, merger

and ringdown. We have shown that over the bulk of the mass space, merger and

ringdown contribute significantly to the coalescence signal, despite the suppres-

sion of the power in the merger and ringdown in the coalescence signal. This

is because the systems we have considered can merge in the frequency range in

which aLIGO is most sensitive. For the mass space we considered, the inspiral

portion of the coalescence signal may fall at frequencies below the detectors sen-

sitive band and hence the bulk contribution to SNR comes from the merger and

ringdown. However, we have also shown that despite the importance of merger

and ringdown, there is a small portion of the mass space in which the inspiral

portion dominates the coalescence signal. We identified three regions in the mass

space in which di↵erent searches could be considered appropriate based on thresh-
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olds of acceptable losses in detection rates. The mass pace splits into a region in

which inspiral-only searches could be feasible, incurring losses in detection rates

of up to ⇠ 27%; a region in which searches would be limited by lack of merger

and ringdown in template waveforms, incurring losses in detection rates up to

50%; and a region in which merger and ringdown are critical to prevent losses in

detection rates over 50%. The search regions are summarized in Table 2.1.

We also considered the accuracy of model waveforms which are currently

used for gravitational-wave searches for high-mass binaries in the IMRAC regime.

Model waveform families based on the e↵ective one-body approach, matched to

numerical relativity - known as EOBNR [26] - are only known to be accurate

at describing binaries with mass ratios q > 1/6 and so to detect IMRACs one

needs waveforms which are able to describe binaries which have smaller mass

ratios. We thus compared the EOBNR waveforms to a waveform family designed

for such small mass-ratio binaries which we refer to as the “Huerta-Gair” (HG)

[44; 63] waveform family. Because HG waveforms only describe the inspiral por-

tion of the coalescence signal, we only compared the EOBNR inspiral to HG

waveforms. By computing the fitting factor between these waveform families, we

found that EOBNR-inspirals are � 90% e↵ective at describing the HG inspiral.

This implies that EOBNR waveforms may be suitable for conducting a search for

gravitational waves from IMRACs. However, this result reinforces the need to

develop approximation schemes which faithfully describe IMRACs. In particular,

due to the importance of merger and ringdown in the coalescence signal, numer-

ical relativity simulations in this regime will be important in order to produce

template waveforms which describe the full coalescence signal.

In Chapters III, IV and V we considered methods to improve the e�ciency

of parameter estimation of gravitational waves from coalescing binaries using

the singuar value decomposition (SVD). We applied the SVD in two ways: (i)

to interpolate template waveforms and (ii) to directly interpolate the likelihood

function. The SVD has already been used to interpolate template waveforms for

gravitational-wave searches [49] which reduces the computational cost of wave-

form generation in searches. Because the waveform accuracy requirements of

parameter estimation are typically higher than for gravitational-wave searches,

in Chapter III we investigated the potential to use interpolated waveforms in pa-
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rameter estimation as a means to reduce the computational cost associated with

waveform generation. We provided a proof-of-principle that interpolated tem-

plate waveforms can be used for parameter estimation. While using interpolated

waveforms leads to biases in the posterior probability density functions (PDFs),

the bias in the mean posterior parameter estimates are smaller than the scale of

statistical measurement uncertainty and thus we pass a common accuracy thresh-

old for model waveform accuracy [89]. Furthermore, we provided a comparison of

the computational times of various waveform families. We found that in general,

interpolating template waveforms is at least an order of magnitude faster than

using non-interpolated waveforms and so using interpolated template waveforms

for parameter estimation is a promising technique to improve its e�ciency.

Despite the potential of using interpolated waveforms, the study in Chapter

III was limited to one waveform family. We used the SVD to interpolate a class of

waveforms known as TaylorF2 [26] which are already e�cient to generate. This

was because of the simplicity of implementing TaylorF2 waveforms. In Chapter

IV we considered interpolating generic classes of template waveform. This ex-

tended the proof-of-principle in Chapter III to include inspiral-only time-domain

waveforms and time-domain waveforms which describe the full coalescence signal

(inspiral, merger and ringdown). We found that we were able to use an inter-

polated inspiral-only time-domain waveform family known as TaylorT4 [26] as

templates for parameter estimation. We reported negligible biases in mean pa-

rameter estimates on the scale of statistical measurement uncertainty. We found

that interpolated TaylorT4 waveforms are around an order of magnitude faster

to generate than non-interpolated TayorT4 waveforms, which is consistent with

our results in Chapter III. We also were able to interpolate time-domain wave-

forms which describe the full coalescence signal. We used a waveform family

which uses the “e↵ective one-body” approach, matched to numerical simulations

of the merger and ringdown, known as EOBNR [26]. However, we found that

we were not able to generate the interpolated templates at su�cient accuracy

for parameter estimation, though they could be considered accurate enough for

gravitational-wave searches. There were a number of reasons for the loss in accu-

