
LASER NOISE MITIGATION THROUGH TIME DELAY INTERFEROMETRY FOR
SPACE-BASED GRAVITATIONAL WAVE INTERFEROMETERS USING THE UF LASER

INTERFEROMETRY SIMULATOR

By

SHAWN J. MITRYK

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2012



c© 2012 Shawn J. Mitryk

2



I dedicate this work to my parents, Jeff and Terry Mitryk, whom provided the opportunity

and never questioned my desire to fulfill my dreams, whatever they may be.

3



ACKNOWLEDGMENTS

I’d like to give a special thanks to everyone who helped me with these projects.

Guido Mueller, whom managed to be an research advisor, a career mentor, and a close

colleague, all at the same time, provided insight and direction towards my education

and scientific pursuits. Ira Thorpe was essential to my development as a effective and

creative problem-solver and provided a base for my future experimental investigations.

Thanks to Dylan Sweeney, Yinan Yu, Pep Sanjuan, and Syed Azer for allowing me to

pick their brains and for assistance in decipering complications with my experiments.

Also, I’d like to specifically thank my high-school physics teacher, Mr. Steven Desanto,

whom noted my talents in the sciences and particularly, in physics, and inspired me to

cultivate them. And thanks to everyone else who worked in the UF-LISA project as well

as those that came to visit for keeping my days in the lab interesting.

4



TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Gravitation and General Relativity . . . . . . . . . . . . . . . . . . . . . . 15
1.2 The Gravitational Wave Spectrum . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Space-Based Gravitational Wave Astronomy . . . . . . . . . . . . . . . . 17
1.4 Details of the Dissertation’s Content . . . . . . . . . . . . . . . . . . . . . 20
1.5 Note to the Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 GENERAL RELATIVITY AND GRAVITATIONAL WAVES . . . . . . . . . . . . . 21

2.1 Introduction to General Relativity . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Newtonian Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Einstein Field Equations . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Proper Time Invariance . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.4 Metrics, Black Holes, and Curvature . . . . . . . . . . . . . . . . . 23
2.1.5 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.6 Einstein Field Equations Revisited . . . . . . . . . . . . . . . . . . 28

2.2 Gravitational Wave Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.1 Polarized Plane Wave Solutions . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Spacetime Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Weak-field GR Multipole Expansion . . . . . . . . . . . . . . . . . . 31

2.3 Gravitational Wave Sources and Detection Methods . . . . . . . . . . . . 35
2.3.1 Strain Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Gravitational Wave Evidence . . . . . . . . . . . . . . . . . . . . . 35
2.3.3 The Gravitational Wave Spectrum . . . . . . . . . . . . . . . . . . . 36
2.3.4 LISA Gravitational Wave Sources . . . . . . . . . . . . . . . . . . . 37

2.3.4.1 Compact Binaries . . . . . . . . . . . . . . . . . . . . . . 38
2.3.4.2 Binary Black Hole Mergers . . . . . . . . . . . . . . . . . 38
2.3.4.3 Extreme Mass Ratio Inspirals . . . . . . . . . . . . . . . . 39
2.3.4.4 Other Suggested Sources . . . . . . . . . . . . . . . . . . 39

3 THE LASER INTERFEROMETER SPACE ANTENNA . . . . . . . . . . . . . . 40

3.1 LISA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 The Disturbance Reduction System . . . . . . . . . . . . . . . . . . . . . 42

5



3.3 The Interferometry Measurement System . . . . . . . . . . . . . . . . . . 42
3.4 µCycle Accuracy Phase Measurement . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Photodetector Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1.1 Shot-Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1.2 Dark Current Noise . . . . . . . . . . . . . . . . . . . . . 49
3.4.1.3 Johnson-Nyquist Noise . . . . . . . . . . . . . . . . . . . 49
3.4.1.4 Flicker Noise . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.1.5 Heterodyne Phase Measurements . . . . . . . . . . . . . 51

3.4.2 µCycle Phasemeter . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2.1 Clock Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2.2 ADC Quantization Noise . . . . . . . . . . . . . . . . . . 53
3.4.2.3 ADC Amplitude Noise . . . . . . . . . . . . . . . . . . . . 53
3.4.2.4 Clock-ADC Timing Jitter . . . . . . . . . . . . . . . . . . . 54
3.4.2.5 Demodulation Noise Coupling . . . . . . . . . . . . . . . 55

3.4.3 Heterodyne Time-Delay Interferometry . . . . . . . . . . . . . . . . 58
3.4.3.1 Fiber Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.3.2 Spacecraft/Proof-Mass Motion . . . . . . . . . . . . . . . 61
3.4.3.3 Inter-Spacecraft Motion . . . . . . . . . . . . . . . . . . . 62
3.4.3.4 Basic TDI-Combinations and Considerations . . . . . . . 65

4 TIME DELAY INTERFEROMETERY . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Laser Noise Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.1 Laser Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Clock Noise Transfers . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.3 Ranging Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.4 Fractional Delay Filtering and Interpolation . . . . . . . . . . . . . . 72

4.2 Laser Pre-stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Pound-Drever-Hall Locking . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Arm Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 TDI Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 TDI Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Sagnac Combinations . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2.1 TDI Six-Pulse Combinations . . . . . . . . . . . . . . . . 79
4.3.2.2 TDI Symmetric-Sagnac Combination . . . . . . . . . . . 80

4.3.3 Michelson X-combinations . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.3.1 TDI-X0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3.2 TDI-X1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.3.3 TDI-X2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.4 LISA Orbital Dynamics and TDI Data Analysis . . . . . . . . . . . . 84
4.4 Ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 Pseudo-random Noise (PRN) Code Ranging . . . . . . . . . . . . 86
4.4.2 Time-delay Interferometry Ranging (TDIR) . . . . . . . . . . . . . . 88

4.4.2.1 TDI Ranging Tone . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2.2 TDI Ranging Parameter Search Algorithm . . . . . . . . . 90

6



5 THE LISA PHASEMETER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Digitial Signal Processing (DSP) System . . . . . . . . . . . . . . . . . . . 94
5.2 µCycle Phase Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Phasemeter Readouts . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2.1 Phase Quantization Noise . . . . . . . . . . . . . . . . . 101
5.2.2.2 CIC Downsampling and Aliasing . . . . . . . . . . . . . . 102

5.2.3 Phasemeter Test-Measurements . . . . . . . . . . . . . . . . . . . 103
5.2.4 Phasemeter Noise Model . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.5 Differential and Entangled Measurements . . . . . . . . . . . . . . 107

5.2.5.1 Digitally Split Differential Noise . . . . . . . . . . . . . . . 107
5.2.5.2 Electronically Split Differential Noise . . . . . . . . . . . . 109
5.2.5.3 Entangled Phase Noise . . . . . . . . . . . . . . . . . . . 113

5.2.6 Applications in LISA and LIGO . . . . . . . . . . . . . . . . . . . . 115
5.3 ADC Noise Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Timing Jitter Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Phase Dispersion Mitigation . . . . . . . . . . . . . . . . . . . . . . 126
5.4.2 Absolute Timing Jitter Extraction . . . . . . . . . . . . . . . . . . . 127

5.5 Phasemeter Performance Review . . . . . . . . . . . . . . . . . . . . . . . 128

6 THE UNIVERSITY OF FLORIDA LISA INTERFEROMETRY SIMULATOR . . . 131

6.1 The LISA Laser Test-bench . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 The Electronic Phase Delay (EPD) Unit . . . . . . . . . . . . . . . . . . . 134

6.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.2.1 Time-changing Time Delay . . . . . . . . . . . . . . . . . 142
6.2.2.2 Gravitational Wave Injection . . . . . . . . . . . . . . . . 142

6.3 UFLIS Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.1 Arm-Locking Stabilization . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.2 TDI Simulation Outline . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 TIME-DELAY INTERFEROMETERY SIMULATONS . . . . . . . . . . . . . . . 150

7.1 Transponder TDI Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.1.1 Static-Arm Transponder Simulation . . . . . . . . . . . . . . . . . . 152
7.1.2 Dynamic-Arm Transponder Simulation . . . . . . . . . . . . . . . . 154

7.2 LISA-like (Master-Slave Phase Locked Laser) TDI Simulations . . . . . . 157
7.2.1 Static-Arm LISA-like Simulation . . . . . . . . . . . . . . . . . . . . 158
7.2.2 Dynamic-Arm LISA-like Simulation . . . . . . . . . . . . . . . . . . 162

8 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

APPENDIX

A TIME VARYING FRACTIONAL DELAY INTERPOLATION FUNCTION . . . . . 172

7



B TDI 2.0 COMBINATION FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . 174

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8



LIST OF TABLES

Table page

2-1 Primary LISA verification binary sources . . . . . . . . . . . . . . . . . . . . . . 36

2-2 Gravitational wave frequency range of emission . . . . . . . . . . . . . . . . . . 37

3-1 LISA characteristics and requirements . . . . . . . . . . . . . . . . . . . . . . . 43

4-1 Orbital dynamics approximations for TDI generations . . . . . . . . . . . . . . . 79

6-1 TDI experimental characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7-1 Transponder TDI-ranging estimation . . . . . . . . . . . . . . . . . . . . . . . . 155

7-2 LISA-like TDI-ranging estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 164

9



LIST OF FIGURES

Figure page

1-1 NASA-ESA LISA solicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2-1 LISA/LIGO differential arm-length changes due to GW polarization . . . . . . . 30

2-2 A theoretical model of a binary star system . . . . . . . . . . . . . . . . . . . . 33

2-3 An outline of GW detection methods and associated frequency ranges . . . . . 37

3-1 Diagram of the LISA orbital dynamics . . . . . . . . . . . . . . . . . . . . . . . 41

3-2 Diagram of the LISA constellation . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-3 Diagram of the interferometry measurement system . . . . . . . . . . . . . . . 59

4-1 Model of the PDH locking scheme. . . . . . . . . . . . . . . . . . . . . . . . . . 74

4-2 Diagrammatic models of the TDI-X and Sagnac combinations . . . . . . . . . . 79

4-3 Flow chart of the ranging-tone minimization process . . . . . . . . . . . . . . . 93

5-1 A model of the LISA phasemeter . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5-2 CIC filter transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5-3 Theoretical PM readout digitization limitations . . . . . . . . . . . . . . . . . . . 102

5-4 Phasemeter noise caused by CIC filter aliasing . . . . . . . . . . . . . . . . . . 103

5-5 Software verification of PM performance . . . . . . . . . . . . . . . . . . . . . . 104

5-6 Hardware verification of PM performance . . . . . . . . . . . . . . . . . . . . . 105

5-7 Verification of the PM feedback transfer function . . . . . . . . . . . . . . . . . 106

5-8 Phasemeter noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5-9 Experimental models of ADC noise estimation measurements . . . . . . . . . . 109

5-10 PM/ADC Quantization and differential noise . . . . . . . . . . . . . . . . . . . . 110

5-11 ADC timing jitter noise limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5-12 ADC amplitude noise limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5-13 Entangled phase measurement results . . . . . . . . . . . . . . . . . . . . . . . 114

5-14 N-stage CIC filter aliasing and entangled phase measurements . . . . . . . . . 115

5-15 Model for estimating ADC phase and amplitude noise . . . . . . . . . . . . . . 117

10



5-16 Common source ADC phase and amplitude noise results . . . . . . . . . . . . 118

5-17 Zero-crossing timing jitter estimate . . . . . . . . . . . . . . . . . . . . . . . . . 121

5-18 ADC timing jitter comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5-19 Timing jitter calibration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5-20 Temperature dependent phase dispersion . . . . . . . . . . . . . . . . . . . . . 125

5-21 RF transformer phase loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5-22 Replacement RF transformer dispersion mitigation . . . . . . . . . . . . . . . . 127

5-23 Phasemeter noise model, estimation, and limits . . . . . . . . . . . . . . . . . . 129

5-24 Comparison of the PM noise characteristics . . . . . . . . . . . . . . . . . . . . 130

6-1 UFLIS laser benchtop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6-2 Measurements of commonly used sources . . . . . . . . . . . . . . . . . . . . 133

6-3 Model of the electronic phase delay (EPD) unit . . . . . . . . . . . . . . . . . . 135

6-4 EPD unit data-packing scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6-5 Noise limitations of the EPD unit . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6-6 EPD Unit’s phase-noise transmission accuracy . . . . . . . . . . . . . . . . . . 141

6-7 Time series of the interpolated delay difference . . . . . . . . . . . . . . . . . . 143

6-8 Interpolated delay differential measurements and corrections . . . . . . . . . . 144

6-9 Time series of an arbitrary gravitational wave . . . . . . . . . . . . . . . . . . . 145

6-10 Spectral correction of an arbitrary gravitational wave . . . . . . . . . . . . . . . 146

6-11 Long-arm hardware-based single-arm-locking experiment . . . . . . . . . . . . 147

7-1 Model of the TDI-Transponder experimental benchtop . . . . . . . . . . . . . . 151

7-2 Raw static transponder experimental results . . . . . . . . . . . . . . . . . . . . 153

7-3 Corrected static transponder experimental results . . . . . . . . . . . . . . . . . 156

7-4 Ranging tone cancellation spectral results . . . . . . . . . . . . . . . . . . . . . 157

7-5 Dynamic transponder experimental results . . . . . . . . . . . . . . . . . . . . . 158

7-6 TDI laser phase noise suppression . . . . . . . . . . . . . . . . . . . . . . . . . 159

7-7 Model of the LISA-like TDI experimental benchtop . . . . . . . . . . . . . . . . 160

11



7-8 Static LISA-like experimental results . . . . . . . . . . . . . . . . . . . . . . . . 161

7-9 Cross-correlated TDI combinations - Static Transponder and LISA-like . . . . . 162

7-10 Dynamic LISA-like experimental results . . . . . . . . . . . . . . . . . . . . . . 165

7-11 Cross-correlated TDI combinations - Dynamic Transponder and LISA-like . . . 166

7-12 Confusion noise time-series comparison . . . . . . . . . . . . . . . . . . . . . . 167

8-1 Compiled results and comparison with TDI for LISA . . . . . . . . . . . . . . . 169

12



Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

LASER NOISE MITIGATION THROUGH TIME DELAY INTERFEROMETRY FOR
SPACE-BASED GRAVITATIONAL WAVE INTERFEROMETERS USING THE UF LASER

INTERFEROMETRY SIMULATOR

By

Shawn J. Mitryk

May 2012

Chair: Guido Müller
Major: Physics

The existence of gravitational waves was theorized in 1916 by Albert Einstein

in accordance with the linearized theory of general relativity. Most experiments

and observations to date have supported general relativity, but now, nearly 100

years later, the scientific community has yet devise a method to directly measure

gravitational radiation. With the first attempts towards a gravitational wave measurement

in the 1960s, many methods have been proposed and tested since then, all failing

thus far to provide a positive detection. The most promising gravitational radiation

detection method is through the use of a space-based laser interferometer and with

the advancement of modern technologies, these space-based gravitational wave

measurements will eventually provide important scientific data to physics, astro-physics,

and astronomy communities.

The Laser Interferometer Space Antenna (LISA) is one such space-based laser

interferometer. LISA’s proposed design objective is to measure gravitational radiation

in the frequency range from 30µHz to 1Hz using a modified Michelson interferometer.

The interferometer arms are 5Gm in length measured between each of the 3 spacecraft

in the interferometer constellation. The differential arm-length will be measured to an

accuracy of 18 pm/
√
Hz resulting in a baseline strain sensitivity of 3.6 × 10−21 /

√
Hz.

Unfortunately, the dynamics of the spacecraft orbits complicate the differential
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arm-length measurements. The arms of the interferometer change in length resulting

in time-dependent, unequal arm-lengths and laser Doppler shifts. Thus, to cancel the

laser noise, laser beatnotes are formed between lasers on separate SC and, using these

one-way laser phase measurements, one can reconstruct an equal-arm interferometer

in post-processing. This is commonly referred to as time-delay interferometry (TDI) and

can be exploited to cancel the laser phase noise and extract the gravitational wave (GW)

induced arm-length strain.

The author has assisted in the development and enhancement of The University

of Florida Laser Interferometry Simulator (UFLIS) to perform more accurate LISA-like

simulations. UFLIS is a hardware-in-the-loop simulator of the LISA interferometry

system replicating as many of the characteristics of the LISA mission as possible. This

includes the development of laser pre-stabilization systems, the modeling of the delayed

inter-SC laser phase transmission, and the µcycle phase measurements of MHz laser

beatnotes.

The content of this dissertation discusses the general GW detection methods and

possible GW sources as well as the specific characteristics of the LISA mission’s design.

A theoretical analysis of the phasemeter and TDI performance is presented along

with experimental verification measurements. The development of UFLIS is described

including a comparison of the UFLIS noise sources with the actual LISA mission. Finally,

the enhanced UFLIS design is used to perform a second-order TDI simulation with

artificial GW injection. The results are presented along with an analysis of relevant LISA

characteristics and GW data-extraction methods.
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CHAPTER 1
INTRODUCTION

1.1 Gravitation and General Relativity

Although a first-order theory of gravity was established in 1687 with the publication

of ’Principia [1]’ by Issac Newton and started the field of physics as we know it today,

physicists are still trying to define the details of gravity’s interactions. In 1916, over 200

years later, Albert Einstein published his theory of general relativity (GR) which defined

the interaction of matter with the curvature of space and time [2, 3]. This provided

physicists with new insights on gravity and re-defined our concepts on the structure

of the universe. Even though Einstein’s theories have yet to be dis-proven, modern

discoveries are raising new questions and testing the limits of Einstein’s equations.

For example, the standard-model of particle-physics does not include an explanation

for gravity, although some physicists have proposed the existence of a ’graviton,’ [4] the

carrier of the gravitational force, despite the fact that it would extremely difficult to detect

because of how weakly gravity interacts.1 Proposals to explain an apparent ’missing

matter’ in galaxies and the accelerated expansion of the universe state that dark-matter

and dark-energy [6–8] dominate over ’light’ matter and largely determine the past and

future evolution of the universe. If dark-matter particles2 are discovered, the existence

of dark-matter raises new questions about the composition of matter in the universe and,

if not discovered, may indicate a need to modify Einstein’s theories. Furthermore, the

inability to quantize gravity and create a unified theory of forces which is consistent with

relativity is arguably the greatest dilemma of modern-day physics.

That said, Einstein’s theories on general relativity have, at this point, been

supported by all experimental tests and observations from the bending of light by a

1 Although, LISA could improve the upper bound on it’s possible mass [5].

2 Dark matter particles interact gravitationally but not electromagnetically.
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massive body [9] to the prediction and observed evidence for black holes. Nonetheless,

new questions are being raised. How do physicists explain both quantum mechanics

and relativity simultaneously? Is there some way to find a ’grand unification’ theory to

explain both phenomenon? Is the theory of general relativity a complete explanation of

gravity or does it have to be modified in some way? And finally, the question which will

be the indirect focus of this dissertation, can we use space-based laser interferometry

to measure a gravitational waves (GWs) [10], the space-time strain caused by the

motion of massive bodies, accurately enough to learn more about the details of general

relativity?

1.2 The Gravitational Wave Spectrum

Observationally, the question of whether or not GWs exist has been answered.

In 1993, the Nobel Prize in Physics was awarded to Russell Hulse and Joseph Taylor

for the indirect detection of GWs by demonstrating that the rotational energy loss of

the binary pulsar system PSR B1913+16 equaled the rate predicted through the GW

energy loss given by GR [11]. Unfortunately, scientists have yet to achieve a direct

detection of GWs. The first efforts, using resonant Weber bars [12], were not nearly

sensitive enough to make a positive detection and have a primary design disadvantage

in that they can only measure at a single resonant frequency. More modern attempts

to measure GWs include the use of ground based interferometers such as the Laser

Interferometer Ground-Based Observatory (LIGO) [13, 14], pulsar timing analysis using

radio telescopes such as the Square Kilometer Array (SKA) [15, 16], and cryogenic

resonant Weber bars such as ALLEGRO [17, 18] and miniGRAIL [19]. Thus far, all

attempts have failed to make a positive direct GW detection. On the other hand, LIGO

and other GW collaborators have been able to set upper limits on the distribution and

amplitude of many proposed GW sources [20–22].

The justification for the many assorted efforts to measure GWs goes beyond

bragging rights for a first detection. As a compliment to the electromagnetic observations
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of the universe from microwaves to x-rays, GWs provide a whole new spectrum through

which to observe astro-physical events. The measurements of GWs will provide a map

of black-hole space-times and verify relativistic black-hole models [23, 24], significantly

improve the constraints on the Hubble constant [25], and provide early warning systems

for electromagnetic observations and cross-correlated parameter estimation [26, 27].

Most importantly, the measurements of a GW signal could give scientists the necessary

information to be able to narrow down the many, and growing, modern theories of gravity

that are being used to explain the aforementioned complications to Einstein’s GR.

Fortunately, physicists are working on a more promising detection method:

space-based laser interferometers such as the Laser Interferometer Space Antenna

(LISA) [28, 29], shown in Figure 1-1, and it’s conceptual successors like the Next

Gravitational Wave Observatory (NGO) [30].

1.3 Space-Based Gravitational Wave Astronomy

Space-based GW detectors such as LISA, NGO, or the Deci-hertz Interferometer

Gravitational Wave Observatory (DECIGO) [31] have many added benefits over

ground-based observatories. The gravitationally ’quiet’ environment of space allows

space-based detectors to get away from the seismic and gravity gradient noise that

limit the low-frequency detection capabilities of ground-based detectors. In addition,

space-based satellites allows for Gigameter (Gm) baseline arm-lengths, in comparison

to the few kilometer (km) arm-lengths of ground-based detectors, decreasing the

requirements on the differential arm-length measurement resolution to obtain an

equivalent strain precision.

The GW-frequency measurement band of space-based detectors, from about

30µHz to 1Hz for LISA and from about 10mHz to 100Hz for DECIGO, has a number

of scientifically interesting GW sources. This includes, but is not limited to, compact

galactic binaries, extra-galactic binary black hole mergers, and extreme mass ratio

inspirals (EMRIs) [33]. Measurements of GWs from compact binary systems could
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Figure 1-1. NASA-ESA LISA solicitation: This solicitation, released by NASA, shows a
model of the LISA interferometry setup, including the 3 space-craft and the
inter-space-craft laser links used to measure gravitational radiation. At the
bottom of the solicitation is a simulation of a LISA-like GW signal including
the expected instrumental noise; the objective of this thesis is to re-create a
hardware-in-the-loop simulation much like the one shown. The figures at in
the top, left corner show the expected LISA sources including black hole
binaries mergers, extreme-mass ratio inspirals, compact star binaries, and
finally, the gravitational background, and possibly, unknown,
gravitational-quantum effects. [32]
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be used to estimate the density of these binary systems within our galaxy. The GW

measurement of a binary black hole merger along with an electromagnetic observation,

could be used to put a more accurate constraint on the Hubble constant [25]. GWs from

extreme mass ratio inspirals provide a perfect experimental test-bench to map out the

space-time curvature around a black hole and verify Schwarzschild and Kerr black hole

metric solutions [23, 24].

Space based gravitational wave detectors have their own complications though. The

proof-masses, the objects with which the gravitationally induced motion is measured,

must be kept in a gravitational free-fall and shielded from any other non-gravitational

forces, such as those produced by electromagnetic radiation from the sun. Also,

because the proof-masses must be in free-fall, their independent geodesic orbits

cause the arm-lengths of the interferometer to change over time. As a result, the

common-mode laser phase noise rejection inherent in most interferometers, is no longer

maintained.

Space-based interferometers must make use of a sequence of laser phase noise

stabilization techniques in combination with one-way laser phase measurements and

the post-processing removal of laser phase noise to accurately extract GW signals

from the photo-detector (PD) signals [29, 34]. Laser pre-stabilization techniques

include various methods of locking the laser frequency to a stable reference; this

could be an ultra low expansion (ULE) glass cavity or the interferometer arm-length

itself. Once the lasers have been pre-stabilized, one-way laser phase measurements

can be taken along the individual arms of the interferometer. By combining these

one-way laser phase measurements in particular time-shifted and time-scaled linear

combinations, one can cancel the common-mode laser phase noise and extract the

phase modulated gravitational wave. This method of laser noise cancellation in an

unequal-arm interferometer is known as time delay interferometry (TDI) [35].
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1.4 Details of the Dissertation’s Content

To begin, we will discuss the basics of general relativity, derive the GW propagation

characteristics, outline GW detection methods, and provide an example of an interfer-

ometric GW measurement of a binary source. We will also give a brief introduction

of the LISA design sensitivity and examine the expected LISA sources including

their expected strain amplitude, frequency, and detection rates (chapter 2). We will

then explain the details of the Laser Interferometer Space Antenna including the

Disturbance Reduction System and the Interferometry Measurement System (chapter 3).

Chapter 4 provides a more in-depth explanation of laser phase mitigation methods of

the LISA Interferometry Measurement System (IMS) and a theoretical analysis of TDI.

Chapter 5 analyzes the design, performance, and limiting noise sources of the UF-LISA

phasemeter (PM) as well as presents a few experiments and results for ADC noise

mitigation in LISA. The University of Florida Laser Interferometry Simulator (UFLIS)

along with the electronic phase delay (EPD) unit and the pre-stabilized UF-LISA laser

bench-top is then explored in detail. Some basic measurements are then presented

to demonstrate the capabilities of UFLIS (chapter 6). Finally, the complete LISA

constellation is simulated to test TDI 1.0 and 2.0 (chapter 7) linear combinations and

verify laser noise cancellation, ranging estimation, and GW extraction.

1.5 Note to the Reader

The reader should note that, although this dissertation focuses on the design

and science of the LISA mission as well as references LISA mission characteristics

and publications, the specifications for the development of a future, space-based GW

interferometer may differ from those referenced [36]. This may include changes in the

arm-length, relaxed sensitivity requirements on the components, and a reduction in

the number of laser links between SC. Nonetheless, the measurements and science

presented in this dissertation still hold true and can be applied to any space-based

interferometry mission.
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CHAPTER 2
GENERAL RELATIVITY AND GRAVITATIONAL WAVES

The following introduction to GR as it pertains to gravitational wave emission and

detection was derived from a combination of [37], [38], and [39] along with additional

calculations and conceptual relationships provided by the author.

2.1 Introduction to General Relativity

2.1.1 Newtonian Gravity

Sir Issac Newton proposed that the gravitationally attractive force between two

massive objects, ma and mb, is given by:

−→
F ab =

Gmamb

|−→r ab|2
r̂ab, (2–1)

where
−→
F ab is the force vector between the objects, −→rab is the distance vector connecting

the two objects, and G is the gravitational constant. One can also write the gravitational

potential, V(r), surrounding an object of mass M as:

V(|−→r ij|) =
GM

|−→r ij|
, (2–2)

where −→r ij is the distance vector connecting the center of mass of the object, −→x i, to

a point of interest, −→x j. These relationships became universally accepted based on

confirmed observations and predictions throughout the 1700s and 1800s, giving rise

to the Newtonian interpretation of gravity. However, some phenomena, such as the

precession of the planet Mercury, were not entirely explained by Newton’s Laws.

2.1.2 Einstein Field Equations

It was not until 200 years later when the Theory of General Relativity, as proposed

by Albert Einstein in 1916 [3], revealed the true nature of gravity by defining the

interaction of space and time with energy and mass. More specifically, GR asserted that

the curvature of a tensor spacetime potential, Gµν , defines the gravitational force on an

object while, at the same time, the mass/energy distribution of the object, Tµν , defines
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how the spacetime around the object will distort. This is summed up by Einstein’s tensor

field equations:

Gµν =
8πG

c4
Tµν , (2–3)

where Gµν is the symmetric, second-rank, covariant, Einstein tensor, Tµν is the

symmetric, second-rank, covariant, energy-momentum (or stress-energy) tensor, and c

is the speed of light. Generally, Gµν , can be interpreted as the curvature and dynamics

of spacetime while the Einstein stress-energy tensor, Tµν , defines the distribution

and momentum of mass/energy being acted on, while simultaneously, changing the

spacetime around it. This self-interactive nature of the 10 independent second-order,

differential Einstein’s equations makes them extremely hard to solve with only a few

specific cases having a complete analytic solution.

2.1.3 Proper Time Invariance

To better understand the Einstein field equations and eventually be able to compute

the strain and frequency of a GW source, we must first introduce 4-vectors, vector

transformations, and explain the spacetime metric, gµν . Consider a 4-vector for a

parameterized curve, xµ(λ) = [ct(λ), x(λ), y(λ), z(λ)], in a flat, non-moving coordinate

basis, commonly referred to as Minkowski space:

ηµν =




−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1




(2–4)

such that we can write the ’spacetime distance’ separating two infinitesimal points along

the curve, dxµ/dλ, as:

ds2 = ηµνdx
µdxν = dx2 + dy2 + dz2 − c2dt2, (2–5)
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using Einstein summation notation. This ’spacetime distance’ can be related to the

proper time and is invariant under transformation to a new vector basis xµ́ such that:

ds2 = −c2dτ 2 = dś2 = ηµ́ν́dx
µ́dxν́ . (2–6)

Solving for dτ , we can calculate the instantaneous change in the proper time in any

reference frame using the equation:

dτ =
1

c

√
−ηµν

dxµ

dλ

dxν

dλ
dλτ . (2–7)

Using the fact that this quantity should not change as a function of the selected

reference-frame, we can define a transformation from one vector space, xµ, to another

vector space, xν́ , using transformation matrices, Λν́
µ. For example, it can be shown that

the transformation to a reference frame moving in the x-direction at a velocity v with

respect to a stationary reference frame takes the form of the Lorentz transformation:

Λν́
µ =




cosh(α) − sinh(α) 0 0

− sinh(α) cosh(α) 0 0

0 0 1 0

0 0 0 1




, (2–8)

where α = tanh−1(v/c). This transformation is a member of the Poincaré transformation

group which keeps the proper time interval invariant under reference frame transfor-

mations in a flat spacetime and is the basis for Special Relativity.

