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ABSTRACT

To date, gravitational waves have not yet been observed directly, but strong

evidence supports their existence.With current ground-based interferometers

operating at their design sensitivity, their upgraded versions approved to be

commissioned within the next �ve years and a space-based antenna in design

stages, the need for optimal data analysis strategies becomes pressing. Signals

coming from binary systems of compact objects, such as neutron stars and

black holes, are expected to stand among the most promising candidates for

the �rst detection of gravitational waves.

�is work focuses on improving existing detection techniques for gravita-

tional-wave signals from binaries of black holes.�e current post-Newtonian

approach is valid until the compact objects become so close to each other

that the weak-�eld approximation to general relativity breaks down. At that

point, one needs to resort to full numerical relativity methods in order to solve

Einstein’s equations. It was only recently that the �eld succeeded in providing

stable solutions and in extracting the gravitational radiation associated to

the merger of the binary. Ever since, an increasing number of simulations

exploring larger parts of the parameter space have become available.

�is dissertation presents a new waveform model to describe the grav-

itational radiation of the full coalescence of a binary of black holes, from

the initial inspiral phase through the merger until the �nal ringdown to a

stationary black hole. Analytical and numerical approaches to the binary

black-hole problem are brought together to present a joint description of the

coalescence process.�e parameter space that our model covers corresponds

to that of comparable-mass, spinning, non-precessing binaries.�e inclusion

of these waveforms as �lters in current searches for gravitational waves with

ground-based detectors will have an immediate impact in their performance.

On one hand, the extension of the waveforms past the post-Newtonian stage

would allow more massive systems to be surveyed. On the other hand, the

spin of the black-hole system a�ects its detectability, in a way that can now be

quanti�ed.

Further related work contained in this dissertation presents the latest sear-

ches for compact binaries in the output of the �rst-generation ground-based

detectors; in addition, we describe the results of a search for numerical rela-

tivity signals incorporated into Gaussian data as a way of assessing the perfor-

mance of current data analysis search strategies; �nally, the potential detection

and characterization of black-hole binaries with total mass between hundreds

and tens of thousands of solar masses is suggested, which could be possible

with future-generation interferometers.

�e main focus of this dissertation is thus the connection between theoreti-

cal solutions of the binary black-hole problem and their direct application in

gravitational-wave data analysis and astrophysics.
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ZUSAMMENFASSUNG

Bisher wurden Gravitationswellen (GW) noch nicht direkt nachgewiesen,

doch gibt es starke Indizien, die auf ihre Existenz hindeuten. Durch die bereits

mit hoher Detektoremp�ndlichkeit arbeitenden Interferometer, deren bereits

genehmigten verbesserten Ausbaustufen und das geplante LISA-Projekt, steigt

dieNotwendigkeit für entsprechende Strategien zurDatenanalyse. Signale von

Binärsystemen kompakter Objekte (Neutronensterne und Schwarze Löcher)

sind die aussichtsreichsten Kandidaten für den ersten Nachweis von GW.

Diese Arbeit konzentriert sich auf die Verbesserung existierender Detek-

tortechniken für Signale von GW binärer Schwarzer Löcher. Der gegenwär-

tige post-Newtonsche Ansatz gilt nur bis sich die kompakten Objekte soweit

annähern, dass die Schwachfeldnäherung der ART zusammenbricht. An

diesem Punkt muss man vollständige numerische Methoden anwenden, um

die Einstein-Gleichungen zu lösen. Erst vor kurzem gelang es hier, stabile

Lösungen anzubieten und die Gravitationsstrahlung aus der Verschmelzung

des Binärsystems zu de�nieren. Seitdem wurden mehrere Simulationen, die

einen größeren Teil des Parameterraums untersuchen, verö�entlicht.

Diese Dissertation stellt ein neues Modell zur Beschreibung der GW einer

vollständigen Verschmelzung zweier Schwarzer Löcher vor, von der frühen

Annäherungsphase auf einer Spiralbahn, über die Vereinigung, bis zur Phase

des Abklingens und der Entstehung eine einzelnen stationären Schwarzen

Lochs. Analytische undnumerischeAnsätze für das Problembinärer Schwarzer

Löcher werden zusammengebracht, um eine gemeinsame Beschreibung des

Verschmelzungsprozesses zu präsentieren. Der Parameterraum, den unser

Modell umfasst, korrespondiert mit dem vergleichbar schwerer, rotierender

Binärsysteme ohne Präzession. Die Einbindung dieserWellenformen als Filter

in die derzeitige Suche nach GWwird einen unmittelbaren Ein�uss auf deren

Ergebnis haben. Zum einen würde es die Erweiterung der Wellenform über

die post-Newtonsche Stufe hinaus erlauben, weitaus schwerere Systeme zu

beobachten. Zum anderen beein�usst der Spin die Nachweisbarkeit in einer

Art und Weise, die nun quantitativ bestimmt werden kann.

Einweiterer, damit zusammenhängenderTeil dieserDissertation beschä�igt

sich mit der Suche nach Binärsystemen in den Ergebnissen der terrestrischen

Detektoren. Zusätzlich beschreiben wir eine Suche nach numerischen Sig-

nalen als eineMethode, die Leistungsfähigkeit heutigerDatenanalyse-Strategien

zu bewerten. Zuletzt wird der potentielle Nachweis und die Beschreibung von

Schwarzen Löchern einer Gesamtmasse von hunderten bis zehntausenden

Sonnenmassen erläutert, der mit zukün�igen Interferometern möglich wird.

Der Schwerpunkt dieser Dissertation ist somit die Verbindung von theo-

retischen Lösungen der Problematik binärer Schwarzer Löcher und deren

direkter Anwendung in der Analyse von GW-Daten und der Astrophysik.
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OVERVIEW

Few other physical laws or mathematical theories have captivated the imagina-

tion of generations of scientists the way general relativity has.�e geometrical

treatment that Einstein proposed to explain the structure of space-time and

its connection with the dynamics of matter possesses a special simplicity and

elegance. Particularly fascinating are the far-reaching gedankenexperiments
that Einstein devised in order to arrive at previously unexplored conclusions

about the consequences of travelling at velocities comparable to that of light.

General relativity is a theory developed from �rst principles, which applied

novel, abstract mathematical techniques to the understanding of our Universe;

nevertheless, when confrontedwith experimental phenomena, the predictions

happened to be in excellent agreement with the observations. Relativity goes

one step further than Newton’s theory of gravitation and is able to correctly

calculate the discrepancies in the precession of Mercury’s perihelion. Its accu-

racy is the basis for the current global positioning systems [44]. And perhaps

more signi�cantly: it predicts the existence of gravitational waves, ripples in

space-time produced by the accelerated movement of massive objects in the

four-dimensional Universe in which we live.

A distorted rubber sheet gives a simple way of visualizing general relativity.

http://www.jrank.org/space/pages/2362/general-relativity.html

�e discovery of the Hulse-Taylor binary pulsar in 1974 led to the obser- �e object’s name is
PSR B1913+16, also
known as
PSR J1915+1606 and
PSR 1913+16

vation of the decay of its orbit, in precise agreement with the loss of energy

due to gravitational radiation predicted by general relativity [250]. To date,

this constitutes the strongest direct evidence for the existence of gravitational

waves. Direct measurement of such radiation has not yet occurred; never-

theless, active experimental and theoretical e�orts are underway to detect

gravitational emissions for the �rst time.

�e work presented in this dissertation focuses on the characterization of

the gravitational radiation emitted by binary systems of black holes.�e main

focus is the connection of the theoretical predictions for the gravitational

radiation emitted by coalescing black-hole binaries with their application

in gravitational-wave astronomy. To this end, analytical and numerical ap-

proaches to solving the binary black hole problem are brought together with

the goal of accurately modelling the gravitational signature of non-precessing

binary systems.�is research is of immediate relevance to current and future

data-analysis e�orts in the context of searches for gravitational waves with

the detectors LIGO and Virgo.

3
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4 overview

�is dissertation is structured as follows: chapter 1 introduces the canonical

mathematical formulation of the Einstein equations in the weak-�eld approx-

imation, which predicts the existence of gravitational waves. It is followed

by a short description of the history of searches for gravitational radiation,

including the development of currently-operating interferometers. Nowadays,

an international network of detectors exists that is actively operating at design

sensitivity and working towards meeting the challenge of the �rst direct mea-

surement of gravitational waves. Additionally, a brief overview of the future

of gravitational-wave astronomy as it is foreseen for the next decade is given.

Chapter 2 presents various sources of gravitational radiation that can be

reasonably expected to exist in our Universe, in particular coalescing binaries,

for they are the main focus of this work. An introduction to the coalescence

process is given, describing in detail the three stages in which the full process is

commonly divided — adiabatic inspiral, non-linear merger and perturbative

ringdown to a �nal Kerr black hole. Finally, the expected astrophysical rates

of occurrences of binaries in our Universe are given for the current and future

generations of gravitational-wave interferometers.

�e in-depth description of the theoretical methods that are employed

to solve the binary black hole coalescence can be found in chapters 3 and 4,

which respectively present the analytical and the numerical approaches to

the problem. Chapter 3 �rst introduces the post-Newtonian treatment of

the inspiral phase to later concentrate on perturbative methods for the �nal

ringdown. Chapter 4 describes the foundations of numerical relativity and

its long-awaited success in performing full, non-linear simulations of the late

inspiral, merger and ringdown parts of the black-hole binary coalescence.

One of the main results of this dissertation is presented in chapter 5. A new

method is proposed to model the full coalescence of non-precessing binary

black hole systems in the frequency domain, that accurately incorporates the

most up-to-date contributions from post-Newtonian theory and state-of-the-

art numerical relativity simulations.�e introduction of the novel phenomeno-

logical model is accompanied with a general description of the challenges

that need to be taken into account when comparing post-Newtonian and

numerical methods. A discussion of the di�erent possible sources of error in

the construction of hybrid waveforms is provided as well.

In the context of joint work within the LIGO and Virgo Scienti�c Collabora-

tions, the author has contributed to the analysis of LIGO data corresponding

to the period 2005–2007.�e description of two searches for coalescing bina-

ries in di�erent regions of the mass parameter range is given in chapter 6.�e

results of one of them provide the latest upper limits on the rate of compact

binaries within the surveyed mass range in our local Universe via direct data-

taking with gravitational-wave detectors. For the other search, preliminary

results are presented.

Chapter 7 is an introduction to the use of waveforms from numerical

relativity in the context of so�ware injections into simulated detector noise,

with the primary goal of assessing the reliability of current data analysis

techniques to signals that include the merger and ringdown of the binary. In

this context, a multi-disciplinary collaboration was established in 2008 with

the task of carrying out this program. I participated in this �rst challenge in

two direct ways, �rstly, as a co-developer of the so�ware required to perform

the injections of numerical data into the detector noise and, secondly, as

analyst of such data by means of a family of non-spinning templates modeling
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the full binary black hole coalescence. Chapter 7 summarizes the general

guidelines under which the project was formulated as well as the �ndings

obtained through our analysis.

Finally, the dissertation concludes with a brief look at astrophysics in chap-

ter 8.�e primary goal of gravitational-wave astronomy is to reach a stage

when astrophysically-relevant statements can be made once gravitational ra-

diation is measured and a new window to the Universe is opened. Profound

knowledge of the expected astrophysical sources is certainly key to reach that

stage. Chapter 8 addresses the question of the existence of a particular class

of black holes, those with an intermediate mass comprised among hundreds

and tens of thousands of solar masses. Observational evidence for binaries

formed by two of these objects exists but is not conclusive. Hence, there is

an unexplored �eld where gravitational-wave astronomy with second- and

third-generation interferometers might be able to provide further insight.

�e consequences that the existence of intermediate-mass black-hole binaries

could have for Advanced LIGO and other future detectors are explored.

Geometric units are used throughout this dissertation, i.e. G = c = 1;

thus, mass, time and distance are measured in the same units.�e space-time

metric is assumed to have signature (−,+,+,+).�e mass of our sun is

1M� = 1.9891× 1030 kg = 1.4766× 103m = 4.92549× 10−6 s.

Unless otherwise speci�ed, lower case Greek indices (µ, ν, ρ, σ, . . .) range

from 0 to 3, whereas lower case Latin indices (i, j, k, . . .) range from 1 to 3.





Part I

THE UNIVERSE THROUGH A NEW WINDOW





1
GRAVITATIONAL WAVES

Over a century ago, physicist Albert Einstein revolutionized the �eld of grav-

itation, introducing a shi� of scienti�c paradigm in our understanding of

the structure of space-time. His theory of general relativity is the current

description of gravitation in modern physics. It uni�es special relativity and

Newton’s law of universal gravitation. General relativity also predicts the ex-

istence of gravitational waves, which have since been measured indirectly;

a direct measurement has not yet occurred, but experiments are currently

underway — certain aspects related to this research �eld constitute the main

focus of this thesis.

�e �eld of gravitational-wave research has accumulated a rich and some-

what controversial history over its more than �ve decades of existence [94].

From the primitiveWeber cylinders to the low-temperature bars and spherical

resonant detectors, a�erwards superseded by sophisticated interferometers,

the search for gravitational waves constitutes not only a fascinating theoretical

endeavour, but also a challenging experimental enterprise.

In this chapter, Einstein’s theory and its prediction of gravitational waves are

introduced, as well as past e�orts towards detection of gravitational radiation;

in addition, the technology underlying the currently-operating observatories

that are expected to grant positive results within the next few years is described.

1.1 einstein ’s theory of gravitation

General relativity asserts that the curvature of space-time causes gravity.�e “Space-time grips mass,
telling it how to move,
and mass grips
space-time, telling it
how to curve”— John
Archibald Wheeler

presence ofmatter curves space-time and the curvature in turn determines the

behaviour of matter. Einstein arrived at this revolutionary idea by means of a

series of gedankenexperiments or thought experiments based on the assump-
tions that the speed of light was a constant of our universe and that the motion

of free-falling objects was universal. Let us have a look in the next sections at

the elegant mathematical formulation that expresses this phenomenon.

1.1.1 �e Einstein Field Equations

In geometric units and covariant notation, the Einstein equations for the

gravitational �eld take the abbreviated form [110]

Gµν = 8πTµν, (1.1)

where Gµν = Rµν − 1
2Rgµν is the Einstein tensor, gµν is the metric of

the four-dimensional space-time and Tµν is the stress-energy tensor that

encodes the matter content. In this expression, it is the Einstein tensorGµν
that is used to express the curvature of the Riemann manifold.�e Ricci

scalar R = gµνRµν, also known as scalar curvature, is the trace of the Ricci
tensor, which in turn is de�ned as the trace over the �rst and third indices

of the Riemann curvature tensor, Rµν = R
γ
µγν.�e Riemann tensor is a

fundamental object in di�erential geometry that measures the extent to which

9
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the metric tensor is not locally isometric to a Euclidean space.�e curvature

tensor is given in terms of the Levi-Civita connection∇ of the space-time as
(∇µ∇ν −∇ν∇µ)υρ = Rρσµν υ

σ, (1.2)

for any given vector υµ.�e covariant derivatives commute in a �at manifold

but do not if the manifold is curved.�e Riemann tensor veri�es the following

symmetries and identities [259]Equations 1.4 and 1.5
are known as the �rst
and second Bianchi
identities

Rµνρσ = −Rµνρσ = −Rµνσρ = Rσρµν, (1.3)

Rµνρσ + Rµρσν + Rµσνρ = 0, (1.4)

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0. (1.5)

�e Bianchi identities imply ∇µTµν = 0, which is the equation of local

conservation of energy and momentum. In absence of sources or in a region

far away from them, equation 1.1 further simpli�es toGµν = 0.

In this geometric language it is hard to notice that 1.1 represents a set of

di�erential equations. But as a matter of fact, the curvature tensor depends

on the metric and its �rst and second derivatives

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµαΓ

α
νσ − ΓρναΓ

α
µσ (1.6)

Γρµν =
1

2
gρα (∂µgνα + ∂νgµα − ∂αgµν) . (1.7)

Furthermore, we are interested in the study of gravitational radiation, treated

as a small perturbation that propagates through an otherwise �at space-time.

In this weak-�eld situation there exist coordinate systems where the compo-

nents of the metric can be decomposed as

gµν = ηµν + hµν, |hµν|� 1 throughout space-time, (1.8)

where ηµν is the Minkowski metric that describes a space-time with no

curvature. Such coordinates are called nearly Lorentz coordinates and are

particularly suitable to solve equation 1.1, which predicts gravitational waves.

Einstein showed that the perturbative hµν �eld can be calculated in a manner

analogous to that of the retarded electrodynamic potentials.

Applying ansatz 1.8 to equation 1.1 and solving for the perturbative radiation

�eld to �rst order in hµν yields the linearized Einstein equations

−∂α∂αhµν − ∂α∂βhαβ + ∂α∂µhνα + ∂α∂µhµα = 16πTµν (1.9)

on the �eld hµν ≡ hµν− 1
2ηµνhµν, which is introduced for simplicity. Note

that hµν = hµν, and in the case when h(= −h) = 0, then hµν = hµν.

�e three last terms on the le�-hand side of equation 1.9 serve to keep the

expression gauge-invariant. In general relativity there is a gauge freedom

corresponding to the group of di�eomorphisms. In the linear approximation

this implies that two perturbations hµν and h
′
µν represent the same physical

phenomenon if they are related by a transformation of the form

h ′µν → hµν + ∂µξν + ∂νξµ, (1.10)

where ξα is a vector �eld. Without loss of generality, a �eld ξα can be found

such that the following gauge condition is veri�ed

∂αhµα = 0 (Lorentz gauge), (1.11)
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in clear analogy with the Lorentz gauge condition for the electromagnetic

tensor ∂αA
α = 0. However, it is interesting to note that whereas the Maxwell

equations in the Lorentz gauge are valid in every source-free region of the

space, in the case of the linearized Einstein equations we need to impose the

additional condition of being far away from the sources, so that the weak-�eld

condition 1.8 is satis�ed.�is taken into account, equation 1.9 in the Lorentz

gauge simpli�es to

∂α∂αhµν = 0 (in vacuum). (1.12)

Aside of the choice of Lorentz gauge, there remains the freedom to make

further gauge transformations of the form given in equation 1.10 provided

that ∂α∂αξβ = 0, for they leave equation 1.11 unchanged.�is means that

the Lorentz condition does not uniquely �x the degrees of freedom in the �e Lorentz gauge is in
fact a class of gauges�eld variables. It can be shown [235] that the gauge can be changed while

remaining within the Lorentz class of gauges using any vector solving(
−
∂2

∂t2
+∇2

)
ξα = 0. (1.13)

�us, we can always arrive at the gauge

h = 0 (1.14)

h0i = 0 (i = 1, 2, 3) in a source-free region (1.15)

h00 = 0 if no sources are present anywhere, (1.16)

which is referred to as Coulomb gauge, also known as radiation gauge. In this

transverse-traceless (TT) gauge hµν = hµν, as already noted.�e Einstein

�eld equations in vacuum far away from the source of the �eld take the form(
−
∂2

∂t2
+∇2

)
hµν = 0, (1.17)

a wave equation for the gravitational radiation that admits the plane-wave

solution

hµν = aµνe
ikαx

α
, (1.18)

where aµν is a four-dimensional symmetric tensor containing the amplitude

of the di�erent components of the wave and kα is the wave vector. Substi-

tuting 1.18 in 1.17 yields the condition kαk
α = 0, i.e. kα = (ω,~k) is a null

vector tangent to the world line of a photon, which shows that gravitational

waves propagate at the speed of light.�e nullity of kα impliesω2 = |~k|2. It is natural that
gravitational waves
propagate with speed c,
as c is the only relevant
speed in the theory.
Astrophysicist Sir
Arthur Eddington,
however, liked to
express his skepticism
by saying that
“gravitational waves
propagate at the speed
of thought”

�e choice of Coulomb gauge imposes several constraints on the compo-

nents of the tensor aµν.�e traceless condition 1.14 translates to a = 0; 1.15

and 1.16 imply that only the spatial components of aµν are non-zero. If we

further orient the direction of propagation of the wave along the z-axis so

that kα = (ω, 0, 0,ω) then aαz = 0 for all α.�ese conditions reduce the

number of independent components of aµν from ten to only two

aµν =


0 0 0 0

0 axx axy 0

0 axy −axx 0

0 0 0 0

 , (1.19)
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hence the �nal form of the solution to the source-free, linearized Einstein

equations for the perturbative �eld is

hµν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 eiω(z−t), (1.20)

withh+ andh× representing the two polarization states of thewave. A general
gravitational wave can be written as a linear combination of the plus and cross
components h = h+ê+ + h×ê× in the orthonormal basis of vectors

ê+ =

(
1 0

0 −1

)
ê× =

(
0 1

1 0

)
. (1.21)

Rotations of the x- and y-axes in the transverse plan by an angle ψ change

the polarization components in the following way

h ′+ = h+ cos 2ψ+ h× sin 2ψ

h ′× = −h+ sin 2ψ+ h× cos 2ψ, (1.22)

which indicates that general relativistic gravitational waves have spin two,

because the source of gravity is the stress-energy tensor, which is a second-

rank tensor.�is is of importance for issues related to quantization of gravity,

which fall beyond the scope of this thesis.

1.1.2 E�ects of Gravitational Waves on Test Particles

�e formalism developed in section 1.1.1 shows how gravitational radiation

from a far source propagates throughout the universe in the form of ripples

in the space-time, deforming its geometry.�us, in principle, gravitational

waves could be detected by accurately tracking the separation of a pair of�ese three
gravitational-wave
detection mechanisms
are, respectively, the
functional principles of
interferometers, pulsar
timing arrays and
resonant bars

freely-suspended masses. Using the same principle, one could try to measure

the perturbation on the paths of photons coming from a far object —such as a

millisecond-period pulsar— when they are a�ected by a passing gravitational

wave. Alternatively, masses connected by a solid piece of material would react

to the gravitational tidal forces that stress the material.

Light constitutes an excellent way of measuring proper distances between

free-falling objects. Pulses of electromagnetic radiation propagating in a re-

gion a�ected by a gravitational �eld react to it in a measurable way that can

provide us with information about the metric of the space-time. Consider

two free-falling particles A and B in a background Lorentz frame and choose

the TT gauge introduced in section 1.1.1 associated to this frame. We will work

in the TT gauge, for it is the most appropriate when dealing with radiation

space-times. Besides, test particles in a given spatial location remain at those

same TT coordinates, which is particularly convenient.

We shall denote ξα the connecting vector between A and B. Free particles

obey the geodesic equation for their 4-velocity uα [259]

uα∇αuβ = 0. (1.23)
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x

(a) (c)(b)

Figure 1: E�ect of the two polarizations of a gravitational wave propagating through

a ring of test particles. (a) A ring of free particles before a wave travelling

in the z-direction reaches them. (b) Distortion produced in the ring by

the plus polarization h+, which modi�es the proper distance between the

particles in the ring, altering its geometry as the phase of the gravitational

wave changes through a complete oscillation cycle. (c) Same as (b) but for

the cross polarization h×.�e e�ects are not drawn to scale but have been
greatly magni�ed.

In a curved space-time, the second derivative of the vector ξα is non-zero,

which means that there is an acceleration between particles A and B given by

the equation of geodesic deviation

aα =
d2ξα

dt2
= −Rαβµνξ

βuµuν = −Rαβ00ξ
α, (1.24)

since the 4-velocity uα has coordinates (1, 0, 0, 0) in this coordinate basis.

In the TT gauge, the relevant components of the Riemann tensor, de�ned in

equation 1.6, can be easily calculated

Rν00µ =
1

2

d2hµν

dt2
, (1.25)

which, according to equation 1.20, are only non-zero for µν = ij with i, j =

1, 2 representing the x- and y-directions.�us

d2ξi

dt2
=
1

2

d2hij

dt2
ξj. (1.26)

Figure 1 illustrates themeaning of equation 1.26. A ring of particles placed at

rest on the xy-plane in an initially wave-free region of space-time encounters

a gravitational wave travelling along the z-direction.�e arrival of the wave

modi�es the proper distance between the particles.�e plus polarization of
the wave stretches and squeezes the ring along the x- and y-axes, oscillating

between the shapes displayed on panel (b) of �gure 1.�e cross polarization
distorts the ring along the directions given by (êx ± êy)/

√
2.�e e�ects of

the two polarizations are rotated 45◦ relative to one another, in contrast to
the electromagnetic �eld, where the rotation angle is 90◦.
Once we know the e�ect of a passing gravitational wave on a pair of test

particles, we can proceed to devise mechanisms for detecting that e�ect, for
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instance, by means of a laser and an interferometer of arm’s length L. An

assumption that is usually made for ground-based detectors is that the wave-

length of the gravitational wave is much larger than the size the interferometer,

λGW � L.�is simpli�es the integration of equation 1.26

δx =
hxx

2
x, δy =

hyy

2
y. (1.27)

�us, the variation of the proper lengths of the interferometer’s arms is pro-

portional to the original distance between them. When a gravitational wave

passes along the z-direction with polarization hxx = −hyy = h+(t), the

change in proper distance and the phase di�erence between the two beams at

the origin are

δL(t)

L
= h+(t), ∆φ = 2π

L

λ
h+(t). (1.28)

�e interferometer response, i.e. the di�erence in phase between the beams

recombining at the beam splitter is proportional to

h(t) ∝ δ(∆φ) ≡ F+h+(t) + F×h×(t), (1.29)

where F+ and F× are the antenna patterns of the detector, which encode the
projections between the wave’s polarizations in the radiation’s and detector’s

reference frames.�e quantity h is the gravitational wave strain.
In this derivation it is implicitly assumed that the spatial variation of the

gravitational wave in the interferometer’s arms is negligible.�e temporal

variation of h(t) in during the short time ≈ 2L that it takes for the light to
travel back and forth to the mirror is not taken into account.�e result of

the derivation is right, however it is in principle not correct to use the spatial

distance. As a matter of fact, the photons travel along null geodesics, not

spatial. One can calculate how the frequency of the photonω changes when

travelling through a space-time a�ected by gravitational radiation:

δω

ω
= −

1

2
x̂ix̂iḣijL. (1.30)

�e passing gravitational wave a�ects the photon by altering its path; tracking

the Doppler shi� of a sinusoidal electromagnetic signal allows us to measure

the e�ect of the gravitational radiation. For a complete, general derivationFor concrete examples
of correct derivations of
the response functions
for LIGO and LISA we
refer the reader to the
articles [226] and [117]
respectively

of the Doppler shi� of a signal transmitted and transponded from a distant

spacecra�, including the results obtained when dropping the assumption of

long wavelength, the reader is referred to [113].�is paper is fundamental

for understanding the physics that underlie the operation of the space-borne

antenna LISA, and also generalizes commonly-used formulations of the e�ect

of gravitational waves on ground-based detectors like LIGO and Virgo.

1.2 history of gravitational-wave detectors

Weber studied gravitational radiation withWheeler and pioneered the �eld of

gravitational-wave detectors at a time—late 1950s and early 1960s— when the

mere existence of gravitational waves was not widely accepted. He designed

and built the �rst gravitational-wave detector in the form of an aluminum

cylinder carefully suspended and connected to instrumentation to observe
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oscillations of the bar’s fundamental mode [261]. A passing gravitational wave

would set the cylinder vibrating at its resonant frequency —about 1660 Hz—

and piezoelectric crystals �rmly attached around the cylinder’s waist would

convert that ringing into an electrical signal. Due to the extreme weakness of

the gravitational radiation, the cylinder had to bemassive and the piezoelectric

sensors very sensitive and capable of detecting a change in the cylinder’s length

by about 10−16 meters.

�is is indeed what Weber reported a couple of years a�er the construction Physicist Joseph Weber
(1919–2000) studied
electronics before
joining the engineering
faculty of the University
of Maryland, College
Park, where he
completed his PhD with
a thesis on microwave
spectrometry. He gave
the earliest public
lecture on the principles
behind the laser and the
maser

of his �rst detector [262, 263]. By that time his group in Maryland had built

several cylindric bars andmoved one of them to ArgonneNational Laboratory,

near Chicago, about 1000 km away. Reported were observations of above-

background coincidences between both detectors with very low false alarm

probability, which were interpreted as “good evidence” for gravitational waves.

In his publication from 1970 [263], Weber even claimed to have measured

largely anisotropic radiation that peaked in the direction of the galactic center.

In the years subsequent to Weber’s detection claim, a number of indepen-

dent groups built their own bars and tried to reproduce his results. None of the

instruments —located in Argonne, Glasgow, Moscow, Reading, Rutherford,

Tokyo, Munich, Frascati, Stanford, Rochester and the Bell Laboratories in

New Jersey— were able to measure anything other than random noise, thus

discrediting Weber’s work. By the late 1970s the consensus in the scienti�c

community was that Weber’s results were spurious. His recognition as father

of gravitational-wave detection e�orts is nevertheless well deserved, for he

drew many others into the �eld.

Soon it became evident that improved detectors were needed in order to

approach the sensitivity region that would allow astrophysicists’ predictions

to be tested. Resonant bars cooled to liquid helium temperatures of ∼3K and

below at millikelvin —cryogenic bars— promised to reach a sensitivity �ve

orders of magnitude better than that of Weber’s bars. Ideally, that would make

them sensitive to the strongest potential sources of gravitational waves in our

Galaxy and in the local group.�us, a number of ultra-low temperature bars

were designed and constructed during the 1980s and 1990s: the cryogenic

resonant gravitational radiation detector ALLEGRO [180] at Louisiana State �e creativity of bar
researchers is shown in
the made-up acronyms
of their detectors.
ALLEGRO: A
Louisiana Large
Experimental
Gravitational Radiation
Observatory
AURIGA: Antenna
Ultracriogenica
Risonante per
l’Indagine
Gravitazionale
Astronomica
NAUTILUS: Nuova
Antenna a Ultrabassa
Temperatura per
Investigare nel Lontano
Universo le Supernovæ

University, the Italian-built bar EXPLORER [46] located at CERN in Geneva,

the coldest and more sensitive AURIGA [215] in Legnaro near Padua, the

niobium-made bar NIOBE [63] at the University of Western Australia, the

millidegree bar NAUTILUS [47] at Frascati.

�e experimental challenge faced by the groups operating resonant detec-

tors is better understood with a simple calculation of the tiny e�ects induced

in the bars by gravitational radiation. Gravitational waves are generated by the

acceleration of masses with quadrupolar distributions. A very simple upper

limit for the amplitude of the gravitational waves can be given by

h� 1

c4

(
GM

r

)(
GM

R

)
, (1.31)

whereM is the mass, r is the distance and R is the radius of the astrophysical

object. Hence, a neutron star with a typical mass of 1M� and R = 10 km

located at a distance of 10 Mpc would produce a strain h � 10−21.�e

energy �ux of a gravitational wave is given by

F =
c3

16πG
|ḣ|2. (1.32)



16 gravitational waves

For a wave of h = 10−21 and frequency 1 kHz the energy �ux is about

0.3W/m2.�is �ux is comparable to that of the Moon light on the Earth,

however it is very di�cult to detect with a resonant bar detector, given the

very small absortion cross section of matter.

One way to improve the detectability of weak signals is to increase the

size of the e�ect they induce in the detector, which depends on the lenght of

the bar, the amplitude of the wave and the quality factorQ of the material.

�e value of Q is a characteristic of each oscillator, de�ned as the ratio of

the stored energy to the energy dissipated per one radian of the oscillation.

Unfortunately, the size of a bar detector can not be increased arbitrarily, for an

object of dimensions larger than a few meters would be almost impossible to

isolate from external noise sources.�e amplitude of the gravitational waves

is likewise determined by the position, distance and characteristics of the

sources. Hence, the only alternative to achieve a larger and easier-to-measure

e�ect in the detector is to build it of a highQ-value material, such as sapphire.

A highQmeans that the bar stays for a longer time in an excited state, which

results in an increased signal-to-noise ratio. Bars made of sapphire were

proposed and constructed, but no sustantially superior results were reported.

In fact, a major drawback of cylindric detectors comes intrinsically from

their geometric design: when a bar is hit by gravitational wave, it rings; more

speci�cally it expands and contracts along its length.�ese detectors are

therefore relatively insensitive to gravitational waves travelling along their

axes, since gravitational waves are transverse waves. A more optimal design

choice is that of spherical detectors, which are responsive to radiation arriving

from any direction.�e transducers that measure the small disturbances in

the detector can be placed everywhere on the sphere. As a matter of fact, a

basis of �ve tensors su�ces to determine all directions, polarizations, andSee [119] for a
description of the
posible orthogonal sets
proposed by Forward

magnitudes of incident gravitational waves.

Two projects based on spherical detectors are currently operating or prepar-

ing commissioning runs.�e pioneer is MiniGRAIL [106], located at the

Leiden University in the Netherlands.�e MiniGRAIL detector is a cryogenicMiniGRAIL:
Gravitational Radiation
Antenna In Leiden

68 cm diameter spherical gravitational wave antenna made of CuAl with a

mass of 1400 kg, a resonance frequency of 2.9 kHz and a bandwidth around

230Hz. It aims to operate at 20mK.�e “Mario Schenberg” detector [21] at

the University of São Paulo in Brazil has a diameter of 65 cm and weights

1150 kg.�e two detectors will ideally operate in coincidence, searching

for high frequency events in the 3.0–3.4 kHz frequency bandwidth, such as

rotating neutron star instabilities or small black hole mergers.�e quantum-

limited strain sensitivity dL/L of these antennas ranges from 4× 10−21 to

10−22.

�e theory of how to detect below the quantum limit and the challenge of

how to manipulate the Heisenberg uncertainty principle in a macroscopic

object has not yet been met in practice and that is one aspect that makes

detection of gravitational waves with resonant detectors so fascinating and yet

so arduous. Another serious problem bars encounter is the narrow frequency

band —around their resonance frequency, typically above 600Hz— that they

are capable of surveying. Most strong sources of gravitational waves, such

as binaries of moderate to massive black holes, emit at lower frequencies

than that and on a wide range of frequencies. Moreover, the relatively small

dimensions of resonant detectors seriously limit the maximum size of the

tidal stretching induced in them by a passing gravitational wave and make
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them more prone to be a�ected by quantum, thermal and vibration noise

sources. All these inherent di�culties for measuring gravitational ratiation

with resonant detectors have led the �eld to a gradual decline a�er the year

2000, while gravitational-wave interferometry has progresively taken the

leading role in the detection e�ort.

1.3 gravitational-wave interferometry

Laser interferometers use light to measure the distance between two free-

falling mirrors. Nowadays they are the most sensitive operating gravitational-

wave detectors and constitute the most promising technology for performing

the �rst measurements within the next years.�eir superiority over resonant

detectors comes from their larger size, which translates in an inherently bet-

ter sensitivity, and from their ability to detect signals in a broad range of

frequencies.

A typical astrophysical source of interest for gravitational-wave astronomy

has frequency components at fGW ∼ 100Hz, corresponding to a wavelength

of λGW ∼ 3000 km. Maximum sensitivity of the interferometer is achieved

when the wave spends half of its period in the arms, this is

L =
λGW

2
∼ 1500 km, (1.33)

an unrealistic length for a ground-based detector. In practice, a simple Michel-

son interferometer is enhanced by means of two additional near mirrors

placed near the beam splitter.�e Fabry–Pérot cavities store the beams and

increase the e�ective path length.

A simple diagram showing the basics of a gravitational-wave interferom-

eter is given in �gure 2.�e design consists of a power-recycled Michelson

interferometer with Fabry–Pérot arms. Two mirrors are suspended at each

end of the L–shaped detector arms.�e light originates in a pre-stabilized

laser that passes through an optical mode cleaner and is divided in two paths

at the beam splitter, travelling back and forth within the Fabry-Pérot cavities.

�e two arms form cavities that trap much of the light that enters, due to the

almost perfect re�ectance of the near mirrors.�e associated power gain in-

creases the sensitivity. All mirrors, including the beam splitter, are suspended

in order to remove noise associated to mechanical vibration.�e light that

exits the cavity a�er being re�ected in the far mirrors eventually returns to the

beam splitter and the two separate beams recombine.�e returning beams

are kept out of phase so that when the arms are both in resonance —when

there is no gravitational wave passing through— their light waves subtract,

and no light should arrive at the photodiode.

When a gravitational wave passes through the interferometer, the distances

along the arms of the interferometer are shortened and lengthened as shown

in section 1.1.2, causing the beams to become slightly less out of phase, so some

light arrives at the photodiode, indicating a signal. Light that does not contain

a signal is not wasted but it is returned to the interferometer using a power

recycling mirror, thus increasing the power of the light in the arms. During

normal operation of the interferometer, noise sources can cause movement

in the optics, producing similar e�ects to real gravitational waves — as a

matter of fact, a major complexity factor in the e�ort of detecting gravitational
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Figure 2: Schematic optical layout of a gravitational-wave interferometer, showing its

main components.�e diagram is not to scale and does not display other

re�nements of the optical design.

radiation is �nding ways to extract the real signals without confusing them

with these spurious motions of the mirrors.

In designing an interferometer for gravitational waves, the same principles

operating on bar detectors apply: an increase in the instrument’s size entails a

larger signal and thus a reduction in the noise. Contrary to resonant detectors,

interferometers can expand in size and obtain a larger signal by means of a

longer arm. Nevertheless, the signal will always be masked by a variety of

instrumental sources of noise.�e signi�cance of the main noise sources will

be brie�y reviewed in the next subsections.

Seismic Noise

Undesired ground vibrations, due to seismic and human activities, limit the

sensitivity of the interferometers at low frequencies. To �lter out these distur-

bances, the optical components are suspended to a series of several pendulums,

each hanging from the above. Above their resonance frequency, a simple pen-

dulum is actually a second-order low-pass �lter, with a response function

attenuated as 1/f2 for the mirror motion.�e interferometer Virgo [257] uses

seven-stage pendulums —called superattenuators— which e�ectively �lter

out the seismic noise, enabling detection down to ∼ 4Hz. In the case of the

LIGO [173] and GEO600 [127] detectors, double and triple pendulums are

used.�e lower cut-o� frequencies below which the seismic noise dominates

are slightly larger than that of Virgo, around 40 and 50Hz respectively.

�ermal Noise

�is source of noise is associated to thermal vibrations of themirrors and their

suspensions.�e steel wire that suspends the mirror is at room temperature,

in thermal equilibrium with the environment. Its thermal �uctuations induce

a motion in the mirror that changes the length of the interferometer’s arm.

In order to keep thermal noise as low as possible, the use of ultra-high-Q
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materials in the construction of mirrors and suspension wires is advisable.

Suspension thermal noise limits the sensitivity of the detectors mainly in the

50–200Hz band.

Shot Noise

Photon shot noise is the major limiting source of disturbance at frequencies

above 200Hz and results from the �nite number of photons arriving at the

photo-detector. Phase and amplitude of the light �eld are conjugate variables

which can not be determined simultaneously with arbitrary precision.�us,

the power of the light beam is expected to �uctuate randomly, a�ecting the

measurements in the photodiode. Shot noise can be reduced by increasing the

laser power. In order to be able to detect gravitational waves with frequency

∼ 100Hz, the intensity of the laser would need to be of the order of ∼ 100W,

a value beyond the capability of any existing continuous laser. To circumvent

this limitation, power reciclying techniques are used to increase the power in

the interferometer’s arm and Fabry–Pérot cavities are installed which amplify

the phase shi� accummulated. Using such a design, the typically-used 10W

lasers su�ce to achieve the desired sensitivity at high frequencies.

Other Quantum Sources of Noise

Although photon shot noise can be reduced by increasing the laser power, this

in turn will increase the size of the �uctuations in the laser intensity and in

the laser pressure on the mirrors.�is quantum limit does eventually become

the limiting noise factor at high powers. Future-generation interferometers

will need to deal with this source of noise by means of signal recycling and

the use of squeezed light. Such investigations are already taking place in

currently-operating interferometers, like the GEO600 detector.

1.4 the world-wide international network of detectors

As noted in section 1.3, the extreme sensitivity required for measuring the tiny

e�ects that gravitational radiation induce in matter, together with the una-

voidable presence of spurious noise sources in the detector imply that random

internal disturbances might masquerade as real signals. In practice, any kind

of detection claim needs to be corroborated by coincident observations from

more than one interferometer in order for the scientists to have con�dence.

Besides, it is convenient to have more than one detection instrument, since

the millisecond-scale time delays between observations at di�erent sites can

provide information on the location of the source on the sky, a crucial aspect

for gravitational-wave astronomy. Each new interferometer improves the

sensitivity of all existing ones.

In this spirit, several independent projects that now form an international

network of ground-based gravitational-wave interferometers have been de-

signed, funded, constructed and brought into operation in the course of the

last 20 years. In �gure 3 the locations of both currently-operating and planned

detectors all over the world are marked.�ey correspond to the sites of the

LIGO [173], Virgo [257], GEO600 [127], TAMA300 [249] and AIGO [48]

detectors.

LIGO operates two gravitational wave observatories taking data simulta- LIGO: Laser
Interferometer
Gravitational-wave
Observatory

neously: the LIGO Livingston Observatory (30◦33’46.42”N 90◦46’27.27”W)
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Figure 3: International network of gravitational-wave interferometers. Shown in the

map are the locations of the three American LIGO detectors at two sites,

LHO in Hanford, WA and LLO in Livingston, LA, the Dutch-French-Italian

Virgo detector in Cascina near Pisa, the British-German GEO600 located

near Hannover, the Japanese detector TAMA300 in Tokyo and the Aus-

tralian AIGO project near Perth.

in Livingston, Louisiana, USA and the LIGO Hanford Observatory, on the

Hanford Nuclear Reservation (coordinates of central complex: 46◦27’18.52”N
119◦24’27.56”W), located near Richland, Washington, USA. LHO hosts two
detectors of arm lengths 2 km and 4 km; LLO hosts one 4 km-arm detector.