racy. Firstly, the relative time scales of the inspiral and ringdown are significantly

di↵erent. For the mass range we considered the inspiral phase is around 2 s in
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duration while the ringdown is O(10�2) s in duration. In addition, we encoun-

tered a di�culty in our implementation of interpolated waveforms which makes

it di�cult to extend to time-domain waveforms. When performing the SVD of

a set of template waveforms we found it useful to first align the waveforms in

time at the frequency at which the noise PSD is a minimum. The time-frequency

evolution of time-domain waveforms can be inaccurate unless one uses a very

high sample rate, and hence the alignment of the waveforms we used can be o↵

by a small amount. This finding was reinforced by the fact that at high sampling

rates, the accuracy of interpolated time-domain waveforms becomes higher.

In order to address the issue of e�cient parameter estimation with generic

waveforms, in Chapter V we showed that the SVD enables one to directly in-

terpolate the likelihood function. We analytically formulated the interpolated

likelihood function and showed that parameter estimation based on an interpo-

lated likelihood function solves numerous computational issues. For example,

waveform generation is only required in order to generate the SVD of the likeli-

hood function and evaluating the interpolated likelihood function requires no new

waveform computations. In addition likelihood interpolation should be totally

transparent to the template waveform family being used. We reported (conser-

vative) improvements in the e�ciency of evaluating the interpolated likelihood

function between two and three orders of magnitude, whilst keeping likelihoods

accurate to . 0.025%. We believe that this technique is highly relevant to pa-

rameter estimation in aLIGO because the in-band signals are liable to be around

two orders of magnitude longer than initial LIGO which will exacerbate the cost

of template waveform generation, and hence parameter estimation. Further work

on directly interpolating the likelihood function is well merited and is a promising

approach to rapidly estimating the parameters of compact binaries.

100



Appendix A

FREQUENTLY USED

QUANTITIES

A.1 Definitions of discrete representations of con-

tinuous functions

Here we define the conventions that we adopt for discrete representations of con-

tinuous functions, which are frequently used.

For a real-valued function a(t), the convention for the Fourier Transform is

ã(f) =

Z +1

�1
dt a(t)e�2⇡ift , (A.1)

with the inverse transform

a(t) =

Z +1

�1
df ã(f)e+2⇡ift . (A.2)

For the case of discrete time/frequency series, consider a (discrete) real-valued

time series ~a sampled at discrete time intervals �t = 1/(2fNyq), where fNyq is

the Nyquist frequency. The discrete time series has a duration T in the time-

domain. The total number of data samples of the discrete, real-valued time-

series is therefore N = T/�t = 2TfNy. The data points at discrete time t
j

and
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frequency f
k

of ~a, and its (discrete) Fourier transform ã, are therefore:

a(t
j

) = a(j�t) = a
j

(A.3)

ã(f
k

) = ã(k�f) = �t⇥ ã
k

, (A.4)

where we have defined the Fourier series as:

ã
k

=
X

j

a
j

e�2⇡ijk/N , (A.5)

a
j

=
1

N

X

k

ã
k

e+2⇡ijk/N . (A.6)

We approximate the inner product (a|b) between two (real) functions a and b

in the discrete case as:

(a|b) = 4<
Z 1

0

ã⇤(f)b̃(f)

S
n

(f)
df , (A.7)

⇡ 4< �f

N/2X

k=�

ã⇤(f
k

)b̃(f
k

)

S
n

(f
k

)
,

(A.8)

where S
n

is the detector noise power spectral density (PSD). The inner product

can further simplified by using “whitened” frequency series. We define a whitened

frequency series as the raw frequency series weighted by the square root of the

noise PSD:

ãw(fk) =
ã(f

k

)p
S
n

(f
k

)
, (A.9)

Using whitened waveforms, we define the vector inner product between two dis-

cretely sampled, whitened time-series ~a
w

and ~b
w

, as

~a
w

. ~b
w

:= 4�f

N/2X

k=0

ã⇤
w

(f
k

)b̃
w

(f
k

) , (A.10)

which in general is complex. The standard definition of the inner product,

Eq. A.8, is just the real part of the vector inner product.
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A.2 Post-Newtonian phasing formulae

We provide useful formulae for post-Newtonian gravitational waveforms. We use

v as our expansion parameter which is given by v = (⇡Mf)1/3 in geometric units,

G = c = 1, where M is the total mass of the binary.