2.1.4 Metrics, Black Holes, and Curvature

Transformations in a ‘curved’ spacetime can be defined by replacing the Minkowski

spacetime metric, ηµν , in (2–6), with a more generalized spacetime metric, gµν , such that

the invariance equation becomes:

ds2 = gµνdx
µdxν . (2–9)
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The spacetime metric, gµν , is a covariant, second-rank, tensor which contains all the

information about the strain (current density) and dynamics (relative parameterized

density) of spacetime.

Some examples of curved analytic metrics which help reveal the nature of the

metric definition of spacetime include the theoretical models of stationary, non-rotating,

black hole, known as the Schwarzschild metric:

gµν =




−
[
1− 2GM

c2r

]
0 0 0

0
[
1− 2GM

c2r

]−1
0 0

0 0 +1 0

0 0 0 +1




(2–10)

and that of a rotating black hole, known as the Kerr metric:

gµν =




−
[
1− 2GMr

c2ρ2

]
0 0 −2GM sin(θ)

c2ρ2

0 ρ2

∆
0 0

0 0 ρ2

r2
0

−2GM sin(θ)
c2ρ2

‘ 0 0 1
ρ2r2

[(r2 + a2)2 − a2∆sin2(θ)]




. (2–11)

These relationships are written in spherical coordinates where M is the mass of the

black hole, a is the ratio of the angular momentum to the mass (J/M) pointing in the

ẑ-direction, and

∆(r) = r2 − 2GMr

c2
+ a2, (2–12)

ρ(r, θ) = r2 + a2 cos2(θ). (2–13)

Computing ds2 as given by (2–9) using the Schwarzschild metric (2–10), we obtain:

ds2 = −
[
1− 2GM

c2r

]
dt2 +

[
1− 2GM

c2r

]−1

dr2 + r2dθ2 + r2 sin(θ)2dφ2, (2–14)

which is a more common way to write out the metric equation.
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To gain a better intuition on what the metric represents, we compare these

black hole metrics to the flat spacetime Minkowski metric (2–4). It will be shown in

chapter 2.1.5 that the first-order gravitational acceleration, written in terms of the

spacetime metric, can be written as:

d2xi

(dx0)2
=
∂i ∗ h00

2
, (2–15)

where hµν is the deviation from the Minkowski metric,

hµν = ηµν − gµν . (2–16)

Referencing the Schwarzschild metric for a stationary black hole, as in (2–10), we

see that the dt2 and dr2 terms in the metric converge to -1 and +1, respectively, while the

gravitational acceleration approaches zero in the limit that r → ∞ or M → 0, resulting

in Minkowski-like flat spacetime. But as r is decreased, the spacetime curvature due to

the black hole increases, thus increasing the gravitational acceleration. A useful way to

analyze these black holes is to consider the radius at which spacetime goes from being

’time-like’, ds2 > 0, to ’space-like’, ds2 < 0, also known as the event horizon. Solving for

the inversion point, or ds2 = 0, we obtain the Schwarzschild radius:

RS =
2GM

c2
. (2–17)

Now, changing our focus to the Kerr metric, given by (2–11), we see that the gθθ

and gφφ terms are no longer equal to 1, indicating that the gravitational field is no longer

spherically symmetric due to the black hole’s angular momentum. Additionally, if we

compute the gravitational acceleration near a rotating black hole, as given by (2–15),

we will see that the curvature is greatest near the poles of the rotating black hole and

that it does not approach infinity as r approaches zero. This is because the black hole’s

angular momentum causes the Schwarzchild-singularity to be stretched into a circular

loop. Finally, one of the most interesting aspects of the Kerr black hole metric is the
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non-zero gφt and gtφ terms which represent the angular dynamics of space-time due to

the rotation of the black hole, also referred to as frame dragging. This frame-dragging

concept has recently been confirmed by Gravity Probe B [40] using the Earth as the

source of rotational space-time frame dragging.

Another useful way to analyze the curvature of spacetime given a particular metric,

gµν , is through the use of the Riemann and Ricci Tensors. The Riemann Tensor defines

how a vector changes as it is parallel transported around a closed curve defined by

translation vectors, Aµ and Bν , and can be given by the definition:

δxρ = Rρ
σµνx

σAµBν . (2–18)

We will refrain from going into the details of the derivation and simply provide a

definition for the Riemann tensor in terms of partial derivatives of a spacetime metric,

gµν , which may be given by:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ, (2–19)

where Γσ
µν are the Christoffel coefficients, also written in terms of partial derivatives of

the metric, gµν , as:

Γσ
µν =

gσρ

2
(∂µgνρ + ∂νgρµ − ∂ρgµν), (2–20)

and are defined by:

∇µx
ν = ∂µx

ν + Γν
µλx

λ. (2–21)

One can easily see that this curvature tensor is defined entirely as a function of

the metric and it’s partial derivatives. Although this is the generalized definition for the

curvature on a given manifold, in General Relativity we will primarily be concerned with a
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contracted version of the Riemann tensor, known as the Ricci Tensor:

Rµν = Rλ
µλν . (2–22)

By trace-reversing the Ricci Tensor, we finally arrive at the Einstein tensor:

Gµν = Rµν −
1

2
Rgµν (2–23)

where, R is the Ricci scalar, or:

R = gµνRµν . (2–24)

The Einstein tensor is a symmetric, second-rank tensor which is equal to the null

tensor when space-time is flat and has zero divergence such that, ∇µGµν = 0.

2.1.5 Geodesics

Now that curvature and the metric have been sufficiently discussed, the next

question becomes how does this spacetime curvature affect the motion of a particle?

An object in free-fall within a given metric will follow a path known as a geodesic. The

geodesic equation gives a parameterized space-time solution for what is considered a

’straight’ line, or the shortest path between two points, within a given space-time metric,

or comparatively, Newton’s Laws for GR. The geodesic equation of motion is written as:

d2xσ

dλ2
+ Γσ

µν

dxµ

dλ

dxν

dλ
= 0. (2–25)

By considering a ’static’ metric and non-relativistic motion, the interesting compo-

nents of the Christoffel coefficients simplify to:

Γµ
00 =

−gµλ∂λg00
2

. (2–26)

Then, by evaluating (2–20) with gµν = ηµν − hµν , the geodesic equation reduces to the

aforementioned gravitational acceleration within a given spacetime metric, (2–15).
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2.1.6 Einstein Field Equations Revisited

At this point we have seen how a massive object distorts the local space-time

metric as well as how this metric affects the motion of a nearby particle, but the basis

of gravitational wave generation exists in the dynamics of Einstein’s equations, when

massive objects move through spacetime causing the metric to change. The basis for

the derivation of Einstein’s field equations lies in the attempt to dynamically equate the

parameterized divergence from a flat Minkowski metric, gµν − ηµν , or equivalently, the

Einstein tensor, Gµν , to the matter energy distribution tensor, Tµν . Essentially, we want

the Einsteinian equivalent of Poisson’s equation for gravitation:

∇2Φ(r, θ,φ) = 4πGρ(r, θ,φ), (2–27)

where Φ is the ’gravitational potential’ and ρ is the mass density. One can make a

comparison between Poisson’s equation and Einstein’s field equations, again written as:

Gµν =
8πG

c4
Tµν , (2–28)

to better understand what the terms represent. A static, first-order comparison of

these equations would equate the metric, gµν to the gravitational potential, Φ, the

Einstein Tensor, Gµν to the Laplacian of the gravitational potential, ∇2Φ, and the

stress-energy tensor, Tµν , to the mass density distribution, ρ. Although, when we

take all the dynamics of the Einstein equations into consideration, we are required

to solve 10 second-order inter-dependent differential equations, which have very few

analytic solutions. Fortunately, if we consider a ’weak-field’ expansion, the linearizion

of Einstein’s equations will provide us with a first-order dynamic solution for the change

in the metric due a change in the mass distribution. The solution of this weak field

expansion is manifested as polarized plane GWs which propagate outward at the speed

of light from the generation source.
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2.2 Gravitational Wave Derivation

2.2.1 Polarized Plane Wave Solutions

We begin the weak-field solution for GR by defining a metric expansion as a

Minkowski metric with a small perturbation added to it:

gµν = ηµν + hµν +O[hn
µν ], (2–29)

while assuming hµν << 1 so that the expansion converges. Evaluating this in Einstein’s

equation, (2–23), we obtain a relationship for the linearized field equations:

−hµν,α
α − ηµνhαβ,

αβ + hµα,
α
ν + hνα,

α
µ = 16πTµν , (2–30)

where hµν is the trace-reversed hµν , given by

hµν = hµν −
ηµνh

α
α

2
, (2–31)

and hµν,α = ∂αhµν . After applying the gauge conditions such that:

h
µα
,α = 0, (2–32)

we are left with a concise form for the linearized field equations:

hµν ,α
α = 16πTµν . (2–33)

Although the weak-gravitational field equations have an extra degree of freedom, using

Maxwell’s electromagnetic field equations as our guide, we expect a gravitational analog

to the polarized plane-wave solutions of electrodynamics. As well, we should be able to

calculate the luminosity and frequency of a particular radiation source using a multi-pole

expansion, as is commonly done in electrodynamics.

The GW solutions resulting from (2–32), after transforming hµν to the transverse-

traceless gauge, hTT
µν , where the temporal components are zero, can be broken down

into two basis polarization states, h+ and h×. Note that hTT
µν is it’s own trace-reverse,
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such that hTT
µν = h

TT

µν , eliminating the trace-reversed basis needed to form the linearized

field equations. Written explicitly in Cartesian coordinates, a GW propagating in the

ẑ-direction will take the form:

hTT
µν =




0 0 0 0

0 hxx hxy 0

0 hyx hyy 0

0 0 0 0




=




0 0 0 0

0 ℜ[h+e
−iω(ct−z)] ℜ[h×e−iω(ct−z)] 0

0 ℜ[h×e−iω(ct−z)] −ℜ[h+e
−iω(ct−z)] 0

0 0 0 0




(2–34)

where h+/× is the GW polarization amplitude and ω is the GW frequency. The complete

analysis of the polarization states show that a ring of particles laid in the x/y plane will be

modulated with the patterns shown in Figure 2-1, hence the assigned names.

Figure 2-1. LISA/LIGO differential arm-length changes due to GW polarization: The
affects of the h+/× strain polarizations on a ring of particles is depicted. The
LIGO (blue) and LISA (red) detectors are overlaid on the ring to show the
polarization affects on the differential arm-length changes for each of the
detectors types. The LIGO detectors are only sensitive to a single GW
polarization, in this case, h+, while the LISA detector is sensitive to both
polarizations but with a reduction factor of 2/

√
3 due to the 60o angle

between the differential arms. [29]

2.2.2 Spacetime Strain

Another interpretation of a GW’s affect on matter is represented in terms of a

space-time strain which is computed from hµν . In this weak field transverse-traceless
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gauge, the geodesic equation can be reduced to

∂2

∂t2
xµ =

xµ

2

∂2

∂t2
hµ

σ. (2–35)

Considering two objects separated in the x-direction by a distance xo, the geodesic

equation is then calculated to be:

∂2

∂t2
x(t) =

x(t)

2

∂2

∂t2
hx

x +
x(t)

2

∂2

∂t2
hx

y. (2–36)

To simplify the analysis, we take h× = 0 and h+ > 0. The distance between these two

objects in a ’flat’ spacetime is given by:

x(t) = xo

∥∥∥∥1 +
h+e

−iω(t)

2

∥∥∥∥ . (2–37)

Assuming h+ << 1, we can define the relationship:

δx

xo
= h+. (2–38)

where δx is the amplitude of the separation distance ranging from xo − (δx/2) to

xo + (δx/2). Thus, in this way, the metric can be interpreted as a space-time strain which

changes the distance between two objects by it’s magnitude. The measurement of this

change in distance is the basis for interferometric detection of GWs.

2.2.3 Weak-field GR Multipole Expansion

The magnitude of a GW source can be calculated, as is commonly done in

electrodynamics, in terms of Green’s functions given by:

hµν(x
σ) = −16πG

c4

∫
G(xσ − yσ)Tµν(y

σ)d4y. (2–39)

After applying boundary conditions in the far-field approximation, we can write the

Fourier domain metric perturbation as:

h̃µν(ω, x
i) =

4Geiωr

c4r

∫
d3yT̃µν(ω, y

i), (2–40)

31



or the time-domain perturbation as:

hµν(ω, x
i) =

4G

c4r

∫
d3yTµν(ct− r, yi). (2–41)

Using a multi-pole expansion of the radiating system in the far-field approximation,

we may write the observed strain from a quadrapole source as:

hij =
2G

c4r

d2Iij
dt2

(tr), (2–42)

where Iij is the quadrupole moment tensor:

Iij =

∫
d3xT00xixj, (2–43)

and tr = ct − r is the retarded time. The monopole and dipole terms do not contribute to

GW radiation while higher order terms fall off as (1/r)(n−1) and will be neglected in this

far-field approximation.

One of the most common astrophysical GW sources are binary systems, where two

masses are orbiting a common center of mass. Given a binary system with two masses,

m1 and m2, and a separation distance of 2a, we can write the quadrapole moment of

inertia of the system as:

Iij = µa2




cos2(ωt) cos(ωt)sin(ωt) 0

cos(ωt)sin(ωt) sin2(ωt) 0

0 0 0




(2–44)

where µ = (m1m2)/(m1 + m2) is the reduced mass and ω =
√

(GM)/(a3) is the orbital

frequency given by Kepler’s Law, M = m1 + m2 = ω2a3/G [41]. Evaluating Iij in (2–42),
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the expected GW radiation strain can be written as:

hij(t, x
i) =

4Gµ

c4r
ω2a2




−cos(2ωtr) −sin(2ωtr) 0

−sin(2ωtr) cos(2ωtr) 0

0 0 0




(2–45)

=
4G2m1m2

c4ra




−cos(2ωtr) −sin(2ωtr) 0

−sin(2ωtr) cos(2ωtr) 0

0 0 0



. (2–46)



m
1

2m
a2

Figure 2-2. A theoretical model of a binary star system: Two masses, m1 and m2 rotate
about a common center of mass with a separation distance of 2a. As
rotational energy is lost through GW radiation the separation distance will
decrease (2–50) while the angular frequency increases (2–52).

The instantaneous power output through GW radiation, or rather the gravitational

luminosity, can be calculated by the time-averaging over a single orbital period of the

radiating source, given by:

LGW =
G

5c5

〈
dI3ij
dt3r

〉2

(2–47)

For a binary system, this results in a luminosity given by:

LBinary =
32

5

µ2M3

a5
G4

c5
f(ǫ), (2–48)
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where f(ǫ) is a correction function based on the eccentricity, ǫ, given by:

f(ǫ) = [1 +
73

24
ǫ2 +

37

96
ǫ4][1− ǫ2](−7/2), (2–49)

and may contribute an order of magnitude to the resulting luminosity [37].

As a result of the GW energy radiated by the binary source, the orbital kinetic

energy will decay resulting in a reduced orbital distance, increased luminosity,

and increased orbital frequency. These values can be derived in the first order

Post-Newtonian approximation for a circular orbit (ǫ = 0) as:

a = ao

(
1− t

τo

)1/4

(2–50)

L =
Lo(

1− t
τo

)5/4
(2–51)

ω = ωo

√√√√
1

(
1− t

τo

)3/4
, (2–52)

respectively. In this equation, the time-scaling factor, τo, is the ’merger time’ until the

binary system inspirals into a single compact object:

τo =
5

256

c5a4o
G3µM2

, (2–53)

resulting from initial system values of ao, Lo, and ωo.

Post-Newtonian and Numerical Relativity Solutions .

Higher order Post-Newtonian and Numerical Relativity (NR) solutions provide more

accurate descriptions to these binary in-spiral systems by taking into account orbital

circularization and the relative angular momentum of the individual in-spiraling objects.

Qualitatively, gravitational radiation from an in-spiraling system is minimized through a

reduction in the eccentricity and circularization of the binary orbits. The relative angular

momentum between the stars and the angular momentum of the binary may cause the

actual merger time to either lead or lag the non-rotating merger time, τo. This can also
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cause an asymmetric gravitational radiation which imparts a linear momentum to the

binary system. These higher order solutions are necessary in order to accurately extract

gravitational wave signals from the detector through wave-form matching.

2.3 Gravitational Wave Sources and Detection Methods

2.3.1 Strain Estimation

Now that we have a measure for the expected GW radiation from astrophysical

quadrapole sources, we can estimate the GW strain from particular sources based on

the parameters determined through electromagnetic observations. For example, the

primary LISA ’verification’ binary, RX J0806.3+1527, a known AM CVn binary system

with an orbital period of 321 s [42], is expected to have binary stars with m1 = 0.13M⊙

and m2 = 0.5M⊙ with an observation distance of r = 300 pc, as seen in Table 2-1.

Using Kepler’s Law, we can calculate the separation distance between the binary

stars as aRX−J = 37.97 × 106m. Including the other known characteristics of the RX

J0806.3+1527 system, we can calculate the strain magnitude observed on Earth from

(2–45) as:

|hµν | =
4G2µM

c4ra
= 1.608× 10−21m

m
. (2–54)

A large number of known compact binaries have strain amplitudes on the order of

10−22 → 10−21m/m in the frequency range from 0.1 → 10mHz and are primary LISA

sources. Three other verification binaries and four other known, possible sources

are outlined in Table 2-1 [42]. Further details of these sources are discussed in

chapter 2.3.4.

2.3.2 Gravitational Wave Evidence

The current evidence for GW radiation from astronomical sources is based on the

observation and orbital decay measurements of binary pulsar systems. The first orbital

decay measurements were performed by Hulse and Taylor using the PSR B1913+16

binary pulsar. In 1993, Hulse and Taylor were awarded the Nobel Prize in Physics for
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Table 2-1. Primary LISA verification binary sources: Here we list the top 8
most-probable verification binaries for the LISA-GW detector according to
[42]. These binaries will also assist in constraining the Hubble constant [5].
The TDI experiments performed in chapter 7 will use the double white dwarf
RXJ0806.3+1527 binary as the simulated GW source.

Name f (mHz) SNR [mean : max] r (pc) m1 m2

RXJ0806.3+1527 6.22027 [62 : 227] 300− 1000 0.13 0.2− 0.5
V407 Vul 3.51250 [30 : 79] 300− 1000 0.068 0.7

ES Cet 3.22 [19 : 62] 350− 1000 0.062 0.7
AM CVn 1.94414 [8 : 13] 606 0.14 0.85

HP Lib 1.813 [< 3 : 5] 197 0.032 0.57
4U 1820-30 2.92 [< 3 : 5] 8100 < 0.1 1.4

WZ Sge 0.04065 [< 3 : 5] 43 < 0.11 > 0.7
KPD 1930+2752 0.2434 [< 3 : 5] 100 0.5 0.97

showing the orbital decay of the PSR B1913+16 system equaled that predicted by

GR, thus providing indirect evidence of energy loss through gravitational radiation [11].

To date, the orbital decay of the PSR B1913+16 system matches that predicted by

GR to within 0.2% [43]. Other astronomical observations, such as the double binary

pulsar PSR J0737-3039, are providing even tighter constraints and further supporting

the validity of Einstein’s GR [44, 45]. Despite the certainty of GW existence, a direct

observation along with electromagnetic counterparts would provide physicists vital

information in support or opposition of modern post-Einsteinian theories.

2.3.3 The Gravitational Wave Spectrum

Astronomical GWs radiate from a wide variety of dynamic quadrapole sources

including binary inspirals of compact star and black hole mergers, asymmetric spinning

compact objects, super-nova star collapses, and black hole captures of compact objects.

It is also expected that there is a gravitational wave background, much like the cosmic

microwave background, resulting from quantum fluctuations shortly after the big-bang

and the sub-sequential expansion of the universe. Each of these systems produces

GWs within a characteristic frequency range from 10−18 → 109 Hz, each with an
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Table 2-2. Gravitational wave frequency range of emission: This table outlines the
gravitational wave emission spectrum, the GW emission sources, and the
associated detection techniques. (BBHM: Binary Black Hole Mergers; EMRI:
Extreme Mass Ratio Inspirals)

Freq. Range (Hz) Name Sources Detection Method
10−18 − 10−7 Very Low Primordial GWs, Pulsar Timing

Freq. Early Universe Dynamics
10−4 − 100 Low Freq. BBHM, EMRIs, Space-based

Compact Binary Stars Interferometers
101 − 104 High Freq. Supernova, Ground-based

Compact Binary Inspirals Interferometers
102 − 109 Very High Binary Inspiral Harmonics, Resonant Detectors

Freq. Technological Applications

associated possible method of detection. The frequency ranges and their proposed

detection methods are outlined in Table 2-2 and depicted in Figure 2-3.

Figure 2-3. Outline of GW detection methods and associated frequency ranges: Very
low-frequency (e.g. pulsar timing - Square Kilometer Array); Low frequency
(e.g. space-based laser interferometers - Laser Interferometer Space
Antenna, Next Gravitational Wave Observatory); High-frequency (e.g.
ground-based laser interferometer - Laser Interferometer Gravitational Wave
Observatory); Mid-frequency (e.g. space-based resonant cavities -
Deci-Hertz Gravitational Wave Observatory (DECIGO)); Very high frequency
(e.g. GW amplification and detection through the measured deformations in
a resonant geometrical structures - Weber Bars/miniGRAIL:).

2.3.4 LISA Gravitational Wave Sources

The low-frequency/LISA measurement band, from 0.1mHz to 1Hz contains a

wide-array of interesting gravitational wave sources.
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2.3.4.1 Compact Binaries

The strongest of these sources are monotonic GWs resulting from interacting

and non-interacting binary star systems composed of binaries with one or both of the

stars being a compact white dwarf (WD) or neutron star (NS) star. Although many

non-interacting WD/WD, WD/NS, NS/NS systems have been observed, none are known

to be in the LISA sensitivity range. At the same time, there are more than 10 known and

electromagnetically observed interacting AM-CVn (WD accretor) and compact X-ray (NS

accretor) binary systems which are expected to be excellent verification sources and are

well within the LISA strain sensitivity. The strongest of these verification systems were

introduced in Table 2-1.

The science motivating LISA’s observations of these sources include estimations of

the populations of these binary systems within our galaxy and an improved constraint on

the Hubble constant (also referred to as redshift uncertainty). In fact, LISA is expected

to be sensitive to so many company binary systems that their populations are expected

to form a ’confusion noise background’ due to the inability to differentiate between

individual sources for frequencies below 2mHz [46].

2.3.4.2 Binary Black Hole Mergers

One of LISA’s most interesting astronomical observations will be that of extra-

galactic near-equal-mass, 103M⊙ - 107M⊙, binary black hole mergers. These systems

will appear, depending on the total mass of the system, near the low-frequency limits

of the LISA measurement band, from 0.1mHz to 1mHz, and will increase in frequency

and strain amplitude as the system evolves. The dynamics of these binary black

hole mergers is not well defined, requiring numerical relativity simulations to produce

theoretical merger wave-forms. Observations of these events will provide precision

tests of these extreme self-interacting spacetimes as well as details about black hole

formation and evolution. Although no systems are known, event rate estimates range

from 1 to 100s per year depending on the population and LISA’s achieved strain
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sensitivity. As an example, a recent massive black hole binary system has been found,

named NGC-3393 with binary system characteristics, m1 = 3 × 107M⊙, m2 = 1 ×

106M⊙, 2a ≃ 5 × 1018m = 162 pc, r = 50Mpc [47]. If this system were closer to it’s

merger time, the expected LISA sensitivity could provide a 105 to 106 signal-to-noise

ratio on the GW emission waveform just before the black-hole merger. As a result

of GW’s non-interacting properties, cross-correlations between the GW signal and

electromagnetic observations of these binary black hole mergers will allow LISA to

estimate an absolute distance to the binary source, providing an improved constrain on

the Hubble constant with an error of 1%1 [25, 29].

2.3.4.3 Extreme Mass Ratio Inspirals

Binary black hole mergers with a large mass difference ratio, otherwise known as

extreme mass ratio inspirals (EMRIs), will be visible near the 3mHz corner frequency of

the LISA sensitivity band (Figure 8-1) and are the primary driving motivation to improve

the peak LISA sensitivity. EMRIs consist of a ≃ 106M⊙ massive black hole being closely

orbited by and, eventually merging with, a smaller 10 − 100M⊙ black hole. The smaller

black hole will act as a test-particle to provide a spacetime map in the vicinity of the

massive Kerr black hole beyond the singularity’s event-horizon [23, 24].

2.3.4.4 Other Suggested Sources

Finally, LISA will provide some of the first direct tests of new physics including

attempts to probe the microwave-background-like, gravitational wave stochastic

background. This GW background is conjectured based on the inflation of first-order

phase transitions of the early universe, shortly after the big bang and is expected to

result in a white-noise GW background throughout the universe. For more information on

this and the other LISA-like tests of new physics, refer to [48].

1 Current methods of constraining the Hubble constant provide an error of 5%.
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CHAPTER 3
THE LASER INTERFEROMETER SPACE ANTENNA

A majority of the characteristics for this description can be found in the LISA

NASA/ESA Yellow-book [29].

3.1 LISA Overview

The LISA GW measurement scheme utilizes a modified-Michelson detection

technique by taking one-way measurements between freely-falling proof-masses

housed within three spacecraft (SC). These spacecraft follow independent, helio-centric

orbits trailing 20o behind the Earth1 while maintaining a nearly equilateral triangle

configuration which is off-set by 60o to the orbital plane of the center-of-mass as shown

in Figure 3-1. Housed within each of these space-craft are two proof-masses which

are maintained in a gravitational free-fall by a disturbance reduction system (DRS).

Meanwhile, the interferometric distance between the proof-masses on opposite SC

are measured with an interferometry measurement system (IMS) as diagrammed in

Figure 3-2. The data is then sent to Earth to form the post-processed combinations

required to extract the GW signals. Using this design basis, the success of the LISA

mission towards detecting GWs depends on a series of requirements (Table 3-1) which

are defined to optimally measure the previously discussed GW sources while staying

within the bounds of cost and feasibility. Generally, the primary sensitivity limiting noise

sources in the LISA design are the DRS’s acceleration noise for f < 3mHz and the IMS’s

sensitivity noise for f > 3mHz.

The IMS’s interferometry sensitivity, δx̃IMS−δφ(f) adds to the DRS’s acceleration

noise, δãDRS(f), with the a scaling factor of 2/ω2, in root-sum-square to produce the

1 The SC orbit the L5 Lagrange point to maintain the stability and reduce the
divergence of the orbits.
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Figure 3-1. Diagram of the LISA orbital dynamics: Depicted is a diagram of the LISA
constellation’s orbital dynamics showing the triangular configuration of the
SC, the geodesic path of an individual SC, and the relative angle between
Earth’s orbital plane and the LISA constellation.

effective differential length precision:

δx̃LISA(f) =

√

(δx̃IMS−δφ(f))2 +

(
2δãDRS(f)

(2πf)2

)2

(3–1)

When we take into consideration the sensitivity with respect to the GW sources,

this length precision is scaled by a factor of
√
5 to account for a 1-year average over the

4π2 sky radians and a by factor of 2/
√
3 to account for the non-orthogonal ≃ 60o angle

between the interferometer arms. In addition, GW’s which are smaller in wave-length

than the LISA-arm have a reduced sensitivity due to a GW aliasing type effect resulting

in multiple GW oscillations between the two proof-masses. The combined effects of

these scaling factors results in a LISA GW-to-length sensitivity function given by:

T(f) ≃
√
5

2√
3

√

1 +

(
f

0.41fo

)2

(3–2)

where fo = c/(2L) [29].

Using this sensitivity function, the expected length precision as a result of the IMS

and DRS noises, and the LISA arm-length, L = 5Gm, we can calculate the effective

strain sensitivity:

h̃LISA(f) = T(f)
δx̃LISA(f)

L
. (3–3)
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This sensitivity function is plotted explicitly in cycles/
√
Hz in Figure 8-1.

