
Abstract

Gravitational waves are a consequence of the general theory of relativity. Direct

detection of such waves will provide a wealth of information about physics, astronomy,

and cosmology. A worldwide effort is currently underway to make the first direct

detection of gravitational waves. The global network of detectors includes the Laser

Interferometer Gravitational-wave Observatory (LIGO), which recently completed its

sixth science run.

A particularly promising source of gravitational waves is a binary system consist-

ing of two neutron stars and/or black holes. As the objects orbit each other they emit

gravitational radiation, lose energy, and spiral inwards. This produces a characteristic

“chirp” signal for which we can search in the LIGO data. Currently this is done using

matched-filter techniques, which correlate the detector data against analytic models

of the emitted gravitational waves. Several choices must be made in constructing a

search for signals from such binary coalescences.

Any discrepancy between the signals and the models used will reduce the effective-

ness of the matched filter. However, the analytic models are based on approximations

which are not valid through the entire evolution of the binary. In recent years nu-

merical relativity has had impressive success in simulating the final phases of the

coalescence of binary black holes. While numerical relativity is too computationally

expensive to use directly in the search, this progress has made it possible to perform

realistic tests of the LIGO searches. The results of such tests can be used to improve

the efficiency of searches.

Conversely, noise in the LIGO and Virgo detectors can reduce the efficiency. This

must be addressed by characterizing the quality of the data from the detectors, and

removing from the analysis times that will be detrimental to the search.

In this thesis we utilize recent results from numerical relativity to study both the



degree to which analytic models match realistic waveforms and the ability of LIGO

searches to make detections. We also apply the matched-filter search to the problem

of removing times of excess noise from the search.
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Conventions

We adopt the Einstein summation convention where repeated indices are summed

over. Parenthesis are shorthand for the fully symmetric sum

A(αβ) =
1

2
(Aαβ + Aβα)

and square brackets are fully antisymmetric

A[αβ] =
1

2
(Aαβ − Aβα)

We take the signature of spacetime to be (−1, +1, +1, +1).

Except where otherwise noted we work in geometric units where G = c = 1. We will

often measure masses in multiples of the mass of the sun 1M� ≈ 1.99 × 1030 kg

We define the Fourier transform of a function of time g(t) to be g̃(f), where

g̃(f) =

∫ ∞

−∞
g(t) e−2πift dt

and the inverse Fourier transform is

g(t) =

∫ ∞

−∞
g̃(f) e2πift dt

This convention differs from that used in some gravitational-wave literature, but is

the adopted convention in the LIGO Scientific Collaboration.

The time-stamps of interferometer data are measured in Global Positioning System

(GPS) seconds: seconds since 00:00.00 UTC January 6, 1980 as measured by an

atomic clock.
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Chapter 1

Introduction

Gravitational waves are one of the most remarkable predictions of Einstein’s general

theory of relativity [1]. In a sense they are an immediate consequence of reconciling

gravity with special relativity. As nothing can travel faster than light, information

about the change in position of an object can not propagate instantaneously. The

gravitational field therefore becomes a dynamical entity, much like the electromagnetic

field in Maxwell’s equations.

There is currently compelling indirect evidence for the existence of gravitational

waves. These waves carry energy away from their source, and the energy in a

gravitationally-bound system of two stars or black holes correlates directly to the

separation between them. It is therefore possible to track the change in separation

of such a binary system, infer the power being radiated away, and compare this to

the predicted power radiated by gravitational waves. Hulse and Taylor were awarded

the Nobel prize in 1994 for the discovery of a system exhibiting such behavior [2, 3].

Continued observation of this system over the intervening years has shown that the

loss of energy matches the prediction from general relativity to within 0.2% [4].

Direct detection of gravitational waves would do far more than further confirm

the prediction of their existence. Such detections would open a new window on the

universe. Radio, X-ray and microwave astronomy have each provided views of the

Universe not available though the others, and each has taught us a great deal. The

gravitational spectrum is completely new, and so far unexplored. Gravitational wave

astronomy can probe regions that the electromagnetic spectrum can not, including

black holes, the interiors of neutron stars and supernovae, and the very early universe.
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Gravitational wave astronomy also offers a unique opportunity to test strong-field

general relativity.

Attempts to directly detect gravitational waves are hampered by the fact that

they interact very weakly with matter. This is a consequence of the fact that gravity

is comparatively a very weak force; a small magnet can, over a short distance, balance

the gravitational pull of the entire Earth. Nevertheless, direct detection is possible.

There is currently a worldwide effort underway using interferometric techniques con-

sisting of:

• The Laser Interferometer Gravitational wave Observatory (LIGO) in the US,

with detectors in Hanford, WA and Livingston, LA [5].

• Virgo, in Cascina, Italy [6].

• GEO 600, near Sarstedt, Germany [7].

• The Large-scale Cryogenic Gravitational-wave Telescope (LCGT) is presently

about to being construction in Japan [8].

The LIGO, Virgo and GEO detectors have all reached their initial design sensi-

tivities enabling detection of gravitational waves from the final stages of systems like

the Hulse-Taylor binary out to (in the case of LIGO) as far as 45 Megaparsecs (Mpc).

As a point of reference, the Virgo supercluster extends about 33 Mpc and contains

thousands of galaxies, including our own.

Although there are many potential sources of gravitational waves, a particularly

promising one is the inspiral and coalescence of binary systems containing compact

objects, neutron stars or black holes [9] (collectively called compact binary coalescence,

henceforth CBC). Over a large range of masses the frequencies at which such systems

emit the most power are the frequencies at which LIGO and Virgo are the most

sensitive, from about 40 Hz to 1000 Hz. In chapter 2 we will show that the effect of

gravitational waves is to change the distance between freely-falling objects. In this

frequency band LIGO and Virgo are sensitive to changes in length to about 1 part in

1022.

Despite the detectors’ remarkable sensitivity, signals in the LIGO data will likely

be quiet relative to the noise levels. We will have more to say about this noise in
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Sec. 3.2.2 and chapter 10, but note here that it contains both background “static”

which may be modeled as a Gaussian random process and isolated non-Gaussian

transients. Sophisticated data analysis techniques will be required to extract the

signals from noise and infer properties of their sources.

In addition to the achievements at LIGO and other sites, recent years have also

seen major progress in the field of numerical relativity, the use of computers to accu-

rately simulate systems governed by general relativity. Following the breakthroughs

in in 2005 by Pretorius [10], researchers at Goddard [11] and researchers at the Uni-

versity of Texas at Brownville and Florida Atlantic University [11] there are now

routine simulations of binary black hole systems with a wide variety of parameters,

extending through several orbits. There are also an increasing number of simulations

of systems containing matter, including both black holes in gaseous environments and

neutron stars and supernovae, although we will not consider simulations containing

matter further in this dissertation.

The goal of the research presented in this dissertation is to improve the efficiency

of CBC searches. In order to claim a detection a candidate signal must stand out

sufficiently above the noise. Efficiency can therefore be improved either by increasing

the significance of the signal or by reducing the noise. We take both approaches here.

The remainder of this dissertation is organized as follows:

• In chapter 2 we present the theory of gravitational waves, starting from general

relativity and deriving the effect of waves on matter. We also discuss both

analytic and computational approaches to predicting the form of gravitational

waves.

• In chapter 3 we start from the effect of gravitational waves on matter to discuss

the principles of interferometric detectors.

• In chapter 4 we describe the search for CBC signals in data from interferometric

detectors.

• Chapter 5 begins the process of utilizing predictions from numerical relativity to

improve the efficiency of searches. We proceed by comparing the analytic models

used in searches to a high-accuracy simulation from the Caltech-Cornell group.
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Based on these comparisons we derive a number of possible improvements to

the search.

• Chapter 6 introduces the first Numerical INJection Analysis (NINJA) project, a

collaboration between numerical relativists and gravitational-wave astronomers.

The goal of NINJA is to study the effectiveness of numerous search methods at

detecting gravitational waves and extracting information about their sources.

We apply the recommendations from the previous chapter to the NINJA data,

which simulates the output from LIGO and contains signals from numerical

relativity.

• Chapter 7 discusses some of the limitations of the first NINJA project and

introduces NINJA-2. A notable feature of NINJA-2 is the requirements placed

on the NR submissions. We discuss the comprehensive analyses that have been

performed to ensure that the submissions meet these requirements.

• Chapter 8 discusses the construction of the simulated data sets for NINJA-2

and presents preliminary results from the CBC analysis of the data. We note

some unexpected results that need further study and raise questions that we

plan to address in NINJA-2.

• We then transition to the topic of detector noise. In chapter 9 we describe the

infrastructure used to record information about the state of the detectors.

• Then in chapter 10 we present a reduced, simplified version of the CBC search.

This was used in the latest runs of the LIGO and Virgo detectors to identify

times of excess noise and remove these times from analysis. We include some

open questions about the implementation details of the search revealed during

these analyses.

Throughout this dissertation we focus on LIGO’s 6th science run (denoted “S6”,

July 7, 2009 - October 20, 2010) which overlapped Virgo’s second (“VSR2”, July

7, 2009 - January 11, 2010), and third (“VSR3”, August 11, 2010 - October 20,

2010) science runs. This corresponds to “Enhanced LIGO”, so called because this

run included a number of modifications intended for Advanced LIGO (to start in
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2015) but which were available and could be added to the Initial LIGO configuration

without major construction.
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Chapter 2

Gravitational wave Theory and

Source Modeling

In this chapter we briefly survey the theoretical issues behind gravitational-wave

astronomy. We start in Sec. 2.1 with a review of general relativity, beginning with

the relevant mathematics. In Sec. 2.2 we show how general relativity predicts the

existence of gravitational radiation and discuss some of the properties of this radiation.

Then in Sec. 2.3 we show how gravitational radiation affects freely-falling particles.

This will motivate the design of the LIGO experiment to search for gravitational

waves, an overview of which is presented in the next chapter. We then move to the

generation of gravitational waves and discuss two approaches to modeling the waves

produced by the inspiral and eventual merger of pairs of compact objects. These are

analytic models, discussed in Sec. 2.5 and numerical models, discussed in Sec. 2.6.

2.1 General Relativity

We start with an overview of differential geometry and build to Einstein’s equations.

This is of necessity very brief, readers are referred to the textbooks by Misner, Thorne

and Wheeler [12] and Carroll [13] for more complete treatments.

2.1.1 Elements of Differential Geometry

An n-dimensional (C∞) manifold M is a set of points plus an atlas, a set of charts

{φi} which are invertible maps from open subsets of M to open subsets of Rn such
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that

• For all points p ∈ M there exists a φi such that p is in the domain of φi.

• The composition φi ◦ φ−1
j on the intersections of the domains of φi and φj is a

(C∞) function from Rn → Rn.

Two natural structures on a manifold are curves, maps from R → M, and scalar

functions, maps from M → R. Compositing a function f with a curve γ(λ) gives a

map from R → R which may be differentiated in the usual way at a point p.

Geometrically, taking the derivative gives the tangent vector to the curve at a

point p. It is possible to associate the set of such vectors with the set of directional

derivatives, taking the partial derivatives along the coordinates as the basis. Hence-

forth this basis will be denoted both ∂μ and 	eμ. Note that the tangent to a curve is

defined at the point p. Each point in the manifold possesses its own space of tangent

vectors. These spaces are distinct, which will be important in what follows.

We next define one-forms as linear maps from vectors to R. The set of one-forms

at a point can be shown to form a vector space, a natural basis for which can be

obtained by requiring

	eμω̃
ν = δνμ

The components of an arbitrary form ω in this basis may be found by applying the

form to the basis vectors.

We can then build up arbitrary
(
m
n

)
tensors as linear maps from tensor products

of m vectors and n one-forms to R. The components of a tensor T in a choice of

coordinates may found by applying it to combinations of the basis vectors and basis

1-forms. Finally, a
(
m
n

)
tensor field is a map that associates to each point p in M an

element in the space of
(
m
n

)
tensors at p.

2.1.2 The Metric Tensor

A particularly important tensor in general relativity is the metric, a
(
2
0

)
tensor that

is symmetric (gμν = gνμ) and non-degenerate (the determinant of g taken as a matrix

|gμν | �= 0. The latter feature makes it possible to define the inverse metric gμν as

gμρgρν = δμν
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Given a vector xμ the object gμνx
μ maps another vector to a real number, and is

therefore a one-form. The metric therefore maps between the space of one-forms and

the space of vectors at each point. Most importantly, the metric defines a notion of

distance on the manifold. Infinitesimally

ds2 = gμνdxμdxν (2.1)

In special relativity, in Cartesian coordinates, the metric has components (−1, 1, 1, 1)

along the diagonal, all other components are zero. The metric will be denoted ημν

and called the flat space metric.

2.1.3 Covariant Derivatives

Since vectors are only defined at a point we need additional structure to define deriva-

tives of vector fields, as there is no natural way to compare vectors that live in different

spaces. We seek an operator ∇ with the following properties

• Maps
(
m
n

)
tensors to

(
m
n+1

)
tensors. This is so we may consider the directional

derivative of a tensor T along a vector x as xμ∇μT .

• Reduces to partial differentiation when applies to a scalar field.

• Linear.

• Satisfies the Leibniz rule, ∇(ab) = a∇b + b∇a.

Such an operator applied to a vector field gives

∇μ(x
ν	eν) = (∂μx

ν)	eν + xν(∇μ	eν)

In flat space in Cartesian coordinates the basis vectors do not change and so the last

term is zero. But in a curved space, or even flat space in non-Cartesian coordinates,

they may. However, the new vector must be expressible as a linear combination of

the original basis vectors. The components are called connection coefficients and are

denoted as Γρνμ so

∇μ(x
ν	eν) = (∂μx

ν)	eν + xνΓρμν	eρ (2.2)

= (∂μx
ν + xρΓνμρ)	eν (2.3)

∇μx
ν = ∂μx

ν + xρΓνμρ (2.4)
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In general relativity the connection is usually assumed to be torsion-free, that is

Γνμρ = Γνρμ (2.5)

which thus far has been borne out by experiment. However, it is possible to construct

theories where this condition does not hold.

We will henceforth occasionally use commas and semicolons to denote partial and

covariant differentiation, respectively:

xμ,ν ≡ ∂νx
μ

xμ;ν ≡ ∇νx
μ

By considering the covariant derivative of a scalar constructed from a one-form

acting on a vector, ∇(xνων), it can be shown that

∇μων = ∂μων − Γρμνωρ

The covariant derivative of a
(
m
n

)
tensor generalizes this and has a partial derivative

term, m positive therms in Γ and n negative terms in Γ.

2.1.4 Parallel Transport

Covariant differentiation provides a way to “move a vector without changing it.” We

can parallel transport a vector vμ infinitesimally along a curve whose tangent vector

is uν by requiring

uν∇νv
μ = 0

As an example of such transport, consider an arrow on the equator of the Earth

pointing towards the north pole. This arrow can be carried halfway around the

equator without rotating it, so it ends up on the other side of the globe, still pointing

north. If the vector is then parallel transported northward to the pole and then

continued until it returns to its starting point it will return pointing south. Although

the vector was never rotated locally it has returned rotated. This is an indication

that the underlying space is curved.

Of particular interest is the case where a vector is parallel-transported along itself

0 = vμ∇μv
ν = vμ(∂μv

ν + Γνμρv
ρ)
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Now consider a curve x(λ) such that v is the tangent to this curve, vμ = dxμ/dλ,

then

dxμ

dλ

∂

∂xμ
dxν

dλ
+ Γνμρ

dxμ

dλ

dxρ

dλ
= 0

d2xν

dλ2
+ Γνμρ

dxμ

dλ

dxρ

dλ
= 0

(2.6)

This is the geodesic equation, solutions to which are geodesics. The same equation

can be derived by extremizing the path length,
√

gμνdxμdxν . In general relativity

test masses acting under the influence of gravity and no other forces follow geodesics.

2.1.5 The Christoffel Symbols

If we now require that scalars do not change under parallel transport we have, for

arbitrary vectors fields uα, vβ and xμ

0 = xμ∇μ(gαβu
αvβ)

= xμ(∇μgαβ)u
αvβ + gαβ(xμ∇μu

α)vβ + gαβuα(xμ∇μv
β)

We can now specialize such that uα, vβ are constant and so the last two terms vanish,

which implies the metric compatibility condition:

∇μgαβ = 0 (2.7)

Equations 2.7 and 2.5 together fix the connection coefficients in terms of the

metric:

Γρμν =
1

2
gρσ [∂νgμσ + ∂μgνσ − ∂σgμν ] (2.8)

Combining this with the previous section we see that the motion of particles are

completely specified once we know the metric and their initial positions and velocities.

2.1.6 The Riemann Tensor

We now generalize the example given in Sec. 2.1.4, and ask how a vector Aμ changes

as it is parallel-transported around an infinitesimal parallelogram with sides defined

by the vectors Bμ and Cν . Recalling that vectors and directional derivatives are the
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same thing, it can be shown that this is equivalent to asking how covariant derivatives

fail to commute. The result must be linear in Aμ and so we may write

[∇μ∇ν −∇ν∇μ] A
ρ = Rρ

σμνA
σ (2.9)

which defines the Riemann tensor Rρ
σμν . A number of properties follow from this

definition (which are either obvious or may be proven by substituting the definition

of the covariant derivative, eqn. 2.2). First, the symmetry properties

Rρσμν = −Rσρμν = −Rρσνμ = Rμνρσ (2.10)

which in turn imply

Rρ
[σμν] = 0 (2.11)

Second, the Bianchi identity,

Rρσμν;α + Rρσνα;μ + Rρσαμ;ν = 0 (2.12)

We may now generalize Eqn. 2.9 and ask how an arbitrary tensor changes after

being parallel-transported around a loop. It can be shown that

[∇μ∇ν −∇ν∇μ] B
ρ1ρ2...ρn = −Rρ1

σμνB
σρ2...ρn − Rρ2

σμνB
ρ1σ...ρn − . . . −−Rρn

σμνB
ρ1ρ2...σ

(2.13)

which may be proved by expanding

[∇μ∇ν −∇ν∇μ] (	eρ ⊗ 	eσ)

and then proceeding by induction.

The symmetries of the Riemann tensor imply that there is, up to sign, only one

non-trivial contraction

Rμν = Rσ
μσν (2.14)

which defines the Ricci tensor. This may be contracted again

R = Rμ
μ (2.15)

to obtain the Ricci scalar.
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Now, contracting the Bianchi identity twice gives

gσν
(∇αRσν + ∇ρRρσνα + ∇νR

μ
σαμ

)
= 0

Using the symmetries of the Riemann tensor (eqn. 2.10) this can be written

∇αR −∇ρRρα −∇σRσα = 0

Relabeling the dummy indices and using metric compatibility gives

∇ρ (gραR − 2Rρα) = 0

This motivates the definition of the Einstein Tensor as

Gμν = Rμν − 1

2
gμνR (2.16)

The previous result implies this is divergentless

∇νGμν = 0

Note also that G is symmetric, Gμν = Gνμ.

We now relate this to physics by noting that the matter and energy content of

a region is described by the stress-energy tensor Tμν where each component is “the

flow of μ momentum in the ν direction.” For example, the 0, 0 component is energy

density and the 0, i components are the ith components of momentum.

Conservation of energy requires that the difference in momentum (pi) across each

face of a cube be balanced by a change of energy (ρ), within the cube,

∂tρ = ∂ip
i

In terms of the stress-energy tensor this becomes

0 = −∇0T00 + ∇iT0i = ∇νT0ν

However the time direction is not uniquely specified as a change of coordinates will

mix space and time components, so this must generalize to

∇νTμν = 0
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That is, T is also divergentless, like G, and like G it is also symmetric. It is therefore

reasonable to suggest the ansatz

Gμν ∝ Tμν

Requiring agreement with Newton’s law of gravity in the appropriate low-energy

limit (T00 � all other components) fixes the constant of proportionality and gives us

Einstein’s field equation

Gμν = 8πTμν (2.17)

Note that Gμν is entirely determined by the metric. Equation 2.17 may therefore be

thought of as a set of coupled, non-linear differential equations for gμν .

2.2 Gravitational Radiation

We now move to the prediction of gravitational waves. We begin with Einstein’s

equation in empty space,

Gμν = Rμν − 1

2
gμνR = 0

By taking the trace and substituting into Eqn. 2.17 it can be shown that this implies

that in empty space Rμν = 0. Similary, using the Bianchi identity and symmetries of

the Riemann tensor gives, in empty space,

Rβδ;γ − Rβγ;δ = 0 (2.18)

We next consider the application of the wave operator to the Riemann tensor.

From the Bianchi identity (eqn. 2.12) this becomes

gμνRαβγδ;μν = −gμν [Rαβδμ;γν + Rαβμγ;δν ]

Consider the first term on the right-hand side:

gμνRαβδμ;γν = gμνRαβδμ;νγ + gμνRαβδμ;γν − gμνRαβδμ;νγ

= gμνRαβδμ;νγ + gμν [∇ν ,∇γ] Rαβδμ

The first term vanishes by Eqn. 2.18. The second term involves products of the

Riemman tensor by 2.13. The second term on the right in Eqn. 2.2 has the same

form.
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We now specialize to the case where the Riemann tensor is small, so that terms

involving multiple factors can be neglected. This is equivalent to considering the

Riemann tensor as a field on a flat background. This gives

gμνRαβγδ;μν = �Rαβγδ = 0 (2.19)

That is, each component of the Riemann tensor independently satisfies the vacuum

wave equation. We can immediately write the solution:

Rα
βγδ = Re Aα

βγδ exp(ikμx
μ) (2.20)

where Aα
βγδ is a set of amplitudes and kμ is the wave vector. In a chosen coordinate

system it has components (ω, kx, ky, kz) where ω is the angular frequency and the

spacial k components are wavelengths in each direction. It can be shown that

∇
k
	k = 0

kμk
μ = 0

which together imply that gravitational waves travel along geodesics at the speed of

light.

2.3 Effect of Gravitational Waves

We now derive the effect of gravitational waves on matter. Consider two particles

moving along world-lines Aμ and Bμ. Choose coordinates so that A remains fixed

at the origin, Aμ = (1, 0, 0, 0). We may further specialize our coordinates such that

at the origin gμν = ημν . It can be shown that we may also require that the first

derivatives of the metric vanish at this point. We may not, however, make the second

derivatives vanish in general. This corresponds to the fact that the Riemann tensor is

defined in terms of second derivatives. We call the coordinate system thus constructed

a Local Lorentz Frame.

We now define the separation between the two particles as

ξμ = Bμ − Aμ
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We fix ξ to be perpendicular to A, so that ξ0 = 0. If space is curved it can readily

be seen that ξ will not remain constant. For example, if the particles are initially

at rest some distance from the surface of the Earth they will both move towards the

center of the Earth and ξ will decrease. It can be shown that ξ obeys the equation

of geodesic deviation,

d2

dt2
ξρ = −Rρ

μνσA
μξνAσ = −Rρ

0ν0ξ
ν (2.21)

Using the condition that ξ has no time component reduces this to

d2

dt2
ξi = −Rρ

μνσA
μξνAσ = −Ri

0j0ξ
j (2.22)

That is, the change in separation between two infinitesimally-separated test masses at

rest with respect to each other in an arbitrary gravitational field is entirely specified

by Ri
0j0. From the symmetries of the Reimann tensor this is symmetric in i and j,

and hence appears to have 6 independent components. However, it can be shown

that these can entirely be specified by two values, which without loss of generality

we take to be Rx
0x0. Rx

0y0. We now recall that in empty space Rμν = 0, which implies

that Ry
0y0 = −Rx

0x0. We summarize this by saying that R is traceless.

We now specialize to the case of gravitational waves, so that the Riemann tensor

satisfies Eqn. 2.19 and we choose coordinates such that the wave is traveling in the

z direction. Using the fact that the speed of light is 1 in dimensionless units the

solution can then be written

Ri0j0 = Aij(t − z)

where we have lowered the first index to simplify notation.

Now, using the fact that ∂xRi0j0 = ∂yRi0j0 = 0 and integrating the Bianchi identity

we can show that Rx0y0 = Ry0x0 and that all other components vanish. It can also

be shown that in addition to being traceless R is transverse, kjRi0j0 = 0. We denote

these two facts by adding the superscript TT , and define the gravitational-wave field

as

− 1

2

∂2hTTij
∂t2

≡ RTT
i0j0 (2.23)

We now decompose the separation vector ξ into the initial separation and a time-

dependant perturbation, ξ = ξ0 + δξ. In terms of this Eqn. 2.21 becomes

d2

dt2
δξi = −R0i0jξj0 (2.24)



33

where we drop the initial portion from the left-hand side because it is constant, and

we drop the perturbation from the right hand side because it is much smaller than

the initial portion. Comparing eqn. 2.23 and eqn. 2.24 we obtain the equation for the

effect of a gravitational wave on free-falling test masses:

δξi =
1

2
hTTij ξj (2.25)

We note in passing that this is the same result obtained in other treatments by

expanding the metric in terms of the flat-space metric plus a perturbation, gμν =

ημν + hμν , substituting into the Einstein equation and expanding to first order in h,

and then choosing a gauge in which h is transverse and traceless.

Now, define

h+ ≡ hxx = −hyy

h× ≡ hxy = hyx

which we refer to as the plus (+) and cross (×) polarizations, respectively. Consider

the case where h× = 0. If particle B is initially on the x axis then

δξx =
1

2
hTTxx ξx

δξy =
1

2
hTTxy ξy

= 0

The particle remains on the x axis. For an oscillatory wave the distance between the

two particles likewise oscillates. We can describe this as an induced strain, ΔL/L

where L is the initial separation. If B is initially on the y axis

δξx =
1

2
hTTxx ξx

= 0

δξy =
1

2
hTTyy ξy

= −1

2
hTTxx ξy

The particle remains on the y axis and oscillates out of phase with a corresponding

particle on the x axis. The net effect is that, after a quarter cycle, a set of masses
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initially in a circle are moved into an ellipse flattened along one axis and stretched

along the other such that the area remains constant. After another quarter cycle they

return to a circle, in the next quarter cycle they are in an ellipse with the axes flipped,

and so on. It is similarly straightforward to show that for a wave cross-polarized wave

the eigendirections are on the lines x = ±y. The effects are the same as for the +

polarization, rotated 45 degrees.

Now consider a thought experiment, originally due to Feynman, where we place

a bead on a stick in the path of a gravitational wave. The wave will cause the bead

to slide back and forth, heating the stick trough friction and imparting energy to the

system. This implies that gravitational waves carry energy. This argument can be

made precise [14].

2.4 Modeling Gravitational Waves

Having demonstrated the predicted existence of gravitational waves and their effects

on matter we now turn to the question of their generation. From Eqn. 2.23 we can see

that, since the components of the Riemann tensor obey the wave equation, the com-

ponents of hTT do as well. We now consider the solution of the wave equation when

the source, the stress-energy tensor, is not zero. By analogy with electromagnetism

we can immediately write down the solution in terms of retarded fields

hTTij = 4

[∫
Tij(x

′, t − r)

r
d3x′

]TT
(2.26)

where we integrate over the source distribution x′. When the energy and momentum

densities are small, so that the curvature of spacetime is likewise small, the coordinates

may be taken to have their conventional flat-space meaning. We may also replace the

covariant derivative by regular partial differentiation.

Starting from the conservation of energy and momentum written in terms of the

stress-energy tensor

T 00
,0 = −T 0j

,j

T i0
,0 = −T ij

,j
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Differentiating with respect to time and going through some algebra yields expressions

for the first and second moments of the stress energy tensor, T lm
,mlx

jxk and T jm
,mxk.

These, plus Stoke’s theorem, can be used to simplify Eqn. 2.26 to give

hTTij =
2

r

[∫
T 00

,00 xixjd3x′
]TT

We recognize T 00 as the mass/energy density, and therefore this can be written as

the quadrapole formula

hTTjk =
2

r
Ï(t − r) (2.27)

where I is the quadrupole moment of the source

Iij =

∫
ρ(x)xixj d3x

Any system of mass with a time-dependant quadrupole moment will give rise to

gravitational radiation. However, restoring physical units to Eqn. 2.27 scales the

right-hand side by G/c4. We therefore need very large masses and/or rapid changes

in order to generate waves we have any chance of detecting. There are many such

sources of astrophysical and cosmological interest:

• supernovae

• rotating neutron stars with axial asymmetry

• processes in the early universe, which would have produced relic gravitational

waves in principle still detectable today

• topological defects

• compact bodies, such as neutron stars and black holes, in orbit around each

other.

We will focus on the last of these for the remainder of the thesis.

It is straightforward to start from the mass distribution of two point masses in

orbit around their center:

ρ(x) = m1δ(x − r1 cos(Ωt))δ(y − r1 sin(Ωt))δ(z)

+ m2δ(x + r2 cos(Ωt))δ(y + r2 sin(Ωt))δ(z)
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and calculate hTT . By choosing coordinates centered on a terrestrial gravitational-

wave detector and a basis we can write the gravitational-wave strains as [15]

h+(t) = −2G

c4r
μ(πGMf)

2
3 (1 + cos2(ι)) cos(2πft − 2φ0) (2.28)

h×(t) = −4G

c4r
μ(πGMf)

2
3 cos(ι) sin(2πft − 2φ0)

where M = m1 + m2, μ = m1m2/M , f is the gravitational-wave frequency which is

twice the orbital frequency f = 2Ω/2π, φ0 is the orbital phase at a specified time,

and ι is the inclination of the binary with respect to the detector, the angle between

the normal to the plane of the binary and the line joining the detector to the binary.

We noted above that gravitational waves carry energy. This energy must be

balanced by a loss of energy by the system. This energy can not be localized to any

one point of the wave, since any point can be placed in a Local Lorentz Frame where

there is no wave. However, by averaging over a cycle it can be shown [13] that

tμν =
1

32π

〈
hTTρσ,μ(h

TT )ρσ,ν
〉

(2.29)

where tμν is the stress-energy pseudo-tensor. The stress energy tensor itself is zero

in a region of spacetime containing only gravitational radiation. However, t may be

used to describe the energy content of such radiation, and we find the flux of energy

in the radial direction out of a sphere enclosing a gravitating system is

dE

dt
= T0r =

1

8πr2

〈
Ï ijÏij

〉
(2.30)

When the separation between the masses, a is large and the masses are moving

slowly the gravitational energy of the system is approximately given by the Newtonian

expression

E = −1

2

GμM

a

Therefore, orbiting bodies will emit gravitational radiation and inspiral until they

inevitably collide.

2.5 Post-Newtonian Approximations

Substituting Eqn. 2.28 into Eqn. 2.30 shows that the power emitted goes as a−5. Most

of the power from an inspiral, and therefore our best chance of detecting such systems,
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occurs when the masses have become close and are about to merge. The approxima-

tions we made in the previous section are no longer valid in this regime. In order

to obtain analytic models of gravitational waves from inspirals to a precision that

will be useful in searches we must therefore consider higher-order corrections beyond

Newtonian mechanics of the binary. This leads to post-Newtonian (pN) waveforms.

The key to doing this is the requirement that the energy flux carried away by

gravitational radiation must be balanced by loss of energy of the system

dE

dt
= −F (2.31)

It can be shown [12] that the energy of a body of mass μ moving on a geodesic in the

Schwarzschild metric with mass M is

E = μ
1 − 2M√
1 − 3M/r

(2.32)

We now introduce the parameter v = (πMf), which is the velocity in Newtonian

mechanics. We now consider the adiabatic approximation, where we treat the system

as moving through a series of circular orbits. On a circular geodesic v =
√

M/r and

the energy becomes

E = μ
1 − 2v2

√
1 − 3v2

(2.33)

We have written down the flux to first pN order above in Eqn. 2.30, in terms of

the parameter v it is

F =
32

5

( μ

M

)
v10 (2.34)

Going to higher order requires techniques that are beyond the scope of this thesis.

Both the energy and flux may now be expanded in powers of v. We could then

obtain t as a function of v by rewriting Eqn. 2.31 and integrating. However, we will

instead obtain an expression relating time and the orbital phase φ =
∫

2πf dt by

writing

F = −dE

dv

dv

dφ

dφ

dt

which leads to the expression

φ = φ0 +
2

M

∫ vref

v

v3dE/dv

F dv (2.35)

where vref is the velocity at a given reference velocity, or equivalently reference fre-

quency. If F is given as a Taylor series in v then F−1 may be expanded to the same
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order. dE/dv may be similarly expanded, and the integrand becomes the product of

polynomials with rational coefficients.

Motivated by Eqn. 2.28 we model the waveform as a time-dependant amplitude

and evolving phase:

h(t) = A(t) cos(φ(t)) =
1

2
A(t)

(
eiφ(t) + e−iφ(t)

)
(2.36)

For reasons that will become clear in the next chapter it is often more convenient to

work in the frequency domain, so we take the Fourier transform of Eqn. 2.36

h̃(f) =
1

2

∫
A(t) exp(2πift + iφ(t)) dt (2.37)

+
1

2

∫
A(t) exp(2πift − iφ(t)) dt

We next apply the stationary-phase approximation. Oscillatory integrands cancel

except where the phase is stationary, at extrema of the exponent. We therefore

expand the exponent around the time t0 of the extremum and discard the linear term

2πift + iφ(t) ≈ (2πift0 + iφ(t0)) +
1

2
iφ̈(t0)(t − t0)

2 (2.38)

Substituting back, the first term leads to a constant factor and the second leads to

a Gaussian integral. Going through the calculation yields the approximate waveform

f̃(f) =
2GM�

c2r

(
5μ

96M�

) 1
2
(

M

π2M�

) 1
3
(

GM�
c3

)− 1
6

f− 7
6 Θ(f − fc)e

iΨ(f ;M,mu) (2.39)

where M� is the mass of the sun and is introduced to so that M is measured in solar

masses, a useful unit in astrophysical work. Ψ is the result of the expansion 2.35

written as a function of f . The coefficients coming from the expansion of the flux will

depend on the mass M and ration μ or equivalently mass and symmetric mass ratio

η = μ/M . In general waveforms may also depend on other parameters such as the

spins of the objects. We introduce the step function to terminate the waveform at

a cutoff frequency fc. This reflects the fact that we do not trust this approximation

all the way through the evolution of the binary to merger. The appropriate value for

the cutoff frequency is one of the questions we will address in chapter 5.

There are many different ways to perform post-Newtonian expansions, in both

the time and frequency domains. These lead to different waveforms which have been
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assigned standard names, a summary of the variations we will encounter throughout

this thesis is given in Appendix A. We note here in particular that the stationary-

phase approach discussed above leads to waveforms denoted TaylorF2. The degree

to which these different waveforms agree has been studied in Ref. [16].

2.5.1 Effective One-Body

A relatively recent development in post-Newtonian theory is the effective one-body

(EOB) formulation [17]. The basic idea is familiar from non-relativistic classical

mechanics, where it is common to write the Hamiltonian for the Kepler problem in

terms of a particle with reduced mass μ = m1m2/(m1 + m2) moving in a central

potential due to a fixed body of mass M = m1 + m2.

In general relativity we have noted that the energy, or equivalently the Hamil-

tonian, takes the form of Eqn. 2.32 for circular geodesics in a spherically symmetric

spacetime. The EOB approach proceeds by seeking a map from the general two-body

problem to an equivalent spherically symmetric metric

ds2 = −A(R)c2dT 2 +
D(R)

A(R)
dR2 + R2(dθ2 + sin2θdϕ2) (2.40)

where the functions are written as expansions in (GM/c2R). The Hamiltonian of

geodesic motion in this metric captures the conservative portion of the motion (as

can be seen by the fact that the metric has no T dependence). Radiation-reaction

terms can then be added to this Hamiltonian to capture energy carried away by

gravitational waves. This process results in coupled differential equations which can

be evolved numerically and from which the gravitational waveforms can be obtained.

A key feature of the EOB approach is the use of Padé resummation. Given a

function f(x) with Taylor series
∑

aix
i one “resums” the series into the ratio of

polynomials
∑

bix
i/
∑

cixi by expanding this ratio in a Taylor series and matching

the coefficients to the original series, then solving for the bi and ci. The resulting

function can converge to f faster than the Taylor series.

The expansion of the unknown functions in the metric to useful order leads to

unknown coefficients that can not be determined from the problem alone. These

must be found by fitting the results to a waveform obtained through other means.