�e two LIGO sites are separated by 3002 km. Since gravitational waves travel

at the speed of light, this distance corresponds to a di�erence in gravitational-

wave arrival times of up to ten milliseconds. LIGO is the largest and most

ambitious project ever funded by the American National Science Foundation.

�e construction of the facilities was completed in 1999, a series of science

data-taking runs started in 2002 and the LIGO design sensitivity was reached

in November 2005, initiating a two-year period that culminated a�er one full

year of coincident data among the three LIGO detectors was taken, the S5 run.

As of spring 2010 the analysis of these data, split in searches for stochastic,

continuous, burst and inspiral signals is close to completion. Chapter 6 of this

thesis focuses on the work done by the author in the context of two searches

for coalescent binaries in S5 data.

From its beginnings, LIGO was envisioned not as a one-shot experiment,

but as an ongoing scienti�c quest with increasing reach. To that end, the two

4 km-arm LHO and LLO detectors have undergone equipment upgrades

and system improvements that have led to LIGO’s sixth science run (S6), in

progress since July 2009.�e enhanced interferometers have been boosted

by new optics, increased laser power, advanced seismic isolation tables, and

improved signal sensing. But this is by no means the end of LIGO’s potential.

In addition to enlarging the present scope of gravitational-wave searches,

Enhanced LIGO and S6 are already providing an important testing ground

for yet a new set of improvements, which is expected to be fully implemented

in 2015.�is advanced-generation upgrade program, known as Advanced

LIGO, will increase the detectors’ sensitivities by a factor of 10 and probe a

volume of space a thousand times greater than initial LIGO. If our present

knowledge of general relativity and expected rates of astrophysical sources in

the local universe are correct, the advanced interferometers should be able to

detect gravitational waves within the next �ve years.
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Virgo, named a�er the Virgo Cluster, is located within the site of EGO (Eu- CNRS: Centre national
de la recherche
scienti�que
INFN: Istituto
Nazionale di Fisica
Nucleare

ropean Gravitational Observatory) at Cascina, Italy (43◦37’53”N 10◦30’16” E).
With its 3 km-long arms, it is the largest interferometer built outside the USA.

Virgo is funded by EGO, a consortium created by CNRS for France and INFN

for Italy with the aim of fostering gravitational-wave research in Europe.�e

construction of Virgo �nalized in 2003 and the detector started its �rst science

run, VSR1, inMay 2007, joining LIGO’s S5 run in a three-site data-taking e�ort

that extended until October 2007. In contrast to LIGO, that is built around

having two facilities and using the combined power to make observations,

Virgo is a single powerful detector optimized to extend the bandwidth to

lower frequencies with a very sophisticated seismic isolation system.

In a manner similar to that of LIGO, Virgo has planned a two-step upgrade

towards a second-generation detector. Virgo+, the enhanced version of Virgo,

includes a system for thermal compensation and a laser with increased power.

In this con�guration, a VSR2 data-taking period started coincidentally with

LIGO’s S6 in July 2009. A one- to two-year joint S6/VSR2 science run with

these enhanced interferometers is foreseen, that will extend until the begin-

ning of 2011. New payloads—dielectric reference mass, fused silica �bers, new

mirrors allowing to achieve a higher cavity �ness— will be installed in 2010.

�e interferometer optical con�guration does not change at this stage. On

the contrary, the second-generation detector, Advanced Virgo, will require a

major upgrade, with the goal of increasing the sensitivity by about one order

of magnitude with respect to Virgo in the whole detection band. Its starting

operation date, most likely around 2015, shall be selected in agreement with

the Advanced LIGO installation in order to optimize the e�ciency of the

world-wide network of gravitational-wave detectors.

�e British-German gravitational-wave detector GEO600 is situated near

Sarstedt in the proximity of Hannover, Germany (52◦14’49”N 9◦48’30” E).
Its construction started in September 1995 with funds from the Max Planck

Society, the Federal republic of Germany and the Particle Physics and Astron-

omy Research Council of the UK. With its 600m-long arms, GEO600 is the

�rst large-scale instrument already now using second-generation technology,

such as electro-static actuators and signal recycling. Between 2002 and 2006

GEO600 participated in several data runs in coincidence with the LIGO de-

tectors, the last of which had GEO600 joining S5 from May to October 2006.

In November 2007, as soon as the LIGO and Virgo detectors went o�-line,

GEO600 entered continuous operations —the “Astrowatch mode”— supple-

mented when possible by the 2-km LHO detector. Astrowatch terminated

when the enhanced detectors began operating in July 2009.

Due to limiting infrastructure and the topology of the site, which prevents

any increase in the arm length, GEO600 can not undergo a major upgrade in

the fashion of the advanced LIGO and Virgo detectors. However, signi�cant

improvements through small sequential changes can be made to reduce noise

sources at high frequencies in the kHz region where, for example, normal

modes in neutron stars or quasi-normal modes in black holes provide inte-

resting gravitational wave sources.�e goal of this GEO-HF program [265]

is to improve the sensitivity of the detector in the high-frequency mode by

reducing the e�ect of two limiting noise sources, namely shot noise and

coating thermal noise. In such a con�guration, GEOwill be the most sensitive

detector at high frequencies and will be used to search for sources whenever

the detection strategy of the worldwide detector network allows it.
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TAMA300 is a 300-m baseline gravitational-wave detector located at theMi-Tama is the area of
Tokyo where the
observatory is situated,
and “tamatama” is
Japanese for “casually,
unexpectedly, by
chance”

taka campus of the National Astronomical Observatory of Japan (35◦40’31” N
139◦32’4” E). It is a project of the gravitational-wave studies group at the
Institute for Cosmic Ray Research (ICRR) of the University of Tokyo. Its

construction started in 1995; joint operation with LIGO and GEO600 took

place until 2004. Due to its modest size, TAMA300 is seen as a step towards a

larger-scale interferometer in the sense of technology and construction budget.

�at future project is the Large Scale Cryogenic Gravitational Wave Telescope

(LCGT), which pursues the goal of detecting at least one gravitational wave

event per year at a sensitivity comparable to that of Advanced LIGO and Virgo

and two orders of magnitude better than TAMA300. LCGT is currently being

constructed and will consist of two sets of interferometers with 3 km-long

arms located underground in a tunnel of the Kamiokamine in Japan.Whereas

TAMA300 plays an important role as test bed for interferometer operations

and advanced vibration-isolation systems, CLIO, a 100 m-baseline under-CLIO: Cryogenic Laser
Interferometer
Observatory

ground cryogenic interferometer, shall prove the feasibility of a cryogenic

installation in the Kamioka mine.�e LCGT mirrors, made of sapphire and

cooled down to temperatures of 20 K, will reduce thermal vibrations of the

material.

Given the fact that all the detectors described so far are located in the North-

ern hemisphere, it becomes apparent that the addition of one in the Southern

hemisphere would greatly improve the world-wide network of interferom-

eters [236].�e AIGO site at Gingin, north of Perth in Western AustraliaAIGO: Australian
International
Gravitational
Observatory

(31◦21’27.6” S 115◦42’50” E) was carefully chosen for its convenience to host
such a facility. Currently, the AIGO research facility consists of a 80m inter-

ferometer, but a proposal is underway to build a 5 km-long detector which

could join Advanced LIGO, Advanced Virgo, GEO-HF and LCGT in what

would constitute the most sensitive gravitational-wave data-taking e�ort to

date.

�e sensitivity of currently-operating gravitational-wave interferometers

has steadily improved over the last decade. With every new experimental

challenge, an improved noise curve has been obtained, which means that the

detectors’ reach to astrophysical sources of gravitational radiation increases.

Figure 4 displays the strain sensitivity curves corresponding to the ground-

based interferometers in operation during S5/VSR1.�e curves show the

status of the three LIGO detectors in summer 2007 in red, blue and green, the

Virgo detector in May 2008 in purple and the GEO600 detector in June 2006

in black.

Figure 4 illustrates in practice the diverse noice sources a�ecting the de-

tectors that were described in section 1.3. At low frequencies below 50 Hz

for GEO600 and 40Hz for LIGO, the seismic wall appears.�e special sus-

pension technology of Virgo makes it specially competitive down to 10Hz,

which should enable the observation of many more cycles for the merger of

compact objects and a broader frequency band to search for signals from

spinning pulsars. In the intermediate frequency band between 50 and 200Hz,

the suspension thermal noise becomes dominant.�e LIGO detectors are

the most sensitive in this region, with their sweet spot of maximum sensitivity“Sweet spot” is the
common name to refer
to the most sensitive
part of the detector

located at around 150Hz. At high frequencies, the sensitivity of all detectors

worsens again due to the presence of photon shot noise.�e future GEO-HF

will be optimized for these high frequencies and is expected to show improved

sensitivity in the kHz region. For comparison, the design sensitivity curves
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Figure 4: Strain sensitivity curves for the ground-based interferometers in operation

during S5/VSR1, the last run before the LIGOandVirgo detectors underwent

their “enhancement” upgrades.�e solid curves correspond to the three

LIGO detectors as of summer 2007, the Virgo detector as of May 2008 and

the GEO600 detector as of June 2006. For comparison, the dashed curves

show the design reference noise budget of Advanced LIGO and Virgo.

of the second-generation detectors Advanced LIGO and Virgo described in

section 1.5.1 are shown in �gure 4 as well.

1.5 the future of gravitational-wave astronomy

1.5.1 �e Advanced Interferometers

�e following yearswill see signi�cant sensitivity improvement of the detectors

and more extensive upgrades in what will constitute a second generation of

gravitational-wave interferometers. Advanced LIGO and Virgo will replace

their existing hardware with new technology, with the goal of gaining a factor

of 10 in improved sensitivity with respect to the �rst-generation detectors.

One of the most signi�cant consequences of the upgrades in the suspension

systems of LIGO will be the reduction of the seismic cut-o� frequency from

the existing 40Hz value in initial LIGO to 10Hz for the advanced detector.

To improve the sensitivity limited by the quantum noise, the laser power will

be increased from the 10W of initial LIGO to ∼ 200W. A signal recycling

mirror will give the advanced detectors the ability to tune the interferometer

frequency response, so that the sensitivity can be optimized for detection of

di�erent kinds of astrophysical sources.

�e second generation of ground-based interferometers will most likely

inaugurate an era of routine gravitational-wave observations, as its physical

reach during their �rst several hours of operation will exceed the integrated

observations of the �rst year LIGO science run. If the current instruments do
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Figure 5: Expected sources of gravitational waves for future ground-based and space-

borne detectors. Advanced and third-generation ground-based detectors

are expected to detect compact binaries formed by neutron stars, stellar-

mass black holes and, eventually, intermediate-mass black holes, as well

as signals from supernovæ core collapse.�e space antenna LISA focuses

on low-frequency signals coming from coalescence of supermassive black

holes, extreme mass-ratio inspirals and galactic binaries.

not make the �rst detection of GWs, the second-generation interferometers

should succeed.

1.5.2 �ird-Generation Ground-Based Detectors

�e fundamental low-frequency limitations of the second-generation detec-

tors are given by thermal, gravity gradient and seismic noise, as explained

in section 1.3. To circumvent these problems, yet a third generation of in-

terferometers to be operated underground is currently being proposed.�e

Einstein Telescope (ET) will be a 10 km laser-interferometer with a sensitivityhttp:

//www.et-gw.eu/ 100 times larger than that of the current detectors. Moreover it will cover

the frequency range between 1Hz and 104 Hz, increasing the ability to de-

tect massive BBHs which merge at frequencies lower than the cut-o� values

of LIGO and Virgo. Once the design study and the technical preparation

phase are completed, construction could begin a�er the second-generation

observatories have started operation, probably before the end of the next

decade.

�e frequency range that the ET will be able to probe and its expected

sensitivity could make this third-generation, ground-based interferometer

a complementary companion for the space antenna LISA described in sec-

tion 1.5.3, a very advantageous fact, since these two detectors might well be

operating simultaneously in the future. Whereas the geometry of the cur-

rent ground-based detectors requires a multi-site network to measure the

polarization of the GW signal, the ET design will be able to do so by itself,

http://www.et-gw.eu/
http://www.et-gw.eu/
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bene�ting from two coaligned, coplanar detectors at a single site.�e cur-

rently favored design contains three independent detectors arranged in an

equilateral-triangle geometry.�e expected sensitivity curve for this “baseline”

design of the ET is shown in Figure 5. An alternative “xylophone” con�gura-

tion of the ET has been proposed [151], which trades o� improved sensitivity

near 10 Hz for decreased sensitivity at higher frequencies.�e ability to op-

erate either in broad- or narrow-band mode —within the frequency range

where the noise budget is limited by photon-shot noise— in order to optimize

the sensitivity to targeted astrophysical sources is a common characteristic of

the proposed ET and the Advanced LIGO and Virgo detectors.

1.5.3 LISA:�e Space Antenna

LISA completes the family of gravitational-wave detectors and represents a LISA: Laser
Interferometer Space
Antenna

qualitative step forward in the exploration of the gravitational-wave spectrum.

LISA will operate in orbit around the Sun, and will consist of three widely

separated spacecra�s arranged in a triangular con�guration.�e entire ar-

rangement has been designed with a size ten times larger than the orbit of the

Moon.

LISAwill perform low-frequency gravitational-wave astronomy in the band

from 0.03mHz to above 0.1 Hz; its sources are massive black holes merging

at the center of galaxies, binaries of compact stars and stellar remnants in

our Galaxy, extreme mass-ratio inspirals in which a star-sized compact object

falls into a massive black hole at the center of a distant galaxy and, eventually,

other sources of cosmological origin, including the relic radiation from the

very early phase of the Big Bang, and speculative astrophysical objects such

as cosmic strings.�e antenna is expected to be launched within the next ten

years. A schematic depiction of the expected sources for the advanced, third-

generation and space-borne gravitational-wave detectors is shown in �gure 5,

including galactic binaries, extreme mass-ratio inspirals, supernovæ core

collapse and compact binary coalescences.

Chapter 2 describes the main sources of gravitational radiation reasonably

expected to exist in our local universe. According to our present understanding

of general relativity and the current progress in the detectors’ sensitivity �gures,

signals arriving from these sources ought to be detected with the enhanced or

advanced detectors over the course of the next years.





2
SOURCES OF GRAVITATIONAL WAVES

Astrophysicists and gravitational-wave physicists work towards understanding

the kind of potentially-detectable sources that exist in our Universe.�rough

the study of electromagnetic radiation by means of traditional astronomy,

enormous progress and discoveries of exciting phenomena have taken place Quasars, pulsars,
gamma-ray bursts and
the cosmic microwave
background radiation
were not discovered
until a�er 1950

during the last century. Most regions of the electromagnetic spectrum have

been studied at some level of sensitivity.

�e gravitational-wave spectrum constitutes a completely new scenario on

its own. In the case of gravity, the conservation of energy, linear momentum

and angular momentum prevent radiation due to the acceleration of mass

monopoles, mass dipoles and current dipoles respectively.�is implies that

the leading order radiation comes from the acceleration of mass quadrupoles.

Our current knowledge of the composition of the Universe states that only

4% of the mass-energy of the Universe exists in the form of charged particles

capable of emitting electromagnetic radiation. Nevertheless, the remaining

96% does couple with gravity and could perhaps emit gravitational waves.

Nearly all interesting astrophysical phenomena indeed do so, and usually in

copious amounts.�e information encoded in gravitational waves is pristine;

it comes to us una�ected by the matter it encounters, from the heart of the

most fabulous astrophysical events, such as supernovæ explosions or mergers

of black-hole binaries.

�is chapter succinctly describes the principal sources of gravitational

waves that are being searched for with the currently-operating interferometers.

�ese are stochastic signals that �uctuate randomly over a long time compared
to an observing run; periodic waves modeled as superposition of sinusoids
that are roughly constant over a long time compared to an observing run;

bursts that last only a few cycles or for short times compared to an observing
run; signals from coalescing binaries corresponding to systems that inspiral
and/or merge within the observation time. Special emphasis shall be placed

on coalescing black-hole binaries, as they constitute the main focus of this

thesis.

2.1 stochastic background

�e very early Universe must have been the source of a random sea of gravita-

tional radiation that even today permeates space and acts as an omnidirec-

tional background. Once produced, gravitational waves emitted shortly a�er

the Big Bang would forever carry unaltered information about the physical

processes that generated them.�e waves are expected to be originated in

a large number of unresolved sources, nowadays superimposed forming a

stochastic gravitational-wave background. Examples of this type of radiation

are relic gravitational waves from in�ation, from Galactic binary white-dwarf

systems and from slow-spinning Galactic pulsars. Estimations of the stochas-

tic background are usually made by considering the relation between the

27
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energy density of the gravitational wavesΩGW and the one needed to close

the Universe

ΩGW(f) =
f

ρc

dρGW

df
. (2.1)

�e quantity dρGW is the energy density of gravitational radiation contained

in the frequency range f to f+df and ρc is the critical density of the Universe.

�e expansion of the Universe has cooled down the stochastic radiation

— an uncertain aspect in our knowledge of it is its current intensity.�eo-

retical predictions for the value ofΩGW are a�ected by large uncertainties

depending on the applied model.�e optimum detection and characteriza-

tion strategy for this kind of signal is based on a cross-correlated analysis. A

stochastic gravitational-wave background signal would cause random �uctua-

tions in the phase of the output laser, which are indistinguishable from various

instrumental noise sources. If a signal is present, however, the randomness

is correlated among detectors. Such an analysis has been performed in the

LIGO S5 data [12], resulting in a constraint forΩGW of ∼ 6.9× 10−6 at 95%

con�dence in the frequency band around 100Hz, a result that already rules

out certain cosmic (super)string models. It is hoped that the advanced detec-

tors will be able to push the upper limit onΩGW down to 10
−10, a result that

would lead to further meaningful constraints on other theories of the early

Universe. A measurement of the stochastic background of gravitational waves

is possibly the most important observation that gravitational-wave detectors

can make from the point of view of fundamental cosmology.

2.2 periodic sources

Neutron stars are very compact objects originated from the gravitational

collapse of massive stars. Pulsars are highly magnetized, rotating neutron�e word “pulsar” is a
contraction of
“pulsating star”.�e �rst
pulsar was observed in
1967 by astrophysicist
Jocelyn Bell Burnell

stars that emit a beam of electromagnetic radiation. X-ray observations indi-

cate that most of the rapidly accreting, weakly magnetic neutron stars in the

Galaxy have a rotation frequency contained within a narrow band.�is appar-

ently remarkable fact can be explained by assuming that the loss of angular

momentum is due to emission of gravitation waves [61] through some given

mechanism. Currently there are over 200 known pulsars with frequencies

larger than 20Hz, which would fall in the detection band of the ground-based

interferometers.

�ese objects radiate gravitational waves due to a variety of physical pro-

cesses. Regardless of their origin, they emit a quasiperiodic continuous signal

of slowly-changing frequency over the observation time, due to loss of energy

in the form of gravitational radiation and, possibly, other mechanisms.�us,

the period of the pulsar steadily lengthens as the pulsar loses energy, a phe-

nomenon known as spindown. By measuring the pulsar’s spindown rate via
electromagnetic observations, an upper limit on its gravitational emission can

be set. One of the most relevant results from the LIGO detectors to date has

been the determination of a new upper limit on the gravitational wave emis-

sion from the Crab pulsar that beats indirect limits inferred from spindown

and energy conservation arguments [9].

�e mechanisms responsible for an accreting neutron star developing a

quadrupolar asymmetry are numerous. Among those that have been pro-

posed are internal r-mode oscillations, magnetic deformations and crustal
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mountains. A rapidly rotating neutron star with small deformations from its

axially-symmetric shape emits quasiperiodic gravitational waves.�is devia-

tion can be expressed by the ellipticity ε ≡ (Ixx − Iyy)/Izz, where Ixx, Iyy
are the components of the star’s quadrupole moment along the principal axes

in its equatorial plane and Izz is the moment of inertia along its rotation

axis. Typical neutron stars with massesM ∼ 1.4M� have 3× 1044 g cm2 .
Izz . 3 × 1045 g cm2, depending on the assumed equation of state.�e
uncertainties in the typical values of ε are much larger.�e gravitational wave

emitted by a neutron star located at a distance r has a frequency twice its

rotation frequency f and can be expressed as [253]

h ∼
4π2G

c4
Izzf

2

r
ε ∼ 2× 10−26

(
10 kpc

r

)( ε

10−6

)( f

1 kHz

)2
. (2.2)

�e intrinsic amplitude of the signal associated to rotating neutron stars is

very small, of the order of h ∼ 10−25 for a pulsar of f = 60Hz and ε = 10−5

at r = 1 kpc. Detection can therefore only be achieved by means of long,

day-to-weeks integration times that allow to extract the signal from the noise

it is buried in.�e Doppler e�ect due to the Earth changing its position by a

non-negligible fraction during this long observation times needs to be taken

into account. In practice, this kind of searches might become computationally

prohibitive, and thus, distributed methods of computation, such as the project

“Einstein@Home” are being developed. If gravitational waves from rotating http://www.

einsteinathome.

org/
neutron stars are detected, they will provide important information about the

star’s structure.

2.3 bursts

OurUniverse’s violent naturemanifests itself sporadically in the formof highly-

energetic, short-duration bursts of radiation. A variety of astrophysical sources

can give rise to such gravitational-wave bursts, being supernovæ explosions

and other generic gamma-ray bursts the canonical examples. A supernova

explosion happens when the compact core of a giant star collapses a�er having

exhausted its supply of energy from nuclear reactions.�e burst of radiation

released in such an explosion is so energetic that it might outshine an entire

galaxy.�e exact mechanisms that commence in the star’s core and trigger the

explosion are unfortunately not yet fully understood.�e complexity of the

problem requires that any realistic simulation incorporates a large number of

physical phenomena: three-dimensional hydrodynamics, neutrino transport,

realistic nuclear physics, magnetic �elds, rotation. At present the computation

of a detailed waveform is not feasible, thus making optimal searches using

matched �ltering unattainable.

In absence of complete models for the gravitational emission, typical data-

analysis strategies to search for gravitational-wave bursts involve looking for

excess power in certain frequency bands at speci�c times, which might or

might not be correlated with electromagnetic or neutrino observations —

these are known as externally-triggered searches. Additionally, burst searches
rely on �nding evidence of transient signals in coincidence among several

gravitational-wave detectors. An estimate of the amplitude of the radiation

http://www.einsteinathome.org/
http://www.einsteinathome.org/
http://www.einsteinathome.org/


30 sources of gravitational waves

from a typical supernova at 10 kpc that emits in 1ms the energy equivalent

of 10−7M� at 1 kHz can be given by [230]

h ∼ 6×10−21

(
E

10−7M�

)1/2(
1ms

T

)1/2(
1 kHz

f

)(
10 kpc

r

)
. (2.3)

A typical search for burst signals in the detectors’ output consists on the

combination of a signal-processing algorithm together with post-processing

and diagnostics tools.�e output of a search is a list of “triggers” that are

subject to consistency and coincident tests. Upon passing those tests, they

are considered gravitational-wave candidates. By de�nition, and due to their

unmodeled nature, burst searches make use of non-optimal and therefore

less sensitive detection methods than match-�ltered searches. However, they

have the advantage that, by not making any assumption on the functional

form of the wave to be detected, they might allow detection of sources that we

are so far unaware of. Certainly, if another supernova explosion like SN1987a

occurred in our galaxy within the next decade, burst detection algorithms

would turn out to be excellent tools for its characterization.

2.4 coalescing binaries

Gravitationally-bound binaries formed by compact objects orbiting around

each other —such as neutron stars or black holes— undergo a coalescence

process in the course of which they emit part of their energy as gravitational

radiation.�ese coalescing binaries are of particular interest to gravitational-

wave astronomy because they are among the most promising candidates to

be detected in the �rst place.�e gravitational radiation emitted by pairs of

neutron stars and/or black holes can be accurately modeled by a variety of

analytical and numerical theoretical methods.�is implies that searches for

these systems can be designed that employ optimal algorithms based on the

expected waveforms to be detected. Additionally, coalescing binaries can be

used as standard candles for measuring astrophysical distances, since their

amplitude is uniquely determined by their phase evolution and the luminosity

distance to the source. Finally, coalescing binaries can serve as test probes

of General Relativity, for their gravitational-wave signature originates from

objects which massively curve space-time and travel at speeds approaching

that of light.

2.4.1 Evidence for Compact Binaries

Both observational and theoretical reasons strongly support the existence of

neutron stars and black holes in our Universe, as well as their occurrence in

gravitationally-bound binary systems, formed either by two neutron stars,

two black holes or a neutron star and a black hole.�e Chandrasekhar limit

of ∼ 1.4M� gives a theoretical upper bound for the mass of an electron-
degenerate star.�is limit is of importance in multiple processes of stellar

explosion, such as TypeIa/b/c and II supernovæ, in particular processes that

end up in a white dwarf (Type Ia) or when the core of a massive star explodes

(Type 1b/c II).

Compact objects with an orbiting companion in a tightly gravitationally-

bound orbit have been observed andmeasured. By tracking down the elliptical
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movement of the binary components, an estimation of the masses of both

objects is possible. If the masses of the compact objects are larger than the

Chandrasekhar limit, then the binary must be formed by either neutron stars

or black holes. Associated phenomena such as thermonuclear explosions

observed as matter falls onto the compact object help determine whether we

are dealing with neutron stars. In absence of matter-associated processes, the

binary is formed by black holes, whose spins, among other values, can be

determined.

Further experimental evidence, for instance the observation of the orbital

period of the Hulse-Taylor pulsar [155, 250], supports the existence of in-

spiralling compact objects. Determination of the orbital energy loss due to

emission of gravitational waves allows for the masses of the binary to be esti-

mated as roughly 1.44M� and 1.39M�.�e two objects orbit each other
with a period of 8 hours, which corresponds to a separation of ∼ 1R�. At
this separation and given their orbital frequency, it is ruled out that the ob-

jects could be ordinary stars, for a much weaker force would result if they

were. On the other hand, the absence of observations of electromagnetic

counterparts excludes the possibility that these objects were white dwarfs.

Recently, the observation of the highly relativistic double pulsar system PSR

J0737-3039A/B [171] has provided themost stringent test to date of strong-�eld

gravity. Its mean orbital velocities and accelerations are much higher than

those of other known binary pulsars.�is system is unique in the sense that

both neutron stars are detectable as radio pulsars. Precise timing observations

taken over the �rst few years since its discovery have turned this object into

an excellent candidate for testing general relativity.

Con�dent in the existence of gravitationally-bound binary systems formed

by neutron stars and/or black holes in our Universe, the next sections proceed

to describe the coalescence process as well as the expected event rates for

coalescing binaries.

2.4.2 �e Coalescence Process

For a number of practical and theoretical reasons, the process of coalescence

of a compact binary is usually divided upon three distinct phases. During the

�rst stage, the two objects are still far from each other and move with non-

relativistic velocities in orbits that slowly spiral inwards.�is adiabatic phase

can be treated perturbatively under the assumptions of a weak gravitational

�eld inside the source and of slow internal motions.�e typical velocity of

the system is the orbital velocity v/c ∼ ε, which can be thought of as a

perturbative parameter indicating the deviation from the Newtonian regime.

When the Einstein equations introduced in section 1.1.1 are expanded

in terms of ε, an approximation which is valid if the deviation from the

Minkowski �at metric is small, the result is the post-Newtonian formalism.

�e lowest term in this expansion, corresponding to ε → 0, gives the well-

known quadrupole formula for the gravitational �eld in the TT coordinate

system [64]

hTTij =
2G

c4D
Pijmn(n̂)

d2

dt2
Qmn(t−D/c), (2.4)

whereD is the distance from the observer to the source, n̂ = ~x/D is the unit
vector in the direction connecting the source with the observer and the symbol
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Pijmn represents the TT projection operator onto the plane orthogonal to n̂.Pijmn = PimPjn −
1
2
δijPijPmn with

Pij = δij − ninj the
projector operator

�e objectQij is the quadrupole moment of the source, which can be written

in terms of the mass density ρ as follows

Qij =

∫
ρ(~x, t)

(
xixj −

1

3
δijx

2

)
d3x . (2.5)

During the long inspiral phase, the two compact objects forming the binary

follow an adiabatic sequence of quasi-circular orbits.�e movement of their

center of mass can be modelled by a series expansion on two variables, the

parameter ε and the symmetric mass ratio of the system, de�ned as

η =
m1m2

M
, M = m1 +m2. (2.6)

�e parameter η ranges from 1/4 in the equal-mass case to 0 in the test-mass

limit.�e validity of the post-Newtonian expansion is limited to situations

where ε→ 0 and η→ 1/4.�is implies that the series does not converge as

the two bodies draw closer and enter the strong-�eld regime — likewise, the

approximation is more exact the more similar the masses of the two compact

objects are.�e more detailed description of the post-Newtonian formulation

applied to the binary black-hole problem is given in section 3.1 of chapter 3.

�e emission of gravitational radiation progressively leads to the shrinking

of the orbit of the binary system, as the two bodies follow the quasi-circular

trajectory and enter the strong-curvature phase, when their motion becomes

more and more relativistic. Eventually, the system transitions from the adia-At approximately
v/c ∼ 0.3 one can
consider that the system
is in the strong-�eld
regime

batic inspiral to the plunge phase, being the frequency associated to the Inner-

most Stable Circular Orbit (ISCO) of a test particle in a Schwarzschild space-

time a traditionally-used transition point.�e ISCO frequency is reached

when the two bodies are separated by a distance of R = 6M resulting in

fISCO =
c3

6
√
6πGM

. (2.7)

�is mass-dependent frequency can be computed for several systems of in-

terest for ground-based interferometers. For instance, fISCO|M=2.8M� ≈
1570Hz whereas fISCO|M=30M� ≈ 150Hz.�e merger of binaries of neu-
tron stars occurs at frequencies at which the detector’s response is dominated

by shot noise — the post-Newtonian description is then adequate to describe

such binaries while they are within the most sensitive band of the detectors.

On the contrary, binaries formed by solar-mass black holes reach the plunge

and ringdown stages of their coalescence while in the LIGO/Virgo/GEO600
band, hence the corresponding post-Newtonian waveforms terminate too

early. Intermediate-mass and supermassive black-hole binaries merge at much

lower frequencies and are therefore the target of advanced and/or space-borne

detectors, as discussed in chapter 8.

Beyond the ISCO frequency, the real evolution of the system starts diverg-

ing signi�cantly from the predictions given by the post-Newtonian formalism.

�e orbital frequency of the inspiralling system speeds up and the power series

breaks up. Non-perturbative methods need to be employed and a full-GR

approach is required, i.e. the exact, non-truncated equations for the gravita-

tional �eld need to be solved. An analytical solution of the Einstein equations

is unfortunately not available for the two-body problem and thus, numerical

methods become very relevant in this regime.�e particular 4-dimensional
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Figure 6: Typical gravitational wave emitted by a coalescing compact binary.�e

system undergoes a long adiabatic inspiral phase (only the last piece of

which is plotted here) while the two bodies approach each other due to loss

of energy in the form of gravitational radiation.�e inspiral terminates

when the two bodies merge, a�er which they ring down to a �nal Kerr black

hole.�e wave depicted in this plot is a hybrid waveform corresponding to

an equal-mass, non-spinning, binary black-hole system.

nature of the Einstein equations imply that a 3+1 decomposition in their spatial

and time components is required before any attempt of discretizing them is

made.�is fact has given rise to a whole �eld of research on well-posedness of

the diverse formulations of the decomposed Einstein equations, ever since the

�rst numerical simulations of black-hole binaries were performed by Hahn

and Lindquist [139] in the 1960s.

A large body of research exists that studies the plunge of coalescing bina-

ries, both those formed by neutrons stars, black holes and mixed binaries.

�e presence of a non-zero stress-energy tensor on the right-hand side of

equation 1.1 makes numerical simulations with matter considerably more

complex than those of black-hole binaries. Nevertheless, and for a number

of reasons, fully self-consistent numerical relativity simulations of binary

black-hole space-times were inviable in practice until a few years ago — a�er

a series of breakthroughs occurred in 2005 [212, 88, 52], complete numeri-

cal simulations of the last stages of the binary black-hole coalescence �nally

became feasible.�e �eld has quickly blossomed ever since, turning into a

powerful tool to test predictions of general relativity in the strong-curvature

regime, and becoming an important element in the obtaining of accurate and

complete waveform templates for binary black-hole coalescence to be used

in gravitational-wave searches.�e key results achieved by the numerical

relativity community over the past years, which constitute one of the pillars

of the work developed in this dissertation, are presented in chapter 4.
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�e �nal fate of the binary a�er its plunge and merger is a single spinning

black hole that relaxes towards stationarity while it radiates all their pertur-

bations away, a process usually called ringdown.�e end-state is the only

possible axisymmetric and stationary solution in vacuum, the Kerr black

hole [164], that according to the no-hair theorem only carries information
about its mass and spin.�e gravitational wave emitted by the system can

be analytically calculated making use of perturbation theory, as explained in

section 3.2 of chapter 3.

Figure 6 summarizes in a graphical way what has been exposed so far about

the gravitational signature of compact binaries. Plotted is the typical gravi-

tational wave emitted by a coalescing compact binary formed by a pair of

black holes.�e �gure shows the last part of the long adiabatic inspiral phase

that eventually transitions into the plunge regime a�er which the two objects

merge and ring down to the �nal Kerr black hole.�e increasing frequency

and amplitude of the wave as the two coalescing objects approach each other

is clearly visible.�e signal displayed in �gure 6 is a hybrid waveform corre-

sponding to a non-spinning, equal-mass black-hole binary system obtained

with the method described in chapter 5.

2.4.3 Expected Astrophysical Rates for Compact Binaries

�e volume of the Universe that current gravitational-wave detectors are ca-

pable of surveying and the increased observable volume that the advanced

detectors would be able to explore make a natural question arise: what are

the expected rates of coalescing binaries thought to exist in our neighbouring

Universe?�eoretical predictions of astrophysical event rates are crucial to

the detection process. A clear understanding of these numbers can provide

essential input for questions relevant to which one of the various possible

con�gurations of the advanced detectors is optimal. Additionally, as the sen-

sitivity of the detectors improve, gravitational-wave observations will start

yielding astrophysically-interesting upper limits. Some models that predict

high detection rates could be ruled out, and constraints could be placed on

quantities such of the strength of massive-star winds and the kick velocities

of merged compact objects.

Based on the ample work done in the �eld of predictions of astrophysical

rates for compact binaries, a compilation of the state-of-the-art expectations

is presented here.�e results follow the discussion presented in [1]. Signi�cant

uncertainties a�ect the predictions of astrophysical rates for compact binary

coalescences, that can have an error bar of a couple of orders of magnitude.

Table 1: Terminology for statements related to astrophysical rates.�e symbols R

refer to rates per galaxy; the symbolsN represent detection rates

Abbreviation Rate statement Physical signi�cance

Rmax , Ṅmax Upper limit Rates should be no higher than...

Rhigh , Ṅhigh Plausible optimistic estimate Rates could reasonably be as high as...

Rre , Ṅre Realistic estimate Rates are likely to be...

Rlow , Ṅlow Plausible pessimistic estimate Rates could reasonably be as low as...
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Table 2: Compact binary coalescence rates per Mpc3 per Myr. Quoted are the ex-

pected rates for neutron-star, mixed and black-hole binaries, where the latest

are taken to be stellar-mass black holes of 10M�. For a discussion on the

expected rates of intermediate-mass black-hole binaries, see chapter 8.

Source Rlow Rre Rhigh Rmax

NS-NS (Mpc−3 Myr−1) 0.01 [162] 1 [162] 10 [162] 50 [166]

NS-BH (Mpc−3 Myr−1) 6× 10−4 [196] 0.03 [196] 1 [196] —

BH-BH (Mpc−3 Myr−1) 1× 10−4 [160] 0.005 [160] 0.3 [160] —

Nevertheless, a range or rates can be quoted that expresses the plausible

optimistic, likely and plausible pessimistic estimates. Table 1 introduces the

terminology used to refer to these concepts. Rre refers to the mean of the

posterior probability density function for the rates, Rlow and Rhigh are the

95% pessimistic and optimistic con�dence intervals, respectively, and Rmax is

the upper limit.

Rates are usually expressed in events per Myr per Milky Way Equivalent

Galaxy, events per Myr per Mpc3 or events per Myr per L10, where L10 is

1010 times the blue solar luminosity LB,�. Here we present the most up-to- LB,� =

2.16× 1033 erg/sdate compact binary merger rates per unit volume.�e references in table 2

provide further information on the assumptions that these rates are based on.

In order to convert these merger rates into detector rates, a number of

assumptions need to be made regarding the characteristic of the detectors, the

network of interferometers and the data analysis strategies that are followed in

the searches.�e �gures quoted in table 3 have been computed considering a

volume of the observable Universe such that the LIGO/Virgo network would

detect a compact binary with a signal-to-noise ratio of 8.�is is a conservative

choice if the detector noise is Gaussian and stationary and if there are two

or more detectors operating in coincidence. Additionally, a post-Newtonian

stationary-phase approximation is assumed for the functional form of the

gravitational wave originated by the binary coalescence.�is neglects the fact

that the most massive binaries merge and ring down within the detector band

and thus, the signal-to-noise ratio is underestimated. A further assumption

is made by considering that all neutron stars have a mass of 1.4M� and all
black holes a mass of 10M�—our knowledge of the mass distribution is not
su�cient at present to warrant more detailed models, and the uncertainties in

the coalescence rates dominate errors from the simpli�ed assumptions about

component masses.

Given the constraints mentioned above, the detection rates expected for the

initial and advanced ground-based interferometers are quoted in table 3 for

neutron-star, mixed and black-hole binaries of stellar mass. It is immediate to

note that even the most optimist estimates predict relatively low for the initial

interferometers; nonetheless, a lucky detection with the enhanced detectors

should not be ruled out.�e chances that compact binaries are detected

with the advanced detectors look however much more promising, for tens

to hundreds of compact binaries are realistically expected to exist within the

reach of the interferometers. In this section we have concentrated of neutron-

stars and stellar-mass black-hole binaries. For a more detailed discussion on



36 sources of gravitational waves

Table 3: Detection rates for compact binary coalescence sources. Event the optimist

estimates predict low rates in the initial interferometers—however, detection

is plausible with the advanced instruments.

Detector Source Ṅlow (yr
−1) Ṅre (yr

−1) Ṅhigh (yr
−1) Ṅmax (yr

−1)

NS-NS 2× 10−4 0.02 0.2 0.6

Initial NS-BH 7× 10−5 0.004 0.1 —

BH-BH 2× 10−4 0.007 0.5 —

NS-NS 0.4 40 400 1000

Advanced NS-BH 0.2 10 300 —

BH-BH 0.4 20 1000 —

rates and possible detection of intermediate-mass black holes with advanced
detectors we refer the reader to chapter 8.

�is chapter has provided an overview of the possible sources of gravita-

tional waves that are being searched for in the output of the current interfer-

ometers.�e focus has been put on the description of coalescing binaries, for

they are the main topic of this thesis.�e next chapters describe in more detail

the analytical and numerical tools relevant for computing the gravitational

radiation associated to black-hole binaries with aligned spins and introduce

the phenomenological model developed for these systems.
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3
ANALYTICAL MODELING OF BLACK-HOLE BINARIES

�e complex, non-linear structure of the Einstein equations poses a non-trivial

challenge when one tries to �nd an exact analytical solution.�e �nal object

to search for is a suitable metric describing the structure of the space-time,

including the inertial motion of objects in it. In order to do so, the stress-

energy tensor on the right-hand side needs to be calculated, which in turn

depends on the unknownmetric. If only interested in the weak-�eld limit of
the theory, the dynamics of matter can be computed using special relativity

methods and/or Newtonian laws of gravity and then placing the resulting

stress-energy tensor into the Einstein �eld equations. But if the exact solution

is required or a solution describing strong �elds, the evolution of the metric

and the stress-energy tensor must be solved for together.

�e particular case of the two-body problem —the dynamics of two struc-

tureless point-particles, characterized solely by their masses and, possibly,

their spins, moving under their mutual, purely gravitational interaction— has

no known complete solution. Even writing down the equations of motion for

this system is di�cult. Unlike in Newton’s theory, it is impossible to express

the acceleration by means of the positions and velocities, in a way which

would be valid within the exact theory.�erefore we are obliged to resort

to approximation methods.�e nature of the adiabatic inspiral phase of the

binary black-hole coalescence makes the post-Newtonian approximation par- �is approach is based
on a formal expansion
of the Einstein
equations when the
velocity of light c tends
to in�nity

ticularly suitable to describe the evolution of the system until the two compact

objects approach the merger and the strong-�eld regime dominates. Likewise,

once the two compact objects merge, the �nal state is reduced to a single

black hole, for which known, exact solutions to the Einstein equations do

exist. Perturbations of these solutions around the equilibrium give rise to

emission of gravitational radiation, and analytical methods exist to describe

this phenomenon.