3.2 The Disturbance Reduction System

In order to accurately detect GWs, we must ensure that no other non-gravitational

forces such as electromagnetic interactions or solar radiation dominate the dynamics

of the proof-masses’ motion. The proof-masses, 46mm3 cubes, will be composed of

a gold-platinum alloy and will be shielded from these non-gravitational forces by the

DRS. The SC and DRS themselves must largely follow the free-falling motion of these

proof-masses, thus, micro-newton thrusters are used to move the SC and track the

proof-masses’ geodesic path. Capacitative sensors ensure that the proof-masses do

not hit the walls of the housing and, at times, intentionally actuate the proof-masses to

account for the independent motion of the two proof-masses on each SC. The goal of all

these components working in collaboration is to keep the non-gravitational acceleration

of the proof masses below:

δãDRS(f) =
3 fm/s2√

Hz

√

1 +

(
f

8mHz

)4
√
1 +

(
0.1mHz

f

)
(3–4)

in the LISA measurement band. This defines the low-frequency sensitivity limit of

the LISA detector. Testing the ability to achieve this acceleration noise goal, the

LISA Pathfinder mission is being launched [49]. Collapsing a LISA-arm into a single

spacecraft, the LISA Pathfinder mission will attempt to measure the distance between

two free-falling test masses using heterodyned laser fields, providing an excellent

platform to test many LISA-like complications and characteristics.

3.3 The Interferometry Measurement System

The LISA IMS’s primary objective is to measure the differential distance between

the free-falling proof masses to an accuracy of:

δx̃IMS−δφ(f) =
18 pm√

Hz

√

1 +

(
2.8mHz

f

)4

. (3–5)
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Table 3-1. LISA characteristics and requirements: The requirements outlined in this
table [29] define the resulting LISA GW-sensitivity curve (Figure 8-1) based on
the pre-stabilized laser phase noise, the inter-SC ranging accuracy, the
phasemeter measurement precision, the IMS’s TDI noise extraction capability,
and DRS isolated the acceleration noise of the proof-masses. Although a
future space-based GW mission may use different characteristics [36], the
requirements specified in this description focus on a LISA-like scenario.

(fL = 0.1mHz, fM = 2.8mHz, fH = 8mHz)

Characteristic Specification

Laser Pre-stabilization 280Hz√
Hz

√
1 +

(
fM
f

)4

Phasemeter Precision 1µcycle√
Hz

√
1 +

(
fM
f

)4

IMS Strain Sensitivity 18 pm√
Hz

√
1 +

(
fM
f

)4

DRS Acceleration Noise 3 fm/s2√
Hz

√
1 +

(
f
fH

)4√
1 +

(
fL
f

)

Ranging Accuracy δL = 1meter, δτ = 3.3 ns
Arm-Length L = 5.0± 0.1 Gm

Light-Travel Delay τ = 16.66± 0.33 s
Relative Velocity v = ±20m/s, β = ±66 ns/s

Each component in the IMS chain must be tested to ensure that this requirement is

satisfactorily met [29]. This includes a laser pre-stabilization requirement to suppression

the inherent free-running laser phase noise, a PD/phasemeter differential phase

measurement precision requirement to perform heterodyne time-delay interferometery,

and a ranging requirement to accurately shift and cancel the residual laser phase in

the TDI combinations as shown in Table. 3-1. These values are defined such that the

residual laser phase noise is cancelled beyond the shot-noise (3–8) and acceleration

noise (3–4) limits.

First, the λ = 1064 nm, ν = 282THz, lasers must be pre-stabilized to an accuracy of:

δν̃Pre−Stab(f) =
280Hz√

Hz

√

1 +

(
2.8mHz

f

)4

(3–6)

by locking to a frequency reference. A well-known method of frequency-referencing a

laser is by Pound-Dever-Hall (PDH) locking to a ULE cavity [50–52]. Another method,

which is also being used on the LISA-Pathfinder mission, is Mach-Zehnder locking.

43



This has an advantage over PDH locking in that it uses the two laser fields which are

already part of the LISA design. Either of these frequency reference methods could be

assisted or, possibly, completely replaced by using the LISA arm itself as the frequency

reference in a tracking technique known as arm-locking [53, 54]. Some of the work in

this dissertation (chapter. 6.3.1) will focus on the first long-arm hardware-in-the-loop

tests of this arm-locking technique.

The pre-stabilized laser fields are fiber-coupled through electro-optical modulators

(EOM) to add the clock-noise transfers (chapter 4.3) and SC-to-SC laser communication

signals. Each of these modulated fields are then fiber-coupled onto an ULE optical

bench which distributes them to the back-link fiber, telescope, and the local optical

bench’s proof mass. The back-link fiber transmits the laser field to the adjacent optical

bench on the same SC while the telescope transmits the field to the the adjacent SC as

shown in Figure 3-2. The three laser fields on each optical bench (the local laser, the

adjacent optical-bench’s laser, and the adjacent SC’s laser) are heterodyned to form

the three main beatnote observables as depicted with more detail in Figure 3-3. These

observables can be interpreted to represent the differential laser phase between

lasers on the same SC, χsr, the local-SC to local-proof-mass distance, bsr,
2 and

the local-SC to the far-SC distance, ssr. The subscripts allow us to differentiate

between the measurements on different spacecraft where the ’s’ subscript refers to

the sending SCs while ’r’ refers to the receiving SCr. The time-changing arm-lengths

and resulting inter-SC light-travel time-delays, τq = τq(0) + βqt, are indexed such

that SCq is opposite ’Arm-q’ with q referring to clock-wise light propagation and q′

2 Other TDI descriptions [55] use τsr or zsr for these variables but we will use bsr to
avoid confusion with the light-travel time delay, τq(t).

44



τ2

τ3
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τ2'

Figure 3-2. Diagram of the LISA constellation: A model of the complete LISA
constellation depicting the three space-craft, the six individual laser
benchtops, the inter-SC laser links, and the names of each of the arm-length
light travel times, τq/q′ , opposite SCq.
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referring to counter-clock-wise propagation3 as shown in Figure 3-3. From each of

these measurements we are able to re-construct the differential distance between the

proof-masses on opposite SC in post-processing (chapter 3.4.3) and, thus, determine

the GW strain.

The complications to this measurement scheme are many-fold. None of the

components in the laser transfer chain can exceed a specified requirement so that

added noise terms are not introduced into the interferometry measurement. This

includes the EOMs used to apply the clock transfers and SC-to-SC laser communications,

the fibers used to transfer the laser field between optical benches, and the telescopes

used to transfer the laser fields between the SC. The fiber-backlink may introduce

’non-reciprocal’ (different in counter-propagating directions) noise. The telescope length

may change over time, causing an apparent arm-length change. In addition, the angle

between the optical benches and telescope pointing direction must be actuated to

account for the breathing of the constellation.

Another complication to the IMS measurement is the received power from adjacent

SC. Of the 2W of laser power emitted from the local SC, the divergence of the laser

field over the 5Gm arm-length results in only 100 pW being received on the adjacent

SC’s photodetector. This results in a shot-noise limited heterodyned field which must be

measured to an accuracy of 1µcycle.

Generally, the basis and details of the IMS system described here for the LISA

mission are analyzed and outlined in [29] and [34]. Although new proposals for a more

cost effective design are being considered [30, 56, 57], they must still use the same set

of principles to perform gravitational wave measurements. These changes may include

3 Note that the following description is done without a loss of generality by
differentiating between independent τq(t) and τq′(t), and accounting for different
counter-propagating time-delays along the same arm due to the constellation’s orbital
rotation.
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shorter arm-lengths, the reduction to a two-arm measurement with only four inter-SC

laser links, a geocentric orbit, or the use of a single spherical proof-mass.

3.4 µCycle Accuracy Phase Measurement

The IMS differential path-length measurement precision, δx̃IMS−δφ(f) (3–5), is

primarily based on the cumulative error from the photo-detectors and phasemeters

used to measure the heterodyned MHz beatnotes. Independent of shot noises, the

photodetector error must be less than 3 pm while the phasemeter error must be less

than:

δx̃PM(f) =
1 pm√
Hz

√

1 +

(
2.8mHz

f

)4

≃ 1µcycle√
Hz

√

1 +

(
2.8mHz

f

)4

. (3–7)

Applying the expected shot-noise limitation:

δx̃Shot−Noise(f) =
7.7 pm√

Hz
, (3–8)

and the 7 pm/
√
Hz path-length noise requirement, the overall root sum squared

differential phase of each pair of laser fields is measured to an accuracy of:

δx̃δφ−Total(f) =
11.7 pm√

Hz

√

1 +

(
2.8mHz

f

)4

. (3–9)

Finally, the individual measurements are added in the linear time-shifted TDI combinations

to achieve the δx̃IMS−δφ(f) IMS requirement (3–5).

These low-frequency LISA band requirements are usually hindered by long-term

errors such as sampling biases, temperature dependent phase dispersion, and

interferometric length changes which couple into the phase measurements. For

example, if the voltage bias which is used in sampling and converting the beat signal

drifts over the course of the measurement, this will result in an un-accounted phase

coupling. Also, if the temperature of the filters or RF transformers used to prepare and

distribute the beat signal changes in time, this may result in a time-changing transfer
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function phase response. The details of these noise sources are outlined in the following

sections.

3.4.1 Photodetector Noise

The phase noise of a photo-detector with respect to the MHz heterodyned beatnote

can be determined by a linear combination of three independent noise sources: (1)

shot noise, (2) Johnson-Nyquist noise, and (3) flicker noise. The shot noise limitation

is defined by the limited number of photons per second which are received on the

photodetector. Johnson-Nyquist noise results from temperature dependence of

resistive devices in the photo-detector electronics which may be influenced by both

internal heating and fluctuations in the laser power. Flicker noise scales with a pink,

1/f, or more generally 1/fn, power spectrum which result from a combination of

long-term processes. This includes any non-shot-noise based relaxation processes

or fluctuations in the semi-conductor characteristics which range from white noise (1/f0)

to Brownian-quantum noise (1/f2) [58].

3.4.1.1 Shot-Noise

The theoretical basis for shot noise results from the inability to distinguish between

individual photons when incident on a photo-current producing semi-conductor. This

well-understood measurement limitation presents itself with a Poissonian distribution

and an uncertainty that scales with the square root of the number of photons in ∆t

measurement time, σN =
√
N∆t, where

N∆t =
PLaser

Ephoton

∆t, (3–10)

for a total laser power on the photo-detector, PLaser, with an average photon energy

Ephoton = hν. Exploiting Heisenberg’s Uncertainty Principle, we can write the RMS phase

limitation as:

δφRMS−SN =
1

σN
=

1√
N∆t

=

√
hν

PLaser∆t
. (3–11)
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The phase error, δφ̃Shot−Noise(f), presents as a white noise specturm defined by

δφRMS−SN. Evaluating this with LISA-like values, P = 200 pW, ν = c/λ = 282THz,

and ∆t = 1 s we obtain a phase noise of 5µcycles/
√
Hz. This is far from a complete

derivation which should also consider the photon-electron conversion efficiencies, η, but

it gives us an idea of the expected phase noise.

For comparison to the dark-current, we can extend this result and write the

shot-noise current error as:

δiRMS−SN =
√
σiSN =

√∫ fBW

−fBW

(e2η(f)N)df =
√

2e2fBWηN (3–12)

where we have integrated the limited efficiency electro-current over the band-width of

the photo-detector, fBW. [59]

3.4.1.2 Dark Current Noise

The semi-conductors used to convert the photons incident on a photo-diode to an

electro-current have a characteristic dark-current which results from randomly created

and destroyed current producing electrons in the semi-conductor. This random process

also results in a shot-noise like Poissonian error which can cause RMS white noise

current errors from 1 to 500 nA. [59, 60] These processes result in a current error given

by:

δiRMS−Dark =
√
σiDark

=

√∫ fBW

−fBW

eidark(f)df =
√

2eidarkfBW, (3–13)

which can be linearly combined with the photo-detector’s shot noise to find the total

quantum noise:

δiRMS−Total =
√
δi2SN + δi2Dark =

√
2efBW (idark + [eηN]). (3–14)

3.4.1.3 Johnson-Nyquist Noise

Thermal heating of the photo-diode, whether from internal or external sources,

causes the shunt resistance’s Johnson-Nyquist noise to add errors to the output current.
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This noise couples as a function of the temperature with a magnitude given by:

δiRMS−JN(T) =

√∫ fBW

0
4RkBT

R
=

√
4kBTfBW

R
(3–15)

where R is the photo-diode’s shunt resistance, T is the temperature in Kelvin, and kB is

Boltzmann’s constant. [61]

Explicitly stated, these shot noise, dark current noise, and Johnson-Nyquist noises

are all white noise sources such that the noise contribution increases linearly with the

integration time. LISA refers all measurements to a 1 second integration time and plots

these white phase noise spectra in cycles/
√
Hz.

3.4.1.4 Flicker Noise

Flicker noise may result from a number of sources which are all characterized by

having a 1/fn power noise spectrum where 0 < n < 2. These are largely influenced by

long-term non-quantum fluctuations. Long term temperature variations may modify the

photo-amplifier’s transfer function causing a time-changing phase response, and thus, a

long term temperature correlated phase error. Fluctuations in the individual laser powers

will also couple into the phase (chapter 3.4.1.5).

Long-term fluctuations in the laser field intensity might be attributed to long

term characteristic changes in the coherent field producing Nd:YAG laser crystals

including a temperature dependent cavity finesse and the availability of excited states

to produce stimulated emission. High-frequency components of the laser intensity will

also couple into the measurement and are generally based on the laser’s resonant

relaxation oscillation [62, 63]. This amplitude-phase coupling can also be introduced

by other sources including a photo-detector polarization dependency, electronic

noise in the photo-detectors and ADCs resulting from LISA’s digitized demodulation

measurement scheme. The ill-defined nature of these long-term processes justifies

further investigation with lab-based differential PD measurements.
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3.4.1.5 Heterodyne Phase Measurements

Consider two laser fields given by:

ǫ1(t) = E1(t)e
iω1(t)t ǫ2(t) = E2(t)e

iω2(t)t. (3–16)

Superimposing and combining these laser fields on a photo-detector, we obtain a

current given by:

ibeat(t) ∝(ǫ1(t) + ǫ2(t)) (ǫ1(t) + ǫ2(t))
∗ (3–17)

∝|E1(t)|2 + |E2(t)|2 + E1(t)E2(t) cos([ω1(t)− ω2(t)]t)

In heterodyne interferometry, the DC portions of |E1(t)|2 and |E2(t)|2 are generally

AC coupled with RF transformers, although these may still introduce high-frequency

components. Combining the independent field terms, ETot(t) = E1(t)E2(t) = Eo(1 +

δE(t)), and introducing the mean MHz beat frequency, ω∆ = 〈ω1(t)−ω(2)(t)〉, we can pick

out the, E1(t)E2(t) cos([ω1 − ω2]t) terms by demodulating this PD output with sin(ω∆t).

Integrating the demodulated DC output, we can get a measure of the differential laser

phase:

φ∆(t) =

∫ t

0

[ω1(τ)− ω2(τ)− ω∆]dτ . (3–18)

Variations in the differential field intensity fluctuation, δE(t), at frequencies of ω∆ could

be coupled into the measurement such that complete description should be written as:

φ∆(t) =

∫ t

0

[ω1(τ)− ω2(τ)− ω∆] +

[
EoδE(τ)

eiω∆τ + e−iω∆τ

2

]
dτ (3–19)

3.4.2 µCycle Phasemeter

The photo-currents produced by the photo-diodes will be sampled with Ω-bit

analog-to-digital converters (ADCs). The clocked sampling process which digitizes the

PD signals to perform the phasemeter measurements introduces it’s own independent

noise sources. The 2 − 20MHz PD-beatnote is sampled with a 50MHz clock reference
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comparing φ∆(t) to the clock phase, φCLK(t), which is not a perfect timing reference,

thus, introducing it’s own phase noise. The digitization process provides a limited

resolution with which to measure the beatnote phase, meanwhile, voltage-bias noise

from the ADC voltage reference can also couple into the phase measurement. Timing

jitter, the error caused by the time-dependent delay between voltage conversion time

and the clock’s rising-edge, couples into the measurement as a 1/
√
f phase noise and

scales with the input beatnote frequency. These are all discussed in more detail below.

3.4.2.1 Clock Noise

Digitizing the 2 − 20MHz PD signals with a 50MHz clock, we sample the PD current

driven voltage bias across a load resistor at the ’rising-edge’ of the clock oscillation. The

PD voltage is compared to a voltage biased resistor bank within the ADCs resulting in

a Ω-bit read-out of the load resistance voltage. Given an input oscillation with an ideal

amplitude written as:

xin(t) = Ain sin(2πfint + φin(t)) (3–20)

we sample the input signal with a clock source given by:

xCLK(t) = AClk sin(2πfClkt + φClk(t)). (3–21)

where φin(t) is the input phase noise with respect to the input frequency, fin, and φClk(t)

is the clock phase noise with respect to fClk [64].

Using an ideal clock the phase error in the digitization conversion would be limited

by the bit-resolution, discussed in the following section. In practice, the phase noise in

the clock source with respect to the theoretical clock frequency is interpreted as input

phase noise scaled by the ratio of their frequencies such that:

φMeasured(t) =

∫ t

0

ωin(τ)

ωCLK(τ)
dτ = φin(t)−

fin
fClk

φClk(t). (3–22)
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In LISA, these clock noise terms must be accounted for by performing inter-SC

clock noise transfers and measuring the differential clock noise terms against the local

SC’s clock. Afterwards, the differential phase and differential clock measurements are

interpolated to compare them against one global master clock.

3.4.2.2 ADC Quantization Noise

When sampling a voltage signal, Vin(t), with a clock, fClk, the ADC compares the

input voltage against the ADC internal voltage bias reference. This comparison process

produces a series of samples given by:

xin[n] =
Vin(n/fClk)

VBias

(3–23)

where we have taken the bias voltage to be a constant, stable reference. This -1 to 1

ratio is converted to a series of Ω-bit values with a 21−Ω resolution [65]. Thus, given this

bit-accuracy we obtain a standard-deviation in the measured amplitude given by:

δφ̃ADC Amp.−Quant.(ω) =
|VBias|
|Vin|

21−Ω

√
6fs

. (3–24)

The extra factor of 1/
√
6 comes from the white-noise properties of the quantization

probability density function [65, 66]. The factor of VBias/Vin accounts for the fact that

the signal amplitude may not span the full Ω-bits of the ADC’s conversion-amplitude.

Additional quantization errors can and will be applied to this hard-ware based quantization

limit as these digitized signals are measured with bit-limited fixed point processors and

rate-limited read-outs introducing their own quantization errors.

3.4.2.3 ADC Amplitude Noise

Extending this description, we consider fluctuations in the voltage bias against

which the photo-current is measured. More generally one can write the bias voltage as:

VBias(t) = VBiasoG(t) + VGnd(t) (3–25)
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where G(t) is the gain factor on the voltage bias with 〈G(t)〉 ≃ 1 and VGnd is the voltage

of the ground reference in comparison to the input’s ’ideal’ ground. Ignoring the ground

term for the moment, this fluctuation in the bias voltage scales the amplitude error as:

δx̃ADC Amp−Quant.(ω) = δG̃(ω)
|VBiaso|
|Vin|

21−Ω

√
6fs

(3–26)

which shows how these gain factors can couple directly into the measured amplitude.

Since LISA measurements are focused on phase noise, the coupling of these amplitude

quantization and bias noise error sources into the phase measurements are analyzed in

chapter 3.4.2.5

It is often difficult to distinguish between the ADC amplitude noise, the laser

intensity noise, and the PD electronic current amplitude noise since they all couple into

the phase measurement with the same characteristics. On the other hand, we can get

some measure of the ADC amplitude bias noise by verifying the inverse dependence on

the input voltage. Often-times, these low frequency amplitude variations are dominated

by temperature variations; thus, thermal correlation coefficients can be measured by

observing the phase variation with a change in temperature. Given these correlation

coefficient measurements we can define an electronic temperature environment stability

requirement.

3.4.2.4 Clock-ADC Timing Jitter

ADC timing jitter is defined as the time-changing delay between the well-defined

rising edge of the clock and the actual sample triggering of the ADC input signal. This

timing jitter value can have a frequency dependence, δt̃(ω), which scales proportionately

with the beat-frequency, fin = 〈dφ/dt〉, to phase noise [67]:

δφ̃(ω) = finδt̃Jit(ω). (3–27)

This frequency coupling can and will be exploited to estimate the ADC timing jitter.
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3.4.2.5 Demodulation Noise Coupling

Now that we have seen how each of these individual noise sources scale with

their input characteristics, we evaluate how these measurements will couple into

the demodulated phasemeter readout. First, as an example of how this readout is

performed, we consider an input signal with some phase and amplitude variation where

δA(t), δφ(t) << 1, while ωin and ’A’ are constant, given by:

x(t) = A[1 + δA(t)] sin(ωint + δφ(t)). (3–28)

If we demodulate this with the in-phase and quadrature components of the input at the

same frequency, such that ωoff = ωin, we obtain following terms:

yIn−phase(t) = x(t)× sin(ωofft) (3–29)

=
A[1 + δA(t)]

2
[cos(δφ(t))− cos((ωin + ωoff)t + δφ(t))],

yQuad(t) = x(t)× cos(ωofft) (3–30)

=
A[1 + δA(t)]

2
[sin(δφ(t)) + sin((ωin + ωoff)t + δφ(t))].

After low-pass filtering to remove the sum, (ωin + ωoff) term, we can write the result as a

function of the amplitude and phase error as:

yIn−phase(t) =
A[1 + δA(t)]

2
[[cos(δφ(t))], (3–31)

yQuad(t) =
A[1 + δA(t)]

2
[[sin(δφ(t))] (3–32)

Based on the definitions of the in-phase and quadrature components, one can exactly

reconstruct the amplitude

ARead−Out(t) = 2
√
yIn−phase(t)2 + yQuad(t)2 = A[1 + δA(t)] (3–33)
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and phase,

φRead−Out(t) = tan−1

[
yQuad(t)

yIn−phase(t)

]
= δφ(t). (3–34)

On the other hand, using the small value assumption, δφ(t) << 1, we can make the

approximations, cos(δφ(t)) = 1 and sin(δφ(t)) = δφ(t), such that the amplitude and phase

read-outs smplify. Using the in-phase component only we could write the amplitude as:

ARead−Out(t) ≃ 2yIn−phase(t) = A[1 + δA(t)] cos(δφ(t)). (3–35)

Using the same argument we can write two approximations for the phase, given by:

δφ(t) ≃ yQuad(t)

yIn−phase(t)
= tan(δφ(t)), (3–36)

or

δφ(t) ≃ 2

A
yQuad(t) = (1 + δA(t)) sin(δφ(t)). (3–37)

These approximations are useful in reducing the load on the digital processing devices

but, as we can see from these calculations, they also tend to couple the amplitude and

phase noise sources together which must be considered for LISA-like high-precision

phase measurements.

The details of the phasemeter phase tracking and read-out become more

complicated when we allow for A(t) and φ(t) to change arbitrarily, but this model

will give us an idea of how un-desired noise terms will couple into the demodulated

phase measurement. At this point we can see that, depending on the type of readout

approximation used, these error terms will couple in differently. Our focus will be on

(3–37) since, as we will see in chapter 5.2.1, this is the phasemeter read-out scheme

we use to measure the input phase. Already we can see how the amplitude noise

couples into the phase (G(t) in (3–25) for example). Unfortunately, this fails to give a

complete understanding of the noise coupling since this first order approximation fails to
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consider how high-frequency terms couple into the measurement through the clocking

and feed-back tracking demodulation processes.

The clock-sampling demodulation will alias high-frequency terms into the digital

ADC output such that the input phase terms at nfClk ± fin will superimpose with a gain

of 1 directly into the fin frequency bin. Following standard electronics procedures, RF

transformers are used to AC couple the input and low-pass anti-aliasing filters are used

to suppress any information at frequencies greater than fin.

Even though the input signal is AC coupled, we will include an offset error in the

extended measurement-demodulation treatment such that we now write the input as:

x(t) = δAOff(t) + A[1 + δA(t)] sin(ωint + δφ(t)). (3–38)

Again, demodulating with the quadrature component we obtain:

yQuad(t) =
A[1 + δA(t)]

2
[sin(δφ(t)) + sin(2ωot + δφ(t))] + δAOff(t) cos(ωot). (3–39)

where we have set ωo = ωin = ωoff .

Taking a deviation from the previous treatment we expand out these results to

explicitly show the DC, ωo, and 2ωo terms:

yQuad(t) =
A[1 + δA(t)]

2
[sin(δφ(t)) + sin(2ωot) cos(δφ(t)) + cos(2ωot) sin(δφ(t)))]

+ δAOff(t)[cos(ωot)]. (3–40)

Finally applying the δφ, δA, δAoff << 1 approximation, low-pass filtering the terms

which have no noise coupling, applying (3–37), and expanding explicitly, we obtain:

δφEst(t) =
2

A
yQuad(t) (3–41)

= δφ(t)

(
1 +

δA(t)

A

)
+ δφ(t)

(
1 +

δA(t)

A

)
cos(2ωot) (3–42)

+ δφ(t) cos(2ωot) +
δA(t)

A
sin(2ωot) +

δAOff(t)

A
cos(ωot).
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From this we can read off the noise-coupling of each term. The term we are

interested in, δφ(t), is scaled by 1 + δA(t)/A. Generally, since δA(t)/A << 1, this effect

is small, but may be a limiting noise source when attempting to form differential phase

cancellation combinations. Although, since this term scales inversely with the amplitude,

it can be reduced, depending on the source, by increasing the signal power. If the

amplitude noise comes from fluctuations in the laser power, for example, increasing

the signal power tends to also increase the noise such that δA(t)/A remains constant.

Next we notice both the δφ̃(2ωo) and δÃ(2ωo) terms of the input wave-form couple into

the phase measurement. Finally, we notice that the offset error, δÃOff(ωo), term couples

directly into the measurement. This term would be of an error like VGnd(t) in (3–25).

We can mitigate the 2ωo terms by anti-alias low-pass filtering the input signal at

frequencies greater than ωo. Unfortunately, if these terms are generated by the ADC

after the anti-aliasing filter they will, again, couple into the phase data. Taking this into

account, extensive low-frequency testing of the ADCs must be performed to ensure

these errors do not limit the phase measurement sensitivity. We will see how the

UF-phasemeter’s ADCs are tested and characterized in chapter 5.3.

3.4.3 Heterodyne Time-Delay Interferometry

Until now, we have not specifically stated how the one-way interferometry

observables, χsr, bsr, and ssr, are measured and mitigated. Here we derive the terms

on SC1 but the procedure used can be employed to derive the observables on the

other SC. For the χsr and bsr observables, we consider the two local SC1 lasers, Laser21

and Laser31, which transmit their fields to SC2 and SC3, respectively, having a laser

frequencies, ω21 and ω31 = ω21 + ω∆, and laser phases, φ21(t) and φ31(t), such that we

can could write the laser fields as:

ǫ21(t) = E21(t)e
i(ω21t+φ21(t)) ǫ31(t) = E31(t)e

i((ω21+ω∆)t+φ31(t)). (3–43)
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Figure 3-3. Diagram of the interferometry measurement system: This model shows a
more detailed depiction of the individual satallites shown in Figure 3-2. Here
we see the beam path and heterodyned laser fields resulting from the two
local lasers and the two laser fields being transmitted from the far SC. The
LISA observables, χsr, bsr, and ssr and how they are generated with the
heterodyned laser fields is shown explicitly.
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These laser noise sources are used to track the major phase noise coupling terms

through the interferometer although, from here on, we will ignore the amplitude terms

and take E21(t) = E31(t) = E.

3.4.3.1 Fiber Noise

The independent laser fields are passed through a fiber bank-link adding both

common-mode and non-reciprocal phase noise such that the fields after passing

through the back-link fibers can be written as:

ǫ21,fib(t) = Eei(ω21t+φ21(t)+φfib,C(t)+φfib,21(t)) (3–44)

ǫ31,fib(t) = Eei(ω31t+φ31(t)+φfib,C(t)+φfib,31(t)) (3–45)

where φi1,fib are the independent, counter-propagating fiber noise terms and φfib,C are

the common fiber noise terms.

Superimposing these laser fields from either side of the fiber onto a photo-detector

and AC coupling the PD output, we obtain photo-currents given by:

PDχ21(t) =
√

(ǫ21(t) + ǫ31,fib(t))(ǫ21(t) + ǫ31,fib(t))∗

∝ cos(ω∆t + φ31(t)− φ21(t) + φfib,C(t) + φfib,31(t)) (3–46)

PDχ31(t) =
√

(ǫ31(t) + ǫ21,fib(t))(ǫ31(t) + ǫ21,fib(t))∗

∝ cos(ω∆t + φ31(t)− φ21(t)− φfib,C(t)− φfib,21(t)) (3–47)

Demodulating these signals with sin(ω∆t) and measuring the phase terms we obtain

two phase read-outs given by:

χ21(t) = φ31(t)− φ21(t) + φfib,C(t) + φfib,31(t) +
f∆
fCLK

δφCLK(t) (3–48)

χ31(t) = φ31(t)− φ21(t)− φfib,C(t)− φfib,21(t) +
f∆
fCLK

δφCLK(t) (3–49)

with the expected differential laser phase, φ31(t) − φ21(t), counter-propagating fiber

noise terms, and clock noise terms. The common fiber noise terms couple into each PD
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with the opposite phase such that the sum of these observables gives a measure of the

differential counter-propagating phase noise terms:

φχ−Sum = χ21 + χ31 = 2

(
φ31(t)− φ21(t) +

f∆
fCLK

δφCLK(t)

)
+ φfib,31 − φfib,21 (3–50)

while the difference of these terms gives a measure of the common mode fiber terms:

φχ−Dif = χ21 − χ31 = 2φfib,C(t) + φfib,31 + φfib,21. (3–51)

The individual counter-propagating phase noise terms must be smaller than 1µcycle

since there is no way to differentiate between this and the independent laser noise

terms. In the next section we will see how these differential laser phase and common

mode fiber terms cancel when evaluating the proof-mass to spacecraft distance.