This is one application of waveforms from Numerical Relativity, discussed in the next

section. The resulting waveforms are called EOBNR [18].
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2.6 Numerical Relativity

Analytic methods themselves can not provide complete gravitational waveforms valid

through the merger of the two objects and the evolution of the resulting single object

to a steady state. Even where there is hope of being able to capture the full physics,

as in EOB or phenomenological models that have been developed, the results must

be tuned against complete waveforms which must be calculated using other means.

There is a long history of solving partial differential equations numerically on

computers, and while Einstein’s equations are in a particularly difficult class of such

equations, we can hope to obtain complete solutions numerically. This proved to

be a remarkably difficult problem, and progress through the 1990s was slow due to

both conceptual difficulties and limited computational power. However, following

Pretorius’ successful simulation of two merging black holes [10] and breakthroughs by

researchers at Goddard [11] and the University of Texas at Brownville and Florida

Atlantic University [11] in 2005 the field has expanded rapidly. Readers are referred

to the textbook by Alcubierre [19] and review articles by Husa [20] and Hindler [21]

for more details than can be provided here.

The basis of most approaches in numeric relativity (hence “NR”) is the “3+1” de-

composition of Einstein’s equation. There is a similar situation in electromagnetism.

Maxwell’s equations may be expressed in a geometric, four-dimensional form

F μν
,ν = jμ

Fμν
,ν = 0

where F is the electromagnetic field tensor and F is its dual. However, this is not

the most usual form in which to do calculations. Instead we choose a time direction

and rewrite in terms of separate spatial and temporal differential operators,

∇ · E = 4πρ (2.41)

∇ · B = 0 (2.42)

∂tE = ∇× B − 4πjμ (2.43)

∂tB = −∇× E (2.44)
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Note that equations 2.41 and 2.42 are constraint equations that impose conditions

on valid solutions at any given time, and in particular for initial conditions. Equa-

tions 2.43 and 2.44 are evolution equations which determine how to evolve the system.

Wile much work in numerical relativity includes matter, for the purpose of this

thesis we restrict our attention to vacuum spacetimes, that is, situations where Tμν = 0

everywhere. It is a remarkable fact that, although black holes are characterized by

a mass parameter, a spacetime containing only black holes and gravitational waves

is a vacuum. We need therefore only be concerned with general relativity, without

considering the equations governing any other fields.

In general relativity the split into space+time is accomplished by writing the

metric as

ds2 = −(α2 − γijβ
iβj)dt2 + 2γijβ

jdt dxi + γijdxi dxj,

where γij is a metric on the slices of constant time t, and the scalar function α

and vector field βi are commonly used to encode the freedom of coordinate choice.

This results in a division of the Einstein equation. 2.17 into constraint and evolution

equations. However, this split is not uniquely determined and care must be taken

to ensure that the resulting systems are well-behaved. In particular, there may be

issues ensuring that the constraints remain satisfied as the system evolves. While

this is guaranteed mathematically in the continuum limit it may not be true once the

system is discretized.

Once a scheme for performing the 3+1 split has been decided upon it is then

necessary to find initial data that captures the situation of interest and satisfies the

constraint equations. There are many ways to do this. Most approaches assume

the spatial metric on the initial slice is conformally flat, meaning each point has a

neighborhood which can be mapped to flat space. We have seen that at any one point

the metric can be made to be the flat-space metric with vanishing first derivatives,

but this does not extend into a neighborhood in general. In particular, NR systems

do not include the history of gravitational waves that would have been produced by

the system prior to the start of the simulation. This deviation from the true physics

manifests as a burst of spurious “junk radiation” at the start of the system.

The creation of initial conditions is complicated for black holes by the presence of

singularities, which can not be captured in a simulation. Most codes adopt the “mov-

ing puncture” approach. The idea is to consider black holes as “wormholes” with an
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internal asymptotically flat region, and then compactify this region. A conceptually

simpler approach is to excise the points near the singularity from the computational

grid, but care must be taken to ensure that the excised region is causally disconnected

from the computational domain in order to avoid unphysical results.

There are a number of techniques for performing the evolution. A common ap-

proach is to evaluate the metric on a grid and replace derivatives with differences.

An alternative is to use spectral methods, which involve expanding the solution in

terms of a set of basis functions, and then evolving the coefficients. In this scheme

differentiation can be performed analytically. In either scheme there is a tradeoff be-

tween accuracy and performance. A finer grid will give more accurate results, but at

the cost of higher computational cost. As simulations typically take weeks to months

even on large computer clusters, improving the performance is desirable. Most codes

therefore use some form of adaptive mesh refinement, employing a finer grid only in

regions close to the holes where the metric is changing rapidly.

In order to extract gravitational-wave information most approaches use the Newman-

Penrose scalar, which in vacuum may be written

Ψ4 = Rαβγδn
αm̄βnγm̄δ

where m and n are vectors constructed from the basis vectors, which in spherical

coordinates are

n =
1√
2

(
t̂ − r̂

)
m =

1√
2

(
θ̂ + iφ̂

)
and m̄ is the complex conjugate of m. The gravitational-wave strain is related to Ψ4

by two time derivatives,

Ψ4 = ḧ+ − iḧ×

2.6.1 Hybrid Waveforms

As noted, NR simulations require a great deal of time and resources; typically a

single simulation starting 10 orbits before the merger will require a few weeks of

runtime on approximately 50-100 processors [22]. These requirements scale with

the length of the waveform extracted. Long waveforms are therefore prohibitively
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expensive; the longest currently available span about 30 cycles before merger. Systems

of astrophysical interest less massive than about 36M� will spend many more cycles

in the frequency range to which Initial LIGO is most sensitive. We therefore desire

much longer waveforms. Post-Newtonian waveforms can not be extended upwards

into the late inspiral and merger, and NR waveforms can not be extended downwards

to the early inspiral. However, we can consider “stitching” a pN waveform to an NR

in order to create a hybrid waveforms.

This turns out to be possible, although as we will see in chapter 7 there are

subtleties in doing so that have not yet been fully resolved. One approach described

in Ref. [23] is to work with Ψ4 and match the numerical waveform to the pN waveform

by adjusting the time and phase offsets of the pN waveform to minimize the quantity

Ξ(Δt, Δφ) =

∫ t2

t1

[φNR(t) − φpN(t − Δt) − Δφ]2 dt . (2.45)

This technique has been shown [24] to give good results when the pN waveform is

taken to be the time-domain TaylorT4 waveform (see Appendix A) with terms up to

3.5-pN in phase and 3.0-pN in amplitude.

2.7 Conclusions

In this chapter we reviewed the basic properties of gravitational waves and meth-

ods used to model such waves from the inspiral and merger of systems of compact

binaries. In the next chapter we discuss the principles behind the LIGO detectors,

which are looking for gravitational-wave signals. Then in chapter 4 we discuss how

pN waveforms are used to detect signals in the LIGO data.
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Chapter 3

The LIGO Gravitational Wave

Detectors

The fact that matter responds to gravitational waves as described in Sec. 2.3 offers

the possibility of making a direct detection of such waves. Although several methods

of detection have been proposed, we focus here on that used by LIGO and, with some

minor differences, Virgo and GEO. Again, this presentation will be of necessity brief.

We refer readers to the textbook by Saulson [25] for a much more comprehensive

treatment.

3.1 A Toy Model

We motivate our discussion of the LIGO interferometers with a toy model. We wish

to detect gravitational waves, and one method is suggested by the analysis of the

preceding chapter; we look for the strain, ΔL/L, by measuring the change in length

of some system. In principle we could measure the changing distance between two

freely-falling masses with a rigid ruler. The atoms in the ruler would not be freely-

falling and therefore the distance change along the ruler would be different than that

between the masses. However, the accuracy needed makes this approach impractical.

A better approach is to measure distance by sending a projectile, say a marble,

with known velocity, through the length and measuring the travel time. To avoid

complex issues of synchronizing clocks at different points in general relativity we add

a (hypothetical perfectly elastic) rubber wall at the far end, and measure how long
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it takes to return. If the velocity of the marble is much larger than the velocity of

the wall induced by the wave (that is, v � hωL where h is the strain and ω the

gravitational-wave frequency) then there is a simple relationship between the round-

trip travel time and the amplitude of the wave. However, this requires unrealistic

precision in measurement, the uncertainty in the marbles’ launch time will swamp

the small changes in length since, as we will see in the next chapter, h is typically

very small.

Therefore, we instead construct a null experiment where we try to determine if a

given quantity is exactly zero. We arrange two perpendicular paths, fire marbles down

each at the same time and measure the difference in return times. As gravitational

waves are rare, we “lock” the system by shifting one or both of the walls such that

the marbles always collide exactly (say by measuring their recoil angle). Once locked,

deviations in the length of either or both arms will cause the difference in arrive times

to become non-zero, which can be determined by a change in the marbles’ recoil angles

or lack of collision entirely.

To obtain robust results we want ΔL to be as large as possible. Since gravitational

waves are week, this means increasing L. Practical concerns may limit the ability to

do this. For example, clearly the entire path from source to walls must be in vacuum in

order for the marbles not to lose energy, and building large vacuum systems is difficult

and expensive. We therefore use a trick and add a second set of walls between the

source and reflectors, and arrange the paths so that the marbles bounce back and

forth several times before returning to the source. This effectively extends L by the

distance between the two surfaces multiplied by the number of bounces.

Finally, in this toy model the readout will be the number of marbles that land

in a “bin” subtending a recoil angle. Our ability to detect a gravitational wave with

statistical confidence then reduces to our ability to count marbles. We can model this

as a Poisson process, where probability of observing N marbles is

p(N) =
N̄N exp(−N̄)

N !

where N̄ is the average expected number of marbles per observation period. The

error in estimating N from counting goes as 1/
√

N , and it is therefore advantageous

to send out as many marbles as possible.
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3.2 Interferometric Gravitational Wave Detectors

The toy model presented above captures the essential principles behind LIGO, with

the significant difference that light is used instead of marbles. A cartoon of the LIGO

detectors is shown in Fig. 1. Ignoring the two ITM mirrors for the moment, the laser,

beam splitter and two end mirrors (labeled ETMX and ETMY for “end test masses”)

would form a Michelson interferometer, and parallel the original toy model with

marbles and two reflecting surfaces. The use of light actually simplifies the analysis

because light travels on null geodesics, so

ds2 = 0 = gμνdxμdxν

We now consider a +-polarized gravitational wave travelling in the z direction,

and place the arms on the x and y axes. We again assume the frequency of the wave

is large compared to the travel time between the arms, which implies that, over the

round trip, h+ may be taken to be constant and the metric becomes

gμν = −dt2 + (1 + h+)dx2 + (1 − h+)dy2 + dz2

Then for the x axis, restoring physical units,

c2dt2 = (1 + h+)dx2

and the round-trip travel time is

tx =
2L

c

√
1 + h+ ≈ 2L

c

(
1 +

h+

2

)

where we approximate the square root by its Taylor series and ignore higher-order

terms in h+. Similarly the round-trip light travel time along the y arm is

ty =
2L

c

(
1 − h+

2

)

Considering a single wavefront leaving the beam splitter, the difference in return

time is

Δt = tx − ty =
2L

c
h+

In interferometry we measure the difference in phase between returning wavefronts.

This difference will cause an interference pattern that will serve as the readout. If we
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Figure 1 : Block diagram of LIGO, see the text for description.
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use laser light of frequency f and wavelength λ = c/f then a time difference of Δt

corresponds to a phase difference of

ΔΦ =
2πf

Δt
=

4πfL

c
h+ =

4πL

λ
h+

As in the marble example, we can increase the sensitivity of the detector by

increasing L, but practical considerations prevent us from doing so. One of these

considerations is in fact the same for marbles and light; the travel path must be

in vacuum. We therefore employ the same trick and insert two additional mirrors,

indicated as ITMX and ITMY (for “inner test masses”). The addition of these mirrors

creates a Fabry-Perot cavity in each arm. By arranging the mirrors to be an integer

number of wavelengths apart a resonance is built up that can trap the light for

extended periods, approximately 200 bounces. It can be seen that if the mirrors

are not appropriately spaced there will be destructive interference between the light

moving in different directions. As the power in the beam must be conserved, this

results in energy leaking out of the cavity, reducing the efficiency. The addition of

the Fabry-Perot cavities provides an increase in phase difference of approximately two

orders of magnitude.

In interferometry it is typically most useful to think of light as a wave. However,

where in the toy example our ability to detect gravitational waves was limited by our

ability to count marbles, in real LIGO we are limited by our ability to count photons.

This manifests as a noise source called shot noise, to be discussed shortly. Photon

number is related to laser energy by E = hν, so we therefore want to use as powerful

a laser as possible. There are, however, technical obstacles to doing so. In the latest

LIGO run the laser power was up to 14 W, although it was not always possible to

run at this level.

In lieu of raising the laser power we can at least ensure that no power is wasted.

LIGO is configured such that the beams interfere destructively when they recombine,

we say the detector sits on a dark fringe 1. By conservation of energy all the power

emitted by the laser must go back towards the laser (neglecting the portion lost

1If we sat exactly on a dark fringe then any change in the arm lengths would cause an increase

of light at the readout, and we would be unable to determine in which direction the mirrors were

moving. We therefore sit a bit off the dark fringe. In addition, this condition is necessary for DC

readout, to be discussed shortly.
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to scattering, absorbed by the mirrors, etc). We can recover this power by adding

another mirror, indicated on the diagram as PRC, or power-recycling cavity.

The final feature on Fig. 1 is the OMC (output mode cleaner), which was an impor-

tant addition to the latest science run. A full description of this element is outside

the scope of this thesis, but we note briefly that the cross-section of a laser beam can

be decomposed into Hermite-Gaussian modes, as in Fig. 2. The higher-order modes

do not contribute to the readout signal, however they do contribute to the shot noise.

It is therefore advantageous to suppress such modes. In addition the OMC was nec-

essary to enable DC readout, a scheme in which the power present at the output port

of the interferometer is directly proportional to gravitational wave strain [26]. Such

a scheme offers reduced shot noise and other advantages over RF readout, where the

length changes are determined by the interaction of light at the frequency of the laser

and light at sideband frequencies. We draw attention to the OMC and disregard

other mode cleaners because the OMC tended to produce glitches, especially in the

Livingston detector.

3.2.1 Readout

In order to operate correctly the two Fabry-Perot cavities and the power-recycling

mirror must be positioned such that the light is resonant. The Michelson must likewise

by arranged so that the output photodetector is on a dark fringe. When the detector

is in this state we say it is locked, at that point a gravitational wave will perturb the

system within limits and produce light out the output. However, the resonances must

be very finely tuned and left untouched the system would quickly fall out of lock due

to random motions of the mirrors. There is therefore a need for continuous, active

corrections implemented by a system of sensors and servos throughout the detector.

Ignoring the OMC, in Fig. 1 the degrees of freedom are the two initial test masses,

the two end masses, and the PRC. However, it is the lengths betweens elements that

we are interested in, so the there are fewer degrees of freedom than there are optical

elements. In addition it is convenient to work with linear combinations of these

degrees of freedom:

• DARM: the differential arm length, (ETMX-ITMX) - (ETMY-ITMY)

• CARM: the common arm length, ((ETMX-ITMX) + (ETMY-ITMY) / 2
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Figure 2 : Basis functions for the cross-sectional distribution of power in a laser beam. The lack
of symmetry in the higher-order modes can induce instabilities in the LIGO optics. (Public-domain
image taken from Wikipedia [27])
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• PRC: The common recycling cavity length

• MICH: the differential motion of the “small Michelson” comprising the ITMs and

the beam splitter

One of the sensors used to keep the system on resonance is the output photodector.

Along with this, note that DARM is the quantity of interest in the experiment, the

change in length produced by a gravitational wave. It turns outs that rather than

reporting the signal at the photodiode directly a better output is the extent to which

this degree of freedom is off the resonance condition, which is recorded as DARM ERR.

Henceforth, and especially in chapter 10 we consider this “the output of the detector”.

It is not, however, the data stream in which we will search for gravitational waves.

The detector output needs to be calibrated with respect to the detector’s frequency

response. This can be measured by injecting a sine wave of known amplitude into

the system by actuating one of the mirrors, and measuring the amplitude and phase

of DARM ERR. The result is a complicated function of frequency. This can then be

inverted to map DARM ERR back to the true input, the result is stored as LSC-STRAIN

(for Length Sensing and Control), and it is that channel on which gravitational-wave

searches are performed.

3.2.2 Noise Sources

In addition to gravitational-wave sources the detector is subject to various other

influences collectively known as noise. One class of noise can be modeled as a Gaussian

random process, as we will discuss in the next chapter. These are best characterized

by their frequency profiles. The dominant source are:

• Seismic noise is due to the coupling of the detector to the ground. Much work

has been been done, and much research continues to be done, to isolate the

mirrors from the environment. However, the isolation is not complete. This

noise source dominates at low frequency, rising sharply below 40 Hz in Initial

LIGO. In Advanced LIGO we hope to push this so-called seismic wall down to

10 Hz. This noise source includes the natural constant vibrations of the Earth,

wind blowing over nearby structures, and anthropogenic sources such as vehicles
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near the sites, logging activity, etc. Seismic noise is not Gaussian 2, however

the deviation from Gaussianity will not impact any of the following analysis.

• Thermal noise. In any system each degree of freedom has an expected energy

of E = kBT/2 where T is the ambient temperature and kB is Boltzmann’s

constant. In LIGO this energy manifests as random motion throughout the de-

tector, although the motion from the test masses and the wires from which they

are hung are the largest contributors to noise. The noise produced dominates

from 40 Hz to approximately 200 Hz.

• Shot noise is the uncertainty inherent in counting photons. Consider the ideal

case, where there are no other noise sources and the detector is locked off a dark

fringe, so that we expect N photons in each sample interval. Due to counting

uncertainty this value will actually vary according to the Poisson distribution. It

can be shown that the output can be modeled as a time-series of delta functions

with strengths proportional to 1/
√

N . In the frequency domain this gives a

white spectrum, however the arms of the interferometer act as a filter that

amplifies this noise with increasing frequency. The result is that shot noise

dominates above ∼ 1 kHz.

In addition to these broad-band sources of noise there are also lines, particular fre-

quencies at which the noise is much greater than the three sources above would

produce. Two of the most significant are:

• Electrical noise. Despite shielding, at 60 Hz there is a sharp increase in the

noise level due to the frequency of the US electrical grid.

• Violin modes. Although the wires suspending the mirrors vibrate over a range

of frequencies due to thermal noise, the suspension system has a resonance at

about 340 Hz, producing much more noise here.

There are also lines at higher harmonics of these frequencies.

2For Gaussian noise the power spectral density has an exponential distribution at each frequency.

The mean equals the variance for an exponential distribution. It is therefore possible to measure

the “degree of Gaussianity” in a noise source from the ratio of the mean to the variance of the PSD

at each frequency. For Gaussian noise this ratio will be 1, however it is larger for seismic noise.
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In addition to these continuous noise sources there are numerous glitches, short

transient events. These glitches have a wide variety of different morphologies and

originate from many different sources. Some glitches are reactions to external envi-

ronmental conditions and others are internal to the detector. As one straightforward

example, a heavy object dropped on a nearby road can, through seismic coupling,

shake the mirrors and produce a sharp impulse in DARM ERR.

At the most abstract level gravitational-wave searches entail looking for features in

the data that deviate in some way from the continuous background. It is therefore not

surprising that glitches can interfere with searches and hence must be removed to the

extent possible. Chapter 9 will present the infrastructure used to store information

about the state of the detector and environment, and chapter 10 will discuss part of

the effort to identify glitches and remove them from the analysis.

3.3 Conclusions

In this chapter we reviewed the basic elements of interferometric gravitational-wave

detectors. In the next chapter we discuss how we search the data obtained by these

detectors for signals of the kind described in the previous chapter.
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Chapter 4

Searching for Gravitational Waves

from Compact-Binary Coalescences

In the previous chapter we showed that interferometric detectors, such as LIGO,

are capable of encoding the presence of gravitational waves in the phase shifts of

light. These shifts over time, or rather the motion of the servos to prevent them, are

recorded as the data stream DARM ERR. As noted, this data stream will also contain

noise. This noise will contain both a continuous component which sets the overall

sensitivity of the detector, and short glitches which can interfere with the search.

In this chapter we discuss a method to extract signals, if present, from the noise

and hence allow the LIGO and Virgo collaborations to claim a direct detection of

gravitational waves. For the most part in this chapter we will disregard implemen-

tation details. In particular, we will treat quantities as continuous in both time and

magnitude. In reality the data is sampled at 16384 Hz, and all time integrals should

be replaced by sums. Values are also stored in a discrete form, although the resolu-

tion is no coarser than the resolution of IEEE floating-point numbers. Analysis codes

therefore do not need any special features to deal with this discretization, beyond the

usual care taken not to accumulate numerical errors. In particular, Fourier trans-

forms, special functions, and similar functionality can be provided by standard code

libraries.
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4.1 Detecting Signals in Noise

There are many ways to search for evidence of gravitational waves in noise and to a

large extent the method used will depend on the nature of the signal being sought. In

this chapter we focus on matched filtering, which is optimal given certain assumptions

about the noise and if we have an accurate model of the signal for which we are

searching. Such a method is ideal for searching for the coalescence of compact binaries,

as discussed in chapter 2, as we can use the analytic approximations as the model.

The question of how well these models match real signals then becomes critical, and

we will return to this question in subsequent chapters.

4.1.1 Random Processes

We start by modelling the noise in the detectors, following the treatment in [28].

Seismic noise is not predictable in any detailed way, and thermal and shot noise are

quantum-mechanical in nature and therefore can not be predicted even in principle.

The noise is therefore a random process. Such a process is described by a collection

of probability density functions of the form

p(yn, tn; yn−1, tn−1; . . . y0t0)dyndyn−1 . . . dy0

which gives the probability that the value at time t0 will will lie between y0 and

y0 + dy0 and that the value at time t1 will will lie between y1 and y1 + dy1, and so on.

By considering a hypothetical ensemble of such processes we can construct average

values of functions of the process at one or more times. We denote the ensemble

average of a quantity x by angle brackets, 〈x〉, for example the average value of the

product y(t1)y(t2) is

〈y(t1)y(t2)〉 =

∫
y2y1p(y2, t2; y1, t1) dy2 dy1

We now make the following assumptions about the LIGO noise:

• That it is stationary, the values of the functions 4.1.1 depend only on the

differences between the times, and not any absolute external clock. This is not

necessary a good model for seismic noise, but by breaking the analysis into

small chunks of time it will be accurate enough over the span of each.
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• That it is Gaussian, that is, the functions 4.1.1 are all of the form exp(−Y TAY )

where Y is a vector of y values and A is a positive-definite matrix. This is not

necessarily a good model for, eg, electrical noise, which is better modeled as

a sine wave with time-dependant random amplitude. This is definitely not a

good model for the numerous non-Gaussian glitch mechanisms. However, this

assumption is again approximately correct. We will further assume that the

mean is 0 (eg, that the mirrors are just as likely to swing one way as the other).

• That it satisfies the ergodic hypothesis so that we may replace ensemble averages

with time averages.

Now consider the quantity Sy(f) called the power spectral density (PSD), defined

as

Sy(f) ≡ lim
T→∞

1

T

∣∣∣∣∣
∫ T/2

−T/2
(y(t) − ȳ(t))e2πiftdt

∣∣∣∣∣
2

(4.1)

Using Parceval’s theorem it can be shown that∫ ∞

0

Sy(f) df = σ2
y

That is, Sy(f) measures the contribution of each frequency to the total variance of

the process. It can also be shown that

〈ỹ(f)ỹ(f ′)〉 =
1

2
Sy(f)δ(f − f ′) (4.2)

4.1.2 The Matched Filter

We now specialize to the case of LIGO. We denote the noise in the detector as

n(t), and a gravitational-wave signal as h(t). The output of the detector is then

s(t) = n(t) + h(t). We seek a filter on the data that we can use to infer the presence

of the signal.

Consider the most general linear filter which in the discrete case would be

ŝ =
∑
i

siKi (4.3)

Since we will want a real result, we require the Ki to be real. In the continuum limit

this becomes

ŝ =

∫ ∞

−∞
s(t)K(t) dt (4.4)
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We now define the signal strength S as the expected value of ŝ when the signal is

present:

S = 〈ŝ〉

=

〈∫ ∞

−∞
s(t)K(t) dt

〉

=

∫ ∞

−∞
〈s(t)K(t)〉 dt

=

∫ ∞

−∞
〈s(t)〉K(t) dt

=

∫ ∞

−∞
〈n(t) + h(t)〉K(t) dt

=

∫ ∞

−∞
(〈n(t)〉 + 〈h(t)〉) K(t) dt

=

∫ ∞

−∞
(0 + h(t)) K(t) dt

=

∫ ∞

−∞
h(t)K(t) dt

Now, since K(t) is real we can replace it by its complex conjugate and then apply

Parseval’s theorem to write this as

S =

∫ ∞

−∞
h(t)K�(t) dt =

∫ ∞

−∞
h̃(f)K̃�(f) df

We characterise the noise N as the rms value of ŝ when the signal is absent:

N2 = 〈ŝ2(t)〉 − 〈ŝ(t)〉2 (4.5)

= 〈ŝ2(t)〉 (4.6)

=

∫ ∞

−∞
K(t)K(t′)〈n(t)n(t′)〉 dt dt′ (4.7)

=

∫ ∞

−∞
dt dt′K(t)K(t′)

∫ ∞

−∞
df df ′e2πifte−2πif ′t′〈ñ�(f)ñ(f ′)〉 (4.8)

(4.9)

Using Eqn. 4.2 this becomes

N2 =

∫ ∞

−∞
df

1

2
Sn(f)|K̃(f)|2 (4.10)



58

We now introduce a new function

ũ(f) =
1

2
Sn(f)K̃(f) (4.11)

In terms of which we can write the signal-to-noise ratio, which we henceforth denote

as ρ as

ρ =

∫∞
−∞ df h̃(f)ũ�(f)

(1/2)Sn(f)[∫∞
−∞ df ũ(f)ũ�(f)

(1/2)Sn(f)

]1/2 (4.12)

This motivates the definition of an operator mapping pairs of functions to real

numbers

(A |B) = 2

∫ ∞

−∞
df

Ã(f)B̃�(f)

Sn(f)
(4.13)

This operator has the following properties

• Conjugate symmetry, (x|y) = (y|x)�

• Linearity in the first argument (ax + by|z) = a(x|z) + b(y|z) for a, b numbers

and x, y, z functions. This follows from the linearity of the Fourier transform.

• Positive-definiteness (x|x) ≥ 0 and (x|x) = 0 iff x = 0. This follows from the

positive-definiteness of the product aa� for a ∈ C.

The operator has all the properties of an inner product on the vector space of func-

tions. We may therefore consider
u

(u|u)

to be a normalized vector.

An important feature of this inner product, which we will use repeatedly, is that

the probability of obtaining any particular pattern h(t) in the data is, up to normal-

ization [29],

p(h) ∝ exp

(
−1

2
(h |h)

)
(4.14)

Now using Eqn. 4.13 the SNR becomes

ρ =
(h |u)

(u |u)1/2
(4.15)



59

We next seek a function u (and hence K) that will maximize ρ. In this form it is

clear that u and h must be parallel, and therefore

K̃(f) ∝ h̃

Sn(f)
(4.16)

The constant cancels, and may therefore be set to 1.

Combining these results, the value we will use to determine whether or not our

data s contains the gravitational waveform h (henceforth called the template wave-

form) is

ρ =
(s |h)√
(h |h)

(4.17)

The template has an unknown phase, denoted φ0 in Eqn. 2.39. As this term has

no frequency dependence it gives rise to a constant of the form exp(iφ0), which can

be pulled out of the integral. We can then maximize over this value by taking the

absolute value.

The result is valid for a segment of data of length t seconds and a waveform of

the same length. However, there may be a signal in the data that does not end where

the template does. We should therefore evaluate 4.17 repeatedly, sliding the template

so that it ends at a different time for each iteration. However, this can be done in a

single operation. If h̃(f) is the Fourier transform of h(t), then the Fourier transform

of h(t + τ) is

h̃(f)′ =

∫
h(t + τ)e2πiftdt =

∫
h(t′)e2πif(t′−τ)dt′ = e−2πiτ h̃(f)

Substituting this into the matched filter,

ρ(τ) =
2√

(h |h)

∣∣∣∣∣
∫

e−2πifτ s̃(f)h̃�(f)

Sn(f)
df

∣∣∣∣∣ (4.18)

where we have added the absolute value from the maximization over φ0. This is just

the inverse Fourier transform of the quantity s̃(f)h̃�(f)/Sn(f).

4.1.3 The Overlap

Consider data consisting of noise and a signal h. Let ρ be the SNR obtained by

filtering this data with template h. Then the loss in SNR incurred by filtering with
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an incorrect template, h′ is

ρ − ρ′ =
(s |h)√
(h |h)

− (s |h′)√
(h′ |h′)

(4.19)

=
(n |h)√
(h |h)

+
(h |h)√
(h |h)

− (n |h′)√
(h′ |h′)

− (h |h′)√
(h′ |h′)

Taking the mean of both sides the first and third terms vanish because

〈(s |h)〉 = 2

∫ ∞

−∞
df

〈ñ(f)〉h̃�(f)

Sn(f)
= 0

where the last step follows from our assumption that the noise is Gaussian with zero

mean. Equation 4.19 then becomes

〈ρ − ρ′〉 =
(h |h)√
(h |h)

− (h |h′)√
(h |h′)

=
√

(h |h)

(
1 − (h |h′)√

(h |h) (h′ |h′)

)

This motivates the definition of the overlap between two waveforms h and h′ with

respect to a given PSD,

〈h |h′〉 ≡ (h |h′)√
(h |h) (h′ |h′)

(4.20)

which is a measure of how similar the two waveforms are, or conversely how dissimilar

they are and hence the fractional SNR we can expect to lose using one rather than

the other. We will use this repeatedly in subsequent chapters.

4.1.4 Trigger Selection

From the SNR time series, ρ(t) we wish to select triggers, discreet points whose time

and ρ value correspond to the time and significance of a potential detection. This is

done using an algorithm described in Ref. [30].

Equation 4.14 says that even in the absence of a signal there will be random

fluctuations in ρ(t). We therefore require a threshold on ρ(t) that will eliminate

most of the triggers arising from random fluctuations, but not so high as to prevent

detection of realistic signals. LIGO has chosen 5.5 as this threshold. However, it
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is unnecessary and would be wasteful to create a trigger from every point of ρ(t)in

excess of this threshold. ρ(t) may be thought of as “sliding” the template against

the signal. As the two line up ρ(t) will increase, achieving a maximum when they

are perfectly aligned, and then decreasing. We therefore need only create a trigger

from the largest value of ρ(t). Since glitches can also elevate ρ(t), and indeed may

have larger values than real signals we can not simply take the largest value across

the entire analysis but must instead choose a window. A logical choice for the length

of this window is the time length of the template. For pN waveforms described in

Sec. 2.5 this is defined as the time from which the instantaneous frequency is 40 Hz

to the time where it becomes infinite.

The full trigger selection algorithm is:
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for each sample point j

if ρj > threshold

if there is no event yet

event start = j

event snr = ρj

else if ρj > event snr

event start = j

event snr = ρj

else if (j - event start) == template length

record event

event start = j

event snr = ρj

This is illustrated in Fig. 3. We will discuss some implications of this algorithm in

Sec. 10.6.

4.2 The χ2 Test

Consider again the SNR time series, Eqn. 4.18, which we now write as

ρ(t) =
2√

(h |h)

∫
e−2πift h̃

�(f)

Sn(f)
· s̃(f) df

By the convolution theorem this becomes

ρ(t) =
2√

(h |h)
h(−t) � S(t) � s(t)

where S(t) is the inverse Fourier transform of 1/Sn(f). If the signal is an impulse,

s(t) = δ(t), then the response is the time-reversed template (“fuzzed” by the noise

curve). Given a sharp feature in the data the SNR will therefore be elevated, even

though the data looks nothing like a gravitational wave. More generally this demon-

strates that the SNR alone is not sufficient to distinguish signals from noise in the

presence of non-Gaussian features of the data. Given the presence of glitches this is

a very practical concern.

We therefore supplement the analysis with a χ2 signal-consistency test [31]. The

idea is to check not only that ρ is large, but also that the SNR was accumulated
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Figure 3 : A “cartoon” illustrating the trigger-selection algorithm. The graph shows an SNR time
series of the kind produced by Eqn. 4.18. Assume the template is one second long. As the SNR
rises above threshold just before point (1) the “window” opens. Point (1) is found as the nearest
maximum. One second after point (1) the window closes and point (1) is recorded as a trigger. The
SNR rises above threshold just before point point (2). This is more than one second away from
point (1), so a new window opens. When point (3) is encountered it is recorded as the largest value,
resetting the window. One second after point (3) the window closes and point (3) is recorded as a
trigger. The two peaks following point (3) are within the one-second window, they are not recorded
as triggers. Point (4) is likewise recorded as a trigger, as it is more than one second from (3).
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over the frequency integration in a way consistent with a real signal. We do this

by dividing the template into p sub-templates hi, which match the original template

between frequencies fi and fi+1 and are zero elsewhere. The fi are chosen such that∫ fi+1

fi

|hi|2
Sn(f)

df =
1

p

∫ fc

f0

|h|2
Sn(f)

df

where f0 is the starting frequency (40 Hz in LIGO) and fc is, as in Eqn. 2.39, the fre-

quency at which we terminate the waveform. We then filter with these sub-templates

independently to produce the p time series ρi(t) and construct the quantity

χ2(t) = p

p∑
i=1

(
ρi(t) − ρ(t)

p

)2

(4.21)

If the signal exactly matches the template χ2 will be zero, and it will increase as the

signal and template deviate. Based on investigations in S5, we choose p = 16.

We incorporate this information in the analysis by constructing a quantity, ρnew

(new SNR), which downweights the SNR by χ2,

ρ2
new =

⎧⎨
⎩ρ2, χ2

r ≤ 1,

ρ2

[(1+(χ2
r)3)/2]1/6 , χ2

r > 1,
(4.22)

where the first clause is added to avoid promoting triggers that happen to have anoma-

lously low χ2 values, and the form and factors of the second clause have been chosen

based on studies to test the ability of the search to distinguish between simulated

injected signals and glitches.

4.3 Choosing the Templates

We have thus far referred to the h as “the template”, but recall from Eqn. 2.39 that

the waveforms depend on the parameters of the binary, such as total mass M and

symmetric mass ratio η. As discussed in Sec. 4.1.3, the difference between the signal

and the template used in the matched filter corresponds directly to a reduction in

ρ. We must therefore construct a bank of templates arranged to capture, to within

some acceptable loss of SNR, all the signals of interest. To do so we consider the

space of templates as a manifold, as in chapter 2, and we use the parameter values

(or functions of these values) as coordinates. The distance between two points p and
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q, with coordinates (=parameters) pi and qi, is defined in terms of the overlap of

templates at those parameters

d = 1 − 〈h(p) |h(q)〉 =
(h(p) |h(q))√

(h(p) |h(p)) (h(q) |h(q))

We then seek a set of templates, {hi} such that within a region of interest every point

in the manifold is “sufficiently close” to at least one template:

∀p, max
i

〈h(p) |hi〉 ≥ x

Such a bank will ensure that the loss in SNR from using the bank instead of testing

the entire continuum of parameters is less than x%. In LIGO we typically require no

more than a 3% loss in SNR. As the distance to which we can detect signals scales

with SNR and volume is the cube of distance, this corresponds to approximately a

10% loss in event rate.

It is possible to construct the bank stochastically [32]:

• Choose a point in the manifold at random

• If the overlap with any already-placed template is greater than the minimal

match, discard it

• Otherwise, add it to the set and continue

• Repeat until there have been N consecutive rejected new candidates, where N

is chosen to give a reasonable probability that the space has been covered.

In many cases we can do better then this. Since we are interested in distances on a

manifold it makes sense to seek a metric on this space. Such a metric can be obtained

by expanding the overlap function [33, 34]

〈h(λ) |h(λ + Δλ)〉 ≈ 1 − 1

2

∂2 〈h(λ) |h(λ + Δλ)〉
∂Δλi∂Δλj

∣∣∣∣
Δλ=0

(Δλi)(Δλj)

where we can drop the linear term because the overlap is a maximum at Δλ =

0. When using frequency-domain, stationary-phase templates of the form 2.39, the

calculation of this metric can be done analytically and gives a result in terms of

moments of the noise curve

I(q) = Sn(f0)

∫ fc

f0

x−q/3

Sn(xf0)
dx
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where f0 is a chosen reference frequency.