In this chapter these two analytical approaches to the modeling of the in-

spiral and ringdown stages of the binary black-hole coalescence are reviewed.

�ese formalisms are of importance for the construction of the phenomeno-

logical model presented in chapter 5.

3.1 post-newtonian formalism for non-precessing binaries

Coalescing compact binaries such as the binary black-hole system can be accu-

rately modeled by the post-Newtonian approximation to general relativity at

least during the major part of the long inspiral phase, under the assumptions

of a weak gravitational �eld.�e full general relativity equations are approx-

imated by a series on the expansion parameter ε ∼ (v/c)2 ∼ (Gm/rc2),

where r is the separation between the two point masses and v the magnitude

of their relative velocity. In order to compute a post-Newtonian waveform for

the gravitational radiation, it is necessary to solve the equations of motion

and the generation of gravitational waves.

�e two-body equations of motion can be reduced to relative equations

of motion in the center-of-mass frame, and expressions for them up to dif-

39
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Figure 7: Pictorial representation of a binary black-hole system in a quasicircular

orbit. In the most general case the black holes are rotating with their spins

given by ~a1 and ~a2.�e particular subset of physical con�gurations that
we are interested in modeling here are those for which the orbit is non-

precessing, i.e. θ1 = θ2 = 0.

ferent PN orders can be found in the literature. For a complete overviewPN orders are named
according to the power
in the (v/c)n

expansion.�us,
3.5PN represents terms
of order (v/c)7 beyond
quadrupole

and description of the achievements in the �eld, the reader is referred to the

review article [64]. In the most general con�guration of the binary black-hole

problem, the spins of the black holes are randomly oriented and, thus, the

orbit precesses. A pictorial representation can be seen in �gure 7.

�e dimensionality of the parameter space of a spinning binary is consider-

ably larger than the equivalent non-spinning system. Assuming the black holes

to be well described by a mass and a spin vector (ignoring higher multipoles),

and their trajectory to be well described by adiabatically evolving Keplerian

orbits, we need 17 parameters to describe the binary system. Besides the twoSee e.g. [40]
masses and spin vectors, we also need a �ducial time t0 and orbital phase φ0
at t0, the distance to the source and its sky-location, two parameters for the

unit vector normal to the orbital plane, and �nally if we consider eccentricity

then we additionally need the eccentricity and the direction of the semi-major

axis. Su�ciently close to or during the merger, this description in terms of

Keplerian orbit will break down, and higher order black hole multipoles might

play a role as well.

As a �rst step towards the understanding of the full parameter step, a subset

of con�gurations can be studied.�is dissertation deals with the study of

binaries where both black holes have aligned or antialigned spins with respect
to the direction of the total angular momentum. Previous works on post-

Newtonian evolutions show evidence that, given generic initial conditions,

the system evolves towards stable con�gurations with spin vectors around

a �xed orientation [233], although this restriction seems to apply only to

certain sections of the parameter space. Similar hints pointing to the existence

of a rich structure for some regions of initial inspiral conditions have been

presented in [176, 150].

Hence, as a natural expansion of the parameter space encompassed by

our waveform models, the physical con�gurations that we will study in this

dissertation are those corresponding to non-precessing, spinning binaries.
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Additionally we will work in the frequency rather than in the time domain.

�e justi�cation for this choice will become clear in view of the matching and

�tting techniques developed in chapter 5.

In this chapter we focus on the post-Newtonian treatment for this kind of

systems, which we know is accurate at least during the major part of the long

inspiral part of the coalescence, under the assumptions of a weak gravitational

�eld [64]. In order to obtain an analytical description of the early inspiral in

the Fourier domain we construct the TaylorF2 phase [100, 101, 102, 43] and
the 3PN amplitude [67, 42] for compact binaries with comparable masses

and spins aligned with the orbital angular momentum. Each black hole is

characterized by its massmi and the magnitude of its spin vector

Si = |χi|m
2
i , i = 1, 2. (3.1)

�e spin vectors are aligned or antialignedwith the orbital angularmomentum
~L, where the sign of ~L · ~Si is given by the sign of χi. Useful quantities in the
post-Newtonian formalism are the symmetric mass ratio 2.6, the total mass

and the chirp mass

M = η3/5M. (3.2)

�e PN expansion is written in the dimensionless variable x, which is related

to the orbital frequencyω of the binary via

x = ω2/3. (3.3)

3.1.1 Energy and Flux

Two key quantities in the post-Newtonian formalism are the binding en-

ergy of the center-of-mass E and the gravitational-wave �ux L.�e post-

Newtonian expansion for the energy of inspiralling compact binary systems

in the adiabatic approximation is published in the the literature, see for in-

stance [64, 104, 66, 81] and references therein. For our purposes we include

leading order and next-to-leading order spin-orbit e�ects [165, 40, 65] as well

as spin-spin e�ects that appear at relative 2PN order [165, 97, 205].�e explicit Note that the square
terms in the individual
spins are only valid for
black holes, as discussed
in [97, 205, 81]

expression for the energy for non-precessing spinning black-hole binaries can

be written as

E = −
xη

2

6∑
k=0

ek x
k/2 , (3.4)

with

e0 = 1, e1 = 0, e2 = −
3

4
−
η

12
,

e3 =
8

3
(S1 + S2) + 2η(χ1 + χ2),

e4 = −
27

8
−
(
χ21m

2
1 + χ22m

2
2

)
+ η

(
19

8
− 2χ1 χ2

)
−
η2

24
,

e5 =
72− 31η

9
(S1 + S2) +

η(9− 10η)

3
(χ1 + χ2),

e6 = −
675

64
+ η

(
34445

576
−
205π2
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)
−
155η2
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−
35η3
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.
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Since the numerical relativity data that we will use in our phenomenological

model presents constant spin magnitudes, we use here the corresponding

post-Newtonian spin de�nition [116, 65].

�e other necessary component in the description of an inspiralling black-

hole binary as a sequence of quasi-circular orbits is the �ux L, which we take

at 3.5PN order including the same spin e�ects as for the energy. Additionally,

we take into account the 2.5PN correction of the �ux due to the energy �ow

into the black holes, as calculated in [32].�e �nal expression reads

L =
32

5
η2x5

7∑
k=0

`k x
k/2 , (3.5)

with the coe�cients `k given by

`0 = 1, `1 = 0, `2 = −
1247

336
−
35η

12
,

`3 = 4π−
11

4
(S1 + S2) −

5η

4
(χ1 + χ2),

`4 = −
44711

9072
+ 2

(
χ21m

2
1 + χ22m

2
2

)
+ η

(
9271

504
+
31

8
χ1χ2

)
+
65η2

18
,

`5 = −π

(
8191

672
+
583

24
η

)
+ (S1 + S2)

(
135

112
+
1189

126
η

)
+ (χ1 + χ2)

(
51

16
η−

15

7
η2
)

−
3

4
(χ31m

3
1 + χ32m

3
2),

`6 =
16π2

3
+
6643739519

69854400
−
1712γE

105
−
856

105
ln (16x)

+ η

(
41π2

48
−
134543

7776

)
−
94403η2

3024
−
775η3

324
,

`7 = π

(
−
16285

504
+
214745η

1728
+
193385η2

3024

)
. (3.6)

�e symbol γE ≈ 0.5772 represents the Euler constant.

3.1.2 TaylorT4 Approximant

�e post-Newtonian adiabatic model assumes that the motion of the binary

components proceeds along an adiabatic sequence of quasi-circular orbits.

In particular, the assumption is that ṙ = 0 and the following energy-balance

equation holds

dE(t)

dt
= −L(t), (3.7)

which, when using 3.3, translates into an evolution equation for the orbital

frequency, or equivalently

dx

dt
= −

L(x)

dE(x)/dx
. (3.8)

Taking equation 3.8 as starting point, diverse manipulations can be made that

lead to di�erent waveform models, as summarized in [69, 86]. For instance,
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numerically solving 3.8 leads to the TaylorT1 post-Newtonian approximant.
Alternatively, we may explicitly construct the TaylorT4 approximant, which
is obtained by expanding the right-hand side of 3.8 to 3.5PN order.

dx

dt
=
64

5
ηx5

7∑
k=0

ak x
k/2, (3.9)

with the following coe�cients

a0 = 1, a1 = 0, a2 = −
743

336
−
11η

4
,

a3 = 4π−
113

12
(S1 + S2) −

25η

4
(χ1 + χ2),

a4 =
34103

18144
+ 5

(
χ21m

2
1 + χ22m

2
2

)
+ η

(
13661

2016
+
79

8
χ1χ2

)
+
59η2

18
,

a5 = −π

(
4159

672
+
189

8
η

)
− (S1 + S2)

(
26387

1008
−
6427

168
η

)
− (χ1 + χ2)

(
473

84
η−

1245

56
η2
)

−
3

4

(
χ31m

3
1 + χ32m

3
2

)
,

a6 =
16447322263

139708800
−
1712

105
γE +

16π2

3
−
856

105
ln (16x)

+ η

(
451π2

48
−
56198689

217728

)
+
541

896
η2 −

5605

2592
η3,

a7 = −π

(
4415

4032
−
358675

6048
η−

91495

1512
η2
)
. (3.10)

Note that the formal re-expansion of the denominator and the multiplica-

tion with the numerator in 3.8 yields contributions to higher orders than

those in 3.9. However, since 4PN and higher terms in �ux and energy are not

completely determined so far, the expressions that one can compute for ak
with k > 7 are incomplete.�e same applies for contributions of the spins at

relative PN orders higher than 2.5PN.When we later use the TaylorT4 expres-
sion 3.9, we only expand it to 3.5PN order but keep all the spin expressions,

i.e. (incomplete) contributions in a6 and a7 are not neglected.

3.1.3 Stationary Phase Approximation and TaylorF2

Consider a gravitational-wave complex signal in the time domain of the form

h(t) = A(t)eiφ(t). (3.11)

If the amplitude of the signal varies slowly in a time scale compatible with the

frequency of the oscillation, i.e.

Ȧ

A
� φ̇ ∀t, (3.12)

then the analytical Fourier transform of the wave can be easily calculated.�is

stationary phase approximation holds well in the case of the long adiabatic



44 analytical modeling of black-hole binaries

inspiral. As a result, theTaylorF2 expression for the phase can be obtained [100,
101, 102, 43]. Firstly, the expansion of the the inverse of equation 3.8,

dt

dx
= −

dE/dx

L
, (3.13)

allows us to analytically integrate t(x).�e orbital phase φ can be integrated

via

dφ

dt
= ω = x3/2 ⇒ dφ

dx
= −x3/2

dE(x)/dx

L(x)
(3.14)

to obtain φ(x). �is is the TaylorT2 approximant. �e decomposition of
the gravitational wave into modes using spin-weighted spherical harmonics
−2Ylm allows us to express each component in the time domain as [67]

hlm(t) = Alm(t) e−imφ(t) , (3.15)

�e transformation to the frequency domain is made in the framework of the

stationary phase approximation,

h̃lm(f) =

∫∞
−∞hlm(t)e2πiftdt ≈ Alm(tf)

√
2π

mφ̈(tf)
eiψ

lm(f), (3.16)

where tf is de�ned as the moment of time at which the instantaneous fre-

quency coincides with the Fourier variable, i.e.,mω(tf) = 2πf.�e phase

in the frequency domain is given by

ψlm(f) = 2πf tf −mφ(tf) −
π

4
. (3.17)

Given t(x) and φ(x) the change to the Fourier variable is done through the

change

x(tf) = [ω(tf)]
2/3 =

(
2πf

m

)2/3
. (3.18)

Applying this machinery to the energy 3.4 and �ux 3.5 leads to an expression

for the phase of the dominant mode l = 2, m = 2 of the gravitational-wave

signal

ψ22(f) = 2πft0 −φ0 −
π

4
+

3

128η
(πf)−5/3

7∑
k=0

αk(πf)
k/3, (3.19)

with

α0 = 1, α1 = 0, α2 =
3715

756
+
55η

9
,

α3 = −16π+
113

3
(S1 + S2) + 25η(χ1 + χ2) ,

α4 =
15293365

508032
− 50

(
χ21m

2
1 + χ22m

2
2

)
+ η

(
27145

504
−
395

4
χ1χ2

)
+
3085η2

72
,
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α5 = ln (πf)

[
π

(
38645

756
+
65

9
η

)
− (S1 + S2)

(
683665

2268
+
3790

63
η

)
− (χ1 + χ2)

(
37265

252
η+

3400

63
η2
)

−
10

3

(
χ31m

3
1 + χ32m

3
2

)]
,

α6 =
11583231236531

4694215680
−
640π2

3
−
6848

21
γE −

6848

63
ln (64πf)

+ η

(
2255π2

12
−
15737765635

3048192

)
+
76055

1728
η2 −

127825

1296
η3,

α7 = π

(
77096675

254016
+
378515

1512
η−

74045

756
η2
)
. (3.20)

From 3.17 it can be noticed that, in fact, the expression for the phase 3.19 is

valid not only for the l = 2, m = 2mode, but also for all spherical harmonics

withm = 2.�e quantities t0 and φ0 are arbitrary and arise as constants

of integration when calculating t(x) and φ(x). Note that the calculation of

α5 also leads to contributions not proportional to ln(πf). For given mass

ratio and spins, however, these terms are just an additional constant due the

pre-factor of the sum in 3.19 andwe absorb them in the de�nition ofφ0. In our A similar discussion
can be found in [43]implementation of this Fourier-domain phase we also take into account the

spin terms that appear a�er re-expanding at 3PN and 3.5PN order, although

they are not complete and therefore not given here.

3.1.4 Amplitude

�e time-domain amplitude of the gravitational wave has been recently calcu-

lated at 3PN order by Blanchet et al. [67]. We use the expression given there
for the l = 2,m = 2mode in combination with the spin corrections provided

in [58, 42]. In our notation, the time-domain amplitude is expressed as

A22(x) =
8η x

DL

√
π

5

6∑
k=0

Ak x
k/2, (3.21)

whereDL is the luminosity distance between the source and the observer and

the coe�cients are given by

A0 = 1, A1 = 0, A2 = −
107

42
+
55

42
η,

A3 = 2π+
2

3
(m2 −m1)(χ1 − χ2) −

2

3
(1− η)(χ1 + χ2),

A4 = −
2173

1512
− η

(
1069

216
− 2χ1 χ2

)
+
2047

1512
η2,

A5 = −
107π

21
+ η

(
34π

21
− 24i

)
,

A6 =
27027409

646800
−
856γE

105
+
428iπ

105
+
2π2

3
+ η

(
41π2

96
−
278185

33264

)
−
20261η2

2772
+
114635η3

99792
−
428

105
ln(16x). (3.22)

In order to construct the Fourier-domain amplitude as given by 3.16, an explicit

expression for φ̈ = d2φ/dt2 = ω̇ is needed in the denominator. In [42]
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the approach consists of a re-expansion of
√
1/ω̇ using the same ingredients

as those underlying the TaylorTn approximants. One could, however, take a
di�erent route, since ω̇ = 3

√
xẋ/2 allows to choose di�erent prescriptions

for ẋ without re-expanding the quotient.

One can for instance use the Newtonian ẋ, i.e. the leading term given by

ẋ =
64η

5M
x5. (3.23)

Incorporating 3.23 in 3.16 leads to the following expression for the 3PN ampli-

tude in the frequency domain assuming a Newtonian ẋ

Ã22(f) ' M
2π

R

√
η

6
(πMf)−7/6A22(tf). (3.24)

Alternatively, one can re-expand the denominator as√
2π

φ̈
'
√
5π

96η
M(πMf)−11/6 T[(πMf)1/3, 5], (3.25)

where T[u,n] represents a Taylor series in the variable u up to order un.

Finally, we might as well replace ẋ by its TaylorT1 or TaylorT4 description and
the re-expansion of the form [42]√

π

ω̇
'
√
5π

96η
x−11/4

5∑
k=0

Sk x
k/2, (3.26)

with

S0 = 1, S1 = 0, S2 =
743

672
+
11

8
η,

S3 = −2π+

(
113

24
−
19

6
η

)
χs +

113δ

24
χa,

S4 =
7266251

8128512
+
18913

16128
η+

1379

1152
η2 −

79

16
η
(
χ2s − χ2a

)
,

S5 = π

(
−
4757

1344
+
57

16
η

)
. (3.27)

In the expression above, we have introduced the three auxiliary variables

δ = (m1 −m2)/M, χs = (χ1 + χ2)/2, χa = (χ1 − χ2)/2.�e transfer

to the the Fourier domain is completed by using 3.21 in 3.16 in combination

with 3.18. Let us recall that these expressions are only valid for systems with

aligned or antialigned spins.
�is �nally allows to write down the expression for the Fourier-domain

amplitude of the dominant mode for the TaylorT4 approximant as

Ã22(f) =

∣∣∣∣∣
√
2η

3

πM2

DL
Ω−7/6

5∑
k=0

ÃkΩ
k/3

∣∣∣∣∣ , (3.28)

whereΩ ≡ πMf and

Ã0 = 1, Ã1 = 0, Ã2 =

(
−
323

224
+
451

168
η

)
,

Ã3 =
27δ

8
χa +

(
27

8
−
11

6
η

)
χs,
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Figure 8: Di�erent variants of constructing the PNFourier amplitude in the stationary

phase approximation for the equal mass case.�e labels refer to the di�erent

ways of treating (π/φ̈)1/2 in equation 3.16.�e thick curve shows data ob-
tained by a numerical simulation in full general relativity.�e straight gray

line illustrates the restricted PN amplitude, |h̃22|DL = π
√
2η/3 (πf)−7/6

.

Ã4 = −
27312085

8128512
−
1975055

338688
η+

105271

24192
η2 +

79

16
η
(
χ2a − χ2s

)
,

Ã5 = −
85π

64
(1− 4η) − 24iη−

13577

1008
(χs + δχa)

+
4367δχa + 13985χs

1008
η−

583χs

252
η2. (3.29)

Taking the norm in 3.28 is necessary due to a small imaginary contribution at

the highest PN order.

�e comparison between the di�erent approaches proposed to deal with

the presence of φ̈ in the denominator of 3.16 is shown in �gure 8. We plot the

Fourier-domain amplitude of the dominant mode in the case of re-expanded,

TaylorT1 and TaylorT4 φ̈. Additionally, the restricted post-Newtonian ampli-
tude that scales like f−7/6 is shown, together with the Fourier-transform of

data from a numerical relativity simulation. It is interesting to observe that the

corrections to the restricted amplitude are already noticeable at frequencies

belowMf = 0.005, therefore a�ecting the reliability of gravitational-wave

searches based on templates without amplitude corrections for parameter

estimation of stellar-mass black-hole binaries.

From �gure 8 it can be concluded that all variants of the 3PN Fourier

amplitude agree reasonably well with the numerical relativity data roughly

up to the frequency of the last stable circular orbit in Schwarzschild given

by equation 2.7, fISCO ≈ 0.022. Due to the comparable behavior even be-

yond this point we choose to construct the Fourier-domain amplitude of our

post-Newtonian model by using the TaylorT4 for ẋ given in 3.9.�is is the
�nal choice that will be employed in the construction of our inspiral-merger-

ringdown waveform model described in detail in chapter 5.
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3.2 ringdown and quasi-normal modes

�e �nal fate of two compact objects undergoing an inspiral process during

which they emit a fraction of their energy in the form of gravitational waves

is the eventual merge into a single, distorted black hole. When the two objects

that form the binary merge into the �nal black hole, this becomes perturbed

and undergoes a ringdown process in the course of which gravitational radia-�e name “ringdown”
reminds of a bell that,
when struck, rings at a
given frequency before
returning to
equilibrium

tion is emitted. During the ringdown, all perturbations are radiated away until

a state of stationary, spinning black hole is reached, a�er an in�nite amount of

time. By means of the no-hair theorem, the �nal black hole can be completely
characterized by only three externally observable classical parameters: mass,

electric charge, and angular momentum. All other information —for which

“hair” is a metaphor— about the matter which formed a black hole or is falling

into it, disappears behind the black-hole event horizon.
�e following sections introduce the concept of quasi-normal modes and

the associated gravitational radiation.�e interested reader will �nd a com-

prehensive review of this topic, including both black holes and neutron stars,

in [168].

3.2.1 Perturbations from Equilibrium

�e �rst studies on stability of Schwarzschild black holes date back from

1957, when Regge and Wheeler [216] discovered that a disturbance from the

black hole’s sphericity would not grow with time, but would oscillate about the

equilibrium con�guration. Zerilli [267] extended this study for the even-parity

case.�e existence of the associated quasi-normal modes was pointed out by

Vishveshwara [258] in calculations of the scattering of gravitational waves by

a Schwarzschild black hole. Solving the Einstein equations for perturbations

around a spherically-symmetric solution leads to wave equations, assuming

a decomposition of the full solution χ(t, r, θ, φ) into spherical harmonics

Ylm(θ,φ)

χ(t, r, θ, φ) =
∑
l,m

χlm(t, r)

r
Ylm(θ,φ). (3.30)

Essentially, the equation to solve is of the form

s2χ− χ ′′ + Vχ = 0, (3.31)

where prime denotes di�erentiation with respect to a radial variable and V is

an e�ective potential depending on the nature of the perturbations under study.

�e solutions for the quasi-normal ringing can be approximated by a damped

exponential.�us, for each mode there exists a characteristic complex angular

frequencyωlm; the real part is the angular frequency of the oscillation and

the imaginary part is the decay rate, or the inverse of the damping time τ. It

is perhaps more common to express these physical characteristics in terms of

the oscillation frequency flm and the quality factorQlm

ωlm = 2πflm − i τ−1 = 2πflm − i π
flm

Qlm
(3.32)

Leaver [174] determined the fundamental l = 2, 3 frequencies of the os-�e solutions present a
2l+1 degeneracy onm cillations of a black hole around the Schwarzschild solution, as well as the
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Table 4:�e �rst QNM frequencies ωM of the spherical, non-spinning

Schwarzschild black hole for l = 2, 3, given in geometrical units.

n l = 2 l = 3

0 0.3737− i 0.0890 0.5994− i 0.0927

1 0.3467− i 0.2739 0.5826− i 0.2813

2 0.3011− i 0.4783 0.5517− i 0.4791

3 0.2515− i 0.7051 0.5120− i 0.6903

overtones, classi�ed by an index n.�e values of the �rst quasi-normal fre-

quencies are given in table 4.�e fundamental l = 2, n = 0mode is the most

slowly-damped mode, i.e. the one with the lowest value of the imaginary part

of the frequency. When n increases, it can be shown that also the imaginary

part of the frequency grows very quickly.�is indicates that higher-order

modes do not contribute signi�cantly to the emitted gravitational radiation;

the statement is true as well for the higher lmodes (octupole, etc). In contrast,

the real part of the frequency asymptotes to a constant value.

So far, we have dealt with Schwarzschild black holes only; however, the

axisymmetric, black hole solution to the source free Einstein equations, i.e

the Kerr solution, is a more accurate description of a spinning black hole,

which is the case that we intend to model in chapter 5.�e problem of the

perturbations from a spinning black hole was addressed by Teukolsky [251].

�e solution for the separation in angular and radial variables is of the form

χ(r, θ, φ) = R(r,ω)S(θ,ω)eimφ, (3.33)

which, unlike the Schwarzschild case, entails a dependency inω.�e solutions

decouple into spin-weighted spheroidal, rather than spherical, harmonics
sSlm with s = −2. For realω2, the spheroidal harmonics can be expanded

into spherical harmonics of �xedm.

�e calculation of the quasi-normal frequencies of the Kerr black hole

is considerably more involved than the Schwarzschild case.�e reason is

the complexity of the perturbation equations and, in particular, their non-

separability. For this reason, only partial results for these frequencies are

available in the literature. In [174], Leaver presented the l = 2 modes for

di�erentm and spin, showing that the spin removes the 2l+ 1 degeneracy

inm. In particular, for the l = 2, m = 2mode, the value of the real part of

the orbital frequency ranges fromMωR = 0.37 for a non-spinning black

hole toMωR = 0.9 for a maximally-spinning black hole.�is fact will be of

importance as theoretical input for the phenomenological model developed

in chapter 5.

3.2.2 �e Ringdown Waveform

Since the gravitational waves emitted by a ringing black hole will be dominated,

a�er an initial transient period, by a superposition of quasi-normal modes,

it seems reasonable to try to model the ringdown radiation in such a way.

If the characteristic parameters of the radiation —ω and τ— introduced in
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Figure 9: Ringdown signals emitted by sources of total mass 100M� and spin values

a = 0, 0.75 and 0.9, corresponding to frequencies 119, 189 and 221Hz and

Q–factors 2, 3.73 and 5.67 respectively.�e amplitude of the waveforms

has been arbitrarily rescaled.

section 3.2.1, could be expressed as a function of the black hole’sM and a,

then it would be certainly possible to infer its physical parameters in terms of

the emitted waves. In fact, this approach constitutes the basis of the modeled

ringdown searches made by the LIGO and Virgo collaborations [14].

Motivated by the fact that a coalescing binary has a rotating shape cor-

responding to the spheroidal harmonic l = 2, m = 2, Echeverria [109]

performed an analytical �t to Leaver’s data for the fundamental quasi-normal

frequency in terms of the black hole’s physical parameters

f220(a,M) =
1

2π

c3

GM

[
1− 0.63(1− a)3/10

]
(3.34)

Q220(a) = 2(1− a)−9/20, (3.35)

with aM2 being the spin of the �nal black hole a�er the binary has merged.

�ese relations can be inverted to yield the mass and spin of the black hole in

terms of the characteristic parameters of the radiation, which motivates the

already-mentioned ringdown searches with LIGO and Virgo.

Assuming that the gravitational radiation of a ringing black hole far from

the source can be approximated by themost slowly dampedmode, then higher

order contributions can be neglected.�e central frequency of the waveform

is given by f0 ≡ f220 and the quality factor isQ ≡ Q220.�e waveform for
the fundamental mode at large distances can be expressed as an exponential

damped sinusoidal

h22ring(t) =
AringM

r
e−πf0t/Q cos (2πf0 t) , (3.36)

where the amplitude depends on the mass of the black hole and its distance

to the detector, and the frequency and damping factor of the sinusoidal wave
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are related to the physical parameters of the hole via 3.34 and 3.35.�e peak

amplitudeAring can be computed from the stress-energy tensor, assuming that

a fraction ε of the black hole’smass is radiated away in the form of gravitational

waves

Aring =

√
5

2
ε

(
GM

c2

)
Q−1/2 F(Q)−1/2 g(a)−1/2, (3.37)

where

F(Q) = 1+
7

24Q2
(3.38)

g(a) = 1− 0.63 (1− a)3/10. (3.39)

Figure 9 displays the shape of the ringdown waveform h22ring(t) for three

di�erent values of the spin of the black hole. As the spin increases, so do

the frequency and the quality factor. Highly-spinning black holes spend a

signi�cantly longer time in their perturbed state before reaching the equilib-

rium, therefore emitting more radiation, which increases their detectability.

In fact, it can be shown from numerical relativity simulations, that a particu-

lar con�guration with spin —known as hang-up— provides the maximally
spinning black hole in the �nal state, and it can be as “loud” as three times a We refer to “loud” in a

gravitational-wave
detection sense

non-spinning black hole [220].

In this chapter, two analytical approaches have been introduced that de-

scribe parts of the coalescence process of a black-hole binary.�e adiabatic

nature of the quasi-circular inspiral stage calls for a post-Newtonian approach,

whereas the perturbative nature of the ringdown oscillations towards the

�nal Kerr black hole a�er the merger motivates the introduction of the quasi-

normal modes formalism. In chapter 4 we will see how the strong-�eld regime

around the black holes’ merger calls for full numerical relativity methods as

the only feasible approach to solving the Einstein equations.





4
BLACK-HOLE BINARIES IN NUMERICAL RELATIVITY

Numerical relativity is a fascinating research �eld astride general relativity and

computational physics. In the many situations where an analytical solution

to the Einstein equations cannot be found, numerical relativity resorts to

numerical methods and algorithms that are usually run on supercomputers.

A primary goal of numerical relativity is to study space-times whose exact

form is not known analytically. As described in chapter 3, this is precisely the

case for the merger of two black holes. Although much work has been done

within the e�ective-one-body approach, the analytical approximations that

are valid in the perturbative inspiral and ringdown stages do not perform

well in the strong-�eld regime, and full-GR approaches such as that given by

numerical relativity are required.

�e �eld of numerical relativity has a long and riveting history, much as

the �eld of gravitational-wave detection does.�e pioneering attempts to

evolve wormhole initial data in a computer by Hahn and Lindquist in the

1960s [139] were followed by the work of Smarr and York [243, 242, 241] in

the 1970s and gave rise to a large body of research as the computational power

of the machines increased in the 1990s. A particular combination of choice of

formulation for the Einstein equations and technicalities in the treatment of

the numerics �nally led to successful simulations of the last orbits of the binary

black-hole coalescence by Pretorius [212] and later by two other groups [88, 52]

in 2005. Ever since, the �eld has entered a new phase, characterized by the

study of previously-unexplored physical phenomena, such as the computation

of the recoil velocities —kicks— of black-hole mergers, the determination of
the �nal spin a�er the coalescence and the development of new methods to

extract the most accurate gravitational radiation emitted by the binary system.

�e direct applicability of these results to improved methods on gravitational-

wave astronomy opens a promising era of synergistic collaborations between

numerical relativity and gravitational-wave data analysis.

�is chapter presents a review of the key components that have made this

golden age of numerical relativity possible and describes the simulations that

will be used to construct the hybrid model of chapter 5.

4.1 solving einstein equations numerically

�e covariant nature of the Einstein equations, when written in the compact

formulation given by equation 1.1, is evident. Time and spatial coordinates

are indistinguishable, which is only natural given the geometrical meaning

of the equations in a space-time thought of as 4-dimensional manifold. If

these equations need to be integrated numerically, however, they need to

be rewritten in a more appropriate form. One way to proceed is to split the

4-dimensional covariant structure of the equations in such a way that a time

evolution can be performed, exploiting the special nature of time.�ere are

a number of other ways of dealing with the full Einstein equations, such

as characteristic methods or the use of harmonic coordinates. But here we

will only present the method commonly known as the space-plus-time 3+1

53
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Figure 10: Foliation of the space-time in the 3+1 decomposition of the Einstein equa-

tions. Σ0 and Σt represent two hypersurfaces of the foliation. n
µ is the

orthogonal vector to Σ0 and t
µ the tangent to the curves threading the

foliation.�e relation between these vectors is given by the lapse function

and the shi� vector as tµ = αnµ + βµ.

decomposition of space-time, whose development in the 1960s and 1970s was
of the most importance to establish the basis and formalism needed for the

subsequent emergence of numerical relativity.�e next sections succinctly

describe this formalism.

4.1.1 �e 3+1 Decomposition

�e 3+1 decomposition was �rst introduced by Arnowitt, Deser and Misner

in 1962 [41], together with other important concepts regarding the canonical

formulation of general relativity, now commonly referred to as the ADM

formalism. Ever since, other researchers have studied the well-posedness of

the Cauchy problem, thus clarifying the physical meaning of the problem

and supplying practical algorithms to �nd its solution. As a result of the

3+1 decomposition, the Einstein equations are split into constraint equations

which are solved to provide initial data on some initial slice, and evolution

equations which permit us to evolve the data from slice to slice [266].

As depicted in �gure 10, the globally hyperbolic 4-dimensional space-time

(M,gµν) can be foliated by a set of 3-dimensional space-like hypersurfaces

Σt that completely �ll the space.�e foliation can be identi�ed with the level

sets of a parameter t, which is a universal time function.
Consider now the future-pointing, time-like unit normal vector �eld to the

hypersurfaces, nµ, which corresponds by de�nition to the 4-velocity of the

Eulerian observers.�is vector nµ, de�ned as

nµ = −αgµν∇νt, (4.1)

allows us to introduce the 3-dimensional metric γµν induced onto the hyper-

surfaces by the 4-metric gµν

γµν = gµν + nµnν, (4.2)
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and its contravariant form γµν = gµαgνβγαβ.�e mixed tensor γ
µ
ν =

δ
µ
ν + nµnν is a projector onto the slices.�e α function of equation 4.1

α−2 ≡ −gµν∇µt∇νt, (4.3)

is the lapse function.
We can construct a time vector �eld tµ which is tangent to the time lines,

i.e. the lines of constant coordinates as

tµ = αnµ + βµ, (4.4)

where the spatial vector βµ = (0, βi) is the shi� vector. From the above
de�nition we �nd that tµnµ = −α, which implies tµ∇µ = 1.�e shi� then

corresponds to the projection of tµ onto the spatial hypersurface. Explicitly,

the vector tµ can be decomposed into its normal and tangent components

relative to the hypersurfaces

α = −tµnµ, (4.5)

βi = γijt
j. (4.6)

As a matter of fact, the lapse function α and shi� vector βi are gauge func-
tions that de�ne how coordinates move forward in time from slice Σ0 to
Σt.�is is a re�ection of the covariant character of the Einstein equations,

which assures that any coordinate system is as valid as any other one when it

comes to describing the geometry of the space-time.�e lapse sets the proper

time between successive hypersurfaces and the shi� vector determines the

relative velocity between Eulerian observers and the lines of constant spatial

coordinates.

Equipped with the above-de�ned {α,βi, γij}, we can now rewrite the line

element of the metric in terms of its time and spatial components as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (4.7)

In this coordinate basis, the normal vector nµ is of the form

nµ = (−α, 0, 0, 0), nµ =
1

α
(1,−βi). (4.8)

Given the 3-metric γij it is possible to de�ne a covariant derivative and �e covariant
derivative compatible
with γij will be
denotedD

associated 3-dimensional Riemann tensor in a manner analogous to the 4-

dimensional expression given in equation 1.6.�e spatial Riemann tensor

accounts for the intrinsic curvature of the slice Σt. However, one should
not forget that the slice is embedded in a 4-dimensional space, hence pos-

sessing extrinsic curvature as well. It is intuitively clear that, whereas the
4-dimensional Riemann tensor is a space-time object containing time deriva-

tives of the 4-metric gµν, the 3-dimensional Riemann is a spatial object, and

can be computed only from derivatives of the spatial metric alone.�ere must

certainly be some information missing when projecting the full Riemann �e intrinsic and
extrinsic curvatures of
the slices and the
curvature of the
background space are
not independent, but
they are related by
means of the
Gauss-Codazzi
equations

tensor into the 3-dimensional slices, and that missing information that tells

us how the hypersurfaces are embedded in the space-time is called extrinsic
curvature.
�e extrinsic curvature Kµν of the slice is de�ned via the projection of the

gradient of the surface normal �eld and can also be expressed in terms of the

Lie derivative along the normal vector nµ

Kµν ≡ −γαν∇µnν = −
1

2
Lnγµν, (4.9)
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and is a symmetric and purely spatial tensor.�e last equality clari�es the

meaning of the extrinsic curvature; it provides information on the rate of

change of the spatial metric γµν as we move along the vector n
µ along the hy-

persurfaces Σ.�e complete geometry of a slice embedded in a 4-dimensional

space-time is represented by the triplet {Σt, γ, K}, which will turn out to be an

initial data set for the space-time. Obviously, not every set of 3-dimensional

slices can �t into the 4-dimensional space-time. Certain integrability condi-

tions, called the Gauss-Codazzi equations, represent the su�cient and nec-
essary geometrical identities that must be locally satis�ed in order for the
foliation Σ to be correctly embedded in the full space-time.

4.1.2 �e ADM Equations

�e ADM equations encode the same physical content as the Einstein equa-

tions 1.1 but split in space and time and given in terms of the variables

α, βi, γij, Kij. (4.10)

As a result of this projection of the full equations onto the hypersurfacesΣ and

the normal �eld nµ, a set of four equations arises that can be classi�ed in two

categories: evolution equations for the variables γij and Kij and constraints
that need to be satis�ed on every hypersurface. In principle one can compute

the quantities 4.10 for an initial sliceΣ0 and evolve the data to the next sliceΣt
by means of the time derivatives of γij and Kij.�is process will eventually

lead to the complete speci�cation of the geometry of the space-time, providing

at the same time a suitable algorithm to construct and numerically evolve any

physically relevant data.

�e stress-energy tensor that appears on the right hand side of 1.1 includes

all the relevant information related to the matter content of the space-time.

�e component Tµν of the tensor refers to the µ–th component of the 4-

momentum tensor across a surface with constant xν coordinate.�e stress-

energy tensor is a symmetric object and its di�erent components can be

associated with well-known physical quantities.�us, T00 is the energy den-

sity, T0i represents the �ux of energy across the xi surface, equivalent to T i0,

which is the density of the ithmomentum component. In addition, T ij (i 6= j)

is the shear stress and T ii represents a pressure-like quantity, the normal stress.

According to our intention of splitting the Einstein equations by projecting

them, it will be necessary to operate on their right-hand side, too. For this

purpose the energy density ρ, the momentum density jµ and the spatial stress

Sµν are introduced and de�ned as follows

ρ ≡ nµnνTµν, (4.11)

jµ ≡ γσµnρTσρ, (4.12)

Sµν ≡ γµσγνρTσρ. (4.13)

�us we can �nally write the ADM equations.�e evolution equations for the

spatial metric and the extrinsic curvature read

∂tγij = −2αKij +Diβj +Djβi (4.14)
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∂tKij = βkDkKij + KikDjβ
k + KkjDiβ

k −DiDjα

+ α
(

(3)Rij − 2KikK
k
j + KKij

)
− 8πα

(
Sij −

1

2
γij(S− ρ)

)
. (4.15)

In 4.15, (3)Rij is the associated Ricci tensor with the metric γij. In addi-

tion to these evolution equations, theHamiltonian andmomentum constraint
equations read

(3)R+ K2 + KijK
ij = 16πρ (4.16)

DjK
j
i −DiK = 8πji (4.17)

where (3)R and K denote the trace of the Ricci tensor and extrinsic curvature

respectively. In vacuum, the energy and momentum densities are zero, i.e.

ρ = 0 and jµ = 0.

In the set of equations 4.14—4.17, the gauge functions α and βi can be

freely speci�ed. One of the issues to address when running numerical relativity

simulations is the choice of a well-behaved gauge that leads to a successful

numerical evolution. As it turns out, regardless of the chosen gauge, the ADM Only for particular
cases —like for instance
spherical symmetry—
can the ADM equations
be made well-posed

system of equations is only weakly hyperbolic and thus does not give rise to a

well-posed initial value problem in the most general case. Correspondingly,

the growth of high-frequency components in numerical simulations cannot

be bounded and reliable numerical simulations are not possible. Next section

describes an alternative formulation that has proven to be better suited in this

context.

4.1.3 �e BSSN Formulation

A large number of alternative, hyperbolic formulations of the Einstein equa-

tions have been proposed to solve the problem of the weak hyperbolicity of the

ADM formulation. A system that has been found to behave in a satisfactory

manner, at least in binary black hole evolutions, is the one developed by Baum-

garte and Shapiro [54] based on that of Shibata and Nakamura [239] a�er

Nakamura, Oohara and Kojima presented a reformulation of the ADM equa-

tions introducing a conformal transformation [187].�is alternative evolution

system is nowadays broadly known as the BSSN formulation.

�e BSSN system belongs to the class of conformal traceless formulations. In geometry, two
Riemannian metrics g
and h on a smooth
manifold M are called
conformally equivalent
if g = uh for some
positive function u on
M.�e function u is
called the conformal
factor.
Traceless refers to the
fact that the extrinsic
curvature is split in its
trace-free and trace
parts, and it is the
former that is
conformally
transformed.

Besides the use of conformal transformations and a traceless decomposition of

the extrinsic curvature, possibly the most important aspect is the promotion

of the conformal connection to an independent variable.�e idea behind the

BSSN formulation is to evolve a conformal factor and the trace of the extrinsic

curvature separately. Modifying the equations by using the constraints is the

crucial step tomake the system hyperbolic. An alternative version of the BSSN

equations exists that does not include the conformal traceless transforma-

tion but is equally strongly hyperbolic; this approach is known as the NOR

system [186].

In the traditional BSSN formulation, the conformal factor is written as

Ψ = eφ so that the conformal metric is

γ̃ij = e−4φγij, φ =
1

12
ln detγij, (4.18)
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requiring as an auxiliary constraint that the determinant of the conformal

metric γ̃ij is unity.�e trace-free part of the intrinsic curvature

Aij ≡ Kij −
1

3
γijK, (4.19)

is rescaled like the metric itself

Ãij = e−4φAij. (4.20)

Indices of this conformally transformed object 4.20 will be raised and lowered

with the conformal metric 4.18. We can now �nd the evolution equations for

φ and Kmaking use of 4.14 and 4.15 and taking their trace

d

dt
φ = −

1

6
αK, (4.21)

d

dt
K = −γijDjDiα+ α

(
ÃijÃ

ij +
1

3
K2 + 4πα(ρ+ S)

)
, (4.22)

where

d

dt
=
∂

∂t
− Lβ =

∂

∂t
− βi

∂

∂xi
(4.23)

and the Hamiltonian constraint 4.16 has been used to eliminate the Ricci

scalar from 4.22. Now the trace-free parts of the equations yield

d

dt
γ̃ij = −2αÃij, (4.24)

d

dt
Ãij = e−4φ

(
−(DiDjα)TF + α(RTFij − STFij )

)
+ α

(
KÃij − 2ÃilÃ

l
j

)
. (4.25)

�e superscript TF in the last equation denotes the trace-free part of a tensor.