3.4.3.2 Spacecraft/Proof-Mass Motion

Now that we have a measure of the fiber noise, we use the same laser fields to

get a measure of the individual SC to proof-mass distance. If we define the distance

between the SC beam-splitter and the proof-mass as δd(t) we can covert this to laser

phase noise after reflecting off the proof mass by re-writing the fiber terms, ǫ21,fib(t) and

ǫ21,fib(t), as:

ǫ21,mass(t) = Eei(ω21t+φ21(t)+φfib,C(t)+φfib,21(t)+
δd31
λ

) (3–52)

ǫ31,mass(t) = Eei(ω31t+φ31(t)+φfib,C(t)+φfib,31(t)+
δd21
λ

). (3–53)

Demodulating these with the local bench’s laser field, we obtain the bsr signals:

PDb21(t) =
√

(ǫ21(t) + ǫ31,mass(t))(ǫ21(t) + ǫ31,mass(t))∗

∝ cos(ω∆t + φ31(t)− φ21(t) + φfib,C(t) + φfib,31(t) +
δd2

λ
) (3–54)

PDb31(t) =
√

(ǫ31(t) + ǫ21,mass(t))(ǫ31(t) + ǫ21,mass(t))∗

∝ cos(ω∆t + φ31(t)− φ21(t)− φfib,C(t)− φfib,21(t)−
δd3

λ
). (3–55)
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Measuring the beatnote phase with phasemeters, we can write the bsr observables as:

b21(t) = φ31(t)− φ21(t) + φfib,C(t) + φfib,31(t) +
δd2

λ
+

f∆
fCLK

δφCLK(t) (3–56)

b31(t) = φ31(t)− φ21(t)− φfib,C(t)− φfib,21(t)−
δd3

λ
+

f∆
fCLK

δφCLK(t) (3–57)

Linear combinations of these four signals, χ21(t), χ31(t), b21(t), and b31(t) provide us

with a local measure of the SC to proof mass distance and the differential laser phase

terms:

δd2 = λ [b21 − χ21] , (3–58)

δd3 = λ [χ31 − b31] , (3–59)

φ31 − φ21 =
χ21 + χ31

2
+
φfib,21 − φfib,31

2
− f∆

fCLK
δφCLK(t) (3–60)

We notice in these equations that the SC-to-proof-mass distances, δd2 and δd3, are

independent of any fiber noise terms. Meanwhile, the differential laser phase terms are

limited by the individual counter-propagating fiber terms φfib,31 and φfib,21. The δd terms

are independent of clock noise since they are measured on the same spacecraft at the

same heterodyne offset frequency, ω∆, and the common clock noise cancels in these

differential measurements.

3.4.3.3 Inter-Spacecraft Motion

Now that we have a method of evaluating the local-SC to local-proof-mass distance

we must measure the inter-SC arm-length terms to be able to construct the complete

differential inter-proof-mass interferometer. In this description we will focus on a single

one-way inter SC link between SC1 and SC2 where Laser12, having a laser frequency

ω12(t), is transmitted along Arm-3’ acquiring a time-delay, τ3′(t), and then is heterodyned

with Laser21, having a laser frequency ω21(t). Inter-SC length changes at velocities of
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0 − 20m/s for LISA4 , cause relativistic Doppler shifts and time-domain phase scaling of

the laser fields.

To calculate the field transformation, we first define the measured phase as the

integration of the laser beat frequency with respect to a retarded time, tr = t− x/c, such

that both position and time changes affect the measured phase:

φ(t) =

∫ t

0

ω(tr)dtr (3–61)

Taking SC2 as the stationary frame of reference we define the inter-SC light travel

time from SC2 to SC1 as τ3′(t) = τ3′(0) + β3′t where β3′ = v3′/c = dτ(t)/dt. A positive

velocity refers to an increasing inter-SC distance such that SC1 is moving away from the

SC2. In the stationary SC2 frame we can write the laser field generated by Laser21 as:

ǫ12;∅(x, t) = Ee−i(t− x
c ) ω12(t− x

c
) (3–62)

and the measured phase evaluated at x=0:

φ12(t) =

∫ t

0

ω12

(
τ − 0

c

)
dτ (3–63)

We can transform this to the moving SC1 reference frame through a relativistic

Lorentz transformation as:

ǫ12;3′(x
′, t′) = Ee

iγ(1−β)
(

t′− x′

c

)

ω12(γ(1−β)(t′− x′

c
))] (3–64)

where, for this arm, β = β3′ and γ = γ3′ = 1/
√
1− β2 and tr = γ(1 − β)(t′ − x′/c).

From this equation, we see the relativistic Doppler shift transforming ω12 → γ(1 − β)ω12.

Integrating the beatnote frequency in this moving frame:

φ(t′) = γ(1− β)

∫ t′

0

ω12

(
γ(1− β)

(
τ − Lq(0)

c

))
dτ (3–65)

4 Other missions may have differential velocities which are significantly larger[56]
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such that we can write the measured phase relationship:

φ′(t′);q = φ(γq(1− βq)(t
′ − τq(0))) (3–66)

where τq(0) = Lq(0)/c. In most LISA-like cases, we ignore the small factors of β2 < 10−12

and so, will drop the γ factors in the analysis from this point forward. Notice the ’;’

notation used to transform the laser field between moving frames in (3–64) and (3–66).

In general φsr;q(t) = φsr((1 − βq)(t− τq(0))) where we have taken t → (1 − βq)(t− τq(0)).

We will use this same notation through the rest of the TDI analysis.

The field from the far SC is reflected through a transmitting telescope, transmitted to

the local SC acquiring a multi-second time-delay5 , and captured by the local receiving

telescope.

Heterodyning these laser fields we obtain a photo-current given by:

PDs21(t) =
√
(ǫ21(t) + ǫ12;3′(t))(ǫ21(t) + ǫ12;3′(t))∗ (3–67)

∝ cos((ω21 − (1 + β3′)ω12)t± (φ21(t)− φ12((1− β3′)(t− τ3′(0)))) (3–68)

where we notice that the sign of the phase information depends on the relative

magnitude of the local laser frequency in comparison with the inter-SC Doppler

shifted laser’s frequency. Although this may be easily corrected in post-processing,

the relative laser frequencies and inter-SC Doppler shifts will change the sign on both

the observable and clock noise corrections terms in the TDI combinations and must be

kept in mind when forming the post-processed TDI combinations.

Generalizing to include the clock noise and GW terms we can write the s21 inter-SC

term as:

s21 = φ21(t)− φ12((1− β3′)(t− τ3′(0))) + h21(t) +
f21
fClk

φClk:1(t), (3–69)

5 τ = 5Gm/c = 16.7 s for LISA
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where we have introduced the GW strain modulation of h(t) = δL(t)/Lo, and a local SCi

clock noise term, φClk:i(t), scaled by the PD beatnote frequency, f21. We have also made

assumptions about the sign of the differential measured phase based on the relative

laser and Doppler frequencies for evaluating the TDI combinations.

3.4.3.4 Basic TDI-Combinations and Considerations

At this point, we have formed and evaluated all the observables required to

completely re-construct the differential proof-mass interferometer. These signals, χsr,

bsr, and ssr, can be evaluated for each of the 3 SC and 6 inter-SC laser links resulting

in 18 different observables. When any of these observables are measured with a

phasemeter, clock noise terms given by (fin/fClk)φClk:i(t) where is the phase noise of

clock located on SCi, are added to the digital signals and must be accounted for with the

inter-SC side-band clock noise transfers [68–70]. These observables can also be used

to phase-lock the adjacent optical bench lasers or the adjacent inter-SC lasers into order

to transfer the laser stability and obtain common-mode laser noise cancellation to within

the accuracy of the phase lock loops (PLLs) [71].

The focus of this dissertation is to form the TDI combinations based on the

inter-SC laser links, ssr. To simplify the analysis, from this point on we will make

some assumptions about the measured observables. First, assuming the local-SC

to local-proof-mass motion can be measured through heterodyne interferometry and

that the acceleration noise of the proof-mass can be effectively reduced with the DRS,

it is reasonable to imagine the proof-masses as being mounted directly to the SC,

thus setting δdsr = 0. Next, assuming the non-reciprocal fiber-backlink noise can be

reduced beyond the 1µcycle requirement, we will have a reasonable measure of the

adjacent bench-top differential laser noise and can ignore the χsr signals, referencing all

measurements to a single Laseri on SCi with a laser phase φi(t).
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In this specific case we can write a complete basis6 for all 6 inter-SC interferometry

measurements including clock noise terms as:

s21(t) = φ1(t)− φ2((1− β3′)(t− τ3′(0))) + h21(t) +
f21
fClk

φClk:1(t), (3–70)

s31(t) = φ1(t)− φ3((1− β2)(t− τ2(0))) + h31(t) +
f31
fClk

φClk:1(t),

s12(t) = φ2(Λ12t)− φ1((1− β3)(Λ12t− τ3(0))) + h12(Λ12t) +
f12
fClk

φClk:2(Λ12t),

s32(t) = φ2(Λ12t)− φ3((1− β1′)(Λ12t− τ1′(0))) + h32(Λ12t) +
f32
fClk

φClk:2(Λ12t),

s13(t) = φ3(Λ13t)− φ1((1− β2′)(Λ13t− τ2′(0))) + h13(Λ13t) +
f13
fClk

φClk:3(Λ13t),

s23(t) = φ3(Λ13t)− φ2((1− β1)(Λ13t− τ1(0))) + h23(Λ13t) +
f23
fClk

φClk:3(Λ13t).

where we have differentiated between the different clock phase noise terms, φClk:i, and

absolute clock frequency offsets7 :

Λij =
fClk:j

fClk:i

. (3–71)

The clock phase noise terms are removed with the inter-SC clock noise transfers when

forming the TDI combinations while the clock frequency offsets are accounted for by

time-scaled interpolation [72, 73] of the ’far’ SC signals by the inverse clock ratio, Λij,

before forming the TDI combinations with respect to the local reference clock, in the

above example case, fClk:1.

Two useful combinations for further analysis will be the single-arm round-trip

sensor signals ∆sr and the counter-propagating Sagnac signals ζsr, as diagrammed in

6 Assuming SC-1 is our stationary frame of reference and Clock-1 is our absolute
clock frequency reference.

7 The clock frequency offsets from clocks on different SC cause an error in the
reference to an absolute time which is defined by the frequency of the clock on SC1.
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Figure 4-2 which provide us with a measure of the constellation interferometry dynamics

referred to a single laser source.

The local sensor signals can be derived from the ssr data streams by time-scaling

the far SC measurements by the respective inverse clock ratio (Λij
−1), then time-shifting

and time-scaling the result by the return trip’s delay transformation, ssr;q.

∆21(t) = s21(t) + s12;3′(Λ12
−1t) (3–72)

= φ1 − φ2;3′ + h21 +
f21
fClk

φClk:1 + (φ2 − φ1;3 + h12 +
f12
fClk

φClk:2);3′

= φ1 − φ1((1− β3)(((1− β3′)(t− τ3′(0)))− τ3(0))) (3–73)

+ h21(t) + h12((1− β3′)(t− τ3′(0)))

+
f21
fClk

φClk:1(t) +
f12
fClk

φClk:2((1− β3′)(t− τ3′(0)))

and, for Arm-3,

∆31(t) = s31(t) + s13;2(Λ13
−1t) (3–74)

= φ1 − φ3;2 + h31 +
f31
fClk

φClk:1 + (φ3 − φ1;2′ + h13 +
f13
fClk

φClk:3);2

= φ1 − φ1((1− β2′)(((1− β2)(t− τ2(0)))− τ2′(0))) (3–75)

+ h31(t) + h13((1− β2)(t− τ2(0)))

+
f31
fClk

φClk:1(t) +
f13
fClk

φClk:3((1− β2)(t− τ2(0)))

which cancel the far SC’s laser phase noise and reference all phase modulations to a

single laser source, φ1(t). Here we can explicitly see the clock-noise coupling which

enters into the sensor signals’ data-streams with the form:

∆− Clks1(t) =
fs1

fClk:1
φClk:1(t) +

f1s
fClk

φClk:s((1− βq)(t− τq(0))). (3–76)

As we will see in Ch. 4.1.2 and Ch. 4.3, these terms can be accounted for by the

clock-noise transfers in (4–3).
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Another set of useful combinations are (Ch. 4.3.2.1) the counter-propagating

round-trip Sagnac signals:

θ21(t) = s21 + s32(Λ12
−1t);3′ + s13(Λ13

−1t);1′3′ (3–77)

= φ1 − φ1;2′1′3′ + [h21 + h32;3′ + h13;1′3′ ] (3–78)

and

θ31(t) = s31 + s23(Λ13
−1t);2 + s12(Λ12

−1t);12 (3–79)

= φ1 − φ1;312 + [h31 + h23;2 + h12;12]. (3–80)

Finally, the last combination of interest is the fully symmetric Sagnac combination:

ζ = s31;1 + s12;2 + s23;3 − (s21;1′ + s32;2′ + s13;3′) (3–81)

= [(φ1 − φ3;2);1 + (φ2 − φ1;3);2 + (φ3 − φ2;1);3] (3–82)

− [(φ1 − φ2;3′);1′ + (φ2 − φ3;1′);2′ + (φ3 − φ1;2′);3′ ]

which is independent of laser noise for a non-rotating8 constellation.

We have ignored the clock noise terms for the sake of simplicity since these Sagnac

combinations are not the focus of this dissertation.

8 (τq(t) = τq′(t))
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CHAPTER 4
TIME DELAY INTERFEROMETERY

Now that we have developed a method of characterizing the signals with which to

measure the inter-proof-mass noise terms the question enters: How do we combine

these signals to cancel the laser phase terms and extract the GW modulations?

4.1 Laser Noise Cancellation

The ability to cancel the laser noise the IMS is largely based on the accuracy with

which we can measure the time-dependent distance1 between the space-craft and

interpolate the phase signals to account for this distance. To get an idea of why this is

the case, let’s consider two laser phase signals, φ(t) and φ((1− β)(t− τ)) + g(t). These

signals are independently measured on different SC producing two digitally sampled

signals:

x1[n] = φ(fsn) +
fin1
fs
φClk1(fsn), (4–1)

x2[n] = φ((1− β)(n(fs +∆fs)− τ)) (4–2)

+ h(n(fs +∆fs)) +
fin2

fs + f∆s

φClk2(n(fs +∆fs)).

The (1 − β) factor is introduced to account for the laser phase time-scaling as a

result of SC motion while the ∆fs factor accounts for the small difference in the absolute

clock frequencies. Although this ∆fs factors will be small,2 they can cause accumulated

errors in the phase corrections if they are not accounted for.3 These can be related

to the Λij factors defined in (3–71) with fClki = fs and fClkj = fs + ∆fs. The ability

to extract g(t) from these signals depends on four things: (1) the initial laser-phase

1 Or equivalently, the laser light travel time-delay: τ(t) = L(t)/c

2 fs ≃ 50MHz, ∆fs ≃ 1− 10Hz depending on clock tolerances.

3 Relativistic time-dilation causes the same effect but it is small, β2 < 10−12, and can
simply incorporated into the clock frequency error term.
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spectral density, φ̃(ω), (2) the ability to measure the differential clock noise terms, (3) the

accuracy of our knowledge of the time delay, τ , and (4) the ability to perform fractional

delay filtering and interpolation to time-shift and time-scale these signals to account for

the τ , f∆s, and (1− β) factors.

4.1.1 Laser Noise

Obviously, the initial laser noise level, φ̃(ω), plays a large roll in our ability to extract

the g(t) terms4 from the above signals. The frequency references proposed to stabilize

the lasers in LISA include optical cavities, Mach-Zander interferometers, molecular

resonators, and arm locking. Optical cavity references and the associated locking

methods are well tested and robust but the EOMs and cavities used as a frequency

reference add to weight of the SC. Mach-Zander interferometers fit well with the

LISA interferometry base design but, in comparison to cavities, lack low-frequency

stability [34]. Molecular hyper-fine resonance is beneficial in providing an absolute laser

frequency reference but is generally complicated in implementation. Arm-locking has

the greatest advantage for LISA since it requires no additional hardware and can be

implemented completely through digital signal readouts and controls which are already

in the LISA design. At the same time, arm-locking is at a great dis-advantage since it

has only been tested through electronic simulations and a possible risk of failure when

implemented in LISA. (chapter. 6.3.1)

4.1.2 Clock Noise Transfers

The laser fields on each SC are modulated with up-converted5 clock noise

side-bands [74] such that the side-band beat-notes between laser fields from adjacent

SC, ssr, also produce differential clock noise terms. Given that the clock signals are

up-converted by a factor, Gup, and that the side-band beatnote produced when the clock

4 Generally, h(ω) < 100µCycles/
√
Hz

5 From 50 MHz to 2 GHz, Gup ≃ 40
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from SC2 is transmitted to SC1 is measured with a phasemeter at a frequency of f∆−Clk,

we obtain:

φClk−Sidebands(t) = Gup (φClk1 + φClk2;3) +
f∆−Clk

fClk1
φClk1, (4–3)

= Gup

((
1 +

f∆−Clk

GupfClk1

)
φClk1 + φClk2;3

)
(4–4)

≃ Gup (φClk1 + φClk2;3) . (4–5)

As we’ll see in chapter. 4.3, these are the same terms which show up in the TDI

combinations and are used to correct for this clock noise coupling.6

4.1.3 Ranging Errors

Before we outline the methods of inter-SC ranging in chapter. 4.4, we derive a

general relationship between the ranging error and the input laser noise. Given that

we have a measurement of some φ(t) as well as some time-delayed measurement

φdelayed(t) = φ(t − τ) + g(t), we time-shift and subtract these signals to extract g(t).

Assuming we have some time-shifting error, τ + δτ , when we fractional-delay interpolate

the time-delayed signal, φdelayed(t), and subtract it from the input signal we estimate the

noise cancellation. Using the Taylor approximation we can write,

XErr ≃ φ(t)− φ(t− τ + τ + δτ),

X̃Err ≃ [e−iωt − e−iω(t+δτ)]φ̃,

|X̃Err| ≃ ωδτ |φ̃|.

where ω is the angular Fourier-transformation frequency. Now we can estimate a

simplified but reasonable measure of the relationship between laser noise cancellation

6 For more information on the clock noise transfers and corrections, see [68–70, 75].
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and the ranging precision as a function of frequency for ωδτ << 1 with the relationship:

XErr(ω) = ω δτ φ(ω)αφ(ω). (4–6)

Thus, given a certain ranging capability we can derive the required laser prestabilization,

or visa-versa, given a laser pre-stabilization level we can derive the required ranging

accuracy to meet the interferometry sensitivity specifications. The complete TDI

derivation includes complex phase factors, αφ(ω), which may range in magnitude from 0

to 4 depending on the location of the arm-length dependent ∆sr zeros (chapter. 4.4.2.1).

4.1.4 Fractional Delay Filtering and Interpolation

Depending on the finalized design, LISA will produce satellite to Earth data-streams

of the TDI observables at a fdata = 3 − 10Hz data rate. Integer sample shifts of these

data-sets will result in a shifting error of 0.33 − 0.1 s/s, respectively. But, given the

expected laser pre-stabilization level, LISA will have to time-shift and time-scale these

data-streams to a 3.3 ns accuracy7 . Thus, assuming a 10 Hz data-rate, LISA requires a

fractional shifting accuracy of δτ/Tdata = 3.3 ns/0.1 s = 3.3× 10−8.

Fractional delay interpolation [72] is used to interpolate the data-sets and apply

the fractional shift [73]. In LISA applications, the Lagrange filter is ideally suited for

data-interpolation due to the constant low-frequency phase loss8 . Generally we can

write the interpolated data-set, s(n − D) where D is the fractional shift D = ∆τ/Tdata, as

a function of the input data-set, the Lagrangian filter window, and the sinc(x) function as:

s(n− D) =

(N−1)
2∑

k=−(N−1)
2

s(n + k) w(k) sinc(D − k) (4–7)

7 δL= 1 meter, δτ = 3.3ns

8 constant group delay
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where tD = D+ (N− 1)/2,

w(n) =
πN

sin(πtd)
B(td, N)B

(
N− 1, n +

N− 1

2

)
, (4–8)

and [76]

B(n, k) =
Γ(n)Γ(k)

Γ(n + k)
. (4–9)

In the following description, we default to a filter length of N = 51 which provides us

with a shifting accuracy of greater than 10−12 [73]. Generalizing this to incorporate

time-scaling as well as time-shifting, we can write the time-changing time delay as a

function of the integer, nD, and fractional shift, D(t) as:

τ(t) = τ(0) + βt = nD ∗ Tdata +D(t) ∗ Tdata. (4–10)

In this manner we advance the fractional delay, D, as a function of the data-sample, n,

for each iteration of the loop: D(n) = D(0) + nβ. The MATLAB code required and used to

perform the data filtering and interpolation is outlined in Appendix A.

4.2 Laser Pre-stabilization

Based on the expected ranging accuracy, the current LISA design requires a laser

frequency stability of:

δωPre−Stabilization(f) =
280Hz√

Hz

√

1 +

(
2.8mHz

f

)4

. (4–11)

This could be achieved through a single stabilization method or by some combin-

ation of these methods. The costs and benefits of each of these methods are outlined
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well in the LISA frequency control white paper [34]. The following discussion will focus

on two methods: (1) Pound-Drever-Hall cavity stabilization9 and (2) arm-locking10 .

4.2.1 Pound-Drever-Hall Locking

Figure 4-1. Model of the PDH locking scheme: A model of the Pound, Drever, Hall laser
frequency locking technique is depicted. The laser field is modulated with
side-bands and aligned through a polarizing beam splitter incident on the
cavity. The back reflected field is used to control the laser frequency after
demodulating the side-bands.

The application of Pound-Drever-Hall (PDH) laser stabilization [50] involves

stabilizing the frequency of a laser to the length of an ultra-low expansion (ULE) cavity

such that an integer multiple of the laser’s wavelength, λ = 1064 nm, equals the length of

the cavity:

Nλ = L. (4–12)

9 This is used as the pre-stabilized input for the TDI simulations as well as a stable
reference against which to compare other laser stability measurements

10 These experiments mutually provided a proof-of-concept for the UFLIS electronics
along with the verification of the arm-locking stabilization methods themselves.
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This gives us a relationship between the laser frequency, f + δf(t), and the cavity length,

L + δL(t) given by [52]:

δf(ω)

f
=
δL(ω)

L
, (4–13)

transferring the length stability of the cavity to the frequency stability of the laser.

The PDH frequency stabilization is accomplished by modulating the laser

phase using an electro-optical modulator with MHz side-bands [51] as shown in

Figure 4-1. The phase relationship of these off-resonance side-bands reflected

from the cavity are scaled by a complex reflection coefficient which is a function

of the cavities mirrors’ reflection and transmission coefficients. Demodulating the

PD signal against the modulation generating oscillator using an electronic mixer

cancels the common frequency noise of the local oscillator11 and results in an

error signal which is proportional to the phase offset of laser carrier phase to the

cavities resonant length. This error signal can then be used with the appropriate

proportional-integrating-differentiating (PID) or finite-impulse-response (FIR) control

electronics to feedback to the piezo-electric transducer (PZT) and temperature controls

of the laser output frequency. For more information on this locking technique and it’s

applications in LISA, refer to [34, 51, 52].

4.2.2 Arm Locking

Arm locking is a laser stabilization technique proposed by Sheard, et. al. [53] which

exploits the long-term stability of the LISA arm-lengths12 as a reference against which

to stabilize the long-term laser frequency. Utilizing the sensor signals from (3–72) and

(3–74), we have a first-order measure of the change in the laser frequency over the

11 This could be a voltage controlled oscillator, a function generator, or any relatively
stable MHz oscillator

12 5± 0.1Gm over one year.
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individual round-trip arm-length delays with a transfer function given by:

TAL:s(s) =

(L(∆s1(t))

L(φ1(t))

)
(4–14)

= φ1(s)
(
1− e−sτ

)
. (4–15)

where the functional variable, ’s,’ is the complex Laplace frequency s = σ + iω while ∆s1

refers to the round-trip delay to SCs. A filtered output of a single arm sensor signal13

[53, 77, 78] or some filtered linear combination of the two individual arm signals14

[79–81] can be used to control the local, φ1(t), laser phase with the complete open-loop

transfer function given by:

TAL:Comp(s) = TSum(s)Asum(s) + TDif(s)Adif(s). (4–16)

where

Asum(t) = ∆21(t) + ∆31(t), (4–17)

Adif(t) = ∆21(t)−∆31(t) (4–18)

resulting in a laser noise suppression given by the closed loop transfer function:

TClosed =
1

1 + TAL:Comp(s)
. (4–19)

The implementation of arm-locking requires real-time construction of the sensor signals

as well as some method of actuating the laser frequency either through a PZT-mounted

cavity [82], offset phase-locked lasers [78], or side-band locking [83]. Special care

must be taken to estimate the Doppler shifts since integration of Doppler errors cause

13 Single arm-locking

14 Dual-modified arm locking
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a frequency-pulling effect which limits the noise suppression and causes the laser

frequencies to drift as a function of the integrated Doppler error [84].

The electronic components described in chapter. 6 in combination with The

University of Florida Laser Interferometry Simulator (UFLIS) benchtop were used by

the author and others to perform the first hardware implemented proof-of-concept single

arm-locking experiment (chapter. 6.3.1) revealing the yet-to-be-discovered frequency

pulling effects [41, 77, 84]. Expansions to the simulator have also proven dual and

modified arm-locking configurations along with frequency pulling effects. [54, 81].

4.3 TDI Theory

Prior to now, we have simply mentioned that we must form particular time-shifted

and time-compressed linear combinations to account for the time-changing unequal

arm-lengths and cancel the dominant laser phase noise but we have not defined

these specific combinations. These linear combinations fall into two major categories:

(1) TDI-Sagnac combinations and (2) TDI-X combinations. The three TDI-Sagnac

combinations are constructed by completing the laser transfer chain around counter

propagating directions of the LISA constellation. These combinations are significantly

less sensitive to gravitational waves, thus providing an estimation of non-laser noise

sources such as PD noise or scattered light effects. The TDI-X combinations are

constructed by completing the laser transfer chain along individual arms of the

interferometer canceling the laser phase noise and extracting the GW signals. As

previously stated, the ability to form these combinations depends directly on the

accuracy of the measured arm-lengths (chapter. 4.1.3), but at the same time, these

combinations can be exploited to estimate the arm-lengths (chapter. 4.4.2.1).

4.3.1 TDI Combinations

We begin our analysis by constructing the two major TDI combinations which

are shown diagrammatically in Figure 4-2. The TDI-X combination is representative

of a Michelson-type interferometer while the TDI-ζ combination is representative of
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a Sagnac-type interferometer. The TDI formulations have not been consistent within

the literature [55] such that in this description, we will use the same notation as those

defined in chapter. 3.4.3.

The TDI-analysis and combinations used depend on the dynamics of the orbits.

The different TDI generations are derived based on the orbital dynamics approximation

used. The TDI− X0.0 combination assumes the arm-lengths are constant, dτq(t)/dt = 0,

non-rotating τq(0) = τq′(0), and equal, τq(0) = τq(0)
15 . The TDI − X1.0 combination

assumes the arm-lengths are constant, dτq(t)/dt = 0 and non-rotating τq(0) = τq′(0),

but unequal, τq(0) 6= τq(0). The TDI − X1.5 combination assumes the arm-lengths are

constant, dτq(t)/dt = 0, but rotating, τq(0) 6= τq′(0), and unequal, τq(0) 6= τq(0). Finally,

the TDI − X2.0 combination assumes the arm-lengths are non-constant, dτq(t)/dt 6= 0,

rotating, τq(0) 6= τq′(0), and unequal, τq(0) 6= τq(0). These are outlined in Table 4-1.

Thus, the TDI− X2.0 combination should completely account for the laser noise coupling

given the linear arm-length rate of change we have considered in the previous sections.

Assuming we have a continuous data-stream of the observables for SC acceleration

terms to have an effect on the data combinations, this could be accounted for with

further expansion of the TDI combinations. This is usually un-necessary given the

likely-hood of a ’unbroken’ data-set, but none-the-less, we will see in chapter. 4.4

that this can be accounted for, given the LISA-orbital dynamics, with segmented

data-analysis.

15 The τq refers to the ’opposite’ arm of the τq-arm vs. τq-arm Michelson-type
interferometer.
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Table 4-1. Orbital dynamics approximations for TDI generations
Generation Michelson Arm-Length Counter-Propagating Delay Delay Dynamics
TDI 0.0 τq(t) = τq(t) τq(0) = τq′(0) dτq(t)/dt = 0
TDI 1.0 τq(t) 6= τq(t) τq(0) = τq′(0) dτq(t)/dt = 0
TDI 1.5 τq(t) 6= τq(t) τq(0) 6= τq′(0) dτq(t)/dt = 0
TDI 2.0 τq(t) 6= τq(t) τq(0) 6= τq′(0) dτq(t)/dt = βq
TDI 3.0+ τq(t) 6= τq(t) τq(0) 6= τq′(0) dτq(t)/dt = βq(t)

Figure 4-2. Diagrammatic models of the TDI-X and Sagnac combinations: Here we
present the geometric representation of the LISA constellations in parallel to
those developed in [85]. The laser transfer chain in these diagramatic
representations show how to time-shift the observables to form the TDI
combinations and ensure that the laser noise sources will cancel when the
laser transfer chain is a closed loop.