The metric can then be used to efficiently lay out a grid of templates [35]. In

general it is impossible to lay out a grid on a curved surface such that every point is

the same distance from its nearest neighbors, but the metric on the template manifold

is approximately flat and, when written in appropriate coordinates, the coefficients

are constant.

4.4 The Search Pipeline

We now discuss how the above elements are incorporated into a gravitational-wave

search. The system is collectively known as a pipeline, as it may be thought of as

a series of steps through which the data flows. In particular the LIGO-Virgo search

for gravitational waves from the coalescence of compact binaries is called the ihope

pipeline. There is a large gap between the basic principles outlined above and a

functioning gravitation-wave search. More details can be found in Refs. [30, 31, 36,

35]. We now present a very high-level overview of how these elements were used in

the search for gravitational waves from the coalescence of compact binaries. We focus

in particular on LIGO’s sixth science run which overlaps Virgo’s second and third.

For more details on this search see Ref. [37].

In the first step the data from each detector the analysis is broken into 2048-second

segments. This is done for computational efficiency, as well as to restrict to timespans

over which the PSD is nearly stationary. Next, we filter to remove power below 40 Hz.

This is done because computers are able to store numbers with only finite range and

precision. In particular we are unable to small differences above large values without

losing information. As the seismic noise below 40 Hz is orders of magnitude greater

than the noise at higher frequencies signals at higher frequencies would be completely

lost due to rounding errors.

The PSD for each detector is then calculated by a variation of Welch’s method [30].

The 2048 seconds are split into 15 256-second chunks, overlapping by 128 seconds.

The PSD of each chunk is then calculated using the defining Eqn. 4.1. The final

PSD is obtained by taking the median values of each frequency bin. This is done in

order to make the PSD estimation robust against loud, short events. As an extreme

example, if there were a loud gravitational wave in the data the PSD would be
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elevated, paradoxically suppressing the SNR.

This PSD is then used to construct the template bank [33, 34, ?]. In S6/VSR2,3

we used stationary-phase templates of the form of Eqn. 2.39. We take the phase

evolution, Ψ to 3.5 pN order, corresponding to an expansion in v to seventh order.

See chapter 5 for more on this choice.

We then break the 2048-second segment into 256-second chunks (to match the

resolution of the PSD) and filter the data with each template in the bank. The

Fourier transformation algorithm we use treats the data as periodic, it identifies the

times t = 0 and t = 256. This correlates the data at the beginning and end of

the segment, we therefore discard the first and last 64 seconds in each segment, and

overlap the segments so as to cover the entire time. See Refs. [30, 15] for more on this

issue. The χ2 test is not enabled at this stage, as it is computationally expensive.

The PSD used at this stage is not exactly the PSD that was calculated, it has been

modified to avoid wrap-around issues and prevent a loud impulse from corrupting the

entire chunk [30]. We return to this issue in Sec. 10.6.1, but for the moment recall

that the response of the matched filter to an impulse can elevate the SNR for an

extended time.

The outcome of this stage is a set of triggers for each detector. We then apply a

coincidence test [36] by testing whether each trigger is close (in the sense of the metric

Eqn. 4.3) to triggers from the other detectors. We allow the trigger time to differ by

the maximum time it could take a gravitational wave to travel between detectors.

There is now a second stage of the process. Templates in each bank that have not

produced coincident triggers are discarded. The filtering is then repeated, now with

χ2 enabled. There is then another coincidence test and the resulting triggers, now

identified as foreground triggers are assigned a combined new SNR value

ρ2
new, combined =

∑
i

ρ2
new,i

where i ranges over the set of detectors.

In order to determine how significant a foreground trigger is it must be compared

against the background distribution. In pure Gaussian noise the probability distribu-

tion for cumulative new SNR could be calculated from Eqn. 4.14. As the real data is

not Gaussian, this distribution must instead be measured. We do so by performing

time slides ??. The data from each detector is slid by more than the light-travel time
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between detectors. Assuming at most one gravitational wave in the data, this ensures

that any coincidences are entirely due to triggers produced by noise. We repeat this

100 times in order to build up more statistics. At the end we have a probability

(or equivalently a rate) of obtaining triggers at each combined new SNR value. The

foreground triggers are then compared to this distribution, those with values that

are sufficiently rare/improbable are potential detection candidates, which are then

subjected to extensive follow up analysis.

The order to test and tune the pipeline we perform numerous software injections,

where simulated signals are added to the data before the first filtering step. Changes

to the pipeline can be tested by examining the efficiency of the search, the number of

injections recovered as a fraction of the number injected in a given region of parameter

space.

The LIGO and Virgo collaborations also perform end-to-end tests with hardware

injections, in which signals are added to the data by moving the ETMX mirror. Gen-

erally the times and the parameters of the injections are known, allowing complete

end-to-end tests of the pipeline. However, there have been “blind” injection chal-

lenges, signals injected at ETMY by a small group within the collaboration which are

not announced. We will have much more to say about one such injection in Sec. 10.5.

4.5 Conclusions

We have derived the matched filter as the optimal search for a known signal in

Gaussian noise. We then proceeded to construct an entire gravitational-wave search

pipeline using matched filtering as the core concept.

The construction of this pipeline involved making many choices: the template

waveforms, the frequency at which to terminate the templates, the spacing of the

bank, the region of parameter space to cover, the SNR threshold, and so on. It is

possible and useful to test these choices against pN signals, as is done in software

and hardware injections. However, it is known that these waveforms to not capture

the full physics of the systems for which we are looking. There is therefore strong

impetus to test the pipeline against signals from numerical relativity. This topic is

the basis for the next four chapters.
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Chapter 5

Comparison of Numerical

Simulations of Black-Hole Binaries

with Post-Newtonian Waveforms

5.1 Introduction

In chapter 4 we outlined the CBC pipeline used to search LIGO/Virgo data for

gravitational waves resulting from the inspiral of binary systems composed of neutron

stars and/or black holes. In particular we noted the use of post-Newtonian templates

of the form discussed in Sec. 2.5 to filter the data. The post-Newtonian approximation

is valid so long as the velocities of the component masses are small compared to the

speed of light. As the matched filter is performed in the frequency domain, it is

convenient to work with a cutoff frequency, a frequency above which we do not trust

the post-Newtonian approximations. The velocity depends on both the total mass of

the system and the orbital frequency as

v = (πMf)1/3

so we therefore require that the cutoff frequency vary inversely with mass. In current

searches the cutoff frequency is taken to be the orbital frequency of a point particle

around a Schwarzschild black hole (that is, a black hole without charge or spin) at

the innermost stable circular orbit (ISCO). The radius of this orbit is rISCO = 6M

where M is the mass of the black hole, and the corresponding frequency is fISCO =
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1/(6
√

6πM).

For systems containing two neutron stars the Schwarzschild ISCO frequency is

above 1000 Hz, even for a hypothetical system composed of two instances of the

heaviest-known neutron star (PSR J1614-2230, at 1.97 ± 0.04M�) [38]). This is well

outside LIGO’s most sensitive band where most of the SNR will be accumulated, and

we may therefore trust pN waveforms in a search for binary neutron stars (BNS).

However, for systems including at least one black hole the ISCO frequency will be

lower and the transition to plunge and merger may occur in the sensitive band. It is

therefore important to test the ability of pN templates to detect such systems and,

where possible, optimize their ability to do so. In order to evaluate the effectiveness

of templates it is necessary to compare them against complete waveforms including

the inspiral, merger and ringdown phases. This necessitates the use of hybrid pN-NR

waveforms as described in Sec. 2.6.1. This chapter uses a high-accuracy waveform

developed at Caltech and Cornell 1.

The most robust test would consider the ability of the full pipeline to detect BBH

signals; this is the goal of the NINJA project introduced in the following chapter. Here

we focus on a more fundamental question, the ability of pN waveforms to capture full

physical signals. We test this by calculating the overlap (defined in eqn. 4.20) between

the hybrid waveform and the pN approximation. If there are no parameters for which

the chosen pN model provides a high overlap with the hybrid signal then the pipeline

as a whole will be unable to detect such signals. A similar study has been performed

by Pan et al. using numerical data from Pretorius and the Goddard groups [39]. Our

main results are in agreement with their conclusion that a simple extension of the

TaylorF2 waveforms currently in use by the CBC low-mass search yields high overlaps

with numerical waveforms.

Throughout this chapter we use only the (l,m) = (2, 2) component of the wave-

form Ψ2,2
4 (as defined, e.g., in Ref. [23]). For convenience, we drop the superscript.

Whenever possible, we use dimensionless quantities, like r M |Ψ4|, where r is the

areal radius of the observation sphere, and M is the total apparent-horizon mass of

the holes in the initial data. However, for any calculation involving the LIGO noise

1The code used to produce these waveforms, SpEC, is now being developed and used by a

collaboration including scientists at Caltech, Cornell and the Canadian Institute for Theoretical

Astrophysics (CITA).
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curve, we have a physical scale, and thus use standard mks units.

To weight the inner products in the overlap we use the following PSDs for Initial

and Advanced LIGO: for Initial LIGO we use an analytic approximation to the LIGO

design PSD given by

Sn(f) = 3.136 × 10−4

[(
4.49f

150.0

)−56.0

+ 0.16

(
f

150

)−4.52

+

(
f

150.0

)2

+ 0.52

]
(5.1)

All integrals start from 40 Hz. As shown in Fig. 5, at this frequency the noise is

an order of magnitude higher than its lowest value, and below this frequency it rises

rapidly as ∼ f−56. The region below 40 Hz therefore contributes very little signal

power to the SNR [40].

For Advanced LIGO we use the GWINC program [41] to generate the PSD.

GWINC reports the PSD in increments of 0.0124 Hz. When calculating discrete

integrals against signals sampled at other frequencies we obtain values for the PSD

by linearly interpolating between the values provided by GWINC. We start integrals

at 10 Hz as that is the point where the noise has increased by two orders of magnitude

above its minimum, as also shown in Fig. 5.

5.2 PN–NR Hybrid Waveform

In order to perform our comparison we need to construct a “true” black-hole binary

waveform, which we might expect to observe with detectors. A numerical simulation

provides the data for the crucial nonlinear merger phase. We carefully extract the data

and extrapolate it to large radius, and investigate the effects of numerical error on

the final result. Because this waveform is very computationally expensive to produce,

it covers only about 32 cycles, which is not sufficient for a thorough investigation of

the possibility of detecting it in searches of data from gravitational-wave detectors.

Thus, we match the numerical waveform to a post-Newtonian waveform, producing

a hybrid which extends for many thousands of cycles, covering the entire band of

interest.
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5.2.1 Numerical Simulation, Extraction, and Extrapolation

The numerical simulation is the same as that described in Refs. [24, 42]: an equal-

mass, non-spinning, black-hole binary with reduced eccentricity [43], beginning roughly

16 orbits before merger, continuing through merger and ringdown [42]. It is performed

with the Caltech–Cornell pseudospectral code, using boundary conditions designed

to prevent constraint violations and gravitational radiation from entering the do-

main [44, 45].

Data is extracted from the simulation in the form of the Newman–Penrose scalar

Ψ4 = −Cαβγδl
αm̄βlγm̄δ , (5.2)

where lα and the complex vector m̄β are constructed with reference to the coordinate

basis. Along the positive z axis, we have

lα =
1√
2

(tα − zα) , (5.3)

m̄β =
1√
2

(
∂

∂x
− i

∂

∂y

)β
. (5.4)

Here, tα is the timelike unit normal to the spatial hypersurface, and zα is the

unit vector in the positive z direction. The vectors ∂/∂x and ∂/∂y are the standard

coordinate vectors, which are not normalized. Ψ4 is extracted as a function of time,

at various radii along the positive z axis. This is then extrapolated to large radii, as

described in Ref. [24], and in greater detail in Ref. [46].

The measured (instantaneous) frequency at the beginning of the simulation is

finitial = (1.08 ± 0.01) × 103 Hz
M�
M

. (5.5)

The measured ringdown frequency is

fringdown = (1.78 ± 0.02) × 104 Hz
M�
M

. (5.6)

The measured Christodoulou mass and spin of the final black hole are

Mχ,final = (0.95162 ± 0.00002)Mχ,initial , (5.7)

Sfinal = (0.68646 ± 0.00004)M2
χ,final . (5.8)

Using this value for the spin, a quasi-analytic formula due to Echeverria [47] predicts

a value of 1.77 × 104 Hz M�
M

, for the ringdown frequency, in close agreement with the

measured frequency.
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Figure 4 : Convergence testing for numerical waveforms from a data-analysis perspective, using
the match between waveforms computed at different numerical resolutions. The waveforms are
scaled to various masses, and the Initial-LIGO noise curve is used in the calculation of the match.
The upper panel shows the overlap without maximization over arrival time and phase; the lower
panel shows the overlap after maximization. In each panel, the lower (dashed) line compares the
lowest- and highest-resolution simulations, while the upper (solid) line compares the medium- and
highest-resolution simulations. Note that this plot uses only numerical data, with no post-Newtonian
contribution.

5.2.2 Accuracy of the Numerical Simulation

The numerical waveform will be the standard against which we will judge the Tay-

lorF2 waveforms used in LIGO data analysis (see Appendix A). To understand how

precisely we should trust our final results, we need to understand the accuracy of

the waveform itself. The most obvious measure of the error in this fiducial wave-

form is its convergence with increasing numerical resolution. Fig. 4 shows the overlap

(Eq. (4.20)) between waveforms computed at different resolutions. The data used

here are the extrapolated Ψ4 waveforms, integrated in time twice.

Because of the short extent of the numerical waveforms, we need to be careful

when using their Fourier transforms. The signal can be corrupted easily by the non-

periodicity of the waveforms, and the discontinuous jumps that result. For Fig. 4
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we mitigate this problem by increasing the sampling frequency of the input data,

and restricting the Fourier transform to frequencies corresponding to instantaneous

frequencies contained in the data. The input data can easily be upsampled in the

time domain by interpolating the phase and amplitude of the complex data to a finer

time grid. We then perform the transform, and explicitly set the data to zero at

frequencies below finitial and above fringdown, as given in Eqs. 5.5 and 5.6. While the

results do depend on whether or not we impose these cutoffs, they do not depend

sensitively on the actual cutoff frequencies.

The overlap between the lowest- and highest-resolution simulations (dashed lines)

actually passes through zero, as shown in the upper panel. Presumably, this is because

of loss of phase accuracy over the course of the simulation. All three simulations begin

with the same initial data, so the waveforms are most similar at the beginning. Masses

for which this is the most important segment (the lowest masses) will naturally have

the highest overlap between resolutions. As the simulation progresses, numerical

error accumulates—notably in the phase—so the overlap decreases with masses for

which later segments dominate the overlap (higher masses). When the overlap is

optimized over arrival time and phase (sec. 4.1) we can see that the overlap becomes

much better, as shown in the lower panel, indicating sufficient accuracy within any

frequency band for which phase coherence is required. In either case, the medium

and highest resolutions are much more nearly the same. Without optimization, their

overlap is within a few tenths of a percent of 1; after optimization, the overlap is

within 10−6 of 1.

In the rest of our analysis we use the highest-resolution waveform. Because we

always optimize over arrival time and phase, the lower panel of Fig. 4 is the most

relevant, and shows that the waveform has converged to very high accuracy. The

overlaps we quote below will only be given to three decimal places at most, because

this is roughly the accuracy of the single-precision numerical methods used in the rest

of the chapter. This accuracy is also sufficient for searches of gravitational-wave data.

Thus, the truncation error of the simulated waveform is irrelevant for those purposes.

Other sources of error include residual eccentricity and spin, the influence of the

outer boundary of the simulation, extrapolation errors, and coordinate effects, as

discussed in Ref. [24]. The eccentricity had a disproportionately large effect on the

error quoted in that paper because of the matching technique, which is not used
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here. Restricting attention to the other effects of eccentricity, the uncertainty falls

below that due to numerical error. Similarly, using the techniques of Ref. [48], the

initial spins of the black holes have been measured more reliably, and found to be

more than an order of magnitude smaller than previously determined, allowing us to

reduce the estimate for that error to less than the numerical truncation error. The

various coordinate effects were all estimated to be of roughly the same magnitude as

the numerical error.

With the numerical error being many times more accurate than needed for this

analysis, and the other sources of uncertainty being of roughly the same size, these

considerations indicate that the overall error in our fiducial waveform is substantially

less than the precision needed for this analysis.

5.3 Detection Efficiency of Gravitational-wave Templates

We now compare the signal described in the previous section to restricted, stationary

phase TaylorF2 post-Newtonian templates with terms up to order 2.0, order 3.5,

and a “pseudo-4.0 pN-order” term recommended in Ref. [39]. Overlaps are calculated

using the techniques of Sec. 4.1 with the signal s being the hybrid waveform described

in the previous section, scaled to a range of masses. We consider both the Initial-

and Advanced-LIGO noise curves.

Plots of the hybrid waveforms in comparison to the Initial-LIGO noise curve are

shown in Fig. 5. The masses are chosen so that various frequencies of interest (the

final stitching frequency, the ISCO, and the ringdown) occur at the “seismic wall”

for Initial LIGO: 40 Hz. The waveforms s̃ are scaled to depict the detectability of the

signal, typically quantified by the SNR introduced in (4.15), which may be written

as

ρ2 ≡
∫ ∞

0

4 s̃(f) s̃∗(f)

Sn(f)
df =

∫ ∞

0

∣∣2 s̃(f)
√

f
∣∣2

Sn(f)
d ln f . (5.9)

In the final expression, the numerator and denominator have the same units, and

are directly comparable. Because the square root of the denominator is familiar, we

plot that along with the square root of the numerator. Plotting these two quantities

together gives a graphical impression of the detectability of the waveform, and the

relative importance of each part of the waveform, by its height above the noise curve.

In Ref. [49], Brady and Creighton define a slightly different quantity, the characteristic
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Figure 5 : Hybrid Caltech–Cornell waveform scaled to various total masses, with sources opti-
mally oriented and placed at 100 Mpc, shown against the Initial- and Advanced-LIGO noise curves.
Markers are placed along the lines at frequencies corresponding to various instantaneous frequen-
cies of the waveforms. The triangles represent the beginning and end of the blending region; the
circle represents the ISCO frequency; the square the light-ring; and the diamond the measured ring-
down frequency. See the text for discussion of the normalization. The values given for ρ use the
Initial-LIGO noise curve, with sources at a distance of 100 Mpc.
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strain hchar ≡ f |s̃(f)| . The relative factor of
√

f they use is present so that they can

plot hchar against
√

f Sn(f). Cutler and Thorne [50] define still another quantity, the

signal strength h̃s(f), which is related to the Fourier transform by h̃(f) =
√

5 T
N

h̃(s) .

The factor of
√

5 comes from averaging over the orientation of the binary, which we

do not do. T/N is the ratio of the threshold to the rms noise at the endpoint of signal

processing.

For each template family we initially optimize over signal mass M , symmetric

mass ratio η = m1m2/(m1 + m2)
2, and upper cutoff frequency fc. The optimization

is performed using a Nelder–Mead (“amoeba”) algorithm [51]. The amoeba starts

with a simplex in the parameter space and proceeds through a series of steps, each

of which will improve the value of the function at at least one vertex. The algorithm

terminates when all vertices have converged to the same point to within a specified

tolerance. This process is deterministic, and amounts to an enhanced steepest-ascent

algorithm. It is therefore only guaranteed to find a local maximum, and indeed we

find that an amoeba instance started at a random point in the parameter space is

most likely to converge to a point that does not give the highest possible overlap.

We interpret this as being due to a large region in parameter space containing a

local maximum and a relatively smaller region containing the global maximum. We

therefore supplement the basic amoeba by running 300 instances with random starting

values, and taking the best match obtained over all instances. In repeated runs the

same optimal parameters were found by at least some of the amoebas, which supports

the claim that this is the true maximum.

The results of optimizing over all of M, η and fc for selected masses for Initial

LIGO are given in Table 1 and summarized in Fig. 6. For Initial LIGO, in the range

covered by the current CBC low-mass search (M < 35M�) [52], the pseudo-4.0 pN

TaylorF2 waveforms achieve the highest overlaps, exceeding those obtained with 3.5

pN waveforms by ∼ 1%. Above 35M� the 3.5 pN waveforms produce overlaps as

much as 4% greater than those obtained with pseudo-4.0 pN waveforms over a range

from 40–80M�. With the Advanced-LIGO noise curve, in the CBC low-mass range,

the 3.5 pN and pseudo-4.0 pN waveforms produce overlaps within 2% of each other,

with 3.5 pN producing higher overlaps below 20 M� and pseudo-4.0 pN producing

higher overlaps in the range 20–35M�. Pseudo-4.0 pN continues to give the highest

overlaps up to 60M�, producing overlaps as much as 4% greater than those obtained
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(10 + 10)M� (20 + 20)M� (30 + 30)M� (50 + 50)M�〈
sNR-CC hSPAext

c (2.0)
〉

0.99 0.98 0.97 0.96

M/M� 23.27+0.13
−0.12 25.99+0.61

−0.56 35.22+1.84
−1.89 47.52+6.87

−4.73

η 0.199+0.0030
−0.0030 0.771+0.0490

−0.0420 1.000−0.1390 1.000−0.2490

fcut (Hz) 501.18+523.00
−153.00 431.35+358.00

−77.00 296.05+53.00
−31.00 190.56+20.00

−14.00〈
sNR-CC hSPAext

c (3.5)
〉

0.98 0.99 0.99 0.99

M/M� 18.75+0.10
−0.10 31.88+0.77

−0.71 47.15+4.37
−3.27 259.89+0.00

−194.18

η 0.290+0.0040
−0.0040 0.493+0.0530

−0.0410 0.756+0.2440
−0.2290 0.954+0.0460

−0.2090

fcut (Hz) 506.50+518.00
−155.00 448.80+576.00

−83.00 324.74+145.00
−42.00 197.17+24.00

−16.00〈
sNR-CC hSPAY

c (4)
〉

0.99 0.96 0.95 0.96

M/M� 23.64+0.13
−0.12 47.90+1.28

−1.13 61.81+8.68
−6.19 89.93+20.44

−16.60

η 0.182+0.0030
−0.0030 0.181+0.0160

−0.0140 0.523+0.4260
−0.1820 0.529+0.4720

−0.3100

fcut (Hz) 509.47+654.00
−145.00 352.44+73.00

−61.00 309.53+72.00
−47.00 195.63+21.00

−15.00

Table 1 : Maximum overlaps between Caltech–Cornell hybrid waveforms and restricted stationary-
phase pN templates using the Initial-LIGO noise curve. The first number in each block is the overlap;
subsequent numbers are the template parameters that achieve this overlap. Parameter values within
the specified ranges keep the overlap within 1% of the maximum by varying that parameter, while
leaving others fixed. We restrict the search to 0 ≤ η ≤ 1.000, so the upper error bounds when
η ∼ 1.000 may be artificially small.

with 3.5 pN waveforms. Above 60M� 3.5 pN waveforms again yield the best overlaps,

by as much as 6% around 90 M�.

A significant feature of Tables 1 and 2 is the size of the error bars on the cutoff

frequencies. For M = 20M� the cutoff frequency can vary as much as 128% above

and 28% below the optimal value while losing no more than 1% of overlap. This

leads us to consider the range of possible template parameters which may give high

overlaps. In the next section we consider the reduction in overlap as the parameters

fc and η are independently varied from the optimal value.

5.3.1 Effect of Upper Frequency Cutoff

As shown in Fig. 5 the amplitude of the NR waveforms drops sharply at around the

lightring frequency, which depends on the total mass of the binary. The TaylorF2
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(10 + 10)M� (20 + 20)M� (30 + 30)M� (50 + 50)M�〈
sNR-CC hSPAext

c (2.0)
〉

0.98 0.92 0.91 0.94

M/M� 25.15+0.02
−0.02 47.73+0.12

−0.11 54.39+0.51
−0.43 60.19+1.55

−1.29

η 0.170+0.0010
−0.0010 0.188+0.0010

−0.0010 0.335+0.0080
−0.0070 0.891+0.0660

−0.0490

fcut (Hz) 444.77+132.00
−115.00 267.64+48.00

−50.00 262.44+34.00
−36.00 182.41+24.00

−18.00〈
sNR-CC hSPAext

c (3.5)
〉

0.97 0.92 0.92 0.96

M/M� 20.27+0.02
−0.02 38.11+0.11

−0.09 50.09+0.49
−0.42 78.10+1.89

−1.50

η 0.245+0.0010
−0.0010 0.277+0.0020

−0.0020 0.386+0.0130
−0.0100 0.494+0.0760

−0.0330

fcut (Hz) 355.85+97.00
−88.00 262.83+47.00

−48.00 281.34+41.00
−37.00 186.31+30.00

−19.00〈
sNR-CC hSPAY

c (4)
〉

0.97 0.96 0.94 0.90

M/M� 22.24+0.02
−0.02 46.57+0.11

−0.11 72.06+0.35
−0.35 118.50+1.99

−1.63

η 0.208+0.0010
−0.0010 0.190+0.0010

−0.0010 0.177+0.0020
−0.0030 0.186+0.0100

−0.0070

fcut (Hz) 473.49+551.00
−136.00 353.18+73.00

−69.00 242.43+37.00
−36.00 152.16+19.00

−19.00

Table 2 : Maximum overlaps between Caltech–Cornell hybrid waveforms and restricted stationary-
phase pN templates using the Advanced-LIGO noise curve. The first number in each block is the
overlap; subsequent numbers are the template parameters that achieve this overlap. Parameter
values within the specified ranges keep the overlap within 1% of the maximum by varying that
parameter, while leaving others fixed. We restrict the search to 0 ≤ η ≤ 1.000, so the upper error
bounds when η ∼ 1.000 may be artificially small.
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Figure 6 : Left: Overlaps between Caltech–Cornell hybrid waveforms, scaled to various masses,
and restricted stationary-phase pN waveforms for Initial-LIGO PSD. Optimization is over M and
η, which the cutoff frequency fc is prescribed by the weighted average described below. The mass
ratio η is allowed to range over unphysical values. The best-fit values found for the pseudo-4.0 pN
templates are always physical in this case. See Sec. 5.3.2. Right: The same, for the Advanced-LIGO
PSD
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Figure 7 : Left: Integrand of Eq. (4.13) for a TaylorF2, 3.5 pN waveform with M = 10 and
η = 0.25, at a distance of 100Mpc, using the Initial-LIGO noise curve. Note that the shape of
this curve does not change as we change M and η; only the vertical scale changes. Right: Overlap
between Caltech–Cornell waveform scaled to M = 40M� and restricted TaylorF2, 3.5 pN waveform
using the best-match values for M and η, as a function of the cutoff frequency fc, with the Initial-
LIGO noise curve. The vertical bars are meant to delineate 1% loss. Note that the upper bound
extends to higher frequencies indefinitely.

waveforms do not model the late inspiral, merger or ringdown and hence will continue

to evolve as f−7/6 at all frequencies, increasingly deviating from the NR waveform.

This suggests that the upper frequency cutoff of the TaylorF2 waveform should be

chosen to be below the frequency at which the two diverge. However, the effect of

the divergence is mitigated by the PSD. The denominator of the overlap, Eq. (4.20),

depends on (s s) which is a constant, and (h h) which would increase without limit if

not for the PSD. Fig. 7 shows |h̃(f)|2/Sn(f)—the integrand of (h h)—for the Initial-

LIGO noise curve for an example TaylorF2 waveform for an equal-mass 10 M� binary.

We see that above about 450 Hz there is very little contribution to the integrand, and

so extending the cutoff frequency above this will not impact the overlap.

The numerator of the overlap, (s h), can only increase as the cutoff frequency is

raised, however frequencies above the lightring where the waveforms have diverged

will contribute very little. The effect of including higher frequencies on the overlap is
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therefore determined by the (h h) term in the denominator. For systems with ring-

down frequencies well above the peak of the integrand in Fig. 7, this term will not

significantly reduce the overlap. For example, binaries of total mass roughly 40M�
have ringdown frequencies at roughly 450 Hz. Only a small fraction of the SNR comes

from higher frequencies. Thus, we expect that systems with lower masses should not

suffer great loss in overlap if the cutoff frequency is higher than ringdown. However for

higher-mass systems the overlap can be significantly reduced if the upper frequency

cutoff is too large. This is indeed what we find, as shown by a representative example

on the right in Fig. 7. For this 40M� system, using the Initial-LIGO noise curve,

the optimal cutoff frequency is around 450 Hz—roughly the ringdown frequency. De-

creasing the cutoff quickly decreases the overlap. The cutoff may be increased almost

indefinitely, however, with only 0.5% loss in overlap. This, of course, changes when

using the Advanced-LIGO noise curve. We revisit this issue in Sec. 5.4.

5.3.2 Unrestricted η

The physical symmetric mass ratio is restricted to the range 0 < η ≤ 0.25, values

above this imply complex-valued masses. However the pN waveforms are well-behaved

for 0 < η < 1.0, and as seen from Tables 1 and 2, the highest overlaps are often

obtained at unphysical values of η. In Fig. 8 we show the effect of limiting the

optimization to physical η. At high masses, the limitation reduces the optimal overlap

by up to 12%. TaylorF2 waveforms with η ≤ 1/4 would not be expected to accurately

model the late-inspiral and merger part of the waveform, as non-Newtonian effects are

increasingly significant in this region. We find that allowing unphysical η broadens

the space of waveforms covered by the TaylorF2 approximation sufficiently to capture

more of the late-inspiral and merger.

5.4 Recommendations for Improvements

Based on the analysis of the previous sections we propose a series of adjustments

to searches using TaylorF2 template waveforms to enhance the efficiency of those

searches. First, as seen in Fig. 6 for Initial LIGO, adding terms up to 3.5 pN order

produces overlaps as large or larger than the current 2.0 pN templates over most of

the mass range, while the pseudo-4.0 pN templates recommended in Ref. [39] produce
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Figure 8 : Maximum overlaps obtained by allowing η to range over unphysical values, compared to
those obtained by restricting the range of η. These overlaps are generated using 3.5 pN TaylorF2
templates, searching over values of the total mass and mass ratio. Extending to unphysical values
of η improves the match by up to 11%.
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slightly larger overlaps at masses near 20M�. Thus, we recommend pseudo-4.0 pN

templates for the low mass range, M < 35M�, and 3.5 pN templates for higher

masses. The improvement due to 3.5 pN templates over 2.0 pN generally holds for

Advanced LIGO as well. The 3.5 pN templates produce larger overlaps than 2.0

pN templates above 50 M� without a significant loss (within 1%) at lower masses.

However, there is a large region for which the pseudo-4.0 pN term does significantly

better. When using an Advanced-LIGO noise curve, we recommend 3.5 pN templates

generally, 2.0 pN templates in the range 12–21M� and pseudo-4.0 pN templates for

masses in the range 21–65 M�.

As a second improvement, we note from Fig. 8 that allowing η to range over

unphysical values significantly improves matches with 3.5 pN templates above 30M�.

In preliminary studies we have found that extending to η ≤ 1 roughly doubles the

size of the template bank, and the advantages must therefore be weighed against the

increase in false alarm rate.

Our third recommendation involves the cutoff frequency used for the template

waveform. Optimization over the cutoff frequency is too computationally intensive

to be done in searches. Currently, the cutoff frequency is typically taken to be the

Schwarzschild ISCO frequency. To examine the effect of this choice we vary fc while

keeping the mass and η at their optimal values, for each of the signal masses in our

range. The result of one such variation is shown in Fig. 7 (right). Figs. 9 shows the

variations for all masses, highlighting the regions within which the overlap drops by

less than 1% (dark gray) and 3% (light gray) of the optimal value. This figure also

shows the ISCO and ERD frequencies, neither of which stays within the 1% band for

both Initial and Advanced LIGO. In particular, the ISCO is a poor choice for both

Initial and Advanced LIGO except at very low masses, where the precise value of the

cutoff is almost irrelevant.

The ISCO is often pointed to—somewhat arbitrarily—as a good estimate of the

breakdown of post-Newtonian approximations [53]. So, for instance, if we were to

match a pN template to a physical waveform, beginning at some point in the distant

past, we might expect them to separate quite badly near the ISCO. Of course, for

realistic black-hole binaries, the gravitational waves will only enter the LIGO band

late in the inspiral—just before the ISCO for low-mass systems, or after the ISCO for

high-mass systems. We can see from Fig. 5 that, for masses below about 30M�, the
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Figure 9 : Left: Candidate fc values for 3.5 pN templates with Initial LIGO. The dark gray band
contains cutoff frequencies with matches within 1% of the value at which the best overlap was
obtained. The light gray band contains frequencies with matches within 3%. Right: Candidate fc

values for 3.5 pN templates with Advanced LIGO. The dark gray band contains cutoff frequencies
with matches within 1% of the value at which the best overlap was obtained. The light gray band
contains frequencies with matches within 3%. Note that the weighted-average cutoff extends past
the 1% error bars for 12 < M/M� < 40. However, in that same region, the 3.5 pN templates
do poorly overall, and we recommend pseudo-4.0 pN templates. The optimal cutoff frequency for
pseudo-4.0 pN templates is much closer to the weighted-average cutoff in this mass range.
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ISCO is high enough that lower-frequency parts of the waveform contribute the most

to the SNR. For very high masses, however, this basically cuts the waveform down to

nothing. In Initial LIGO, the ISCO is completely buried in seismic noise for masses

above about 100M�. Thus, we must move the cutoff frequency up. We cannot push

the cutoff far above ringdown, because the physical waveform simply ceases to exist

(see Fig. 5). It has been suggested that an “effective ringdown” (ERD) frequency

fERD ≡ 1.07 fRingdown is a useful upper limit [39]. For intermediate masses, we would

like to interpolate somehow between these two extremes of ISCO and ERD. We sug-

gest setting the cutoff frequency to a weighted average of the two, where the weights

are the contributions to the SNR below the given frequency. If we assume coherent

phasing between the template and the physical waveform, we can simply take the

amplitudes of the two waveforms. Also, note that the restricted SPA approximation

for the amplitude is reasonable. Thus, define

ρ2
ISCO ≡

∫ fISCO

0

f−7/3

Sn(f)
df , (5.10)

ρ2
ERD ≡

∫ fERD

fISCO

f−7/3

Sn(f)
df , (5.11)

ρ2
tot ≡

∫ fERD

0

f−7/3

Sn(f)
df , (5.12)

fcut ≡ fISCO ρISCO + fERD ρERD

ρtot

. (5.13)

We have already dropped constant factors in the expressions for ρ that will cancel

out.

Note that these expressions only depend on the total mass by way of the limits of

integrations—which are very simple, known functions of the mass—so these integrals

could be done just once for a given noise curve, storing the intermediate values. When

the cutoff needs to be calculated, the cumulative integral could be evaluated at the

given ISCO and ringdown frequencies. Hence, this would be a fast way of calculating

the cutoff, with no need to do the integrals each time the cutoff is needed.

We can test this recommended frequency by comparing it to the optimal cutoff

frequency found by the amoeba search described in Sec. 5.3. For 3.5 pN templates in

Initial LIGO, we find that it is an excellent match to the optimal frequency. Fig. 9

shows these two values, along with dark and light bands showing the regions in which

changing fc results in a loss of overlap of 1% and 3%, respectively. Of course, the
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same figure shows that using the ERD recommendation would stay within the 1%

error bounds. Nonetheless, the close match between this recommendation and the

true optimum suggests that it is sound. Thus, our final recommendation is to use

the weighted-average frequency cutoff throughout the entire mass range. While our

analysis has been restricted to equal-mass systems, the cutoff frequency we have

defined here could be applied to unequal-mass systems as well. It will be interesting

to see how this cutoff fares in those situations.

Similar results hold for Advanced LIGO, when using our recommended template

for each mass. That is, in regions where 3.5 pN templates do poorly (see Fig. 6),

the weighted average is a poor predictor of the optimal cutoff frequency using those

templates, as shown in Fig. 9. However, in those same regions—where pseudo-4.0

pN templates do well—the weighted average is a good predictor of the optimal cutoff

frequency for 4.0 pN templates. Thus, again, we recommend using the weighted-

average frequency cutoff throughout the entire mass range with Advanced LIGO.