�e Ricci tensor Rij can now be decomposed into two terms

Rij = R̃ij + R
φ
ij, (4.26)

where

R
φ
ij = −2D̃iD̃jφ− 2γ̃ijD̃

lD̃lφ+ 4
(
D̃iφ

) (
D̃jφ

)
− 4γ̃ij

(
D̃lφ

) (
D̃lφ

)
, (4.27)

and D̃i is the covariant derivative operator associated with γ̃ij.�e operator

R̃ij can be brought into amanifestly elliptic form by introducing the conformal
connection functions

Γ̃ i ≡ γ̃jkΓ̃ ijk = −∂jγ̃
ij, (4.28)

where the Γ̃ ijk are the connection coe�cients associated with γ̃ij. In terms of

these objects, the Ricci tensor can be written as�e symmetrization
operator is denoted by
parentheses around the
indices that are to be
interchanged:A(µν)

≡ 1
2
(Aµν +Aνµ)

R̃ij = −
1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k

+ γ̃lm
(
2Γ̃kl (iΓ̃j)km + Γ̃kimΓ̃klj

)
. (4.29)
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We can now appreciate the convenience of introducing the connection func-

tions 4.28, because this way only the Laplace operator γ̃lm∂l∂mγ̃ij remains

in the Ricci tensor 4.29.�e other second derivatives have been absorbed

in the derivatives of Γ̃ i. One can get rid of these second derivatives if the

connection functions are now promoted to independent functions, and an

evolution equation for them can be derived by permuting a time derivative

with the space derivative in equation 4.28

d

dt
Γ̃ i = −∂j

(
2αÃij − 2γ̃m(j∂mβ

i) +
2

3
γ̃ij∂lβ

l + βl∂lγ̃
ij

)
. (4.30)

Finally, eliminating the divergence of Ãij with the help of the momentum

constraint 4.17 yields

∂

∂t
Γ̃ i = − 2Ãij∂jα+ 2α

(
Γ̃ ijkÃ

jk −
2

3
γ̃ij∂jK− γ̃ijSj + 6Ãij∂jφ

)
− ∂j

(
βl∂lγ̃

ij − 2γ̃m(j∂mβ
i) +

2

3
γ̃ij∂lβ

l

)
. (4.31)

Equations 4.21 through 4.25 together with 4.31 form the BSSN system of

evolution equations, equivalent to 4.14 and 4.15 but for the set of variables

φ, K, γ̃ij, Ãij, Γ̃ i. (4.32)

Since the connection functions are evolved as independent functions, their

original de�nition 4.28 serves as a new constraint equation, in addition to 4.16

and 4.17. Obviously, not all the variables of this system are independent, in

particular the determinant of γ̃ij has to be unity and the trace of Ãij has to

vanish.�ese conditions can either be used to reduce the number of evolved

quantities or, alternatively, all quantities can be evolved and the conditions can

be used as a numerical check. Precisely this question of how the constraints

are used in the evolution equations is known to be a subtlety in obtaining

numerically stable evolutions with the BSSN formulation.

4.1.4 A Recipe for Successful Simulations

�e long history of numerical evolutions of non-trivial space-times tells a

story full of exciting research milestones on theoretical and numerical meth-

ods, major breakthroughs, dead ends and fresh starts that, as a matter of fact,

eventually led to a happy end. A complete description of all relevant research

milestones falls beyond the scope of this dissertation. It would not be inac-

curate to say that some of the progress in numerical relativity was achieved

by trial and error.�is section brie�y presents some of the ingredients that,

a posteriori resulted fundamental for obtaining numerical codes able to suc-
cessfully evolve a binary of black holes through the late inspiral to the merger

and ringdown.

Choice of Gauge

Many years of intense research on numerical methods and stability were

needed to enable the transition between a theoretical formulation of general

relativity which was suitable for implementation in a computer and the desired

result of a well-behaved, stable simulation of the black holes’ merger.�e
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use of appropriate gauge conditions was crucial to reach the �nal goal. As

mentioned in section 4.1.1, the choice of the lapse function α and the shi�

vector βi is le� free, since the choice of coordinates in Einstein’s theory is

arbitrary. Good gauge conditions should, when possible, be adapted to theWe mean good in the
sense of being adequate
for numerical
implementations

underlying symmetries of the problem, avoid the formation of numerical

singularities and be mathematically well behaved [26].

An apparently simple gauge condition, known as geodesic slicing, de�ned
by the equations

α = 1, βi = 0, (4.33)

is by no means a good choice of gauge to evolve a black-hole space-time.

In this gauge, any coordinate observer, starting from rest, will fall into the

black-hole singularity. A superior choice is themaximal slicing, derived by
imposing that the volume of the spatial hypersurfaces is maximal, which is

equivalent to the condition

K = γijKij =
∂K

∂t
= 0. (4.34)

Possibly themain disadvantage of this gauge choice is that it leads to an elliptic

equation for the lapse α, whose numerical solution might be computationally

prohibitive.

�e simulations used for the construction of the full coalescence waveform

model presented in chapter 5 make use of a particular member of a family

of slicing conditions proposed by Bona et al. [68], resulting in a hyperbolic
equation for the lapse which is easy to solve numerically.�e lapseα is chosen

to satisfy the evolution equation

d

dt
α =

∂

∂t
α− βi∂iα = −α2f(α)K, (4.35)

with f(α) a positive but otherwise arbitrary function of α.�e particular

choice implemented in the numerical codes that have produced the simula-

tions employed in this thesis is f(α) = 2/α, which leads to

α = 1+ logγ, (4.36)

a very easy-to-implement condition that, additionally, is tremendously robust.

Regarding the conditions for the shi� vector βi, the mainstream way to

proceed in the context of the most recent BSSN black hole evolutions —in

particular in the ones used in this work— has been based on the Γ -freezing
condition

∂

∂t
Γ̃ i = 0, (4.37)

proposed as a natural choice for the shi� in the BSSN formulation, as it freezes

three of the independent degrees of freedom.�e Γ -freezing condition is

equivalent to the minimal distortion condition and introduces an elliptic�e minimal distortion
condition minimizes
changes in the shape of
volume elements during
an evolution

equation for the shi�, which is again computationally disadvantageous. An

innovative solution for the numerical implementation of the shi� condition

was introduced by Alcubierre et al. [27] by means of a Γ -driver condition,
inspired by the idea of transforming the elliptic equation for the shi� into
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a parabolic one by making ∂tβ
i or ∂2tβ

i proportional to the given elliptic

operator.�e Γ -driver can be written as

∂tβ
i − βj∂jβ

i =
3

4
αBi (4.38)

∂tB
i − βj∂jB

i = ∂tΓ̃
i − βj∂jΓ̃

i − ηBi, (4.39)

where η—do not mistake it for the symmetric mass ratio for binary systems

introduced in equation 2.6— is a freely-speci�able damping coe�cient which

helps avoid strong oscillations in the shi�.

Excision and Punctures

�ere is still more to the problem than the choice of a suitable set of gauge

conditions. For years, the �eld of numerical relativity struggled to maintain

stable evolutions, the instabilities propagating through the computational grid

and eventually ending the simulation.�e existence of in�nites is obviously

problematic for a numerical code, and it would be desirable to �nd a proper

way of dealing with the black-hole singularities. At least two techniques were

implemented to deal with problems associated with the existence of physical

singularities in the solutions to the equations.�e excisionmethod consists of
removing a portion of a space-time inside of the event horizon surrounding

the singularity of a black hole, simply not evolving it. Due to the principle

of causality and properties of the event horizon, this procedure should in

theory not a�ect the solutions of the equations outside of the event horizon.

Additionally, ingoing boundary conditions on a boundary surrounding the

singularity but inside the horizon are imposed.�is approach presents some

problems; while physical e�ects cannot propagate from inside to outside,

coordinate e�ects could. Besides, as the black holes move, the location of the

excision region needs to be continually adjusted to move with the black hole.

�e full development of this technique, togetherwith suitable gauge conditions

to increase stability and to allow the excised regions to move along the grid

was carried out for several years.�e e�orts did eventually pay o�, and the �rst

stable, long-term evolution of the orbit and merger of two black holes using

this technique was published by Pretorius in 2005 [212].�is undoubtedly Pretorius did not use
BSSN, but rather a
generalized harmonic
formulation of the
Einstein equations, not
based on the 3+1
scheme, which we do
not discuss here

constituted a major breakthrough in the �eld of numerical relativity.

�e second method that proved successful —and the one on which the

simulations used in this dissertation are based— was developed by Brandt

and Brügmann [73] and is known as the puncture approach.�is method is
a generalization of the Brill-Lyndquist prescription for initial data [74]. One

of the advantages of the puncture method is the absence of inner boundary

conditions; the solution is factored into an analytical part, which contains the

singularity of the black hole, and a numerically constructed part, which is

then singularity free.�e procedure can be viewed as follows: we know that

the simplest solution for a Schwarzschild space-time in isotropic coordinates �e Schwarzschild
solution describes the
gravitational �eld
outside a spherical,
non-rotating mass,
which can be a black
hole

implies a conformal factor Ψ = eφ of the form

φ = 1+
m

2r
, (4.40)
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on a conformally-�at space-time γij = Ψ4ηij. A generalization forN black

holes for time-symmetric initial data can be made exploiting the linearity of

the Hamiltonian constraint

φ = 1+

N∑
i=1

mi

2 |~r−~ri|
. (4.41)

With this insight, the basic idea behind the puncture method is the explicit

separation of the singular part in the expression for the conformal factor

φ = φBL + u, φBL =

N∑
i=1

mi

2 |~r−~ri|
. (4.42)

�us, we can solve this equation for u and we would need to impose appropri-

ate boundary conditions at in�nity and, in principle, also at the holes’ location.

�e key observation, and what was proved by Brandt and Brügmann, is that

there is no need for special boundary conditions at the punctures; they can be
ignored when solving for u without further complications. For the purpose

of this dissertation it su�ces to say that this fact simpli�es enormously the

treatment of the singularities in the numerical domain; for a full discussion of

the implications of the punctures method for the geometry of the space-time

we refer the reader to [140, 141, 26].

At this point it is important to remember the following caveat: the methods

described above assume that the conformal geometry of the space-time is �at.

�is might not necessarily be compatible with the physical system under study.

In particular, the method does not generate a Kerr solution for a single spin-

ning black hole, since the Kerr space-time is not a conformally-�at geometry.

Conformally �at initial data always contain a dynamical component, which

will be radiated away in the form of non-physical gravitational radiation as the
simulation progresses.�is pulse of “junk” radiation will propagate away from

the computational domain; however, appropriate boundary conditions at the

external edge of the grid are crucial to avoid contamination of the physical

gravitational radiation content of the system.

One last ingredient separates us from the goal of successful evolutions of

black-hole binaries in the BSSN framework: for many years the opinion held

by a subset of the community was that corotating coordinates were a goodIn a corotating frame
the coordinate positions
of the black holes
remain �xed while the
reference frame rotates
with some angular
velocity

solution to deal with the binary black hole problem.�e idea was that working

out how to work with a corotating grid seemed easier than working out how to

move the black holes.�is was also motivated by the assumption that keeping

the holes �xed in the grid would lead to more stable dynamics. Elaborate

gauge conditions for the shi� vector βi in order to prevent the holes from

moving were required as a result.�e corotating schemewas known to present

fundamental problems, especially regarding the outer boundaries, for which

no physicallymeaningful conditions could be applied. Additionally, extraction

of the gravitational-radiation content of the space-time was technically more

involved.

�e solution to this puzzle might appear obvious in view of what has been

said so far: why not letting the punctures move across the computational grid

while keeping the coordinate frame �xed. But an old issue with the moving

puncture approach was the lack of knowledge about what to do with the con-

formal factor, which blows up at the puncture.�e puncture method factored

out the singular piece, and in order to maintain that analytical singular piece
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Table 5: Some properties of currently-working NR evolution codes.�e table re�ects

the status of published results at the time of writing.�e columns list the

name of the code, the employed evolution system (GH stands for generalized

harmonic formulation), the numerical technique (FD-k stands for �nite

di�erences using k-th order stencils in the bulk), the η choices for the Γ̃ -

driver shi� 4.39, the approximate location of the outer boundary and the

�nest grid–spacing. Several of these parameters —such as the stencil order,

the damping η or the details of the grid— are tunable; we report characteristic

values that have been employed in the codes to obtain published results. For

the SpEC code, rmax decreases during the run.

Code Reference System Technique Mη rmax/M

AMSS-NCKU [91, 126] BSSN FD–6 2 128

BAM [77] BSSN FD–6 2 773

CCATIE [206] BSSN FD–4 1 819

Hahndol [158, 256] BSSN FD–4, 6 2 > 1000

LazEv [269, 88] BSSN FD–4, 8 6 1281

Lean [244] BSSN FD–4, 6 1 256

Llama [207] BSSN FD–8 1 3600

MayaKranc [153] BSSN FD–4, 6 2 317.4

PU [213, 212] GH FD–2 n/a ∞
SpEC [69, 232] GH Spectral n/a 450→ 230

UIUC [114] BSSN FD–4 0.25 409.6

stable, there was a strong belief in favour of keeping the punctures �xed.�e

breakthrough was to realize that evolving the singular conformal factor was

actually quite easy. In fact, this was what indeed solved the problem and al- Later it was realized
that the �xed-puncture
approach is
problematic, even if the
black holes do not move

lowed the black holes to evolve from the last inspiral orbits through the plunge.

Two independent groups arrived at this same conclusion independently, using

slightly di�erent, but essentially equivalent methods.�e results appeared in

2005, by Campanelli et al. [88] and Baker et al. [52], shortly a�er Pretorius’ �eir codes are labelled
LazEv and Hahndol

respectively in table 5
letter, and con�rmed that indeed the problem of numerically simulating the

Pretorius’ code is
labelled PU

binary black hole merger had �nally been solved. Since then, a number of

numerical relativity groups across the world have presented their own ver-

sions of successful simulations, giving rise to a handful of working codes that

can be used to compare results, produce new physics and test general rela-

tivity predictions. A summary of such codes is presented in table 5, together

with references and brief annotations about their technical aspects. Table 10

provides further information about these codes.

In themoving punctures approach, employed by the majority of the codes
of table 5, the singular part of the conformal factor is not factored out; in-

stead, the dynamical conformal factor has a logarithmic singularity which

is directly evolved. Rather than dealing with the conformal factor directly

—as implemented in the CCATIE code—, the approach followed in Campanelli

et al.—and also in the BAM simulation shown in �gure 20— is to evolve an
auxiliary variable de�ned as χ = Ψ−4 = e−4φ.
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Figure 11: Typical numerical relativity waveform for the late inspiral, merger and

ringdown or a binary black-hole system.�e upper panel shows the two

polarizations h+ and h× of the gravitational-wave strain as well as the

amplitude in dimensionless units as a function of time in units of the total

mass of the system.�e middle and lower panels show the phase of the

waveform φ(t) and its instantaneous frequencyω(t).�e chirp is clearly
noticeable.�e data corresponds to a non-spinning, equal-mass simulation

made with the BAM code.

Contrary to the initial intuition of many numerical relativists, the moving

puncture approach leads to robust and stable simulations of black-hole space-

times lasting for many hundreds ofM, allowing to follow the inspiral, mergerM is the total ADM
mass of the space-time and ringdown of a binary and accurately extract their gravitational radiation.

Figure 20 shows one example for an equal-mass, non-spinning system evolved

with the BAM code.�e simulation starts ∼ 2000M before the merger —the

pulse of junk radiation is clearly visible, although it is not shown here—, when

the two black holes are separated by a distance of 12M.�e holes are given

initial data compatible with a quasi-circular orbit, making use of a method

inspired in post-Newtonian evolutions [157] that reduces the eccentricity to

a small value of e < 0.002.�e system is evolved using the BSSN equations

and the moving puncture approach described above. Gravitational radiation

is extracted at rext = 90M by means of the Newman-Penrose scalar Ψ4
as described in [77].�e two polarizations of the gravitational-wave strain

h+,×(t) are plotted in the upper panel, together with the amplitude, for the

dominant mode l = 2, m = 2 of the radiation.�e phase φ(t) and angular

frequencyω(t) of the wave are shown as well.
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4.2 numerical simulations of non-precessing binaries

Having seen that numerical simulations of black-hole binaries are possible,

there is nothing to prevent us from further exploring the parameter space

of physical con�gurations of the binary. Since the already-mentioned �rst

successful numerical simulations of equal-mass, non-spinning binary black

hole mergers were published [212, 88, 52] the NR community has continued

exploring the parameter space of the BBH system. It is well known that as-

trophysically relevant black-hole binaries ought to have components with

non-negligible spins. Likewise, systems with very di�erent mass ratios and

eccentric orbits are thought to exist in our Universe.

Aware of the complexity of parameter spaces with multiple degrees of

freedom, most match-�ltered searches for coalescing binaries have so far em-

ployed non-spinning templates, neglecting the e�ect of the spin by assuming

a small, tolerable loss in SNR [10, 15, 16]. Dedicated searches for spinning

binaries have attempted to model an enlarged parameter space by using a

phenomenological template family designed to capture the spin-induced

modulations of the gravitational waveform [11]. It would be desirable to under-

stand the mapping between phenomenological and physical parameters, and

to devise searches for spinning systems based on strictly physical parameters.

As a �rst step towards the general case, the phenomenological model con-

structed in chapter 5 shall be restricted to a subset of possible physical con�gu-

rations, those in circular orbits and with spins aligned or anti-aligned with the

angular momentum, as we justi�ed in section 3.1.�ere are a number of NR

simulations reported for non-precessing systems for a variety of spin values

and mass ratios. Results with the BAM code are reported in [145] for the orbital

hang-up case and in [144] for anti-aligned spins.�e CCATTIE simulations

are presented in [206, 221, 223]; a long spectral simulation with anti-aligned

spins can be found in [92]. In this section we summarize all these numerical

waveforms used in the construction of our phenomenological model.

4.2.1 NR waveforms and Codes

�e NR waveforms employed in the construction of the hybrid model used

in this paper are summarized in Table 6.�ey have been produced with four

independent NR codes, BAM, CCATIE, Llama and SpEC.�e �rst 3 codes use

the moving-puncture approach [52, 88] to solving the Einstein equations

in a decomposed 3+1 space-time while the last implements the generalized

harmonic formulation [213, 69]. BAM and CCATIE use computational domains

based onCartesian coordinates, and the SpEC code use a sophisticated series of

spherical and cylindrical domains; in the wave zone, the outer computational

domains have the same angular resolution, thus the computational cost only

increases linearly as the radius of the outermost shell is increased.�e Llama

code is based on �nite di�erencing but the set-up of the numerical grid in

the outer wave zone, as in SpEC, is also based on spherical coordinates with a

constant angular separation.�e large wave-zone enables accurate waveform

extraction at large distances, accurate extraction of higher angular modes of

the radiation, and it allows the outer boundary to be far enough away so that

it is causally disconnected from the sphere where the radiation is extracted. A

summary of the properties of all three codes is given in [143].
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Table 6: NR codes and con�gurations used for the construction and veri�cation of

our hybrid waveforms and phenomenological model.�e mass ratio q is

de�ned asm1/m2, assumingm1 > m2; χ1,2 are the dimensionless spins

de�ned in equation. 3.1; a positive value of χ1,2means that the spin is aligned

with the orbital angular momentum L, and negative values are anti-aligned.

Set Code Mass ratios Spins GW extraction

#1 BAM [77, 157] q ∈ {1− 4} (0, 0) R = 90M

#2 ” q = 1 (a, a), a ∈ ±{0.25, 0.5, 0.75, 0.85} ”

#3 ” q = 2, 3, 4 (a, a), a ∈ {±0.5, 0.75} ”

#4 ” q = 3 (−0.75, 0.75) ”

#5 CCATIE [206] q = 1 (a, a), a ∈ {0, 0.2, 0.4, 0.6} R = 160M

#6 ” q = 1 (a,−a), a ∈ {0, 0.2, 0.4, 0.6} ”

#7ab ” q = 1 (±0.6, a), a ∈ {±0.3, 0,−0.6} ”

#8 Llama [207] q ∈ {1, 2} (0, 0) Null In�nity1

#9 SpEC [231] q = 1 (0, 0) R = 225M

�e BAM data-set #1 covers the parameter space of non-spinning systems

for several mass ratios during at least the last 5 orbits before merger (length

∼ 1100− 1450M, whereM is the total ADMmass of the space-time) [146,

23, 22, 144]. Data-set #2 consists of moderately long simulations covering

at least the last 8 orbits before merger (length ∼ 1500 − 2200M) for equal-

mass systems with equal spins, and are described in depth in [145, 144]. Data-

set #3 consists of unequal-mass, unequal-spins simulations [25]. Data-set

#4 is a simulation with unequal mass and unequal spins employed in the

veri�cation of our �tting mode [25]. For the sets #1–4, initial momenta for

quasi-circular orbits were computed for non-spinning cases according to

the procedures described in [157], leading to low-eccentricity (e ≈ 0.006)
inspiral evolutions. A number of di�erent methods were used for the spinning

cases [76, 145, 144], depending on which method gave the lowest eccentricity

for a given con�guration.�e GW radiation is calculated from the Weyl

tensor component Ψ4 (see e.g. [202]) and extracted at a sphere with radius

R = 90M.

�e CCATIE data-sets #5, #6 and #7ab correspond to the s–, u–, r– and

t–sequences studied in [220].�ey span the last ∼ 4− 5 orbits before merger

(length ∼ 500− 1000M) and are in fact not su�ciently long for being used

in the hybrid construction.�ey are still useful to independently verify the re-

liability of our phenomenological �t. Data-set #5 corresponds to the hang-up

con�guration analogous to the BAM set #1; data-set #6 consists of con�gura-

tions with (χ1, χ2) = (a,−a), i.e. zero net spin; data-set #7a was analyzed

in [206] in the context of the study of the recoil velocity (“kick”) of the �nal

merged black hole. GW radiation is extracted at R = 160M via the Regge-

Wheeler-Zerilli formalism for perturbations of a Schwarzschild black hole

[217, 268, 17, 18].

1 Only the GW radiation corresponding to the Llama q = 1 simulation has been extracted at

future null-in�nity using the Cauchy-characteristic method; the q = 2 waveform has been

extracted at �nite radius and extrapolated to r→∞.
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Data-set #8 consists of two waveforms for non-spinning black holes with

mass ratios q = 1, 2.�e black holes are evolved with the Llama code accord-

ing to the set-up reported in [207].�e outer boundary is placed at 3600M

and the initial separation is 11M, corresponding to 8 orbits in the inspiral

phase followed by the merger and ringdown.�e wave-extraction for the

q = 1 con�guration uses the Cauchy-characteristic method [218, 219], taking

boundary data from the numerical space-time for a subsequent characteristic

evolution of the metric to null-in�nity, thereby obtaining waveforms that are

unambiguously free of any systematic gauge e�ects.�e only remaining source

of error is then due to numerical discretization.�e equal mass waveform

using this code was reported in [219], while the q = 2 waveform is new.

Data-set #9 consists of a long non-spinning, equal-mass simulation that

follows 16 orbits of the binary plus merger and ringdown of the merged black

hole (length ∼ 4300M). It was computed using the SpEC code with negligible

initial orbital eccentricity (∼ 5× 10−5).�e GW radiation is extracted via

Ψ4 at R = 225M in a similar manner to #1–4. A full description of this

simulation is given in [232].�e long duration of the waveform allows for its

use in the estimation of the errors associated to the length of the NR data.

In particular, since it contains physical information at lower frequencies, an

earlier matching is possible that reduces the ambiguities introduced by PN.

4.2.2 Going from Ψ4 to h

�e gravitational waveforms calculated using NR codes are typically reported

in terms of the Weyl tensor component Ψ4, which is a complex function

encoding the two polarizations of the outgoing transverse radiation. Ψ4 is

related to the two polarizations of the gravitational wave perturbation h+,×
(in the transverse-traceless gauge) via two time derivatives

Ψ4 =
d2

dt2
[h+(t) − ih×(t)] (4.43)

Going from Ψ4 to h+,× thus involves two time integrations and requires us
to �x two integration constants appropriately.�e frequency domain o�ers a

straightforward way of calculating the strain

h = h+ − ih× (4.44)

from Ψ4, since integration is replaced by division:

h̃NR(f) = −
Ψ̃NR4 (f)

4π2f2
= ANR(f) eiΦ

NR(f) , (4.45)

where x̃(f) denotes the Fourier transform of x(t) as de�ned later in equa-

tion 5.2. Choosing the integration constants can be avoided by removing low

frequency components via a suitable high-pass �lter.�is turns out to be a

convenient, accurate and possibly less cumbersome method of calculating

the strain h from Ψ4. An illustration is given in Fig. 12, where Ψ4 data corre-

sponding to a Llama simulation has been double-integrated in the time and

in the frequency domain to yield h. In the case of the time-domain integra-

tion, a �tting procedure is needed to determine the two integration constants

[60]; however, yet a small overall dri� in h(t) remains. When performing the

division in the frequency domain, tanh-window functions are employed to
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Figure 12: Comparison between the double integration in the time domain (solid line)

and the division in the frequency domain (dashed line). Plotted is a NR

simulation from data-set #8 of Table 6 with q = 1.�e upper panel shows

|h̃(f)|; we observe cleaner high-frequency components when performing
the FD division, in contrast to the TD integration.�e lower panel shows

h+(t) and |h(t)| =
√
h2+(t) + h2×(t); the window function employed by

our inverse Fourier transform algorithm is responsible for the loss of the

�rst cycle of the waveform. Nevertheless, an overall cleaner |h(t)| during
the rest of the inspiral is observed when using the FD division.

pass-�lter the data before computing the Fourier transform. Both methods

involve a certain degree of �ne-tuning in order to produce clean results; in

this paper we use the frequency-domain version of the integration process.

�is chapter concludes the description of the theoretical tools needed for the

construction of the waveformmodel for the full coalescence of non-precessing

binary black-hole systems introduced in chapter 5.



5
NEW WAVEFORM MODEL FOR BINARY BLACK HOLES

Coalescences of black-hole binaries are expected to be powerful sources of

gravitational waves. Analytical and numerical models of the radiation emit-

ted by these systems are crucial for detection and parameter estimation in

matched-�lter searches.�e description and present status of both approaches

has been discussed in the preceding chapters. Here, both methods are brought

together in order to construct a model capable of describing the full binary

black-hole coalescence process.

We present a novel approach to the construction of phenomenological grav- �is chapter
summarizes the work
presented in [227]

itational waveform template models for non-precessing spinning black-hole

binaries. Our method is based on a frequency domain matching of post-

Newtonian inspiral waveforms with numerical relativity-based binary black

hole coalescence waveforms. A�er introducing the need for full waveform

models, section 5.2 outlines the conceptual di�erences between the analytical

and numerical approaches to the binary black-hole problem. We quantify

the various possible sources of systematic errors that arise in matching post-

Newtonian and numerical relativity waveforms, andwe use amatching criteria

based on minimizing these errors. In section 5.3, an analytical formula for the

dominant mode of the gravitational radiation of non-precessing black-hole bi-

naries is presented that captures the phenomenology of the hybrid waveforms.

�is model constitutes one of the main achievements in this dissertation. Its

implementation in current searches for gravitational waves should allow cross-

checks of other inspiral-merger-ringdown waveform families and improve

the reach of gravitational wave searches.

5.1 full models for binary black-hole coalescence

As a generalization of the classic Kepler problem in Newtonian gravity, the

binary black hole (BBH) system in general relativity is of great interest from a

fundamental physics viewpoint. Equally importantly, this system has received

a great deal of attention for its relevance in astrophysics and, in particular,

as one of the most promising sources of detectable gravitational radiation

for the present and future generation of gravitational-wave detectors, such

as LIGO [13], Virgo [19], GEO600 [136] or LISA [238].�e Kepler problem

can be solved exactly in Newtonian gravity and it leads to the well-known

elliptical orbits when the system is gravitationally bound. In contrast, in

general relativity, the BBH system is not stable; it emits gravitational waves

which carry energy away, thereby causing the black holes to inspiral inwards,

and to eventually coalesce.�e emitted GWs are expected to carry important

information about this process, and it is one of the goals of gravitational-wave

astronomy to detect these signals and decode them.

No analytic solutions of Einstein’s equations of general relativity are known

for the full inspiral and merger of two black holes. Post-Newtonian methods

can be used to calculate an accurate approximation to the early inspiral phase,

using an expansion in powers of v/c. As for the coalescence phase, starting v is the orbital velocity;
c is the speed of lightwith [212, 88, 52], the late inspiral and merger has been calculated by large-

69
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scale numerical solutions of the full Einstein �eld equations. Since the initial

breakthrough, there has been dramatic progress in numerical relativity simu-

lations for GW astronomy, including many more orbits before merger, greater

accuracy, and a growing sampling of the black-hole-binary parameter space.

NR results are now accurate enough for GW astronomy applications overA summary of the
published “long”
waveforms is given in
the review [142], and a
complete catalog of
waveforms is being
compiled at [189]; more
recent work is
summarized in [152]

the next few years [143], and have started playing a role in gravitational wave

searches [87, 49].

Given PN and NR results, it is promising to try and combine them to

produce “complete” inspiral-merger-ringdown waveforms. PN techniques in

their standard formulation become less accurate as the binary shrinks, and

the approximation breaks down completely somewhere prior to the merger.

NR waveforms, on the other hand, become more and more computationally

expensive the larger the number of cycles that one wishes to simulate; the

current record is 16 orbits for the equal-mass non-spinning case [232]. We

therefore would hope to combine PN and NR results in the region between

the point where NR simulations start, and where PN breaks down. To do

this it is critical to verify that the PN and NR results are in good agreement

in this region, and that there is a consistent PN-NR matching procedure.

Much work has been done in comparing PN and NR results over the last

5-15 orbits before merger, so far focusing on the equal-mass non-spinning

case [82, 53, 146, 135, 69, 70], the equal-mass non-precessing-spin case [145],

and one unequal-mass precessing-spin case [89]; these studies suggest that a

su�ciently accurate combination of PN and NR results should be possible.

One topic that has not received much attention, however, is the systematic

errors that are introduced by di�erent choices of matching procedure.

One of the aims of this chapter is to further understand and quantify the

various systematic errors that arise in the matching procedure.�ere are

thus far two kinds of approaches to the NR-PN matching problem, both of

which have yielded successful results.�e �rst is the E�ective-One-Body

approach [80, 83, 98, 103]. Originally motivated by similar techniques in

quantum�eld theory, the idea is tomap the two body problem into an e�ective

one-body system with an appropriate potential, and with the same energy

levels as the two-body system. It was shown [80] that the appropriate one-body

problem (for non-spinning black holes) is that of a single particle moving in a

deformed Schwarzschild space-time. It turns out that most parameters of this

one-body system can be found by using the appropriate PN calculations, and

the remaining parameters are calculated by calibrating to numerical relativity

simulations.�is approach has been successful so far for non-spinning systems

where only a single parameter needs to be calibrated by NR simulations [84,

85].�e spinning case is more complicated, and work is underway to extend

the parameter space described by the model [199].

A complementary approach is to perform a phenomenological matching

of the GW waveforms in a window where both PN and NR are expected to�is window could be
either in the time or
frequency domain

be good approximations to the true waveform.�e �rst step is to construct a

hybrid NR+PN waveform by matching the two waveforms within the match-

ing window.�e waveform is completely PN before this window, completely

NR a�erwards, and it interpolates between the two in the matching window.

Once the hybrid waveform is constructed and we are con�dent about the

matching procedure, the second step is to �t the hybrid waveform to a param-

eterized model containing a number of phenomenological coe�cients and

�nally to map them to the physical parameters of the system.�e resulting
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model would thus be parameterized by the masses and spins of the two black Eccentricity would
need to be added, if
appropriate

holes. Most of the work in this approach has thus far been in the time domain

[24, 22, 23, 25].

In the work presented here we take a complementary approach; both the

construction of the PN+NR hybrid waveform and the matching to a phe-

nomenological model are carried out in the frequency domain.�e reasons

for this are twofold. Firstly, the errors in thematching procedure are technically

easier to estimate in the frequency domain. Secondly and more importantly,

in light of these potential errors, comparing results between two independent

methods is a valuable way of ensuring that the matching procedure is robust.

�e main results of this chapter are, �rstly, to construct hybrid waveforms

for binary black hole systems with aligned spins in the frequency domain. We

do this by combining 3.5PNwaveforms in the stationary phase approximation

with a number of NR results. We show that this construction is internally

consistent and it yields hybrids which are, for the most part, su�ciently ac-

curate for the initial and advanced LIGO detectors.�e di�erence between

the various PN approximants is a more signi�cant source of error than the

numerical errors in the NR waveforms. Using these hybrid waveforms, we

construct a phenomenological frequency-domain waveform model depend-

ing on three parameters that covers the space of aligned spins and moderate We use the same
parameters as in [25]mass ratios. We show that the model �ts the original hybrid waveforms with

overlaps better than 98% for Advanced LIGO, and for the most part, better

than 99% for essentially all black hole systems observable with Advanced

LIGO, i.e. for systems with total mass ranging from ∼ 10 to ∼ 400M�.
�e post-Newtonian waveform model and the numerical waveforms that

we employ have been already described in preceding chapters. Section 5.2

describes the �tting method and the various systematic errors that appear in

this procedure. It quanti�es the reliability of the waveforms for speci�c GW

detector and signal-to-noise ratios. Section 5.3 �ts these hybrid waveforms to

an analytic model. It shows that the model provides a good representation of

the hybrid waveforms and can be used in GW searches in the appropriate pa-

rameter space. Finally, section 5.4 concludes with a summary and suggestions

for future work.

5.2 matching post-newtonian and numerical relativity

5.2.1 Basic Notions

�e basic criteria for evaluating the goodness of �t for the hybrid waveform

requires a notion of distance between two GW signals h(t) and h′(t).�e
simplest notion is the distance in the least-squares sense over an interval

t1 6 t 6 t2

δt1,t2(h, h
′) =

∫t2
t1

∣∣h(t) − h′(t)
∣∣2 dt . (5.1)

We shall use this for the numerical relativity waveform hNR(t) and the post-

Newtonian waveform hPN(t), with the interval [t1, t2] being chosen so that

both waveforms are reasonably good approximations (in a sense to be quanti-

�ed later).�us, the PN waveform is taken up to t2 and the NR waveform is

taken to start at t1; they overlap within the interval [t1, t2].
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Let us consider the frequency domain equivalent. Our convention for the

Fourier transform of a signal x(t) is

x̃(f) =

∫∞
−∞ x(t) e2πiftdt . (5.2)

One needs to be careful in converting the time interval [t1, t2] to a frequency

interval [f1, f2]. In principle, the Fourier transform is “global” in time, and

signals which have compact support in time cannot have compact support

in frequency, and vice versa. However, for the binary black hole waveforms

that we are considering, the frequency always increases in time, so that we

can sensibly associate a frequency interval [f1, f2] with a given time interval

[t1, t2]. For these waveforms, we can consider the above distance de�nition

in the frequency domain:

δf1,f2(h, h
′) =

∫f2
f1

∣∣h̃(f) − h̃′(f)
∣∣2 df . (5.3)

We shall use such a norm (applied to the phase) for constructing the hybrid

waveform.

When evaluating the goodness of a hybrid waveform for a particular detec-

tor, we need to consider detector-speci�c inner products, which are convenient

to describe in the frequency domain. Let Sn(f) be the single-sided power

spectral density of the noise in a GW detector de�ned as

E
[
ñ(f)ñ∗(f′)

]
=
1

2
Sn(f) δ(f− f′) . (5.4)

Heren(t) is the detector noise time series with ñ(f) its Fourier transform and

E refers to the expectation value over an ensemble of independent realizations

of the noise, which is assumed to be a zero-mean, stationary, stochastic process.

�is equation implies that data at di�erent frequencies are independent, and

is one of the reasons why working in the frequency domain is so useful in data

analysis.�e time domain description of the noise is more complicated; n(t)

and n(t + τ) are in general not independent; E[n(t)n(t + τ)] is generally

non-zero. For stationary noise this is a function C(τ) only of τ, and is relatedSee e.g. Papoulis [201]
to Sn(f) via a Fourier transform.

Given Sn(f), we use the following de�nition of an inner product between

two signals x(t) and y(t)

〈x|y〉 ≡ 4<
∫∞
0

x̃(f)ỹ∗(f)

Sn(f)
df (5.5)

where x̃(f), ỹ(f) are the Fourier transforms of x(t), y(t) respectively.�is in-

ner product is appropriate for Gaussian noise and forms the basis for matched

�ltering. It can be used to de�ne a suitable notion of distance between twoSee e.g. Helstrom [149]
signals h(t) and h′(t) as 〈δh|δh〉, where δh(t) = h′(t) − h(t).

Following [175], we de�ne a one-parameter family of waveforms which

interpolates between h(t) and h′(t) as

h′′(t; λ) = h(t) + λδh(t) . (5.6)

If we use an unbiased estimator for λ, the variance σ2λ of the estimator is

bounded from below by the Cramer-Rao boundSee e.g. Kendalls [247]
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σ2λ > 〈δh|δh〉−1 . (5.7)

�is can be a useful bound for large SNRs which is in fact what we are in-

terested in here; it is easier to distinguish between two loud waveforms and

demands on the waveform model are correspondingly more stringent.�us,

a useful condition for being able to distinguish between the two waveforms is

σλ < 1.�us, if h(t) is the true waveform and h′(t) our approximation to it,
then we say that h′(t) is a su�ciently accurate approximation if 〈δh|δh〉 6 1.

It is clear that 〈δh|δh〉 ∝ ρ2 where ρ = 〈h|h〉1/2 is the optimal SNR. Hence,
as we just remarked, the two signals are easier to distinguish when the detector

is more sensitive, or when the signal amplitude is larger. It will be convenient

to normalize the norm of δh and write this distinguishability criterion as

1

ρ2
〈δh|δh〉 >

1

ρ2
. (5.8)

�us, for a given detector, we choose a reasonable guess ρ0 for the largest

expected SNR andwe compute the normalized distance between the two wave-

forms 〈δh|δh〉/ρ2. If this exceeds 1/ρ20, then we consider that the detector is
able to distinguish between the two waveforms.

If we are interested in the less stringent requirement of detection rather

than in strict distinguishability, then a su�cient condition is [175]

1

ρ2
〈δh|δh〉 < 2ε, (5.9)

where ε is the maximum tolerated fractional loss in SNR. If we are willing to

accept e.g. a 10% loss in detection rate, then a suitable choice is ε ≈ 0.03. �is corresponds to
sources uniformly
distributed in space

A useful way to describe the e�cacy of approximate waveform models is

through the concepts of e�ectualness and faithfulness introduced in [98]. Let

hλ(t) be the exact waveform with parameters λ and the approximate wave-

form model be h
app

λ (t).�e ambiguity function is de�ned as the normalized

inner product maximized over extrinsic parameters

A(λ, λ′) = max
t0,φ0

〈hλ|happλ′ 〉√
〈hλ|hλ〉〈happλ′ |h

app

λ′ 〉
(5.10)

where t0 is the time o�set between the two waveforms, and φ0 is the initial

phase. Performing a furthermaximization over the parameters λ′ of themodel
waveforms, we de�ne Â(λ) = maxλ′ A(λ, λ′). If Â(λ) exceeds a chosen

threshold, e.g. 0.97, then the waveform model happ is said to be e�ectual. In E�ectual models are
su�cient for detectionorder to be able to estimate parameters we also need the model to be faithful.

�is means that the value of λ′ whichmaximizesA(λ, λ′) should not be biased
too far away from λ.

5.2.2 Issues in Matching PN with NR

It is useful at this stage to discuss some of the issues that arise in combining

PN and NR results. Since PN and NR are both used to address the BBH

problem, one can use start with the two black holes very far apart, evolve

them using appropriate PN equations of motion and compute the resulting

waveforms. As one gets close to the merger, terminate the PN evolution and

use this end-point to construct initial data for the full NR simulation which
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then evolves the black holes through the merger and ringdown. However, the

formalisms and methods employed in the two cases are radically di�erent

and there are potential di�culties in carrying out this procedure.

PN is based on a perturbative expansion in powers of the small parameter

ε = v/c, where v is the orbital velocity and c is the speed of light. In the usual

formulations, PN theory uses a point-particle description of the black holes,

and their parameters can be viewed as e�ective parameters which couple in

the appropriate manner with the external background gravitational �eld.�eSee e.g. [134, 211]
goal of PN theory is to �nd a one-parameter sequence of solutions to the

�eld equations gεµν to any speci�ed order in ε. It has recently been shown

rigorously [192] that, in the cosmological setting with gravitating perfect �uids,

the one-parameter family of solutions exists and admits an expansion in εn

to any order. While similar results in the asymptotically-�at case are not yet

available, it is certainly reassuring to know that PN works as advertised in thisIn fact it can be
persuasively argued
that the cosmological
setting is more relevant
to GW observations
than strict asymptotic
�atness

non-trivial setting.�e errors in PN waveforms are then due to the systematic

di�erences between the true waveform and the asymptotic series expansion

in εn truncated at a �nite order, and this error depends on which particular

PN expansion one chooses to use.