4.3.2 Sagnac Combinations

4.3.2.1 TDI Six-Pulse Combinations

The first order six-pulse combination, named α are constructed from the θsr

combinations (3–77 and 3–79) from each of the respective SC and take the form:

α1.0 = θ21 − θ31 (4–20)

= φ1 − φ1;2′1′3′ − [φ1 − φ1;312]

+ [h21 + h32;3′ + h13;1′3′ ]− [h31 + h23;2 + h12;12]

= φ1;312 − φ1;2′1′3′ + [h21 + h32;3′ + h13;1′3′ ]− [h31 + h23;2 + h12;12]. (4–21)

79



Generally16 , these combinations cancel the laser phase terms and leave six hsr GW

terms in the TDI − α1.0 approximation. They are named based on the fact that a

delta-function gravitational wave input is replicated six times in the resulting combination.

If we extend this to the TDI − α2.0 approximation by accounting for time-changing

delays and un-equal counter-propagating light travel time-delays, we would have to

trace the laser chain back to the starting point resulting in a 12 ssr-term expression and a

twelve-pulse GW response.

4.3.2.2 TDI Symmetric-Sagnac Combination

The first order Sangnac combination written as:

ζ1.0 = s31;1 + s12;2 + s23;3 − (s21;1′ + s32;2′ + s13;3′) (4–22)

is free of laser phase noise in a non-rotating constellation and is orders of magnitude

less sensitive to GW signals. This could be used to discriminate between instrument

noises and GW stochastic background signals [86, 87]. This combination is shown

geometrically in Figure 4-2; one notes that the rotation of the constellation in the

geometric representation causes an open laser transfer chain for a rotating constellation

which destroys the common mode laser phase cancellation the Sangac-1.5 combin-

ations [85, 88]. Again, this is accounted for by the modified Sangac combination which

re-traces the time-delay path resulting in a 12-term TDI− ζ2.0 function.

4.3.3 Michelson X-combinations

The Michelson X combinations17 form three interferometers combinations which

collectively form a basis in the 2-dimensional plane of the constellation for the h+ and

16 Ignoring clock-noise terms

17 Using other SC as our frame of reference, we can obtain the ’Y’ and ’Z’
combinations
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h× strain. In the following sections, we construct the Michelson X combinations from the

round-trip single-arm sensor signals, ∆sr, defined in (3–72) and (3–74).

4.3.3.1 TDI-X0.0

In the special case where the total round trip delay-times are equal ([τq(0)+ τq′(0)] =

[τq(0) + τq′(0)]) and the differential SC velocities are zero (dτq(t)/dt = βq = 0), the

difference of the sensor signals, (3–72) and (3–74),

X0.0 = ∆21 −∆31, (4–23)

generates the standard equal-arm Michelson interferometer output, independent of laser

phase noise. Expanding explicitly,

X0.0 = φ1 − φ1(t− τ3′(0)− τ3(0)) + h21(t) + h12(t− τ3′(0)) (4–24)

+
f21
fClk

φClk−1(t) +
f12
fClk

φClk−2(t− τ3′(0))

− [φ1 − φ1(t− τ2(0)− τ2′(0)) + h31(t) + h13(t− τ2(0))

+
f31
fClk

φClk−1(t) +
f13
fClk

φClk−3(t− τ2(0))]

which reduces in this special case to:

X0.0 = h21(t) + h12(t− τ3′(0))− h31(t)− h13(t− τ2(0)) (4–25)

+
f21
fClk

φClk−1(t) +
f12
fClk

φClk−2(t− τ3′(0))

− f31
fClk

φClk−1(t)−
f13
fClk

φClk−3(t− τ2(0))

where we see the four-pulse GW response and clock noise coupling. Maintaining the

β = 0 assumption, the laser fields are not Doppler shifted and the beatnote frequencies

on opposite SC will be equal such that we can further simplify this combination and write

81



it as:

X0.0 = h21(t) + h12(t− τ3′(0))− h31(t)− h13(t− τ2(0)) (4–26)

+
f21
fClk

[φClk−1(t) + φClk−2(t− τ3′(0))]

− f31
fClk

[φClk−1(t) + φClk−3(t− τ2(0))].

We notice that these clock noise terms are the same clock-noise transfer terms

described in (4–3). Rescaling the clock-noise transfer sideband measurements and

subtracting them from the TDI − X0.0 combination, we obtain a Michelson GW output

free of any other noise sources:

X0.0 = h21(t) + h12(t− τ3′(0))− h31(t)− h13(t− τ2(0)) (4–27)

Now that we have shown how the clock-noise terms are accounted for, we will ignore

them in the rest of the TDI description. Light field Doppler shifts from inter-SC motion

change the beatnote to clock frequency ratio, (fsr ± fDop)/fClk, but can be subtracted from

the sensor signals ∆sr before any of the following combinations are formed. That said,

we will revisit how these terms couple into the UFLIS-TDI simulations described in Ch. 7.

Unfortunately, despite all this work, the TDI−X0.0 combination is rarely a reasonable

laser phase cancellation technique since the LISA arm-lengths are almost always

un-equal. None-the-less, this serves as a first order example of how heterodyne GW

interferometry is performed. The considerations beyond this show the techniques to

account for orbital dynamics and changes in the light-travel time-delays between the SC.

4.3.3.2 TDI-X1.0

The TDI-X1.0 combination [89], written as

X1.0 = ∆21 −∆31 −∆21;2′2 +∆31;33′ , (4–28)

replicates the equal-arm phase delays and cancels the common laser phase noise in the

case where ([τ2 + τ2′ ] 6= [τ3 + τ3′ ]) and β2 − β3 ≃ 0 as shown geometrically in Figure 4-2.
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Expanding explicitly, but still allowing for non-zero β-values, we can write:

X1.0 = [φ1 − φ1;33′ ]− [φ1 − φ1;2′2]− [φ1 − φ1;33′ ];2′2 + [φ1 − φ1;2′2];33′ (4–29)

+ [h21 + h12;3′ ]− [h31 + h13;2]− [h21 + h12;3′ ];2′2 + [h31 + h13;2];33′

= [φ1;33′2′2 − φ1;2′233′ ] (4–30)

+ [[h21 − h21;2′2] + [h12;3′ − h12;3′2′2]]− [[h31 − h31;33′ ] + [h13;2 − h13;233′ ]].

From the expansion we notice the TDI − X1.0 eight-pulse GW response. Failing to

account for the SC-motion and time-changing delays, the TDI-X1.0 combination is limited

by the [φ1;33′2′2 − φ1;2′233′ ] terms which do not cancel completely since the time-delay

transformations are performed in a different order. Calculating the delay error as a result

of the transformation order using the leading (1− β) terms18 we can write:

δτ = τ(4[1− β2]− 4[1− β3]) = 4τ [β3 − β2] (4–31)

where τ is the mean one-way delay time19 . Evaluating this the result in (4–6), we

obtain[90]:

X̃1.0 > 4τ |β2 − β3| ˙̃φ1 (4–32)

where ˙̃φ1 is the time-differentiated laser phase spectrum. Given orbital characteristics

where this limit is large enough to restrain the IMS sensitivity, we must further expand to

the general TDI− X2.0 combination to account for this residual noise.

18 We maintain the assumption that β << 1, (1− β) ≃ 1, and approximate (1− β)n = 1.

19 τ ≃ 16.7 s
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4.3.3.3 TDI-X2.0

The TDI-X2 combination, written as [91, 92],

X2.0 = ∆21 −∆31 −∆21;2′2 +∆31;33′ (4–33)

−∆21;33′2′2 +∆31;2′233′ +∆21;2′22′233′ −∆31;33′33′2′2

is used to cancel the, [φ1;33′2′2 − φ1;2′233′ ], laser phase noise terms left in the TDI − X1.0

combination. This produces a 16-pulse response to gravitational waves, written explicitly

as:

X2.0 = [[h21 + h12;3′ ]− [h31 + h13;2]− [h21 + h12;3′ ];2′2 + [h31 + h13;2];33′] (4–34)

− [[h21 + h12;3′ ];33′2′2 − [h31 + h13;2];2′233′

− [h21 + h12;3′ ];2′22′233′ + [h31 + h13;2];33′33′2′2]

but, given the correct time-delays, cancels all the laser phase noise and accounts for the

independent linear-time-delays, τq(t), assuming d2τ(t)/dt2 = 0. Annual changes in β, or

SC acceleration terms (d2τ(t)/dt2 6= 0), may be accounted for with the further expansion

of these TDI combinations although, this is unnecessary as argued in following section

(chapter. 4.3.4). The MATLAB code required to form these data-combinations using the

ssr data-sets is provided in Appendix B.

4.3.4 LISA Orbital Dynamics and TDI Data Analysis

In the following experiments, β is assumed to be constant and we will focus on

the TDI-X2.0 velocity corrections. Thus, in order to utilize the TDI-ranging methods

outlined in chapter. 4.4.2.1 for LISA-TDI data-analysis, the β value will have to

be adjusted to avoid the acceleration-dependent accumulated error. Although a

continuous measure and correction to the β values are possible, this can simply be

accomplished by segmenting the data-analysis, in the worst case LISA-like scenario,

every
√
δτ Tyear/(β π) =

√
3.3 ns ∗ 3.15× 107 s/(66 ns/s ∗ π) = 708 s [55]. Given the

time-frame for the acceleration effects to couple into the data-analysis, even in this
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worst-case scenario, it is easier to adjust the β-value in the data-analysis than it is to

form a TDI−X3.0, 32-pulse GW response, combination.

4.4 Ranging

As we have stated in chapter. 4.1.3 and as we can see explicitly from the ∆sr and

TDI − X1.0/2.0 combinations, the laser noise cancellation directly depends on our ability

to estimate the one-way inter-SC arm-lengths and form these linear combinations. From

(4–6) we can calculate the ranging accuracy needed to cancel the 280Hz/
√
Hz laser

pre-stabilization input noise.

Generally, the cancellation of the local φ1(t) laser phase noise from the far s1s

signals depends on the accuracy of the out-going delay times, τ3(t) and τ2′(t), while

the cancellation of the far laser phase noise from the local ss1 signals depends on the

accuracy of the in-coming delay times, τ3′(t) and τ2(t). Assuming the lasers on separate

SC are independently stabilized such that φ1 6= φ2 6= φ3, then each of the one-way

inter-SC time-delay functions, τq(t) = τq(0) + βqt, must be evaluated to a 1 meter (3.3 ns)

accuracy.

Exploiting the phase-locking techniques described in [71], we can phase-lock the

far lasers, φ2 and φ3, to the delayed φ1 field from the master SC and transfer the stability

of the master laser to these far lasers. This results in expressions for the far SC’s laser

phase noise given by:

φ2(t) = φ1;3, φ3(t) = φ1;2′ , (4–35)

to within the tracking accuracy of the PLL. In this special case, the one-way delays

are accounted for by controlling the far sensor signals with a PLL such that, s1s =

φPLL−Error ≃ 0. Taking the expressions for φ2 and φ3 described in (4–35), and evaluating

them in ∆s1 (3–72 and 3–74), we see that these expressions simplify to:

∆21(t) = s21(t), ∆31(t) = s31(t). (4–36)
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Thus, since the s1s terms do not effect the noise cancellation in this phase-locked

configuration, we can reduce the delay constraints to two, round-trip delays given by:

τ2′2(t) = [(1− β2)((1− β2′)(t− τ2′(0))− τ2(0))] (4–37)

τ33′(t) = [(1− β3′)((1− β3)(t− τ3(0))− τ2′(0))].

Meanwhile, the constraints on the individual one-way delays are greatly reduced

resulting from the relatively-stable20 PLL noise. These reduced ranging constraints

result from the fact that the ’input’ PLL noise used in (4–6), allows for large values of δτ

while still meeting the X-combination’s IMS sensitivity.

Two methods, Pseudo-random Noise (PRN) ranging [75, 93, 94] and TDI-Ranging

[95] have been proposed to measure the inter-SC arm-lengths (light-travel times). The

PRN ranging method, described in the next chapter involves the use of additional optical

components to modulate the laser carriers with PRN-codes; the cross-correlation of the

six inter-SC ranging codes with the local copies of each of these PRN codes provides

an independent, real-time measure of the one-way inter-SC distances. TDI-Ranging,

on the other hand, requires no additional components and determines the inter-SC

ranging values in post-processing by exploiting the laser cancellation characteristics of

the TDI-combinations. Provided with the ease of implementation of the TDI-Ranging

technique, the TDI experiments described in chapter. 7 will attempt to experimentally

develop and improve upon the TDI-Ranging methods proposed in [95].

4.4.1 Pseudo-random Noise (PRN) Code Ranging

Pseudo-random noise (PRN) code cross-correlation techniques are well understood

inter-device distance tracking methods which have been developed and verified for use

in global positioning satellites (GPS). The application of these methods in LISA involves

20 1µHz/
√
Hz− 1mHz/

√
Hz
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modulating one of six local codes (one for each laser source) onto the carrier laser

field. After the inter-SC/intra-SC laser field transmission and detection, the PRN codes

from the adjacent laser field is cross-correlated with the local PRN codes. The six PRN

codes have the designed property such that they do not correlate with each-other, but

do periodically correlate with themselves depending on the length of the PRN code. A

positive cross-correlation of the PRN code is used in conjunction with a delay-lock-loop

to actively track the ’incoming’ code from the adjacent benchtop and produce an

inter-SC delay read-out. Assuming the measured delays correctly account for electronic

and special relativistic delay terms, these delay read-outs can be directly used to form

∆sr and TDI−X1.0/2.0 combinations in real time.

This ranging method has both benefits and complications. The real-time PRN delay

measurements allow us to form the ∆sr and TDI − X1.0/2.0 combinations in real-time on

the SC. The ∆sr terms can be used for arm-locking as described in chapter. 6.3.1. The

TDI − X1.0/2.0 combinations can be formed on-board from the ssr observables and sent

in their pre-constructed TDI-form to Earth rather than having to transmit the 18 individual

χsr, bsr, and ssr observable signals.

On the other hand, as we’ll see comparatively in the next section, this ranging

method adds unnecessary complications to the LISA design. Electro-optical modulators

(EOMs), which might introduce additional noise terms, must be used to modulate the

laser-field with the PRN codes before the inter-SC transmission, adding weight and

complexity to the LISA design. Also, there is no guarantee that the delays measured

by the PRN ranging methods are equal to those needed to form the TDI combinations

since the laser noise cancellation in the TDI-combinations depends on the time-delay

from the laser field’s generation to observables’ detection.21 TDI-ranging, on the other

21 Including PD, ADC, and phasemeter phase delay responses.
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hand, does not require an additional EOM and determines the one-way delays, including

electronic phase delays, in post-processing.

4.4.2 Time-delay Interferometry Ranging (TDIR)

Time-delay interferometry ranging [95] is a method of determining the LISA signal

travel times in post-processing by minimizing the total root mean squared (RMS) power

in the LISA measurement frequency band. Taking the measured, ssr, combinations, we

form the theoretical TDI-2.0 combinations using initial estimates of the six variable,22

light travel time delays. The time-delay parameters are scanned over the possible

values23 until the total RMS power in the TDI− X2.0 is minimized. The initial delay offset

parameters, τq(0), can vary by 0.66 seconds and must be measured to an accuracy

of less than 3.3 nanoseconds (4–6). Thus, assuming no previous knowledge of the

time-delay values, we have a large parameter-space over which to scan with each of the

four time-delay offset parameters taking one of 2 × 108 possible values.24 Unless some

tracking method is developed, this parameter search could be computationally intensive.

Although [95] proves the capabilities and limitations of the RMS minimization

ranging method, it does not provide a method of actively determining the timedependent

delay parameters. In addition, the RMS minimization method’s delay parameter

calculation introduces errors in the time-delay values caused by low-frequency

gravitational wave signals. In this experiment, we will present and employ a new method

of TDI-ranging by modulating the laser field with a ranging tone at a frequency outside

of the LISA measurement band, in this case, 1 − 1.5Hz. Although this method has been

used for spacecraft ranging on active projects [96] and has been considered for use on

LISA [97], the author is not aware of a formal analysis in the literature. In the following

22 We assume that βq = βq′ and τq(0) 6= τq′(0).

23 (16.33 s < τq(0) < 17 s), (−66ns/s < β < 66ns/s)

24 0.66 s/3.3 ns = 2× 108
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sections, we attempt to present this formal analysis of the TDI ranging-tone application

and realization, including a time-delay search algorithm developed by the author.

4.4.2.1 TDI Ranging Tone

The TDI-ranging tones can be placed on each of the six LISA laser fields by adding

a fTone − Hz sinusoidal modulation to the piezo-electric transducer which controls the

laser frequency. This is significantly more straight-forward than the EOMs required to

implement the PRN-ranging method. On the other hand, the real-time measure of the

arm-lengths provided by the PRN ranging method has the advantage of producing the

sensor and TDI variables in real-time which is beneficial towards the implementation of

arm-locking and reducing the satellite-to-Earth data transmission demands.

Extending the RMS minimization concept, the application of a ranging tone

effectively increases the laser noise by introducing more signal power at the specified

ranging tone frequencies. As shown by (4–6), this results in a better estimation of the

ranging error, δτ , than the inherent laser noise cancellation would provide. In addition,

because we are only interested in the power minimization near the ranging tone

frequency, this ranging method should not be affected by low frequency gravitational

waves.

The ranging tone is optimally modulated onto the laser field at a frequency mid-way

between the frequency-domain zeros of the inter-SC sensor signals, ∆sr, to avoid

inherent tone cancellation along a single arm25 :

N

τq(0) + τq′(0)
< fTone <

N+ 1

τq(0) + τq′(0)
. (4–38)

Also, to avoid confusion between the individual laser modulations, each of the Lasersr

fields should be modulated at a different frequency, fTone−sr. Using the reverse argument

of the ranging requirement derivation, the cancellation of the local φ1(t) tone from the far

25 This can be seen graphically in Figure 7-4.
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s1s signals constrains the out-going delay times, τ3(t) and τ2′(t), while the cancellation of

the far laser tones from the local ss1 signals constrains the in-coming delay times, τ3′(t)

and τ2(t), resulting in all four one-way time-delay functions.

Revisiting the LISA-model where the far lasers are phase-locked to the delayed

master laser field, (4–35), the delayed local laser modulation is transmitted back to to

local SC. This results in two round-trip time-delay function constraints, (4–37), using the

cancellation of the local tones in the TDI combinations. In spite of this, the phase-locked

lasers could still be modulated with their own ranging tones restoring all four, one-way

constraints.

4.4.2.2 TDI Ranging Parameter Search Algorithm

The method used to determine the six-parameters which define the four one-way

delay-functions is outlined in Figure 4-3. The first step involves providing an estimate

of the time-delay functions. The estimate does not need to be accurate; any estimation

error will be corrected by the convergent properties of the search algorithm. The β

estimates are then used to time-scale the ssr signals by the appropriate factors as

defined by the TDI − X2.0 combination26 . The time-scaled data set is then broken into

’N’ sections which are individually used to determine the four time-delay offsets, τq(0),

for each section.

As we’ve previously stated, the span of possible values of the time-delay offsets in

comparison with the required time-delay ranging accuracy results in a large parameter

space over which these values can vary. Brute force scanning and computing the TDI

combination for all 1032 values is effectively impossible. Instead, we begin by evaluating

the TDI combination for each-time delay in the range of possible values from 16.2 s to

17.2 s with a precision of 0.1 s. In this specific case, the delay-segmentation results

26 The TDI-X2 combination is used in favor of the the TDI-X1 combination because of
the possible inherent constraints of the TDI-X1: (4–32)
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in 10 possible delays values for each of the four dimensions of the one-way delay

times, resulting in 104 possible delay permutations. The RMS power of the TDI-X2.0

combination in the fTone Hz ± 1mHz frequency band is calculated for each of the 104

possible values. The set of delays which contains the minimum RMS power is used as

a new reference point. The time-delay parameter space around this minimum (±0.1 s)

is, broken into more precise delay values (0.01 s). The RMS power minimization scan

in this new parameter space is performed to, again, determine the delay parameters

to a better precision. The process is repeated improving the precision by a factor of 10

each time until the four delay-time offsets are constrained to a 1 ps precision and the

ranging tone is dominated by instrument noise sources.27 The delay segmentation

precision, in this case a factor of 10 for each iteration, is chosen to avoid the possibility

of converging on a local minima and obtaining the wrong delay-time estimate. A more

effective method might include the evaluation of a surface gradient which converges

on the RMS-minimized delay times which has been fitted to the time-delay grid

through Monte-Carlo analysis; this method could accelerate the data-analysis, assist

in confirming the result is not a local minima, and ensure that the actual optimized

delay-times have been determined.

Once the four time-delay offsets are calculated for each of the N data-segments, a

linear regression of the offsets is performed to obtain a functional definition of all four of

the one-way time delays:

τ2(t) = (1− β2)(t− τ2(0)), τ3′(t) = (1− β3)(t− τ3′(0)), (4–39)

τ2′(t) = (1− β2)(t− τ2′(0)), τ3(t) = (1− β3)(t− τ3(0)).

27 Although we scan the delay parameters to a 1 ps precision, the actual delay error is
determined based on the ranging tone cancellation which is limited by instrument noise
sources.
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The calculated slope provides a more accurate evaluation of β-values for this section of

data than the original estimation. Assuming the ranging-tone cancellation and time-delay

offset calculation was limited by (4–32), the improvement in the β estimation increases

the precision of the time-delay offsets in the second iteration of the ranging-tone

cancellation algorithm. Generally, after three iterations the one-way delay functions

are optimally evaluated. The first iteration determines the β values. The second

iteration determines the delay-offsets. The third iteration optimizes the values over

the entire data-set. Once the four one-way delay functions are derived, they are used

to calculate the TDI-X2 combination for the entire data-set. In addition, the variance on

the linear-regression provides us with a means of determining the ranging precision in

comparison with the precision defined by the ranging tone cancellation using (4–6). The

process is simplified to a four-parameter (β2, β3, τ2′2(0), τ33′(0)) estimation when the far

laser are slave phase locked to the master local laser.
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Figure 4-3. Flow chart of the ranging-tone minimization process: The process depicted by this flow chart minimizes the
ranging tone and maximally constrains the six variable light travel time delays. The results of this process for
the different experimental configurations are presented in Table 7-1 and Table 7-2

93



CHAPTER 5
THE LISA PHASEMETER

5.1 Digitial Signal Processing (DSP) System

The phasemeter read-outs, digital control systems, and electronic inter-SC delay

simulation components were developed using programmable DSP equipment acquired

from Pentek, Inc. The Pentek system is constructed from three basic components. The

62561 is a four-channel, 14-bit, analog to digital signal converter (ADC) sampling card

containing a field programmable gate array (FPGA) capable of high-speed real-time

fixed-point data-processing. Meanwhile, the 62282 is a four-channel, 16-bit, digital to

analog converter (DAC) read-out card with the same FPGA capabilities. These two

daughter cards are connected through the master processing and control card, the

4205.3 The 4205 handles the data transfers between the daughter cards and can be

controlled through a serial based user interface. The 4205’s processor can perform

floating point calculations on the measured data and store the results in 1 GByte of

synchronous dynamic random-access memory (SDRAM) or send the data through an

Ethernet transfer to an external data-storage computer. Both the input ADCs and output

DACs can be externally clocked either by the same source or by two independent clock

sources.

5.2 µCycle Phase Measurements

The phasemeter, programmed to the 6256’s FPGA, is designed to measure the

phase of a 2− 20 MHz PD beatnote signal with an accuracy of 1 µcycle/
√
Hz (Table 3-1).

This device is used, not only to measure LISA-like science observables, but also to

generate the phase data for the electronic simulation of inter-SC field transmission delay

1 Model 6256 Dual/Quad 105 MHz A/D w/Virtex-II Pro FPGA - VIM-2

2 Model 6228 4-Ch. D/A, Digital Up-converter & FPGA VIM-2 Module

3 Model 4205 VIM/PMC Carrier and MPC7457 PowerPC VME Board
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and phase modulation effects. It can also be used to generate high-speed frequency

read-outs for real-time digital control systems such as arm-locking. In the following

sections we outline the design, characteristics, noise sources, and performance of the

University of Florida phasemeter.

in(t) = Ain(t) sin(in(t))

sin(fb(t))

cos(fb(t))

fb(t)
ffb(t)

foffset

Qerr(t) = [Ain(t) / 2] sin[in(t)-fb(t)] ≃ 0

Ierr(t) = [Ain(t) / 2] cos[in(t)-fb(t)] ≃ [Ain(t) / 2]

err(t) ≃ [Ain(t) / 2] [in(t)-fb(t)]

Fout(t)

out(t) = Aout(t)sin(2foutt + out(t))

ferr(t)

  

 

Figure 5-1. A model of the LISA phasemeter: Here we show how a digital offset phase
lock loop is locked to the sampled input signal. Meanwhile, the feedback
frequency signal, ffb(t), and the multiplier demodulated outputs, Q(t) and
I(t), are recorded to reconstruct the phase and amplitude of the input signal.
The details and theoretical analysis of the phasemeter operation can be
found in the text (chapter 5.2.1)

5.2.1 Design

The phasemeter design is modeled off of a standard offset phase lock loop (PLL)

tracking controller. The name ’phasemeter’ is misleading since the PM core actually

records a 64-bit frequency-proportional feedback signal in a digital PLL which is then

integrated in post-processing to generate the phase. As shown in Figure 5-1, an input

signal, Φin(t) = Ain(t)sin(φin(t)), is sampled with a 14-bit accuracy at a sampling
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frequency, fs.4 The digitized beatnote is then mixed with sine and cosine components

of a digital feedback signal with a constant amplitude, Afb, and a time varying feedback

phase, φfb(t) =
∫
dt(ffb(t) + foffset), given a user-defined offset frequency, foffset. The

feedback sinusoids, Afbsin(φfb(t)) and Afbcos(φfb(t)), are generated with numerically

controlled oscillators (NCOs) using a ΩLUT = 28-bit look-up table (LUT). Once

the feedback and input signals are multiplied,5 the signal is filtered with a N stage

cascaded-integrating-comb (CIC) filter [98]. The data is down-sampled by a factor of R

and low-pass filtered by the CIC-transfer function such as those shown in Figure 5-2.

The transfer function of the CIC filter in the Laplace domain takes the form:

G(s) = R1−N

∣∣∣∣
(1 + z−R)N

(1− z−1)N

∣∣∣∣ where z = e−
s
fs . (5–1)

An example of the CIC transfer functions for fs = 50.0MHz, Rfb = 16, and N =

2, 4, 8 stage filters are plotted in Figure 5-2. fs is chosen at a frequency with a lower

bound defined by the Nyquist sampling frequency, fs > 2fNy, where fNy is the signals

largest frequency component of interest, and with an upper bound defined by the

timing constraints of the FPGA and ADCs. A larger down-sampling factor, R, reduces

the tracking loop’s update rate, reducing the timing requirements of the FPGA, but

also results in an increase of the PLL’s in-loop phase delay, reducing the tracking

bandwidth. The number of stages, N, defines by what factor the high-frequency data is

suppressed before down-sampling and aliasing the high-frequency information into the

measurement. With regards to the LISA mission, a nice benefit of using the CIC filter for

this down-sampling process is that the ’zeros’ of the transfer function are aliased to DC,

significantly suppressing any out-of-band information before it is aliased into the LISA

science data frequency band (DC - 1 Hz). This is discussed further in chapter 5.2.2.2.

4 fs = 40− 100MHz

5 The 14-bit ADC out and the 28-bit LUT sinusoid result in a ΩQ = 42-bit I/Q precision
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Figure 5-2. CIC filter transfer functions: The magnitude and phase response of the
N = 2, 4, 8 stage CIC filters using a data-rate, fs = 50MHz, and a
down-sampling factor, R = 16, is plotted. A larger number of stages,
although increasing the suppression of higher-order aliased frequency
bands, also causes an increase in the filter’s phase delay.

Switching our focus to the PM’s PLL tracking loop, if we assume that fin =

dφin(t)/dt ≃ foffset, and suppress the sum term of the demodulated signal with a

CIC low-pass filter, it results in the sine and cosine of the difference phase, φerr(t) =

φin(t) − φfb(t). The CIC filter also reduces the tracking loop’s data rate to fCore = fs/Rfb.