By prescribing a cutoff frequency, the search does not need to extend over that

parameter. Similarly, by prescribing a post-Newtonian order, we need use only one

template for a given total mass. On the other hand, if these recommendations decrease

the overlap found by too much when using them compared to the overlap found by an

unconstrained search, it may be better to search the larger parameter space. We can

evaluate the loss in overlap by comparing the results found using our recommendations

to the results found when searching over the set of all three template families, and

all masses, mass ratios, and cutoff frequencies. We have determined that this loss in

overlap when using our recommendations is always less than 0.0025 for Initial LIGO,

and less than 0.007 for Advanced LIGO.

5.5 Conclusions

We have compared high-accuracy NR waveforms for equal-mass binary black holes

from the Caltech–Cornell group to stationary phase post-Newtonian waveforms. We

examined a number of factors that influence the matches between the two, with

the goal of optimizing the matches and hence improving the efficiency of templated

searches in Initial and Advanced LIGO. We first considered the effect of the post-

Newtonian order to which the phase evolution is taken, and found that adding terms
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up to 3.5 pN or pseudo-4.0 pN to the currently-used 2.0 pN templates significantly

improves the matches over a large range of masses, as shown in Fig. 6. We then studied

the effect of varying the upper cutoff frequency of the templates. The frequency that

achieves the optimal match is a function of mass, and we find this function is well-

approximated by an average between ISCO and ERD, weighted by contribution to

the SNR, as shown in Fig. 9. Finally, we allow the symmetric mass ratio η to range

over unphysical values up to 1.0, and find that this dramatically improves matches,

as shown in Fig. 8. Based on the results we recommend adjusting the searches using

TaylorF2 template waveforms by going up to 3.5 pN or 4.0 pN over most of the mass

range, integrating up to our recommended cutoff, and allowing allowing η to extend

up to 1. For Initial LIGO, the overlaps obtained using these parameters is always

within 0.0025 of overlaps achievable by optimizing over all three parameters.

In future work we plan to extend this analysis to unequal-mass and spinning black-

hole systems. We have found that allowing unphysical values of η roughly doubles

the size of the template bank, and we also plan to study the impact of this change

on the rate of spurious triggers from glitches.
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Chapter 6

The First NINJA Project

Thus far, most searches for gravitational waves from BBH mergers have relied on

post-Newtonian waveforms such as those discussed in Sec. 2.5, which are valid when

the black holes are sufficiently far apart. Within its range of validity, post-Newtonian

theory provides a convenient analytic description of the expected signals produced

by binary systems. The numerical relativity results, on the other hand, have not yet

been synthesised into an analytic model for the merger phase covering a broad range

of parameters, i.e., a wide range of mass ratios, spins and if necessary, eccentricity;

there has however been significant progress for the non-spinning case [54, 55, 56,

57, 58, 59, 60, 61, 62, 63, 64, 65]. Similarly, despite significant progress, there is

not yet a complete detailed description over the full parameter space of how post-

Newtonian and numerical simulations are to be matched with each other. On the

data analysis side, many pipelines, especially ones that rely on a detailed model for

the signal waveform, have made a number of choices based on post-Newtonian results,

such as the use of the Schwarzschild ISCO as a cutoff frequency, and it is important

to verify that these choices are sufficiently robust. More generally, it is necessary

to quantify the performance of these data analysis pipelines for both detection and

parameter estimation. This is critical for setting astrophysical upper limits in case

no detection has been made, for following up interesting detection candidates, and

of course for interpreting direct detections. Numerical relativity now provides an

important avenue for extending this beyond the early inspiral phase captured by

post-Newtonian waveforms, to the late inspiral and merger phase.

There are significant challenges to be overcome before numerical relativity results
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can be fully exploited in data-analysis pipelines. The Numerical INJection Analysis

(NINJA) project was started in the spring of 2008 with the aim of addressing these

challenges and fostering close collaboration between numerical relativists and data

analysts. Participation in NINJA is open to all scientists interested in numerical

simulations and gravitational-wave data analysis.

Several decisions were make to limit the scope of the project. NINJA chose to

restrict attention to BBH simulations and have not used results from supernova simu-

lations or simulations containing neutron stars 1. For the first NINJA project (hence-

forth “NINJA-1”) the waveform data came purely from numerical simulations and

we did not attempt to extend numerical data using post-Newtonian waveforms. The

NINJA-1 data set was constructed using Gaussian noise to model the response of the

Initial LIGO and Virgo detectors — no attempt was made to include non-Gaussian

noise transients found in real detector data. The comparisons and conclusions re-

ported here are thus necessarily limited, and in many cases are only the first steps

towards fully understanding the sensitivity of data-analysis pipelines to black hole

signals. Further studies are needed regarding the accuracy and comparison of numer-

ical waveforms, and of how systematic errors in these waveforms can affect parameter

estimation. Some analyses of numerical waveforms with regard to gravitational-wave

detection have already been performed [66, 67, 57, 65], accuracy standards have been

developed for use of numerical waveforms in data analysis [68] and a detailed compar-

ison of some of the waveforms used in NINJA-1 was performed in the related Samurai

project [69]. The NINJA-2 project, discussed in the next chapter and currently on-

going at the time of writing, will build on these results to begin to address these

issues.

Despite the limited scope of the NINJA-1, we are able to draw the following broad

conclusion from this work. We conclude that the current data analysis pipelines used

to search LIGO, Virgo and GEO600 data for black hole coalescence are able to detect

numerical waveforms injected into the NINJA-1 data set at the expected sensitivities.

Indeed, the standard pipeline is able to detect signals that lie outside the parame-

ter space that they target. This is a non-trivial statement since most detectability

estimates to date for these sources have relied on post-Newtonian waveforms, which

are valid only when the black holes are sufficiently far apart. It should be noted,

1As of this writing a matter NINJA project is in an early planning stage
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however, that the NINJA data set does not contain non-stationary noise transients

so more work is needed to understand how detection performance is affected by the

noise artifacts seen in real gravitational-wave detector data. NINJA has proven to be

extremely valuable at framing the questions that need to be answered.

6.1 Numerical Waveforms

NINJA-1 studied BBH coalescence waveforms submitted by ten individuals and teams.

Participation in NINJA-1 was open to anyone and the only restrictions were that each

contribution: (i) was a numerical solution of the full Einstein equations, (ii) consisted

of only two waveforms, or up to five waveforms if they were part of a one-parameter

family.

No restrictions were placed on the accuracy of each waveform. All contributions

followed the format specified in [70]. The waveforms are plotted in Figures 10 and 11.

The contributed waveforms covered a variety of physical and numerical parameters.

Most simulations modeled low-eccentricity inspiral, the mass ratio q = m1/m2 ranges

from 1 to 4, and the simulations covered a range of spin configurations. The initial

angular frequency of the � = m = 2 mode ranged from 0.033/M to 0.203/M (where

M denotes the sum of the initial black-hole masses). This initial angular frequency

marks where contributors considered the waveform sufficiently clean to represent the

physical system (e.g. this will be chosen after initial unphysical radiation content,

often referred to as “junk radiation” in numerical relativity, is radiated away). The

length of the waveforms varied between a few 100M to over 4000M. The contributions

naturally differed in accuracy, both regarding how well they captured the black-hole

dynamics and in the extraction of the gravitational-wave signal.

Table 4 lists a few key parameters that distinguish the waveforms, and introduces

the following tags for the different contributions and codes: BAM HHB [71, 72, 73,

74, 75] and BAM FAU [71, 72, 76, 75] are contributions using the BAM code, CCATIE

is the AEI/LSU code [77, 78, 79, 80, 81], Hahndol is the Goddard Space Flight Cen-

ter’s code [82, 83], LazEv is the RIT code [84, 11, 85], Lean is Ulrich Sperhake’s

code [86, 87, 88], MayaKranc is the Georgia Tech/Penn State code [67, 89], PU stands

for the Princeton University code [90, 10, 54, 91], SpEC for the Cornell/Caltech col-

laboration code [92, 93, 59, 22], and UIUC stands for the University of Illinois at
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Urbana-Champaign team [94].

The codes listed above use different formulations of the Einstein equations, gauge

conditions, mesh structures, initial data and wave extraction methods. Full details of

each code are given in the references.

6.2 Construction of the NINJA Data Set

The data provided by the numerical relativity groups follows the format outlined

in [70], which is based on the mode decomposition of the gravitational radiation

field at large distances from the source. If we specify a gravitational waveform hμν

in the Transverse-Traceless (TT) gauge, we only need the spatial components hij.

We assume that we are sufficiently far away from the source so that the 1/r piece

dominates:

hij = Aij
M

r
+ O (r−2

)
, (6.1)

where M is the total mass of the system, r is the distance from the source, and Aij is

a time-dependent TT tensor. In the TT gauge, hij has two independent polarisations

denoted h+ and h× and the complex function h+−ih× can be decomposed into modes

using spin-weighted spherical harmonics −2Y lm of weight -2:

h+ − ih× =
M

r

∞∑
�=2

�∑
m=−�

H�m(t) −2Y �m(ι, φ) . (6.2)

The expansion parameters Hlm are complex functions of the retarded time t − r,

however if we fix r to be the radius of the sphere at which we extract waves then Hlm

are functions of t only. The angles ι and φ are respectively the polar and azimuthal

angles in a suitable coordinate system centred on the source. This decomposition

is directly applicable to non-precessing binaries. Otherwise, a comparison of the

waveforms requires a careful treatment of mode-mixing effects due to rotations of

the frame; see for instance [103]. The numerical data contributed to NINJA is given

in the form of an ASCII data file for each mode (�, m), with accompanying meta-

data describing the simulation [70]. Only modes that contribute appreciably to the

final waveform are included, at the discretion of the contributing group. Each data

file consists of three columns: time in units of the total mass, and the real and

imaginary parts of the mode coefficients H�m as a function of time. Note that the
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Code Run q 	Si/m
2
i e ω22 M D/M eccentricity

Ref. removal

BAM FAU [76] 1 see caption qc 0.06 9.58 ŷ T-PN [95, 96]

[71, 72]

BAM HHB S00 [73] 1 0 < 0.002 0.045 12 ŷ TR-PN [97]

[71, 72] S25 [74] 1 0.25 ẑ ≈ 0.006 0.045 12 ŷ T-PN [98]

S50 [74] 1 0.50 ẑ ≈ 0.006 0.052 11 ŷ – ” –

S75 [74] 1 0.75 ẑ ≈ 0.006 0.06 10 ŷ – ” –

S85 [74] 1 0.85 ẑ ≈ 0.006 0.06 10 ŷ – ” –

CCATIE r0 [80] 1 0.6 ẑ, −0.6 ẑ qc 0.079 8 x̂ TR-PN [97]

[77, 78, 79, 80] r2 [80] 1 0.6 ẑ, −0.3 ẑ qc 0.078 8 x̂ – ” –

r4 [80] 1 0.6 ẑ, 0 qc 0.076 8 x̂ – ” –

r6 [80] 1 0.6 ẑ, 0.3 ẑ qc 0.075 8 x̂ – ” –

s6 [81] 1 0.6 ẑ qc 0.074 8 x̂ – ” –

Table 3 : Initial conditions for numerical waveforms. The columns list: the name of the contribution,
the name of the run if appropriate, the mass ratio q = m1/m2 where m1 ≥ m2, the spins of the black
holes (if only one spin is given, both spins are equal), an estimate of the initial eccentricity of the orbit
(“qc” denotes cases where quasi-circular inspiral is modelled, but a value of the eccentricity has not
been reported), the initial frequency of the (2, 2) mode (rounded to three digits), the initial coordinate
separation of either the black-hole punctures or the excision surfaces, and where appropriate the
method of eccentricity removal. All binaries start in the xy-plane with momenta tangent to the
xy-plane. See text for the identification of each contribution, and a description of the notation in
the last column. The dimensionless spins of the BAM FAU run are (−0.634,−0.223, 0.333) and
(−0.517,−0.542, 0.034).
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Code Run q 	Si/m
2
i e ω22 M D/M eccentricity

Ref. removal

Hahndol kick 3 0.2 x̂, 0.022 x̂ qc 0.078 8.007 ŷ T-PN [99]

[82, 83] non 4 0 qc 0.070 8.470 ŷ – ” –

LazEv [84, 11] MH [85] 1 0.92 ẑ qc 0.07 8.16 x̂ T-PN [99, 100]

Lean [86] c 4 0 qc 0.05 10.93 x̂ T-PN [71]

2 1 0.926 ẑ qc 0.11 6.02 x̂ T-PN [99]

MayaKranc e0 [89] 1 0 qc 0.05 12 x̂ TR-PN [97]

[67] e02 [89] 1 0 0.2 0.05 15.26 x̂ n/a

PU [90, 10] CP [54] 1 0.063 ẑ qc 0.07 9.5 x̂ T-ID [101]

T52W [91] 1 0 ≥ 0.5 0.07 n/a

SpEC [92] q=1 [59, 22] 1 0 5 × 10−5 0.033 15 x̂ TR-it [93]

UIUC [94] cp [94] 1 0 qc 0.194 4.790 x̂ T-ID [101]

punc [94] 1 0 qc 0.203 4.369 ŷ T-ID [102]

Table 4 : Initial conditions for numerical waveforms. The columns list: the name of the contribution,
the name of the run if appropriate, the mass ratio q = m1/m2 where m1 ≥ m2, the spins of the black
holes (if only one spin is given, both spins are equal), an estimate of the initial eccentricity of the orbit
(“qc” denotes cases where quasi-circular inspiral is modelled, but a value of the eccentricity has not
been reported), the initial frequency of the (2, 2) mode (rounded to three digits), the initial coordinate
separation of either the black-hole punctures or the excision surfaces, and where appropriate the
method of eccentricity removal. All binaries start in the xy-plane with momenta tangent to the
xy-plane. See text for the identification of each contribution, and a description of the notation in
the last column.
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Code Run q ΔT100 [s] fi,100 [Hz] M30Hz[M�]

BAM HHB S00 1 1.03 15 48

S25 1 1.15 15 48

S50 1 1.03 17 56

S75 1 0.81 19 65

S85 1 0.87 19 65

BAM FAU 1 0.54 19 65

CCATIE r0 1 0.34 26 85

r2 1 0.37 25 84

r4 1 0.40 25 82

r6 1 0.45 24 81

s6 1 0.59 24 80

Hahndol kick 3 0.25 25 84

non 4 0.32 23 75

LazEv MH 1 0.43 23 75

Lean c 4 0.92 16 54

2 1 0.20 36 118

MayaKranc e0 1 1.23 16 54

e02 1 0.74 16 54

PU CP 1 0.29 23 75

T52W 1 0.16 23 75

SpEC q=1 1 1.96 11 36

UIUC cp 1 0.10 63 209

punc 1 0.10 66 219

Table 5 : Characteristic duration, mass and frequencies of the waveforms summarised in table 4.
The columns ΔT100 and fi,100 give the duration and initial frequency of the waveform when scaled
to total mass M = 100M�. M30Hz is the total mass of the waveform when it is scaled so that the
initial frequency is 30Hz (this sets the lowest mass at which each waveform can be injected into the
NINJA data).
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bottom panel shows an enlargement of the merger phase. The x-axis shows time in units of M .
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total mass M scales both the time and the amplitude; thus the BBH waveforms for

each simulation can be scaled to an arbitrary value of the mass. (This is not true

in the case of simulations which include matter fields, but we do not consider such

waveforms here.)

To model the signal seen by a gravitational-wave detector, we need to calculate

the detector strain h(t) from the above mode decomposition. To do this, we must

choose particular values of the total mass, orientation and distance from the detector.

Given the H�m, the total mass, the distance to the source, and the angles (ι, φ), we

calculate h+,× using Equation. (6.2), and use the detector response functions F+,×
(see, for example, Ref. [9]) to calculate the observed strain

h(t) = h+(t)F+(α, δ, ψ) + h×(t)F×(α, δ, ψ) . (6.3)

Here (α, δ) are sky-angles in the detector frame, ψ is the polarisation angle and the

time t is measured in seconds. In this analysis, we wish to simulate signals that might

be observed by the Initial LIGO and Virgo detectors. There are three LIGO detectors:

a 4 km detector and a 2 km detector at the LIGO Hanford Observatory (called H1

and H2, respectively) and a 4 km detector at the LIGO Livingston Observatory

(called L1). The Virgo detector is a 3 km detector in Cascina, Italy (called V1).

We used the same two-letter codes for the simulated NINJA detectors. Since the

location and alignment of the three observatories differ, we must use the appropriate

detector response and arrival time to compute the strain waveform h(t) seen at each

observatory. This ensures that the waveforms are coherent between the detectors and

simulate a true signal.

To model the detector noise, we generated independent Gaussian noise time series

n(t), sampled at 4096 Hz, for each detector. This sample rate was chosen to mimic

that used in LIGO Scientific Collaboration (LSC)-Virgo searches and assures a tolera-

ble loss in signal-to-noise ratio due to the discrete time steps 2 Stationary white noise

time series are generated and coloured by a number of time-domain filters designed

to mimic the design response of each of the LIGO and Virgo detectors. Figure 12

shows the one-sided amplitude spectral density
√

Sn(f) of each time detector’s time

series.

2More careful study done in NINJA-2 revealed 4096 Hz to be insufficient, see chapter 7. However,

we do not expect these issues to have significant effects in NINJA-1
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We see from Figure 12 that the noise power spectrum of the NINJA data set

closely approximates the Initial LIGO design sensitivity in the frequency range of

interest (30-103 Hz). There is a slight discrepancy with the Virgo design curve at

low frequencies (between approximately 20 and 150 Hz), which is an artefact of the

Virgo noise generation procedure. Narrow-band features such as the violin and mirror

modes were removed from the detector response used to compute the NINJA data,

but were included in the calculation of the Virgo design curve [104]. The 1/f tails of

these narrow-band features are responsible for the small discrepancy.

Having generated the simulated detector data, we then generated a population

of simulated signals using the numerical relativity data. This population was con-

structed to cover a broad range of masses and signal amplitudes. We required that

the starting frequency of the dominant � = m = 2 mode of the signal was not more

than 30 Hz, an appropriate threshold given the sensitivity curve of the Initial LIGO

and Virgo detectors. This sets a minimum mass at which each waveform can be in-

jected, which is given in Table 5. The minimum possible injection mass is therefore

36M�. The maximum mass was chosen as 350M�. To get a good sample of long

injected waveforms, we systematically chose a lower range of masses for the longer

waveforms. No restrictions were placed on the other simulation parameters, i.e., the

spins, mass-ratios and eccentricities. We ensured that waveforms from all the par-

ticipating groups were equitably represented by generating approximately 12 signals

from the waveforms supplied by each group. The time interval between adjacent

injected signals was chosen to be a random number in the range 700 ± 100 s.

Given these constraints, we generated the parameters of the signal population.

The logarithm of the distance to the binary was drawn from a uniform distribution

ranging from 50 Mpc to 500 Mpc, and the source locations and orientations were

drawn from an isotropic distribution of angles. We then computed waveforms corre-

sponding to this population and at the appropriate sampling rate. We required that

the optimal matched filter signal-to-noise ratio of any injection be greater than five

in at least one of the four simulated detectors. Any waveform that did not satisfy

this constraint was discarded from the population. Subject to this condition, the

distances of injected signals varied from 52 Mpc to 480 Mpc (median at 145 Mpc),

the injected total mass range was 36M� ≤ M ≤ 346M� (median at 155M�), with

individual component masses in the range 11M� ≤ mi ≤ 193M�.
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Figure 13 : The total mass and distance of the 126 NINJA injections. The grey scale encodes the
sum of the dimensionless spins of the black holes, | �S1/m2

1 + �S2/m2
2|.

Finally, the waveforms h(t) were added to the simulated detector noise n(t) to

generate the NINJA data set s(t) = n(t) + h(t). As described above, care was taken

to ensure that signals were coherently injected in the data streams from the four

detectors. The software for carrying out this procedure is freely available as part of

the LSC Algorithm Library (LAL) [105].

The data set used in this analysis consisted of a total of 126 signals injected in a

total of 106 contiguous segments of noise each 1024 s long, thus spanning a duration

of a little over 30 hours. Figure 13 shows the mass, spin and distance of the waveforms

contained in the NINJA data set.



102

Group Analysis

AEI Phenomenological Waveforms in CBC pipeline

Birmingham Bayesian Model Selection

Cardiff Post-Newtonian (PN) Templates in CBC pipeline

Cardiff, Maryland EOBNR waveforms in CBC pipeline

Goddard Hilbert Huang Transform

Northwestern Markov Chain Monte Carlo

Syracuse Extended η PN Templates in CBC pipeline

UMass, Urbino Q-pipeline analysis

UWM PN templates in CBC pipeline, Neyman-Pearson criteria

UWM, UMass, Urbino Ringdown analysis

UWM, UMass, Urbino Inspiral, Merger, Ringdown combined search

Table 6 : The data-analysis contributions to the NINJA-1 project.

6.3 Data Analysis Results

Analysis of the NINJA-1 data was open to all and nine groups submitted contribu-

tions using a variety of analysis techniques. Participating groups were provided with

the NINJA-1 data set containing signals embedded in noise and the parameters of

the injected signals. Analysts were not given access to the raw numerical-relativity

waveforms or noiseless injection data.

Methods used to analyse the NINJA-1 data include: matched-filter based searches,

un-modelled waveform searches using excess-power techniques, and Bayesian model-

selection and parameter-estimation techniques. Where possible, the performance of

different searches was compared. The limited scope of the NINJA-1 data set makes

detailed comparisons difficult, however. A list of the data-analysis contributions is

shown in Table 6.

6.3.1 LIGO-only Searches

Henceforth we restrict attention to variations of the CBC pipeline, described in chap-

ter 4. In particular, although many variations of this pipeline were tested in NINJA-1,

we focus on testing the modifications to the template pN order, bank construction,
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and termination frequency of the template waveforms suggested by the comparison

studies in chapter 5. In this sense the NINJA-1 project can be seen as an evolution of

those studies; having found a set of changes to the template waveforms that improve

overlaps with numeric signals, the next step is to test these changes in searches. The

results of these searches are summarised in Table 7, each column giving the results

from a different search with a summary of the chosen parameters. We first describe

the parameters varied between these analyses and then present a more detailed dis-

cussion of the results.

All NINJA analyses using TaylorF2 waveforms (see Appendix A) used restricted

templates (i.e. the amplitude is calculated to leading order), however the phase was

calculated to various different post-Newtonian orders [106]. Phases were computed

to either two [107, 108] or three point five post-Newtonian order [109, 110, 111] since

these are, respectively, the order used in LSC-Virgo searches [112] as of the time of

NINJA-1, and the highest order at which post-Newtonian corrections are known. The

studies in chapter 5 show that 3.5 pN waveforms provide better overlaps with numeric

waveforms than 2.0 pN.

After choosing a post-Newtonian order, one chooses a region of mass-parameter

space to cover with the template bank. Figure 14 shows the boundaries of the template

banks used in the analyses. One search used the range used by the LSC-Virgo “low-

mass” search [112] (m1, m2 ≥ 1M�, M ≤ 35M�) and all other searches used templates

with total masses in the range 20M� ≤ M ≤ 90M�. These boundaries were chosen

since there were no signals in the NINJA data with mass smaller than 36M� and there

is little, if any, inspiral power in the sensitive band of the NINJA data for signals with

M � 100M�.

The standard LSC-Virgo template bank generation code [113] restricts template

generation to signals with η ≤ 0.25, since it is not possible to invert M and η to

obtain real-valued component masses for η > 0.25. All but one of the searches

enforced this constraint, with the 0.03 ≤ η ≤ 0.25 for the low-mass CBC search

and 0.1 ≤ η ≤ 0.25 for the other “physical-η” searches. However, the comparison

studies show that the overlaps obtain maximum values at unphysical values of η over

much of the mass space. In particular, with 3.5 pN waveforms unphysical η values

provide better overlaps above 40M�, which is the mass range covered by the NINJA-

1 injections. However, these studies allowed allowed the values to vary continuously
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and did not take into account the discretization imposed by a template bank, nor

the parameter coincidence required at the second stage of the pipeline. It is therefore

critical to test the extended η bank in searches.

Finally, it is necessary to specify a frequency at which to terminate the TaylorF2

waveform. In the LSC-Virgo analyses, this is chosen to be the innermost stable

circular orbit (ISCO) frequency for a test mass in a Schwarzschild spacetime

fISCO =
c3

6
√

6πGM
. (6.4)

This cutoff was chosen as the point beyond which the TaylorF2 waveforms diverge

significantly from the true evolution of the binary [106]. However, the studies re-

ported in chapter 5 as well as those in [57] have shown that extending the waveforms

up to higher frequencies improves the sensitivity of TaylorF2 templates to higher

mass signals. The NINJA-1 TaylorF2 analyses use templates terminated at the ISCO

frequency and two additional cut-off frequencies: the effective ringdown (ERD) fre-

quency and a weighted ringdown ending (WRD) frequency. The ERD frequency

was obtained by comparing post-Newtonian models to the Pretorius and Goddard

waveforms [57]. The ERD almost coincides with the fundamental quasi-normal mode

frequency of the black hole formed by the merger of an equal-mass non-spinning

black-hole binary. The weighted ringdown ending (WRD) frequency is lies between

ISCO and ERD, and found to close to optimal in chapter 5. It is calculated as in

Eqn. 5.13
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The results of these searches are reported in Table 7. The principal result is

the number of injected signals detected by the search. For simplicity, we define

a detected signal as one for which there is a candidate gravitational-wave signal

observed within 50 ms of the coalescence time of the injection, determined by the

maximum gravitational-wave strain of the injected signal. We do not impose any

additional threshold on the measured SNR or effective SNR of the candidate. For a

single detector, this will lead to a small number of falsely identified injections, but

for coincidence results the false alarm rate is so low that we can be confident that the

triggers are associated with the injection. We now describe these results in the order

that they appear in Table 7.

Search (1) used second order post-Newtonian templates terminated at fISCO with a

maximum mass of M ≤ 35M�. Despite the fact that no NINJA injections had a mass

within the range of this search, a significant number of signals were still recovered in

coincidence both before and after signal consistency tests. Although the templates

are not a particularly good match to the injected signals, they are still similar enough

to produce triggers at the time of the injections. Search (2) changed the boundary of

the template bank to 20M� ≤ M ≤ 90M�, but left all other parameters unchanged.

The number of detected signals increases significantly as more signals now lie within

the mass range searched.

Search (3) extended the upper cutoff frequency of the waveforms to fERD. The

number of signals detected increased from 59 to 77, as expected since these waveforms

can detect some of the power contained in the late inspiral or early merger part of

the signal [57, 65]. Search (4) extends the post-Newtonian order to 3.5 PN, slightly

increasing the number of detected signals to 81. With the limited number of simula-

tions performed in this first NINJA analysis, it is difficult to draw a strong conclusion,

although there does seem to be evidence that the higher post-Newtonian order wave-

forms perform better, consistent with previous comparisons of post-Newtonian and

numerical relativity waveforms [57, 114, 73, 64, 65] and chapter 5.

Search (5) uses an upper-frequency cutoff of fWRD for the templates. The number

of injections found in coincidence for this search is the same as the search using 3.5

order templates with a cutoff of fERD, although there are slight differences in the

number of found injections at the single detector level.

Search (6) extends the template bank of search (5) to unphysical values of the
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Figure 14 : Boundaries of the template banks used in inspiral searches as a function of total mass
M and symmetric mass ratio η. The crosses show the location of the injections in the NINJA data
set. The numbers in the legend correspond to entries in table 7. Bank 6 extends in a rectangle up
to η = 1.00, as indicated by the arrows. NP is the bank used in the Neyman-Pearson analysis not
covered here.
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Figure 15 : Left: The template bank generated by the LSC-Virgo search pipeline (circles) and
the bank obtained by extending to η ≤ 1.00 (crosses). In this figure the bank is parametrised
by τ0 and τ3 which are related to the binary masses by τ0 = 5M/(256ηv8

0) and τ3 = πM/(8ηv5
0),

where v0 = (πMf0)1/3 is a fiducial velocity parameter corresponding to a fiducial frequency f0 =
40.0Hz. Right: The signal-to-noise (SNR) ratio at which NINJA injections were recovered using
the η ≤ 0.25 bank (squares) and the η ≤ 1 extended bank (circles) in the Hanford detectors, given by
ρ = (ρ2

H1 +ρ2
H2)

1/2. The SNR of the signal recovered using the extended bank shows with significant
(> 10%) increases over the standard bank for certain injections.

symmetric mass ratio. Extending the bank to η ≤ 1 increases the number of templates

in the bank by a factor of ∼ 2. The original and modified template banks are shown

in Figure 15. With the extended template bank the number of injections found in

coincidence remains the same as search (5) after signal-based vetoes are applied.

However, many of the injections are recovered at a higher SNR, particular the low-

mass signals, as shown in Figure 15. Some injections show a reduction in SNR; more

work is needed to understand this effect.

Finally, we note that the majority of signals passed the χ2 signal-based veto with

the thresholds used in the LSC-Virgo pipeline. The last two lines of Table 7 show the

number of recovered signals before and after these signal-based vetoes are performed.

The post-Newtonian templates and numerical relativity signals are similar enough

that virtually all of the injected signals survive the signal based vetoes.

To illustrate the results of these analyses in more detail, Figure 16 shows which

signals were detected and which were missed by the 3.5 order post-Newtonian Tay-

lorF2 templates terminated at fERD, as a function of injected total mass and effective

distance of the binary (a measure of the amplitude of the signal in the detector),
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defined by [30]

Deff = d

/√
F 2

+(1 + cos2 ι)2/4 + F 2× cos2 ι , (6.5)

where d is the luminosity distance of the binary.

One signal, with total mass of 110M� and effective distance ∼ 200 Mpc, was

missed while others with similar parameters were found. This signal was one of

the Princeton waveforms (labelled PU-e0.5 in Figure 10) for which the maximum

amplitude occurs at the start of the waveform rather than at coalescence3, rendering

our simple coincidence test invalid. The injection finding algorithm compares the

peak time to the trigger time and, even though triggers are found at the time of the

simulation, there are no triggers within the 50 ms window used to locate detected

signals.

Figure 17 shows the accuracy with which the total mass and coalescence time of the

binary are recovered when using the 3.5 post-Newtonian order Taylor F2 templates.

The total mass fraction difference is computed as (Minjected −Mdetected)/Minjected. For

lower mass signals, the end time is recovered reasonably accurately, with accuracy

decreasing for the high mass systems. The total mass recovery is poor for the ma-

jority of signals, with good parameter estimation for only a few of the lowest mass

simulations.

6.4 Conclusion

We have applied the alterations to the inspiral templates and bank suggested by the

studies of the previous chapter to search for NR signals injected into Gaussian noise

as part of the NINJA-1 project. The results indicate that these alterations are in-

deed advantageous. In particular, the second and last columns of table 7 compare the

pipeline used in the S5 search (with a mass range extended to cover the range of injec-

tions) to the pipeline with all our recommendations implemented. By implementing

these changes we recover approximately 25% more injections.

3That the maximum occurs at the start of the waveform is in part an “artifact” of the double-

time integration from the Newman-Penrose scalar ψ4 to the metric perturbation h, and in part a

coordinate artifact. The two integration constants were chosen to remove a constant and linear-

in-time piece for h, however, there is still a non-negligible quadratic component; we suspect this is

purely gauge, though lacking a better understanding of this it was not removed from the waveform.
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Figure 16 : Found and missed injections using TaylorF2 templates terminated at ERD, plotted as
a function of the injected effective distance in Hanford (left) and Livingston (right) and the total
mass of the injection. Since the LIGO Observatories are not exactly aligned, the effective distance
of a signal can differ, depending on the sky location of the signal. The vertical bars mark the limits
of the template bank used in the search. For the lower masses, we see that the majority of the closer
injections are found in coincidence in all three of the detectors. There is then a band of injections
which are found only in two detectors – H1 and L1 and not the less sensitive H2 detector. For
higher masses, the results are less meaningful as the template bank was only taken to a total mass
of 90M�.

Figure 17 : Parameter accuracy using TaylorF2 templates terminated at ERD.Left: Accuracy with
which the total mass is recovered. The template bank covers the region 20M� ≤ M ≤ 90M�, hence
the mass of injections with M > 90M� are always underestimated. Even within the region covered
by the bank, the TaylorF2 templates systematically underestimate the mass of the injected signals
and the total mass is recovered accurately only for a few injections. The vast majority of recovered
signals have an error of 40% or greater. Right: Accuracy of determining the coalescence time of
the injections. The end time is not recovered accurately, the timing error can become as large as
50ms, the limits of the injection window.
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However, NINJA-1 took an open policy towards NR submissions and consequently

there may be issues with the waveforms that limit our ability to draw definitive

conclusions. The lower limit on mass at which waveforms could be injected certainly

limits our ability to make statements on a low-mass search.

In order to refine these results it will be necessary to use longer waveforms that

have been subjected to more rigorous validation. This is the goal of the second NINJA

project, discussed in the next chapter.
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Chapter 7

Waveform Analysis for the Second

NINJA project

The NINJA-1 project was a huge success in bringing the numerical relativity and

gravitational-wave astronomy communities together. The project also resulted in

several intriguing qualitative results. Among these were promising indications that

the alterations suggested by the studies of chapter 5 could indeed improve search

efficiencies.

However, NINJA-1 only began the process of testing detection and parameter

estimation pipelines against realistic signals. The follow-up project, NINJA-2, is

ongoing as of the time of writing. NINJA-2 aims to remove some of the shortcomings

of NINJA-1 and allow quantitative studies of the performance of gravitational-wave

searches in various regions of signal parameter space. Specifically, NINJA-2 addresses

issues with both the waveform submissions and the noise used to construct the data

sets. This chapter describes the contributed waveforms and the studies that have

been performed to validate them. The next chapter will discuss the construction of

the data sets and will present preliminary results from the low- and high-mass CBC

pipelines.

7.1 Contributed Waveforms

NINJA-1 had an open policy towards waveform submission in order to encourage wide

participation. This meant there were no requirements on either waveform quality or
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length. The lack of quality requirements allowed for the possibility of unphysical

features in the waveforms. There were also no requirements to perform the kind of

convergence testing reported in Sec. 5.2, although such validation is typically done

by numerical relativists. The loose requirements limited the conclusions that could

be drawn, for example it makes it difficult to say whether an injection was missed

due to the parameters of the signal or an unintended feature of the waveform.

The lack of length requirement limited the available mass range to M > 36M�
for reasons that can be seen in Fig. 18. This plot shows the q = 2, non-spinning

GA Tech submission to NINJA-2, along with the initial LIGO and advanced LIGO

noise curves (see the discussion of Fig. 5 for an explanation of the choice of axes).

Frequencies of interest are marked. Note the triangle in particular, which indicates

the frequency at which the numeric waveform starts. If a waveform starts above 40

Hz then we will underestimate the SNR available from such a signal. If the waveform

in Fig. 18 had no pN component the lowest mass at which it could be injected would

be about 40 M�.

To address these issues NINJA-2 specifies the following requirements on the sub-

mitted waveforms [115]. The raw numerical simulation should include at least five

orbits of usable data before merger (i.e., not counting bursts of junk radiation or other

significant noise). Given the computation cost of extending the NR waveforms, we

instead require “stitching” to a post-Newtonian inspiral approximant, which should

be performed at a GW frequency of Mω ≤ 0.075, where Mω is the frequency of the

(l = 2, m = ±2) harmonic. The full waveform should be long enough to be entirely

within the sensitivity bands of LIGO and Virgo down to 10M� with a lower cutoff

frequency of 10 Hz, which corresponds to a starting GW frequency of Mω = 0.003.

The numerical-waveform (before any hybridization) amplitude should be accurate to

within 5%, and the phase (as a function of GW frequency) should have an accumu-

lated uncertainty over the entire inspiral, merger and ringdown, of no more than 0.5

radian. The PN approximants used for hybridization should ideally use the highest

PN orders available, both in phase and amplitude. These minimal accuracy require-

ments are motivated by the results of the Samurai project [69], and studies performed

in preparation for the NR-AR collaboration project [116].