In contrast, numerical relativity is based on the 3+1 formulation of general

relativity as an initial value problem, and one solves the resulting partial

di�erential equations numerically.�eGWsignal is typically extracted at large

distances from the source by calculating the outgoing transverse component

of the gravitational radiation encoded in the Weyl tensor component Ψ4. For

a given physical con�guration (choice of masses, spins, separation etc.), one

speci�es the initial data consisting of the spatial metric and extrinsic curvature

of the initial spatial slice.�e initial data should be chosen to be as compatible

as possible with the space-time computed in the PN formalism, and signi�cant

progress has been made in this regard [156, 260].�e black holes here are

not point particles but rather black hole horizons.�e parameters of the

black hole are o�en computed as integrals over the apparent horizon, and in

most cases the parameters used in constructing the initial data are also useful

approximations to the true ones.�ere are however possible systematic errors.

For example, if we are using the quasi-local horizon de�nitions, an important

requirement is that the horizon should locally be approximately axisymmetric.

�e methods for �nding the approximate symmetry vectors have become

increasingly accurate and reliable [107, 159, 55, 147, 177]. However, it should be

kept in mind that the assumption of approximate axisymmetry is expected to

become increasingly worse closer to the merger. Furthermore, the very use of

apparent horizons is gauge dependent; using a di�erent time coordinate will

lead to a di�erent set of apparent horizons and possibly also di�erent values

of the parameters. In the inspiral phase when the horizons are su�ciently

isolated this gauge issue is not expected to be a problem, but as we get closer

to the merger, the variation in the parameters due to gauge choices could�is has not yet been
quanti�ed become signi�cant [188].

Let us elaborate a little more on the spin. Most post-Newtonian treatments

are based on the equations of motion derived in [95, 200].�e starting point

is the spin tensor Sµν constructed from moments of the stress energy tensor

Tµν. Since Sµν has potentially 6 non-zero independent components, the

system for the 4 equations of motion∇µTµν = 0 is over-determined. One

thus imposes the so-called spin supplementary conditions such as Sµνpν =

0 or Sµνuν = 0 with pµ being the 4-momentum and uν the 4-velocity.
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�ese di�erent conditions lead to physically di�erent equations of motion

and trajectories [172]. On the other hand, for black holes in NR, a common

method for evaluating spin employs the formalism of quasi-local horizons

[45].�e �nal result for the magnitude of the horizon angular momentum is

an integral over the apparent horizon S:

J = −
1

8π

∮
S
Kµνφ

µdSν , (5.11)

where Kµν is the extrinsic curvature of the Cauchy slice, φ
µ is a suitable

approximate axial symmetry vector on S [107, 159, 55, 147, 177], and dSb is

the area element on the apparent horizon.�e direction of the spin is harder

to �nd, but some approximate methods are available [90, 159].�ere is yet no

detailed study of possible analogs of the spin supplementary conditions in

this formalism, or on the equations of motion for horizons with a given set

of multipole moments. For a horizon with areaA and spin magnitude J, the

mass is given by the Christodoulou formula

m =

√
A

16π
+
4πJ2

A
. (5.12)

Hence, uncertainties in spin can also lead to uncertainties in the mass.

As long as we are dealing with just the numerical or PN waveforms by

themselves, small e�ects in the de�nitions of mass and spin are not important

for most applications. In fact, we can treat them as just convenient parame-

terizations of the waveform without worrying about their detailed physical

interpretation. However, when we wish to compare the results from frame-

works as di�erent as PN and NR this may no longer work. Depending on the

details of the matching procedure, systematic di�erences between the various

de�nitions might need to be taken into account, or at the very least they

should be quanti�ed. One valid approach is to not assume a priori that the PN
and NR parameters are equal to each other but rather, for a given numerical

waveform, we search over PN waveforms in a particular PN approximant and

�nd the best �t values.

5.2.3 An Illustration for Non-Spinning Systems

Let us now move to a concrete case of constructing hybrid waveforms, con-

sidering the non-spinning Llama waveforms, i.e. data set #7 in Table 6. Recall

that this data set consists of two waveforms with non-spinning black holes

with mass ratios 1 : 1—used in �gures 16 and 17— and 1 : 2—�gures 13, 14,

15 and 18—. Since these waveforms are calculated using the Llama code with

extraction at future null-in�nity with the Cauchy-characteristic method for

the equal mass case, or well into the wave zone for the 1 : 2 case, we have a

high degree of belief that systematic e�ects of waveform extraction are small.

Even for these waveforms, based on the discussion above, in principle we

should not rule out a small mismatch in the values of the spin (and perhaps

also eccentricity) between the NR and PN waveforms. For simplicity, let us

consider only the possibility that the symmetric mass ratio η could be di�er-

ent, and restrict ourselves to non-spinning black holes and zero eccentricity.

We would like to match the Llama waveforms with the frequency domain PN

waveforms discussed in section 3.1 with the values of the spins set to zero.

�e total massM sets the scale for the time (and frequency); in addition
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Figure 13: Contour plot for the �tting error ∆φ0 in the (fL, ∆f) plane. Here η is kept
�xed to the NR value and we optimize over φ0 and t0.

we have the extrinsic parameters for the time o�set and initial phase t0 and

φ0. Furthermore, we only consider the ` = m = 2 mode, so that the PN

waveform is of the form h̃PN(Mf;φ0, t0, ηPN) in the frequency domain.

Fitting Errors

For a given NR waveform hNR(t) we consider a time window (t0, t0 + ∆t)

or, alternatively, in the frequency domain the matching region consists of a

lower starting frequency fL and a width ∆f. We match the two waveforms in

a least-squares sense by minimizing the phase di�erence in Fourier space

δ = min
t0,φ0,ηPN

∫fL+∆f
fL

|δφ(f;ηNR, ηPN, t0, φ0)|
2
Mdf ,

δφ(f) ≡ φNR(f;ηNR) − φPN(f; t0, φ0, ηPN) . (5.13)

We optimize δ over all allowed time and phase shi�s, i.e. (t0, φ0), and the

PN intrinsic parameters λPN. Given the previous discussion on the possi-

ble di�erences between the intrinsic parameters λ between the PN and NR

frameworks, here we have distinguished between the intrinsic parameter η of

equation 2.6 appearing in hPN and hNR. Note that we are not only neglecting

spins and eccentricity but also assumeMPN = MNR = M. Future analyses

should successively drop these simpli�cations.

Let us now consider the choice of the optimal matching window (fL, fL +

∆f), and the best �t values of (φ0, t0, ηPN). For eachwindow, the least squares

procedure gives a best �t value ηPN = η(fL, ∆f) and 1-σ error estimates

∆η,∆φ0, ∆t0. Our principle for choosing (fL, ∆f) is to pick the one for

which the quality of �t between the NR and PN waveforms is the best, i.e. to

minimize the �tting errors.

We �rst �x ηPN = ηNR, choosing the 1 : 2 waveform, and consider �tting

for (φ0, t0).�e result for ∆φ0 is shown in �gure 13 as a contour plot in the

(fL, ∆f) plane.�ere are clearly multiple best-�t islands but we already see

that the optimal window choice turns out to be a long frequency width starting
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Figure 14: Dependence of the �tting errors in η,φ0 and t0 on the frequency window

(fL, ∆f). Note that there is a clear choice of (fL, ∆f) which optimizes the
�t between the NR waveform and the PN waveforms with di�erent η. At

the best �t point, the accuracy in η by this �tting procedure is better than

10−3.
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Figure 15: Best �t value of η as a function of the start frequency fL of the matching

window for the waveform which corresponds nominally to a mass ratio

1 : 2, i.e. ηNR = 2/9 = 0.222 . . .; this is shown by a horizontal dashed line.

�e vertical dashed line atMfL = 0.009 is the start frequency of the NR

waveform. A rectangle highlights the region of minimal �tting errors from

�gure 14. We see that the best determined values of η are clearly smaller

than ηNR.

at low frequencies, or a relatively short window starting closer to the merger.

Regarding the increasing error PN that most likely introduces towards higher

frequencies, we prefer using an early and long matching window.�ough we

do not show it here, the result is similar for the time o�set t0.

It ismore interesting instead to generalize this and allow all three parameters

(ηPN, φ0, t0) to vary.�e main result is displayed in �gure 14, which shows

contour plots of the �tting errors ∆η, ∆φ0 and ∆t0 in the (fL, ∆f) plane.

�ere are now clear and consistent minima for all errors and thus a clear best

choice for fL and ∆f. At this optimal choice, we see that we can �t η, φ0 and

t0 to better than 10
−3, 0.06 and 0.15M, respectively. Apart from the error

∆η, the actual best �t value η is also of great interest. Figure 15 shows the

value of η as a function of the start frequency of the matching window fL
and ∆f.�e x-axis on this plot is the start point of the �tting window fL, and

the color bar indicates ∆f.�e most trustworthy values correspond to the

optimal choice of (fL, ∆f) obtained in �gure 14; we indicate the union of all

three minimal-error islands as a rectangle in �gure 15.

To summarize, from �gures 14 and 15 we deduce that, if we were to ignore

ηNR (the value that the numerical simulation nominally assumes) and simply

try to �nd the best �t with the PN waveforms described in section 3.1, then

we can clearly estimate the best matching region (fL, fL + ∆f) and a best �t

value ηPN = η± ∆η.�is procedure illustrates a trade-o� between trying to
match at early frequencies, where our PN model is more reliable and having a

su�ciently long �tting window, in which a considerable frequency evolution

leads to an accurate estimate of the �tting parameters.
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Accuracy of the Hybrid Waveform

Later we shall show a phenomenological �t for the hybrid waveform and we

shall claim that the �t reproduces the hybrid waveform su�ciently accurately,

but here we �rst ask whether the hybrid waveform is itself su�ciently accurate

subject to various errors.�e basic criteria for evaluating this is the notion of

a distance between two signals whose di�erence is δh, as given in equation 5.8.

For two signals h and h′, we shall consider the normalized distance squared
〈δh|δh〉/ρ2, where ρ is calculated from our best model. Now the total mass 3PN amplitude, 3.5PN

TaylorF2 phase
combined with highest
resolution NR
waveform

M becomes important. Previously, when we looked at the least square �ts in

equation 5.13, the total mass appeared just as a scale factor. However, in the

inner product equation 5.5, the power spectral density Sn(f) sets a frequency

scale, and the value for 〈δh|δh〉 becomes mass-dependent. We shall consider
two design noise curves, Initial and Advanced LIGO [3, 20]. We are then

addressing the question of how di�erent our hybrids would be if we were to

use a slightly di�erent result on either the NR or PN side.

On the NR side, we �rst consider data computed at di�erent resolutions.

�e Llama waveforms for the equal-mass case have been computed at low,

medium and high resolutions corresponding to spacing h = 0.96, 0.80 and

0.64 on the wave extraction grid. We combine them with the TaylorF2 model

from section 3.1 by using the optimal matching window discussed around

�gure 13 and ηPN = ηNR.�e result is shown in �gure 16. Hybrids constructed

with medium- and high-resolution waveforms would be indistinguishable

even with Advanced LIGO at a SNR of 80 over the considered mass range.

�us, we conclude that the numerical errors related to a �nite resolution are

not relevant in the hybrid construction process.

�e uncertainties increase when comparing NR data produced by di�erent

codes. Similar to the analysis of di�erent resolutions we calculate the distance

of hybrid waveforms for non-spinning black holes with mass ratio 1 : 1 and

1 : 2. Results from data set #1 and #8 (see Table 6) were used, and the distance

plot in �gure 17 shows that the 1 : 2 waveform would be distinguishable for

Advanced LIGO at SNR 20 for a total masses between ∼ 30M� and ∼ 65M�.
Note that these errors are dominated by our matching to PN which possibly

yields di�erent �t parameters for the PN model and therefore ampli�es small

di�erences in the NR data. Towards higher masses, the in�uence of this

matching decreases as well as the distance of both waveform. However, as

we shall show next, all these errors are still small compared to the intrinsic

uncertainties introduced by PN and they do not matter for Initial LIGO. If we

care only about detection with a minimal match ε = 0.03 [see equation 5.9],

we have even less to worry about.

�e errors on the PN side turn out to be much more important. �gure 18

illustrates the e�ect of using di�erent PN approximants combined with the

same Llama 1 : 2 simulation.�e dashed curve shows the di�erence in the

hybrid waveformswhenwematch 3PNor 3.5PNphase following the TaylorF2

frequency domain approximants described in section 3.1 . We see that the �e amplitude is taken
at 3PN order in both
cases

di�erence between the 3PN and 3.5PN hybrids becomes signi�cant even

for Initial LIGO at SNR of 8 between a total mass of ∼ 5M� and ∼ 35M�.
Similarly, the di�erences between the F2 and Taylor T1 & T4 approximants

are also signi�cant. For detection with ε = 0.03 (see equation 5.9), we need

to look at the horizontal line with 〈δh|δh〉/ρ2 = 0.06 in �gure 18. For all the

curves except the hybrid constructed with the SpEC waveform, there is a small
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for Initial and Advanced LIGO, and we consider the di�erence between

the high-medium resolution waveforms, and the high-low waveform res-

olutions.�e horizontal lines are the lines of constant SNR (in fact it is

1/SNR2). If the distance measure goes above these lines, then the wave-
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Figure 17: Distinguishability of di�erent hybrid waveforms constructed from NR

waveforms produced with either BAM or Llama.�e solid lines indicate the

normalized distance in the equal-mass case, dashed lines show the case of

mass-ratio 1 : 2.�e highest available resolution was always used.
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Figure 18: Initial LIGO’s ability to distinguish hybrid waveforms constructed from

di�erent PN approximants.�is plot shows that the hybrids are not suf-

�cient for detection at the ε = 0.03 level [equation 5.9] only for a small
range of masses. “Early match” is a reference for matching 3PN or 3.5PN

F2 at early frequencies to the long equal mass SpEC waveform.

range of masses for which the di�erence between the hybrids would matter

even for detection.

As a reference, we employ the same procedure for the longest equal mass

waveform available, i.e. the data-set #9 based on the SpEC code which covers

∼ 16 orbits before merger. For this longer waveform, we again match the

TaylorF2 phase at 3PN and 3.5PN order. Figure 18 shows that the hybrid

remains accurate for a larger range of total masses; this is mainly because

the waveform is considerably longer than the Llama waveforms used above,

hence it allows us to use an earlier and longer matching window.

Having carried out this study of errors for non-spinning waveforms, we can

now draw some conclusions for the aligned-spin case. In principle, the proce-

dure outlined here remains valid; we should search over not only {η, t0, φ0},

but now also over the spins {χ1, χ2}. We would not expect the results to be

better than shown here for non-spinning waveforms because (i) we are adding
two more parameters and (ii) the waveforms #1-4 are expected to have more

wave-extraction systematic errors than the Llama results considered here.

Most importantly, as we have just seen, the intrinsic errors in PN are more

signi�cant whereas the numerical accuracy is not the bottleneck.�e intrinsic

parameter biases in PN also show up when di�erent PNmodels are compared

with each other. An extensive comparison of di�erent PN models is made

in [86]; this paper quanti�es the mutual e�ectualness and faithfulness of the

di�erent PN models and shows that errors of ∼ 20% are not uncommon for

Advanced LIGO.�e less than 10% error in η shown in �gure 15 are thus en-

tirely consistent with the di�erences between di�erent PNmodels. To address

this, one needs either improved PN models or a greater variety of longer NR

waveforms such as the long SpEC simulation.

As a simpli�cation, in what follows below we will choose the matching

window based on maximizing over the extrinsic parameters (t0, φ0) mo-

tivated by �gure 13. In that �gure, we observe the best �t region extending
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diagonally fromM∆f ≈ 0.013 on the y-axis, to the bottom right corner. It
turns out that for this diagonal, the upper frequency of the window does not

vary much, 0.020 . MfL +M∆f . 0.024, and we shall use this fact below

for constructing hybrid waveforms for aligned spinning systems.

5.2.4 Construction of Hybrid Waveforms for Aligned-Spin Systems

Let us now proceed to the construction of a hybrid waveform model for non-

precessing, spinning systems with comparable mass. Again, the waveforms

described in section 3.1 will be the basis for our model at low frequencies

corresponding to the inspiral stage. On the other hand, the NR simulations

described as data-sets #1–3 in Table 6 contain physical information for fre-

quencies aboveMf ≈ 0.008. We will refer to �gure 13 to justify our choice
of an overlapping window atMf ∈ (0.01, 0.02). Once this interval is �xed,

we use the freedom in t0 and φ0 to align the PN and NR phases; both trans-

formations keep the overlap invariant and are therefore irrelevant from the

point of view of template construction.

Having identi�ed the appropriate overlapping window, we now carry out

the following matching procedure for all NR simulations of data-sets #1–3: PN

and NR phases are aligned in the intervalMf ∈ (0.01, 0.02) by adjusting t0
andφ0; the middle point is taken as matching point between PN and NR and

we construct a hybrid phase consisting of TaylorF2 at low frequencies and NR

data at high ones. An analogous procedure is applied to the amplitude, but

in this case there is no freedom for adjusting any parameter. Hence, we use

an educated guess for the matching frequency and �nd the frequency whichWe make a choice
compatible with that for
the phase

minimizes ANR(fmatch) − APN(fmatch). Due to the existence of a common

regionwhere PN andNRoverlap, such a point can always be found.�e hybrid

amplitude consists of PN before and NR a�er fmatch. Small wiggles in the NR

amplitude, due to the Fourier transform, do not a�ect the phenomenological

�t signi�cantly.�e most important ingredient for arriving at an e�ectual

model is the phase.

Figure 19 illustrates the above-described hybrid construction method for

matching PN andNR data in the frequency domain.�e procedure introduces

no resizing of neither data and allows for the construction of waveforms con-

taining all the information from the TaylorF2 approximant at low frequencies

and input from the NR simulations for the late inspiral, merger and ringdown.

�e matching procedure has been applied to NR data-sets #1–3.�e resulting

hybrid PN-NR data cover a part of the parameter space corresponding to

equal-valued, (anti-)aligned spins for 0.16 6 η 6 0.25 and constitute the

“target” waveforms to be �tted by the analytical phenomenological model

described in section 5.3.

A fundamental check to assess the validity of our matching procedure

is the veri�cation that the hybrid waveforms do not contain irregularities

arising from the way PN and NR are stitched together. We show that this

is indeed not the case by performing the inverse Fourier transform of our

hybrids and comparing them with the numerical data they were created from

in the vicinity of the merger.�e results of the perfect agreement in the time

domain can be seen in �gure 20.
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Figure 19: Illustration of the method for constructing PN-NR hybrid waveforms in

the frequency domain.�e data corresponds to an equal-mass binary with

aligned spins χ1 = χ2 = −0.25.�e le� panel shows the amplitude and
the right displays the phase of the dominant ` = 2,m = 2mode of the GW

complex strain h̃(f).�e green dotted lines correspond to the TaylorF2
PN approximant and the red dot-dashed curve is the NR data.�e hybrid

waveform is depicted in solid black and the matching points for amplitude

and phase are indicated with a dashed line.
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construction in the time domain.�e three waveforms correspond to

equal-mass simulations of spins χ1 = χ2 = 0.85, 0 and −0.75 in the
upper, mid and bottom panel respectively. We plot the �nal cycles of the

hybrid waveforms in the time domain, with the corresponding numerical

simulation on top of them.�e agreement in the time domain con�rms

that our matching procedure does not introduce irregularities in the �nal

hybrid waveform. Additionally, the accumulation of orbits in the hang-up
con�guration displayed in the upper panel is also clearly visible.
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5.3 phenomenological model

In this section we present the phenomenological model developed in order

to �t the hybrid PN-NR waveforms of section 5.2 to an analytical formula. A

geometric description of the procedure for constructing phenomenological

waveforms parameterized by just the physical parameters is detailed in [23],

and here we just summarize it. LetM be the space of intrinsic physical param-

eters that we are interested in. In the present case, this is the four-dimensional

space of the component masses and spins λ = {M,η, χ1, χ2}. For each point

λ inM, let h(t; λ) be the true physical waveform that we wish to approxi-

mate; in particular we consider only the dominant ` = m = 2mode in this

paper. We start with some known signals in this parameter space atN points

λ1, λ2, . . . , λN. We take these known signals to be the hybrid waveforms

whose construction we described earlier. Here the NR waveforms are the BAM

waveforms of data sets #1-3 summarized in Table 6, and the PN model is the

3.5PN frequency domain model for aligned spins described in section 3.1.

Given the �nite set of hybrid waveforms constructed from these ingredients,

we wish to propose a phenomenological model hphen(t; λ) that interpolates

between the hybrid waveforms with su�cient accuracy. In constructing this

phenomenological model, it is convenient to work not with the physical pa-

rameters λ, but rather with a larger set of phenomenological parameters λ̃,

which we shall shortly describe. If M̃ is the space of phenomenological pa-

rameters, then we need to �nd a one-to-one mappingM→ M̃ denoted λ̃(λ),

and thus the subspace of M̃ corresponding to the physical parameters. As

the end result of this construction, for every physical parameter λ, we will

know the corresponding phenomenological parameter λ̃(λ) and thus the

corresponding phenomenological waveform hphen(t; λ̃(λ)).

Following the construction procedure of section 5.2.4, we split our wave-

forms in amplitude and phase, both of which shall be �tted to a phenomeno-

logical model

h̃phen(f) = Aphen(f) e
iΦphen(f). (5.14)

For both the amplitude and the phase of the dominant mode of the GW

radiation, we make use of the insight from PN and perturbation theory for the

description of the inspiral and ringdown of the BBH coalescence respectively,

and introduce a phenomenological model to complete the description of the

waveforms in the merger.

5.3.1 Phase Model

�e PN approach for the GW radiation based on the stationary phase ap-

proximation, introduced in equation 3.19 of section 3.1, gives an adequate

representation of the phase of the dominant mode during the adiabatic inspi-

ral stage of the BBH coalescenceψ22SPA(f). As the system transitions towards

the merger phase, it is expected that further terms in the expansion are re-

quired to capture the features of the evolution. With this ansatz in mind, we
propose a pre-merger phase ψ22PM(f) of the form

ψ22PM(f) =
1

η

(
α1f

−1/3 + α2 + α3f+ α4f
2/3
)
, (5.15)
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where the αk coe�cients are inspired by the SPA phase, rede�ned and phe-

nomenologically �tted to agree with the hybrid waveforms in the region

between the frequencies fISCO of equation 2.7 and fRD of equation 3.34. As

for the post-merger phase, the Teukolsky equation [252] describes the ring-

down of a slightly distorted spinning black hole.�e metric perturbation for

the fundamental mode at large distances can be expressed as an exponential

damped sinusoidal

h22ring(t) =
AringM

r
e−πfRDt/Q cos (2πfRD t) , (5.16)

whereM is the mass of the ringing black-hole, r the distance from the source,

andQ and fRD correspond, respectively, to the quality factor of the ringing

down and the central frequency of the quasi-normal mode.�ese can be

approximated by the �t formulas given by equations 3.34 and 3.35.�e spin of

the �nal black hole a�er the binary has merged can be inferred from the spins

of the two black holes. In our case, we use the �t presented in [223], which

maps the mass-ratio and spins of the binary to the total spin a of the �nal

black hole.�is analytical treatment of the ringdownmotivates a linear ansatz

for the post-merger phase ψ22RD(f) of the form

ψ22RD(f) = β1f+ β2. (5.17)

�e transition between the di�erent regimes is smoothened by means of

tanh-window functions

w±f0 =
1

4

[
1± tanh

(
4(f− f0)

σ

)]
(5.18)

to produce the �nal phenomenological phase

Φphen(f) = 2ψ22SPAw
−
f1

+w+
f1
w−
f2
ψ22PM + 2ψ22RDw

+
f2
, (5.19)

with f1 = 0.93fISCO, f2 = 1.1fRD andσ = 0.015.We choose these particular

transition points a�er having found them to provide the best match between

the hybrids and the phenomenological model.

5.3.2 Amplitude Model

In a similar manner to the phase, we approach the problem of �tting the

amplitude of the GW wave by noting that the PN amplitude obtained from

the SPA expression could be formally re-expanded as

ÃPN(f) = CΩ−7/6

(
1+

5∑
k=2

γkΩ
k/3

)
, (5.20)

whereΩ = πMf. We introduce a higher-order term to model the pre-merger

amplitude ÃPM(f)

ÃPM(f) = ÃPN(f) + γ1f
5/6, (5.21)

where the γ1 coe�cient is introduced to model the amplitude in the pre-

merger regime.�e ansatz for the amplitude during the ringdown is

ÃRD(f) = δ1L (f, fRD(a,M), δ2Q(a)) f−7/6, (5.22)
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Figure 21: Fitting procedure for the amplitude.�e γ1 term of equation 5.21 is intro-

duced to follow the behavior of the amplitude in the pre-merger regime

whereas the Lorentzian curve correctly describes the post-merger.�e two

pieces are glued together in a smooth manner using tanh-windows.

where only the width and overall magnitude of the Lorentzian function

L(f, f0, σ) ≡ σ2

(f− f0)2 + σ2/4
(5.23)

are �tted to the hybrid data.�e factor f−7/6 is introduced to correct the

Lorentzian at high frequencies, since the hybrid data shows a faster fall-o�.

�e phenomenological amplitude is constructed from these two pieces in a

manner analogous to the phase

Ãphen(f) = 2
[
ÃPM(f)w−

f0
+ ÃRD(f)w+

f0

]
, (5.24)

with f0 = 0.98fRD and σ = 0.015. Figure 21 demonstrates how this phe-

nomenological ansatz �ts the hybrid amplitude in a smooth manner through
the late inspiral, merger and ringdown.

5.3.3 Mapping the Phenomenological Coe�cients

Our models for the amplitude and phase involve 9 phenomenological param-

eters {α1, α2, α3, α4, β1, β2, γ1, δ1, δ2} de�ned in equations 5.15, 5.17, 5.21

and 5.22. We now need to �nd the mappingM → M̃ from the physical to

these phenomenological parameters. Following [25] we construct the quantity

χ ≡ 1+ δ

2
χ1 +

1− δ

2
χ2 with δ ≡ m1 −m2

M
, (5.25)

that encodes the BH spins weighted by their relative masses.�us, our phe-

nomenological waveforms are parameterized only by the symmetric mass

ratio η and the spin parameter χ, as well as by the total mass of the systemM

through a trivial rescaling. Figure 22 shows the mapping of αk, βk, γk and

δk to surfaces in the (η, χ)–plane.
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Figure 22: Map of the phenomenological parameters to the physical parameters of

the binary η and χ.

�e 9 phenomenological coe�cients introduced in our model, denoted

generically by Λk, are expressed in terms of the physical parameters of the

binary as

Λk =
∑

i+j∈{1,2}

ζ
(ij)
k ηiχj, (5.26)

which yields 5 coe�cients ζ(ij) for each of the 9 parameters, as given in table 7.

We evaluate the goodness of �t between the phenomenological model and

the hybrid waveforms in terms of the overlap, i.e. the ambiguity function

A(λ, λ′) de�ned in equation 5.10. In evaluating the overlap, we maximize over
the extrinsic parameters t0, φ0 as indicated in equation 5.10, but in this paper

we do not perform the additional maximization over the model parameters

λ′.�us, the results in this section can be viewed as a lower bound on the
e�ectualness.We shall study the e�ectualness and faithfulness in greater detail

in a forthcoming paper.

Figures 23 and 24 illustrate this fact using the design curve of the Advanced

LIGO detector.�e �rst plot shows the overlap between hybrid waveforms

constructed in section 5.2.4 and their corresponding phenomenological �t.

�e match approaches unity by construction at low masses and degrades

with increasing total mass. Nevertheless, for none of the hybrid waveforms

employed in the construction of our model does the overlap fall below a value

of 0.98, thus re�ecting the fact that the phenomenological waveforms e�ec-

tually represent the target signals. In �gure 24, and as a further test to assess

the robustness of our model for systems with unequal-spin con�gurations,

we compute the overlap between the phenomenological waveforms and the

NR data-sets #4-7 that were not used in the construction of the model. At
low masses there is no contribution of the short NR waveforms, therefore

the overlaps can not be computed; however, at the masses for which the NR

part falls within the Advanced LIGO band we obtain overlaps > 0.97, which
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Table 7: Coe�cients tomap the 9 free parametersΛk of our phenomenologicalmodel

to the physical parameters of the BBH binary.

Λk ζ(01) ζ(02) ζ(11) ζ(10) ζ(20)

α1 −1.68 0.77 0.11 16.53 −47.74

α2 −32.35 −8.63 −31.87 −182.27 480.58

α3 790.19 −44.11 751.89 2018.15 −2847.51

α4 −14.44 −2.01 33.46 163.11 −1753.92

β1 −347.25 −37.21 −920.76 −930.65 2784.18

β2 6930.34 −194.52 18935.20 14960.90 −47393.80

γ1 −1.85 −3.13 −64.08 −60.89 686.61

δ1 0.06 0.03 0.37 0.10 0.83

δ2 1.01 0.44 5.00 5.43 −11.43

indicate that our phenomenological model can reliably be extrapolated to

physical con�gurations with unequal spins, where the spins of the black holes

are encoded in the single parameter χ.

5.4 summary and future work

�e aim of the central part of this dissertation has been to construct an analyt-

ical model for the inspiral and coalescence of binary black hole systems with

aligned spins and comparable masses in circular orbits. Since this requires

merging post-Newtonian and numerical relativity waveforms, one of themain

themes has been to quantify the internal consistency of hybrid waveforms.

�is is important because even if one succeeds in �nding a useful �t for a

family of hybrid waveforms, one still needs to show that the hybrid one started

with is a su�ciently good approximation to the true physical waveforms. We

investigated the systematics of constructing hybrid waveforms for accurate

non-spinning waveforms based on the Llama code and we saw that numerical

errors are not signi�cant.�is suggests that in order to improve the accuracy

of hybrid waveforms, it would be useful for numerical relativists to calculate

longer waveforms so that the matching with PN can be done earlier in the

inspiral phase.

With the hybrid waveforms for non-precessing systems at hand, we con-

structed an analytical model for the waveform which has an overlap of better

than 98% for Advanced LIGO with the hybrid waveforms for systems with

a total mass ranging from ∼ 10 to ∼ 400M�. In the future we will study
in greater detail the e�ectualness and faithfulness of this waveform model,

thereby quantifying more precisely its performance for detection and parame-

ter estimation. We will also quantify the behavior of these templates in real

non-Gaussian detector noise, and use them in real searches for gravitational

wave signals. Eventually, work is underway in extending the model to include

precessing spins. Our phenomenological model for can be readily applied to

existent GW detection e�orts within the LIGO/Virgo Scienti�c Collabora-

tions. Ongoing searches are already making use of IMR waveforms, such as
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Figure 23: Overlaps between the hybrid waveforms constructed according to the

procedure described in section 5.2.4 and the proposed phenomenological

�t for Advanced LIGO.�e labels indicate the values of (η, χ) for some
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function (equation 5.10) without maximizing over the parameters of the

model waveform; this is a lower bound on the e�ectualness.
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the EOBNR family and the phenomenological family of [24, 23, 22, 25], in

the form of so�ware injections and as �lter approximants. Our newly devel-

oped frequency-domain matching procedure should serve to cross-check the

validity of these alternative approaches and to complement them.

�is chapter concludes the part of this dissertation devoted to theoretical

modelling of gravitational-wave sources.�e next chapter focus on appli-

cations for real gravitational-wave searches, transfer of numerical relativity

results into current data analysis e�orts and implications for gravitational-

wave astronomy.





Part III

APPLICATIONS





6
REAL SEARCHES FOR GRAVITATIONAL WAVES

In November 2005 the three �rst-generation LIGO detectors described in

section 1.4 reached their design sensitivity and began a two-year period of ob-

servations which concluded in October 2007 [13]. Although the astrophysical �is period is known as
the ��h LIGO science
run, or S5

estimates for rates of coalescing binaries presented in section 2.4.3 depend

on a number of assumptions and unknown model parameters, and are still

uncertain at present, searches for these signals in the real output of the in-

terferometers constitute a promising avenue towards detection or, at worst,

upper limit estimation.

�e inspiral group of the LIGO Scienti�c Collaboration is engaged in the

challenge of analyzing the LIGO data and searching for coalescing binaries.

Results from searches for gravitational waves associated to neutron-star, black-

hole and mixed binaries using data from previous science runs with ever-

increasing sensitivity are reported in [5, 4, 6, 7, 10].�e strategy followed to

analyze the S5 data has consisted in splitting up the parameter space of the

binaries to be searched for. A search for signals from binaries with component �ese two searches are
commonly referred to
as low-mass and
high-mass search

masses greater than or equal to 1 solar mass (M�) and total mass ranging
from 2 to 35M� is carried out using inspiral templates from post-Newtonian
theory; a partially-overlapping search for systems with component masses

between 1−99M� and totalmasses between 25−100M� is the �rst e�ort to
incorporate a �lter family of waveforms modelling the three stages —inspiral,

merger and ringdown— of the full binary black-hole coalescence.

�is chapter describes the data analysis strategy carried out in these two de-

tection e�orts and presents the outcome of the low-mass search, which yielded

no plausible detection of gravitational-wave signals but placed a stringent

limit on the merger rate of binaries in its correspondent mass range.

6.1 the data analysis strategy for coalescing binaries

�is section explains the infrastructure developed within the inspiral group

of the LIGO Scienti�c Collaboration to search for signals from binary coa-

lescences in the output of the LIGO detector.�e detection algorithm has

been applied to searches from the third LIGO science run [10] onward.�e

code, o�en referred to as the inspiral pipeline performs a series of hierarchical
operations in order to search for real signals buried in the detector noise.�e

most relevant steps are brie�y described in the next sections.

6.1.1 �e Optimal Filter

�e optimal detection method for modulated sinusoidal signals of known

form buried into stationary Gaussian noise is known to be thematched �lter
algorithm [148]. In the case of coalescing black-hole or neutron-star binaries,

the signal might not be precisely known, but it is parameterized by a number

of physical characteristics of the binary, such as the masses, initial phase, time

of arrival, distance, sky location, orientation and, eventually, spins.�e exact
parameters are not know a priori, but the output of the detector can be �ltered

95
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with a family of templates that discretely cover the parameter space to be
searched for. In the most realistic scenario, the actual noise of the detector

is not perfectly described by a stationary Gaussian process and additional

methods need to be employed in order to make the matched �lter process

more robust again non-Gaussian features.

Let us for the moment assume that the output signal of the detector is fairly

well represented by stationary Gaussian noise plus a gravitational-wave signal

s(t) = n(t) + h(t) (6.1)

�e one-sided power spectral density Sn(|f|) of the Gaussian noise process

n(t) is given by equation 5.4.�e typical sensitivity curves of the LIGO and

Virgo detectors over the course of the S5/VSR1 data-taking period can be

seen in �gure 4.�e matched �lter output of a data stream s(t) with a �lter

template of the form h(t) is the complex quantity

z(t) = 4

∫∞
0

s̃(f)h̃∗(f)

Sn(f)
e2πiftdf. (6.2)

�e inner product in the space of template waveforms is given by equation 5.5.

To construct a well-de�ned signal-to-noise ratio (SNR), a normalization for

the template has to be calculated

σ2 = 〈h|h〉 = 4

∫∞
0

h̃(f)h̃∗(f)

Sn(f)
df. (6.3)

In all the above integral expressions, the limits of the integration are usually

replaced by flow and f�nal, with flow given by the corresponding lower cut-o�

frequency of the detector —40Hz for initial LIGO, 30Hz for initial Virgo and�is lower frequency is
associated to the
seismic noise of the
interferometer

10Hz for the advanced detectors— and f�nal determined by the ending fre-

quency of the template, such as the fISCO or any other characteristic frequency

related to the post-Newtonian dynamics, or possibly the Nyquist frequency

in the more general case of a full inspiral-merger-ringdown template. We will

discuss the choice of this frequency when describing the di�erences between

the two searches presented in sections 6.2 and 6.3.

�us the real quantity

ρ(t) =
|z(t)|

σ
(6.4)

is the signal-to-noise ratio (SNR) of the matched �lter, which acts as the

optimal detection statistic in the presence of stationary, Gaussian noise. ToIt is optimal in the
Neyman-Pearson sense;
it yields maximum
detection probability for
a given false-alarm rate

determine whether a signal is present in a given segment of detector data, a

threshold in SNR ρ∗ is chosen such that

if ρ

{
> ρ∗ assume signal is present

< ρ∗ assume signal is absent.
(6.5)

�is classi�cation allows for the events for which the SNR crosses the

threshold to be listed as triggers and ranked according to their signi�cance.
�e probability that the SNR exceed some given value falls exponentially with

increasing threshold

p(ρ > ρ∗) = e−ρ∗2/2 (6.6)
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and it follows that high SNR values have low probability of having been

produced by noise and thus are a reasonably good indicator that a real signal

is present.

Nevertheless, not every trigger is necessarily connected to a true gravitational-

wave event.�e probability that ρ > ρ∗ and yet no signal is present is called
false-alarm probability and that of ρ < ρ∗ when a signal is present is the false-
dismissal probability. One of the goals pursued when tuning gravitational-
wave searches is to choose the value of ρ∗ carefully so that these probabilities
are minimal.�e threshold is set by the maximal false-alarm rate tolerated in

a given search, which in turn is decided by the expected event rate. On a prac-

tical level, the presence of non-Gaussian and non-stationary features in the

detector noise implies that further methods —such as signal-based-vetoes—

are needed to reduce the rate of false alarms and false dismissal.

6.1.2 Template Construction

Ideally, the gravitational signal to be measured and the template waveform

used for �ltering should have the same functional form. In practice, however,

theoretical uncertainties, the use of approximations to solve the Einstein equa-

tions, and the fact that the parameter space of the signal is continuous but the

search is done with a �nite set of templates prevent the signal-to-noise ratio

from reaching its maximum.�e real signals lie outside the submanifold of

the search templates that lives in the full manifold of all possible detector out-

puts [197]. An important question is, thus, how to lie down a set of templates

so that the loss of SNR from the mismatch between signal and template does

not result in excessive missed detection candidates.

�e metric

gµν = 〈hµ|hν〉 (6.7)

allows to compute the mismatch in the space of template waveforms. Tem-

plates on this space can now be placed, ensuring that the furthest distance

from any point to a template is less than a tolerance value ε.�e loss of SNR

due to the discretization of the parameter space is thus bound by ε.

Due to the fact that the metric 6.7 takes a more convenient form in a partic-

ular system of coordinates than in others, the space is usually parameterized

in terms of auxiliary variables related toM and η, the chirp mass 3.2 and sym-

metric mass ratio 2.6 of the binary. An hexagonal placement algorithm [93] is

employed when laying out the templates, for it provides the highest coverage

e�ciency.�e searches described in sections 6.2 and 6.3 set a value of 0.97

for the �tting factor between elements of the template bank, which ensures

that no more than 10% of the signals are loss due to mismatch.

6.1.3 Signal-Based Vetoes

In the more realistic case of non-stationary, non-Gaussian detector noise,

spurious signals might cause events with unusually high SNR.�e presence

of environmental or instrumental sources of disturbances in the detector can

give rise to loud events that the analysis pipelines might easily confuse with

real signals and erroneously classify as triggers.�e noise of the detector o�en

presents “glitchy” features that might arise from a number of sources, such as
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environmental disturbances or technicalities associated to the instrumenta-

tion. Amatched �lter algorithmwill respond to these glitches by giving a large

SNR response, although the features of the glitch might bear no resemblance

to a true gravitational-wave signal.

In order to overcome this problem, which could have undesired e�ects

in the reliability of the search algorithm, several signal-based vetoes can be�e commonly used
vetoes are the
χ2–discriminator
test [30] and the r2 veto

implemented, that aim at di�erentiating between glitches and real signals.

�e χ2–test responds to the intention of constructing a detection statistic

capable of indicating if the �lter template and the signal match su�ciently well,

and discard spurious triggers if they do not. An orthogonal decomposition of

the template h̃(f) can be made so that the complete set of p templates h̃i(f)

satis�es

〈h̃i(f)|h̃j(f)〉 =
δij

p
(6.8)

p∑
i=1

〈h̃i(f)|h̃i(f)〉 = 1 (6.9)

If the signal perfectly matched the template h̃(f), then a SNR of ρ/p would

be expected for each projection h̃i(f). Under that expectation, the following

quantity can be constructed

χ2 =

p∑
i=1

(
ρi −

ρ

p

)2
, (6.10)

where ρi is the SNR associated to the i
th bin of the orthonormal set, ρ is the

total SNR and p is the number of χ2 bins. Figure 25 illustrates how the test

works in the case of a simulated inspiral signal and a spurious glitch. Although

both events present a similar SNR value, the decomposition in bins —p = 4

in this case— allows for discriminating between the two. While the chirp

presents a value of χ2 = 1.296, the spurious signal has χ2 = 68.4 [30], hence

it is clear that thresholding in χ2 separates both events.

In Gaussian noise this test is χ2–distributed with an expectation value

〈χ2〉 = p − 1, which does not coincide with the actual expectation value

when signals are present, due to the use of a discrete template bank to search
for gravitational waves. If δ is the mismatch between the template and the

signal, then the expectation value of χ2 in the presence of signal without noise

at the time of the maximum SNR is 〈χ2〉signal = δρ2.�is quadratical scale

of the expectation for χ2 with the SNR introduces the possibility that a loud

real signal also presents a large χ2.�e �nal threshold is hence done on a

normalized quantity de�ned as

ξ2 =
χ2

p+ δρ2
. (6.11)

�e condition ξ2 6 ξ∗2 is required for a trigger to pass the χ2–test.�e
parameters δ, p and ξ∗2 can be tuned. In practice, δ accounts not only for
the discrete template bank but also for possible inaccuracies of the waveform

model, and is chosen so that no simulated signals are rejected.