As a result of the sine/cosine multiplication and filtering we obtain two signals which are

proportional to the in-phase and quadrature components of the feed-back error signal,

Q(t) ∝ G(s)[Ain(t)sin(φin(t))Afbcos(φfb(t))] =
AfbAin(t)

2
sin(φerr(t)) (5–2)

I(t) ∝ G(s)[Ain(t)sin(φin(t))Afbsin(φfb(t))] =
AfbAin(t)

2
cos(φerr(t)). (5–3)

Using Q(t) as the error signal for the PLL, it is filtered using fixed-point bit-shifters and

cascaded accumulators which are constructed to produce the feed-back controller, H(s),
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given by:

H(s) =

[
2−N1 + 2−N2

fs
s
+ 2−N3

f2s
s2

]
. (5–4)

The N1,2,3 values are the bit-shifting factors in the P-I-I2 feed-back filter, where N1 <

N2 < N3,6 defines the gain and frequency-zeros of the P-I-I2 filter. This filter generates

the phase-proportional feed-back frequency signal, ffb(t), with a 60-bit precision7 . The

user-defined offset frequency, foffset, is added to this feed-back signal, integrated with a

fixed-point accumulator8 to generate the feed-back phase, φfb(t), and used to drive the

NCO/LUT mentioned above. Assuming the system is ’locked’ the feedback signal should

track the input signal such that, within the bandwidth of the controller:

Q(t) ≃ 0 φfb(t) ≃ φin(t). (5–5)

Since we are interested in the phase fluctuations, the frequency feedback signal,

ffb(t), will be integrated to generate the in-band phase output, φin−band(t). Using the

feed-forward, G(s), and feed-back, H(s), transfer functions in combination with basic

control theory [99], we can calculate the expected closed-loop in-band and out-of-band

transfer functions based on the feed-forward and feed-back transfer functions as defined

above:

δφfb(s)

δφin(s)
=Afb

[
AinH(s)G(s)

s
fs
+ AinH(s)G(s)

]
≃ 1 (5–6)

δQ(s)

δφin(s)
=Afb

[
AinG(s)

s
fs
+ AinH(s)G(s)

]
≃ 0. (5–7)

6 For most designs, N1 ≃ 11, N2 ≃ 18, N3 ≃ 28

7 Ωfb = ΩQ +N3 = 42 + 28 = 70bits, which are then truncated to 60 bits.

8 TAccum(s) = fs/s
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The time-changing input amplitude coupling, analyzed in chapter 3.4.2.5, is

assumed as being constant for this feed-back analysis such that amplitude fluctuations

of the input will have little affect on the transfer function. From the definitions in (5–6)

and (5–7), we can interpret these as the in-band and out-of-band frequency information

based on these closed-loop transfer functions:

φin−band(t) = φfb(t) φout−of−band(t) = atan

(
Q(t)

I(t)

)
= φerr(t). (5–8)

Thus, we can reconstruct the entire input signal’s phase information by simply adding

these signals:

φOut(t) = φin−band(t) + φout−of−band(t) ≃ φin(t) (5–9)

We can also calculate the input amplitude:

AOut(t) =
√

I(t)2 +Q(t)2 ≃ Ain(t) (5–10)

The expected bandwidth, depending on the amplitude of the input signal and the

timing delays of the FPGA, should be at least a few kHz such that in the LISA frequency

band, the phase information of the input signal is completely contained in the in-band

information and, thus, we can ignore the out-of-band information:

fout−of−band(t) ≃0 (5–11)

φOut(t) =φfb(t) ≃ φin(t) (5–12)

This eliminates the need for the sine component of the mixer multiplication and reduces

the constraints on the FPGA design if amplitude measurements are not needed.

To generate the phasemeter data, the Ωfb = 60-bit feedback signals, ffb(t),

for each of the four ADC inputs and PM outputs are packed into a series of 32-bit

values, transfered through the DSP system to the 4205, and communicated to a
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data-storage computer through an Ethernet connection. This provides us with a

frequency quantization precision of δf = fs/2
Ωfb (Figure 5-3).

In the following chapters the sampling rate and down-sampling factor vary based

on the experiment being performed and the computational demands on the FPGA.

The primary clock rates used are 40 MHz, 62.5 MHz, and 100 MHz9 . To get an idea

of the frequency precision, taking fs = 50.0MHz, we produce frequency data with a

quantization precision of 50.0MHz/260 = 54 pHz. This is unnecessarily precise, but

since the FPGA and processor perform computations based on 32-bit ’words,’ and the

32-bit precision, 62.5MHz/260 = 14.5mHz, is not sensitive enough to meet the LISA

requirements, we are required to use two ’words’ per data-point which allows for up-to

64-bit fixed point frequency outputs.10 This is explored more in chapter 5.2.2.1.

5.2.2 Phasemeter Readouts

Now that we have presented the design and capabilities of the PM core, the 60-bit,

fCore = fs/Rfb frequency output data can be used for three purposes: (1) to record

LISA-like science data of PD observables, (2) to generate the phase/frequency data

for simulating the inter-SC phase/frequency delays, (3) for high-speed digital feedback

control systems such as arm-locking and phase-locking. Maintaining the LISA precision

throughout the system, we keep the 60-bit frequency precision for all possible LISA-like

usages of the PM core. The read-out rate, on the other hand, varies depending on

the application. LISA science measurements call for 3-10 Hz PD phase readouts [29].

Simulations of the inter-SC delays require a relatively high data-rate to maintain the

phase data-rate for accurate data-interpolation (chapter 6.2.2.1) and to prevent aliasing

into the measurement band when electronically replicating the LISA-like laser field

9 LISA is expected to use a 50 MHz ultra stable oscillator (USO) clock [29].

10 4 bits are used to label the frequency value with an indexing number based on the
associated ADC channel.
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delays. PM readouts for digital control systems such as arm-locking use the maximum

allowed data-rate to minimize the phase delays applied by the digital controller which

reduce the tracking band-width.

To achieve the desired data-rate for LISA-science measurements and electronic

phase delay (EPD) simulations, the PM frequency readout data is down-sampled again

by CIC filters. The CIC filters down-sample the data to a fast, fPLL ≃ 400 kHz, medium,

fEPD ≃ 50 kHz, or slow, fLISA ≃ 10Hz, readout rate, which vary slightly depending on the

down-sampling factor, R, and the clock rate, fs. The important point here is to consider

the aliasing effects of the CIC filter and the quantization noise of the frequency read-out.

5.2.2.1 Phase Quantization Noise

We can calculate the phasemeters’ quantization phase noise based on the

bit-resolution and readout rate of the frequency information from the same arguments

used to derive, (3–24), and is written explicitly as:

δφDig(ω) =
1

ω

fs2
−Ωfb

√
6fdata

Cycles√
Hz

(5–13)

where Ωfb is the bit precision of the frequency feedback data and fdata is the CIC

down-sampled output data rate. To see how this compares to the LISA phasemeter

precision requirements, the low-frequency phase quantization limit, scaled to a clock

rate of fs = 50MHz, is plotted for two different read-out rates, 3Hz and 10Hz, and three

different bit precisions, 47, 48, and 49 bits, in Figure 5-3. Assuming we have a 3Hz

data-rate, we require 49-bits scaled to the 50MHz clock. Using a 10Hz data-rate we can

reduce this to a 48-bit precision. We also plot the quantization precision for the 10Hz,

60-bit UF-LISA science phasemeter. Despite that the 60-bit PM precision is far beyond

the LISA requirements, we maintain this high bit-precision simply as a result of the DSP

system’s capabilities.
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Figure 5-3. Theoretical PM readout digitization limitations: The frequency bit-precision
and data read-out rate couple to limit the digitization-limited PM
measurement sensitivity through quantization noise (5–13). Although this
specifies how many bits are needed in the PM tracking loop, the data
precision could be reduced for satellite-to-Earth transmission once it has
been read out of the PM tracking loop by removing the frequency offset and
retaining only the dynamic bits.

5.2.2.2 CIC Downsampling and Aliasing

The CIC filter is used to down-sample the data because of the relative ease of

programming on an FPGA since it consists of cascaded differentiators and integrators

which may be constructed using fixed-point accumulators and subtracters. In addition,

as shown in Figure 5-4, aliased terms have an infinite suppression at all frequencies

which are aliased to DC. Despite this feature, we must ensure that the CIC aliased

phase-noise is suppressed beyond the LISA requirement in the LISA measurement

band, up to 1Hz. As an example, we take the pre-stabilized laser input noise of

280Hz/
√
Hz and plot the magnitude of the pass-band and first aliased frequency band

for a 10Hz data rate down-sampled with N = 2 and N = 6 stage CIC filters in Figure 5-4.

We can see that, given this data-rate and a 6-stage CIC down-sampling filter, we obtain

a first-aliased band suppression which meet the LISA requirements. This is verified

by an experimental measurement as shown in Figure 5-14. A finite impulse response
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(FIR) filter with a flat pass-band and significant suppression in the stop-band to prevent

aliasing could be used to improve the performance near the sampling rate and reduce

the data rate to 3 Hz but this is computationally demanding for a fixed-point FPGA.
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Figure 5-4. Phasemeter noise caused by CIC filter aliasing: The down-sampling filters
used to read out the phasemeter data must ensure that the noise in the
aliased frequency bands are sufficiently suppressed before being folded into
the measurement band. The first aliased band of the N = 2, 4, 6 stage CIC
filters used to down-sample the PM core data in the UF-phasemeter are
plotted as a function of the expected input laser noise. Using a 10Hz
data-rate, the CIC-filter down-sampling filters require at least N=6-stages to
meet the LISA requirements.

5.2.3 Phasemeter Test-Measurements

We begin the verification and noise analysis process by performing software

simulations in MATLAB-Simulink using the fixed-point Xilinx-DSP toolkit and hardware

simulations with a voltage controlled oscillator (VCO) test input.11 In both the software

11 Our VCOs have similar noise characteristics as the pre-stabilized laser beatnotes
and is used as a test input for many verification measurements as shown in Figure 6-2.
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and hardware simulations, we record the 60-bit feedback, ffb(t), and the 30-bit

quadrature error, Q(t), and in-phase, I(t), signals.
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Figure 5-5. Software verification of PM performance: The in-band (top) and out-of-band
(middle) phase information is plotted for a simulated laser-like noise input for
2ms. The bottom curve shows the input phase compared against the
summed in-band and out-of-band phase information. The initial tracking
transients are seen at the beginning of the simulation and the curves match
as expected once the phasemeter has locked onto the input signal.

The time-series output of a software simulation is shown in Figure 5-5 while the

spectral results of a hardware experiment using a VCO input source is shown in

Figure 5-6. From the hardware experiment we can see that the out-of-band phase

error is well below the LISA requirement, justifying (5–11). The ’difference’ terms refer

to the subtraction of two different ADCs, but which sample the same input source being

electronically split, effectively showing the combined un-common ADC and phasemeter

phase noise limitation. This will be discussed extensively in the following chapters. At

this point, it simply verifies that both ADC’s and phasemeters are measuring the same

signals to a 0.1 µcycle/
√
Hz accuracy, at least in the high frequency range.
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Figure 5-6. Hardware verification of PM performance: The high-frequency noise
spectrum of the hardware tested phasemeter using a VCO input source is
plotted. The in-band phase (blue curve) matches the VCO input noise to a
level of 0.1µcycles/

√
Hz (cyan curve) when performing a differential ADC

measurement (Figure. 5-9). The out-of-band error (green curve) immediately
drops below the LISA requirement and continues to track the input noise to a
better precision at lower frequencies due to the P-I-I2 feedback transfer
function (Figure. 5-7). Thus, including the out-of-band error in the measured
phase does little to improve the phase precision (purple curve).

Dividing the spectra of the frequency feedback signal, f̃fb(ω), by the quadrature error

spectra, Q̃(ω), as shown in Figure 5-7, we obtain the expected feedback transfer function

based on the programmed FPGA controller design. More on the design and verification

aspects of the phasemeter can be found by referencing the groundwork experiments

performed by Ira Thorpe [41].

5.2.4 Phasemeter Noise Model

Taking into consideration phasemeter, ADC, and clock noise sources, we can write

the sampled phasemeter signal as:

φPM,i = φin + δφPM + δφADC +
fin
fs
δφClk (5–14)
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Figure 5-7. Verification of the PM feedback transfer function: Dividing the spectra of the
feedback frequency signal by the out-of-band error signal, we obtain the
expected feedback transfer function (5–6) for both the software and
hardware verification tests.

where

δφPM = δφCIC,o + δφQuant,i (5–15)

δφClk = δφCLK,o + δφCLK,i (5–16)

δφADC = δφADC,o + δφADC,i (5–17)

so that we may differentiate between noise terms which are common between all

the channels, δφx,o, and terms which are independently applied to the ’i-th’ channel,

δφx,i. The CIC noise is labeled with an ’o’ since it correlates with the input noise. The

quantization noise, on the other hand, is applied to each channel independently. In

chapter 5.3, we will further investigate the ADC noise terms. To distinguish between the

clock noise and ADC noise terms, we will define the clock noise sources as any signal

106



which scales proportionately with the input frequency, such as timing jitter, while ADC

noise sources are defined as absolute, frequency-independent additive noise signal.

In an attempt to model these different noise sources, a diagram of where they are

introduced in the measurement process is shown in Figure 5-8.

5.2.5 Differential and Entangled Measurements

To distinguish between these terms, we take three types of measurements, as

shown in Figure 5-9, with each attempting to probe a different noise source as outlined in

the following sections.

5.2.5.1 Digitally Split Differential Noise

The first measurement uses a 1 MHz VCO test input which is sampled at a rate

of fs=62.5 MHz with a single ADC. The ADC sampled data is passed to two different

phasemeter cores with two different PLL offset frequencies. This results in two

data-streams which are only limited by the phasemeter core’s measurement and

digitization precision, δφQuant,i, in (5–14). The measurements are taken at four different

rates then plotted together to span the 100µHz to 10 kHz frequency range as shown in

Figure 5-10. The ’quantization noise’ limit is at the 100 pcycle/
√
Hz level for frequencies

above 10mHz and equals the PM phase quantization limit at frequencies below 10mHz.

Using the amplitude-phase quantization noise level as given by (3–24) and considering

the fin−loop = 62.5/128MHz in-loop data rate, we can solve for the ADC-noise-free

effective in-loop phase quantization, Ωfb:

δxADC Amp.−Quant.(ω) =
21−Ωfb

√
6fin−loop

≃ 100
pcycles√

Hz
, (5–18)

resulting in an effective phasemeter amplitude quantization precision of Ωfb = 23.5-bits.

Again, these noise sources, being well below the LISA measurement requirements,

are not of concern to us. Although, the digitization precision calculations can be useful in

determining the amount of data that must be transmitted to Earth for data-processing of

the science PM read-outs.
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Figure 5-8. Phasemeter noise model: A model of the ADC inputs and clock distribution
is depicted. Common and independent noise terms are added to the ADC
input and clock input signals in to represent the δφClk and δφADC terms in
5–14. The ADC itself has a ground reference which produces an additive
phase noise and independent voltage references for the ADC-comparators
which represent the VGnd(t) and G(t) (3–25) terms respectively and
discussed in chapter 3.4.2.3. These terms are also representative of the
AOff(t) and δA(t) (3–38) terms in chapter 3.4.2.5.
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Figure 5-9. Experimental models of ADC noise estimation measurements: The
quantization noise experiment (left) maintains the common ADC noise terms
but distinguishes between independent PM core quantization noise terms.
The differential noise experiment (middle) distinguishes between
independent ADC noise terms but cancels common ADC noise terms as
explained in chapter 5.2.5.2. The entangled phase measurement (right)
provides a measure of the common-mode ADC noise terms
(chapter 5.2.5.3).

5.2.5.2 Electronically Split Differential Noise

The next measurements are taken to probe the un-common clock, ADC, and

phasemeter noise sources. Splitting a demodulated 1 MHz VCO output using an

electronic radio-frequency (RF) transformer splitter, we measure the signal phase using

two different ADCs, sampled with the same clock source. In this case, the common

noise sources, δφCIC,o, δφADC,o, and δφClk,o cancel from the measurement while the

un-common sources, δφADC,i and δφClk,i, do not. We expect the δφClk,i to be dominated

by timing-jitter terms while δφADC.i might introduce phase and amplitude noise terms

outlined in chapter 3.4.2.5. A complete spectrum of the 1 MHz input and the two-channel

differential output is plotted in Figure 5-10. The measurement precision is limited at

low frequencies, below 10 Hz, by a combination of timing-jitter and ADC/transformer

dispersion. The precision is limited at high frequencies, above 10 Hz, by the coupling

of the amplitude-sampling noise terms described in chapter 3.4.2.3. This is verified

by varying the signal frequency and amplitude, then comparing the PM measurement

sensitivity with the changes in the measurement characteristics.
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Figure 5-10. PM/ADC Quantization and differential noise: Here we plot the results of the
quantization and differential noise measurements modeled in Figure 5-9
from 100µHz to 10 kHz. The quantization noise shows an in-loop white
Ωfb = 23.5-bit quantization phase noise for frequencies above 10mHz the
expected 60-bit frequency quantization PM read-out limitation for
frequencies above 10mHz. The differential measurement is limited by the
ΩδV = 13.78-bit effective amplitude quantization noise level for frequencies
above 10Hz and a timing jitter limited noise given by (5–19) for frequencies
below 10Hz.

In order to probe the timing jitter terms, we take long-term, low-frequency measure-

ments of input beatnote frequencies ranging from 1.0 MHz to 79.5 MHz. The measure-

ment at 79.5MHz is aliased into the measurement-band by the fs=60 MHz clock,

producing a measurable oscillation at 19.5 MHz. The results, Figure 5-11, show that

the measured phase noise decreases as the measurement frequency is decreased

from 79.5 MHz, to 12.0 MHz, to 8.0 MHz. Based on the noise level and scaling of these

signals, we estimate a timing jitter noise of,

δtJit(ω) =
40√
f

fs√
Hz

. (5–19)
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Confirming this estimate numerically we obtain a phase noise of:

δφJit(ω) = finδt(0.1 Hz) (5–20)

= (79.5× 106) · δt(0.1 Hz) = 31.8√
f

µCycles√
Hz

= (12.0× 106) · δt(0.1 Hz) = 4.8√
f

µCycles√
Hz

= (8.00× 106) · δt(0.1 Hz) = 3.2√
f

µCycles√
Hz

= (4.00× 106) · δt(0.1 Hz) = 1.6√
f

µCycles√
Hz

all of which match with the measured phase noise for frequencies larger than 8 MHz.

Unexpectedly, lower frequencies (4.0, 2.0, and 1.0 MHz) result in a higher phase noise

precision and a reduced measurement sensitivity. The increased noise at these lower

frequencies is caused by temperature correlated phase dispersion introduced by the RF

transformers used to AC couple the ADC signal input; see chapter 5.4.1 for a description

of the experiments and methods used to correct for this noise.

In an attempt to evaluate (3–25), we vary the input amplitude of a demodulated

10 MHz VCO input. Using two peak-to-peak input amplitudes, 200 mV and 600 mV, we

observe a factor of 3 improvement in the measurement sensitivity at high frequencies

when the signal is not limited by timing jitter. The tracking bandwidth for this PM design

also increases from ≃ 3 kHz to ≃ 10 kHz. The amplitude noise coupling allows us to

evaluate the G(ω)VBias factor in (3–25). Based on the maximum peak-to-peak input

amplitude of 2000 mV, we can estimate this amplitude-to-phase noise coupling as:

δφAmp(ω) =
2000mV

VPk−Pk:in (mV)
· 7.5

nCycles√
Hz

(5–21)

Note that the amplitude noise is not a result of aliased amplitude noise from 2ω

(chapter 3.4.2.5) since these would not scale with the signal power. We have also

accounted for the out-of-band phase terms (tan−1(Q/I)) in these measurements, which

indicates that this is not a result of variations in the signal’s amplitude as described by
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Figure 5-11. ADC timing jitter noise limitations: The phase noise due to the timing jitter
scales inversely with the finMHz input frequency (3–27) and matches the
theoretically calculated jitter values for fin > 8,MHz for δtJit(ω) (5–19). The
phase measurement for input frequencies with fin < 8MHz are limited by
temperature dependent dispersion due to the RF transformers
(chapter 5.4.1).

chapter 3.4.2.5. Using the inverse argument used to derive (3–26), we can calculate the

effective quantization precision of ΩδV = 13.78 which is nearly equal to the full 14-bit

ADC precision.

We will have an independent measure of this noise source using a different

experimental setup in chapter 5.3.

At this point, we claim the measurement is limited by a combination of timing

jitter and RF transformer phase dispersion in the low-frequency range and limited by

amplitude noise in the high-frequency range. Since the ADC’s, although independent

integrated circuits, are on the same printed circuit board they may have some common

temperature dependent phase delay or common amplitude-voltage reference noise.

In order to differentiate between these common terms, we take an entangled phase

112



10
0

10
1

10
2

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (Hz)

C
yc

le
s/

sq
rt

(H
z)

 

 

Input
ADC Noise Only (High)
ADC Noise Only (Low)
Expected Amplitude Noise (200 mV Pk−Pk)
Expected Amplitude Noise (600 mV Pk−Pk)
Expected Timing Jitter

Figure 5-12. ADC amplitude noise limitations: The amplitude noise scales inversely with
the input amplitude and indicates that the noise floor is due to the ADC
quantization bit-limitation. Using this assumption, we find an effective
number of bits ΩδV = 13.78 which is nearly equal to the specified 14-bit
ADC precision.

measurement involving 3 different signals which combine to cancel the input and clock

noise sources but leave the common ADC and phasemeter noise sources.

5.2.5.3 Entangled Phase Noise

Finally, we perform what is commonly known as an entangled phase measurement.

This measurement involves mixing three independent VCO signals (φVCO1(t), φVCO2(t),

φVCO3(t)) with frequencies (fVCO1, fVCO1, fVCO3) and measuring the differential noise

between each of the VCOs with three ADCs and PMs to obtain three signals (φA(t),

φB(t), φC(t)) given by:

φA(t) = φVCO1(t)− φVCO2(t) +
fVCO1 − fVCO2

fClk

φClk(t) + φADC,A(t) + φPM,A(t) (5–22)

φB(t) = φVCO2(t)− φVCO3(t) +
fVCO2 − fVCO3

fClk

φClk(t) + φADC,B(t) + φPM,B(t) (5–23)

φC(t) = φVCO1(t)− φVCO3(t) +
fVCO1 − fVCO3

fClk

φClk(t) + φADC,C(t) + φPM,C(t) (5–24)
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Taking a linear combination of the differential noise measurements, namely:

φEnt(t) = φA(t) + φB(t)− φC(t) (5–25)

we cancel the VCO and clock noise terms in the final combination but are left with noise

due to the individual phasemeter and ADCs.
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Figure 5-13. Entangled phase measurement results: The entangled phase
measurements show an increased noise at low frequencies by up to a
factor of 10 due to the independent RF transformer phase dispersion terms
(chapter 5.4.1). The measurement couples in aliased noise near the
sampling rate due to the CIC down-sampling filters (chapter 5.2.2.2).

The results plotted in Figure 5-13, show up to a factor of 10 increased noise at low

frequencies due to a common ADC noise which cancels in the 2-channel differential

measurement. The additional low-frequency error in comparison to the differential

measurement results from common-mode temperature dependent phase dispersion

of the RF transformers (chapter 5.4.1). We also notice an increased noise level near

the sampling rate because of the aliasing limitations of the CIC down-sampling filter

described in chapter 5.2.2.2. Verifying the CIC filter aliasing error, we perform the same
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measurement with a 2-stage, 4-stage, and 6-stage, CIC down-sampling filters. As we

can see in Figure 5-14, the 2-stage CIC down-sampling filter will not meet the LISA

requirements at frequencies above 10 mHz.
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Figure 5-14. N-stage CIC filter aliasing and entangled phase measurements: The
entangled phase measurements are performed using a PM-core which
down-samples the measured PM data with a N = 2, 4, 6 stage CIC filter. As
described in chapter 5.2.2.2 and shown in Figure 5-4, the CIC filter
down-sampling filter aliases noise into the measurement band, limiting the
phase precision of the measured input.

5.2.6 Applications in LISA and LIGO

Although the LISA phasemeter design was motivated by the need to measure

the phase of LISA’s heterodyne beatnotes to a 1µCycle accuracy, the phasemeter

has applications in many heterodyne and homodyne interferometry schemes. LISA

will use the PM to measure not only the LISA observables, but also the clock-noise

sidebands and inter-SC data communication signals. The PM frequency readouts

are required to perform arm-locking controls and is also applicable in Mach-Zehnder
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laser pre-stabilization and digital heterodyne phase-locking. The high-frequency PM

sensitivity can also evaluate thermal coating noise for LIGO [100].

5.3 ADC Noise Estimation

We employ a novel ADC phase-noise measurement technique to obtain a better

understanding of the noise coupling added by the ADCs. Using the clock as the input

source as shown in Figure 5-15, we adjust the length of the cable feeding the input

signal, ∆L, to change the phase relationship between the input signal and the clock

source.

When there is an offset phase of 0 between the input and the clock trigger, we

sample the clock itself at it’s zero crossing. In this case, we are sensitive to the linear

combination of the ground-reference, VGnd(t) in (3–25), timing jitter noise, δt̃Jit(ω) in

(3–27), and other un-accounted-for white-noise terms, φThermal(t). Assuming the signal

has a slope of ψ = 2πfClkVClk, measured in [V/s] with VClk being the clock amplitude, we

can write the sampled output of this measurement as:

V∆φ=0(t) = VGnd(t) + ψ(fClk)δtJit(t) + φThermal(t). (5–26)

When there is an offset phase of π/2 between the input and clock trigger,

we sample the signal’s peak. In this case, we are sensitive to the ADC amplitude

fluctuations, the G(t)VBiaso term in (3–25), the clock amplitude fluctuations, VClk(t), and

the ground offset term, VGnd(t), as in the zero-crossing measurement. Assuming the

clock oscillator source has an amplitude of VClk(t), we can now write the sampled output

as:

V∆φ=π/2(t) =
VGnd(t) + VClk(t)

G(t)VBiaso

(5–27)

Splitting the clock input signal and performing the same prescription for a second

ADC, we can compare the two ADC measurements to cancel common noise terms such

as the clock’s amplitude fluctuations, VClk(t), or common VGnd(t) terms.
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Figure 5-15. Model for estimating ADC phase and amplitude noise: Splitting a clock
source and adjusting the phase relationship between the clock and the
ADC input, we effectively sample the clock with itself canceling the
common clock noise. When the phase relationship between the clock and
the input, ∆φ = 0, we sample at the zero-crossing which couples in timing
jitter terms with a proportionality factor given by the ’slope’, ψ. When the
phase relationship between the clock and the input, ∆φ = π/2, we sample
the peak of the clock oscillation; differential measurements will cancel the
common clock amplitude noise and be limited by the ADC amplitude noise
factor, G(t) (3–25).
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Figure 5-16. Common source ADC phase and amplitude noise results: The
zero-crossing measurements (left column) show a strong ADC noise
correlation which, when differential measurements are performed, cancel to
reveal the thermal and timing jitter noise sources (top-left) as explicitly
shown in Figure 5-17. The individual ADC noise sources correlate strongly
with the temperature at frequencies below 2mHz indicating the coupling of
temperature dependent RF dispersion. The individual peak-sampling
measurements (right column) also show a strong low-frequency correlation
with the temperature. The loss of correlation between the individual ADC
samples below 2mHz (bottom-left), indicates that the sampling precision is
dominated by voltage bias reference noise, VBiasoG(t) in (3–25).
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The following zero-crossing and peak-sampling measurements use a 62.5MHz

clock input which has a amplitude of VClk = 0.45V. The phasemeter core is replaced

with CIC down-sampling filters to produce the sampled voltage ADC output at a 14.9Hz

down-sampled rate. At the same time, we measure the temperature of the ADC’s to see

if there is any thermal noise correlations in the measurements.

The results of the zero-crossing measurement, as shown in the left column of

Figure 5-16, show a strong correlation between the two individual ADC measurements

(red and blue curve in top-left, pink in bottom-left) which cancels in the difference

between the signals (black curve in top-left). This individual ADC noise is strongly

temperature correlated at frequencies at and below 1 mHz and indicates common mode

phase dispersion. Subtracting the signals we obtain a voltage noise estimated by (green

curve in top-left of Figure fig:ADCPhaseAmpNoise):

∆Ṽ∆φ=0(ω) = 5× 10−6

√
1Hz

f

Volts√
Hz

(5–28)

Scaling this by ψ, we obtain a timing jitter of:

δt̃(ω) =
∆Ṽ∆φ=0(ω)

ψ
(5–29)

= 5× 10−6

√
1Hz

f

Volts√
Hz

· 1

2πfClkVClk

s

Volt

= 5× 10−6

√
1Hz

f

Volts√
Hz

· 1

2π 62.5MHz 0.45Volts

≃ 28

√
1Hz

f

fs√
Hz

. (5–30)

This is smaller, yet, comparable to the timing jitter measured in chapter 5.2.5.2. If this is

actually the timing jitter term it should scale with respect to the clock frequency through

the ψ dependence. To probe this dependence, we take the same measurement at

50 MHz, 75 MHz, and 100 MHz. The results (Figure 5-17), show the same noise level

for the 50 MHz and 75 MHz signals as we observe here. This indicates that the noise

source we are measuring is not timing jitter, but rather, a phase error which is likely due
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to the internal electronic thermal noise background, φThermal(t). The 100 MHz signal

shows a slight increase in the phase noise error indicating that we have now made

ψ large enough to dominate over the thermal background terms in (5–26). Given this

assumption, we re-evaluate the jitter level:

δt̃(ω) =
∆Ṽ∆φ=0(ω)

ψ
(5–31)

= 9× 10−6

√
1Hz

f

Volts√
Hz

· 1

2πfClkVClk

s

Volt

= 9× 10−6

√
1Hz

f

Volts√
Hz

· 1

2π100.0MHz0.45Volts

≃ 32

√
1Hz

f

fs√
Hz

. (5–32)

which is closer to the estimate given by (5–19). Scaling this 100 MHz zero-crossing,

voltage noise measurement to a 10 MHz input signal and comparing it against a 10 MHz

measurement, the results match the measured jitter as shown in Figure 5-18.