As noted in Eqn. 6.1 the complex function h+ − ih× can be decomposed into

modes using spin-weighted spherical harmonics −2Y lm of weight -2. Although most
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instantaneous frequencies of the waveforms. The triangles represent the frequency at which the
numeric waveform begins; the circle represents the ISCO frequency; and the square the light-ring.
The values given for ρ use the Initial-LIGO noise curve.
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of the power is in the (l,m) = (2, 2) mode, the NINJA-2 project encourages, although

does not require, the inclusion of higher-order modes. We chose to restrict attention

to non-spinning waveforms and waveforms with spins aligned or anti-aligned with

the orbital angular momentum. Systems where the component spins are at other

angles to the angular momentum exhibit precession, which complicates the waveform

generation, the hybridization, and the data analysis significantly. There are sufficient

open questions regarding these restricted cases to make this analysis interesting, with-

out adding these additional complications. However, we plan to include precessing

waveforms in a forthcoming NINJA-3.

A total of 60 waveforms from 8 groups were contributed to NINJA-2. These are

summarized in tables 8, 9, 10, 11, 12, 13, 14, 15 and a map of the parameter values

is shown in Fig. 19.

7.2 Verifying the Hybrid Waveforms

Each NR group verified that their waveforms met the minimum NINJA-2 require-

ments before submission. Once submitted, a series of checks were performed in order

to validate the waveforms against each other. In the first stage the post-Newtonian

expressions and codes were compared against each other and the literature. This

required several iterations, but resulted in a set of codes in various languages that

produce waveforms that all agree in both phase and amplitude. The results of this

investigation have been included in the latest version of Ref. [70], and are included in

this thesis as Appendix A.

7.2.1 Time-domain and Frequency-domain Checks

In the second stage of validation, the complete hybrid waveforms were examined. We

first plotted the last 40 cycles of each waveform — enough to include the full NR

portion, the hybridization region, and some of the pN portion — and looked for any

anomalies such as those present in some of the NINJA-1 waveforms in Fig. 10. The

amplitudes of the Fourier transform of the complete waveforms were also plotted. This

analysis revealed unphysical features, primarily due to errors in the hybridization.

An example is shown in Fig. 20, which shows a visible “kink” in the waveform at the

hybridization frequency. This feature is no longer present in the waveform after the
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Run q Spin1z Spin2z pN Approx. Refs

BAM D10spp85 80.T4.hyb.n2 1 0.85 0.85 TaylorT4 [74, 71]

BAM D10spp85 80.T1.hyb.n2 1 0.85 0.85 TaylorT1 [74, 71]

BAM D125smm50Nep 80.T1.hyb.n2 1 -0.50 -0.50 TaylorT1 [74, 71]

BAM D125smm50Nep 80.T4.hyb.n2 1 -0.50 -0.50 TaylorT4 [74, 71]

BAM D13smm75Nep 96.T4.hyb.n2 1 -0.75 -0.75 TaylorT4 [74, 71]

BAM D13smm75Nep 96.T1.hyb.n2 1 -0.75 -0.75 TaylorT1 [74, 71]

BAM D13smm85Nep 88.T4.hyb.n2 1 -0.85 -0.85 TaylorT4 [74, 71]

BAM D13smm85Nep 88.T1.hyb.n2 1 -0.85 -0.85 TaylorT1 [74, 71]

BAM D11spp50 96.T4.hyb.n2 1 0.50 0.50 TaylorT4 [74, 71]

BAM D11spp50 96.T1.hyb.n2 1 0.50 0.50 TaylorT1 [74, 71]

BAM D10spp75 80.T1.hyb.n2 1 0.75 0.75 TaylorT1 [74, 71]

BAM D10spp75 80.T4.hyb.n2 1 0.75 0.75 TaylorT4 [74, 71]

BAM D12smm25Nep 80.T4.hyb.n2 1 -0.25 -0.25 TaylorT4 [74, 71]

BAM D12smm25Nep 80.T1.hyb.n2 1 -0.25 -0.25 TaylorT1 [74, 71]

BAM EP um4 D10-n96.T4.hyb.n2 4 0.00 0.00 TaylorT4 [74, 71]

BAM EP um4 D10-n96.T1.hyb.n2 4 0.00 0.00 TaylorT1 [74, 71]

BAM um3 88.T4.hyb.n2 3 0.00 0.00 TaylorT4 [74, 71]

BAM um3 88.T1.hyb.n2 3 0.00 0.00 TaylorT1 [74, 71]

BAM um2 88.T1.hyb.n2 2 0.00 0.00 TaylorT1 [74, 71]

BAM um2 88.T4.hyb.n2 2 0.00 0.00 TaylorT4 [74, 71]

BAM R6 PN 80.T1.hyb.n2 1 0.00 0.00 TaylorT1 [74, 71]

BAM R6 PN 80.T4.hyb.n2 1 0.00 0.00 TaylorT4 [74, 71]

BAM D12spp25 96.T4.hyb.n2 1 0.25 0.25 TaylorT4 [74, 71]

BAM D12spp25 96.T1.hyb.n2 1 0.25 0.25 TaylorT1 [74, 71]

BAM q2a0a025 T 96 344.T1.hyb.n2.bbh 2 0.25 0.00 [71]

BAM q2a0a025 T 96 344.T4.hyb.n2.bbh 2 0.25 0.00 [71]

Table 8 : BAM submissions to NINJA-2
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Run q Spin1z Spin2z pN Approx. Refs

BAM hybrid om0.025etmq3S0.4- 3 0.40 0.60 TaylorT4 [75, 96]

0 0 S0.6 0 0 72

Table 9 : FAU submissions to NINJA-2

Run q Spin1z Spin2z pN Approx. Refs

MayaKranc D12 a0.00 m129 nj 1 0.00 0.00 TaylorT4 [117, 118]

MayaKranc D10 a0.90 m129 nj 1 0.90 0.90 TaylorT4 [117, 118]

MayaKranc D10 a0.20 m77 nj 1 0.20 0.20 TaylorT4 [117, 118]

MayaKranc D10 a0.60 m77 nj 1 0.60 0.60 TaylorT4 [117, 118]

MayaKranc D12 a0.60 m103 nj 1 0.60 0.60 TaylorT4 [117, 118]

MayaKranc Sp02py0935th90 gr 1 0.80 0.00 TaylorT4 [117, 118]

MayaKranc D12 a0.80 m103 nj 1 0.80 0.80 TaylorT4 [117, 118]

MayaKranc D12 a0.00 q2 m90 nj 2 0.00 0.00 TaylorT4 [117, 118]

MayaKranc D11 a0.20 q2 m90 nj 2 0.02 0.09 TaylorT4 [117, 118]

MayaKranc D10 a0.40 m90 nj 1 0.40 0.40 TaylorT4 [117, 118]

MayaKranc D10 a0.80 m90 nj 1 0.80 0.80 TaylorT4 [117, 118]

MayaKranc D12 a0.40 m103 nj 1 0.40 0.40 TaylorT4 [117, 118]

MayaKranc D12 a0.20 m103 nj 1 0.20 0.20 TaylorT4 [117, 118]

Table 10 : GATech submissions to NINJA-2

Run q Spin1z Spin2z pN Approx. Refs

dq4 4 0.00 0.00 TaylorT1 [86]

Table 11 : LEAN submissions to NINJA-2
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Run q Spin1z Spin2z pN Approx. Refs

Llama d550-h64-Hybrid 1 0.00 0.00 3.5pNTaylorF2 [119, 119]

Llama d4d4-q1–D10-h64-r250.T4.hybrid 1 -0.40 -0.40 TaylorT4 [120, 121]

Llama d4d4-q1–D10-h64-r250.T1.hybrid 1 -0.40 -0.40 TaylorT1 [120, 121]

Llama u4u4-q1–D8-h64-r250.T1.hybrid 1 0.40 0.40 TaylorT1 [120, 121]

Llama u4u4-q1–D8-h64-r250.T4.hybrid 1 0.40 0.40 TaylorT4 [120, 121]

Llama d5q2-h016-Hybrid 2 0.00 0.00 3.5pNTaylorF2 [119]

Llama u2u2-q1–D8-h64-r250.T1.hybrid 1 0.20 0.20 TaylorT1 [120, 121]

Llama u2u2-q1–D8-h64-r250.T4.hybrid 1 0.20 0.20 TaylorT4 [120, 121]

Llama d2d2-q1–D10-h64-r250.T1.hybrid 1 -0.20 -0.20 TaylorT1 [120, 121]

Llama d2d2-q1–D10-h64-r250.T4.hybrid 1 -0.20 -0.20 TaylorT4 [120, 121]

Table 12 : Llama submissions to NINJA-2

Run q Spin1z Spin2z pN Approx. Refs

LazEV D8.4 10to1 nj hybrid 10 0.00 0.00 TaylorT4 [11]

Table 13 : RIT submissions to NINJA-2

Run q Spin1z Spin2z pN Approx. Refs

SpEC q6s0 6 0.00 0.00 TaylorT1 [122]

SpEC q4s0 4 0.00 0.00 TaylorT2 [122]

SpEC EqualMassAntiAlignedSpins 1 -0.44 -0.44 NA [123, 122]

SpEC q1s-0.95 1 -0.95 -0.95 TaylorT1 [122]

SpEC q2s0 2 0.00 0.00 TaylorT2 [122]

SpEC EqualMassAlignedSpins 1 0.44 0.44 NA [123, 122]

SpEC q3s0 3 0.00 0.00 TaylorT2 [122]

SpEC EqualMassNonspinning 1 0.00 0.00 TaylorT4 [22, 122]

Table 14 : SpEC submissions to NINJA-2
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Run q Spin1z Spin2z pN Approx. Refs

UIUC spin -0.25 om0.0528 22-HYBRID 1 -0.25 -0.25 NA [124, 125, 126]

UIUC spin 0.85 om0.0536 22-HYBRID 1 0.85 0.85 NA [124, 125, 126]

Table 15 : UIUC submissions to NINJA-2

Figure 19 : Parameters of the NINJA-2 hybrid waveform submissions showing the symmetric mass
ratio η = m1m2/(m1 + m2)2 and dimensionless spin parameter χ = (S1/m1 + S2/m2)/(m1 + m2)
after scaling the waveforms to a reference total mass of 10 M�. The numbers indicate how many
distinct waveforms with the specified parameters were submitted.
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hybrid was reconstructed correctly.

7.2.2 Overlap Comparisons

In this check the waveforms were compared against each other using standard data-

analysis techniques, in particular the overlap defined in Eqn. 4.20 using the initial

LIGO noise curve. The waveforms were grouped into sets with identical parameters.

For each set one waveform was chosen as the reference and the overlap with all the

other waveforms was calculated over a range of masses, optimizing over the unknown

coalescence time and phase. This process was then repeated, taking each of the other

waveforms as the reference in turn.

There is an important subtlety involved in calculating these overlaps. Recall from

Sec. 4.1 that the output of the matched filter is a time series from which the point

with the largest value is chosen in order to maximize over time. When comparing

two very similar waveforms, such as two numeric simulations of the same system,

the overlap function becomes very sharply peaked in time. It is therefore imperative

that the sample rate used in calculating the overlap be large enough to find the true

maximum.

This issue is demonstrated in Fig. 21. This figure shows the overlap function

resulting from the comparison of two equal-mass, non-spinning waveforms sampled

at four different rates. At 4096 Hz the peak of the function is missed and the overlap

is underestimated. The consequence of this is illustrated in Fig. 22 which shows that

the overlap as a function of mass exhibits oscillations. The mass determines the length

of the waveform, as this length changes the waveforms slide with respect to the grid

of sample points, and the overlap function traces out this beating. Consequently, all

overlaps in this chapter were calculated at 32768 Hz. The LIGO/Virgo matched filter

searches operate on data at 4096 Hz, however this issue is not a problem in these

searches for reasons that can be seen in these two images. The loss of overlap by

undersampling is no larger than 0.2%. In constructing the template bank (Sec. 4.3)

we have already incurred a potential loss of 3%, this effect is therefore negligible.

For reference we first present comparisons between time-domain post-Newtonian

waveforms of the kind used to construct hybrid waveforms. These are shown in Fig. 23.

Overlaps between hybrid waveforms constructed using different pN approximants will

not agree better than the values presented here at low mass, where the pN portion
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Figure 20 : Fourier amplitude of the (2,2) mode of a sample NINJA-2 hybrid waveform from the
BAM/AEI group. The waveform has been scaled to 10 M� and placed 1 Mpc from the detector to
give it physical units. The waveform on the top left is the version initially submitted, note there
is a small visible “kink” in the waveform at around 100 Hz. The waveform on the top right has
been re-hybridized and there is no longer a visible kink. On the bottom, the same waveform before
and after rehybridization, zoomed into the region in question. This feature did not show up in the
time domain view of the waveform. Recall that the in the post-Newtonian waveform Eq. 2.39 the
amplitude evolved as f−7/6. This can be seen here as a straight line (on the log scale) that extends
up to ≈ 400 Hz. Above this point the slope changes as the system transitions to merger. The power
then drops and approaches a constant frequency as the system rings down.
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Figure 21 : The overlap time series between the Georgia Tech and SpEC equal-mass, non-spinning
waveforms at different sample rates. At 4096 Hz the sample point nearest the maximum is sufficiently
far that the overlap is underestimated to an extent which is significant in doing such comparisons,
where we are interested in differences to one part in 10−5.
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Figure 22 : Overlaps between the Georgia Tech and SpEC equal-mass, non-spinning waveforms, as
a function of mass, at different sample rates. At 4096 Hz the Consequence of undersampling the
overlap function. As the waveform lengths change with mass they beat against the griding caused
by discrete sampling. This produces periodic beats, most evident in the overlaps sampled at 4096
Hz.
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of the waveform extends through the most sensitive portion of the LIGO band. A

sample set of overlaps, comparing all equal-mass, non-spinning waveforms submissions

is shown in Fig. 24. At the high-mass end, where the numeric portion of the waveform

dominates the overlap, the overlaps approach 1. Since all these waveforms model the

same physical system, this is the expected behavior. This is nevertheless a significant

result, as the waveforms were produced with different codes. At the low-mass end,

where the overlap is dominated by the post-Newtonian portions of the waveform, the

behavior is qualitatively as expected from Fig. 23. Although some of the overlaps,

such as between the SpEC and BAM T1 waveforms, are notably lower than would

be expected based on pN considerations alone. This is because different submissions

hybridize at different frequencies, so in some cases there is a loss in overlap due to

comparing pN waveforms against the hybridization.

This is more pronounced in the region of ∼ 20M� where all the overlaps drop, some

more significantly than others. This is the region where the hybridization is passing

through the sensitive band. The goal of hybridization is to smoothly interpolate

between the pN and NR waveforms, and in cases where the pN and NR separately

agree we would expect this agreement to extend through the hybridization region.

We see here, however, that this is not the case. Different choices of hybridization

methods and parameters, as well as the frequencies over which the hybridization is

performed, can lead to waveforms with significant mismatches.

These initial results prompted a number of the NR groups to revise their hy-

bridization procedures, after which the overlaps were more in line with the expected

values. The overlap plot produced with the updated waveforms is shown along with

the initial results in Fig. 24. It is worth noting that even after rehybridizing there

are still mismatches. In particular, the SpEC and MayaKranc submissions use the

same hybridization method, the same pN approximant and are simulating the same

physical system. The only differences are the length of the NR waveforms and the

frequencies at which the hybridization is performed. The question of how many NR

cycles are needed in order to produce a robust hybrid waveform is an area of active

research [127].

The full set of comparisons between the final versions of the submissions appears

at the end of the chapter, in figures 28 through 37.
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Figure 23 : Overlaps between equal-mass, non-spinning, post-Newtonian time-domain waveforms.
Note in particular the discrepancy between T1 and T4, as these were used in the majority of the
hybrid waveforms.
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Figure 24 : Overlaps between the equal-mass, non-spinning NINJA-2 contributions, maximized
over time and phase. For the original submissions (left) overlaps are as low as 0.70 between wave-
forms using different pN approximants and 0.94 for waveforms using the same approximant. After
rehybridization (right) the waveforms achieve much higher overlaps, with minima above 0.94 for
different approximants and above 0.98 for identical approximants. The residual differences between
waveforms using TaylorT4 are due to hybridization details. The Llama waveform was accidentally
omitted from the original runs.

The overlap plots discussed thus far address the “detection question.” By vali-

dating the waveforms against each other we ensure that they are all capture the un-

derlying physics well enough to provide high overlaps with existing templates, which

in turn implies that these waveforms can be found in searches.

We also extended these overlap studies by maximizing over the mass of one of the

waveforms, as well as the time and phase. This addresses the “parameter estimation

question,” the bias in the recovered mass gives an estimate of the minimum error that

can be expected in parameter estimation pipelines. Example plots using the equal-

mass, non-spinning MayaKranc waveform as the signal and BAM plus two different

approximants as the template are shown in Fig. 25.

At the high-mass end the overlap is dominated by NR data, and as in Fig. 24 the

overlaps are high without needing to move off the signal mass. At the low-mass end

the same result would be expected in a pure pN/pN comparison although there is

enough of the hybridization in-band to reduce the overlaps. However, changing the

mass introduces a phase difference that accumulates over all the cycles in-band, and

so higher overlaps can not be achieved. The result is optimal mass values close to

the correct mass value, but with a low overlap. In the middle region these factors
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Figure 25 : Overlaps (indicated by color) between the equal-mass, non-spinning MayaKranc wave-
form taken as the signal, and the equal-mass, non-spinning BAM waveform hybridized with TaylorT4
(left) and TaylorT1 (right) taken as templates. Maximization is done over the mass of the template,
as well as over time and phase. The x-axis gives the mass of the signal, the y-axis gives the fractional
difference between the injected mass and the mass of the template that maximizes the overlap Note
the lower overall overlaps and mass bias at the low-mass end of the figure on the right, where the
two different pN waveforms dominate the overlap.

compete. At higher masses the overlap is reduced less by changing the mass and so

the recovered value can stray further from the injected value. As the hybridization

passes out of band this adjustment is no longer needed. The same general behavior

can be seen in comparisons between non-spinning, unequal-mass (q = 2) waveforms,

shown in Fig. 26. However, the overlaps drop slightly above ∼ 60M�, suggesting

a disagreement in the NR portion of the waveforms. The comparison between two

equal-mass, spinning (s1z = s2z = 0.4) waveforms is shown in Fig. 27. Here there is

a bias in recovered mass at the high-mass end, although the overlaps are high. This

could suggest a problem with the overall scaling of one of the waveforms, but more

study is needed.

7.3 Conclusion

We have reviewed the hybrid waveforms submitted to the second NINJA project.

Although many groups have contributed many waveforms, these primarily cover only

two lines in the (mass ratio, χ) plane, leaving large regions of parameter space un-

explored. We also do not consider precessing signals, which adds several dimensions
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Figure 26 : Overlaps (indicated by color) between the q = 2 non-spinning MayaKranc waveform
taken as the signal, and the q = 2, non-spinning BAM waveform hybridized with TaylorT4 taken as
the templates. Maximization is done over the mass of the template, as well as over time and phase.
The x-axis gives the mass of the signal, the y-axis gives the fractional difference between the injected
mass and the mass of the template that maximizes the overlap. The low overlaps above 60M� are
due to differences in the NR waveforms.
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Figure 27 : Overlaps (indicated by color) between the equal-mass s1z = s2z = 0.4 MayaKranc
waveform taken as the signal, and the equal-mass s1z = s2z = 0.4 Llama waveform taken as the
template. Maximization is done over the mass of the template, as well as over time and phase. The
x-axis gives the mass of the signal, the y-axis gives the fractional difference between the injected
mass and the mass of the template that maximizes the overlap. The low overlaps above 60M� are
due to differences in the NR waveforms. The reason for the systematic bias at the high-mass end is
under investogation.
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to parameter space. These issues will be further explored in NINJA-3. A major fea-

ture of NINJA-2, not present in NINJA-1, is the validation and comparisons of the

submissions discussed in this chapter. These efforts lead to dramatic improvements

in the quality of the waveforms, which in turn will enable data analysts to draw

more quantitative conclusions on the behavior of their pipelines with respect to the

underlying physics. There is evidence that hybridization choices and methods effect

both overlaps and parameter estimation. The degree to which these effects will bias

searches is a question we hope NINJA-2 will be able to answer. In the next chapter we

discuss the construction of data sets using these waveforms, and present preliminary

results from the CBC low- and high-mass pipelines.
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Figure 28 : Top left: overlap plot for q = 1 Sz1 = Sz2 = −0.5 Top right: overlap plot for q = 1
Sz1 = Sz2 = −0.4 Bottom left overlap plot for q = 1 Sz1 = Sz2 = −0.2 Bottom right: overlap plot
for q = 1 Sz1 = Sz2 = 0.8
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Figure 29 : Overlap plots for q = 3 Sz1 = Sz2 = 0
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Figure 30 : Overlap plots for q = 1 Sz1 = Sz2 = 0.2
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Figure 31 : Overlap plots for q = 1 Sz1 = Sz2 = −0.25
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Figure 32 : Overlap plots for q = 2 Sz1 = Sz2 = 0
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Figure 33 : Overlap plots for q = 1 Sz1 = Sz2 = 0



137

Figure 34 : Top left: overlap plot for q = 1 Sz1 = Sz2 = 0.5 Top right: overlap plot for q = 1
Sz1 = Sz2 = 0.25 Middle left: overlap plot for q = 1 Sz1 = Sz2 = −0.75 Middle right: overlap plot
for q = 1 Sz1 = Sz2 = −0.85 Bottom left: overlap plot for q = 1 Sz1 = Sz2 = 0.75
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Figure 35 : Overlap plots for q = 1 Sz1 = Sz2 = 0.4
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Figure 36 : Overlap plots for q = 4 Sz1 = Sz2 = 0
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Figure 37 : Overlap plots for q = 1 Sz1 = Sz2 = 0.85
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Chapter 8

Preliminary CBC Results from the

Second NINJA project

In the previous chapter we discussed the hybrid pN/NR waveforms contributed to

the NINJA-2 project, along with the studies performed to validate them. We now

turn to the data analysis portion of NINJA-2, including the preliminary data sets and

some results. We will be focusing on two CBC searches:

• The S6 “low mass” search, which uses TaylorF2 waveforms taken to 3.5 pN

order and a bank spanning total masses from 2M� to 25M�.

• The preliminary S6 “high mass” search, which uses EOBNR waveforms and a

bank spanning 25M� to 100M�. As of writing the tuning of this parameters in

this search are ongoing. The final version of this search will be the one used for

NINJA-2.

8.1 Construction of the Preliminary NINJA-2 Data Set

Thus far the NINJA-2 data sets have been used to test the codes used to construct

these sets and to run preliminary sanity checks. The full run of NINJA-2 will use real

detector data from S5 and VSR2. As we have noted in chapter 4, real data contains

non-Gaussian features that can impact searches. These features were not captured in

NINJA-1, but their inclusion is essential in order to derive realistic results.

In broad terms the plans for the NINJA-2 data sets follow those for NINJA-1
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(ch. 6). Simulated Gaussian noise was generated to model the initial LIGO and

Virgo noise curves, the spectra are identical to those in Fig. 12. Injection parameters,

including choice of waveform, were then selected randomly. The injections were then

added to the Gaussian noise and distributed to data analysis groups. However, several

key changes were made in the details of this process in order to correct shortcomings

in NINJA-1.

The NINJA-2 data was sampled at 16384 Hz rather than the 4096 Hz used by

NINJA-1. This was done because investigations showed that there is power above

4096 Hz in the waveforms, which would get aliased down to lower frequencies if the

sample rate is too low. This problem is illustrated in Fig. 38. Note that this is a

different issue from the one that motivated performing the waveform overlaps at 32768

Hz, discussed in Sec. 7.2.2. The issue there was that undersampling could miss the

maximum of the overlap function. The issue here is that undersampling can distort

the end of the waveform due to aliasing. In the real search data is sampled at 16384

Hz, and although it is downsampled to 4096 before running the matched filters the

downsampling utilizes an anti-aliasing filter that avoids this problem.

NINJA-1 consisted of only 127 injections in one day of data, which severely limited

the ability to draw statistical conclusions on the behavior of the pipelines. To correct

this in NINJA-2 we extended the duration to eight weeks. The density of injections

was varied over this span: weeks 1-3 had one injection on average every 2000 seconds,

week 4-6 had one injection on average every 14,400 seconds, and the final two weeks

had one injection every on average every 216,000 seconds. The intent is that data

analysts can tune and test their pipelines on the dense weeks, and then optionally

perform a self-blinded test on the final two weeks.

In NINJA-1 the SNR was not chosen a priori but was determined by the other

parameters. For NINJA-2 we draw the network SNR (
√∑

i ρ
2
i where i ranges over

the detectors) from a distribution and then scale the distance of the injection in order

to achieve that SNR. For the first three weeks the distribution is linear from 6 to

130 in order to allow pipelines to test and tune out to large SNRs on the densest

set of injections. For the remaining weeks the distribution falls as the reciprocal

of the network SNR (uniform in log(SNR)) in order to better model the expected

astrophysical distribution.
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Figure 38 : Frequency-domain amplitudes of a NINJA-2 waveform at different sampling rates. At
a sample rate of 4096 Hz the late portion of the waveform are distorted due to aliasing of power to
lower frequencies.
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The mass and waveform selection were also performed slightly differently in NINJA-

2. For each injection a mass was first selected uniformly over the specified range; for

the full 2-month run this range is from 10 − 350M�. Then waveforms were selected

at random until one was found that could be injected at the chosen mass such that

the waveform turns on below 35 Hz. In practice this condition never caused any

waveform to be rejected, as all submitted waveforms were long enough to be injected

down to the lowest mass in the range. The mass ratio and spins are intrinsic to the

waveforms, so choosing a submission amounts to a choice of these parameters as well.

As in NINJA-1 the sky location and inclination were chosen uniformly at random.

Four NINJA-2 data sets were released:

• A test set consisting of one week of data was released on May 13, 2010. This

included three separate sets spanning different mass regions; low-mass (10M�−
40M�), high-mass (35M�−100M�) and a burst/ringdown set (80M�−350M�).

This purpose of this run was to shake out bugs in the injection code and wave-

forms, several of which were found.

• A second test set consisting of one week of data for each of the three mass bins

was released on May 31, 2010. This was meant to test the fixes implemented

after the first test set, and to do more careful sanity checks. Some results from

this run are discussed in Sec. 8.2.

• Based on positive results from analyses of the second test week, full two-month

data sets for all three mass bins were released on June 9, 2010. Unfortunately

shortly after release a remaining major bug in the injection software was discov-

ered. Data is stored in frame files spanning 4096 seconds. When an injection

crossed frame boundaries this bug would cause the portion contained in the

earlier frame to be omitted. This happened in enough cases to invalidate the

entire data set.

• There was then a lengthy pause, in large part due to the LIGO-Virgo “blind

injection challenge” (see Sec. 10.5). However, it was during this time that the

validations discussed in the previous chapter were performed. It was also in

this gap that studies discovered the need to move to 16 kHz sampling. This

quadrupled the size of the data and made the release of 3 separate mass ranges
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unfeasable. Therefore a single set spanning two months and containing injec-

tions from 10M� − 350M� was released on June 13, 2011. Analysis on this set

has begun and some preliminary results will be discussed in Sec. 8.3

There are two motivations for constructing and distributing the data sets as

NINJA-1 and NINJA-2 thus far have done. The first is to ensure that every group is

looking at the same set of injections so that results can be compared. The second is

due to the terms of the NINJA agreement, which restricted distribution of the raw

NR waveforms. However, distribution of such static sets limits the ability of individ-

ual groups to tune their pipelines in optimal ways, and conceptually distributing a

set of parameters would be sufficient to compare results across pipelines. In addition

the size of the data sets makes distribution slow and complex. The NR groups within

NINJA have therefore relaxed the conditions on their use of their waveforms. Conse-

quently, subsequent NINJA-2 data sets will be distributed as sets of parameters, and

data analysis groups will use the available code to either create data sets locally, or

perform the injections “on the fly” as the analysis is performed. This will also allow

groups to do special-purpose tuning runs or analyses by injecting specialized sets of

injections into noise. The results of these studies may be published as short-author

papers subject to the conditions of the NINJA agreement.

So far we have used simulated Gaussian noise, however as we have noted this is not

a good model for the real detectors, which contain many “glitches” caused by both

environmental factors and transient behavior of the detectors. These glitches produce

a population of background triggers. In testing pipelines a critical issue is the ability

to distinguish such background triggers from signals. If NINJA is to be able to to

make definitive statements about the behavior of pipelines it is therefore imperative

to use real detector noise. A memorandum of understanding has been signed between

the NINJA collaboration and the LIGO and Virgo collaborations allowing the use of

real noise from the 5th LIGO and first Virgo science runs. There are a number of

technical issues to be resolved before this can be done, however the key results from

NINJA-2 will come from on-the-fly injections into real noise.



146

Figure 39 : Distribution of mass, spin and distance parameters in the one-week, Gaussian-noise test
data set. Spin is reported as χ = (S1/m1 + S2/m2)/(m1 + m2)

8.2 CBC Results from the Second One-week Data Set

As noted above, two one-week data sets were produced for testing the injection code

and performing sanity checks on the results. Here we present the results of running

the standard low-mass CBC pipeline on the low-mass data set from the second of

these runs. As this was largely a testing and debugging exercise no effort was made

to draw conclusions about the pipelines. In particular, no runs were performed with

a bank extended to unphysical η or the other pipeline modifications suggested by the

studies in chapter 5 and tested in NINJA-1. The injection parameters were chosen

as described above, the selected masses, spins and distances are shown in Fig. 39.

The S6 version of the standard CBC low-mass pipeline was run over this data

set. This version of the pipeline uses TaylorF2 stationary-phase templates taken
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Figure 40 : First-stage found/missed plots from the test data set. On the left, the results from
the data set containing the injections, on the right the results from running on the noise-only data.
Many signals appear in both, indicating that they are not really found, but only that there is a
random background trigger within the time window.

to 3.5 pN order in phase evolution (see Appendix A). The first result of interest is

the found/missed plots at the first stage, before the χ2 test or coincidence between

detectors has been applied. The result for the H1 detector is shown in Fig. 40. This

can give some indication of how well the waveforms and the bank capture the signals.

However, it can also be misleading. The pipeline considers an injection to be “found”

if there is a trigger within 100 ms of the injection time. No parameter matching is

required. This means a quiet trigger resulting from the noise can be mistaken for

finding the injection. To see how often this can happen we also ran the analysis on

frames containing only the noise, without any injected signals. This is also shown in

Fig. 40, and indeed many of the reportedly-found injections can be seen to be coming

from the noise. Both χ2 and coincidence will cut down the number of false reports, in

Fig. 41 we show the found/missed plots for all three detectors after the coincidence

test, and many of the triggers coming from the background have been removed. At

the second stage the results are sensible, the ability of the pipeline to recover the

injections falls off as the effective distance increases. There are however a few close

missed injections that would warrant follow up study in a full search.

In Fig. 42 we plot the SNR recovered by the pipeline versus the injected value.

There is a distinct pattern exhibited, for low-mass signals the injected and recovered
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Figure 41 : Second-stage found/missed plots for the test data set, for all three detectors. Each
plot shows signals that were reovered in that detector and at least one other. Requiring coincidence
removes the background triggers seen in Fig. 40. The results are sensible: closer injections are more
likely to be found than distant ones.
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Figure 42 : SNR recovery for the test data set in all three detectors. The injected SNR is calculated
from the entire waveform, the recovered SNR is calculated only from the inspiral up to the ISCO
frequency. At higher masses this loses SNR as the late inspiral, merger, and ringdown pass through
the detector sensitive bands. Note that V1, which has lower noise at low frequencies, recovers
somewhat more SNR for the high-mass systems.

SNR match, but the recovered SNR drops off with increasing mass. This occurs

because the injected SNR value is calculated using the entire waveform. By contrast

the recovered value terminates the integration at the ISCO frequency. For higher-

mass systems this means the integration cuts off in or before the sensitive band, while

there is still power in the signal, and consequently the SNR is underestimated. While

we can not hope to capture the full merger and ringdown with inspiral-only templates,

this again confirms the results of chapter 5 and NINJA-1, which show that extending

the templates to high frequencies can increase the SNR.

At the level of investigation performed the results from this data set appear reason-

able. Although conversely this means that the waveform truncation issue discussed
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above was not caught by this investigation. However, this and other analyses did

indicate that there were no other more serious bugs in the injection software, which

enabled us to move to the full two-month set.

8.3 CBC Results from the Two-month Data Set

We now turn to the second two-month data set in Gaussian noise. This is the latest

set constructed, and includes many corrections and changes from earlier sets:

• The data is now sampled at 16,384 Hz.

• There is now only one set spanning the full mass range from 10M� − 350M�.

• The waveforms have been updated, in particular many of the hybridizations

were redone.

Apart from the change in mass range the injection parameters were chosen as de-

scribed above. The masses, spins, and distances chosen are shown in Fig. 43.

This data set was analyzed with the standard CBC low-mass and high-mass

pipelines. The parameters were exactly as in the S6/VSR2,3 runs, no changes were

made to the configurations except for those relating to the names of the data files.

The low-mass search uses Taylor F2 templates to 3.5 pN order in phase evolution

(Sec. 2.5) in a mass region defined by minimum component masses of 1M� and max-

imum total mass of 25M�. The high mass search uses EOBNR templates (Sec. 2.5.1)

in a region defined by minimum component masses of 1M�, minimum total mass of

25M�, and maximum total mass of 100M�.

Figure 44 shows the found/missed plots after the first stage in the high-mass

search. As expected, distant signals are less likely to be found than close ones. As

discussed above the loose coincidence test between injections and triggers means that

many of these injections may not really be found. We therefore look at the second-

stage results in Fig. 45, and as in Fig. 40 there are many fewer found injections.

The fraction of injections found decreases with increasing mass. The bank of the

high-mass search extends only to 100M�, but the injections extend up to 350M�,

so this result is not surprising. We can quantify the effect by plotting the efficiency,

defined as this fraction, as a function of mass. These plots are shown in Fig. 46. While
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Figure 43 : Distribution of mass, spin and distance parameters in the two-month, Gaussian-noise
data set.
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Figure 44 : Preliminary first stage found/missed plots from the high-mass search. The behavior is
as expected: distant signals are more likely to be missed than close ones.



153

Figure 45 : Preliminary second stage (after coincidence and χ2) found/missed plots from the high-
mass search. As expected, many of the signals reported as “found” after the first stage were due
to background triggers within 100 ms of the injection. More signals are missed at higher masses
because the high-mass bank only extends to 100M� but there are injections up to 350M�. There is
an anomaly in the Virgo results, see the text for discussion.
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Figure 46 : Efficiencies of the high-mass pipeline as a function of mass. As can be seen in figure 45
the efficiencies decrease as mass increases. However, the scatter in these plots indicates that there
are not enough injections to draw definitive conclusions.

these plots show the general trend, they are quite jagged, indicating that we do not

have enough injections to draw statistical conclusions. Follow up work will remedy

this by performing many thousands of “on the fly” injections. There is an unexpected

feature in the V1 plot, which shows that at high mass more close injections are missed

than distant ones. We will return to this issue below.

The standard CBC low-mass and high-mass searches both use non-spinning tem-

plates, and an important question is the ability of these pipelines to detect spinning

signals. NINJA-2 is uniquely positioned to help answer this question, and we be-

gin by plotting the recovery efficiency of the high-mass pipeline as a function of the

spin parameter χ in Fig. 47. There is a general trend suggesting that the efficiency

increases with χ, and in particular that the search performs worse on anti-aligned
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Figure 47 : Efficiencies of the high-mass pipeline as a function of the spin parameter χ. There is a
general trend suggesting the pipeline is more efficient at detecting aligned spins, but more injections
are needed to verify and quantify this.

systems than aligned systems. Again, the scatter of the plots makes it impossible

to draw definitive conclusions, this will be remedied in follow up studies with more

injections.