�e r2–test is another reliable signal-processing technique to discriminate

between real and spurious triggers.�e veto evaluates the time-dependent

quantity r2 = χ2/p during a certain amount of seconds before the inferred
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Figure 25: Diagram demonstrating how the χ2–test discriminates between true and

spurious signals. For the simulated chirp, all �lters in the di�erent fre-

quency bands peak at the same time o�set t0 which maximizes the SNR.

At this instant in time, all of the contributions zj—corresponding to the

ρi de�ned in the text— are approximately the same value. However when

the �lter was triggered by the transient burst, the �lters in the di�erent

frequency bands peak at di�erent times. Figure credit: B. Allen [30].

merger time of the trigger. A true signal spends less time above a given thresh-

old than a spurious glitch, so that the condition r2 6 r∗2 acts as a powerful
discriminator among the two.

6.1.4 Coincidence Test and Background Estimation

Even when signal-based vetoes are applied to the candidates that exceed a

given SNR threshold, the fundamentally noisy nature of the detectors’ output

gives rise to a substantial number of accidental triggers. In order to increase

con�dence in these detection candidates, coincidence at two ormore detectors

is required. Actually, for a gravitational-wave detection to be reliably claimed

and veri�ed, it will have to be found in various detectors and also by other

means —associated neutrino or electromagnetic observations—. For events

to be considered coincident, the time of coalescence andmasses of the triggers

recorded in di�erent detectors are required to agree within a certain tolerance.

�e tuning of the diverse parameters that control those thresholds is crucial to

ensure a reasonably large number of events that allows for reliable statistics but

without this number being so large that the so�ware infrastructure over�ows.

�e coincident algorithm implemented in the low- and high-mass searches

described below creates a time-sorted list of triggers from the multiple detec-

tors whose data are being analyzed. For each single trigger found at a time

ti, all triggers occurred within a time t ∈ (ti, ti + T), where T is some time
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window, are found.�is step is repeated over all single triggers until a list

of coincident triggers is found. Finally, the algorithm loops over the coinci-

dent triggers and removes coincident triggers that are subsets of higher orderA triple trigger is also a
double trigger for every
pair of detectors that
can be formed from the
triplet

coincident triggers.

Again due to the unpredictability of the detectors, purely accidental coin-

cidences might still occur, giving rise to an undetermined number of back-

ground triggers that need to be separated from the potential real gravitational-�ese are called
time-shi�ed triggers, in
contrast to the potential
candidates, zero-lag
triggers

wave signals.�e estimation of this background is carried out by a time-slides
procedure. Most certainly, if the outputs of multiple detectors were to be

shi�ed by a number of seconds with respect to each other and a search was

performed in the time-shi�ed data, none of the recorded coincident triggers
could ever be claimed to be a real gravitational wave.�us, time slides provide

an accurate estimation of the background due to accidental coincidences,

provided that the outputs of the detectors are uncorrelated. Unfortunately,

this is not the case for the pair of interferometers H1H2, since they are situated

at the same physical location and therefore share common sources of noise.

6.1.5 Detection Statistic: False-Alarm Rate

In purely Gaussian, stationary noise, the SNR as de�ned in section 6.1.1 pro-

vides a way of measuring the false-alarm rate that is independent of the �lter.
In real data, this is not true, and a better statistic needs to be devised.�is is the

reason why previous searches for gravitational waves from inspiralling bina-

ries [5, 4, 6, 7, 10] havemade use of an improved detection statistic constructed

with input not only from SNR, but also from χ2.�is statistic, known as ef-
fective SNR, improves separation of signals from background and is de�ned
as

ρ2e� =
ρ2√(

1+ ρ
ρ0

)(
χ2

χdof

) , (6.12)

where ρ0 is a free parameter and χdof = 2p− 2 is the number of degrees ofp is the number of bins
used in the χ2 veto freedomof theχ2 veto inGaussian noise. Values of ρ0 = 250 and ρ0 = 50 are

commonly used in the low- and high-mass searches respectively.�e e�ective

SNRs for the single-detector triggers that form a N-detector coincident trigger

are then added to yield the combined e�ective SNR as �nal detection statistic

ρ2c =

N∑
i=1

ρ2e�,i. (6.13)

Yet superior e�ciency is obtained if a di�erent statistic is used, namelyPast searches explored a
smaller part of the mass
parameter space. For
an extended parameter
space FAR provides
superior performance

the false-alarm-rate (FAR) or its inverse (IFAR) statistic. If an estimation

for the background triggers exists —which is our case, since we employ the

time-slides method of section 6.1.4—, then the time-shi�ed triggers provide

a measure of the false-alarm rate for every zero-lag coincident trigger.�e

statistic is calculated by counting the number of time-shi�ed, i.e. non-real,

triggers with a combined SNR 6.13 greater than or equal to that of the zero-lag,

i.e. potentially real, coincident triggers. Since the time-shi�ed, background

triggers were generated by multiple time slides, we have to divide among

the number of time slides that were performed. For this number to be a

meaningful rate that can be easily compared with results from other searches,
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we normalize by a time of observation of one year.�is provides a number

—the false-alarm rate, or FAR—as a function of e�ective SNR for each zero-lag

trigger, that ranks its signi�cance with respect to the background.

FAR(ρe�) =
1 yr

Tanalyzed

N
[
ρ
bg

e�
> ρ

zero−lag
e�

]
Nslides

. (6.14)

If using the inverse false-alarm statistic, or IFAR, the inverse of FAR is calcu-
lated.�e meaning of this statistic is as follows: for some given e�ective SNR,

we expect a certain number of zero-lag triggers. For instance, at a normalized

IFAR of 0.1—i.e. a normalized FAR of 10—, we expect 10 zero-lag triggers

per year with an e�ective SNR greater than or equal to the e�ective SNR that

corresponds to that IFAR. For an IFAR of 1, we expect 1 foreground trigger,

and so on. Plotting the number of triggers versus their IFAR should yield a

function of the form 1/x, allowing us to conclude whether the actual zero-lag

triggers are consistent with their expected behaviour or if, on the contrary, an

unusual result —and, hence, a candidate— is found.

�e subtlety here, and the reason why FAR supersedes combined SNR, is

that di�erent types of triggers present di�erent backgrounds. Firstly, a triple

coincidence trigger is much more unlikely to occur than a double, hence the

background with which it can be compared is very di�erent in these two

situations. In particular, for H1H2 triggers we are not even in the position

of providing a reliable background estimate, due to already-mentioned cor-

related sources of noise. All these di�erences are taken into account when

computing FAR, since each trigger is compared with the background triggers

in its category only.

Perhaps more importantly, FAR also allows to di�erentiate triggers accord-

ing to their mass. Due to the extended mass range surveyed by the searches In our searches, we
separate them
according to their chirp
mass M

presented in this chapter, a large number of templates are employed for �l-

tering. Higher-mass templates correspond to binaries that merge at lower

frequencies within the LIGO/Virgo bands, hence spanning a shorter dura-

tion than templates corresponding to lower-mass binaries. As a consequence,

they are more likely to be confused with noise glitches and present a higher

sensitivity to non-stationary noise transients in the detector. If we ranked

the associated candidates according to their combined e�ective SNR 6.13,

they would dominate the statistic, possibly shadowing potentially interesting

lower-mass triggers. In short, the FAR is not only dependent on the type of

trigger —double, triple— under consideration, but also on the chirp mass. All

this results in a biased false-alarm rate that we can correct by splitting com-

putation of the FAR in several mass-dependent populations. A subsequent

combination method among all di�erent kinds of triggers allows to quote a

�nal, single number for the FAR or IFAR of any potential candidate.�is is

the �nal ranking statistic employed in the searches described in the following

sections.

6.2 the low-mass search in s5 ligo data

In this section we present a search for gravitational-waves from binaries with

total mass between 2 and 35M� and a minimum component mass of 1 M�
in LIGO observations between November 14, 2006 andMay 18, 2007 [16].�e

mass parameter space surveyed by this search can be visualized in �gure 26 in
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Figure 26: Parameter space of masses surveyed by the low- and high-mass searches

for coalescing compact binaries in S5 LIGO data.

red. Prior results from a search for systems with the same mass distribution

in data taken from November 4, 2005 to November 14, 2006 were reported

in [15]. No gravitational-wave signals were observed during this search and so

upper limits on rates for coalescences of compact binaries are reported, using

the results of [15] as prior rate distributions.�e �nal results quoted here are

thus derived from LIGO observations in the period November 4, 2005 to May

18, 2007.

6.2.1 Description of the Search

�e data-analysis pipeline used in this search consists fundamentally of the

main stages described in section 6.1, thus this section only describes the most

speci�c characteristics of this concrete search, referring to [10, 15] for extended

details.�e most substantial change in this analysis is a modi�cation to the

way in which the signi�cance of candidate events is compared to instrumental

noise background. In previous searches, the noise background was computed

using the entire observation period. Using this method, the non-stationarity
of the noise could lead to candidates being compared to a background that

does not correctly represent the state of the detector at a given time.�is

is especially noticeable for candidates found at the end of the observation

period, when the sensitivity of the detector is likely to have improved. In the

search presented here, the observation period is instead split into six four-

week segments and one 18 day segment and the instrumental background�ese segments are
referred to as “months” is measured independently in each month, as the detector behavior varied

over the course of the S5 run. Candidate triggers are therefore compared to a

background that better re�ects the instrumental behaviour at the particular

time of the trigger. Each month was searched independently for gravitational-�e author performed
the analysis of “month
4”, from March 6 to
April 3, 2007

wave candidates and in the absence of detections, the results from the months

are combined —together with the results from [15]— to set an upper limit on

the CBC rate.
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�e search for gravitational waves is done at times when at least two of the

LIGO detectors were operational, which comprises a total of 0.28 yr when

all three detectors were operational —H1H2L1 coincident data—, 0.10 yr of �e 4 and 2 km
Hanford and the 4 km
Livingston detector are
denoted H1, H2 and L1
respectively

H1H2 coincident data, 0.02 yr of H1L1 coincident data, and 0.01 yr of H2L1

coincident data. Due to above-mentioned noise correlations between the

co-located H1 and H2 detectors, the estimation of instrumental background

using time-shi�ed data fails.�erefore no search is done at times when only

the H1H2 detectors are operating. Approximately 10% of data is designated

playground. �e playground data
consists of 600 of every
6370 s of data that are
used to check and tune
the pipeline

Inspiralling low-mass binaries targeted in this search radiate at frequencies

that sweep across the sensitive band of the LIGO detectors and their merge

happens at the end of the LIGO band. An appropriate choice for the match-

�ltered search is the use of PN templates terminated at fISCO.�is method is

suboptimal if a true signal di�ers from our template family due to unforeseen

physical e�ects. Matter e�ects in BNS and BHNS are not included in our tem-

plates, but are expected to be important only at higher frequencies [240, 167].

We construct template banks [93] of restricted second order PN waveforms in �ese templates do not
contain the amplitude
corrections discussed in
chapter 3

the frequency domain [253, 229, 108] such that no more than 3% of the SNR

is lost due to the discreteness of the bank [198]. A “trigger” is generated if the

matched-�lter SNR of the strain data �ltered against the template exceeds

a threshold of 5.5 [31].�e triggers are subject to a coincident test such as

the one described in 6.1.4, rejecting those that do not appear in at least two

of the three LIGO detectors [224].�ere are in principle four possible types

of coincidence for three simultaneous detectors: H1H2L1 triple coincident

triggers and three di�erent double coincident types: H1H2, H1L1 and H2L1.

We discard H1H2 double coincident triggers, due to the problems estimating

the background for these triggers and discard H2L1 triggers when the H1

detector is operating nominally, since the 4 km H1 detector is more sensitive

than the 2 km H2 detector.

Coincident triggers are subjected to consistency checks using the signal-

based vetoes described in 6.1.3 [8, 30, 225]. All triggers occurred at times

of poor detector data quality are �agged using environmental and auxiliary

data and vetoed [15]. Depending on the severity of the instrumental artifact,

we apply two categories of data-quality vetoes, one being more severe than

the other�e triggers that survive these vetoes an e�ective SNR statistic,

computed from the trigger’s matched-�lter SNR and the value of the χ2 signal-

based veto for that trigger as indicated by equation 6.12. A�er discarding

playground data and times in both veto categories, a total of 0.21 yr of triple

coincident H1H2L1 data, 0.02 yr of H1L1 coincident data, and 0.01 yr of H2L1

coincident data remain. In the absence of a detection, these data are used to

compute upper limits on the rate of coalescences of neutron-star, black-hole

and mixed binaries.

As explained in section 6.1.4, the rate of instrumental noise artifacts is mea-

sured by time-shi�ing data from the Livingston and Hanford observatories. H1 and H2 data are
kept �xed with respect
to each other

�e data are o�set by more than the light-travel time between observatories,

thus triggers which survive the pipeline are due to noise alone. We performed

100 such time-shi�s to obtain a good estimate of the noise background in

our search. It is important to recall here what we said in section 6.1.5: bina-

ries of higher masses merger at a lower frequency and thus contain fewer

gravitational-wave cycles in the sensitive band of our detectors; this means

that our signal-based vetoes are not as powerful as for long, lower-mass sys-



104 real searches for gravitational waves

Figure 27: Combined and un-combined inverse false-alarm rates for triple H1H2L1

and double H1L1 triggers in month 4 of the 2nd year S5 low-mass search.

�e upper panel shows the IFAR of the triggers separated in three chirp

mass categories.�e lower panel shows the combined results. No candi-

dates stand signi�cantly above the expected background, depicted by a

dashed line.�e shadowed areas denote regions at one and two standard

deviations of the expectation value.

tems. High-mass templates are therefore more sensitive to non-stationary

noise transients and hence our false-alarm rate for them is larger. In order

to account for this mass-dependent behavior we compute the background

for three di�erent mass regions and compare foreground and background�ese regions are
de�ned by the chirp
mass: Mlow 6 3.48 6
Mmid 6 7.40 6 Mhigh

within each of these ranges. Speci�cally, in each region we count the number

of background triggers with e�ective SNR greater than or equal to a given

foreground trigger; dividing this number by the amount of background time
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analyzed gives us the false-alarm rate for that trigger.�is allows us to de�ne

a single detection statistic for every trigger in each of the mass categories.

�e false-alarm rate can then be directly compared to obtain a ranking of the

signi�cance of the triggers, regardless of their mass [15].

�e results of the IFAR calculation for month 4 of this search are shown

in �gure 27. In the upper panel we see the triple H1H2L1 and double H1L1

triggers with their un-combined IFAR values plotted on top of the expected

background.�e three di�erent mass regions are delimited by the chirp mass

of a 8 − 8M� and 17 − 17M� binary. In the lower plot, all results are
combined to produce �nal IFAR values. No candidate stands signi�cantly

above the background for this month. We proceed to the discussion of the

�nal results of the full seven-month search, namely the calculation of upper

limits on the rate of binary coalescences.

6.2.2 Search Results

�e seven months of data were analyzed separately using the procedure de-

scribed above. No gravitational-wave candidates were observed with a FAR

signi�cantly above those expected from the noise background.�e loudest

trigger in this search was a triple coincident trigger with a FAR of 6 per year.

�is is consistent with the expected background, since we searched 0.21 yr

of data.�e second and third loudest triggers had FAR values of 10 and 11

per year respectively. Although we did not have any detection candidates, we

exercised our follow-up procedures by examining any triggers with a FAR of

less than 50 per year.�is exercise prepares us for future detections and o�en

identi�es areas where our search pipeline can be improved to exclude noise

transients.

In the absence of detection candidates, we use our observations to set an

upper limit on the CBC rate. We follow the procedure described in [72, 71, 62]

and use the results reported in [15] as prior information on the rates. We

present �ve di�erent classes of upper limits.�e �rst three limits are placed BNS:
m1 = m2 =

(1.35± 0.04)M�
BBH:
m1,2 =

(5± 1)M�M�
BHNS:
m1 = (5± 1)M�,
m2 =

(1.35± 0.04)M�

on binaries of neutron stars and/or black holes assuming canonical mass

distributions systems. We also present upper limits as a function of the total

mass of the binary and, for BHNS binaries, as a function of the black hole

mass. We combine the results from each of the seven months, along with the

prior results from the �rst year analysis, in a Bayesian manner, using the same

procedure as described in [15].

We �rst calculate upper limits on BNS, BBH and BHNS systems assuming

the objects have no spin, and summarize the results Tables 8 and 9.�e rate of

binary coalescences in a galaxy is expected to be proportional to the blue light

luminosity of the galaxy [169].�erefore, we place limits on the rate per L10

per year, where L10 is 10
10 times the blue solar luminosity. To calculate the �e MilkyWay contains

∼ 1.7 L10 [163]search sensitivity, the analysis was repeated numerous times adding simulated

signals with a range of masses, distance and other astrophysical parameters

to the data. Table 9 shows the sensitivity of the LIGO detectors to coalescing

binaries quoted in terms of the horizon distance i.e., the distance at which an

optimally oriented and located binary would produce an SNR of 8. Similar

information is graphically shown in �gure 28 for month 4 of this search.�e

plot shows the comparable reach of the H1 and L1 detectors in Megaparsecs,

which is about twice as large as that of H2.�e horizon distance is computed

assuming signals terminating before the merger, and it reaches its maximum
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Table 8: Detailed results from the BNS search.�e observation time is the time used

in the upper limit analysis.�e cumulative luminosity is the luminosity to

which the search is sensitive above the loudest event for each coincidence

time.�e errors in this table are listed as one-sigma logarithmic error bars

(expressed as percentages) in luminosity associated with each source error.

BNS Search

Coincidence time H1H2L1 H1L1 H2L1

Observation time (yr) 0.21 0.02 0.01

Cumulative luminosity (L10) 490 410 110

Calibration error 23% 23% 26%

Monte Carlo error 3% 7% 10%

Waveform error 31% 32% 31%

Galaxy distance error 16% 16% 3%

Galaxy magnitude error 19% 19% 17%

Table 9: Overview of results from BNS, BBH and BHNS searches.Dhorizon is the hori-

zon distance averaged over the time of the search.�e cumulative luminosity

is the luminosity to which the search is sensitive above the loudest event

for times when all three LIGO detectors were operational.�e �rst set of

upper limits are those obtained for binaries with non-spinning components.

�e second set of upper limits are produced using black holes with a spin

uniformly distributed between zero and the maximal value ofGm2/c.

BNS, BBH and BHNS Searches

Component masses (M�) 1.35/1.35 5.0/5.0 5.0/1.35

Dhorizon (Mpc) ∼ 30 ∼ 100 ∼ 60

Cumulative luminosity (L10) 490 11000 2100

Non-spinning upper limit
(
yr−1 L−1

10

)
1.4× 10−2 7.3× 10−4 3.6× 10−3

Spinning upper limit
(
yr−1 L−1

10

)
... 9.0× 10−4 4.4× 10−3

for binaries with total mass ∼ 30M�. If the merger and ringdown were taken
into account, the peak would shi� towards larger masses.

�ere are a number of uncertainties which a�ect the upper limit calculation,

including Monte Carlo statistics, detector calibration, distances and luminosi-

ties of galaxies listed in the galaxy catalog [169] and di�erences between the

PN templates used to evaluate e�ciency of the search and the actual wave-

forms.�e e�ect of these errors on the cumulative luminosity are summarized

for the BNS search in Table 8. Wemarginalize over all of the uncertainties [72]

to obtain a posterior distribution on the rate of binary coalescences.

In �gure 29, we show the derived distribution of the rate of BNS coales-

cences.�e distribution is peaked at zero rate because there are no detection

candidates. We include the distribution for all searches previous to this one

(which is our prior). In addition, we present the result that would be obtained

from each month, were it analyzed independently of the others and of the

previous searches.�is provides an illustration of the amount that eachmonth

contributes to the �nal upper limit result and demonstrates the improvement
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Figure 28: Horizon distance in Mpc as a function of the binary’s total mass for the

three interferometers in operation during month 4 of the 2nd year S5

low-mass search.�e horizon distance is de�ned as the distance at which a

detector measures ρ = 8 for an optimally- oriented and optimally-located

binary, i.e. an overhead, face- on orbit.
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Figure 29:�e posterior distribution for the rate of BNS coalescences.�e dashed

black curve shows the rate computed in [15].�e solid black curve shows

the result of this search using the previous analysis as a prior.�e �gure also

shows the rate distributions for two of the individual months computed

using a uniform prior.�e improvement from month 0 to month 5 is due

to increasing detector sensitivity during this search.
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Figure 30:�e marginalized 90% rate upper limits as a function of mass.�e upper

plot shows limits for BBH systems as a function of the total mass of the

system.�e lower plot shows limits for BHNS systems as a function of

the black hole mass, assuming a �xed neutron star mass of 1.35M�. Here

the upper limits are calculated using only H1H2L1 data since the relatively

small amount of H1L1 and H2L1 data makes it di�cult to evaluate the

cumulative luminosity in the individual mass bins.

in sensitivity of the detectors during the search.�e upper limit is �nally

obtained by integrating the distribution from zero to R90% so that 90% of the

probability is contained in the interval.�e results obtained in this way are

R90%,BNS = 1.4× 10−2 yr−1L−1
10 ,R90%,BBH = 7.3× 10−4 yr−1L−1

10 and

R90%,BHNS = 3.6× 10−3 yr−1L−1
10 .

Additionally we calculate the upper limit for BBH systems as a function of

the totalmass of the binary, assuming a uniformdistribution of the component

masses. For BHNS systems, we construct an upper limit as a function of the

black hole mass, assuming a �xed neutron star mass of mNS = 1.35M�.
�ese upper limits are shown in Fig 30.

Finally, we present upper limits on coalescence rates where the spin of the

components of the binary is taken into account. Astrophysical observations

of neutron stars indicate that their spins will not be large enough to have a

signi�cant e�ect on the BNS waveform observed in the LIGO band [179, 40].

�eoretical considerations limit the magnitude of the spin S of a black hole to

lie within the range 0 6 S 6 Gm2/c. However, the astrophysical distribution

of black hole spins, and spin orientations, is not well constrained.�erefore,

we provide a sample upper limit for spinning systems using a spin magnitude

and orientation distributed uniformly within the allowed values.�is gives
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upper limits on the rate of BBH and BHNS systems of R90%,BBH = 9.0×
10−4 yr−1L−1

10 and R90%,BHNS = 4.4 × 10−3, yr−1L−1
10 .�ese rates are

about 20% larger than the non-spinning rates.

6.2.3 Discussion of the Low-Mass Search

By combining the results of this search with our previous results, we set a

new upper limit on the rate of coalescences in the local universe which is

approximately a factor of 3 lower than that reported in [15].�is improvement

is signi�cant, even though we searched only two thirds as much data as

in [15]. It is due, in part, to improvements in detector sensitivity during S5

which increased the horizon distance. Moreover, the shorter analysis time

and improved stationarity of the data, led to many of the months having a

less signi�cant loudest event than in the previous search. Both of these e�ects

increased the luminosity to which the search was sensitive, thereby improving

the upper limit.

Astrophysical estimates for CBC rates depend on a number of assumptions

and unknown model parameters, and are still uncertain at present. In the

simplest models, the coalescence rates should be proportional to the stellar

birth rate in nearby spiral galaxies, which can be estimated from their blue

luminosity [169].�e optimistic, upper end of the plausible rate range for BNS

is 5× 10−4 yr−1L−1
10 [162, 161] and 6× 10−5 yr−1L−1

10 for BBH and BHNS

[196, 195].�e upper limits reported here are ∼ 1–2 orders of magnitude

above the optimistic expected rates. With the next run that started in summer

2009, the improved Enhanced LIGO and Virgo are expected to bring us close

to the optimistic rates.�e most con�dent BNS rate predictions are based

on extrapolations from observed binary pulsars in our Galaxy; these yield

realistic BNS rates of 5×10−5 yr−1L−1
10 [162, 161]. Rate estimates for BBH and

BHNS are less well constrained, but realistic estimates are 2× 10−6 yr−1L−1
10

for BHNS [196] and 4 × 10−7 yr−1L−1
10 for BBH [195].�us, the expected

rates are ∼ 2–3 orders of magnitude lower than the limits presented here.

�e Advanced LIGO and Virgo detectors, currently under construction, will

increase our horizon distance by an order of magnitude or more, allowing us

to explore the validity of the astrophysical predictions.

6.3 the high-mass search in s5 ligo data

�e upper limits obtained in section 6.2 constitute the most up-to-date results

for the rate of coalescences of low-mass binaries obtained via gravitational-

wavemeasurements.�e use of post-Newtonian templates is perfectly justi�ed

in such a search, since binaries with masses within the surveyed range are well

described by inspiral-only models; hence, matched-�lter searches employing

inspiral-only approximants are a reasonable choice. Searches formoremassive

systems require instead �lters incorporating the last stages of the coalescence.

Breakthroughs in numerical relativity have enabled the development of full

waveform models that can be applied to such searches.

�is section describes a search for signals from binary black hole coales-

cences in LIGO S5 data when both LIGO sites were operating and collecting

coincident data.�e search covers systems with total mass 25M� 6 M 6
100M� and component masses 1M� 6 m1,m2 6 99M� with negligible
black hole spins. For black holes with this total mass, the merger occurs in
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the LIGO detectors’ most sensitive frequency region.�is is the �rst analysis

that incorporates a template family of waveforms modeling the three stages

—inspiral, merger and ringdown— of the full coalescence process. At the time

when this dissertation was printed out, the �nal results had not yet been

made public. Hence, this section summarizes the search strategy, describes

the main novelties involved in a search for higher-mass systems and presents

preliminary results corresponding to the playground data analyzed by the

author.�e de�nitive results of the search will be published in [2].

6.3.1 Motivation and Strategy for a High-Mass Search

�e existence of binaries formed by compact objects ofmass below 10−15M�
is well established through X-ray observations [193]; population-synthesis

models suggest chirpmasses of ∼ 5–10M� for black-hole binaries that merge
within 10Gyr [79, 194]. Nevertheless, it has also been suggested that signi-

�cantly more massive black-hole binaries could form through a number of

alternative channels. In this dissertation, the question of the existence of black

holes with masses larger than hundreds of solar masses is investigated in

chapter 8; this section focuses instead on a search for binary systems with

total mass between 25 and 100M�. Several simulations over the past years
have indicated that dense stellar environments —such as globular and nuclear

star clusters— could contribute to the expected rates of compact binary coales-

cences via dynamical formation [185, 191, 190]. Mass-segregation mechanisms

make the most massive black holes sink towards the center of the clusters,

favouring the dynamical formation of massive black-hole binaries. Besides,

simulations of the evolution of the merger remnants a�er repeated stellar

collisions seem to indicate that runaway mergers at solar metallicity evolve to

∼ 100M�Wolf-Rayet stars [133].�e star rapidly loses mass and turns into aWolf-Rayet stars are
evolved, massive stars
—over 20M�—, which
are losing mass rapidly
by means of a very
strong stellar wind

∼ 10M� black hole, but there are hints pointing out that lower metallicities
can lead to higher remnant masses.

In light of these results, a search targeting more massive systems than

those considered in section 6.2 appears promising. Most of these systems

would merge within the most sensitive part of the LIGO band; searching

for them with complete �lters for the full coalescence increases the reach

of the detectors and, thus, the chance of detecting gravitational waves from

faraway sources. Figure 31 illustrates the convenience of extending the inspiral

searches to higher masses and frequencies.�e horizon distance for standard�is is the distance at
which the detector
measures a SNR ρ = 8

for an
optimally-oriented and
optimally-located
binary, i.e. an overhead,
face-on orbit.

post-Newtonian �lters in the stationary-phase approximation is compared

with the reach obtained with full inspiral-merger-ringdown templates. It is

clear that this kind of searches provide a considerably enlarged reach, both in

surveyed e�ective distance and in masses.

Inspiral-Merger-Ringdown Waveforms

�e high-mass search intends to go up to binary systems with higher masses,

therefore it requires waveforms that describe the coalescence up to higher

frequencies. Diverse waveform models are used in the search, both to e�-

ciently �lter the data for signals and to assess the sensitivity of the instruments

and the data analysis procedures via simulations. In the mass range that the

high-mass search wants to explore, the use of full inspiral-merger-ringdown

waveforms that model all of the observable signal and naturally decay away
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Figure 31: Expected horizon distance of the LIGOdetectors for inspiral-only (red) and

full inspiral-merger-ringdown signals (blue).�e merger and ringdown

contribute signi�cantly to the SNR; a search employing full �lters is able

to explore more massive systems and to reach further.

during the ringdown phase is highly desirable. As already discussed in chap-

ter 4, numerical relativity is now able to reveal the nature of the merger and

ringdown stages of the binary black hole coalescence.�e most optimal way

to integrate these new results into existing data analysis codes is by means of

analytical models that capture the features of the coalescence.

So far, this e�ort has led to two di�erent approaches, the e�ective-one-

body method calibrated to numerical relativity data (EOBNR) [80, 83, 98, 103]

and the phenomenological models obtained by matching post-Newtonian

and numerical waveforms [24, 22, 23, 25].�ese approaches have already

been described in section 5.1; in particular, the model developed in chap-

ter 5 belongs to the second category.�e high mass search uses EOBNR as

search templates and also as injected waveforms to test the detection e�ciency.

�e non-spinning phenomenological waveforms are used for injections and

provide a check that that search pipeline can detect waveforms which are

slightly di�erent than the search templates. Future searches for systems in

this mass range will make use of the spinning equivalents of the EOBNR and

phenomenological models, including our model of chapter 5.

�e Data Analysis Procedure

�e search strategy for the high-mass search follows all the main steps of the

pipeline employed for the low-mass search of section 6.2, with only a di�erent

choice for the �lter waveforms and minor technical details. Data from the

three detectors under consideration —H1, H2 and L1— is read in and used

as the base to compute the power spectral density. In a �rst �ltering stage,

double- or triple-coincident events above a single-detector SNR threshold of

ρ∗ = 5.5 are recorded. A subsequent second �ltering stage re-�lters the data

with the χ2 veto using p = 10 bins and χdof = 18 in equation 6.10.
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One particularity of the high-mass search has to do with the choice of

template bank placement.�e templates ought to cover the parameter space

of total mass between 25 − 100M�, with component masses in the range
1− 99M�.�e bank is laid out using a hexagonal placement algorithm [93],
such that the maximum loss in SNR would be 3%.�e template spacing is

determined using the metric calculated for the frequency-domain templates

in the stationary phase approximation [51], as has been used in previous

searches for signals from low-mass systems. Although this metric has not

been calculated for signals featuring inspiral, merger and ringdown phases, it

has been found that the bank gives the desired minimal match for most of

the parameter space. We do not achieve exactly the desired minimal match

for the highest masses. To take into account this limitation, the coincidence

requirements chosen are somewhat looser than those of previous searches.

�is limitation should be mitigated in future searches when metrics for full

inspiral-merger-ringdown waveforms become available.

A�er the two �ltering stages mentioned above, events are required to be

coincident in at least two detectors.�e background is estimated via 100 �ve-

second time slides between the two LIGO sites. All H1H2 double-coincidence

events are ignored due to correlated noise. H2L1 events found when H1 was

in operation are likewise discarded.�ese choices agree with those made for

the low-mass search.�e coincident candidates are ranked according to their

e�ective SNR ρe� , and the false alarm rate (FAR) is calculated in the manner

described in section 6.1.5.�e three di�erent mass categories in which the

triggers are separated, due to the mass-dependent background, are chosen

asMlow < 50 6 Mmid < 85 6 Mhigh. A�er being separated in categories

according to their total mass and type of coincidence, the inverse false alarm

rate is used as an intermediate statistic to �nally compute the combined FAR;

candidates are ranked accordingly. Potential candidates for gravitational-wave

detection are identi�ed and followed up. If no plausible candidate is found,

upper limits on the rate of coalescences for systems in the considered mass

range are calculated.

6.3.2 Preliminary Results of the High-Mass Search

�e high-mass search analyzed the complete S5 LIGO data in a similar fashion

to the second year S5 low-mass search of section 6.2.�e data was split in 12

two-month long blocks, that were analyzed separately by di�erent analysts.We�e author analyzed
months 1 and 2 of the S5
LIGO data, from
November 4, 2005 to
January 6, 2006

report results of the analysis of playground data for months 1 and 2 of the S5

LIGO data. Figure 32 illustrates the reach of the detectors during thesemonths.

A large number of simulated signals are injected into the pipeline and analyzed

in order to test the data analysis �nding algorithm. In the high-mass search,

EOBNR and phenomenological waveforms are injected at physical distances

between 1 and 750Mpc.�ese injections are considered found if they produce

coincident triggers above the SNR threshold ρ∗ = 5.5. In �gure 32 we plot in

blue and green the injections that were found in triple and double coincidence

respectively; in black those that were missed. �e line that separates the

regions of found and missed injections gives an estimation of the reach of

the detectors, which ranges from tens of Mpc at low masses to hundreds of

Mpc at the high end of the mass range, con�rming the predictions of �gure 31.

Rather than reaching a maximum at around total massM = 30M� and
decreasing a�erwards, like we saw in �gure 28 for the low-mass search, the
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Figure 32: Found and missed injection during months 1 and 2 of the high-mass S5

LIGO search.�e plot corresponds to the times when the three LIGO

interferometers were operating. Double- and triple- found coincidences

are compared with missed injections according to their chirp massM.

horizon distance reaches its maximum at total mass of few hundredM�
when inspiral-merger-ringdown templates are used.

As already mentioned, the data is �ltered against the elements of the tem-

plate bank twice; at the second �lter stage the χ2 veto is applied.�is signal-

based veto is very important in order to separate potential real signals from

background noise. Figure 33 shows how the veto di�erentiates among them;

we plot the value of χ2 versus the SNR ρ for three di�erent kinds of events:

so�ware injections, background triggers estimated via time slides and zero-

lag triggers from the playground.�e �gure corresponds to the L1 detector;

plots for H1 and H2 show a similar structure. Firstly, one should notice the

e�ciency of the veto in separating background and injections.�e χ2 test

provides signi�cant separation from noise for a large fraction of simulated

signals in this search. Background triggers associated to glitches might be

very loud and pass the SNR cut, but for the most part they present a large

χ2 value; in general, injections are correlated with lower χ2 values. In prin-

ciple we could draw a line in the ρ-χ2 plane and discard all triggers above

it. In practice, however, one should be careful when applying this procedure,

since the separation between injections and background is not always per-

fectly clean, especially at low ρ values.�us, stringent cuts would put us in

danger of discarding real signals with slightly-above-threshold SNR.�is is

a well-identi�ed issue; future search e�orts in this mass range will employ

new signal-based vetoes and multivariate classi�ers to hopefully achieve a

better separation of signal from background. In addition, �gure 33 shows that

among the zero-lag triggers for months 1 and 2 of S5 no obvious candidate

for detection is present, for all blue crosses in the plot are consistent with the

time-slided background triggers.
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Figure 33: Plot of SNR versus χ2 in L1 during months 1 and 2 of the high-mass S5

LIGO search. Time-slided background triggers (black) present larger χ2

values than the injections, showing how the χ2 veto helps discriminate

between them. Additionally, we observe no obvious real candidate among

the zero-lag playground triggers.

Once the data has been �ltered and the triggers have been subject to the

coincidence test, the next step is the ranking of the candidates in order to

establish their signi�cance. For the high-mass search this ranking is done using

the false alarm statistic. As it happened in the low-mass search, the false alarm

rate depends on the �lter—despite the expectation forGaussian noise inwhich

it does not— and also on howmany detectors were operating and participated

in the event. For the high-mass search, we compute the false alarm rate as a

discrete function of four parameters, which each coincident event possesses.

Each parameter is an index for an event E.�e �rst index, i, describes the

instruments that were functioning during the event and is a member of the

set {H1L1,H2L1,H1H2L1}.�e second index, j, indexes the instruments that

participated and is also a member of the set {H1L1,H2L1,H1H2L1}.�e third

index, k, denotes a range for the average total mass estimated for the event and

is in the set {[25, 50), [50, 85), [85, 100)}.�e fourth index,m, is the rank of

the event.�is index is determined by assigning the event with the lowest

combined e�ective SNR de�ned in 6.13 the value 0 and the the next lowest,

1, etc. until all N events are ranked. We calculate the false alarm rate, ξ for a

given event by summing all background events B ∈ E with a rank larger than
that event dividing by the background time analyzed Ti.�is time is a function

of the instruments that
were in operation ξijkl =

∑
m>l

Bijkm / Ti. (6.15)

�is is essentially equivalent to equation 6.14 and to the calculation done

for the low-mass search, but new algorithms have been developed in the

high-mass search in order to parse events from the database.

In order to assess the total FAR of events, independent of the second and

third indices, j, k, we use the inverse FAR ξ−1 as an intermediate ranking
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statistic to replace combined e�ective SNR as the fourth index.�en the

combined FAR

ξil =
∑

m>l,j,k

Eijkl / Ti (6.16)

is only a function of the detectors i that were functioning during the event

and the inverse FAR computed at the previous step.�e results of the FAR

calculation for the zero-lag playground triggers occurred during months 1

and 2 of the high-mass S5 LIGO search are shown in �gure 34. We observe

values of ρe� compatible with the background; however the FAR plot shows a

signi�cant event above the 3-σ level. Such an event is eventually followed up

with appropriate diagnosis tools developed by the group; the description of the

full follow-up pipeline falls beyond the scope of this dissertation. Nevertheless,

the true signi�cance of this event found in the playground can only be stated

a�er the analysis of the full data set is complete; the playground results are

a�ected by small statistics associated to the reduced data-set that is analyzed.

Full results of the high-mass search, including in-depth description of the

loudest candidates found and —if applicable— computation of upper limits

on the rate of binary coalescences will be presented in in [2].

Limitations and Future Prospects

�ere are a number of limitations in the current approach, which will be

addressed for future searches.�e main limitation is that the template wave-

forms neglect the e�ects of spin. As mentioned in previous chapters of this

dissertation, the statistical distribution of the spins of black holes in binaries

is not well known; nevertheless there are examples of black holes in X-ray

binaries which have been observed to have a large spin [181]. For a binary

with spinning components, we have shown that the expected observed grav-

itational wave signal will di�er substantially from the non-spinning case;

the observed length can be di�erent, and in the case of non-aligned spin

and orbital angular momenta, there would be modulation of the amplitude

and phase of the gravitational waveform due to the precession of the orbital

plane. Neglecting such e�ects in the search templates will a�ect the detection

e�ciency for binaries with spinning components. Due to the current lack

of analytical inspiral-merger-ringdown waveforms for systems with generic

spins, we are not yet able to fully quantify how large an e�ect this is.�e

model presented in chapter 5 constitutes a �rst step towards the incorporation

of spins in current GW searches and will be included in the near future.

Another limitation of the search is that, due to the shorter duration and

bandwidth of the signals in comparison to searches for lower mass systems,

it is harder to distinguish between genuine signals and background events.

Since the signals themselves resemble short-duration glitches, tests which

have previously proved very e�ective in the lower mass searches, such as the

χ2-test described in 6.1.3, and the consistency between measured distances in

the two Hanford detectors, are not as e�ective here. New approaches to the

ranking of candidate events are being developed to improve this situation in

the future.

�is chapter has presented the current status of searches for binary coales-

cences with ground-based interferometers. Over the past years, signi�cant

advances, especially in waveform modelling, have opened the door to im-

provements in the design of the searches. In particular, the possibility of
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Figure 34: Playground zero-lag events observed compared to background during

months 1 and 2 of the high-mass S5 LIGO search.�e results correspond to

the times when the three LIGO detectors were operating.�e upper panel

shows the number events versus ρeff , whereas the lower panel shows the

false alarm rate.�e apparent 3-σ signi�cance of an event in the FAR plot

is due to insu�cient analyzed data in the playground. In order to establish

its true signi�cance, the event would need to be properly analyzed against

the full data set.

incorporating input from numerical relativity is slowly taking form.�e next

chapter presents the results of the �rst project directly targeted to study the

in�uence of numerical relativity waveforms into current gravitational-wave

searches.



7
NUMERICAL INJECTIONS IN GRAVITATIONAL SEARCHES

So far we have stressed the importance of binary systems of compact objects

formed by black holes and/or neutron stars for testing general relativity and

studying its astrophysical implications [253]. We have seen how detection of

gravitational radiation from these objects is very likely with future genera-

tions of gravitational-wave interferometers. Two important advances have

occurred in recent years that approach us to the goal of observing and inter-

preting signals from coalescing compact objects.�e �rst is the successful

construction and operation of the world-wide network of gravitational-wave

interferometers described in depth in chapter 1.�e second has been the

success of numerical relativity in simulating the merger phase of binary black

hole (BBH) coalescence introduced in chapter 4. Since the already-mentioned

breakthroughs occurred in 2005, a number of numerical relativity groups

around the world have successfully evolved various con�gurations starting

from the inspiral phase all the way through the merger to the �nal remnant

black hole.�is has led to important new physical insights in BBH mergers.

Since the coalescence of black holes is among the most important targets

of gravitational-wave detectors, detailed information provided by numerical

simulations should be used to increase the reach and to quantify the e�cacy

of data analysis pipelines. Indeed the driving motivation of research on nu-

merical simulations of black-hole binaries over the last few decades has been

their use in gravitational-wave observations.