Moving on to the peak-sampling measurements as shown in the right column of

Figure 5-16, we observe some common amplitude noise at frequencies below 1 mHz

and at frequencies above 10 mHz. The amplitude noise at these frequencies is likely

due to common mode fluctuations in the input signal or in the voltage bias reference,

G(t)Vbias, although, without an independent measure of the input amplitude, there is

no way to differentiate between these terms. The differential ADC noise shows some

temperature correlation at frequencies between 2 and 20 mHz. This is most probably

due to temperature dependent noise in the voltage bias, G(t)Vbias, since it is not likely

that the amplitude of the clock source correlates with the temperature of the ADCs. That

said, these noise sources on this absolute voltage scale are smaller than the timing jitter

sources and are scaled by the inverse amplitude before coupling into the measured

phase as explained in chapter 3.4.2.5. Although, because of the ’white’ nature of the

voltage noise in this 1-20 mHz region of ≃ 5× 10−5Volts/
√
Hz, it indicates that we should

be about to calculate the effective number of bits in this low-frequency range. Assuming
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Figure 5-17. Zero-crossing timing jitter estimate: The differential zero-crossing timing
jitter measurements provide us with the ability to directly probe the ADC
timing jitter and it’s frequency dependence. The input frequency
dependence of Ψ allows us to differentiate between φThermal(t) and
ψ(fClk)δtJit(t) in (5–26). The 50 and 75 MHz measurements show the same
noise level and are dominated by φThermal(t). The 100 MHz measurement
increases ψ(fClk) to allow us to probe δtJit(t) (5–32).

(3–24) still holds, we calculate the effective number of bits from,

|VBias|
|VIn|

21−Ω

√
6fs

=
5× 10−5

VFull−Scale

Volts√
Hz

(5–33)

0.5Volts

0.225Volts

21−Ω

√
6 · 14.9Hz

=
5× 10−5

1.0 Volts

Volts√
Hz

. (5–34)

The solution gives a bit-resolution of Ω = 13.2 and, thus, it seems that thermal

fluctuations have decreased the effective number of bits in this frequency range. These
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Figure 5-18. The timing jitter estimate obtained from Figure 5-17 is scaled and
compared directly to an experimental PM measurement of a 10 MHz input
signal. The results indicate that we have obtained an accurate estimate of
the ADC timing jitter given by ≃ 30− 40/

√
f fs/

√
Hz which will limit the LISA

measurement precision such that the PMs and ADCs do not meet the
1µcycle/

√
Hz measurement requirement by up to an order of magnitude

near the 3mHz corner frequency.

low-frequency amplitude-phase fluctuation terms will become apparent once the timing

jitter terms have been extracted in the next chapter.

Now that we know that timing jitter is the limiting noise source of these measure-

ments, we attempt to estimate and correct for these terms. Also, we must further

investigate and correct non-jitter limitations of the phasemeter in the 1-8 MHz frequency

range, of which, these zero-crossing and peak measurements do not probe. That said,

the correlation between the ADC input phase and the temperature at low frequencies

in Figure 5-16 (bottom left) indicate a temperature dependent phase response of the

ADCs. If the slope of this phase-response is large enough, it might over-come and

dominate the timing jitter terms.

5.4 Timing Jitter Extraction

Timing jitter correction is based off the concept that, although the timing jitter terms

are ADC independent, a second modulation, added to the ADC input signal, can be

used used as a reference to measure and correct for the timing jitter. As shown in

Figure 5-19, a second oscillator is added using an RF transformer-splitter. The summed
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output is split again into two different ADCs. The phase of the input and the ranging tone

on each ADC is measured with it’s own phasemeter. Measuring the input signals, we

obtain PM outputs which take the form:

φIn:ADC1(t) = φIn(t) +
fIn
fClk

(−φClk(t) + fClkδtADC−1) (5–35)

φIn:ADC2(t) = φIn(t) +
fIn
fClk

(−φClk(t) + fClkδtADC−2) (5–36)

Repeating this for the added reference-tone signals, we obtain:

φTone:ADC1(t) = φTone(t) +
fTone
fClk

(−φClk(t) + fClkδtADC−1) (5–37)

φTone:ADC2(t) = φTone(t) +
fTone
fClk

(−φClk(t) + fClkδtADC−2) (5–38)

Using the these, we are able to probe the differential timing jitter terms to correct for

the input signal’s timing jitter. Note that a higher frequency reference tone is desirable

since the timing jitter scales with this frequency. In fact, the jitter tone can be placed at a

frequency above the sampling rate; measuring the aliased oscillation results in stronger

jitter couplings as shown in Figure 5-11.

Subtracting the two input signals and the two reference signals, we are able to

evaluate the differential timing jitter at each frequency, fin and fTone:

∆φ(t) = fIn[δtADC−1 − δtADC−2] (5–39)

∆Tone(t) = fTone[δtADC−1 − δtADC−2] (5–40)

Rescaling and subtracting these signals we cancel the differential ADC timing jitter

and obtain a calibrated result which cancels all the noise sources we have considered:

∆φCalib. = ∆φ(t) +
fIn
fTone

∆Tone(t) (5–41)

Note that this differential timing jitter correction method will not give a measure of

the absolute, individual timing jitter terms from which we can obtain a true measurement
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of φIn(t). A few possible methods of performing this absolute jitter correction are

discussed in chapter 5.4.2.

Figure 5-19. Timing jitter calibration model: Here we show a model of how the input
signal, in this case, a VCO, is added to a calibration signal
[oscillator/function generator(FG)] with an inversely driven splitter. The two
summed oscillations are split and sampled with two independent ADCs but
with the same clock source. The PM cores measure the phase of the
VCO-input and calibration signals which are each contain the timing jitter of
their respective ADCs scaled by the magnitude of the measured input
frequency as described in chapter 5.4.

A series of initial tests performed well when the ranging tone and input signal

were relatively equal in frequency as shown in the right column of Figure 5-20,

nearly obtaining the 1µcycle/
√
Hz requirement. The temperature measurements and

correlations for the ADC noise estimation of chapter 5.3 are also used here to see if the

measured phase correlates with the ADC temperature. The top-right plot of Figure 5-20

showed no correlation with either input signal or the differential timing jitter indicating

that temperature effects play little role in the noise coupling at these high frequencies.

When the timing jitter correction is attempted using a low-frequency (4 MHz) input signal

and a high-frequency (15 MHz) tone, we obtain no noticeable improvement in the phase

measurement precision.
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Figure 5-20. Temperature dependent phase dispersion: Placing the input oscillation at
4 MHz and the jitter calibration input at 15 MHz, the timing jitter extraction is
limited by jitter-uncorrelated noise in the input oscillation. The differential
phase noise of this 4 MHz input signal correlates strongly with temperature
of the RF transformers which introduce dispersion terms that are not
accounted for in the timing jitter extraction. Placing the input oscillation and
jitter calibration tone close to each-other, 14 and 15 MHz respectively, we
reduce the temperature dependent dispersion and the timing jitter
extraction works as explained in chapter 5.4

Correlating each of these with the measured temperature, we see a strong

correlation between the low-frequency input and the measured temperature as shown

in the top-left plot of Figure 5-20. This indicates that there is some phase loss which

changes as a function of temperature at these low frequencies. This low-input-frequency

limit had already been indicated to some extent by the results plotted in Figure 5-11. To

see how strong the temperature coupling effect is, we perform the timing jitter extraction

for three different frequencies across the 2-20 MHz LISA input-frequency range (2 MHz,
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8 MHz, and 16 MHz) and attempt to calibrate them against a (19 MHz) oscillator tone.

The results are shown in the top plot of Figure 5-22.

5.4.1 Phase Dispersion Mitigation

A detailed look into the Pentek design indicates that the RF transformers used

to AC couple the input signal, the ADT4-5WT, have a strong input return loss and,

thus, a steep phase dependence at these low frequencies as shown in the left column

of Figure 5-21. Temperature variations change the transfer function response and

phase loss for these RF transformers which couple into the low-frequency measured

phase (Figure 5-11). Mini-circuits, the integrated-circuit production company which

makes the ADT4-5WT also produces another model, the ADT1-6T, which has a

significantly more constant input return loss, and thus, a smaller phase change in

the LISA-frequency range. After the risks and costs where weighed, we decided to

replace the RF transformers on the Pentek boards to better suit the 2 − 20MHz LISA

input frequency range of interest.

Figure 5-21. The stock ADT4-5WT has a bandwidth between 300 kHz and 500 MHz.
The replacement ADT1-6T’s bandwidth is from 30 kHz to 125 MHz,
providing a better suited AC coupler to make PM measurements at
LISA-like frequencies. [101, 102]
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Thankfully, changing in RF transformers did not damage the Pentek’s electronics

and improved the low-frequency performance as shown by the improved timing jitter

result in Figure 5-22. At this point, we can see that provided with the reference tone’s

measure of the timing jitter, we should be able to correct for the timing jitter of the

measured input phase across the entire 2− 20MHz LISA input-frequency range.

Figure 5-22. Replacement RF transformer dispersion mitigation: Repeating the timing
jitter extraction tests with the old (ADT4-5WT) and new (ADT1-6T) RF
transformers, we find the RF transformer phase dispersion has been
corrected and the timing jitter extraction has been significantly improved.
The jitter extraction results using the new ADT1-6T RF transformers meet
the LISA measurement requirement of 1µcycle/

√
Hz for all frequencies in

the 2-20 MHz range. Once the timing jitter has been removed, the phase
precision is limited by the signal-amplitude dependent quantization noise
floor; chapter 5-12 for f > 20mHz, (5–33) for f < 20mHz, over the
frequencies for which the RF transformer dispersion no longer limits the
results.

5.4.2 Absolute Timing Jitter Extraction

Performing absolute timing jitter extraction is somewhat more difficult since we need

the same reference phase noise, φTone(t), at two different frequencies, fTone1 and fTone2,
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such that we can form the combination:

φIn−Calib(t) = φIn:ADC1(t)−
fIn

fTone1 − fTone2
[φTone1:ADC1(t)− φTone2:ADC1(t)] (5–42)

= φIn(t) +
fIn
fClk

(−φClk(t) + fClkδtADC−1)

− fIn
fTone1 − fTone2

[
fTone1 − fTone2

fClk

(−φClk(t) + fClkδtADC−1)

]

≃ φIn(t)

This would be accomplished by up-converting or down-converting a common signal

with a 1µcycle/
√
Hz accuracy, or rather, an accuracy better than the timing jitter noise

limitation, which may or may not be feasible based on the noise characteristics of the

electronics and methods used to perform the frequency-conversion.

5.5 Phasemeter Performance Review

Compiling the results of all of these measurements, we have a well-defined model

of the limiting noise sources in the PM measurement process. The regions of which over

these terms couple is shown in Figure 5-23. The frequency range from 10Hz to 10 kHz

is dominated by white amplitude noise which couples into the phase from a combination

of variations in the input beatnote’s amplitude (chapter 5.2.5.2) and quantization noise

(chapter 3.4.2.5). Increasing the signal voltage decreases the quantization noise and

reduces the measured phase noise proportionately.

The LISA measurement band, 0.1mHz to 1Hz, is dominated by timing jitter and

temperature dependent phase dispersion. The timing jitter scales proportionately with

a decrease in the signal frequency and can be corrected for by the methods mentioned

in chapter 5.4 and chapter 5.4.2. Once the timing jitter has been removed, the limiting

noise sources is suppressed to the amplitude noise limit with a 1/
√
f flicker-type noise

sources coupling in at frequencies below 10mHz.

The phase dispersion from the RF transformers plays a large roll in limiting the

phasemeter phase sensitivity. Internal or external heating of any filtered element,
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Figure 5-23. Phasemeter noise model, estimation, and limits: The primary phase
precision limiting effects have been identified and plotted in comparison
with the 1µcycle/

√
Hz phasemeter requirement. The frequency range

above 10Hz is dominated by amplitude-quantization noise and scales
inversely with the input amplitude from 2 Volts peak-to-peak to 200 mVolts
peak-to-peak. The 40/

√
f fs/

√
Hz timing jitter dominates the frequencies

below 1Hz and scales proportionately with the 2-20 MHz input frequency.
This assumes that any temperature-correlated low-frequency phase
dispersion, which scales based on the slope of the transfer functions’
phase response, has been mitigated; that said, a constant phase response
in the 2-20 MHz range is desirable.

including photo-detectors, transformer-splitters or AC couplers, and mixers, will have

a transfer function with some defined phase response. If the phase response is not

flat over the 2 to 20 MHz LISA heterodyne beatnote frequency band, the temperature

dependent electronics will produce a time-changing phase loss which couples into

measured phase. The dominate heating source in the 1 to 100 mHz frequency range

in these experiments resulted from internal heating of the ADCs upon power up more

so than environmental temperature changes. Thus, despite the quiet temperature
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Figure 5-24. Comparison of the PM noise characteristics: The 10 MHz differential phase
(chapter 5.2.5.2), entangled phase (chapter 5.2.5.3), and timing jitter
extraction (chapter 5.4) results are plotted together for a direct comparison
of PM experimental results and noise performance.

environment of the LISA mission, these noise sources will still be present from electronic

heating and cooling.
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CHAPTER 6
THE UNIVERSITY OF FLORIDA LISA INTERFEROMETRY SIMULATOR

6.1 The LISA Laser Test-bench

The UFLIS experimental benchtop as pictured in Figure 6-1 consists of four

controllable Nd:YAG, 1064 nm lasers, LaserRef , Laser1, Laser2, and Laser3, which

generate laser fields with phase signals given by φRef(t), φ1(t), φ2(t), and φ3(t). We

interpret each individual Laseri as the laser on SCi producing the laser field φ(t) as

described in chapter 3.4.3.4. Heterodyned PD signals between LaserRef and the other

three laser fields produce differential measurements of the laser phases:

φ1R = φ1 − φRef φ2R = φ2 − φRef φ3R = φ3 − φRef (6–1)

such that combinations of these signals will cancel the common LaserRef noise. Thus,

the reference laser is used as a global reference with which the other three laser fields

can be measured. Reproducing the expected LISA pre-stabilized laser noise, we

PDH lock LaserRef and Laser1 to a ULE cavity. The following section reports on the

phasemeter measurements of this pre-stabilized laser noise. The next section describes

the methods used to simulate the inter-SC electronic delay including the multi-second

time-changing laser phase delay, MHz laser field Doppler shifts, and µCycle GW

modulations. The last section describes how these three components are combined to

perform advanced arm-locking and TDI simulations.

Reference Cavity Stabilization .

The University of Florida laser benchtop PDH locks two lasers, LaserRef (or RL)

and Laser1 (or L1), to two different cavities, 26.0 cm and 22.5 cm in length respectively,

resulting in a laser beat-notes between the two lasers with a frequency stability given by

the relationship:

δfRL/L1(ω) =
√
δfRL(ω)2 + δfL1(ω)2. (6–2)
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Figure 6-1. UFLIS laser benchtop: The laser benchtop, pictured here, PDH
pre-stabilizes the lasers and forms all the necessary PD signals to perform
the LISA interferometry simulations. The four lasers, three representing the
individual SC and one acting as as optical clock, can be seen in the bottom
left corner. The vacuum tank on the right contains the ULE cavities and
provides the necessary temperature and pressure shielding required to
transfer the cavity stability to the laser frequency. The phasemeter data
acquisition and EPD data processing DSP electronics can be seen in the
background near the top-left of the image.
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The stability of these lasers depends highly on the feedback electronics who’s gain can

be adjusted to achieve a ≃ 30 − 300Hz/
√
Hz stability and are limited by the temperature

stability of the cavity length [52]. Phasemeter measurements of the free-running

laser stability in comparison with the cavity stabilized laser stability are plotted in

Figure 6-2 from which we observe an improvement in the laser phase noise by 4 orders

of magnitude at 10 mHz. Also, as a comparison, we plot the VCO noise level used for

many of the previous phasemeter verification measurements. In LISA, the lasers can

be individually locked to their own reference cavity or one master cavity stabilized laser

can be transfered to the other lasers by phase-locking the differential heterodyned laser

fields. Thus, from this point on, we assume that Laser1 is the master stabilized field on

SC1 and that the other laser fields are phase-locked as described in [71].
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Figure 6-2. Measurements of commonly used sources: Here we have plotted the
phasemeter measurements of the spectral noise of the free-running, cavity
stabilized, and VCO noise sources used in the UFLIS simulations. Cavity
pre-stabilization provides us with 4 order of magnitude free-running noise
suppression at 10 mHz. The VCO provides similar noise characteristics to
the cavity stabilized lasers below 10 Hz and is used as a test input for many
simulations.
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6.2 The Electronic Phase Delay (EPD) Unit

The electronic phase delay (EPD) unit is constructed out of all three Pentek

components described in chapter 5.1. Generally described, the Pentek-6256 phase-

meter front-end produces frequency information at a 10-100 kHz data rate which is then

passed to the Pentek-4205. The frequency information is stored on the Pentek-4205 in

a buffer who’s length is based on the data-rate and the desired hold time.1 Once the

delay is applied the frequency information is interpolated to introduce the time-changing

delay. The interpolated data is added to a large MHz Doppler modulation and small mHz

GW modulation. The processed frequency information is then sent to the Pentek-6228

where it is integrated to generate the phase and used to drive a numerically controlled

oscillator (NCO). The NCO signal is reconstructed using the Pentek-6228’s DACs. The

details of the design and noise are described in the following sections.

6.2.1 Design

A diagrammatic model of a single channel of the EPD unit is shown in Figure 6-3.

The Pentek-6256 has 4 ADC’s and two FPGA’s which are connected to four indepen-

dent phasemeters producing 60-bit frequency data at a CIC down-sampled rate of

fEPD = 10 − 400 kHz depending on the application and clock rate. Assuming the EPD

measures a signal, Asin(2πfin(t)t), with a clock given by Asin(2πfClk(t)t), the phasemeter

output takes the form:

fEPD[n] = fin[n] +
fin
fClk

fClk[n] (6–3)

with n = t/fEPD due to the down-sampled EPD data-rate.

This data is packed into 16, 32-bit packets which take the form shown in Figure 6-4.

The last two bits of each packet are used as a tag with which to ensure proper

data-communication. Data-space for 60 bits of Doppler and 60 bits of GW information

1 delay time (τ )
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in(t) = Ain(t) sin(in(t))

CLK(t) ∝ sin(2(fs+fs t) t)

    

     

out(t)

Figure 6-3. Model of the electronic phase delay (EPD) unit: Here we have depicted a
model of EPD unit, which is constructed using the DSP systems described in
chapter 5.1. The input signal is measured with a PM core and the frequency
data is stored in memory for a pre-defined storage time representing the
inter-SC light travel time delay. The delayed frequency data is linearly
interpolated to simulate a time-changing delay (not pictured) and added to a
Doppler offset/modulation and the simulated GW signal. A numerically
controlled oscillator (NCO) reconstructs the delayed frequency information
and an DAC regenerates the signal with the same clock used to sample the
input.

is left open in the packing scheme which is be populated with data on the Pentek-4205

once the frequency data has been read from the 6256. Depending on the desired delay,

τ , the storage space for the τ/fEPD data-points must be reserved for each channel.

After the frequency data is stored for the proper amount of time, it is linearly

interpolated to apply a time-changing delay. It is important that the interpolation take

the right form; LISA will have a linear change in the phase rather than a linear change

in the frequency. As a result, assuming we are trying to interpolate the data such that

t → t(1 − β), a factor of (1 − β) must be introduced to account for the time-integration

nature of the frequency to phase conversion. That is, where one might normally use:

f[n(1 + β)] = (1− βn)f[n] + f[n + 1] (6–4)
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Figure 6-4. EPD unit data-packing scheme: The 60-bit frequency, Doppler, and GW
modulation data of the two independent EPD channels is multiplexed into a
16 point data-stream of 32-bit values. Numerical flags are added to the
most-significant-bits of the frequency data to ensure that the data is correctly
interpreted and data-points are not missed.
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to apply a linear interpolation between f[n] and f[n + 1], we will use:

f[n(1 + β)] = (1− β)(1− βn)f[n] + f[n + 1] (6–5)

to account for the frequency to phase conversion.

Once the linear interpolation is applied the frequency data is packed with a 1µHz to

1 mHz GW modulation signal and a ±20MHz Doppler signal. It is possible to modulate

the Doppler signal to account for the breathing of the LISA constellation but in the

following experiments, we will always use a constant Doppler shift. The GW signal

can be arbitrarily generated using the on-board processor or the GW data can be

uploaded to the EPD unit from the data-processing computer before the delay process

is begun. Once the GW, fGW(t), and Doppler, fDop, information is packed along with

the time-interpolated frequency data, again, as shown in Figure 6-4, the information is

added together, integrated to generate the phase information, and generated using the

NCO/DAC output described above.

Zero-Delay EPD Unit (Frequency Control Filtering) .

Bypassing the Pentek 4205 data-storage and, instead, filtering and transmitting the

PM generated data directly to the NCO, we can design high-speed frequency control

filters for heterodyne locking, phase locking, and arm-locking experiments. The 60-bit

phasemeter frequency data, fPM[n], is passed through a digital fixed point finite impulse

response (FIR) filter; the filtered data can be reconstructed by an NCO with less than a

1 ms delay2 and used to control the laser frequency. For more detail on these filtering

and locking methods, refer to [54] and chapter 6.3.1.

2 Optimal performance results in a ∼ 0.06ms filter delay. A first order approximation
results in a 17 kHz feed-back bandwidth.
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6.2.2 Verification

The EPD unit’s noise can be written in terms of the input-frequency data, fin(t), the

delay, τ , and the sampling (φClk,ADC(t)) and regeneration (φClk,DAC(t)) clocks3 as:

φEPD(t) = φin(t− τ(t)) + hGW(t) (6–6)

+
fin ± fDop

fClk

φDAC,Clk(t)−
fin
fClk

φADC,Clk(t− τ(t))

from which we can see the clock noise terms coupling into the measurement. Interest-

ingly, these clock noise terms take the same form as those described in (3–70) and

(4–3). In this way, the EPD unit produces the differential clock noise terms which cancel

in (3–70) and would normally need to be accounted for by clock noise transfers.

Testing the EPD performance, we use a VCO signal as a phase noise source and

measure the original VCO and and EPD-delayed VCO signals with phasemeters. This

produces two signals of the form:

φVCO,PM(t) = φVCO(t)−
fVCO

fClk

φPM,Clk(t), (6–7)

φVCO,EPD,PM(t) = φVCO(t− τ(t)) + hGW(t) +
fVCO ± fDop

fClk

φDAC,Clk(t)

− fVCO

fClk

φADC,Clk(t− τ(t))− fVCO ± fDop

fClk

φPM,Clk(t). (6–8)

Time shifting the phasemeter measurement and subtracting it from the EPD measure-

ment we obtain a differential result given by:

∆φEPD(t) = φVCO,EPD,PM(t)− φVCO,PM(t− τ) (6–9)

= hGW(t) +
fVCO ± fDop

fClk

(φDAC,Clk(t)− φPM,Clk(t))

− fVCO

fClk

(φADC,Clk(t− τ(t))− φPM,Clk(t− τ(t))). (6–10)

3 Although these are generally the same source, they may have non-common terms
which do not cancel.
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If we assume that the clock used to drive the EPD input ADC and output DAC are based

on the same source, φEPD,Clk(t), we can write the expected noise level as:

∆φ̃EPD(t) = h̃GW(t) +
fVCO

∣∣1− e−2πiτ
∣∣± fDop

fClk
[φ̃EPD,Clk(ω)− φ̃PM,Clk(ω)]. (6–11)

Thus, we couple in the differential clock noise scaled by the arm transfer function,
∣∣1− e−2πiτ

∣∣. Taking measurements of this form with independent clock sources,

phase-locked clock sources, and split clock sources, and comparing the noise levels

to the differentially subtracted EPD measurements as shown in Figure 6-5 we see

that the phase noise of the measurement (solid lines) equals the clock noise (dotted

lines) scaled by the arm transfer function,
∣∣1− e−2πiτ

∣∣, with τ = 16.6 s, as expected by

(6–11). Obviously we will use the split clock source to drive both the EPD units and PM

measurements to reduce this clock noise coupling.

Using a 4 MHz VCO input source and a split clock source we take a long-term

EPD measurement to see the over-all noise level of the EPD unit. The results, with and

without a 7.2mHz GW modulation are plotted in Figure 6-6 and compared against the

phasemeter noise level. Thus, it is reasonable to say that the EPD unit reproduces the

inter-SC light travel time delay to within a 10µCycle/
√
Hz accuracy4 .

Although the EPD unit meets the requirement, we must check to see how the clock

noise sources couple into a heterodyned differential arm measurement. To reproduce

the sensor signals described in (3–72) or (3–74) we take the EPD delayed signal, (6–6),

and electronically mix it with the same VCO used as the input to the EPD unit. The

4 The minimized time-delay is found using the methods described in Chapters. 4.4.2.1
and 4.4.2.2

139



10
−3

10
−2

10
−1

10
0

10
1

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

C
yc

le
s/

sq
rt

(H
z)

Linear Spectral Density

 

 

Input
Delay Unit (Same Clock)
Clock Splitter Noise
Delay Unit (Unlocked Clock)
Clock Noise
Delay Unit (Locked Clock)
Clock PLL Noise
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Figure 6-5. Noise limitations of the EPD unit: The differential clock noise between the
EPD unit and the phasemeter used to verify the EPD noise limits the
measured performance derived in (6–11) for fDop = 0. The clock noise
(dotted lines) for the three different cases, (1) free-running, unlocked clocks
(2) phase locked clocks, and (3) electronically split clocks are estimated by
taking a differential measurement of the same 1 MHz VCO source using
different clock sources. The EPD noise scales with this differential clock
noise multiplied by the delayed-comparison (or sensor) transfer function,∣∣1− e−2πiτ

∣∣, as expected.

mixed output of the prompt and delayed signals takes the form5 :

∆φArm(t) = φVCO(t)− φEPD(t) (6–12)

= φVCO(t)− φVCO(t− τ(t))− hGW(t)

− fVCO − fDop

fClk
φDAC,Clk(t) +

fVCO

fClk
φADC,Clk(t− τ(t))

5 We assume the Doppler shift is negative in this case.
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Figure 6-6. EPD Unit’s phase-noise transmission accuracy: When using the same clock
source for the EPD sampling, EPD regeneration and PM measurement
systems, the common clock noise terms cancel to within the accuracy of the
clock distribution and the EPD unit results in the plotted transmission
replication accuracy. A 7.2mHz GW modulation is added to one of the
measurements to verify that the hGW(t) terms in (6–11) do not cancel.

Measuring this with a phasemeter:

∆φArm,PM(t) = φVCO(t)− φVCO(t− τ(t))− hGW(t) (6–13)

− fVCO − fDop

fClk
φDAC,Clk(t) +

fVCO

fClk
φADC,Clk(t− τ(t))

− fDop

fClk
φPM,Clk(t).

which, reduces in the case where φPM,Clk(t) = φDAC,Clk(t) = φADC,Clk(t) to:

∆φArm,PM(t) = φVCO(t)− φVCO(t− τ(t))− hGW(t) (6–14)

− fVCO

fClk

(φDAC,Clk(t) + φADC,Clk(t− τ(t))).

where we have left φDAC,Clk(t) and φADC,Clk(t) shown explicitly with which we can

compare these directly to (3–72) and (3–74). Again, this measured EPD unit signal
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acquires the same input and clock noise scaling as the clock noise corrected inter-SC

observables, (3–70).

6.2.2.1 Time-changing Time Delay

To verify the capabilities of the electronic replication of the time-changing delay,

we take the prompt measurement of a VCO signal and compare it with the an EPD-

processed signal as described in the previous section. The experimental delay is

set to τ(t) = 16.6 s + 100t ns/s. If we simply minimize the noise without considering

the time-changing delay, we will obtain the average delay for the measurement as

the calculated offset delay time. The difference between the signals as plotted in

Figure 6-7 shows that the of the difference is in-phase with the prompt signal at the

beginning of the measurement and out-of-phase with the prompt signal near the end

of the measurement. This obviously limits the noise cancellation capabilities as shown

explicitly in Figure 6-8

Accounting for the time-changing delay, we perform a the fractional delay interpol-

ation of the input signal using the methods defined in chapter 4.1.4 and 4.4.2.2. Once

the prompt data has been correctly interpolated we subtract it from the EPD processed

signal. Comparing the results with the base-line EPD noise performance as shown in

Figure 6-8, we see that once the time-changing delay has been accounted for, the noise

performance matches the EPD noise level.