We now consider the parallel analysis performed with the low-mass search. Fig-

ure 48 shows the found/missed plots after the first stage. Again, distant signals are

more likely to be missed than close ones. The low-mass template bank extends to

a total mass of 25M�, and correspondingly the efficiency decreases notably above a

chirp mass of ∼ 80M�. The anomalous behavior in Virgo is more pronounced here

than in the high-mass search, with most injections above a chirp mass of 100M� and

closer than 100 Mpc being missed. We return to this issue in Sec. 8.3.1. Figure 49

shows the found/missed plots after the second stage. Again, many of the injections
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Figure 48 : Preliminary first stage found/missed plots from the low-mass search. The behavior is
as expected: distant signals are more likely to be missed than close ones.

reported as found in the first stage are now reported as missed. The remaining found

injections are clustered towards the low end of the mass range, as expected. However,

in all detectors at this stage the remaining found injections at higher masses tend to

be at farther distances, contrary to the expected behavior. In addition, the injections

found in V1 are mostly confined to the region Mchirp < 20M�, whereas those in H1

and L1 extend up to ∼ 60M�. This indicates that most of triggers above 20M� are

found in coincidence between H1 and L1. In turn this implies that signals above

this point are either not really found in V1 at the first stage, or are seen with very

different parameters that fail the coincident test with the H1 and L1 triggers. Again

we defer further discussion to Sec. 8.3.1.
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Figure 49 : Preliminary second stage found/missed plots from the low-mass search. Virgo appears
to only find injections below a chirp mass of 20M�, all found injections above this point come from
coincidences between Hanford and Livingston. In all detectors injections found at higher masses have
larger effective distances. Further studies are needed to understand this behavior, see Sec. 8.3.1.
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Figure 50 : Efficiencies of the low-mass pipeline as a function of mass. As can be seen in Fig. 49
the efficiencies decrease as mass increases. However, the scatter in these plots indicates that there
are not enough injections to draw definitive conclusions.

The efficiencies of the pipeline as a function of mass is shown in Fig. 50, and as

a function of spin in Fig. 51. The mass plots present the same information found in

Fig. 49 in an alternate way, and as in the corresponding high-mass plots indicate that

more injections are needed in order to refine the results. The spin plots show the

same general trend in the high-mass plots, again indicating that the search is more

efficient at detecting systems with aligned spins than anti-aligned.

8.3.1 Anomalous Virgo Results

In both the high-mass and low-mass searches we find that at higher chirp masses closer

injections are missed while farther injections are found. This problem is evident in all

three interferometers, but it is most extreme in Virgo and affects even the first-stage
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Figure 51 : Efficiencies of the low-mass pipeline as a function of the spin parameter χ. There is a
general trend suggesting the pipeline is more efficient at detecting aligned spins, but more injections
are needed to verify and quantify this.



160

Figure 52 : Injections plotted as in the found/missed plots, color-coded by SNR. If high SNRs
corresponded to points found in Virgo it would indicate that the effective distances were being
miscalculated. However, this is not the case.

results. At the time of writing no explanation for this behavior has yet been found,

however some possibilities have been ruled out. As the problem is most notable in

Virgo we focus attention there.

First, we consider the possibility that the effective distance is simply being misre-

ported. We check this by plotting the injections on the same axes as the found/missed

plots, color-coding by injected SNR. Fig. 52 shows that the SNR and effective dis-

tance, which are calculated by different portions of the code, correlate. This rules out

this possibility.

We next consider the possibility of a correlation between effective distance and

total mass. These values are chosen randomly and independently, but if there were

some correlation such that high effective distances corresponded to lower total masses
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Figure 53 : Injections plotted as in the found/missed plots, color-coded by total mass. If lower
masses corresponded to points found in Virgo it would indicate a correlation between effective
distance and mass. However, this is not the case.

it would explain the results by indicating that more distant injections happened to

be more likely to fall within the range of the bank. We again plot the injections as

in the found/missed plots, now color-coding by total mass, in Fig. 53. Again, no

correlations are seen.

Finally, we examine in detail one of the injections with chirp mass above 100M�
that is found in Virgo at the first stage beyond 100 Mpc, looking for any indication

that the time series are badly behaved. Figure 54 shows the injection, the filtered

data, and the SNR time series arranged so that they all cover the same two-second

interval. All three line up as expected, at the level of this test this injection seems to

be found legitimately.



162

Figure 54 : Time series plots of an injection found in Virgo, chirp mass 135M� at 157 Mpc. Top
left shows the scaled waveform. Top right shows the data segment passed to the matched filter, after
bandpassing to reduce low-frequency noise. Bottom shows the SNR time series. All plots line up as
expected.



163

8.4 Open Questions for NINJA-2

Beyond resolving the unexplained behavior in the searches we intend to use NINJA-2

to address several important open questions. We briefly note these here.

Further tests of the pipeline modifications

We intend to rerun these analyses using a bank extended to unphysical η and

terminating the waveforms at the WRD frequency, as in NINJA-1. The goal is to

determine how this affects the efficiency of the search at lower masses than could be

tested in NINJA-1, as well as on a wider range of parameter space. We will also

repeat the analysis in real detector noise. A critical question is how the extended

bank will affect the rate of background triggers. NINJA-1 indicates we can recover

higher SNRs by making this change, but if this comes with an elevated background,

making signals stand out less strongly, then this change will not be useful.

Transition between the low-mass and high-mass searches

The dividing line between the low- and high-mass searches is somewhat arbitrary

at present. We hope to use efficiency plots such as those presented in this chapter,

populated with many more injections, to determine the point at which the efficiencies

cross. In particular, as will be discussed in the next chapter, much of the background

in the low-mass search comes from the higher-mass end of the template bank. If

we can reduce the upper limit of the low-mass search we can hope to clean up the

background and make quiet signals more significant.

Effects of spin

Using efficiency plots such as those presented in this chapter we hope to determine

the regions of parameter space that are not well-covered by the existing non-spinning

searches. Such regions could then be supplemented by spinning searches currently in

development. Conversely, by identifying regions where the current search performs

adequately we can limit the range, and hence the background, over which spinning
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searches need to run.

Effects of template placement

As discussed in Sec. 4.3, the current searches use a bank laid out according to

a metric calculated from the TaylorF2 stationary-phase waveform taken to 2.0 pN

order in phase. Current searches use 3.5 pN waveforms, and the template placement

is therefore incorrect. The extent to which it is incorrect, and the implications for

the search, can be tested by running bank simulations. In such a simulation a bank

is constructed and the maximum overlap between a signal and every template in the

bank is found. By comparing this maximum against the maximum found by varying

the parameters continuously (as in chapter 5) we can determine the loss in SNR due

to discretizing the bank. We plan to run such analyses using the NINJA-2 signals

with both 2.0 pN templates and 3.5 pN templates in order to determine the extent

to which the incorrect metric decreases the efficiency of the search.

8.5 Conclusions

In this chapter we discussed the NINJA-2 data sets and presented results from a one-

week test run on a data set containing only low mass signals, and a two-month set

containing signals up to 350M�. The test week shows no anomalies, however when

the mass range is extended the low-mass pipeline shows unexpected behavior. We

consider a few possibilities to explain this, but as of this writing no explanation has

been found. It seems more likely to be a bug in the data set generation than in the

analysis, as the latter has been much more extensively reviewed. In either case, more

study is needed. Once these issues are resolved we will proceed with the full runs

using real detector data.
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Chapter 9

A Database for Instrumental Data

Quality

We have made frequent references to glitches in the detectors, a type of noise consist-

ing of short, transient features. In chapter 4 we have also noted that such features

in the data can elevate ρ(t) and produce spurious triggers. We will refer to triggers

resulting from noise as background triggers.

In order to claim the detection of a gravitational wave we must have a candidate

whose significance stands well above that of these background triggers. So far this

thesis has focused on increasing the efficiency of the search to increase the signifi-

cance of the signals. We now shift focus to reducing the number of triggers in the

background. The key to doing this is ability to veto time, that is, remove from the

analysis times which we believe will contribute excessively to the background and/or

times in which we would be unable to confidently detect a real signal.

In this chapter we discuss the infrastructure that enables such vetoes. In the

next chapter we look at a tool, daily ihope, which was used in S6 to characterize the

behavior of the detectors and determine times that needed to be vetoed.

9.1 Data Quality Flags

The LIGO and Virgo detectors are extremely sophisticated, complex, and sensitive.

Glitches can be produced in and by many parts of the detector, and may ultimately

be caused by either environmental conditions or conditions internal to the detectors.
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A great deal of information about the state of the detector is recorded in channels,

which are time series sampled from 1 Hz to 16 kHz, depending on the channel. These

include such information as

• the power at which the Laser is operating

• the output of every photodiode throughout the detector

• the power in seismic noise in various frequency bands

• the activity of the control servos

and a great deal more. When any of these exceed normal operating values it may

indicate the presence of glitches, or even be their root cause. It is therefore extremely

valuable to both data analysts and commissioners working on the detector to be able

to flag any anomalous conditions.

The first line of defense against glitches is on-site as the detector is running. At

all such times the control room is staffed by an operator, an employee of LIGO labs

who is an expert in running the detector, and a science monitor (“SciMon”) who is a

member of the LIGO Scientific Collaboration (LSC). Either may flag times of unusual

activity such as

• movement of heavy machinery on the site

• nearby storms

• modification of control parameters

The operator and SciMon also jointly decide when to flag time as suitable for analysis.

This depends on a few conditions; there must be laser light in both arms and the

detector must be locked, meaning the cavities are on resonance. When such conditions

are met the operator and SciMon can choose to enable science mode. Any time such

flagged will be included in the LIGO searches.

In addition to such manually-created flags, flags may be created automatically by

scanning the channel data. This is done by a program called the Data Monitoring

Tool (DMT) which records conditions such as

• an instrumental channel has exceeded a threshold
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• the standard deviation of a channel has exceeded its expected value

• elevated seismic noise in a frequency band

• the detector is properly locked

Note that these are all yes-or-no conditions. Flags do not store values, such as the

level of seismic noise. That information is available in the channel data, the flags are

intended to provide the simplest possible summary of conditions. At any given time

a flag can be in any of three states: on, off, or undefined. Flags are undefined during

times when the responsible DMT process was not running.

In order to be useful flags must be represented in a standard format and accessible

to members of the LSC. We start by identifying a flag as a triple of (detector id,

flag name, version number). detector id identifies the detector with a two-letter

abbreviation; H1, L1, V1 for Hanford, Livingston and Virgo respectively. flag name

is a unique identifier, to prevent confusion with case sensitivity in processing tools, all

DQ flag names were required to be in upper case case. Additionally, a 3-letter prefix

was be added to each flag name to better identify the source where data came from.

For example: the flag indicating high wind speed would be DMT-WIND OVER 30MPH.

version number is an integer starting from 1. Version numbers can change if, for

example, a bug is found in one of the DMT processes. Once the bug is fixed the

DMT can be rerun over the original channel data to produce the next subsequent

version of the flag. However, by storing all prior versions we are able to reconstruct

the results of earlier searches.

Conceptually, managing flag information consists of providing functions that

• map from a flag (ifo id, flag name, version number) to a set of times where the

flag was defined

• map from a flag (ifo id, flag name, version number) to a set of times where the

flag was active

The times during which the flag was inactive, if needed, can be obtained from the dif-

ference between these two. It is also useful to think of these functions as mapping (ifo

id, flag name, version number, time) to an “active, inactive or undefined” indicator,

or mapping a time to a set of flags that are active.
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9.2 Implementation Details

The implementation of the maps between flags and sets of times is conceptually

straightforward. We represent sets of times as sets of segments, which are half-open

intervals aligned on GPS-second boundaries. We can assign to each flag triple a

unique integer identifier, and then store segments as triples of (id, start time, end

time). The functions above then consist of looking up the flag, determining the

identifier, then returning all segments with matching identifiers. We will need two

such segment stores, one for “defined” segments and one for “active” segments. We

will call the map between flags and identifiers the segment definer, the store of

“defined” segments will be called the segment summary, and we we reserve the name

segment for the store of active segments.

We now have a structure in which data quality flags can be stored. In S6 this was

implemented in two ways:

1. as files in eXtensible Markup Language (XML) format. XML is a scheme for

adding structure to documents [128]. It is relatively simple in that XML files can

be read and modified by standard text editors. The LSC utilizes a specialized

form of XML called LIGO light weight or LIGO LW [129]. The names of most

programs that produce or consume such files begin with the prefix ligolw . See

Sec. 9.3 for more on this format.

2. in a relational database called the segment database, hosted at CalTech. This

allowed high-speed, distributed access to flag information. See Sec. 9.4 for more

on the structure of the database.

The flow of flag information is illustrated in Fig. 9.2:

1. DMT The DMT handled the creation of all science segments and online data

quality segments in S6. Every 60 seconds, the DMT wrote segment informa-

tion in XML format to disk at each of the detectors. The DMT called the

dmtdq seg insert program to insert the XML data into the segment database.

2. Archival of DMT segment data: The 60 second XML files generated by the

DMT were replicated to Caltech and other LSC computing centers. Files were

compressed using the gzip algorithm.
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Figure 55 : Flow of S6 data quality segment information. Online data quality segments and science
segment information is generated by the DMT. This can be directly queried for low-latency online
analysis or inserted into a segment database for off-line or higher-latency analyses. Command line
and web GUI tools were used to query and update the segment database.

3. Software was developed to combine the segment information from DMT XML

files with a data quality categorization file managed by the search groups (see

Sec. 9.5.2 below) to produce files containing veto information for a given search

once per minute or so. The same software was be made available for interfacing

with the segment database for offline searches and detector characterization (see

Sec. 9.5.1 below).

4. Expected Latencies: as described in the implementation plan diagram, tar-

geted latencies were:

• DMT generates h(t) file: 60 seconds

• From DMT to raw DMT segment disk: 60 seconds
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• From raw DMT segment disk to segment database: 10 seconds

• From ligolw segment insert to segment database: 30 seconds

9.3 Segment Data File Format

To be ingested into the segment database, segment data must be in the format

described in this section. Data should be in a valid LIGO LW XML file with

process, segment_definer, segment_summary and segment tables. An optional

process_params table can be used to store extra metadata about segment genera-

tion.

The process table should contain the columns given in the XML file below which

describe the name, version, cvs repository and revision of the program used gener-

ate the data. The comment column can be used to add additional human-readable

data. The node, username, unix_procid, start_time and end_time columns should

store metadata describing who ran the process and where it ran. The ifos column

should contain an alphabetical list of all ifo data using as input to the process. The

process_id column is used to link the defined process to other rows in the file created

by that process.

The segment_definer table should contain a definition of the segments included

in the file. The ifos, name and version columns should contain the name and version

of the segment. The name should be upper case for all segments. DMT-derived

segments should be prefixed with the string DMT-, segments created by the detector

characterization group should be prefixed with DCH- and segments from the Virgo

database should be prefixed with VDB-. The comment column can be used to add a

human-readable description of the segment. The segment_definer column is used

to link this type of segment to the intervals in the segment and segment_summary

tables.

The segment table should contain the GPS start and end time when the segment

described in the segment_definer table was active. The segment_summary table

should contain the GPS start time and end time of the interval for which the segment

is defined. This will allow users to distinguish between the cases where a DQ segment

is undefined for a particular time or simply inactive (i.e. it is not windy, as opposed

to the wind monitor being down).
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<?xml version="1.0"?>

<!DOCTYPE LIGO_LW SYSTEM "http://ldas-sw.ligo.caltech.edu/doc/ligolwAPI/html/ligolw_dtd.txt">

<LIGO_LW>

<Table Name="processgroup:process:table">

<Column Name="processgroup:process:program" Type="lstring"/>

<Column Name="processgroup:process:version" Type="lstring"/>

<Column Name="processgroup:process:cvs_repository" Type="lstring"/>

<Column Name="processgroup:process:cvs_entry_time" Type="int_4s"/>

<Column Name="processgroup:process:comment" Type="lstring"/>

<Column Name="processgroup:process:node" Type="lstring"/>

<Column Name="processgroup:process:username" Type="lstring"/>

<Column Name="processgroup:process:unix_procid" Type="int_4s"/>

<Column Name="processgroup:process:start_time" Type="int_4s"/>

<Column Name="processgroup:process:end_time" Type="int_4s"/>

<Column Name="processgroup:process:process_id" Type="ilwd:char"/>

<Column Name="processgroup:process:ifos" Type="lstring"/>

<Stream Name="processgroup:process:table" Type="Local" Delimiter=",">

"SegGener","1.17",

"/ldcg_server/common/repository_gds/gds/Monitors/SegGener/SegGener.cc\,v",

865755895,"Segment generation from an OSC condition","granite","jzweizig",718,

918756928,918836992,"process:process_id:0","H0H1H2"

</Stream>

</Table>

<Table Name="segment_definergroup:segment_definer:table">

<Column Name="segment_definergroup:segment_definer:process_id" Type="ilwd:char"/>

<Column Name="segment_definergroup:segment_definer:segment_def_id" Type="ilwd:char"/>

<Column Name="segment_definergroup:segment_definer:ifos" Type="lstring"/>

<Column Name="segment_definergroup:segment_definer:name" Type="lstring"/>

<Column Name="segment_definergroup:segment_definer:version" Type="int_4s"/>

<Column Name="segment_definergroup:segment_definer:comment" Type="lstring"/>

<Stream Name="segment_definergroup:segment_definer:table" Type="Local" Delimiter=",">

"process:process_id:0","segment_definer:segment_def_id:35","H2","DMT-LIGHT",1,

"H2 Light in arms from h(t) DQ flags",

"process:process_id:0","segment_definer:segment_def_id:36","H2","DMT-SCIENCE",1,

"H2 Science mode from h(t) DQ flags",

"process:process_id:0","segment_definer:segment_def_id:37","H2","DMT-INJECTION",1,

"H2 Injection mode from h(t) DQ flags",

"process:process_id:0","segment_definer:segment_def_id:38","H2","DMT-UP",1,

"H2 calibration OK in from h(t) DQ flags",

"process:process_id:0","segment_definer:segment_def_id:39","H2","DMT-CALIBRATED",1,

"H2 Calibration OK from h(t) DQ flags",

"process:process_id:0","segment_definer:segment_def_id:40","H2","DMT-BADGAMMA",1,

"H2 Bad gamma in h(t) DQ flags"

</Stream>

</Table>

<Table Name="segmentgroup:segment:table">

<Column Name="segmentgroup:segment:segment_id" Type="ilwd:char"/>

<Column Name="segmentgroup:segment:start_time" Type="int_4s"/>

<Column Name="segmentgroup:segment:end_time" Type="int_4s"/>

<Column Name="segmentgroup:segment:segment_def_id" Type="ilwd:char"/>

<Column Name="segmentgroup:segment:process_id" Type="ilwd:char"/>

<Stream Name="segmentgroup:segment:table" Type="Local" Delimiter=",">

"segment:segment_id:15",918836961,918836977,"segment_definer:segment_def_id:35",

"process:process_id:0",

"segment:segment_id:16",918836976,918836992,"segment_definer:segment_def_id:37",

"process:process_id:0"

</Stream>

</Table>

<Table Name="segment_summarygroup:segment_summary:table">

<Column Name="segment_summarygroup:segment_summary:segment_sum_id" Type="ilwd:char"/>

<Column Name="segment_summarygroup:segment_summary:start_time" Type="int_4s"/>

<Column Name="segment_summarygroup:segment_summary:end_time" Type="int_4s"/>

<Column Name="segment_summarygroup:segment_summary:comment" Type="lstring"/>

<Column Name="segment_summarygroup:segment_summary:segment_def_id" Type="ilwd:char"/>

<Column Name="segment_summarygroup:segment_summary:process_id" Type="ilwd:char"/>

<Stream Name="segment_summarygroup:segment_summary:table" Type="Local" Delimiter=",">

"segment_summary:segment_sum_id:5",918836976,918836992,"",
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"segment_definer:segment_def_id:40","process:process_id:0",

"segment_summary:segment_sum_id:6",918836976,918836992,"",

"segment_definer:segment_def_id:39","process:process_id:0",

"segment_summary:segment_sum_id:11",918836976,918836992,"",

"segment_definer:segment_def_id:37","process:process_id:0",

"segment_summary:segment_sum_id:12",918836976,918836992,"",

"segment_definer:segment_def_id:35","process:process_id:0",

"segment_summary:segment_sum_id:42",918836976,918836992,"",

"segment_definer:segment_def_id:36","process:process_id:0",

"segment_summary:segment_sum_id:46",918836976,918836992,"",

"segment_definer:segment_def_id:38","process:process_id:0"

</Stream>

</Table>

</LIGO_LW>

9.4 S6 Segment Database Design

The five tables used for the S6 segment database are shown in Fig. 9.4. Each table

has a corresponding structure in the XML files. In addition to the segment_definer,

segment_summary and segment tables discussed above, we add process and process_params

tables that indicate the program that created each flag and how that program was

run.

9.5 Command Line Tools

We now turn to the tools that implemented the various mappings between flags and

sets of times discussed above. Except where noted these programs could all operate

on either XML files or the segment database. Except for ligolw segment insert

all programs could only read information from the database, they could not add or

change existing data. Flags were specified in the form ifo:name:version. For many

programs the version could be omitted and the program would report on the latest

defined version.

9.5.1 ligolw segment query

ligolw segment query was designed to answer the following questions:

• What DQ flags exist in the database? ligolw segment query --show-types

• When was a given flag inserted? ligolw segment query --query-types

• When was a given DQ flag defined? ligolw segment query --query-types
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Figure 56 : Structure of the S6 segment database. Each box represents a table (a set of structured

data), the name of which is in grey. The lines within the boxes are the names of columns, individual

data elements within the table. For example, the process params table contains a set of rows, each

row contains data elements named program, type, value and intertion time.
The lines between boxes indicate relations between tables. For example, the segment definer is
connected to the segment summary and segment tables through the segment def id. This imple-
ments the conceptual relations between these entities discussed above.

• When was a given flag active? ligolw segment query --query-segments

The built-in help message, generated by ligolw segment query --help is shown

below:

DESCRIPTION:

--version show program’s version number and exit

-h, --help show this help message and exit

-p, --ping Ping the target server

-y, --show-types Returns a xml table containing segment type

information: ifos, name, version,
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segment_definer.comment, segment_summary.start_time,

segment_summary.end_time, segment_summary.comment

-u, --query-types Returns a ligolw document whose segment_definer table

includes all segment types defined in the given period

and included by include-segments and whose

segment_summary table indicates the times for which

those segments are defined.

-q, --query-segments Returns a ligolw document whose segment table contains

the times included by the include-segments flag and

excluded by exclude-segments

-s gps_start_time, --gps-start-time=gps_start_time

Start of GPS time range

-e gps_end_time, --gps-end-time=gps_end_time

End of GPS time range

-t segment_url, --segment-url=segment_url

Segment URL. Users have to specify either ’https://’

for a secure connection or ’http://’ for an insecure

connection in the segment database url. For example,

’--segment-url=https://segdb.ligo.caltech.edu’. No

need to specify port number.

-d, --database use database specified by environment variable

S6_SEGMENT_SERVER. For example,

’S6_SEGMENT_SERVER=https://segdb.ligo.caltech.edu’

-f, --dmt-files use files in directory specified by environment

variable ONLINEDQ, for example,

’ONLINEDQ=file:///path_to_dmt’. ’file://’ is the

prefix, the acutal directory to DMT xml files starts

with ’/’.

-a include_segments, --include-segments=include_segments

This option expects a comma separated list of a colon

separated sublist of interferometer, segment type, and

version. The union of segments from all types and

versions specified is returned. Use --show-types to

see what types are available. For example:

--include-segment-types H1:DMT-SCIENCE:1,H1:DMT-
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INJECTION:2 will return the segments for which H1 is

in either SCIENCE version 1 or INJECTION version 2

mode. If version information is not provided, the

union of the segments of the latest version of

requested segment type(s) will be returned.

-b exclude_segments, --exclude-segments=exclude_segments

This option has to be used in conjunction with

--include-segment-types --exclude-segment-types

subtracts the union of unwanted segments from the

specified types from the results of --include-segment-

types. If version information is not provided,

--exclude-segment-types subtracts the union of

segments from the latest version of the specified

segment types. For example, --include-segment-types H1

:DMT-SCIENCE:1,H1:DMT-INJECTION:2 --exclude-segment-

types H1:DMT-WIND:1,H1:DMT-NOT_LOCKED:2,H2:DMT-

NOT_LOCKED:2 will subtract the union of segments which

H1 is in version 1 WIND and H1,H2 is version 2

NOT_LOCKED from the result of --include-segment-types

H1:DMT-SCIENCE:1,H1:DMT-INJECTION:2

-S, --strict-off The default behavior is to truncate segments so that

returned segments are entirely in the interval [gps-

start-time, gps-end-time). However if this option is

given, the entire non-truncated segment is returned if

any part of it overlaps the interval.

-o output_file, --output-file=output_file

File to which output should be written. Defaults to

stdout.

ligolw dq query

Below are the questions that ligolw dq query was designed to answer:

• is a given flag active at a given time? ligolw dq query --active

• is a given flag defined at a given time? ligolw dq query --defined
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• what is the status of all flags at a given time? ligolw dq query --report

The built-in help message, generated by ligolw dq query --help is shown below:

DESCRIPTION:

--version show program’s version number and exit

-h, --help show this help message and exit

-p, --ping Ping the target server

-y, --defined Returns a segment summary table containing segments

defined at the given time(s).

-u, --active Returns a segment table containing segments active at

the given time(s).

-q, --report Prints which flags are defined/undefined at the given

time(s). For the flags which were defined, it

determines if the flag was active or inactive at that

time. For an active flag, it prints the start and end

time of the segment to which the active. For an

inactive flag, it prints the end time of the previous

adjacent active segment and the start time of the next

adjacent active segment

-s start_pad, --start-pad=start_pad

Seconds before given time(s) to include in query

-e end_pad, --end-pad=end_pad

Seconds after given time(s) to include in query

-t segment_url, --segment-url=segment_url

Segment URL

-d, --database use database specified by environment variable

S6_SEGMENT_SERVER

-f, --dmt-files use files in directory specified by environment

variable ONLINEDQ

-a include_segments, --include-segments=include_segments

This option expects a comma separated list of a colon

separated sublist of interferometer, segment type, and

version. The union of segments from all types and

versions specified is returned. Use --show-types to

see what types are available. For example:
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--include-segment-types H1:SCIENCE:1,H1:INJECTION:2

will return the segments for which H1 is in either

SCIENCE version 1 or INJECTION version 2 mode. If

version information is not provided, the union of the

segments of the latest version of requested segment

type(s) will be returned.

-o output_file, --output-file=output_file

File to which output should be written. Defaults to

stdout.

-i, --in-segments-only

If set, report will only return segments that given

times were within

ligolw segments from cats

ligolw segments from cats read a veto definer file (see Sec. 9.5.2) and accessed

either segment XML files or the segment database in order to produce a list of times

to be vetoed. The built-in help message is displayed below:

DESCRIPTION:

--version show program’s version number and exit

-h, --help show this help message and exit

-v veto_file, --veto-file=veto_file

veto XML file (required).

-o output_dir, --output-dir=output_dir

Directory to write output (default=cwd).

-k, --keep-db Keep sqlite database.

-t segment_url, --segment-url=segment_url

Segment URL

-d, --database use database specified by environment variable

S6_SEGMENT_SERVER

-f, --dmt-file use files in directory specified by environment

variable ONLINEDQ

-c, --cumulative-categories

If set the category N files will contain all segments

in categories <= N
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-p, --separate-categories

If set the category N files will contain only category

N

-s gps_start_time, --gps-start-time=gps_start_time

Start of GPS time range

-e gps_end_time, --gps-end-time=gps_end_time

End of GPS time range

For example:

ligolw segments from cats

--gps-start-time 930960015

--gps-end-time 931564887

--segment-url https://segdb.ligo.caltech.edu:30015

--cumulative-categories

--veto-file H1L1V1-S6 CBC LOWMASS ONLINE-928271454-0.xml

ligolw segment insert

ligolw segment insert handled two tasks:

• Insert segments and/or segment types into the segment database.

• Append segments to the existing segment types.

This program uses the terminology IFO (Interferometric Observatory) instead of “de-

tector.” The built-in help message is displayed below:

DESCRIPTION:

-h, --help show this help message and exit

-p, --ping Ping the target server

-t URL, --segment-url=URL

Users have to specify protocol ’https://’ for a secure

connection in the segment database url. For example,

’--segment-url=https://segdb.ligo.caltech.edu’. No

need to specify port number’.

-o FILE, --output=FILE

Write segments to FILE rather than the segment
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database

-j IDENTITY, --identity=IDENTITY

Set the subject line of the server’s service

certificate to IDENTITY

-I, --insert Insert segments to the segment database

-A, --append Append segments to an existing segment type

-i IFOS, --ifos=IFOS Set the segment interferometer to IFOS (e.g. H1)

-n NAME, --name=NAME Set the name of the segment to NAME (e.g. DMT-

BADMONTH)

-v VERSION, --version=VERSION

Set the numeric version of the segment to VERSION

(e.g. 1)

-e EXPLAIN, --explain=EXPLAIN

Set the segment_definer:comment to COMMENT. This

should explaining WHAT this flag mean (e.g. "Light dip

10%"). Required when --Insert/-I is specified.

-c COMMENT, --comment=COMMENT

Set the segment_summary:comment to COMMENT. This

should explaining WHY these segments were inserted

(e.g. "Created from hveto results")

-S FILE, --summary-file=FILE

Read the segment_summary rows from FILE. This should

be a file containing the gps start and end times that

the flag was defined, deliminated by comma (i.e. the union of on a

-G FILE, --segment-file=FILE

Read the segment rows from FILE. This should containin

the gps start and end times when the flag was active deliminated b

As an example, the command to insert segments of a new type would look like:

ligolw segment insert

--segment-url https://segdb.ligo.caltech.edu

--ifos ’H1’

--name ’DCH-TEST’

--version 1

--comment ’testing if insert works’
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--explain ’test insert’

--segment-file segment.txt

--summary-file summary.txt

--insert

To append segments to an existing segment, the command would look like:

ligolw segment insert

--segment-url https://segdb.ligo.caltech.edu

--ifos ’H1’

--name ’DCH-TEST’

--version 1

--comment ’testing if append works’

--segment-file append segment.txt

--summary-file append summary.txt

--append

9.5.2 The Veto Definer

Problems in the data may have differing levels of severity, and consequently we define several

veto categories to characterize them. We defer discussion of the meaning of these categories

until the next chapter, but note here that the categories are indicated by integers from 1

to 4, in decreasing levels of severity. These categories are commonly referred to as CAT1

through CAT4. We also note that time marked with CAT1 is entirely excluded form the

analysis. 4091 seconds of data with one second of CAT1 time in the middle will be split into

two 2045-second chunks. Neither of these will be analyzable by the ihope pipeline, which

requires 2048 seconds of data in order to compute the PSD as discussed in Sec. 4.4. Short

CAT1 vetos can therefore effectively veto much larger times, and such vetoes are therefore

to be avoided whenever possible.

In order to veto a chunk of time it is necessary to map a data quality flag to a veto

category. This is accomplished with a veto definer file. Such files are specific to each

search, as time that is problematic for one search may pose no issues for another. The

ligolw segments from cats program (see above) merges the information in this file with

the set of active flag segments to produce veto segments at each veto level. Analysis is

performed on times marked as science with no CAT1 vetoes. Triggers from times marked

as CAT2, CAT3 and CAT4 are discarded from both foreground and background.
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In some circumstances the search is more sensitive to anomalous conditions than the

DMT and excess triggers may be produced outside the time covered by the flag. This is

one motivation for using the search itself as a data quality tool, as discussed in the next

chapter. The veto definer file therefore allows for padding, offsets which effectively extend

the flags. The padding used will be specific to each search, as different searches will be

sensitive to different classes of problems over different extents.

9.5.3 Example Veto Configuration File

The veto configuration file should contain a process table describing how it was created and

a veto_definer table describing the flags to be applied at different levels. The comment

column of the process table should contain the version of the file. The columns in the

veto_definer table are as follows: ifo, name and version uniquely define a particular

DQ/veto flag. category indicates at which category the veto should be applied, start_time

and end_time denote the GPS time interval for which the DQ/veto flag should be applied

(Note: if end_time is zero, then the current GPS time is assumed). start_pad and end_pad

are the padding time (in seconds) applied to the start and end of the veto segments. Note

that these are signed: if you want time vetoed to start time to be earlier than the start time

listed in the database, then the emph start_pad should be negative. Similarly, if the time

vetoed should extend after the end time stored in the database, then the value in end_pad

should be positive. The comment column can be used to store an optional human-readable

comment.

<?xml version=’1.0’ encoding=’utf-8’ ?>

<!DOCTYPE LIGO_LW SYSTEM "http://ldas-sw.ligo.caltech.edu/doc/ligolwAPI/html/ligolw_dtd.txt">

<LIGO_LW>

<Table Name="process:table">

<Column Name="process:process_id" Type="ilwd:char"/>

<Column Name="process:program" Type="lstring"/>

<Column Name="process:version" Type="lstring"/>

<Column Name="process:cvs_repository" Type="lstring"/>

<Column Name="process:cvs_entry_time" Type="int_4s"/>

<Column Name="process:node" Type="lstring"/>

<Column Name="process:username" Type="lstring"/>

<Column Name="process:unix_procid" Type="int_4s"/>

<Column Name="process:start_time" Type="int_4s"/>

<Column Name="process:end_time" Type="int_4s"/>

<Column Name="process:ifos" Type="lstring"/>

<Column Name="process:comment" Type="lstring"/>

<Stream Name="process:table" Type="Local" Delimiter=",">

"process:process_id:0","ligolw_veto_file","1.1",

"/usr/local/cvs/lscsoft/glue/bin/ligolw_veto_file,v",822908378,

"ldas-grid.ligo.caltech.edu","jrsmith",16830,822879594,822879594,

"H1","Example file by Josh"

</Stream>

</Table>

<Table Name="veto_definer:table">

<Column Name="veto_definer:process_id" Type="ilwd:char"/>

<Column Name="veto_definer:ifo" Type="lstring"/>
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<Column Name="veto_definer:name" Type="lstring"/>

<Column Name="veto_definer:version" Type="int_4s"/>

<Column Name="veto_definer:category" Type="int_4s"/>

<Column Name="veto_definer:start_time" Type="int_4s"/>

<Column Name="veto_definer:end_time" Type="int_4s"/>

<Column Name="veto_definer:start_pad" Type="int_4s"/>

<Column Name="veto_definer:end_pad" Type="int_4s"/>

<Column Name="veto_definer:comment" Type="lstring"/>

<Stream Name="veto_definer:table" Type="Local" Delimiter=",">

"process:process_id:0","H1","OUT_OF_LOCK",0,1,917985615,0,0,0,"",

"process:process_id:0","H1","BADGAMMA",1,1,917985615,0,0,0,"",

"process:process_id:0","H1","ASC_Overflow",0,2,917985615,0,-8,8,"ASC saturations are cat2",

"process:process_id:0","H1","PD_Overflow",0,2,917985615,0,-8,8,"PD saturations are cat2",

"process:process_id:0","H1","SEVERE_LSC_OVERFLOW",0,2,917985615,0,-8,8,"LSC saturations are cat2",

"process:process_id:0","H1","INJECTION",1,2,917985615,0,-16,64,"Remove HW injections at cat1",

"process:process_id:0","H1","ASC_Overflow",0,3,917985615,0,-8,25,"ASC saturations are cat3 with larger pad",

"process:process_id:0","H1","SEVERE_LSC_OVERFLOW",0,3,917985615,0,-8,25,"LSC saturations are cat3 with larger pad",

"process:process_id:0","H1","PD_Overflow",0,3,917985615,0,-8,25,"PD saturations are cat3 with larger pad",

"process:process_id:0","H1","Wind_over_30MPH",0,3,917985615,0,-8,8,"Windy",

"process:process_id:0","H1","LIGHTDIP_1_PERCENT",0,3,917985615,0,-2,2,"Exclude all lightdip segments",

"process:process_id:0","H1","PRE_LOCKLOSS_10_SEC",0,3,917985615,0,0,0,"",

"process:process_id:0","H1","PRE_LOCKLOSS_30_SEC",0,3,917985615,0,0,0,"",

"process:process_id:0","H1","PRE_LOCKLOSS_60_SEC",0,3,917985615,0,0,0,"",

"process:process_id:0","H1","PRE_LOCKLOSS_120_SEC",0,3,917985615,0,0,0,"",

"process:process_id:0","H1","ASI_CORR_OVERFLOW",0,4,917985615,0,-8,25,"Does this make sense for DC readout",

"process:process_id:0","H1","LSC_OVERFLOW",0,4,917985615,0,-8,25,"LSC saturations",

"process:process_id:0","H1","PRE_LOCKLOSS_600_SEC",0,4,917985615,0,0,0,"",

"process:process_id:0","H1","PRE_LOCKLOSS_1800_SEC",0,4,917985615,0,0,0,""

</Stream>

</Table>

</LIGO_LW>
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Chapter 10

Characterization of a Gravitational

Wave Detector

In chapter 3 we noted the presence of glitches, short transients, in the detector noise. In

chapter 4 we noted that such glitches could produce triggers. We have also noted that, in

order to claim a detection, a candidate gravitational-wave trigger must stand out above the

background comprised of triggers from noise sources, including glitches. There is therefore

a need to identify and remove glitches. Ideally glitches would be removed at the source, by

addressing the underlying cause in the detector. However, by the time a glitch has been

seen, and often long before a cause can be identified and addressed, it is already in the data.