A.2.1 TaylorF2

For the frequency-domain representation of the gravitational-wave phasing, we

use the formula corresponding to the approximant TaylorF2. The phasing up to

3.5PN order is given by [26]

 
(F2)
3.5 (f) = 2⇡ft

c

� �
c

� ⇡

4
+

3

128 ⌘ v5


1 +

20

9

✓
743

336
+

11

4
⌘

◆
v2 � 16⇡v3
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✓
3058673

1016064
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1008
⌘ +
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144
⌘2
◆
v4 + ⇡
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38645
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� 65

9
⌘

◆

⇢
1 + 3 log

✓
v

vlso

◆�
v5 +

⇢
11583231236531

4694215680
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3
⇡2 � 6848 �

21
� 6848

21

log (4 v)

✓
�15737765635

3048192
+

2255 ⇡2

12

◆
⌘ +

76055
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⌘3
�
v6

+⇡

✓
77096675

254016
+

378515

1512
⌘ � 74045

756
⌘2
◆
v7
�
,

(A.11)

where ⌘ = m1m2/(m1 + m2)2 is the symmetric mass ratio, m1 and m2 are the

component masses, and � = 0.577216 . . . is the Euler constant.

A.2.2 TaylorT4

The TaylorT4 orbital phase is given by solving the coupled di↵erential equations

of the orbital phase and velocity, �(t) and v(t), respectively,

d�

dt
� v3

M
= 0, (A.12)

dv

dt
= K(t), (A.13)
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where the acceleration K(t) is given by [26]

K(t) =
32

5

⌘

M
v9

1�

✓
743

336
+

11

4
⌘

◆
v2 + 4⇡v3 +

✓
34103

18144
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13661

2016
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18
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v4

�
✓
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8
⌘

◆
⇡v5 +

✓
16447322263

139708800
+
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3
⇡2 � 1712

105
�

+

✓
451

48
⇡2 � 56198689

217728

◆
⌘
541
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⌘2 � 5605

2592
⌘3 � 856

105
log(16v2)

◆
v6

�
✓
4415

4032
� 358675

6048
⌘ � 91495

1512
⌘2
◆
⇡v7
�
. (A.14)
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Appendix B

SINGULAR VALUE

DECOMPOSITION OF M ⇥N

MATRICES

This appendix provides supplementary material to Sec. 3.3. We give examples of

how the singular value decomposition (SVD) can be performed in practice for sim-

ple M ⇥N matrices. In the examples, we will provide a geometric interpretation

of the singular value decomposition.

B.1 Definitions of the singular value decompo-

sition of M ⇥N matrices

Consider a M ⇥ N matrix A, where M is the number of rows of A and N is

the number of columns. For simplicity we assume M � N . The singular value

decomposition of A is a factorization of the form [99]

A = U⌃VT , (B.1)

where U is an orthonormal M ⇥N matrix, V is an orthonormal square N ⇥N

matrix and ⌃ is a diagonal square N ⇥N matrix. The matrices U, V and ⌃ are

defined as follows [100]:
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B. SINGULAR VALUE DECOMPOSITION OF M ⇥N MATRICES

• The diagonal elements of ⌃ are known as the “singular values” of A and are

denoted by �
i

. The singular values correspond to the positive square roots

of the eigenvalues of the associated matrix K = ATA. For convenience, the

singular values are ordered such that �1 � �2 � . . . � �
N

.

• The N columns of V and U are known as the right- and left-singular

vectors of A respectively. The right-singular vectors, ~v
i

are the normalized

eigenvectors of ATA and the left-singular vectors, ~u
i

, are the normalized

eigenvectors of AAT and satisfy

A~v
i

= �
i

~u
i

, (B.2)

AT ~u
i

= �
i

~v
i

. (B.3)

Below we provide a step-by-step example of computing the SVD of a simple

matrix A.