�is chapter presents the results of the �rst project established with those �is chapter
summarizes the work of
the author in the
context of the NINJA
collaboration, which
resulted in the
publications [49], [87]
and [228]

speci�c goals. Below is the description of the scope and goals of the NINJA

project as well as the contributed numerical waveforms and the construction

of the simulated gravitational-wave detector data used in the analyses.�e

core of the author’s work for NINJA, corresponding to the implementation of

a search that uses the non-spinning phenomenological template bank of [24]

is described in section 7.2.�e chapter concludes with the discussion of the

results and future directions for NINJA in sections 7.2.3 and 7.2.4.

7.1 the ninja project

�us far, most searches for gravitational waves from BBH mergers have relied

on post-Newtonian results, which are valid when the black holes are su�-

ciently far apart, as explained in section 3.1 of chapter 3. Within its range of

validity, post-Newtonian theory provides a convenient analytic description

of the expected signals produced by binary systems.�e numerical relativity

results, on the other hand, have not yet been synthesised into an analytic

model for the merger phase covering a broad range of parameters, i.e., a wide

range of mass ratios, spins and if necessary, eccentricity. As a matter of fact,

one of the core results of this thesis, presented in chapter 5, is the construction

of a phenomenological model for the full coalescence of non-precessing BBH

systems that aims at incorporating the spins of the black holes in a simpli�ed

way.

117
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Similarly, despite signi�cant progress, there is not yet a complete detailed

description over the full parameter space of how post-Newtonian and numer-

ical simulations are to be matched with each other.�e waveform family of

chapter 5 is a �rst step in this direction, but more work is necessary to expand

this model to generically spinning systems. On the data analysis side, many

pipelines, especially ones that rely on a detailedmodel for the signal waveform,

have made a number of choices based on post-Newtonian results, and it is

important to verify that these choices are su�ciently robust. More generally,

it is necessary to quantify the performance of these data analysis pipelines for

both detection and parameter estimation.�is is critical for setting astrophys-

ical upper limits in case that no detection is made, for following up interesting

detection candidates, and of course for interpreting direct detections. To date,

available research has primarily used post-Newtonian waveforms. Numerical

relativity now provides an important avenue for extending these studies to

the merger phase.

�ere are signi�cant challenges to be overcome before numerical relativity

results can be fully exploited in data-analysis pipelines.�e NINJA project wasNINJA:�e Numerical
INJection Analysis
Project
http://www.

ninja-project.org/

started in the spring of 2008 with the aim of addressing these challenges and

fostering close collaboration between numerical relativists and data analysts.

�e purpose of NINJA is to study the sensitivity of existing gravitational-wave

search algorithms using numerically generated waveforms that are injected

into simulated noise. Only BBH simulations are considered, leaving out results

from supernova simulations or simulations containing neutron stars; the

waveform data comes purely from numerical simulations; the NINJA data set

is constructed using Gaussian noise to model the response of the Initial LIGO

and Virgo detectors —no attempt has been made to include non-Gaussian

noise transients found in real detector data.

7.1.1 Numerical Waveforms

�e NINJA project studied BBH coalescence waveforms submitted by ten

individuals and teams. Participation in NINJA was open to anyone and the

only restrictions were that each contribution: (i) was a numerical solution

of the full Einstein equations, (ii) consisted of only two waveforms, or up to

�ve waveforms if they were part of a one-parameter family. No restrictions

were placed on the accuracy of each waveform. All contributions followed the

format speci�ed in [75].�e contributed waveforms, plotted in Figures 35 and

36, cover a variety of physical and numerical parameters. Most simulations

model low-eccentricity inspiral, the mass ratio q = m1/m2 ranges from 1 to

4.�e initial angular frequency of the ` = m = 2mode ranges from 0.033/M

to 0.203/M (whereM denotes the sum of the initial black-hole masses).�is

initial angular frequency marks where contributors consider the waveform

su�ciently clean to represent the physical system (e.g. this will be chosen

a�er initial unphysical radiation content, o�en referred to as “junk radiation”

in numerical relativity, is radiated away).�e length of the waveforms varies

between a few 100M to over 4000M.�e contributions naturally di�er in

accuracy, both regarding how well they capture the black-hole dynamics and

in the extraction of the gravitational-wave signal.

Table 10 lists a few key parameters that distinguish the waveforms, and

introduces the following tags for the di�erent contributions and NR codes:

BAMHHB [77, 156, 146, 145, 78] and BAM FAU [77, 156, 254, 78] are contribu-

http://www.ninja-project.org/
http://www.ninja-project.org/
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Figure 35: Summary of all submitted numerical waveforms: r/MRe(h22).�e x-
axis shows time in units ofM and the y-axis shows the real part of the

(`,m) = (2, 2) component of the dimensionless wave strain rh = rh+ −
irh×.�e top panels show the complete waveforms: the top-le� panel

includes waveforms that last more than about 700M, and the top-right

panel includes waveforms shorter than about 700M.�e bottom panel

shows an enlargement of the merger phase for all waveforms. (Figure credit:
Harald Pfei�er)



120 numerical injections in gravitational searches

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

-2000 -1000 0

0.01

0.1

1

-2000 -1000 0

SpEC q=1

BAM FAUBAM FAU BAM HHB S00BAM HHB S00

BAM HHB S25BAM HHB S25 BAM HHB S50BAM HHB S50

BAM HHB S75BAM HHB S75 BAM HHB S85BAM HHB S85

LazEvLazEv Lean cLean c

MayaKranc e0MayaKranc e0 MayaKranc e02MayaKranc e02

t/M t/M

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

-600 -300 0

0.01

0.1

1

-600 -300 0

CCATIE r0CCATIE r0 CCATIE r2CCATIE r2

CCATIE r4CCATIE r4 CCATIE r6CCATIE r6

CCATIE s6CCATIE s6 Hahndol kickHahndol kick

Hahndol nonHahndol non Lean 2Lean 2

PU CPPU CP PU T52WPU T52W

UIUC cpUIUC cp UIUC puncUIUC punc

t/M t/M

0.01

0.1

1

0.01

0.1

1

0.01

0.1

1

-100 0

0.01

0.1

1

-100 0 -100 0 -100 0 -100 0 -100 0

BAM FAUBAM FAU BAM HHB S00BAM HHB S00 BAM HHB S25BAM HHB S25 BAM HHB S50BAM HHB S50 BAM HHB S75BAM HHB S75 BAM HHB S85BAM HHB S85

CCATIE r0CCATIE r0 CCATIE r2CCATIE r2 CCATIE r4CCATIE r4 CCATIE r6CCATIE r6 CCATIE s6CCATIE s6 Hahndol kickHahndol kick

Hahndol nonHahndol non LazEvLazEv Lean 2Lean 2 Lean cLean c MayaKranc e0MayaKranc e0 MayaKranc e02MayaKranc e02

PU CPPU CP PU T52WPU T52W SpEC q=1 UIUC cpUIUC cp UIUC puncUIUC punc

t/M t/M t/M t/M t/M t/M

Figure 36: Distribution of power into di�erent spherical harmonics.�e blue line

shows
(
Σ`,m|h`m r/M|2

)1/2
. A dashed red line, if present, shows the

same sum, but excluding the (`,m) = (2,±2) modes.�e separation
between the two lines gives the relative importance of non (2,±2)modes.
If no red line is present for a certain run, then only the (2,±2)modes were
supplied.�e layout is as in �gure 35:�e top panels show the complete

waveforms, whereas the bottom panel shows an enlargement of the merger

phase.�e x-axis shows time in units ofM. (Figure credit: Harald Pfei�er)
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tions using the BAM code, CCATIE is the AEI/LSU code [28, 29, 170, 206, 222],

Hahndol is the Goddard Space Flight Center’s code [158, 256], LazEv is the RIT

code [269, 88, 96], Lean is Ulrich Sperhake’s code [244, 246, 245], MayaKranc

is the Georgia Tech/Penn State code [255, 153], PU stands for the Princeton �e list of contributing
groups to NINJA
re�ects the success of
the project, for all
research groups capable
of performing NR
simulations of BBH
space-times did
contribute their
waveforms.

University code [213, 212, 82, 214], SpEC for the Cornell/Caltech collaboration

code [231, 204, 69, 232], and UIUC stands for the University of Illinois at

Urbana-Champaign team [114].

�e codes listed above use di�erent formulations of the Einstein equations,

gauge conditions, mesh structures, initial data and wave extraction methods;

they follow either of two approaches to solving the Einstein equations: (i) the

generalized harmonic formulation, which was the basis of Pretorius’ initial

breakthrough simulation of coalescing black holes [212], or (ii) the moving-

puncture approach, following [88, 52]. Both approaches result in canonical

choices for the construction of initial data, the evolution system for the Ein-

stein equations, and the treatment of the singularity inside the black-hole

horizons. Full details of each individual code are given in the references above

and a comparative description of their main features is presented in [49].

7.1.2 Creation of NINJA Data

�e data provided by the numerical relativity groups follows the format out-

lined in [75], which is based on the mode decomposition of the gravitational

radiation �eld at large distances from the source. If we specify a gravitational

waveform hµν in the Transverse-Traceless (TT) gauge, we only need the spa-

tial components hij. We assume that we are su�ciently far away from the

source so that the 1/r piece dominates:

hij = Aij
M

r
+ O

(
r−2
)
, (7.1)

whereM is the total mass of the system, r is the distance from the source, and

Aij is a time-dependent TT tensor. In the TT gauge, hij has two independent

polarizations denoted h+ and h× and the complex function h+ − ih× can
be decomposed into modes using spin-weighted spherical harmonics −2Ylm
of weight -2:

h+ − ih× =
M

r

∞∑
`=2

∑̀
m=−`

H`m(t) −2Y`m(ι, φ) . (7.2)

�e expansion parametersHlm are complex functions of the retarded time

t − r, however if we �x r to be the radius of the sphere at which we extract

waves thenHlm are functions of t only.�e angles ι and φ are respectively

the polar and azimuthal angles in a suitable coordinate system centered on the

source.�is decomposition is directly applicable to non-precessing binaries.

Otherwise, a comparison of the waveforms requires a careful treatment of

mode-mixing e�ects due to rotations of the frame; see for instance [137].

�e numerical data contributed to NINJA is given in the form of an ASCII

data �le for each mode (`,m), with accompanying meta-data describing the

simulation [75]. Only modes that contribute appreciably to the �nal waveform

are included, at the discretion of the contributing group. Each data �le consists

of three columns: time in units of the total mass, and the real and imaginary

parts of the mode coe�cientsH`m as a function of time. Note that the total
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Table 10: Initial conditions for numerical waveforms submitted to the NINJA project.

�e columns list, in order from le� to right, the name of the contribution or

code, the name of the run where appropriate, the mass ratio q = m1/m2
wherem1 > m2, the spins of the black holes in vector form (if only one spin

is given, both spins are equal), the initial frequency of the (`,m) = (2, 2)
mode (rounded to three digits) and the initial coordinate separation of

either the black-hole punctures or the excision surfaces. All binaries start

out in the xy-plane with initial momenta tangent to the xy-plane. See text

for the identi�cation of each contribution.�e dimensionless spins of the

BAMFAU run are (−0.634,−0.223, 0.333) and (−0.517,−0.542, 0.034).

Code [Ref.] Run q ~Si/m
2
i ω22M D/M

BAM FAU [254] 1 see caption 0.06 9.58 ŷ

[77, 156]

BAM HHB S00 [146] 1 0 0.045 12 ŷ

[77, 156] S25 [145] 1 0.25 ẑ 0.045 12 ŷ

S50 [145] 1 0.50 ẑ 0.052 11 ŷ

S75 [145] 1 0.75 ẑ 0.06 10 ŷ

S85 [145] 1 0.85 ẑ 0.06 10 ŷ

CCATIE r0 [206] 1 0.6 ẑ, −0.6 ẑ 0.079 8 x̂

[28, 29, 170, 206] r2 [206] 1 0.6 ẑ, −0.3 ẑ 0.078 8 x̂

r4 [206] 1 0.6 ẑ, 0 0.076 8 x̂

r6 [206] 1 0.6 ẑ, 0.3 ẑ 0.075 8 x̂

s6 [222] 1 0.6 ẑ 0.074 8 x̂

Hahndol kick 3 0.2 x̂, 0.022 x̂ 0.078 8.007 ŷ

[158, 256] non 4 0 0.070 8.470 ŷ

LazEv MH [96] 1 0.92 ẑ 0.07 8.16 x̂

[269, 88]

Lean c 4 0 0.05 10.93 x̂

[244] 2 1 0.926 ẑ 0.11 6.02 x̂

MayaKranc e0 [153] 1 0 0.05 12 x̂

[255] e02 [153] 1 0 0.05 15.26 x̂

PU CP [82] 1 0.063 ẑ 0.07 9.5 x̂

[213, 212] T52W [214] 1 0 0.07

SpEC q = 1 [69, 232] 1 0 0.033 15 x̂

[231]

UIUC cp [114] 1 0 0.194 4.790 x̂

[114] punc [114] 1 0 0.203 4.369 ŷ
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Table 11: Characteristic duration,mass and frequencies of the waveforms summarized

in table 10. �e columns ∆T100 and fi,100 give the duration and initial

frequency of thewaveformwhen scaled to totalmassM = 100M�.M30Hz

is the totalmass of the waveformwhen it is scaled so that the initial frequency

is 30Hz (this sets the lowest mass at which each waveform can be injected

into the NINJA data).

Code Run q ∆T100 (s) fi,100 (Hz) M30Hz(M�)

BAM FAU 1 0.54 19 65

BAMHHB S00 1 1.03 15 48

S25 1 1.15 15 48

S50 1 1.03 17 56

S75 1 0.81 19 65

S85 1 0.87 19 65

CCATIE r0 1 0.34 26 85

r2 1 0.37 25 84

r4 1 0.40 25 82

r6 1 0.45 24 81

s6 1 0.59 24 80

Hahndol kick 3 0.25 25 84

non 4 0.32 23 75

LazEv MH 1 0.43 23 75

Lean c 4 0.92 16 54

2 1 0.20 36 118

MayaKranc e0 1 1.23 16 54

e02 1 0.74 16 54

PU CP 1 0.29 23 75

T52W 1 0.16 23 75

SpEC q = 1 1 1.96 11 36

UIUC cp 1 0.10 63 209

punc 1 0.10 66 219
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Figure 37: Design spectra of the �rst generation LIGO and Virgo detectors and the

NINJA noise curves generated via coloured Gaussian data to mimic the

response of the real detectors.

massM scales both the time and the amplitude; thus the BBH waveforms for�is is not true in the
case of simulations
which include matter
�elds, but we do not
consider such
waveforms here

each simulation can be scaled to an arbitrary value of the mass. To model the

signal seen by a gravitational-wave detector, we need to calculate the detector

strain h(t) from the above mode decomposition. To do this, we must choose

particular values of the total mass, orientation and distance from the detector.

Given the H`m, the total mass, the distance to the source, and the angles

(ι, φ), we calculate h+,× using equation 7.2, and use the detector response
functions F+,× to calculate the observed strainSee, for example, [253]

h(t) = h+(t)F+(α, δ,ψ) + h×(t)F×(α, δ,ψ) . (7.3)

Here (α, δ) are sky-angles in the detector frame,ψ is the polarization angle

and the time t is measured in seconds. In this analysis, we wish to simulate

signals that might be observed by the Initial LIGO and Virgo detectors. Since

the location and alignment of the three observatories di�er, we must use

the appropriate detector response and arrival time to compute the strain

waveform h(t) seen at each observatory.�is ensures that the waveforms are

coherent between the detectors and simulate a true signal.

To model the detector noise, we generated independent Gaussian noise

time series n(t), sampled at 4096 Hz, for each detector.�is sample rate

was chosen to mimic that used in LSC-Virgo searches and assures a tolerable

loss in signal-to-noise ratio due to the discrete time steps. Stationary white

noise time series are generated and coloured by a number of time-domain

�lters designed to mimic the design response of each of the LIGO and Virgo

detectors. Figure 37 shows the one-sided amplitude spectral density
√
Sn(f)

of each time detector’s time series, where Sn(f) is de�ned by equation 5.4.

We see from �gure 37 that the noise power spectrum of the NINJA data set

closely approximates the Initial LIGO design sensitivity in the frequency range

of interest (30− 103 Hz).�ere is a slight discrepancy with the Virgo design
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Figure 38: Total mass and distance of the 126 NINJA injections, with the colour code

encoding the modulus of the dimensionless total spin | ~S1/m
2
1 + ~S2/m

2
2|

of the black holes.�e total mass of the injected signals lies within the

range 36M� 6 M 6 460M� and they are located at a distance between

52 and 480Mpc.�e vertical line delimits the mass parameter space with

M < 160M� that the phenomenological template bank for the search

described in section 7.2 covers.�e full NINJA data set spans a duration of

a little over 30 hours and contains a total of 126 signals injected in simulated

noise, 67 of which overlap with the parameter space of our template bank.

curve at low frequencies (between approximately 20 and 150Hz), which is an

artefact of the Virgo noise generation procedure. Narrow-band features such

as the violin andmirror modes were removed from the detector response used

to compute the NINJA data, but were included in the calculation of the Virgo

design curve.�e 1/f tails of these narrow-band features are responsible for

the small discrepancy.

Having produced the simulated detector data, we then generated a popula-

tion of simulated signals using the numerical relativity data.�is population

was constructed to cover a broad range of masses and signal amplitudes. We

required that the starting frequency of the dominant ` = m = 2 mode of

the signal was not more than 30Hz, an appropriate threshold given the sen-

sitivity curve of the Initial LIGO and Virgo detectors.�is sets a minimum

mass at which each waveform can be injected, which is given in Table 11.�e

minimum possible injection mass is therefore 36M�.�e maximummass
was chosen as 350M�. To get a good sample of long injected waveforms, we
systematically chose a lower range of masses for the longer waveforms. No

restrictions were placed on the other simulation parameters, i.e., the spins,

mass-ratios and eccentricities. We ensured that waveforms from all the par-

ticipating groups were equitably represented by generating approximately 12

signals from the waveforms supplied by each group.�e time interval between

adjacent injected signals was chosen to be a random number in the range

700± 100 s.
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Given these constraints, we generated the parameters of the signal popula-

tion.�e logarithm of the distance to the binary was drawn from a uniform

distribution ranging from 50Mpc to 500Mpc, and the source locations and

orientations were drawn from an isotropic distribution of angles. We then

computed waveforms corresponding to this population and at the appropriate

sampling rate. We required that the optimal matched �lter signal-to-noise

ratio of any injection be greater than �ve in at least one of the four simulated

detectors. Any waveform that did not satisfy this constraint was discarded

from the population. Subject to this condition, the distances of injected signals

varied from 52Mpc to 480Mpc (median at 145Mpc), the injected total mass

range was 36M� 6 M 6 346M� (median at 155M�), with individual
component masses in the range 11M� 6 mi 6 193M�.
Finally, the waveforms h(t) were added to the simulated detector noise

n(t) to generate the NINJA data set s(t) = n(t) + h(t). As described above,�e so�ware for
carrying out this
procedure is freely
available as part of the
LSC Algorithm Library
http://www.

lsc-group.phys.uwm.

edu/lal [178].

care was taken to ensure that signals were coherently injected in the data

streams from the four detectors.�e data set used in this analysis consisted

of a total of 126 signals injected in a total of 106 contiguous segments of noise

each 1024 s long, thus spanning a duration of a little over 30 hours. Figure 38

shows the mass, spin and distance of the waveforms contained in the NINJA

data set, as well as the part of the parameter space explored by the search

described in section 7.2

7.2 search with a phenomenological template bank

Analysis of theNINJA data was open and nine groups submitted contributions

using a variety of analysis techniques. Participating groups were provided with

the NINJA data set containing signals embedded in noise and the parameters

of the injected signals. Analysts were not given access to the raw numerical-

relativity waveforms or noiseless injection data. Methods used to analyze the

NINJA data include: matched-�lter based searches, unmodeled waveform

searches using excess-power techniques, and Bayesian model-selection and

parameter-estimation techniques. For a full description of all analyses and

results we refer the reader to the main NINJA paper [49]. In this section we

present the results of our analysis employing a matched-�lter search using

phenomenological waveforms.

7.2.1 �e Non-Spinning Phenomenological Waveform Model

Most standard searches for gravitational waves from BBHs use the PN approx-

imation of general relativity to construct banks of templates that account for

the inspiral stage of the coalescence process, and the �nal ringdown can also

be computed via perturbative techniques. However, the full calculation of the

waveform in the merger stage requires numerical methods.�ese numerical

simulations are in general rather expensive, and it is at present not feasible to

model a coalescing binary over hundreds of orbits with su�cient accuracy.

It is in fact also unnecessary to do so, because PN theory provides a valid

description of the system when the black holes are su�ciently separated and

the gravitational �eld is weak.�us, a promising approach for constructing

long waveform models covering the inspiral, merger and ringdown regimes

is to stitch together the results of PN and NR calculations.

http://www.lsc-group.phys.uwm.edu/lal
http://www.lsc-group.phys.uwm.edu/lal
http://www.lsc-group.phys.uwm.edu/lal
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One procedure for constructing such hybrid waveforms is presented in

[24, 23, 22], where PN and NR waveforms are matched in an appropriate

regime (−750 6 t/M 6 −550) prior to the merger (M is the total mass

of the binary system in solar masses). Restricted 3.5PN waveforms at mass-

quadrupole order are used for the inspiral phase, as given by equation (3.1)

of [23]. For the numerical part, the model is based on long unequal-mass

waveforms from simulations run by the Jena group using the BAM code [77,

146, 105].�ese simulations span a range of mass ratios corresponding to

0.16 6 η 6 0.25, where η = (m1m2)/M
2 is the symmetric mass ratio of

the binary system.�e matching of PN and NR data is performed over an

overlapping region, under the assumption that both approaches to the true

BBH waveform are approximately correct at the late inspiral stage. Once the

hybrid waveforms are constructed, they are �t to a phenomenological model

determined entirely by the physical parameters of the binary system.�is �t

to an analytical expression is performed in the Fourier domain, assuming a

functional dependence of the form

u(f) = Ae�(f)
Ψeff(f), (7.4)

with amplitude and phase given by the following equations: �e phenomenological
coe�cients
fmerg, fring, fcut, σ and
ψk are functions of the
binary symmetric mass
ratio η and total mass
only and can be
computed from Tables I
and II of [23].

Ae�(f) ≡ C


(
f/fmerg

)−7/6
if f < fmerg(

f/fmerg
)−2/3

if fmerg 6 f < fring

wL(f, fring, σ) if fring 6 f < fcut

(7.5)

Ψe�(f) = 2πft0 +ϕ0 +

7∑
k=0

ψk f
(k−5)/3 , (7.6)

Each waveform is parameterized by the physical parameters of the system,

which in the non-spinning case are solely the massesm1 andm2 of the black

holes. As a result of thematching and �tting procedures described above, a two-

dimensional template family of waveforms that attempt to model the entire

coalescence of non-spinning binary black hole systems has been obtained.

7.2.2 �e Search Strategy

�e LSC inspiral pipeline infrastructure developed by the CBC group and

described in chapter 6 has been employed to analyze the data released for

the NINJA project.�e pipeline, without major conceptual modi�cations,

has been used in LSC searches for compact binaries from the third LIGO

science run onward [10].�e same pipeline has been modi�ed for the anal-

ysis of the NINJA data with the non-spinning phenomenological template

family [24, 23, 22] described in section 7.2.1. Since the signals present in the

simulated noise are known to be numerical simulations of BBH coalescences,

the search method consists of a matched-�lter technique [31] using an IMR

waveform model based on hybrid NR-PN waveforms.�e �ndings presented

here concentrate solely on the simulated LIGO detectors H1, H2 and L1, al-

though the NINJA data was generated for the simulated Virgo interferometer

V1 as well.

�e tuning of the pipeline was realized according to the usual choices made

by the group in the analysis of real LIGO data. For our NINJA analysis, a SNR

threshold ρ∗ = 5.5was employed, in agreement with the value currently used
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Figure 39: Two time-domain phenomenological waveforms from the template bank

used in this search, corresponding to equal-mass binaries in the corners

of our parameter space, namely (20+ 20)M� and (80+ 80)M� BBH
systems.�e original and “whitened” [99] waveforms are shown, with their

amplitudes arbitrarily resized.�e dotted and dashed vertical lines mark

the points where the ISCO and light ring frequencies are reached.�e LRD

frequency is not shown, since it basically extends up to the full waveform.

A matched-�lter search that starts at 30Hz and ends at the ISCO will not

be able to pick the most massive binaries, since the inspiral phase of the

coalescence falls below the LIGO interferometers’ detection band. It is

expected that the light ring and LRD frequencies, which extend up to the

BH merger and ringdown respectively, will show improved performance

at recovering high-mass signals.

in recent LSC searches for binary coalescences [15]. Whenever triggers are

found with comparable coalescence time and parameters —in this case, com-

ponent masses—, they are stored as coincident [224].�e detection statistic

is the combined SNR of the single detector triggers.

Once the initial matched �lter has produced a list of triggers that pass the

�rst coincidence step, a second stage follows where data is again �ltered, but

only through the templates that previously matched a trigger. Additionally the
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χ2 [30] and r2 [225] signal-based vetoes, designed to separate true inspiral

signals from �uctuations in non-stationary noise, are applied. At this point

an e�ective SNR ρe�,i(ρi, χ2i ) is calculated combining the standard SNR with
the χ2 value characterizing the mismatch between the spectral content of the

template and the data. A�er further coincidence tests, the surviving triggers

are listed as true gravitational wave candidates and constitute the output of

the search.�e signi�cance of the triggers is based on the combined e�ective

SNR, namely

ρe� =

√√√√ N∑
i

(ρe�,i)2. (7.7)

A direct comparison between the list of injections performed on the NINJA

noise and the triggers found by the pipeline allows for conclusions about

the sensitivity of the analysis and the relative performance of the di�erent

template banks.

�e phenomenological template bank has been included in the LSC inspiral

pipeline routinely used by the CBC group as a new waveform for �ltering in

the time domain. A search on the NINJA data has been performed, within a

mass range of 20M� 6 m1,m2 6 80M� for the component masses, with
40M� 6 M 6 160M� for the total mass of the binary.�e template bank
is constructed using the standard second order post-Newtonian metric, and

uses a hexagonal placement algorithm in mass space with a minimal match of

0.99 [93].�e number of signals that are recovered by the pipeline depends

strongly on the choice for the upper frequency cuto� used in the matched

�lter integral, as we have observed in our investigations with the integration

stopping at the ISCO (Innermost Stable Circular Orbit, r = 6M), light ring

(the unstable circular orbit for photons orbiting a Schwarzschild black hole,

r = 3M) and Lorentzian ringdown (LRD) frequencies. �e Lorentzian
ringdown frequency is
de�ned as 1.2 times the
fundamental ringdown
frequency of Berti,
Cardoso and Will, Phys.
Rev. D 73 064030
(2006).

In Figure 39 we show two waveforms from our phenomenological template

bank, which correspond to equal-mass binaries in the corners of our parame-

ter space, namely total massM = 40M� and 160M�. Displayed are both
the original time domain waveform and its “whitened” form [99], as the initial

LIGO detector perceives it, and the relative amplitudes have been arbitrarily

resized.�e whitened waveform is computed as the inverse Fourier transform

of the original signal multiplied by the function 1/
√
Sh(f) in the frequency

domain, where Sh(f) is the one-sided noise power spectral density of the sim-

ulated LIGO detectors. In each plot the vertical lines correspond to the ISCO

and light ring frequencies. In our searches we have started �ltering against

the phenomenological templates at either 30 or 40Hz and we have stopped

the integration at the three frequencies discussed in the above paragraph. It is

evident that whereas a cut at the ISCO frequency still retains a good portion

of the inspiral signal for low-mass binaries, it is insu�cient for higher masses.

�e light ring and LRD frequencies, on the other hand, extend roughly up to

the BHmerger and to the Lorentzian tail (from the decay of the quasi-normal

modes of the ringdown), respectively, and are therefore expected to produce

better results for a matched-�lter search for high-mass signals.
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Table 12: Results of the search for NINJA signals using the non-spinning phenomeno-

logical template bank.�ere were 126 injections performed into the analyzed

data for H1, H2 and L1, 67 of which fell within the mass range of our phe-

nomenological template bank (M < 160M�). We explicitly show that

a much better e�ciency in trigger recovery is achieved when the cuto�

frequency is pushed beyond the ISCO frequency, up to the light ring and

Lorentzian ringdown frequencies. Likewise we observe improved e�ciency

in �nding the signals that lie within the mass range of our template bank.

In both cases the signal-based vetoes have little in�uence in the rejection of

triggers, con�rming their e�ciency in separating inspiral-like signals from

other kind of glitches.

Frequency Cuto� ISCO LightRing LRD LRD

Filter Start Frequency 30 Hz 30 Hz 30 Hz 40 Hz

Complete set of 126 NINJA Injections

Found Single (H1, H2, L1) 78, 54, 69 94, 66, 90 92, 61, 87 93, 60, 86

Found Coincidence 59 78 81 80

Found Second Coincidence 59 78 80 79

Reduced set of 67 NINJA Injections withM < 160M�

Found Single (H1, H2, L1) 40, 17, 32 55, 41, 50 55, 41, 50 56, 40, 50

Found Coincidence 30 47 48 47

Found Second Coincidence 30 47 48 47

7.2.3 E�ciency for Detection

�e main results of our search for numerical relativity signals injected in

simulated LIGO noise employing a phenomenological template bank are

presented in Table 12. We show here a summary of the found triggers at

di�erent stages of the pipeline for several runs, with the starting frequency

for the matched-�lter integral being either 30 or 40Hz and the integration

stopping at three di�erent frequencies—ISCO, light ring and LRD—displayed

in ascending order. We have separated our results in two sections, according

to performance in recovering the full set of 126 NINJA injections and the

reduced set of 67 injections whose total mass falls below 160M�.�is choice
is motivated by the construction of the phenomenological bank.

A time window of 120 ms has been used in order to cluster the triggers

found by the pipeline in a single detector. Similarly the coincidence has been

determined within a 80ms injection window. Given these choices for the pa-

rameters used in clustering the triggers, we report recovery of 80/126 triggers

in double or triple coincidence for the full injection set and 48/67 triggers for

the reduced set withM < 160M�.�ese are triggers that survive the second
coincidence stage (including the signal-based vetoes) for our best run, which

corresponds to the matched-�lter integral starting at 30Hz and ending at the

LRD frequency.�e number of recovered triggers in the full mass range is

compatible with the results quoted by other participants in the NINJA project

employing searches with higher-order corrections PN templates extended up

to larger frequencies.�e e�ciency of the search improves, however, when



7.2 search with a phenomenological template bank 131

Figure 40: Found andmissed injections in themass region 32M� 6 M 6 160M�
as a function of their total mass and distance for our best search, starting

at 30 Hz and stopping at the LRD frequency.�e circles represent triggers

that were recorded as either double or triple coincidences a�er the second

stage (including the signal-based vetoes), whereas the triangles represent

missed injections.�e colour code displayed in the vertical scale represents

themodulus of the dimensionless total spin | ~S1/m
2
1+

~S2/m
2
2| of the black

holes.�e red border of the triangles serves solely as visual aid to facilitate

their quick identi�cation as missed injections.

we restrict ourselves to signals with masses overlapping those of our tem-

plate bank. It is worthwhile noting that among the triggers recovered by the

pipeline we �nd not only non-spinning simulations but also signals with non-

precessing spins, such as the CCATIE and BAM_BBH waveforms (except in the

case of equal S/m2 = 0.25 spins aligned in the z-direction, which we discuss Here S is the modulus
of the angular
momentum ~S (which in
this particular BAM
simulation is the same
for both black holes).

later).�is supports existing evidence for the fact that non-spinning templates

should be able to detect non-precessing spinning signals with moderate indi-

vidual spins.�e capability of non-spinning templates for recovering signals

with precession and large spins could however be compromised, as we discuss

below. Due to the low statistics of the present analysis, these statements should

be taken with the appropriate reservations.

Figure 40 provides an overview of the found and missed injections corre-

sponding to total mass below 160M�.�e colour code encodes the modulus
of the dimensionless total spin | ~S1/m

2
1+ ~S2/m

2
2| of the black holes, and gives

an indication of the injections that signi�cantly deviate from the non-spinning

case modelled by the phenomenological waveforms. We observe how signals

located at distances above 350Mpc are systematically lost, giving us an in-

dication of the distance reach of the pipeline; nevertheless, several nearby

injections are missed as well. In order to track down the missed injections

in the mass region below 160M�, a compilation of their relevant physical
parameters and associated information is given in Table 13. A similar analy-

sis of the missed and found injections has been recently performed by the
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Table 13: Overview of the 19 missed injections with total mass below 160M� for the

best run reported.�e ID column stores an index that identi�es each of the

injections of theNINJA set.�e last column displays themodulus of the sum

of the black holes individual spins. Among the missed signals we stress the

presence of waveforms with eccentricity, large spins and precession and also

those injected at distances further than 350Mpc. Note that the IDs enclosed

in asterisks correspond to signals also reported as missed in [50], where

a Bayesian inference search on the NINJA data using a Nested Sampling

algorithm is presented.

ID
NR Tot. mass Distance E�. dist. η Tot. Spin

Simulation (M�) (Mpc) H / L (Mpc) |
∑

~Si/m
2
i |

136 LazEv 94.6 444.5 15831.9 / 2941.3 0.25 1.84

*141* LazEv 75.6 355.8 1047.2 / 746.6 0.25 1.84

*142* LazEv 129.7 442.5 2221.8 / 1537.7 0.25 1.84

*59* CC 69.7 87.5 469.2 / 1573.0 0.25 0

*41* BAM_HHB_S25 112.0 212.1 1150.8 / 802.2 0.25 0.5

47 BAM_HHB_S00 150.0 131.0 648.5 / 908.0 0.25 0

27 BAM_FAU 77.8 121.3 764.1 / 741.1 0.25 1.43

*29* BAM_FAU 72.3 185.1 1325.7 / 885.4 0.25 1.43

*30* BAM_FAU 73.9 351.1 896.9 / 771.4 0.25 1.43

114 PU_T52W 82.6 133.1 364.0 / 320.2 0.25 0

116 PU_T52W 88.2 164.2 654.7 / 533.7 0.25 0

118 PU_T52W 90.0 86.0 1055.4 / 452.3 0.25 0

120 PU_T52W 108.6 106.0 202.0 / 205.9 0.25 0

*125* PU_T52W 96.8 258.8 463.8 / 464.7 0.25 0

*126* PU_T52W 105.8 398.5 1175.2 / 1797.1 0.25 0

*64* GSFC_X4 134.7 149.6 1320.4 / 856.0 0.16 0

*68* GSFC_X3 160.0 220.8 819.3 / 1123.2 0.1875 0.222

*76* GSFC_X4 158.0 145.4 722.2 / 558.5 0.16 0

*95* Lean_c138 68.6 246.5 333.9 / 407.7 0.16 0

Total number of missed injections: 19

Birmingham group in [50], applying Bayesian inference on the NINJA data

using a Nested Sampling algorithm.�e work of Aylott explores how di�erent

waveform families a�ect the con�dence of detection of NR waveforms.�eir

Bayes factor B is a metric for assessing the level of con�dence that a signal

has been detected, and their de�ned thresholds for log10 B allow for classi�-

cation of the signals as found or missed.�e IDs displayed in bold type in our

Table 13 correspond to signals that are reported as missed by the Birmingham

group in Table 2 of [50]; 12 of our 19 missed injections are also lost by them,

a correlation that seems worth following up. Future versions of the NINJA

project will certainly bene�t from combined searches and cross-checks of this

kind between di�erent DA methods.

Signals with large eccentricity, such as the Princeton e & 0.5 PU_T52W

run are invariably lost by our pipeline. Likewise, the phenomenological tem-

plates are not able to pick up signals with considerable spin, such as the

equal-mass, spinning waveforms from LazEv with individual spins of equal
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value S/m2 = 0.92 aligned along the z-axis and BAM_FAU with precessing

spins S/m2 = 0.75 outside the xy-plane and misaligned with respect to

the z-direction. Our template bank was developed to search for signals in

which spin is unimportant and no precession is present, so these results are

understandable. Further work targeted to incorporating spins within the phe-

nomenological model is desirable and will be undertaken in the future.�e

missed GSFC signals withmass ratio 1 : 3 and 1 : 4 correspond to runswith few

orbits before merger and moreover they are injected at total masses bordering

on the edge of our template bank, which could explain them being lost. More

bewildering is however the fact that the pipeline misses a couple of long equal-

mass non-spinning simulations injected at rather close distances, such as SpEC,

which is also missed by the search reported in [50], and BAM_HHB_spp00. A

look at the columns of Table 13 that list the e�ective distance in H and L (the
distance to an equivalent source with optimal location and orientation) indi-

cates that it might be the poor orientation of these injections that prevents the

pipeline from �nding them. Aside from these individual cases, which would

need a careful follow-up that is below the scope of this paper, we can justify the

rest of missed injections as those either placed at large distances, presenting

large spin values and/or precession and containing few orbits before merger.

Among the obvious improvements that a search with phenomenological

templates could bene�t from we can mention the following. Firstly, and once

the technical issue with the generation of high-mass templates is resolved, the

search would clearly improve with the use of a template bank that fully covers

the parameter space of the signals searched for. Additionally, the inclusion

of the fourth interferometer V1 in our pipeline shall provide a larger number

of recovered triggers, in the manner reported by the search using EOBNR

templates that is described in Section 4.1.3 of [49]. Both improvements will

be most likely incorporated to searches with the phenomenological template

bank in future realizations of the NINJA project.

7.2.4 Accuracy for Parameter Estimation

�e number of found versus missed triggers is not the only relevant metric

for assessing the performance of the standard GW searches. If astrophysically

relevant statements are to be made from GW observations, the ability of

accurately estimate the physical parameters of the measured signals is crucial.

�e inspiral pipeline returns estimated values for the individual and total

masses of the detected system, e�ective distance, coalescence time and event

duration, among others. Figure 41 shows two parameter estimation plots

for the phenomenological search on the NINJA injections.�e le� panel

displays the fractional di�erence for recovery of the chirp mass of the system.

�e vertical colour bar encodes the total mass in solar masses. We report

substantial improvement in parameter estimation with respect to LIGO/Virgo

standard searches that make use of PN templates, which we can see in Figure

8 of the NINJA paper [49]. While standard PN searches recover most of the

injections with a fractional di�erence in chirp mass of 0.5 or above, the le�

panel of our Figure 41 shows an overall better accuracy, with the exception

of one outlier. Using the phenomenological template bank, the chirp mass is

recovered within a 20% accuracy for values ofM below 40M� and ∼ 40% for

signals with larger chirp mass. In any case, it should not be forgotten that the

PN searches reported in [49] make use of banks with masses up to 90M�
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Figure 41: Accuracy in the recovery of chirp mass and end time (le� and right

panel respectively) of the reduced set of NINJA injections with total

mass below 160M� using the phenomenological template bank. In both

plots, the colour scale is given by the total mass of the system. �e

chirp mass, a common quantity in data analysis which is de�ned as

M = (m1m2)
3/5(M)−1/5, is typically recovered within a 20%–40%

accuracy, depending on the chirp mass and total mass of the system.�e

results for parameter estimation with our IMR bank constitute a signi�-

cant improvement over current LIGO/Virgo searches with standard PN

templates.

only.�e outlier that can be spotted atM ∼ 30M� corresponds to a SpEC
waveform injected at 132Mpc with total mass 56.6M�. For this particular
injection the accuracy in parameter recovery is rather poor, and further work

to understand this behaviour will be undertaken in the future.

�e panel in the right shows the accuracy in end time recovery of the

found signals, with the colour code again displaying the total mass of the

system.�e injection time of the numerical waveforms corresponds to the

maximum of their amplitude, which happens roughly at the merger of the two

black holes. Current PN templates stop before that point while IMR templates

extend beyond the merger into the ringdown.�e sign convention for ∆tend
corresponds to the injected minus the recovered parameters, so that a trigger

that presents a positive value ∆tend > 0 indicates that the signal was really

injected at a later time than the value recorded by our pipeline. Most of the
signals displayed in the le� panel of Figure 41 are recovered at a time within a

few hundredths of second from the injected end time value, with the outliers

corresponding partially to signals with larger total mass.�ese results are

consistent with the other IMR search reported in the NINJA paper. Again

we expect that the use of a template bank overlapping the mass region of the

injections would lead to a reduction of the outliers, but certain improvement

with respect to the le� panel in Figure 8 of [49] can still be acknowledged.

Even though the number of total recovered triggers for the phenomenolog-

ical search on the NINJA data is similar to the results quoted by the standard

PN searches, there is a reasonable indication that the use of a full IMR tem-

plate bank helps the estimation of the physical signal parameters. In view of

these and other coincident results quoted in [49, 50, 115], we conclude that

searches that attempt to recover and estimate the physical parameters of BBH

signals in the mass range 102 − 103M� would pro�t from using an IMR
template bank that fully models the inspiral, merger and ringdown of the

binary system.�is is of crucial important for future LIGO/Virgo searches
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that aim at targeting coalescences of compact objects in the above-mentioned

range, for which a full template bank adapted to arbitrarily high masses (and

ideally also to non-zero spin values) needs to be developed. Attempts in this

direction are already underway within the LIGO/Virgo collaboration.