We must therefore devise ways to remove glitches from the data as part of the analysis. The

activities of identifying glitches and glitch mechanisms and removing them from analyses

fall into the category of detector characterization.

In the preceding chapter we discussed data quality flags, which characterize the state

of the detectors at any time, the various repositories for storing these flags, and the tools

for creating and accessing them. We also discussed the veto definer file, which maps flags

to veto levels. By combining a veto definer with a set of data quality flags we produce a

set of veto segments, intervals of time that should either not be analyzed at all or which

should be removed from the analysis. We have thus far not discussed the construction of

the veto definer file. This file may be thought of as the product of detector characterization

studies. In broad terms the goal is to identify glitches, correlate them with existing flags

or create new ones, and remove the glitches from analyses by associating the flag with a

veto severity level through the veto definer file. One of the most significant features of the

S6 run is that the data analysts working on detector characterization were in close contact
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with the commissioners working on the detectors. This meant that, in addition to cleaning

the search, information about problematic behavior in the detector could be used to fix the

problems at the source, in turn allowing more time to be analyzed and the prospects for

making a detection to improve.

Detector characterization in S6 was a major undertaking, much more information can be

found in an upcoming paper by the LIGO Scientific Collaboration (LSC) and Virgo. Three

primary tools were run either continuously or with low-latencies to provide views into the

data, although these were supplemented with numerous short special-purpose programs.

Two of these tools, the Klinewelle pipeline [130] and the Omega pipeline [131] project data

onto a wavelet basis and identify as triggers times and frequencies with amplitudes above

a given threshold. They thus look for “bursts” of excess power. Both these tools were run

on many auxiliary channels in addition to the detector output. The third tool, daily ihope,

is the focus of the current chapter. We proceed as follows:

In Sec. 10.1 we introduce the daily ihope pipeline, focusing on the differences between

daily ihope and the full ihope pipeline discussed in 4.4.

We then move to general applications of the daily ihope results. Section 10.2 gives a

walk-through of a web-based front end to daily ihope which provided numerous views into

the behavior of the detectors over 24-hour periods. Section 10.3 discusses the changes to

the low-mass pipeline that were implemented in part based on results from daily ihope.

Section 10.4 focuses on the use of daily ihope in constructing the veto definer file used in

the low-mass search.

We next discuss applications of daily ihope to the study of a specific event, a potential

gravitational wave candidate that ultimately was revealed to be a hardware injection that

was performed as a “blind injection challenge” meant to test the search pipelines. Until the

nature of the candidate was revealed the collaboration followed it up with all due diligence,

including many studies that needed to be performed rapidly. The studies that were enabled

by daily ihope are discussed in Sec. 10.5.

Finally, in Sec. 10.6 we note some issues with the pipeline that were flagged by daily

ihope, and discuss preliminary attempts to address them. As of this writing these problems

remain unsolved and are areas of active research.

10.1 Daily Ihope

As discussed in chapter 4, the CBC group uses the ihope pipeline to search for gravitational

waves produced by the inspiral of binary systems consisting of neutron stars and/or black



185

holes. During S6/VSR2,3 the goal of the CBC group was to run the full analysis every two

weeks with latencies as low as possible. The daily ihope runs were conceived of as a way

to characterize the detector in order to look for potential problems in advance of the full

analysis, particularly problems specific to the CBC search.

It is important to stress that daily ihope was not itself a gravitational-wave search,

rather it was a tool to characterise the detectors. This goal determined the specifics of the

daily runs, but more significantly it leaves the full search unbiased.

10.1.1 The Daily Ihope Pipeline

Recall that ihope is a templated, matched-filter search. For the low-mass search, which was

the focus of the daily runs, the templates are restricted, stationary-phase frequency-domain

waveforms with phase evolution taken to 3.5 pN order (see Appendix A). The templates

are laid out in a bank with 97% overlap between nearest neighbors, and the mass range

is from 2 M� − 25M�. A χ2 discriminator is constructed to better separate signals from

glitches (eqn.4.21), and the information from this discriminator is used along with the SNR

to construct the ρnew detection statistic (eqn. 4.22).

By construction, a great deal of the information provided by the full bank search is

redundant. This is necessary in the full search to avoid losing more than 3% of the SNR

from a real signal. However, as daily ihope is not a search this requirement no longer holds.

Further, the evaluation of each additional template and the initial layout of the bank incurs

significant computational overhead. Therefore a number of simplifications were made to

the daily ihope bank.

First, a static bank was used for each detector, based on the layout at a time in each de-

tector when the inspiral range was high, no operational problems were noted by the scimon

or operator, and the Omega, Klinewelle, and daily ihope pipelines showed no anomalous

behavior. Second, the number of templates was reduced. Lower-mass systems have more

cycles in the sensitive LIGO band, there is therefore ample information to distinguish be-

tween waveforms with close parameters. Conversely, this means that the low-mass end of

the bank is very dense (in the sense of number of templates per unit square in parameter

space, they are still equidistant in the sense of the bank metric). Such fine resolution is not

needed when looking for glitches, therefore the minimal match between templates in the

region below a chirp mass (M = Mη3/5) of 3.46 M� was set to 0.5. At higher masses, up to

a total mass of 25M�, the minimal match was set to 0.95. In addition to ensuring coverage

in a mass region which is naturally sparser this ensures that short glitches, characteristic of

many glitch mechanisms, were flagged with large SNRs. The resulting hybrid bank for the
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Figure 57 : The hybrid template bank used by daily ihope for the Hanford detector, the banks for
L1 and V1 are similar. The cut is made at constant chirp mass, which is a curve in the total mass,
η plane.

Hanford detector is shown in figure 57.

We are interested in not only the SNR, but also the extent to which glitches are able

to mimic real signals. We therefore wish to calculate χ2. However, this is computationally

expensive, as it amounts to filtering with each template 16 times. Reducing the size of the

bank helps, but we can obtain results even faster by splitting the bank into smaller sub-

banks and filtering with each in parallel. As the templates are independent at this stage

there is no complication in doing so.

Daily ihope processing ran at 03:00 GMT and examined data spanning the 24 hours

ending at 00:00 GMT. Unlike full ihope, the analysis was done on all time marked as science

by the operator and SciMon (see Sec. 9.1), including that which would be vetoed at CAT1

in the full analysis. This was done so that we could see the effect of the CAT1 vetoes. It is

plausible, for example, that some such vetoes would be too aggressive and we could decide
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based on the daily results to include such times back into the analysis. For consistency

science time was denoted CAT0. In addition CAT3 vetoes to remove hardware injections

were not applied, so that we could see how many injections would be lost by CAT4 vetoes.

The daily pages therefore displayed results for categories 0, 1, 1+2, and 1+2+4.

For each 2048-second chunk of contiguous data, at each detector, the data was run

through each template in the bank and triggers selected as described in Sec. 4.1.4. For each

trigger χ2 and new SNR were calculated and recorded. Clustering was then done in order to

focus attention on glitches that were most likely to cause problems in the full search. Two

sets of clustered triggers were recorded using windows of 30 milliseconds and 16 seconds.

For each set the trigger with the largest value of new SNR across all templates within the

window length was recorded.

A version of the veto definer file designated for low-latency use was placed on a web

site from where it could be downloaded by daily ihope. This file was used to generate veto

segments using the ligolw_segments_from_cats program discussed in Sec. 9.5.1. Any

trigger that fell within the vetoed segments was removed.

The structure of daily ihope is summarized in Fig. 58. The result is, for each 2048-second

block in each ifo, 3 cluster levels times 4 veto levels = 12 sets of triggers.

10.2 The Daily Ihope Report Pages

The output of daily ihope is a set of triggers. These triggers were used by many programs

to produce or validate vetoes, some of these uses will be discussed in Sec. 10.4.

In addition to such programmatic usage, the daily pipeline also produced a large number

of plots and reports that data analysts could use to spot potential problems before the full

analysis was run in order to begin more detailed followup studies. These plots were organized

into web pages that were available to the collaboration. We now present a walk-through of

the daily pages.

Each report and plot is made for each combination of the following:

• Detector: H1, L1 and V1 for the Hanford, Livingston and Virgo detectors. Daily

ihope refers to these as Interferometric Observatories or IFOs.

• Cluster level: Unclustered, 30 ms clustering, 16 second clustering

• Veto level: Show all triggers in science time (level “0”), only those not removed by

category 1 vetos, only those not removed by categories 1 or 2, or only those note
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Figure 58 : Structure of the daily iHope search. The bank has been generated and split into sub-
banks to speed up the process, as described in the text. Each sub-bank is filtered with χ2 turned on.
Triggers are then grouped and clustered. The vetoes are applied sequentially, and at each stage plots
are generated. The entire diagram is replicated for each 2048-second block and for each detector.
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Figure 59 : Top-level web interface for daily ihope. Options can be selected with the controls on
the left hand side, when a button is clicked the contents region is immediately replaced. The default
view is the one shown here; the analysis time and veto efficiency at cat 1 for the Hanford detector.

removed by categories 1,2 and 4. Hardware injections vetos (category 3) were not

applied so that we could determine whether category 4 vetoes were removing them.

Each of these features could be set independently. The top-level web interface for a

sample day is shown in Fig. 59. The available reports can bee seen at the bottom of the

list of controls on the left.

1. Analysis time and veto usage.

This report shows the total time analyzed, the vetoes applied beyond those applied at

the previous level, the efficiency (percentage of triggers removed) and deadtime (percentage

of time removed) by each veto. In addition the ratio of efficiency over deadtime is reported

as a measure of quality of the veto. A random veto would result in an efficiency-over-

deadtime of approximately 1, a finely-tuned veto that removes short, loud events that ring

off the entire template bank would have a much higher ratio. An example is shown in

Fig. 60.

2. Loudest triggers

This report was only run for 16-second-clustered triggers. Loud glitches tend to produce
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Figure 60 : A sample veto usage report, see text for explanation. Note that 62.66% of all
triggers were contained in 14.51% of time, and the DMT flagged this time with elevated seis-
mic activity from 3-10 Hz in the Laser Vacuum Equipment Area (LVEA), as indicated by the
DMT-BRMS SEISMIC LVEA Z 3 10 HZ THRESH 2E3 flag.
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Figure 61 : A sample report on loudest triggers, see text for explanation. Note the rightmost
column is populated by the ligolw dq query program in the --report mode. Note also that
there are several triggers with no corresponding data quality flags. This would call for further
investigation, the first step of which is to examine the associated omega scans, which we show in
Fig. 62. Finally, note that of the loud triggers that do have data quality flags all are marked with
the DMT-INJECTION-INSPIRAL flag, meaning these triggers are from hardware injections. This is a
good sign, it means that the most significant triggers are simulated signals rather than glitches.

families of triggers, without clustering the loudest triggers from each day would likely result

from one underlying event. This report considers two classes of triggers; those where no

data quality flag was active and those where at least one flag was active. A sample report is

shown in Fig. 61. For the five triggers with highest new SNR in each category a summary

was presented along with a link to an omega scan. The omega pipeline is described in [131].

Omega scans are a time-frequency plot which are run on all auxiliary channels recorded

by the detectors and therefore provide a visual aid to detect coupling between auxiliary

channels and DARM ERR. These can be used to suggest mechanisms behind glitches, especially

those that were not already marked by a data quality flag. In addition, over time repeated

shapes in the omega scan can pinpoint underlying problems in the detectors that need to

be addressed. A few images from one of the glitches in Fig. 61 is shown in Fig. 62.
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Figure 62 : Omega scans from the loudest trigger in the Hanford detector in figure 61. Note the
trigger closely follows a loud event in one of the accelerometers on an instrument table.

3. Hardware injections

This report was generated by code written by John Veitch at Cardiff University. It

compared the list of hardware injections, published as an XML file available from a web

site, with the list of analysis times and triggers. The results were plotted to indicate whether

each injection was found, missed, or not analyzed.

4. SNR histograms

These plots show the number of triggers as a function of ρ and ρnew. As noted in

Sec. 4.1, in Gaussian noise the number of triggers should be proportional to exp(−ρ2/2).

These plots therefore show the degree of “non-Gausianity” in the data. A common use for

these plots was to compare different veto levels to get a sense of how well the cumulative

vetoes were cleaning the data, as shown in figure 63.

Similarly, Fig. 64 shows histograms of the triggers in new SNR. The total number of

triggers is greatly reduced because many high-SNR triggers have ρnew < 5 , where the plot

cuts off. While triggers with such low ρnew values are not excluded from later stages of

analysis in the full pipeline, it is extremely unlikely that the resulting combined new SNR

will be high enough to stand above background.

In addition to the lower number of triggers overall, the new SNR plot is closer to

a straight line indicating behavior closer to that expected in Gaussian noise. However,
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Figure 63 : Sample trigger histograms by SNR. The dashed line shows the expected values in
Gaussian noise. The dot indicates the cumulative number of triggers with ρnew greater than 200.
Note that at veto category 4 (right) the histogram is closer to the expected line than it is at category
1 (left). This indicates the degree to which data quality has removed non-Guassian noise.

Figure 64 : Sample trigger histograms by new SNR. The data is much cleaner than the SNR
histograms, but there is still an outlier at ρnew = 8.

detector characterization improves the situation still further, as the number of triggers is

reduced at veto category 4.

However, there is one trigger with ρnew = 8 that is not removed by any veto. Such an

outlier warrants further investigation, which here is provided by the loudest events page. An

example of this page is shown in 61. The omega scan from the time of this event is shown

in Fig. 65, and it clearly rules out a gravitational wave as the source of this trigger. This

illustrates the important point that new SNR can be fooled, and hence continued human

participation in detector characterization is necessary.

5. The “glitchgram”

This was an “at-a-glance” summary of the day, showing every trigger color-coded by

SNR. This highlighted times of loud triggers. In addition dense regions of the plot indicated

times of numerous quiet glitches, which might not show up on the rate-vs-time, snr-vs-time

or loudest triggers pages. A sample is shown in figure 66.
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Figure 65 : The omega scan from the outlier with ρnew = 8 that survives all automated data
quality vetoes. Many auxiliary channels showed the same behavior at this time. This is clearly not
a gravitational wave, but was not removed by either signal-based vetoes or data quality vetoes.
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Figure 66 : A sample “glitchgram.” Blue dots have ρnew values below 8, green have values between
8 and 16, and red have values above 16. Template length was chosen as the Y axis in order to
capture a feature of the templates that is not specific to gravitational-wave signals, such as chirp
mass. Note the break at 4.3 seconds, corresponding to the chirp mass at which the bank switches
from an overlap of 0.95 to 0.5. No data is analyzed after 21:00 because ihope requires at least 2048
contiguous seconds to estimate the PSD and all data after this time was in smaller segments.
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Figure 67 : Sample rate plot, showing rate in Hz (averaged over 1-minute intervals) as a function
of time. Note that the rates increase after 12:00. This was due to increased seismic noise.

6. Rate vs. Time and SNR vs. Time

These plots complimented the glitchgram by breaking the triggers up differently. The

rate plot (Fig. 67) showed average number of triggers over 1-minute intervals. The SNR

plot (Fig. 68) showed the SNR of every trigger as a function of time. These tend to be

correlated, as loud glitches ring off the entire bank and produce large numbers of triggers.

The plots were accompanied by tables showing the times where the rate of triggers exceeded

500 Hz for more than one second, and exceeded 200 Hz for more than 10 seconds.

7. Breakdown by template

This page showed several histograms of number of triggers as a function of the length

of templates in seconds. Examples of the standard histograms are shown in Fig. 69, they

show that most of the triggers come from short templates, and templates shorter than 5

seconds produce up to six times as many triggers as shorter templates. Figure 70 shows the

same information as a map of the template bank, color-coded to indicate how many triggers

each template produced. Figure 71 breaks this same information up by time and template

mass. Qualitatively these plots do not change much day-by-day, and so these plots were
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Figure 68 : Sample plot of SNR as a function of time. The density of triggers increases somewhat
after 12:00 and there are more loud outliers. However the change in behavior is better seen in figure
67.

not often used. However, they did prompt a change to the analysis made early in the S6

run, see Sec. 10.3.

8. The χ2 test

These plots showed all triggers with SNR values on the x-axis and χ2/(2p − 2) (the

reduced χ2) on the y-axis. These plots are most useful when compared to a reference plot

generated from a day of simulated Gaussian noise, shown in figure 72, and comparing the

Figure 69 : Histograms of trigger rates by template length in daily ihope. The plot on the left
combines all templates, the plot on the right normalizes by plotting (number of triggers resulting
from templates of length x) divided by (number of templates of length x).
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Figure 70 : The daily template bank, color-coded to show how many triggers each template pro-
duced. Note that the template in the upper-right corner, which is the template of shortest duration,
produced approximately 1.3 times as many triggers as the next most active.
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Figure 71 : Trigger rates as a function of time and template length. The elevated trigger rate after
12:00 is visible here as well. Note that particularly loud glitches, such as that around 19:30, ring off
the entire bank.

plots at different veto levels, shown in figure 73.

10.3 Applications of Daily Ihope to Pipeline Tuning

The plots presented in the previous section provided a great deal of information about both

the detectors and the response of the search software. These could be correlated with the

behavior of the full search in order to identify the cause of problems and motivate solutions.

We now give two examples.

Early in S6 there were frequent instances where we were unable to complete the full

analysis. This was due to individual programs taking abnormally long to complete, con-

suming far more than the expected amount of memory, or failing outright. The problematic

jobs tended to be individual runs of the trigbank program. This is the step at which

triggers from the first stage are examined to determine which templates need to be used

at the second stage (see Sec. 4.4. Comparing the times that caused problems to the daily

pages immediately revealed a correlation – times over which trigbank were unable to run

were those where the rates of triggers were abnormally high.

In S5 and the early weeks of S6 triggers were clustered using a method called trigscan [132]

which attempts to collapse clusters of triggers that are close in time and parameters to a

single most-significant trigger. Early versions of the daily page did this clustering as well,
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Figure 72 : The SNR/reduced χ2 plane for a reference day of Gaussian noise. This is the product
of a χ2 distribution on the y axis and a Gaussian distribution on the x axis.

Figure 73 : SNR/reduced χ2 plots of H1 data. The expected shape of figure 72 is discernible, but
there are long tails of non-Gaussian glitches. The sharp cutoffs arise from thresholds within the
inspiral code, see Sec. 4.1.4. There is a further population extending to the upper right at category
0 (left) that is removed by vetoes in category 4 (right).
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Figure 74 : Problematic times identified by daily ihope. The plot on the left shows the rate of
triggers over the day without any clustering. Note the sudden jump in rate at 5:40. On the right,
the same plot after clustering triggers with the trigscan algorithm. The overall rate has been reduced
by about a factor of two, indicated by the different scales on the y axes. However, the rate remains
high enough to cause problems.

and comparison between the unclustered and trigscan-clustered triggers revealed that even

after clustering periods of high trigger rates remained 1. This is illustrated in Fig. 74. There

is a short period of high trigger rate around 05:40 which remained high after clustering. A

run of trigbank processing this time was unable to complete.

The possibility of vetoing such glitchy periods was raised, and this would have been easy

to accomplish using the rate information from daily ihope. However, such vetoes would have

needed to be CAT1 to avoid the problem, which would mean subdividing science segments

and possibly losing short segments. Instead we replaced trigscan with fixed 30-millisecond

clustering windows, after studies of software injections determined that this change did not

harm the ability of the search to make detections.

At the start of S6 the range of the low-mass search extended up to 35M�, as it did

in S5. However, along with times of high trigger rates, the daily ihope pages indicated

that most of the triggers were coming from the high-mass end of the bank. This behavior

is expected, as it is easier for short templates to match against glitches, but the trigger

histograms highlighted the extent to which this was a problem. A sample plot of triggers

per template from early S6 is shown on the left of Fig. 75. It shows that the shortest

template in the bank, with m1 = m2 = 17.5M� was producing significantly more triggers

than any other template. In part this was due to a bug in the template bank code that

1Trigscan worked well in S5, it is not known why it did not work as well in S6. It is possible

that the detectors were simply more glitchy in the early days of S6. However, in order to group

triggers together trigscan must use the bank metric, which was correct in S5 when 2.0 pN templates

were used but incorrect in S6 when the analysis moved to 3.5 pN templates (see Sec. 4.3). Some

preliminary investigations were performed, but results were inconclusive
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Figure 75 : Problematic templates seen in daily ihope. This shows the equivalent of figures 71 and
70 from an earlier version of daily ihope and an earlier version of the CBC search. Note the excess
of triggers from the high-mass end of the bank, corresponding to shorter templates.

caused this template to appear twice in some banks. In part the abundance of triggers

from this template is due to it appearing in every bank throughout the day, whereas other

templates tend to get repositioned as the noise curve changes. Even taking these effects

into account, most of the triggers come from templates shorter than 5 seconds, as seen on

the right of Fig. 75.

The fixed clustering window means that only the loudest trigger in a 30-millisecond

window will be passed to subsequent stages of the analysis. Given the numbers of triggers

from short templates there was concern that a loud, short glitch could mask a quieter trigger

from a binary neutron star coalescence. We therefore decided to limit the low-mass search

to M < 25M� after comparing plots of injections in the same data made with the different

mass ranges. These comparisons showed that the search with the smaller bank recovered

injections in the mass range as well or better than the larger bank.

10.4 Applications of Daily Ihope to Individual Vetoes

Daily ihope was created primarily as a source of information to be used in construction of

the veto definer file. We now define the veto categories used in S6 and present examples of

the use of daily ihope in constructing each.
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10.4.1 Category 1

Category 1 vetoes indicates time that should not have been marked as science mode. Typ-

ically attempting to analyze this time will adversely affect the entire 2048-second analysis

chunk, for example by biasing the PSD (section 4.4). Note that it is possible to correct

science time by creating a new version of the DMT SCIENCE flag with an incremental version

number. However, doing so is a more complicated process than creating a veto flag, and

removing time by denoting it CAT1 carries additional information about the reason for the

veto. As noted in section 9.5.2 category 1 vetoes are undesirable as they may break data

into segments that are too short to be analyzed.

Glitches from the Thermal Compensation System

The design of the LIGO mirrors accounted for the fact that in operation they would

be heated by the laser and the radius of curvature would change. However, the mirror’s

absorption of energy was larger than expected and the mirror overheated and deformed more

than expected [133]. To correct for this a compensating laser was added that would heat the

mirror in a ring in order to restore the radius of curvature to an optimal value. However,

this laser would occasionally fluctuate, kicking the mirror through radiation pressure and

producing a loud noise transient in the detector and loud triggers in the search.

The identification of these glitches was straightforward; they were often the loudest

glitches of the day and were readily visible in the daily ihope “loudest trigger” report, as

well as similar reports generated by Klinewelle and Omega. The cause was similarly easy to

identify, as the omega scans generated by daily ihope showed egregious behavior in the TCS

channels. An automated veto based on a threshold value in the TCS channel was added to

the DMT at category 2. However, some instances were loud enough to interfere with the

CBC pipeline in surrounding times for reasons we will discuss in Sec. 10.6. Hence it was

decided to veto these times at category 1. These features are illustrated in Fig. 76.

Grid glitches

This was a loud, broad-band glitch that produced a grid of triggers in the Klinewelle

pipeline’s time-frequency plane, where the phenomena was first seen. They also showed

up in the daily ihope rate and SNR plots as loud triggers accompanied by elevated trigger

rates, as shown in Fig. 78. These also often appeared on the daily list of loudest glitches, the

omega scans generated by daily ihope showed problems in magnetometers and the output
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Figure 76 : TCS glitches in daily ihope and followup omega scans. The top left shows the trigger
SNRs as a function of time, the loudest triggers are all TCS glitches. Note that each loud glitch
comes in the form of a “tower” containing many triggers. This phenomena will be discussed further
in Sec. 10.6.1. This is further illustrated by the trigger rate plot (top right), which shows elevated
trigger rates at the times of the glitch. Note that around the time of the glitch the trigger rate
actually drops significantly. This will be discussed in Sec. 10.6.2, but indicates that the glitches are
loud enough to interfere with the analysis in surrounding times, justifying the use of a CAT 1 veto.
The lower left plot shows the omega scan of the detector output channel at the time of the loudest
glitch, clearly showing that this is not a gravitational wave. The lower right plot shows the omega
scan of a channel monitoring the TCS, identifying it as the source of the glitch.
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Figure 77 : Grid glitches as seen by daily ihope. The plot on the left shows ρnew, with the grid
glitches indicated by arrows pointing above the range at which the plot cuts off (auto-scaling of this
plot was removed from daily ihope to prevent a single loud glitch from squeezing all the other data
to a thin region at the bottom of the plot). Note that the high value indicates that this glitch is
fooling the χ2 signal-based veto. The plot on the right shows the associated increase in trigger rate.

mode cleaner photodiodes, this is shown in Fig. 78. As with the TCS glitches, instances that

showed up particularly loudly in daily ihope were hand-vetoed at category 1. The problem

was eventually traced to a power supply, once this was resoldered the problem disappeared.

10.4.2 Category 2

Category 2 vetoes indicate times during which there was a problem, instrumental or environ-

mental, with well-understood coupling into DARM ERR. Such time can be analyzed without

problem, but resulting triggers will be discarded from both the foreground and background.

The spike glitch

The spike glitch was a very loud, very short “bang” in the Livingston detector, charac-

terized by a sudden drop in DARM ERR immediately followed by a sharp jump. An example

is shown in Fig. 79. In some cases there were a few cycles of ringing before the channel

settled back down. These often produced SNR values of several thousand. The χ2 values

were typically large for the events themselves, resulting in negligible ρnew values. However,

the triggers in the tails (see Sec. 10.6.1) could have large new SNR values. A sample daily

ihope plot with several spike glitches and representative omega scans are shown in Fig. 80.

Despite a great deal of effort the cause of these glitches was never identified. However,

the distinctive shape allowed the creation of an automated veto. LSC STRAIN was sampled

every half-millisecond, giving a time series xi. For each sample i the quantity

xi − 2xi+1 + xi+2
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Figure 78 : Omega scans of the grid glitch flagged as the loudest trigger of the day and visible as
an arrow in Fig. 77. At the top, the detector output channel, and at the bottom two channels that
were associated with this class of glitch.
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Figure 79 : A sample spike glitches in DARM ERR. Note the characteristic down-up-down pattern,
and short timespan.
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was calculated, values exceeding a threshold indicated a possible spike and the time was

flagged in the segment database. Not every time so-flagged was a spike, but every instance

indicated a potentially problematic rapid fluctuation in the data.

HEPI glitches

Livingston is subject to seismic activity, both natural and anthropogenic, that does

not effect the Hanford detector. In order for the L1 detector to achieve the same low-

frequency response it is therefore necessary to take additional steps. The Hydraulic External

Pre-Isolation (HEPI ) system sits between the ground and chambers containing optical

components and provides a layer of active seismic isolation. This can reduce noise in the

1-3 Hz band by a factor of 10 [134].

In early 2010 it was noticed that the daily ihope triggers contained several instances with

SNRs above 600 even after applying all known vetoes through category 4. This included

removal of spike glitches and application of the use-percentage vetoes (discussed in the next

section). Followup of these triggers in the daily loudest-glitch reports showed that they

were all accompanied by loud glitches in the HEPI channels. Samples are shown in Fig. 81.

A trial veto was created by scanning the auxiliary channel time series for values exceeding

25,000. This veto was tested by applying it to the remaining daily ihope triggers, and it

was found to be very effective. Histograms of triggers before and after application of this

veto are shown in Fig. 82. After this confirmation the veto was applied at category 2 to the

full search.

A great deal of work was done on HEPI during this period, and after Jan 10, 2010 the

problem ceased.

10.4.3 Category 4

Category 3 vetoes remove hardware injections (Sec. 4.4). In the full analysis hardware injec-

tion vetoes do not have a category number and is denoted “hardware injections removed.”

As this veto category had a fixed meaning it was not used in daily ihope.

Category 4 is for time that appears to be ill-behaved according to data quality studies,

but where there is no clearly-understood cause. In the full analysis this is denoted category
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Figure 80 : Spike glitches in daily ihope and a typical omega scan. At the top a daily ihope SNR-vs-
time plot, showing several spike glitches with SNRs of several thousand. On the bottom, the loudest
of these spike glitches in an omega scan, showing the time-frequency plot (left) and unfiltered time
series (right). The sharp drop-rise-drop of the time series behavior was reasonable well-captured by
the filtered used to create data quality segments.
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Figure 81 : The HEPI glitch in daily ihope and Omega. On the top left, the SNR values for the day
including a HEPI glitch at 17:38, as identified by the “loudest glitches” report. On the top right,
this event in DARM ERR. On the bottom left the time-frequency plot of a HEPI auxiliary channel, and
on the bottom right the unfiltered time series of this same channel, showing that it has exceeded
the threshold of 25,000
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Figure 82 : Effectiveness of the HEPI veto. The green line shows the number of daily triggers after
applying all known vetoes, including the removal of spike glitches. The blue line show counts after
the additional HEPI veto is applied. Note that the highest SNR is reduced from 4,000 to 600, along
with a reduction of triggers at SNRs down to 10.
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3.

Automated vetoes

There were three uses of the daily triggers through S6. The first two, the daily pages

and ad-hoc veto studies, have already been discussed. The third was as input to systematic

automated veto studies.

SeisVeto [135] compared low-frequency triggers from Omega running on seismic mon-

itoring channels to daily ihope triggers. This was done using the HVeto [136] algorithm,

which determines the significance of the correlation between two channels by computing

S = − log 10

( ∞∑
k=n

P (μ, k)

)

where n is the number of coincidences found between Omega triggers and daily ihope trig-

gers, μ is the number expected to see by chance, and P (μ.k) is the Poisson probability of

obtaining k instances when the expected value is μ. In other words, S is − log10 of the

probability of observing as many or more coincidences between two series of random occur-

rences than were actually observed. Times of high correlation were flagged with category 4

vetoes, which could achieve up to 62% efficiency with only 6% deadtime.

The Used Percentage Veto (UPV) [137] program looked for correlations between triggers

from DARM ERR and auxiliary channels using a figure of merit defined as

Used Percentage(ρ) ≡ 100 × Ncoinc(ρ)/Ntotal(ρ)

where Ntotal(ρ) is the total number of triggers from the auxiliary channel above significance

threshold ρ in the analysis time, and Ncoinc(ρ) is the number of triggers from the auxiliary

channel that lie within a second of a trigger from DARM ERR. Intervals where this percentage

exceeded 50% were entered into the segment database and applied as category 4 vetoes.

Although UPV was originally developed using Klinewelle triggers for both DARM ERR and

auxiliary channels, it was modified during S6 to accept triggers from daily ihope. The

resulting analysis was rerun weekly.

An example is shown in Fig. 83. During the week including this day UPV determined

that the instrumental channel ASC-WFS2 IY had a high correlation with daily triggers. This

is a quiet glitch, with an SNR of 6.5, and it would have taken considerable effort to track

down manually. However, it is accompanied by 4 seconds of elevated trigger rates which

could have impacted the search and should therefore be flagged at category 4.
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Figure 83 : A glitch found by UPV using the daily triggers. On the top the daily rate and SNR
plots, including the glitch in question at 14:29. On the bottom the omega scan of DARM ERR and the
auxiliary channel whose Klinewelle triggers correlate with daily ihope DARM ERR triggers.
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ifo Triggers Vetoed Efficiency Time Vetoed Dead- Ratio

(Count) (Count) (sec) (sec) time (sec)

L1 2890507 12578 0.43 798720 880 0.11 3.95

H1 1692904 6452 0.38 647168 416 0.06 5.92

Table 16 : Effectiveness of the “SNR > 250” flag over the weeks 09/04/2010 to 09/17/2010. Note
that the flag was used almost twice as often in L1 as H1, although there is only 23% more analysis
time. This is another indication that L1 overall contained more non-Gaussian noise transients.

Loud SNR

Through the S6 run the horizon distance, the distance at which the coalescence of an

optimally-oriented binary system consisting of two 1.4M� neutron stars would have an SNR

of 8, was roughly 45 Mpc. The SNR scales inversely with distance, hence the distance at

which we would expect to see such a system at, say, SNR 250 is 0.12 Mpc. Assuming

uniform volume distribution, this makes an SNR 250 event 6.4× 10−8 times less likely than

an SNR 8 event. However, such loud glitches do occur in the data fairly often, in particular

the spike glitch at L1.

Such loud glitches tend to have high χ2 values which suppress them. However, around

SNR 250 glitches tend to be accompanied by additional triggers spanning ±8 seconds re-

sulting from the interaction of the filter with the inverse spectrum truncation, see Sec. 10.6.

Some of these auxiliary triggers can, by chance, have low χ2 values and hence high new SNR

values, and can potentially interfere with the search. This suggests a CAT 4 veto centered

on times of triggers with SNRs exceeding 250 with 8 seconds of padding in both directions.

Such a flag must be in place before the full run, making daily ihope the obvious choice for

generating the flags.

This scheme was implemented starting on June 26, 2010, coinciding with the portion of

the run designated S6D. An example of its effectiveness is shown in table 16 which shows the

efficiency and deadtime off the flag applied to triggers from the full analysis after CAT 1,

for the two weeks containing the blind injection. The efficiency to deadtime ratio is greater

than 1, although still relatively small. Still, the flag was deemed useful as it removed triggers

we could not have easily claimed were due to a gravitational wave.
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Figure 84 : Use of daily ihope to indicate that time did not need to be vetoed. The omega pipeline
(left) shows a distinct feature at 200 Hz, within the sensitive band of LIGO. Daily ihope shows no
excess of triggers or SNR, and hence the time did not need to be vetoed

10.4.4 Non-vetoed Time

It is at least as important to preserve time in which a detection could be made as it is to

veto problematic time. On occasion there were potential problems seen in another pipeline

or reported by SciMons or operators that daily ihope confirmed were not a problem for the

CBC low-mass search (though they might have been problematic for other searches). One

example is shown in Fig. 84. The Omega pipeline reports excess noise at 200Hz, which

was traced to runoff from a nearby dam coupling into the detector. The corresponding

daily ihope report shows no issues with excess or loud triggers, and the day was able to be

analyzed.

10.5 Applications of Daily Ihope to the Blind Injection Chal-

lenge

We now move from general uses of daily ihope to its applications in following up a particular

event. In addition to the hardware injections discussed in Sec. 4.4 it was known at the start

of S6 that there would be any from zero to “a few” unannounced, blind hardware injections

performed in order to provide an unbiased test of the search pipelines. One such injection

was performed on Sep 16 2010 at 06:42 UTC, and showed up in multiple searches as a

strong gravitational-wave candidate. This candidate was followed up by the CBC group to

the point of writing a detection paper and submitting it to the collaboration for publication

approval. Once approval had been granted the fact that it had been an injection was

revealed. For more details on the event and how it was followed up, see the forthcoming S6
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low-mass results paper, which is in preparation as of the time of writing.

Although daily ihope was not a search, the injection showed up on the page of loudest

triggers for H1 and L1, with parameters shown in table 17 and omega scans shown in figure

85. The injection was not visible in V1 in daily ihope.
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Figure 85 : H1 (left) and L1 (right) Omega scans of the injection as generated by daily ihope. Note
the “chirp” shape which is the expected pattern from a compact binary inspiral.