B.1.1 Step-by-step example

Compute the SVD of the matrix A given by

A =

"
�2 2

1 2

#
. (B.4)

Step 1: Compute the singular values of A

To compute the singular values we first need to compute ATA:

K = ATA =

"
5 �2

�2 8

#
. (B.5)

The eigenvalues, �
i

, are given by solving for the characteristic polynomial,

det(K� � I2) = 0 , (B.6)

where I2 is the 2⇥ 2 identity matrix. It is easy to show that the eigenvalues are

�1 = 9 , �2 = 4 , (B.7)
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and hence the singular values �
i

are

�1 = 3 , �2 = 2 (B.8)

Step 2: Compute the right-singular vectors of A

The normalized eigenvectors, ~v
i

, of K are the right-singular vectors of A. It

is simple to show that these are given by

~v1 =
1p
5

"
�1

2

#
, ~v2 =

1p
5

"
�2

�1

#
. (B.9)

Step 3: Compute the left-singular vectors of A

Having computed the singular values and right-singular vectors of A, we can

easily compute its left-singular vectors using Eq. (B.2). Since �1 , �2 6= 0 we can

immediately calculate ~u1 and ~u2 from Eq. (B.2):

~u1 =
1

�1
A~v1 =

1p
5

"
2

1

#
, ~u2 =

1

�2
A~v2 =

1p
5

"
1

�2

#
. (B.10)

Step 4: Writing the singular value decomposition of A

We now have all the information to write the singular value decomposition of

A. The three matrices U, V and ⌃ are formed thus: The ith column of U and

V are given by the u
i

and v
i

respectively, and the diagonal elements of ⌃ are

ordered such that ⌃11 = �1, ⌃22 = �2 etc... Hence,

U =

"
2p
5

1p
5

1p
5

� 2p
5

#
, V =

"
� 1p

5
� 2p

5
2p
5

� 1p
5

#
, ⌃ =

"
3 0

0 2

#
. (B.11)

The singular value decomposition of A is thus

A = U⌃VT =

"
2p
5

1p
5

1p
5

� 2p
5

# "
3 0

0 2

# "
� 1p

5
2p
5

� 2p
5

� 1p
5

#
, (B.12)

and it can be easily verified that this representation is equivalent to Eq. (B.4).
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B. SINGULAR VALUE DECOMPOSITION OF M ⇥N MATRICES

B.1.2 Geometric picture of the SVD

Figure B.1: Action of the matrix A, Eq. (B.4), on the unit circle. The transfor-
mation of the vectors ~v1 and ~v2, Eq. (B.9), is shown explicitly.

The SVD has a deep connection with geometry (see e.g.[100; 101]) which

we will touch upon here. The canonical example of how the SVD relates to

geometry is to consider the e↵ect of a matrix A on the unit circle, by looking at

the contributions of each matrix of the SVD of A for A given by Eq. (B.4). The

idea is to think of V and U as rotations and reflections, and ⌃ as a stretching.

Fig. B.1 illustrates the sequence of transformations induced by acting the matrix

A on the unit vectors ~v1 and ~v2, and all other vectors on the unit circle when

A. We can understand how ~v1 and ~v2 are transformed by solving the following

system of linear equations

A~v
i

= U⌃VT~v
i

= ~x
i

, (B.13)

for i = (1, 2). We already know the solution to this equation, which is given in

Eq. (B.2), however it is useful to provide a geometric interpretation of the solution.

When ~v1 and ~v2 are multiplied by VT , the two vectors undergo a rotation and
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become unit vectors along the x- and y-axes respectively:

VT~v1 =

"
� 1p

5
2p
5

� 2p
5

� 1p
5

# "
� 1p

5
2p
5

#
= ~e1 =

"
1

0

#
, (B.14)

VT~v2 =

"
� 1p

5
2p
5

� 2p
5

� 1p
5

# "
� 2p

5

� 1p
5

#
= ~e2 =

"
0

1

#
. (B.15)

The matrix ⌃ then stretches ~e1 and ~e2:

⌃~e1 =

"
3 0

0 2

#
~e1 = 3~e1 = �1 ~e1 , (B.16)

⌃~e2 =

"
3 0

0 2

#
~e2 = 2~e2 = �2 ~e2 , (B.17)

Finally, �1 ~e1 and �2 ~e2 are projected onto �1 ~u1 and �2 ~u2:

U�1~e1 =

"
2p
5

1p
5

1p
5

� 2p
5

#
�1~e1 = �1

"
2p
5
1p
5

#
= �1~u1 , (B.18)

U�1~e1 =

"
2p
5

1p
5

1p
5

� 2p
5

#
�2~e2 = �2

"
1p
5

� 2p
5

#
= �2~u2 . (B.19)

Hence, A projects the vectors ~v1 and ~v2 onto �1~u1 and �2~u2, respectively. It is

easily verified that �1~u1 and �2~u2 define the major and minor axes of an ellipse.

One can see how the matrix A transforms all the other vectors which describe

points on the unit circle, by realising that any other vector on the unit circle will

simply correspond to a rotation of ~v1 or ~v2 by a fixed angle. Hence any point

on the circle is projected onto a point on the ellipse with major and minor axes

defined by �1~u1 and �2~u2.
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