7.3 looking ahead : the ninja 2 project

�e second NINJA project, aimed at testing the gravitational wave analysis https://www.

ninja-project.org/

doku.php?id=ninja2:

home

pipelines’ sensitivity to numerical waveforms will build upon the success of

the �rst NINJA project while extending it to be a more systematic test, using

real GW detector data and will proceed in a similar manner as for NINJA 1,

by building a collaboration of all interested researchers to tackle this problem.

Other NINJA projects, including one focused on matter, are envisioned to

occur in parallel, although not using real data.

�e ultimate goal of this sort of projects is to develop an optimal search

and parameter estimation approach for the full BBH coalescence, including

rapidly spinning black holes. NINJA 2, the second phase of the NINJA project,

expected to start in summer 2010, is widely regarded as the key means by

which these investigations will be conducted by the international community.

�e scope of NINJA 2 will be much broader than NINJA 1: longer and more

numerous spinning and non-spinning signals —including the model deve-

loped by the author and introduced in chapter 5— will be injected in old

LIGO data containing glitches and non-Gaussian features, which make the

analyses more realistic.

�e analysis of the NINJA 2 data will be a challenging task so far never

explored by the current search pipelines: extension to spins and injection of

full IMR waveforms.�e presence of spins increases the dimensionality of

the problem from 9 to 15.�e study of how this enlarged parameter space

impacts the searches poses a challenge, which will have to be undertaken by

parts, �rst understanding the e�ect of including non-precessing spin templates

and later addressing the general, misaligned spin case, as the corresponding

NR simulations become available. Furthermore, accurate estimation of the

physical parameters of the binary is crucial in order to maximize the science

exploitation of the data. Extensive parameter estimation studies are needed

in order to establish the reliability of our search pipelines for recovering the

correct physical information of the binary systems.

�e �nal goal is to identify and conceptually develop a full analysis approach

for BBH detection and parameter estimation that can be ported into the LSC-

Virgo analysis.�e techniques and analyses needed to bring the full NINJA 2

project to completion fall outside the scope of this thesis, but some of the

methods developed in this work will be of direct relevance for forecoming

research in this direction.

https://www.ninja-project.org/doku.php?id=ninja2:home
https://www.ninja-project.org/doku.php?id=ninja2:home
https://www.ninja-project.org/doku.php?id=ninja2:home
https://www.ninja-project.org/doku.php?id=ninja2:home




8
ASTROPHYSICS OF INTERMEDIATE-MASS BLACK HOLES

Experimental evidence exists to support the existence of both solar-mass and

supermassive black holes with masses ranging between ∼1.4− 20M� and
∼105−9M� respectively. Gravitational-wave searches targeted to observing
the former have been discussed in chapter 6. Detection of the latter should be

enabled once the space antenna LISA �ies. Quite to the contrary, the existence

of intermediate-mass black holes (IMBHs) withmasses of roughly 102−4M�
has not yet been corroborated observationally, despite the high interest that

these objects have for astrophysics. Our understanding of formation and evo-

lution of supermassive black holes, as well as galaxy evolution modeling and

cosmography would dramatically change if an IMBH was observed. From

a point of view of traditional photon-based astronomy, which relies on the

monitoring of innermost stellar kinematics, the direct detection of an IMBH
does not seem plausible until the next-generation telescopes start operating

within the next decade. However, the prospect of detection and characteri-

zation of an IMBH has good chances in lower-frequency gravitational-wave

astrophysics with ground-based detectors such as LIGO, Virgo and the future

Einstein Telescope.�e prospects for IMBH detection and characterization

with ground-based gravitational-wave observatories would not only provide

us with a robust test of general relativity, but would also corroborate the exis-

tence of these systems. Such detections should allow astrophysicists to probe

the stellar environments of IMBHs and their formation processes.

�is chapter discusses the mechanisms that might give rise to one or more �is chapter
summarizes the work
presented in [39]

IMBHs inside globular stellar clusters, and provides an estimation of the

expected event rates for binaries of IMBHs that future gravitational-wave

observatories might observe; the waveform model developed in chapter 5 is

employed to estimate the sensitivity of the detector to these systems; �nally,

we explore the implications that a detection would have.

8.1 formation of an intermediate-mass black hole

By following the stellar dynamics at the center of our Galaxy, we have now

the most well-established evidence for the existence of a SMBH.�e close

examination of the Keplerian orbits of the S-stars has revealed the nature of �ese also called
SO-stars, where the
letter “S” stands simply
for source

the central dark object located at the Galactic Center. By following S2 (SO2),

the mass of SgrA∗ was estimated to be about 3.7× 106M� within a volume
with radius no larger than 6.25 light-hours [234, 128]. More recent data based

on 16 years of observations set the mass of the central SMBH to ∼ 4×106M�
[111, 129, 130, 131].

Massive black holes in a lower range of masses may exist in smaller stellar

systems such as globular clusters.�ese are called intermediate-mass black

holes because their masses range betweenM ∼ 102−4 M�, if we assume
that they follow the observed correlations between SMBHs and their host

stellar environments. Nevertheless, the existence of IMBHs has never been See [184, 183] and
references thereincon�rmed, though we have some evidences that could favor them.
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Figure 42: Amplitude of equal-mass, non-spinning BBH systems scaled to various

total masses of the IMBH binary compared with the sensitivity curves

of various detectors.�e sources are optimally oriented and placed at

100 Mpc of the detectors.�e symbols on top of the waveforms mark

various stages of the BBH evolution: solid circles represent fISCO, squares

the fLR and open squares fLRD (see section ).�e sensitivity curves of

current and future ground-based detectors are shown as well.

If we wanted to apply the same detection technique to detect IMBHs in

globular clusters as we do with SMBHs in galactic centers, ultra-precise astron-

omy would be required, since the sphere of in�uence of an IMBH is ∼ few arc

seconds.�e number of stars enclosed in that volume is only a few. Currently,

with adaptive optics, one can aspire to have a couple of measurements of

velocities if the target is about ∼ 5 kpc away in the time basis of 10 yrs.�e

measures depend on a number of factors, such as the required availability of

a bright reference star, in order to have a good astrometric reference system.

Also, the sensitivity limits correspond to a K-band magnitude of ∼ 15—B-

MS stars at 8 kpc, like e.g. S2 in our Galactic Center.

�is means that, in order to detect an IMBH or, at least, a massive dark

object in a globular cluster center with traditional astronomy, one has to resort�is is, by following the
stellar dynamics
around it

to the Very Large Telescope interferometer and to one of the next-generation

instruments, the VSI or GRAVITY [132, 112]. In this case we can hope to

improve the astrometric accuracy by a factor of ∼ 10. Only in that scenario we

would be in the position of following closely the kinematics around a potential

IMBH, so as to determine its mass.

Incidentally, gravitational-wave astronomy could contribute to IMBH de-

tection. Current and future ground-based interferometers are sensitive to the

frequencies associated to the late inspiral, merger and ringdown of coalescing

binaries of IMBHs. Figure 42 illustrates this fact. Systems with total mass
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above 600M� fall almost completely below the 40Hz “seismic wall” of the
initial LIGO detectors; however they will become very interesting sources

for the second generation of GW interferometers and the proposed Einstein

Telescope. Indeed, they will also be seen by the future space-borne LISA.

Next section 8.2 expands the astrophysical context to this problem and

gives a description of the di�erent e�orts made to address the evolution of a

black-hole binary in a stellar cluster, from its birth, to the �nal coalescence. In

section 8.3 we compute the reach of the detectors for systems of IMBHbinaries,

which is needed for the calculation of the expected event rates presented in

section 8.4.

8.2 life of a massive binary

�e aim of this section is not to give a detailed explanation of the processes of

formation of IMBHs and binaries of IMBHs (BBHs), but a description of the

global picture so as to introduce the two di�erent scenarios that play a role in

the formation of BBHs.

8.2.1 Birth

Up to now, the IMBH formation process which has drawn more attention

is that of a young cluster in which the most massive stars sink down to the

center due to mass segregation.�ere, a high-density stellar region builds

and stars start to physically collide. One of them gains more and more mass

and forms a runaway star whose mass is much larger than that of any other

star in the system. Later, that runaway star may collapse and form an IMBH

[210, 123, 209, 121].

In particular, Freitag et al. [122, 121] described the requirements from the
point of view of the host cluster to form an IMBH in the center of the system.

By starting with a cluster of main-sequence stars with a determined initial-

mass function, the authors �nd that, a�er the cluster reaches core-collapse due

to mass segregation in the system, if there are not too hard binaries, the time
to reach core collapse is shorter than 3Myrs and the environmental velocity

dispersion is not much larger than ∼ 500 km s−1, the runaway formation of

a very massive star (VMS) is possible. Not yet well understood are the later A very massive star
(VMS) is a star of mass
larger than� 100M�

evolution of the VMS and the conditions to impose upon it, so that it does

not evolve into a super-massive star (SMS) in this particular scenario. Also
See for
instance [37, 38, 33] and
references therein

not completely clear are the factors that could limit the mass of such an object

so that it could collapse and turn into an IMBH.�e process depends on a

number of factors and assumptions, such as e.g. the role of metallicity,stellar

winds and the collisions on to the runaway star from a certain mass upwards. See e.g. [56], though it
is rather unclear how to
extrapolate their results
(which are limited to
stars with masses of
maximum 150M�) to
the masses found in the
runaway scenario,
which are typically at
least one order of
magnitude larger

On the other hand, Suzuki et al. [248] investigated the process of growing up
of a runaway particle by coupling directN−body simulations with smooth

particle hydrodynamics (SPH) to analyze the evolution of the star and found

that stellar winds would not inhibit the formation of a very massive star.

More recently, the e�ects of the stellar evolution on the runaway collision

product have been considered by analyzing the succession of collisions from a

dynamical evolution[133]. It is found that for low-metallicity models, the �nal

remnant of the merger tree is expected to explode as a supernova, and in their

high-metallicity models the possibility of forming an IMBH is negligible and

end up with amass of 10–14M� at the onset of carbon burning. Nevertheless,
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these develop an extended envelope, so that the probability of further collisions

is higher.�e authors did not change the masses accordingly in the dynamical

simulation. In any case, self-consistent direct-summationN-body simulations

with evolution of the runaway process are called in to investigate the �nal

outcome. Hence, assuming that they form, we can theoretically explain the

formation of a binary of two IMBHs (BBH) in a cluster in two di�erent ways.

(i)�e double-cluster channel:
In this scenario, two clusters born in a cluster of clusters, such as those

found in the Antennæ galaxy, are gravitationally bound and doomed to collide.

When this happens, the IMBHs sink down to the center of the resultingmergedSee [35] for a detailed
explanation of the
process

stellar system due to dynamical friction.�ey form a BBH whose semi-major

axis continues to shrink due to slingshot ejections of stars coming from the

stellar system. In each of the processes, a star removes a small fraction of the

energy and angular momentum of the BBH, which becomes harder. At later

stages in the evolution of the BBH, GW radiation takes over e�ciently and

starts to circularize, though one can expect these systems to have a residual

eccentricity when entering the LISA band [35].�is detector will typically be

able to see systems of binaries of IMBHs out to a few Gpc. For this channel

and volume, the authors estimated an event rate of 4− 5 yr−1.

(ii)�e single-cluster channel:
Gürkan et al. [138] added a fraction of primordial binaries to the initial

con�guration in the scenario of formation of a runaway star in a stellar cluster.

In their simulations they �nd that not one, but two very massive stars form in

rich clusters with a binary fraction of 10%. Fregeau et al. [120] investigated
the possibility of emission of GWs by such a BBH and estimated that LISA

and Advanced LIGO can detect tens of them depending on the distribution of

cluster masses and their densities. More recently, Gair et al. [124] addressed
the event rate that the proposed Einstein Telescope could see and quoted

a few to a few thousand events of comparable-mass IMBH mergers of the

single-cluster channel.

8.2.2 Growing Up (Shrinking Down): �e role of triaxiality on Centrophilic
Orbits

In the case of the double-cluster channel, the cluster, which is in rotation,

results from the merger of the two initial clusters andmay develop a triaxiality

su�cient to produce enough centrophilic orbits.�ese boxy orbits are typical
of systems that do not possess a symmetry around any of their axes [57].

On the contrary to loop orbits, a characteristic of spherically symmetric or

axisymmetric systems, boxy orbits bring stars arbitrarily close to the center

of the system, since it oscillates independently along the three di�erent axes.

�erefore, such stars, due to the fact of being potential sling-shots, can feed

the process of shrinkage of the BBH semi-major axes by removing energy

and angular momentum out of it a�er a strong interaction. In the strong

triaxial systems of [57], the rotation caused in the process of merger creates an

unstable structure in the form of a bar. Within the bar the angular momentum

will not be conserved and thus the BBH loss-cone is full due to the stars on

centrophilic orbits, independently of the number of starsN?. In the models

of [35], the initial conditions are a realistic parabolic merger of two stellar

clusters.�e resulting merged cluster does not show the strong axisymmetry

of [57]. In the simulations we address for the results of this work, the BBH of
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Figure 43: Triaxiality of the resulting merged cluster for di�erent mass fractions

(upper panel) and the mass fraction 0.5. We calculate the semi-major axes

of the ellipsoid of inertia a, b and c (where a > b > c) according to four

di�erent mass fractions which, in turn, are distributed on the basis of the

amount of gravitational energy.�e shorter the distance to the center of

the resulting cluster, the lower the mass fraction. Displayed are b/a (solid

lines) and c/a (dashed lines).�e lower panel shows the shape indicators

for the mass fraction 0.5, together with the evolution of the parameter τ,

an indicator for the triaxiality of the system, which tends to one as time

elapses; i.e. the system tends to be oblate.�e evolution of τ is similar for

the rest of mass fractions

IMBHs is not stalling, in spite of the reduced number of centrophilic orbits

due to the architecture of the stellar system.

In Figure 43 we show the role of the cluster symmetry explicitly by depicting

the evolution of the triaxiality of the cluster formed as a result of the merger

of the two clusters for our �ducial model in the case of the double-cluster �is is the reference
model of [35]channel. A�er a merger which is the result of a parabolic orbit, the �nal

system is oblate rather than prolate; i.e. a ∼ b > c, where a, b and c are

the cluster axes. At the outskirts the resulting merged cluster is �atter and at

the center the binary of IMBHs makes it rather spherical. Amaro-Seoane et
al. [36] addressed the single-cluster channel scenario a�er the formation of
the IMBHs and used additional simulations to further evolve the BBH.�ey

used scattering experiments of three bodies including relativistic precession to

1st post-Newtonian order, as well as radiation reaction caused by GW, so that

they did not have to integrate every single star in the cluster to understand the

posterior evolution of the BBH. In their work, between the strong encounters,

a and e of the BBH were evolved by resorting to the quadrupole formulæ

of [203].
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�e BBH will have completely circularized when it reaches the frequencies

probed by Advanced LIGO and the ET, because the emission of GWs takes

over the dynamics of the system.

8.2.3 Death

While the emission of GWs is present all the time from the very �rst moment

in which the BBH is formed, the amplitude and frequency of the waves is

initially so low that no present or planned detector would be able to register

any information from the system. Only when the semi-major axis shrinks

su�ciently, the frequency increases enough so as to enter the LISAband,which
we assume starts at 10−4Hz.�e BBH then crosses the entire detector window

during its inspiral phase, as we can see in Figure 44. We depict the evolution

of a BBH of mass 439.2 + 439.2M�.�e reason for this particular choice
of masses is to give the reader a point of reference to understand the whole

picture. Recently, Amaro-Seoane et al. [34] included the e�ect of rotation of
the host cluster and addressed the dynamical evolution of the global system.

�e authors have shown that LISA will see the system of Figure 44 with a

median SNR of few tens.�e fact that the system merges outside its band

prevents LISA from observing the loudest part of the BBH coalescence. In

order to follow the system at this early stage of its evolution in the LISA band,

a simple post-Newtonian approach su�ces for modeling the GW radiation.

We are far enough from the highly relativistic regime and only the inspiral

phase of the BBH coalescence is visible to the space antenna.

As the binary system depicted in Figure 44 leaves the LISA band and

enters the strong �eld regime, higher order post-Newtonian corrections and

eventually input from numerical relativity simulations need to be considered

in order to model the GW waveform.�ree reference frequencies in the

evolution of a compact BBH that approaches its merger are the innermost

stable circular orbit (fISCO) de�ned in equation 2.7 of a test particle orbiting

a Schwarzschild black hole, the light-ring frequency (fLR) corresponding to

the smallest unstable orbit of a photon orbiting a Kerr black hole and the

fundamental ringdown frequency (fFRD) of the decay of the quasi-normal

modes computed by [59].

For the binary system shown in Figure 44, the values of these three frequen-

cies are fISCO|878.4M� ' 5Hz, fLR|878.4M� ' 14.2Hzand fFRD|878.4M� '
21.4Hz. Should such a binary exist at a distance of 100Mpc, and if it was to be

detected with Advanced LIGO, it would produce a sky-averaged SNR of ∼ 450,

assuming a low frequency cut-o� of 10 Hz. To that total SNR, the contribution

of parts of the inspiral happening before the system reaches the characteristic

frequencies fISCO, fLR and fFRD would be 0%, 37% and 95% respectively. It is

immediately noticed that, for the binaries of IMBHs of interest in this study,

most of the SNR that these binaries will produce in Advanced LIGO comes

from the last stages of the the BBH coalescence.

We can estimate the time that the binary system takes to evolve from

f = 0.01Hz, a frequency where the BBH can be seen by LISA, to the lower

cut-o� frequency of 10Hz of Advanced LIGO or of 1Hz of the ET. A lower

order approximation based on the Newtonian quadrupole formula [203] leads
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Figure 44: Amplitude of the GW emitted by a system of two equal-mass IMBHs

of total mass 878.4M� placed at 100Mpc as seen by di�erent GW ob-

servatories. Note that we have multiplied |h̃(f)| by a factor 2
√
f, with f

the frequency of the system. From le� to right we depict the sensitivity

windows of the future space-borne LISA (dashed, grey curve), the Ein-

stein Telescope (dotted, grey curve) and Advanced LIGO (solid, grey line

starting sharply at 10Hz).�e strain of the BBH of IMBHs spends most

of its inspiral in the LISA band, whilst the ringdown and merger occur at

higher frequencies, only observable by ground-based detectors. Notably,

the ET captures an important extent of the inspiral as well as the whole

ringdown and merger.�e averaged SNR produced by this system would

be SNRLISA = 854, SNRET = 7044 and SNRAdvLIGO = 450.�e BBH

system spends approximately 0.2 yrs to go from f = 0.01Hz (well into the

LISA band) up to the lower cut-o� frequency of Advanced LIGO, 10Hz.

�ese two points are pinpointed on the plot

to the following expression for the evolution of the frequency in terms of the

chirp massM and frequency of the system

df

dt
=
96

5
π8/3M5/3f11/3. (8.1)

We �nd a delay of only 0.2 yrs (80 days) for a BBH with total massM = �e evolution of the
system is
extraordinarily quick in
the late inspiral phase,
which explains the fast
evolution from 1 to
10 Hz

878.4M� to go from 0.01 Hz to the beginning of the ET band —taken to
be at 1Hz— and almost similar numbers to the beginning of the Advanced

LIGO band —at 10Hz.

In view of these �gures, LISA could be used as an alarm to prepare ground-
based detectors to register in detail the �nal coalescence, the death of the

BBH as such, by adjusting their “sweet spots” to the particular BBH.�e high

accuracy of which LISA is capable for parameter estimation during the inspiral

phase could be combined with the information obtained from the large-SNR

triggers that the BBH merger and ringdown will produce in Advanced LIGO

or ET to achieve a more complete characterization of the system.
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Figure 45: Sky-averaged horizon distance versus redshi�ed mass for three binary

con�gurations obtained with the design sensitivity curves of Advanced

LIGO and the Einstein Telescope.�e dashed line corresponds to the

hang-up con�guration with χ1,2 = 0.75.

8.3 horizon distance and signal-to-noise ratio

A commonly-used quantity to estimate the reach of a detector is the horizon

distance. It is de�ned as the distance at which a detector measures an SNR =

8 for an optimally-oriented and optimally-located binary, i.e. an overhead,

face-on orbit. Non-optimally located and oriented sources are detected with

SNR = 8 at closer distances. At the large distances that Advanced LIGO and

the ET are expected to survey, the calculation of the horizon distance needs

to take into account the redshi� and, thus, a cosmological model needs to be

assumed. For the results shown here, we adopt the standardΛCDM universe

with parameters given by the �rst �ve years of the WMAP sky survey [154].

�ese areΩΛ = 0.73,Ωb = 0.046,Ωc = 0.23,H0 = 70.5 km s−1Mpc−1

and t0 = 13.72Gyr.

Using the full inspiral-merger-ringdown waveforms described in chapter 5

and the corresponding redshi� function z(d) for the ΛCDM model, we

compute the sky-averaged horizon distance for non-spinning systems withAveraging for the whole
sky corresponds to
dividing the optimal
value by 2.26

symmetric mass ratio η = 0.25, 0.1875 and for an equal-mass system with

spins χ1,2 = 0.75 aligned in the direction of the angular moment.�e results

�is is the “hang-up”
con�guration

can be seen in �gure. 45 for the Advanced LIGO and the ET. We plot the

horizon distance for IMBH binaries in Gpc and z versus the redshi�ed —

observed— total massMz ≡M(1+z). Firstly, we observe how the detectors’

reach depends on the spins of the binary. “Loud” con�gurations, such as the

hang-up case, can increase the observed distance by a factor of ∼ 2–3. In�is result is con�rmed
in [220], although they
do not consider the
variation ofM with z

the mass range of interest regarding IMBH binaries, i.e. total mass between

200 and 2× 104M�, we can see that Advanced LIGO will be able to survey
cosmological distances up to z ≈ 2.�e Einstein Telescope will be able to
probe much larger distances, possibly up to z > 10.�is opens the possibility

of studying seed black hole formation that will provide information about theSee Gair et al. [125]
formation of structure in the early Universe.
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Figure 46: Signal-to-noise ratio as a function of the total mass of the BBH for the

present and future generations of GW detectors and LISA.�e sources

are placed at a distance of 100 Mpc and the SNRs are angle-averaged

In Figure 46 we show the angle-averaged SNR expected for these sources

in current and future gravitational-wave detectors as a function of the total

mass of the system.�e sources are placed at a distance of 100Mpc simply

because this is an easily scalable number.�e redshi� z = 0.023 in this case

can therefore be neglected. For more distant sources however, the total mass

Mz = (1+ z)M would need to be considered, as we do in �gure 45.

Unsurprisingly, the SNRs calculated for the third generation of ground-

based detectors beat the expectations for initial and Advanced Virgo and

LIGO at all masses. SNRs of the order of 10 are expected for current LIGO

and Virgo interferometers for binaries with total mass up to a few hundreds

of solar masses at 100Mpc.�e �rst-generation detectors are most sensitive

to neutron star binaries and stellar-mass back holes, hence they miss most of

the inspiral part of an IMBH binary coalescence and can only see a fraction

of its merger and ringdown phases. Advanced LIGO and Virgo will be able to

measure averaged SNRs of the order of 102−3 at 100 Mpc, with a maximal

response to BBH systems with total mass in the range of 400 to 1000M�. For
the Einstein Telescope the SNR values are expected to lie within the 103−5

range, and it is expected to be sensitive to binaries with total masses of the

order of 104M�, a signi�cantly larger range than that surveyed by Advanced
LIGOandVirgo. It is noticeable how the ET xylophone con�guration increases �e xylophone

con�guration is
described in [151]

the detectability of binaries with masses above 600M� with respect to the
broadband ET con�guration.�is is due to its improved sensitivity precisely

at frequencies in the range of 1 − 30 Hz, which is where systems of mass

above hundreds of solar masses accumulate most of their SNR. As for LISA, See Figure 42
IMBH binaries with masses of hundreds of solar masses will be seen by the

space antenna with a moderate SNR — it is only at masses above tens of

thousands of solar masses that LISA will start taking over the ground-based

observatories, as can be seen in Figure 46. Although the space antenna will



146 astrophysics of intermediate-mass black holes

be most sensitive to BBH binaries with masses in the range of 106−7M�,
the possibility that it can act as a complementary observatory to the Einstein

Telescope for IMBH binaries is a very promising one. Parameter accuracy

studies for IMBHs in LISA are already available using the inspiral part of

the coalescence .�ere are indications that masses and sky positions will beSome studies also
include mild
eccentricities, see [34]

recovered with a high accuracy level. In order to complete the characterization

of IMBHs with the information given by the second and third generations of

ground-based detectors, a comprehensive study of parameter recovery that

takes the BBH coalescence into account is very much desirable.

8.4 event rates

Miller [182] estimated for the �rst time the event rate for intermediate-mass
mergers of IMBHs in clusters by calculating the luminosity distance for the�ese are typically

stellar black holes
merging with IMBHs

inspiral, merger and ringdown [118] out to which these three stages can be

detected with a SNR ratio larger than 10. With no cosmological corrections,

the maximum distance for the detector was found to be 3Gpc (z ∼ 0.53).�e

event rate was calculated as

R =

∫
4π

3
D(M)3 ν(M)nng f(M)dM (8.2)

In this equation nng is the number density of globular clusters, which was

taken to benng ∼ 8h3/Mpc3, as in thework of [210].�e rate of coalescence of

stellar-mass compact objects with the IMBH is ν(M) and f(M) = dN/dM

is the mass distribution of massive enough black holes in clusters. Obviously,∫
f(M)dM = ftot < 1.�erefore, everything boils down to the calculation

of the maximum distance to which the detector, in this speci�c case LISA,

can observe these sources; i.e. the observable volume of the detector.�e esti-

mation of [118] is used in [182] to �nd that a few per year should be detectable

during the last phase of their inspiral. Two years later, Will [264] revisited the

problem using matched �ltering for the parameter estimation, an updated

curve for the sensitivity of the detector and restricted post-Newtonian wave-

forms to calculate an analytical expression for the luminosity distanceDL. He

�nds that the detection rate for binaries in a mass range of 10M�–100M�
is of about 1 per Myr.

A more detailed and updated analysis is given by Fregeau et al. [120].�ey
calculated the number of events that LISA and Advanced LIGO could see

from the single-cluster channel. In their estimation, they assume that the

very massive stars formed in the runaway scenario do not merge into one,

but evolve separately; each of them eventually form an individual IMBH,

following the numerical results of theMonte Carlo experiments of [138].�ey

�nd a generalized form for the event rate observed at z = 0�is is equation 2
in [120]

R =
dNevent

dt0
=

∫zmax
0

d2MSF

dVcdte
gcl g

dte

dt0

dVc

dz

×
∫Mcl,max

Mcl,min

dN2
cl

dMSF, cldMcl

dMcl dz. (8.3)

In this expression, d2MSF/dVcdte is the star formation rate (SFR) per unit

of comoving volume per unit of local time; gcl is the fraction of mass that

goes into the massive clusters of interest; g is the fraction of massive clusters



8.4 event rates 147

0 1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Redshift z

R
S

F
Hh

65
M
�

yr
-

1
M

pc
-

3
L

SFR3
SFR2
SFR1

Figure 47:�ree parameterizations of the stellar formation rate per unit comoving

volume compared in the calculation of the event rates. We assume a Λ-

dominated cosmology withH0 = 70.5 km s−1Mpc−1 = 65h65,ΩΛ =
0.73 andΩ = 0.27.�e three stellar formation rate functions increase

with the redshi� until ∼ z = 2; for larger distances they exhibit di�erent

behaviours: SFR1 decreases, SFR2 keeps approximately constant and SFR3

increase. Nevertheless, the rates integrand is not too strongly dependent

on the particular functional form for redshi�s z > 2.

which form IMBHs; dte/dt0 = (1+ z)−1 is the relation between local and

observed time; dVc/dz is the change of comoving volume with redshi�; and

dN2
cl
/dMSF cldMcl is the distribution function of clusters over individual

cluster massMcl and total star-forming mass in clustersMSF cl.

We calculate the event rate using the values forDL(Mz) that we obtained

in section 8.3 for Advanced LIGO and the ET, which are based on the wave-

form model of chapter 5 and depend on the mass ratio and spins of the

binary. We consider three di�erent cases, corresponding to the three di�erent

con�gurations shown in �gure 45. In addition, we compare three di�erent

parameterizations of the stellar formation rate per unit comoving volume,

RSF1,2,3(z) as given by equations 4, 5 and 6 of [208].�e three models are

depicted in �gure 47; they are similar for close distances until ∼ z = 2, dif-

fering from there on. For the distribution of cluster masses, the factor can be

expressed as

dN2
cl

dMSF, cldMcl

=
f(Mcl)∫

Mcl f(Mcl)dMcl

. (8.4)

We take dNcl/dMcl ∝ 1/M2
cl
, following the power-law form observed for

young star clusters in the Antenna.�e validity of assuming the same law for

the larger volume of the Universe surveyed by Advanced LIGO or the ET is,

however, a generalization not based on direct observations. Unfortunately, a

more precise distribution function based on measured data is at present not

known.�us, we should take this premise with care. By assuming an e�ciency

factor of fGC ∼ 2× 10−3, based in the results of [138], we can set the values

for the limits based on the masses of the IMBHs and the observable volume
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versus intrinsic total mass of the IMBH binary. Red lines are for Advanced

LIGO and blue are for the ET.�e solid, dotted, dashed curves represent

the same physical con�gurations displayed in �gure 45.

—i.e. the maximum redshi� zmax—of the detector of interest.�e integral can

now be expressed as

R =
fGC ggcl

ln(Mcl,max)/ ln(Mcl,min)

∫MIMBHB,max

MIMBHB,min

dMIMBHB

M2
IMBHB

×
∫zmax
0

SFRi(z) F(z)
1

(1+ z)

dVc

dz
dz, (8.5)

whereMIMBHB,max (min) is the range of total mass of the IMBH binary that

we are considering, SFRi(z), i = 1, 2, 3 is any of the three considered stellarFollowing the de�nition
of IMBH, we take
MIMBHB from 200 to
2× 104M�

formation rates of [208] displayed in �gure 47 and

F(z) =

√
ΩM(1+ z)3 +Ωk(1+ z)2 +ΩΛ

(1+ z)3/2
(8.6)

is the factor that relates the stellar formation rate function in di�erent cos-

mologies with respect to the Einstein-de Sitter Universe.�e maximum value

zmax in the integral on z is a function of the mass of the IMBH system, its

con�guration—mass ratio, spin— and the particular waveformmodel used in

the calculation of the horizon distance.�e results employing the waveform

model of chapter 5 can be seen in �gure 45.

�e maximum values for DL(Mz) obtained with the ET range between

z ∼ 5.5 and z ∼ 17.�is implies that the ET will be able to probe the di�erent

proposed scenarios to produce the �rst generation of black hole seeds, as

pointed out by [237]. We note that the values for z that we obtain are signi�-

cantly larger than assumed in [237]. However, at these very large cosmological

distances the stellar formation rate is unknown. We therefore set a maximum

cut-o� value of zmax = 5 in the computation of the integral whenDL(Mz)

exceeds this value.�e value of zmax(MIMBH) that we have used in the compu-

tation of the rates integral is show in �gure 48 for our three particular physical

con�gurations.
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Table 14: Event rates formed in the single-cluster channel for IMBH binaries poten-

tially observable by Advanced LIGO and the ET per year. We take g = 0.1,

gcl = 0.1 as standard values.

Detector Con�guration R
[( g
0.1

) ( gcl
0.1

)
yr−1

]
Advanced LIGO η = 0.25, χ = 0 48

η = 0.25, χ = 0.75 283

η = 0.19, χ = 0 16

Einstein Telescope η = 0.25, χ = 0 868

η = 0.25, χ = 0.75 940

η = 0.19, χ = 0 741

We have evaluated the integral 8.5 for the three stellar formation rates of

�gure 47 and the three con�gurations of �gure 45 for Advanced LIGO and

the ET. In agreement with [120], we �nd that the event rate does not depend

strongly on the assumed stellar formation rate; the di�erences are negligible

for Advanced LIGO and of a ∼ 15% for the ET. We therefore quote the results

found for SFR2(z) only. �is is the function that
keeps constant a�er
z = 2

�e event rates do, however, depend on the spins and mass ratio of the

binary. As expected, “loud” con�gurations like the hang-up case increase

the event rate by a factor of ∼ 6 in the case of Advanced LIGO. Smaller

mass ratios decrease the rate, the di�erence between η = 0.25 and η =

0.1875 being of a factor of 3.�e di�erences are not so extreme in the case

of the ET, due to the fact that we are cutting o� zmax at a value of 5 and,

thus, neglecting contributions at higher redshi�; we lack observational data

to make statements about the stellar formation rate at larger values of z.

Assuming that IMBH binary systems exhibit comparable masses, as it was

found in [138], and random spin values, we can estimate the single-channel

event rate roughly as ∼ 100 yr−1 for Advanced LIGO and ∼ 850 yr−1 for the

ET.�e exact computation of the rates would imply further integration on

the mass ratios and spins of the binary system. At present it is not clear what

those distribution might be, therefore we simply summarize our results for all

con�gurations under consideration in table 14.�ese rates assume formation

of IMBH binaries in the single-cluster channel.

So far, we have concentrated on the single-cluster channel scenario. Amaro-

Seoane et al. [35] gave a prescription to calculate an estimate of the event rates
for the double-cluster channel by resorting to the detailed calculation of [120].

�is was based in the fact that the only di�erence between both astrophysical

scenarios in terms of the event calculation involves (i) the fact that in the

double-cluster channel one has one single IMBH in one cluster and (ii) these

two clusters have to collide so that the IMBHs form a BBH when they sink to

the center due to dynamical friction.

As explained in section 4 of [35], the connection between the event rate

estimation of the two channels is

Γ doub = Pmerg g Γ
sing, (8.7)
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where Γdoub is the event rate of the double-cluster channel, Γ sing of the single-

channel and Pmerg is the probability for two clusters to collide in the scenario

of [35].�ey �nd Pmerg ∈ [0.1, 1].

�e two di�erent works assumed that the probability that a cluster gets into

the runaway phase is g. Fregeau et al. [120] took this value as a parameter
because of the large uncertainties and set it to 0.1 as an example. Nevertheless,

as proven in the simulations of [122], it could be as large as 0.5. We therefore
can de�ne the (absolute) optimistic upper limit and pessimistic lower limit of
the event rates for Advanced LIGO and the ET by assigning all parameters

their maximum and minimum values and summing the contributions of the

two channels:

Γ totalAdv. LIGO ∈ [(0) 1.1× 102, 3× 103] yr−1 (8.8)

Γ totalET ∈ [(0) 9.35× 102, 2.55× 104] yr−1 (8.9)

Even though the optimistic upper limit is to be taken carefully, these event

rates are obviouslymore than encouraging to address the problem of detection

and characterization of systems of IMBH binaries with of GWs. On the other

hand, one should bear in mind that the existence of IMBHs altogether has

not yet been corroborated, so that the pessimistic estimate is still somewhat

optimistic.�is is whywe have added a (0) in the previous rates as the absolute

lower limit.

8.5 summary and conclusions

�e existence of IMBHs is a subject of particular interest in theoretical as-

trophysics. Even though we do not have any evidence of these objects so

far, a number of theoretical works have addressed their formation in dense

stellar clusters. If we were to follow the same techniques that have led us to

discover the SMBH in our Galaxy, we would need the Very Large Telescope

interferometer and next-generation instruments, such as the VSI or GRAV-

ITY, which should be operative in the next ∼ 10 yrs. An alternative, or even

complementary way of discovering IMBHs is via their emission of GWs when

they are in a BBH system.

�e identi�cation and characterization of these systems relies on accurate

waveformmodeling of their GW emission, which has been made possible due

to the success of numerical relativity in simulating the last orbits of the BBH

coalescence and the coupling of these results to analytical post-Newtonian

calculations of the inspiral phase, as we discuss in this dissertation.

We have computed the sky-averaged horizon distance corresponding to

Advanced LIGO and the proposed ET and the space-based LISA.�e results

show that binarieswith totalmass around to 500M�will be seen byAdvanced
LIGO at redshi�s as high as z = 1 in the non-spinning case and z = 2 if the

spin is signi�cant.�e ET will see IMBH binaries up to tens of thousands of

solar masses up to cosmological distances above z = 5 and as high as z > 15

for particularly loud con�gurations.�is could open the door to exploration

of seed black hole formation and other discoveries in the early Universe.

We have revisited the event rate of BBHs for Advanced LIGO and the ET

and found hundreds to tens of hundreds per year for the former and rates one

order of magnitude larger for the latter.�e �rst of these predictions should be

able to be tested within �ve years a�er Advanced LIGO comes into operation.
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�e observations of Advanced LIGO and the ET in the intermediate-mass

rage could be complementary to those of LISA, which is expected to detect

these systems with moderate SNRs and to be more sensitive to SMBH binaries

instead. More remarkably, in principle if LISA and the ET are operative at

the same time, they could complement each other and be used to track a

particular event.

Current LIGO and Virgo matched-�lter searches for BBH coalescences

are solely targeted to stellar-mass black holes, for those are one of the types

of systems that �rst-generation ground-based detectors are most sensitive

to.�e elevated rates of IMBHs events that we predict for Advanced LIGO

and Virgo and the ET based on our improved waveforms should bring these

more massive systems to the attention of the GW data analysis community.

Future matched �lter searches speci�cally targeted towards detections of

IMBH binaries with ground-based detectors should be able to shed light

into the question of their existence and corroborate or invalidate the current

theoretical estimations on their event rate.

Advanced ground-based detectors are designed to be able to operate in

di�erent modes so that their sensitivity can be tuned to various kinds of

astrophysical objects. Considering the importance of an eventual detection of

an IMBH binary, the design of an optimized Advanced LIGO con�guration

for systems withM ∼ 102−4M� would be desirable in order to increase the
possibility of observing such a system. In case an IMBH binary coalescence

was detected, the recovery and study of the physical parameters of the system

could serve to test general relativity and prove or reject other alternative

theories, such as scalar-tensor type or massive graviton theories.

�e direct identi�cation of an IMBH with GWs will be a revolutionary
event not only due to the uncertainty that surrounds their existence and

their potential role to test general relativity.�e information encoded in the

detection will provide us with a detailed description of the environment of

the BBH/IMBH.

�e information which we will recover from the data analysis of these

systems, once they have been detected with GWs, will provide us with re-

strictions on the models which will constrain the various unknowns. Also, by

combining this information with that from forthcoming instruments such as

the Very Large Telescope interferometer and next-generation observatories,

as e.g. VSI or GRAVITY, we will have a more accurate description of the stellar

environment surrounding the IMBH.�anks to an accurate identi�cation

of the system, we will be in position to “reverse-engineer” the astrophysical

history of the stellar cluster, since this will leave a �ngerprint in the detected

IMBHs.





9
EPILOGUE

�is dissertation has provided a global picture of the problem of modelling

and detecting the gravitational-wave signature associated to binaries of black

holes. Black-hole binary systems can be approached as a purely theoretical

challenge, in the sense that they constitute one of the simplest non-trivial

problems to be solved in General Relativity. From that point of view, analytical

and numerical methods are needed to arrive to a full solution for the metric of

the space-time, a solution that even nowadays is available only for a reduced

subset of the most general parameter space. We have presented a full model

for the coalescence of black hole binaries that covers a particular subset of the

full pararameter space, as a �rst step towards a further generalization. Our

phenomenological waveform model for non-precessing, spinning binaries

belongs precisely in the category of work targeted towards a proper theoretical

understanding of gravitational-wave sources.

But black-hole binaries are also among the most fascinating objects that

astrophysicists expect to observe in our Universe. Direct measurement of the

gravitational-wave emission of such objects would turn into a revolution in

the �eld of astronomy. With that goal, an international scienti�c community

is gathered around the LIGO and Virgo gravitational-wave detectors, devel-

oping the necessary tools to properly analyze and understand their data. We

have presented the results of the latest search for low-mass binary black-hole

coalescence on LIGO data and have introduced preliminary results of an

ongoing search for more massive systems with total mass up to hundreds of

solar masses. But this is by no means the end; the Enhanced and Advanced

con�gurations of the detectors hold great promise for detection of a binary

system, perhaps of a pair of black holes.�e incorporation of up-to-date

results in waveform models for searches of black-hole binary coalescences is,

thus, another major focus of this dissertation.

Upon entering the era of gravitational-wave astronomy, the detectors will

turn into observatories.�eir data will not only con�rm or confound our

expectations about theUniverse around us, but they also should allow us to test

current hypotheses about expected and conjectured astrophysical populations.

In this sense, predictions such as the existence of intermediate-mass black

hole binaries, the astrophysical background of which has also been discussed

in this dissertation, could eventually be ascertained. We have revisited the

expected astrophysical rates for these kind of objects and stated the prospect

for their detection with gravitational-wave astronomy.

We currently �nd ourselves on the verge of �nishing the analyses of the

enhanced interferometers’ output and entering a time of preparation for the

data from the advanced detectors. Collaborations will be formed to devise

and design the most promising data analysis strategies and techniques; input

from scientists working in electromagnetic counterparts will be sought; faster,

automatized searches will be run. Some of the results obtained in this disser-

tation will be employed in this challege.�e �nal reward will be sensational.
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