10.5.1 False Alarm Rate Estimate

The potential detection occurred close to the end of S6 as the collaboration was preparing to

take the LIGO detectors apart to install Advanced LIGO. The shutdown could potentially

have been delayed if the existing configuration were necessary to vet the candidate. An

ad-hoc committee was formed to determine whether this would be required, and while they

found no immediate reason to delay the Advanced LIGO plans the report did include several

recommendations, including:

The committee urges a search in the S6 and S5 data for events with similar

waveforms but lower SNR than the September 16 event in single detectors as

well as in dual detector coincidence. Such an investigation has a dual pur-

pose. First, it will establish some limits on the astrophysical source population

producing the September 16 event and second, it will help in estimating the

false alarm rate, although this will be better accomplished with more time

slides [138].

The existing daily ihope triggers were ideal for this purpose, as they spanned all of S6

but with a reduced set of templates. This sampled the parameter space but produced a

smaller set of triggers that made rapid significance studies computationally feasible. The

significance was estimated by plotting histograms of all triggers throughout S6 and locating

the candidate triggers in the resulting distribution. To parallel the full analysis the results

were broken into mass bins. The low mass bin spans chirp masses up to 3.48M�, the

medium mass bin from 3.48 − 7.40M�. Likewise, category 1,2 and 3 vetoes were applied
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Figure 86 : Significance of the blind injection in the low-mass bin in H1 (left) and L1 (right).
Results are shown as cumulative histograms. The plots flatten out at low SNRs due the selection of
triggers from the SNR time series, discussed in Sec. 4.1.4. The red lines are the new SNR reported
by the full ihope run (after coincidence). The green lines are the loudest trigger in new SNR found
at the first stage of the ihope analysis (before coincidence). The blue lines are the new SNR values
of the injection found by daily iHope (no coincidence).

and triggers were clustered with a 30-millisecond window to to parallel the results of the

full search. There are several ways of reporting the new SNR of the injection; the largest

values reported by daily ihope, the largest single-detector values reported by the full search,

and the component values of the largest combined new SNR reported by the full search.

All of these options are included on the plot.

The results are shown in figure 86 for the low-mass bin and 87 for the medium-mass

bin. The result in both bins is qualitatively the same. The injection is close to the loudest

event in H1 for all measures of new SNR. The injection does not stand out as far in L1,

which was known to contain more non-Gaussian noise transients over the course of S6.

10.5.2 Front-end Code Verification

Before the collaboration could claim a detection it was necessary to perform extensive

checks to remove, or at least reduce, the possibility that the trigger was due to any source

other than a gravitational wave. Consequently many components of the interferometer

were subject to scrutiny. One such component was the front-end control code, which is

responsible for providing the feedback loop between the photodiodes and servos that keeps

the detector locked. This code is updated occasionally as new systems are added or bugs

are found and fixed. To verify that the most recent change preceding the event did not

significantly change the behavior of the detectors we compared histograms of triggers from
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Figure 87 : Significance of the blind injection in the medium-mass bin in H1 (left) and L1 (right).
Note the cumulative counts levels off around between 5 and 5.5, indicating that there are few triggers
with smaller values.

daily ihope before and after these changes.

Two weeks prior to and following the most recent code changes at each site were selected.

SNR histograms are shown in figure 88. There is a slight variation in H1, somewhat larger in

L1. More rigorous testing could have been done, such as estimating the standard deviation in

each SNR bin from several sample times before the code change and then checking whether

the rates after the change fall within one sigma. However, the detection committee did not

feel this level of analysis was necessary, and based on the plots in figure 88 concluded:

Thus, to the extent allowed by the methods we adopted, there is no evidence

for any malfunction in the front-end code of the interferometers [139].

10.6 Open Questions

We have seen in Sec. 10.3 that daily ihope was used to help identify and remedy problems

in the low-mass search early in S6. We conclude this chapter by discussing two additional

issues with the pipeline seen through daily ihope, both of which relate to the effect of loud

glitches on the matched filter. Of course the ultimate goal is to remove such glitches at the

source. However, it is likely that such glitches will continue to be present in the Advanced

LIGO era and the search pipeline must be robust against them. We note here the problems

and some initial attempts to remedy them, but more research will be needed to resolve

them before Advanced LIGO comes on-line around 2015.
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Figure 88 : SNR histograms comparing periods before and after front-end code changes at H1 (left)
and L1 (right).

10.6.1 Excess Triggers Produced by Loud Glitches

From Fig. 82 we see that applying a veto to loud glitches does not only remove loud triggers,

but also numerous triggers with lower SNRs. This same effect may be seen by comparing

rate-vs-time and SNR-vs-time plots such as 77; loud glitches correlate with an increase in

trigger rates. In part this behavior is expected. Many glitches, notably the spike glitch, are

sharp enough that they may be roughly modeled as impulses. The impulse response of the

matched filter (eqn. 4.13) is the time-reversed template convolved with a function of the

noise curve. A loud glitch will therefore elevate the SNR time series for every template in

the bank.

Recall from Sec. 4.1.4 that triggers are selected from the SNR time series by finding the

largest value above threshold in a sliding window. The length of the window is taken to the

length of the template, defined as the time required for the frequency of the pN waveform to

go from 40 Hz to infinity. Based on this we would expect an impulse in the data to produce

one trigger per template at approximately the time of the impulse. However this would not

account for the number of templates seen or the length of time for which the trigger rate is

elevated.

To study this in more detail simulated Gaussian noise was produced (as in the NINJA

project) and the value of a single sample was increased to simulate a sharp glitch. The

triggers produced for two values of the glitch amplitude are shown in Fig. 89. The ex-

pected behavior is seen in the rainbow “tower” at the top of both plots, successively longer

templates have lower SNRs and trigger slightly later. Below this in both plots there is a
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Figure 89 : Trigger SNRs as a function of time as the template bank responds to an impulse in
the data. Color is the length of the template in seconds. On the left a single sample has been set
to 10−17, and on the right 10−15. The expected response is visible, but there is a large number of
additional triggers arranged in distinct features. See the text for discussion.

“plateau” of triggers from short templates. This results from the inverse spectrum trun-

cation, described more fully in [140]. This behavior can be understood qualitatively as

follows:

For simplicity denote the square root of the inverse PSD, (Sn(|f |))−1/2 as S̃(f), and

its inverse Fourier transform in the time domain as S(t). Likewise, denote the frequency-

domain template as h̃(f) as usual, and its inverse Fourier transform as h(t). Finally, let W (t)

be a windowing function in the time domain with Fourier transform W̃ (f). In addition,

denote multiplication of functions by · and convolution by 
. The application of the inverse

spectrum truncation then proceeds as follows:

1. Calculate S̃(f) and from it S(t).

2. Apply the window in the time domain, giving S(t) · W (t).

3. Return to to the frequency domain, giving S̃(f) 
 W̃ (f).

4. Square this (and correct the normalization, not shown here) giving

(S̃(f) 
 W̃ (f)) · (S̃(f) 
 W̃ (f))

5. This replaces the Sn(|f |) in the denominator of the match filter.

If the signal is then a delta function with strength M , s(t) = Mδ(t) then s̃ = M and the
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Figure 90 : The SNR time series of a short (0.3 s) template responding to an impulse of strength
10−17 (left) and 10−15 (right). The elevation within the truncation window is clear, and is long
enough to produce several triggers.

SNR time series is given by the matched filter,

ρ2(t) =
∫

df e−2iπiftMh̃�(f) · (S̃(f) 
 W̃ (f)) · (S̃(f) 
 W̃ (f))

= Mh(−t) 
 (S(t) · W (t)) 
 (W (t) · W (t))

Note that if the window function is zero outside a region then the elevated SNR from an

impulse will likewise be bounded in time. This is the motivation for the truncation; without

it a loud glitch would corrupt an entire analysis segment. However, when M becomes large

the SNR value within the bounded region may exceed the trigger threshold. If the length

used when scanning the SNR time series for triggers is less than the width of the truncation

window then a loud glitch can produce several triggers. This explains both the 16-second

width of the plateaus in Fig. 89 (as the window length is 16 seconds) and why they are

composed of triggers from short templates. This may also be seen in the SNR time series

shown in Fig. 90.

The plateau persists as the strength of the impulse is increased. Beyond a certain point

we also get a second cluster of triggers from templates across the bank, seen to the right in

Fig. 89. Note that the difference between triggers of the same color is precisely the length

of template, identified by the same value in the colorbar. As the impulse-response of the

filter is the time-reversed template, a sufficiently loud impulse will elevate the SNR for the

length of the template, independently of how the spectrum is truncated. This can be seen

in the SNR time series of a long template, shown in Fig. 91.

This second set of triggers from long templates suggests that the length used when
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Figure 91 : The SNR time series of a long (45 s) template responding to an impulse of strength
10−17 (left) and 10−15 (right). The SNR is elevated over the length of the template, and for the
10−15 impulse the SNR remains elevated long enough to generate a second trigger.

scanning the time series for is too short. This, combined with the excess of short triggers

within the truncation window suggests replacing this length with the larger of the length

of the truncation window or 1.1 times the currently used length (the exact value to be

obtained by further investigation).

So far we have not used the χ2 test. When χ2 is enabled the trigger clustering algorithm

(Sec. 4.1.4) is modified as follows

for each sample point j

if ρj > threshold

if χ2
j < chisq thresh * (1 + ρ2 * chisqfac ):

if there is no event yet

event start = j

event snr = ρj

else if ρj > event snr

event start = j

event snr = ρj

else if (j - event start) == template length

record event

event start = j

event snr = ρj

That is, an additional constraint is placed on triggers even before new SNR is calculated.

We would expect that this would quash many, and hopefully all, triggers resulting from the
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Figure 92 : Triggers produced by impulses of strength 10−17 (left) and 10−15 (right) when the χ2

test is enabled. χ2 removes many triggers, but many remain.

glitch. The results of rerunning with χ2 enabled are shown in Fig. 92.

Turning on χ2 does remove many triggers, in particular those in the original tower

resulting from long templates. However, the triggers from short templates remain. This

indicates that the χ2 test is not as effective on short waveforms. The louder impulse on

the right no longer produces the second rainbow of triggers. However, there are now long-

template triggers in the plateau, and a set of low-SNR, loud-template triggers resulting

from the quieter impulse. The reason for these is not clear, but they are have the potential

to raise the background of the binary neutron-star search and are therefore problematic.

Despite passing the χ2 clustering it is unlikely that these triggers, especially the ones

from long templates, have good χ2 values. We can attempt to remove them by altering the

clustering algorithm as follows:
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Figure 93 : Triggers produced by the modified clustering algorithm which extends the cluster-
ing window and applies the χ2 threshold after the candidate trigger has been found. Results are
promising: only a relatively small number of triggers from short templates remain.

for each sample point j

if ρj > threshold

if there is no event yet

event start = j

event snr = ρj

else if ρj > event snr

event start = j

event snr = ρj

else if (j - event start) == template length

if χ2
event start < chisq thresh * ( 1 + ρ2

event start * chisqfac )

record event

event start = j

event snr = ρj

Rather than applying the χ2 test at each sample point, we cluster only on SNR and then

use the χ2 test to validate the candidate trigger. This was implemented, along with altering

the clustering window as described above. The results are shown in Figure 93, and appear

very promising. The plateaus have been removed almost entirely, leaving only the last

trailing edge. Only a few triggers from short templates remain, and in particualr nothing

that would interfere with the BNS search.

The revised code was then tested by performing injections of simulated signals into two

weeks of real detector noise and examining the numbers of injections found and missed.
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Figure 94 : Found and missed plots for simulated injection in two weeks of real noise. Results from
the current code are on the left, the modified code (as described in the text) is on the right. The
feature to focus on is found injections (blue dots) and missed injections (red crosses). There are
many more missed injections using the modified code.

The new code misses many more injections, as shown in Fig. 94. To see why, consider a

glitch with high SNR and high χ2, within a clustering window of an injection with lower

SNR and lower χ2. In the original code the clustering window would not open at the glitch,

because it would not pass the χ2 test. The window would open at the time of the injection,

and the trigger would be recorded. Under the new code, however, the higher SNR of the

glitch will cause it to be the single event found in the window, but it will then be removed

by the χ2 test. This problem is exacerbated by extending the length of the window.

At present the issue of excess triggers from loud glitches remains unresolved. It is

mitigated somewhat by the “loud SNR” veto at category 4, which extends ±8 seconds in

order to remove the excess triggers from the inverse spectrum truncation. However, as

Fig. 89 shows, for very loud glitches excess triggers can be produced for as much as 45. An

appealing possibility that has been discussed but not tested would be to run the current

algorithm over a new SNR time series formed by combining the SNR and χ2 series.

10.6.2 Bias of the PSD by Loud Glitches

Paradoxically, loud glitches are often accompanied by surrounding periods of decreased

trigger rates. This can be seen, for example, in Fig. 76. This effect is confined to the 2048-

second analysis segment containing the glitch, as can be seen from Fig. 95, which shows the

trigger rate around a glitch as the analysis boundaries are changed.

This behavior is due the effect of a glitch on the PSD estimation for the analysis period.
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Figure 95 : Effect on trigger rates of a large glitch. The plots show the number of triggers in an
H1 analysis in 1-second blocks around a large glitch centered at 2500. The analysis boundaries are
arranged so that on the plot on the left the glitch falls at the end of the earlier segment, while on
the right the glitch falls at the beginning of the later segment. In both cases the glitch has the
same number of triggers, which is well in excess of the surrounding time for reasons discussed in
the previous section. However, the segment containing the glitch shows a marked decrease in the
number of triggers.

Recall from chapter 4 that the PSD is estimated by a variation of Welch’s method, and the

value of the PSD at each frequency f is the median over 15 256-second intervals, overlapped

to span 2048 seconds. The median is used instead of the mean precisely because it is more

robust against glitches. However, a value well outside the expected distribution can still

bias the results to a significant extent. To demonstrate this we calculate the PSD in two

ways, once by considering the median of all 15 PSDs and once by consider the median of 14,

removing the one containing the glitch. We plot the fractional difference of each frequency

bin in Fig. 96.

Some preliminary investigations using different-sized chunks and overlaps to compute

the PSD were performed, but these have so far been inconclusive. At present the only way

to ensure that a loud glitch won’t suppress a quiet signal is to veto the time containing the

glitch at category 1. This would be conceptually straightforward using something like the

existing category 4 “loud SNR” veto, but it is far from an ideal solution. This is especially

true in Advanced LIGO, where the low-mass templates will be significantly longer. A glitch

in the middle of such a signal could cause the signal to be lost, as the category 1 veto would

split the SNR accumulation into two disjoint segments. A better option would be to “gate”

the data around a glitch; smoothly window out a second or so with a Tukey window or

similar. This is an area of ongoing research.
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Figure 96 : The bias in the PSD caused by a large glitch. This plot shows the difference between
two PSDs, one calculated including the segment with the glitch and one without. The results are
shown as the fraction difference in each mass bin, (with - without) / with. There is a notable bias
upwards over much of the frequency range, and in particular over the most sensitive portion of the
LIGO band.
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Chapter 11

Conclusions

We have compared the post-Newtonian waveforms currently used to search for gravitational

waves against a waveform produced by a full numeric simulation. Based on these studies we

have identified several factors which can improve the overlaps between the two, and hence

between analytic waveforms and the signals we expect to see.

We have tested these optimizations in the first NINJA project, which suggests that the

improvement in overlaps carries through to improved SNR in a full search. This in turn

implies that by implementing these changes we may be able to enhance the significance of

signals in LIGO and Virgo.

We will further test these ideas in NINJA-2, which is currently on-going. In order to

maximize the utility of NINJA-2 and correct for some of the limitations of NINJA-1 we

have performed extensive validations of the hybrid pN/NR waveforms. A NINJA-2 data

set is now available, and the unmodified CBC pipelines have been run. The results contain

unexpected features which will need to be understood before we can use these results as

a baseline against which to test our modifications. NINJA-2 will also enable many other

studies. In particular we plan to use it to determine the optimum total mass at which the

low mass and high mass searches should transition.

We have also shown how the tools and methods of the CBC search can be applied to

detector characterization and used to identify noisy times in the detectors and remove them

from analysis. The results from these detector characterization studies also proved to be

tremendously useful in performing follow up studies of a candidate gravitational-wave event,

although the event ultimately turned out to be a blind injection.

With the end of S6 the Initial LIGO era has ended. The interferometers are currently

undergoing major upgrades in preparation for Advanced LIGO, to start around 2015. At
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the design sensitivity Advanced LIGO will have ten times the range of Initial LIGO. This

new era will present new challenges to data analysts, however the basic structure of the

current templated, matched filter search will continue to be used. It will therefore be

useful to continue optimizing the search against the Initial LIGO noise curve and Initial

LIGO data, as NINJA-2 will do. In addition it is likely future NINJA projects will begin

to use simulated Advanced LIGO noise. Similarly, daily ihope will continue to be run in

Advanced LIGO, and perhaps even earlier, during engineering runs as the new detectors

are being tested. We expect that continued studies with numeric waveforms and the use

of CBC-specific detector characterization will contribute towards making the potential of

LIGO as a new window to the Universe a reality.
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Appendix A

Post-Newtonian Waveforms

A.1 Post-Newtonian waveforms in the adiabatic approxima-

tion

There are two basic elements to obtaining a post-Newtonian waveform: (1) finding the

orbital phase of the binary, and (2) using that phase to find the so-called “amplitude” of

the waveform. Previous references have been incomplete, or predate recent errata involving

spin terms [141, 142]. Here, we gather together the most complete and current formulas for

phase and amplitude when spins are non-precessing (i.e. spins aligned or anti-aligned with

the orbital angular momentum), using consistent notation.

A.1.1 Phasing

The orbital phase evolution Φ(t) of the binary can be computed by considering energy

conservation. The energy of the full system is accounted for in three parts, each computed

as a function of the post-Newtonian expansion parameter

v :=
(

M
dΦ
dt

)1/3

. (A.1)

The first part is the kinetic and gravitational binding energy of the binary—the orbital

energy E(v). As the system evolves, it gives off energy to infinity in the form of gravitational

waves accounted for as the flux F(v) leaving the system. Finally, we must also account for

the tide raised on each black hole by the other, and the flow of energy into the black holes

due to the motion of these tides, given as a rate of change in the mass of the black holes

Ṁ(v). Using this threefold accounting for the energy, we can express the conservation of
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energy as
dE

dt
+ F + Ṁ = 0 . (A.2)

Now, because the expression for the orbital energy is written in terms of v, we can straight-

forwardly differentiate to find E′(v). With the chain rule, dE/dt = E′(v) dv/dt, we can

rearrange this into a differential equation for v:

dv

dt
= −F(v) + Ṁ(v)

E′(v)
. (A.3)

Given the expressions for F(v), Ṁ(v), and E′(v), this equation can be integrated to find

v(t). Then, using the definition of v, we see that

dΦ
dt

=
v3

M
, (A.4)

which can be integrated in turn to find Φ(t). We now exhibit the formulas for F(v), Ṁ(v),

and E′(v), and discuss various methods for integrating the balance Eqn. (A.3).

Given the masses M1 and M2 and spin vectors S1 and S2, we define the following

parameters:

M := M1 + M2 , (A.5)

η := M1 M2/M
2 , (A.6)

δ := (M1 − M2)/M , (A.7)

χi := Si/M2
i , (A.8)

χs := (χ1 + χ2)/2 , (A.9)

χa := (χ1 − χ2)/2 . (A.10)

We also define the quantities χs and χa to be the components of the spin vectors perpen-

dicular to the orbital plane, namely χs := χs · � and χa := χa · �, where � is the unit vector

along the Newtonian angular momentum.

The orbital energy function can be written in terms of the PN expansion parameter v
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defined above as [143, 144, 145, 142, 141, 146, 147]1

E(v) = −Mηv2

2

{
1 + v2

(
−3

4
− η

12

)
+ v3

[
8 δχa

3
+
(

8
3
− 4η

3

)
χs

]

+ v4

[
−2δχaχs − η2

24
+ (4η − 1)χ2

a +
19η

8
− χ2

s −
27
8

]

+ v5

[
χa

(
8 δ − 31δη

9

)
+
(

2η2

9
− 121η

9
+ 8
)

χs

]

+v6

[
−35η3

5184
− 155η2

96
+
(

34445
576

− 205π2

96

)
η − 675

64

]}
.

(A.11)

We simply take the derivative of this formula with respect to v to find the energy function

appearing in the phasing formula:

E′(v) = −Mηv

{
1 + v2

(
−3

2
− η

6

)
+ v3

[
20δχa

3
+
(

20
3

− 10η

3

)
χs

]

+ v4

[
−6 δχaχs − η2

8
+ (12η − 3)χ2

a +
57η

8
− 3χ2

s −
81
8

]

+ v5

[
χa

(
28δ − 217δη

18

)
+
(

7η2

9
− 847η

18
+ 28

)
χs

]

+v6

[
−35η3

1296
− 155η2

24
+
(

34445
144

− 205π2

24

)
η − 675

16

]}
.

(A.12)

Similarly, the flux function can be written as [143, 144, 145, 142, 141, 146, 147]2

F(v) =
32
5

v10 η2

{
1 + v2

(
−1247

336
− 35

12
η

)
+ v3

[
−11δχa

4
+
(

3η − 11
4

)
χs + 4π

]

+ v4

[
33δχaχs

8
+

65η2

18
+
(

33
16

− 8η

)
χ2

a +
(

33
16

− η

4

)
χ2

s +
9271η

504
− 44711

9072

]

+ v5

[(
701δη

36
− 59δ

16

)
χa +

(
−157η2

9
+

227η

9
− 59

16

)
χs − 583πη

24
− 8191π

672

]

+ v6

[
−1712

105
ln(4v) − 1712γ

105
− 775η3

324
− 94403η2

3024
+
(

41π2

48
− 134543

7776

)
η +

16π2

3
+

6643739519
69854400

]

+v7

[
193385πη2

3024
+

214745πη

1728
− 16285π

504

]}
,

(A.13)

1The 1.5PN and 2.5PN spin terms were taken from Eq. (7.9) of [141]. The 2PN spin term and all

nonspinning terms were taken from Eq. (C4) of [142]. Note that Eq. (C5) in the original published

version of [142] is erroneous.
2The 1.5PN and 2.5PN spin terms were taken from Eq. (7.11) of [141]. The 2PN spin

term and all nonspinning terms were taken from Eq. (C10) of [142], except that the term

η
{− 103

48 (χ2
s − χ2

a) + 289
48 [(χs · �)2 − (χa · �)2]} is omitted. (The authors of [142] have confirmed that

this term should not be present.) Also note that Eq. (C11) in the original published version of [142]

is erroneous.
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where γ is the Euler Gamma.

Alvi [148] derived an expression for the transfer of energy from the orbit to each black

hole by means of tidal heating. The calculation involves computing the deformation of

each hole’s horizon due to the Newtonian field of the other, then using that expression in

formulas for energy absorption due to tidal deformation. In particular, his expression is

applicable in the comparable-mass case. By combining the rates of mass change for both

black holes, we obtain the total rate of change:

Ṁ(v) =
32
5

v10η2

{
−v5

4

[
(1 − 3η)χs(1 + 3χ2

s + 9χ2
a) + (1 − η)δχa(1 + 3χ2

a + 9χ2
s)
]}

.

(A.14)

The coefficient above is the leading-order term in the flux, meaning that this term is com-

parable to a relative 2.5PN spin effect in the flux. A similar calculation has been carried

out in the extreme-mass-ratio limit [149], and agrees with this formula in that limit. Note

that higher-order spin terms were calculated in [148], but are not included here, as they are

at relative 3.5PN order, which is higher than the relative 2.5PN order to which other spin

terms are known. Except for its explicit presence in the balance equation (A.3), we always

treat the mass as a constant. This leads to additional errors at the 3.5PN spin level, which

we ignore.

Below we will define some of the standard variants of computing the post-Newtonian

phase from the energy and flux functions, using the naming convention of [150].

TaylorT1 phasing

The TaylorT1 approximant is computed by numerically integrating the ordinary differential

equation for v(t) in Eq. (A.3), using the expressions for orbital energy, flux, and mass change

given in Eqs. (A.12), (A.13), and (A.14). The phase is then computed using this result for

v(t) in Eq. (A.4).

TaylorT4 phasing

The TaylorT4 approximant is similar to the TaylorT1 approximant, except that the ratio
of the polynomials on the right-hand side of Eq. (A.3) is first expanded as a Taylor series,
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and truncated at consistent PN order. Explicitly, the formula to be integrated is

dv

dt
=

32
5M

v9η

{
1 + v2

[
−11η

4
− 743

336

]
+ v3

[
−113δχa

12
+
(

19η

3
− 113

12

)
χs + 4π

]

+ v4

[
81δχaχs

8
+

59η2

18
+
(

81
16

− 20η

)
χ2

a +
(

81
16

− η

4

)
χ2

s +
13661η

2016
+

34103
18144

]

+ v5

[
−189πη

8
− 4159π

672
+
(

3η

4
− 3

4

)
δχ3

a +
(

9η

4
− 9

4

)
δχaχ2

s +
(

1165η

24
− 31571

1008

)
δχa

+
(
−79η2

3
+

27ηχ2
a

4
− 9χ2

a

4
+

5791η

63
− 31571

1008

)
χs +

(
9η

4
− 3

4

)
χ3

s

]

+ v6

[
−1712γ

105
− 5605η3

2592
+

541η2

896
+
(

451π2

48
− 56198689

217728

)
η +

16π2

3
+

16447322263
139708800

− 1712 ln(4v)
105

+
(

1517η2

72
− 23441η

288
+

128495
2016

)
χ2

s +
(

565δ2

9
+

89η2

3
− 2435η

224
+

215
224

)
χ2

a

+
((

128495δ

1008
− 12733δη

144

)
χa +

40πη

3
− 80π

3

)
χs − 80πδχa

3

]

+ v7

[
91495πη2

1512
+

358675πη

6048
− 4415π

4032

+
(
−11η2

24
+

979η

24
− 505

8

)
χ3

s +
(

δη2

8
+

742δη

3
− 505δ

8

)
χ3

a

+
((

3η2

8
+

917η

12
− 1515

8

)
δχa + 12π

)
χ2

s

+
((

−124δ2 − 3397η2

24
+

7007η

24
− 523

8

)
χs − 48πη + 12π

)
χ2

a

+
(

2045η3

216
− 398017η2

2016
+

10772921η

54432
− 2529407

27216

)
χs + 24πδχaχs

+
(
−41551δη2

864
+

845827δη

6048
− 2529407δ

27216

)
χa

]}
.

(A.15)

Note that this expression does not include all of the spin-dependent terms at 3PN and

3.5PN, since the spin terms in the energy and flux functions are known only up to 2PN and

2.5PN, respectively. However, the 3PN and 3.5PN terms shown here will still be present in

this formula when the higher-order terms are included in the energy and flux formulas.
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TaylorT2 phasing

Expanding the inverse of Eq. (A.3) allows for the analytical integration of t(v). The result
reads

t(v) = t0 − 5M

256η v8

{
1 + v2

[
11η

3
+

743
252

]
+ v3

[
−32π

5
+

226δχa

15
+
(

226
15

− 152η

15

)
χs

]

+ v4

[
3058673
508032

+
5429η

504
+

617η2

72
− 81

4
δχaχs −

(
81
8

− η

2

)
χ2

s −
(

81
8

− 40η

)
χ2

a

]

+ v5

[
−7729π

252
− 13πη

3
+
(

147101
756

− 4906η

27
− 68η2

3

)
χs +

(
147101

756
+

26η

3

)
δχa

+ (6 − 6η)δχ2
sχa + (6 − 18η)χsχ

2
a + (2 − 6η)χ3

s + (2 − 2η)δχ3
a

]

+ v6

[
6848γ

105
− 10052469856691

23471078400
+

128π2

3
+
(

3147553127
3048192

− 451π2

12

)
η − 15211η2

1728
+

25565η3

1296

+
6848 ln(4v)

105
−
(

584π

3
− 448πη

3

)
χs − 584πδ χa

3
+
(

6845
672

− 43427η

168
+

245η2

3

)
χ2

s

+
(

6845
672

− 1541η

12
+

964η2

3

)
χ2

a +
(

6845
336

− 2077η

6

)
δ χsχa

]

+ v7

[
−15419335π

127008
− 75703πη

756
+

14809πη2

378
+
(

4074790483
1524096

+
30187η

112
− 115739η2

216

)
δ χa

+
(

4074790483
1524096

− 869712071η

381024
− 2237903η2

1512
+

14341η3

54

)
χs + (228π − 16πη) χ2

s

+ (228π − 896πη) χ2
a + 456πδ χsχa −

(
3237
14

− 14929η

84
+

362η2

3

)
χ3

s

−
(

3237
14

− 87455η

84
+ 34η2

)
δχ3

a −
(

9711
14

− 39625η

84
+ 102η2

)
δ χ2

sχa

−
(

9711
14

− 267527η

84
+

3574η2

3

)
χsχ

2
a

]}
.

(A.16)

The comment made below Eq. (A.15) about spin contributions at 3PN and 3.5PN order is

valid for Eq. (A.16) and the following expansions as well.

The orbital phase Φ can be integrated similarly to the time t. Eq. (A.4) and Eq. (A.3)

yield
dΦ
dv

=
v3

M

dt

dv
= − v3

M

E′(v)
F(v) + Ṁ(v)

, (A.17)

which, after re-expanding in a Taylor series, can be integrated analytically. The final result
reads

Φ(v) = Φ0 − 1
32η v5

{
1 + v2

[
3715
1008

+
55η

12

]
+ v3

[
−10π +

565δχa

24
+
(

565
24

− 95η

6

)
χs

]

+ v4

[
15293365
1016064

+
27145η

1008
+

3085η2

144
− 405

8
δ χaχs −

(
405
16

− 5η

4

)
χ2

s −
(

405
16

− 100η

)
χ2

a

]
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+ v5 ln v

[
38645π

672
− 65πη

8
−
(

735505
2016

− 12265η

36
− 85η2

2

)
χs −

(
735505
2016

+
65η

4

)
δχa

−
(

45
4

− 45η

4

)
δχ2

sχa −
(

45
4

− 135η

4

)
χsχ

2
a −

(
15
4

− 45η

4

)
χ3

s −
(

15
4

− 15η

4

)
δχ3

a

]
(A.18)

+ v6

[
12348611926451

18776862720
− 1712γ

21
− 160π2

3
−
(

15737765635
12192768

− 2255π2

48

)
η +

76055η2

6912
− 127825η3

5184

− 1712 ln (4v)
21

+
(

730π

3
− 560πη

3

)
χs +

730πδχa

3
−
(

34225
2688

− 217135η

672
+

1225η2

12

)
χ2

s

−
(

34225
2688

− 7705η

48
+

1205η2

3

)
χ2

a −
(

34225
1344

− 10385η

24

)
δ χsχa

]

+ v7

[
77096675π

2032128
+

378515πη

12096
− 74045πη2

6048
−
(

20373952415
24385536

+
150935η

1792
− 578695η2

3456

)
δχa

−
(

20373952415
24385536

− 4348560355η

6096384
− 11189515η2

24192
+

71705η3

864

)
χs −

(
285π

4
− 5πη

)
χ2

s

−
(

285π

4
− 280πη

)
χ2

a − 285π

2
δ χsχa +

(
16185
224

− 74645η

1344
+

905η2

24

)
χ3

s

+
(

16185
224

− 437275η

1344
+

85η2

8

)
δχ3

a +
(

48555
224

− 198125η

1344
+

255η2

8

)
δ χ2

sχa

+
(

48555
224

− 1337635η

1344
+

8935η2

24

)
χsχ

2
a

]}
.

Eq. (A.16) and Eq. (A.18) together define Φ(t) implicitly.

TaylorF2 phasing

Starting from the explicit expressions for time and orbital phase in the TaylorT2 approx-

imant, it is possible to analytically construct the Fourier transform of the GW strain in

the framework of the stationary phase approximation (SPA) [150, 151, 152]. Denoting the

Fourier transform of the strain by Ã�meiψ�m , the phase in the frequency domain can be

approximated by

ψ�m(f) = 2πf tf − mΦ(tf ) − π

4
. (A.19)

Here, f is the Fourier variable and tf corresponds to the time when the instantaneous GW

frequency coincides with f , i.e.,

d(mΦ)
dt

(tf ) = 2πf ⇒ v(tf ) =
(

2πMf

m

)1/3

. (A.20)

The form of the Taylor series of ψ�m obviously depends on the spherical harmonic mode’s
m. For the sake of brevity, only the expansion for m = 2 is given below.

ψ�2(v) = 2t0v
3 − 2Φ0 − π

4
+

3
128η v5

{
1 + v2

[
3715
756

+
55η

9

]
+ v3

[
−16π +

(
113
3

− 76η

3

)
χs +

113δχa

3

]
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+ v4

[
15293365
508032

+
27145η

504
+

3085η2

72
−
(

405
8

− 5η

2

)
χ2

s −
(

405
8

− 200η

)
χ2

a − 405
4

δ χsχa

]

+ v5 (1 + 3 ln v)
[
38645π

756
− 65πη

9
−
(

735505
2268

− 24530η

81
− 340η2

9

)
χs −

(
735505
2268

+
130η

9

)
δχa

− (10 − 10η)δ χ2
sχa − (10 − 30η)χsχ

2
a −

(
10
3

− 10η

)
χ3

s −
(

10
3

− 10η

3

)
δχ3

a

]

+ v6

[
11583231236531

4694215680
− 6848γ

21
− 640π2

3
−
(

15737765635
3048192

− 2255π2

12

)
η +

76055η2

1728
− 127825η3

1296

− 6848 ln(4v)
21

+
(

2920π

3
− 2240πη

3

)
χs +

2920π

3
δχa −

(
34225
672

− 217135η

168
+

1225η2

3

)
χ2

s

−
(

34225
672

− 7705η

12
+

4820η2

3

)
χ2

a −
(

34225
336

− 10385η

6

)
δ χsχa

]

+ v7

[
77096675π

254016
+

378515πη

1512
− 74045πη2

756
−
(

20373952415
3048192

+
150935η

224
− 578695η2

432

)
δχa

−
(

20373952415
3048192

− 4348560355η

762048
− 11189515η2

3024
+

71705η3

108

)
χs − (570π − 40πη)χ2

s

− (570π − 2240πη)χ2
a − 1140πδ χsχa +

(
16185

28
− 74645η

168
+

905η2

3

)
χ3

s

+
(

16185
28

− 437275η

168
+ 85η2

)
δχ3

a +
(

48555
28

− 198125η

168
+ 255η2

)
δ χ2

sχa

+
(

48555
28

− 1337635η

168
+

8935η2

3

)
χsχ

2
a

]}
. (A.21)

According to Eq. (A.20), v should be understood as v = (Mπf)1/3 in the equation above.

A.1.2 Waveform amplitudes

Now, given the orbital phase Φ and the related post-Newtonian expansion parameter v

defined in Eq. (A.1), we can obtain the waveform observed at infinity. Currently, the most

complete expressions for the nonspinning parts of the waveform are found in [153]. In

particular, Eqs. (9.3) and (9.4) of that reference give the decomposition of h+ − ih× into

harmonics. Due to space considerations and the danger of transcription errors, we do not

reproduce those equations here, but simply refer the reader to that paper. To these, we

must add3 the spin terms given most completely in [154]. There, the spin terms were not

explicitly decomposed into harmonics, however, using Eq. (9.2) of [153], it is a simple matter

to deduce them. Using Eqs. (F24) and (F25) of [154], and noting the overall sign error in

3Note that Refs. [153] and [154] share the notation set forth in [155], so that we can simply add

the relevant terms. Also note that each of those references uses a different normalization for the

variable H compared to the one used here.
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Eq. (F25c), we obtain the only nonzero spin contributions to the harmonics:

H2,2 = −16
3

√
π

5
v5η

[
2δχa + 2(1 − η)χs + 3vη

(
χ2
a − χ2

s

)]
e−2iΦ , (A.22)

H2,1 = 4i

√
π

5
v4η(δχs + χa)e−iΦ , (A.23)

H3,2 =
32
3

√
π

7
v5η2χse

−2iΦ . (A.24)

In all cases, modes with negative values of m can be obtained from

H�,−m = (−1)� H̄�,m . (A.25)

The appropriate SPA amplitude in Fourier space can easily be deduced from its time-

domain description A�m by

Ã�m = A�m

√
2π

mΦ̈
= A�m

√
2πM

3mv2 v̇
, (A.26)

where v̇ can be taken for instance from Eq. (A.15) and all arguments should be replaced

according to Eq. (A.20).
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