6.2.2.2 Gravitational Wave Injection

To test the GW injection accuracy we inject a frequency modulation with a

power-function increasing frequency enveloped by a Gaussian amplitude modulation

given by:

fGW(t) = sin

(
2π(10−3Hz)t

(1− t
3.7∗104 s

)3/8

)
e−

(t−to)
2

2∗107 s2 (6–15)

Granted, this is not a realistic GW modulation source but, none the less, it provides

a test of the ability to reconstruct the signals injected by the EPD unit. Using a VCO
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Figure 6-7. Time series of the interpolated delay difference: The time-series of the input
signal subtracted from the time-delay interpolated signal shows that, at first,
the differential phase leads the input phase due to a small positive timing
error but towards the end of the measurement the differential phase lags the
input phase due to a small negative timing error causing an apparent phase
inversion. Once the time-changing delay has been accounted for the
differential phase cancels to the EPD precision floor.

source we time-shift the EPD delayed signal and subtract it from the post-processed

time-shifted measurement of the prompt signal. The time-series of the injected input

modulation, the measured GW modulation, and their difference is plotted in Figure 6-9.

From the spectrum of these measurements, we see that the noise level of the GW

injected EPD unit matches the base-line EPD noise level once the expected GW signal

has been removed from the EPD processed measurement.

Another GW source of concern is the low-frequency binary confusion noise

background. Estimates of this background noise vary [46, 103] such that we will

generally estimate the binary confusion noise level as:

h̃GW−Background(ω) =≃ .01
s
2π

+ .001

mHz√
Hz

. (6–16)

This is plotted explicitly in Figure 8-1.
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Figure 6-8. Interpolated delay differential measurements and corrections: The
time-changing delay causes a spectral noise floor which scales with the
delay error δτ = βT/2 where T is the measurement time as defined by (4–6).
If we time-scale the measured input signal using fractional delay
interpolation and subtract it from the EPD processed time-changing delay
signal, we account for the additional delay error and cancel the noise to
within the EPD unit’s noise floor precision.

6.3 UFLIS Simulations

Using the laser bench-top, EPD unit, control filters, and phasemeter measurements,

we are able to perform many LISA-like tests of the interferometry system including

advanced arm-locking and TDI simulations. Although a more refined and in-depth

analysis of the arm-locking tests and results can be found in [54], we present a first test

of the UFLIS electronics by performing a single-arm arm-locking experiment as outlined

in chapter 4.2.2. Next we outline the time-delay interferometry simulations and set up the

TDI characteristics which are to be explored in the next chapter.

6.3.1 Arm-Locking Stabilization

The UFLIS electronic components were first used to test the single arm-locking

methods being presented in [53, 77]. Since a much more in-depth analysis has

been presented since these simulations were performed we will briefly discuss the
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Figure 6-9. Time series of an arbitrary gravitational wave: The gravitational wave
modulation defined by (6–15) is injected into the EPD unit and extracted with
a differential input measurement using the appropriate time-shift to cancel
the noise. The extracted signal and the theoretically injected signal agree
well; subtracting the measured GW signal from the theoretical signal, we
completely cancel the injected GW signal to within the EPD unit precision.

experimental setup, the results obtained, and the un-anticipated limitations. The single

arm-locking experiment is presented at the top of Figure 6-11. The PDH pre-stabilized

LaserL1 is heterodyned with LaserPL which is offset phase-locked to LaserRL. The

frequency off-set in the phase-lock is driven by an oscillator modulated with the

arm-locking control signal. The arm-locking control signal is generated by taking the

LaserL1/LaserPL beat-note and forming the sensor signals as defined in (3–72) using

an EPD unit with a Doppler offset, fDop, and time delay of τ = 1 s. This sensor signal is

filtered with the frequency feed-back controller described in chapter 6.2.1. The feed-back

filter is defined in terms of the frequency as:

TAL(f) =
[a4
f4

+
a3
f3

+
a2
f2

+
a1
f

]
+

a0√
f
. (6–17)

The f1/2 provides the an additional phase advance in the region of the locking frequency.

This is because the sensor signal’s phase swings between −π and π with respect to the
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Figure 6-10. Spectral correction of an arbitrary gravitational wave: The EPD unit with a
VCO input is injected with the GW modulation defined by (6–15); the EPD
output and input are measured with phasemeter and then fractional delay
filtered to cancel the common VCO noise. The measured GW signal
(green) matches the spectral density of the injected wave-form (red)
exactly. Subtracting out the GW modulation (cyan) we are left with a noise
level which equals the EPD precision (purple). The GW modulated curve
(cyan) is low-pass filtered so that the GW modulation is apparent in the
time-series (Figure. 6-9)

input laser phase at frequencies above the first zero, 1/τ . Meanwhile, the low-frequency

integrators kick in at frequencies below the first zero, 1/τ , and scale with the coefficients

such that a4 < a3 < a2 < a1 to maintain locking stability. The results, shown in

Figure 6-11, show an additional five orders of magnitude noise suppression of the

laser frequency noise at 10 mHz and significantly reduced frequency fluctuations in the

time-series. The low-frequency stabilization limit is defined by the accuracy of the control

electronics [54].

Advanced Arm-Locking Controllers .

The primary complication with achieving the locking condition described in the

previous chapter was the user-defined Doppler and phasemeter frequencies. Unless

these values were exactly equal the experiment encountered an integration of the
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Figure 6-11. Long-arm hardware-based single-arm-locking experiment: The model at
the top depicts the experimental setup of the first hardware based
heterodyne single-arm-locking experiment. The RL/L1 beatnote provides a
measure of the ’input’ noise while the PL (phase-locked)/RL beatnote is
stabilized according to the proposed arm-locking techniques [53]. The
low-frequency noise is suppressed by 5 orders of magnitude at frequencies
below 10 mHz. The measurement is limited by quantization noise in the
EPD unit. Refer to [54] for more information on the details and
advancements to this simulation in performing LISA-like tests of the
arm-locking capabilities. These simulations provided a first test of the
UFLIS/DSP system’s capabilities to perform LISA-like simulations.

frequency error which caused system instability. This indicated a frequency pulling effect

which has since been described in [79] and [84].

Since the single arm-locking experiment was performed, more in-depth experiments

have been conducted by the author and colleagues. A detailed presentation of the

single arm-locking experiment and results can be found in [78]. The same arm-locking

methods were used in combination with a PDH side-band locking scheme to prove the

capabilities of laser frequency control in LISA [83]. These components were also used to
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Table 6-1. TDI experimental characteristics: Five 40000 s experiments are performed
with increasingly more complicated, yet more LISA-like, characteristics. The
transponder experiment provides us with a baseline measure of the
experimental setup’s noise performance. The ’dynamic’ experiments
demonstrate the ability to determine and account for the time-changing
delay-times. The ’LISA-like’ experiment proves the ability to remove
independent SC noise sources and constrain one-way delay times. Finally,
the confusion noise experiment verifies that the TDI-ranging capability will not
be limited by low-frequency LISA noise sources.

Simulation Name s1r Inter-SC Velocity Injected
β (ns/s) GW Signal

Static Transponder s1r ≃ 0 β2 = 0 6.227 mHz
(2-Way) β3 = 0 Binary

Dynamic Transponder s1r ≃ 0 β2 = −100 6.227 mHz
(2-Way) β3 = +150 Binary

Static LISA-like s1r = φPLLr β2 = 0 6.227 mHz
(4-Way) ≃ (1.0/f)mCycle/

√
Hz β3 = 0 Binary

Dynamic LISA-like s1r = φPLLr β2 = −100 6.227 mHz
(4-Way) ≃ (1.0/f)mCycle/

√
Hz β3 = +150 Binary

Confusion-Noise s1r = φPLLr β2 = −100 6.227 mHz
(4-Way) ≃ (1.0/f)mCycle/

√
Hz β3 = +150 Binary + CN

verify the dual and dual-modified arm-locking schemes presented in [79] and validated

in [84] and [81].

6.3.2 TDI Simulation Outline

The TDI measurements the following sections are generated using the 2-4 sensor

observables, s1r and/or ss1, defined in (3–70) over a 10-12 hour simulations. The five

TDI experiments we will perform are outlined in Table. 6-1. Each stage will introduce a

new noise source into the measurement such that we can decipher the noise couplings

based on the results of each simulation.

We begin with a ’static transponder’ measurement in which we will use constant, but

unequal, τ2′2 6= τ33′
6 , arm-lengths to test the TDI-X1.0 combinations. The transponder

6 [τ2 ≃ τ2′ ≃ 16.55 s] 6= [τ3′ ≃ τ3 ≃ 16.75s]
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measurements, as shown in Figure 7-1, will simulate LISA in a noise-less far-SC

configuration, as though the ’outgoing’ master laser fields are reflected perfectly off

the far SC and where s1r = 0. The ranging methods described in chapter 4.4.2.2 are

used to calculate the round-trip delay time7 and cancel the laser phase noise. Next, we

introduce time-changing arm-lengths with the β2 and β3 values outlined in Table. 6-18 9

to validate the capabilities of the TDI-X2.0 combinations through ’dynamic’ simulations.

Next, we introduce the noise coupling from the far SC signals, s1r, by phase locking

the lasers on the far SC to the delayed ’out-going’ laser fields and measuring the

resulting PD sensor signals as shown in the experimental model (Figure 7-7)10

Again, we repeat the ’static’ and ’dynamic’ simulations, including the additional

laser phase noise signals, s1r, in the combinations; meanwhile, we are able to test

the ranging-accuracies of the one-way delay times using the methods described in

chapter 4.4.2.2. Finally, we introduce a low-frequency confusion-noise background

signal to investigate the limitations, if any, of this additional low-frequency noise on the

ranging accuracies.

7 The one-way delay times are un-defined in these simulations.

8 β2 = −100.0ns/s ns/s(v2 = −30.0m/s); β3 = +150.0ns/s ns/s(v2 = 45.0m/s)

9 |β2 − β3| = 250.0 ns/s

10 The far SC sensor signals, s1r, are used as the input signals for phase-locking the far
SC’s lasers such that the sensor signal is equal to the PLL’s error signal, φPLLr, as shown
in Figure 7-7 and Table. 6-1.
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CHAPTER 7
TIME-DELAY INTERFEROMETERY SIMULATONS

The following chapter present the details and results of the experiments described

in chapter 6.3.2. In all of these measurements we will inject a 6.277mHz GW binary

with a strain amplitude of 4.35 × 10−20m/m 1 to simulate the RXJ0806.3+1527 binary

described in the verification binary table (Table 2-1). Although this strain amplitude is a

factor of 100 larger than what is expected in a actual LISA-like detection, it is used to

prove the TDI combinations’ ability to cancel the laser phase noise without canceling the

modulated GW signals.

7.1 Transponder TDI Simulations

We first establish a baseline ranging and measurement precision with static

arm-lengths (β = 0) and without noise being introduced by the ’far’ SC. Referring to

the experimental model shown in Figure 7-1, we take the LaserRef /Laser1 beatnote and

use it as the input for the TDI simulator. The PD beatnote is electronically mixed with a

frequency modulation fMod(t) = Asin([ωo + 500sin(2 ∗ pi ∗ t)]t) to apply the ranging tone2

and to shift the laser beatnote to a PM measurable frequency, in this case, ωPD − ωo

= 7 MHz. This mixed output is electronically split, measured with a phasemeter, and

processed by EPD units to simulate the ’out-going’ inter-SC laser field transfer. Constant

EPD delays of τ2(0) ≃ τ2′(0) ≃ 16.75 s and τ3(0) ≃ τ3′(0) = 16.55 s are programmed to

the EPD units while Doppler shifts of fDop2 = +3MHz and fDop3 = −2MHz are applied to

the frequency signals. The delayed ’out-going’ signals are directly connected to another

EPD unit to simulate the ’returning’ inter-SC laser field transfer. This noise-less transfer

between the EPD units, in a LISA model for example, will behave as though the laser

1 ν(t) = 2 sin(2π(6.227mHz)t)µHz
δφGW(t) ≃ 4ν(t)/(2π(6.227mHz)) = 204.4µcyc/Hz
hGW(t) = δφGW(t)λ/L = 4.3× 10−20Hz−1

2 fmod = 1Hz, Amod = 500Hz
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Figure 7-1. Model of the TDI-Transponder experimental benchtop: This TDI-Transponder
model shows how the individual pre-stabilized laser fields are combined to
form the input noise signal and how this signal is processed by the EPD
units to replicate a LISA-like inter-SC laser link and produce the ssr
observables []. The input PD beatnote is demodulated to a PM-measurable
frequency using an oscillator with a 1 Hz phase modulation. The
PM-read-out signals are delayed by the τ2′(t) and τ3(t) inter-SC light travel
times, added with GW modulations, and regenerated with a Doppler offset.
In these transponder measurements the delayed signals are immediately
injected into the ’return’ trip EPD units τ2(t) and τ3′(t) as though the laser
fields were reflected off mirrors at the far SC. GW modulations and Doppler
offsets are added to the return-trip EPD units also. The round-trip delay
signals are electronically mixed with the local LaserRef/Laser1 beatnote to
produce the s21 and s31 sensor signals.

fields were reflected off mirrors on the far SC such that the far sensor observables are

signal-free, s1r = 0, in the TDI combinations. Finally, the ’return’ field EPD simulated

output is heterodyned3 with the local laser phase, in this case the LaserRef /Laser1

3 Electronically mixed
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beatnote, to produce the local s21, s31 PD observables. The PD signals are measured for

40000 s by phasemeters with the 60-bit precision at a 14.9 Hz data-rate.

We then introduce the time-changing arm-lengths defined in Table 6-1 such that

the inter-SC time delays take the form defined in (4–39). Despite this definition, as we

described in chapter 4.4, without any noise being introduced at the far SC we will only be

able to constrain the round-trip delay times found in, (3–72) and (3–74) defined explicitly

as:

τ2′2(t) = [(1− β2)((1− β2′)(t− τ2′(0))− τ2(0))] (7–1)

τ33′(t) = [(1− β3′)((1− β3)(t− τ3(0))− τ2′(0))]. (7–2)

Fortunately, at the same time, this means we only have to scan over the 2-dimensional,

τ2′2, τ33′ , basis. We will also verify the TDI 1.0 limitations defined in chapter 4.3.3.2.

7.1.1 Static-Arm Transponder Simulation

Utilizing the PD measurements of s21 and s31, the 40000 s data-set is broken into

40, 1000 s segments. The iterative formation of the TDI combination for each segment

minimizes attempts to minimize the ranging tone and calculate the time-delay functions

through linear regression as described in chapter 4.4.2.2 and shown in Figure 4-3. The

first and only iteration produces a slope error (constraint on the arm-length velocities), of

|2β| < 50 fs/s and a variance (round-trip ranging accuracy) of less than 0.6 ns (∼ 0.18m)

as shown in Table 7-14 . In this experiment, we note that the TDI-X1 combination’s

ranging-tone minimization produces the same estimation to within the measurement

error of the round-trip light travel time as the TDI-X2 combination. If β 6= 0, the

different TDI combinations would produce different estimations since the ranging

tone minimization using the TDI-X1 combination would be limited by (4–32) and will

4 Refer to Figure 7-4 to see the results of the ranging-tone cancellation near the 1Hz
frequency bin.
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Figure 7-2. Raw static transponder experimental results: The sensor signals
(s21(t) = ∆21(t), s31(t) = ∆31(t)) are used with the ranging values found in
Table 7-1 to generate the raw spectra of TDI-X1 and TDI-X2 combinations.
The phasemeter measurement limitation for the 7 MHz input beatnote
frequency is also plotted for comparison. The TDI-combinations drop below
the measurement limitation due to the inherent TDI transfer functions but the
GW signals are also suppressed by the TDI transfer function. The 6.277mHz
gravitational wave is only revealed once the laser noise has been removed.
The expected ranging limitation is almost 2 orders of magnitude below the
TDI combinations indicating that all the input laser noise has been
suppressed beyond the measurement sensitivity.

estimate the light-travel time-delay as the mean delay for a particular data-segment.

Thus, since each of these TDI-ranging methods produce the same result, even in the

case where β = 0, we will use the TDI-X2.0 combinations for all TDI-ranging estimations.

Using the ranging-calculated values (Table 7-1) we form the TDI-X1 and TDI-X2

combinations for the entire data-set. The linear spectral density of the TDI combinations,

as plotted in Figure 7-2, show the laser noise cancellation and reveal the phase-

modulated GW binary at 6.277mHz. The expected ranging limitation based on the 0.6 ns

variance calculated above and evaluated with (4–6) is well below the measurement

sensitivity. We can also see the difference between the 8-pulse and 16-pulse response
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transfer functions of the TDI-X1 and TDI-X2 combinations. Rescaling by the average

inverse TDI response transfer functions given by:

T1.0(s) =
|1− e−stau2′2|+ |1− e−stau33′ |

2
(7–3)

T2.0(s) = T1.0(s)
∣∣1− e−stau2′233′

∣∣ (7–4)

we see the TDI-X1 and TDI-X2 combinations result in identical effective sensitivities

(Figure 7-3), as expected for a static interferometer. From this plot we can also see that

both measurements are limited by the EPD unit’s phase-transmission precision as was

previously plotted in Figure 6-6. From this point forward we will interpret these static

TDI-X1 and TDI-X2 combinations to represent the baseline precision of the UF-LISA-TDI

simulator. We calculate the effective laser suppression magnitude by dividing the input

spectrum by the input noise by the re-scaled TDI spectra; from Figure 7-6 we obtain

greater than 1010 noise cancellation at 1 mHz.

7.1.2 Dynamic-Arm Transponder Simulation

Expanding the simulation characteristics, we include the time-dependent arm-

lengths into the experiment with the β-values defined in Table 6-1 resulting in an

expected TDI-X1 limitation as defined by (4–32) with |∆β| = 250 ns/s. Initially assuming

β = 0, the 40000 s measurements of the s21 and s31 signals are broken into 40, 1000 s

segments and processed using the methods described in chapter 4.4.2.2. These

data segments are used to minimize the ranging tone and calculate the round-trip

time-delay offsets, τ2′2(0) and τ33′(0), for each segment as shown in Figure 4-3. The

linear regression of these time-delay offsets provides a first-order measure of the β to

an accuracy of 100ps/s as shown in Table 7-1. The process also calculates a first order

measure of the round-trip time delay with a ranging precision of < 7.5µs (∼ 1.7 km) but

due to the incorrect β = 0 assumption, these values tend to equal the average delay

for the data-segment. A second iteration improves the β accuracy to 80 fs/s and the

ranging precision to < 5.9 ns (∼ 1.8m) providing a much more accurate measure of
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Table 7-1. Transponder TDI-ranging estimation: The method outlined in Figure 4-3 and the experiments described in
capters 7.1.1 and 7.1.2 are used to calculate estimates of the inter-SC delay functions, (4–37), and ranging
errors. The estimates verify the TDI-ranging capabilities and are used to generate the TDI-combinations for
Figures 7-3 and 7-5. The ’return’ delay times tend to be longer than the ’outgoing’ delay times by 250 ms as a
result of internal delays within the DSP system’s EPD units.

Iteration β (Slope) τ22′(0), τ33′(0) (Offset) δτ22′ , δτ33′ (σ)
TDI 1.0

Transponder
1 (TDI 1.0) 2β2 = −44.5 fs/s± 20.9 fs/s τ22′(0) = 33.55204887148 s± 0.23 ns δτ22′ = 0.54 ns

2β3 = −46.3 fs/s± 12.5 fs/s τ33′(0) = 33.15222859583 s± 0.14 ns δτ33′ = 0.32 ns
1 (TDI 2.0) 2β2 = −41.0 fs/s± 21.2 fs/s τ22′(0) = 33.55204887151 s± 0.24 ns δτ22′ = 0.55 ns

2β3 = −46.3 fs/s± 12.7 fs/s τ33′(0) = 33.15222859579 s± 0.14 ns δτ33′ = 0.33 ns

TDI 2.0
Transponder

1 2β2 = −200.247 ns/s± 100 ps/s τ22′(0) = 33.5518847 s± 2.3µs δτ22′ = 7.5µs
2β3 = +300.056 ns/s± 95 ps/s τ33′(0) = 33.1525027 s± 2.2µs δτ33′ = 7.0µs

2 2β2 = −199.9998668 ns/s± 80 fs/s τ22′(0) = 33.5519484187 s± 1.8 ns δτ22′ = 5.9 ns
2β3 = +300.0001130 ns/s± 23 fs/s τ33′(0) = 33.1523897572 s± 0.51 ns δτ33′ = 1.7 ns

3 2β2 = −200.0000058 ns/s± 8.9 fs/s τ22′(0) = 33.55194832884 s± 0.20 ns δτ22′ = 0.65 ns
2β3 = +300.0001361 ns/s± 4.5 fs/s τ33′(0) = 33.15238977691 s± 0.10 ns δτ33′ = 0.33 ns
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Figure 7-3. Corrected static transponder experimental results: The input signal, φ1(t), is
plotted along with the corrected TDI-X1 and TDI-X2 spectra which have been
scaled by the inverse TDI transfer functions (7–3). Both TDI spectra match
exactly once the inverse TDI-combination transfer function has been
accounted for. The increased laser phase noise around 100 mHz is a result
of an over-coupled temperature tracking in the PDH controller which may
result in a ranging-limited sensitivity loss near 100 mHz. The EPD unit’s
phase transmission accuracy is plotted and is identified as the primary TDI
simulation limiting noise source. This static TDI-transponder result will act as
the simulator’s ’baseline’ performance for the rest of the chapter. The results
meet the 18 pm/

√
Hz IMS requirement (3–5).

the time-dependent arm-lengths, τ2′2(t) and τ33′(t). The final iteration optimizes the β

precision to 8.9 fs/s and the ranging precision to less than 0.65 ns (∼ 0.2m). (Table 7-1)

Applying the calculated round-trip functional values from the third iteration of the

ranging procedure, the entire data-set is used to produce the linear power spectral

density for the TDI-X1 and TDI-X2 combinations as plotted in Figure 7-5. The TDI-X1

combination is limited, as anticipated, by (4–32) with τ ≃ 16.6 s and |∆β| = 250 ns/s. The

TDI-X2 combination’s correction terms account for this dynamic arm-length limitation

and remove the velocity dependent laser phase noise resulting in a sensitivity equal to

the experiment’s baseline noise. This result meets the IMS requirement defined by the
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Figure 7-4. Ranging tone cancellation spectral results: The ranging tone modulated
input are plotted along with the resulting TDI-X2 combinations for the four
primary experiments (Table 6-1). The decreased accuracy of the ∆2 arm as
compared to the ∆3 arm in Table 7-1 is likely due to the proximity of the
nearest arm zero. Note that the ranging tone for the TDI 1.0 with
phase-locked lasers simulation is at 1.5 Hz instead of 1 Hz which results in a
reduced one-way ranging accuracy (Table 7-2) from the reduced PLL noise.

LISA mission concept design. (Table 3-1) The 0.65ns (∼0.2 m) ranging precision, as

calculated in Table 7-1 and plotted in Figure 7-5, is not expected to be a limiting noise

source.

The TDI-X1’s noise suppression (Figure 7-6) equals the theoretical inter-SC

velocity dependent limit (4–32) while the TDI-X2’s noise suppression equals that of

the simulator’s baseline suppression characteristics.

7.2 LISA-like (Master-Slave Phase Locked Laser) TDI Simula tions

At this point, we include the phase-locking and transmission of the Laser2/3 signals

on the far spacecraft as shown in Figure 7-7. Thus, this experiment will generate and

measure all four ssr5 beatnote observables as defined in (3–70). The two far sensor

5 Two local-SC measurements: s21, s31; Two far-SC measurements: s12, s13
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Figure 7-5. Dynamic transponder experimental results: The suppression of the TDI X1

combination is limited by the arm-length time-dependence as defined by
(4–32) with ∆β = 250 ns/s. The TDI X2 combination removes the additional
time-dependent-coupled laser noise and reveals the 6.277mHz GW signal.
As with the static case (Figure 7-3), the EPD unit’s phase transmission
accuracy is the primary limiting noise source in the TDI combinations
although, some sensitivity loss may occur due to a limited ranging capability
around 100 mHz (Figure 7-9.

signals, s12, s13, are used for, and are equal to, the phase noise of the PLL laser-locking

error signal. Meanwhile, the heterodyned PD output represents the local laser phase

and is used as the input for the ’return’ field simulation of inter-SC light transmission.

These signals are used to construct the TDI combinations and minimize the ranging

tone using the iterative process described in chapter 4.4.2.2 and shown in Figure 4-3

through a 4-dimensional sweep of the individual light-travel times, τ2(t), τ2′(t), τ3(t),

τ3′(t).

7.2.1 Static-Arm LISA-like Simulation

The reader should note that these measurements were taken earlier than both

those presented in chapters 7.1.1, 7.1.2, and 7.2.2. As a result, the ranging tone was
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Figure 7-6. TDI laser phase noise suppression: The achieved laser noise suppression
magnitudes for the transponder simulations of the static and dynamic TDI-X1

and TDI-X2 combinations are plotted. The TDI-X1 combination’s noise
suppression equals the theorized limit (4–32) in the dynamic-arm simulation.
The TDI-X1 and TDI-X2 result in the similar laser suppression characteristics
in the static-arm simulation. The dynamic-arm TDI-X2 combination’s laser
noise suppression equals that of the static case, verifying that the velocity
coupled laser noise has been completely accounted for and removed.

placed at a different frequency (1.5 Hz) and the EPD data-rate was higher. Despite these

changes, the effects are only noticeable through the reduced PLL ranging accuracy.

These same results have also been published in peer-reviewed literature [104].

The optimized outcome of the ranging process is found after a single iteration

and results in a measure of 2β to an accuracy better than ∼ 70 fs/s and a round-trip

ranging precision of less than ∼ 5.0 ns (∼ 1.5m) as shown in Table 7-2. Applying a linear

regression to the calculated one-way delay times we find a one-way ranging error of

∼ 100µs (∼ 30 km). The outgoing and return delay times are un-equal by ∼ 250± 0.1ms,
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Figure 7-7. Model of the LISA-like TDI experimental benchtop: This TDI-PLL model
shows how the individual pre-stabilized laser fields are combined to form the
input noise signal and how this signal is processed by the EPD units and
used to phase-lock the ’far’ SC lasers, thus replicating all four LISA-like
inter-SC laser link and produce all four ssr observables. The setup is the
same as is defined in Figure 7-1 expect that the ’transmitted’ EPD outputs
are used to phase-lock the far Laser2 and Laser3. The PLL error signals are
exactly equal to the far SC sensor signals, s12 and s13. The LaserRef/Laser2/3
beatnotes are used as the input signals for the ’return’ field light transmission
simulation.

proving the TDI−X1.5 combination’s6 ability to extract individual phase errors despite

un-equal delays along a single arm (τq(0) 6= τq′(0)).

Using the calculated one-way functional time-delays we form the TDI−X1.0 and

TDI−X2.0 combinations; re-scaling the TDI spectral density by the inverse arm transfer

functions in (7–3), we plot each TDI combinations’ phase noise in Figure 7-8 resulting

in the same measured sensitivity for both combinations. This noise level is likely due

6 Table 4-1
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Figure 7-8. Static LISA-like laser experimental results: The TDI spectral results and
comparisons with the input laser phase noise and PLL noise of the
static-arm TDI simulation with phase-locked lasers is plotted. The corrected
TDI-2.0 combination using the values from the TDI-ranging estimation
(Table 7-2) matches with the baseline performance from Figure 7-3. The
laser and PLL noise suppression as a result of the estimated ranging
precision is not expected to be a limiting noise source which is verified by
cross-correlating the TDI combination with the input signals as shown in
Figure 7-9. If the PLL noise is not accounted for, the TDI combination is
limited by these additional PLL noise sources (not pictured).

to the coupling of multiple un-correlated EPD clock noise sources, defined in (6–11),

into the measurement. Based on the poor cross-correlations between the input noise

and the the PLL noise sources with the resulting TDI combinations we conclude that

the ranging precision is not a limiting noise source and that all the known sources have

been removed from the final combination. We also note that the expected ranging

precision using the round-trip and one-way variances along with (4–6) is well below the

TDI combination as plotted in Figure 7-8.
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Figure 7-9. Cross-correlated TDI combinations - Static Transponder and LISA-like: The
magnitude squared cross-correlation of the measured laser phase noise and
PLL noise show a poor correlation with the TDI-X2 combination for
frequencies below for all frequencies in the static TDI-PLL simulation (4-way
delay estimate: chapter 7.2.1). The laser noise correlates with the calculated
TDI-X2 combination for frequencies above 100 mHz in the static
TDI-transponder measurement (2-way delay estimate: chapter 7.1.1). The
poor correlation of the input noise sources with the TDI combinations verify
that the input noises have been sufficiently removed using the TDI-ranging
arm-length estimate.

7.2.2 Dynamic-Arm LISA-like Simulation

After three iterations of the ranging process, the optimized estimation of the

inter-SC delay times results in a measure of 2β to an accuracy better than ∼ 70 fs/s

and a round-trip ranging precision of ∼ 5.0 ns (∼ 1.5m) as shown in Table 7-2. The

constraint’s on the one-way delay times through the residual PLL noise removal can

not be applied until the precision of the round-trip delay times are accurate enough

to remove the input laser noise from the TDI combinations to reveal the residual PLL

noises in the TDI combinations. Thus, it requires at least one iteration of the ranging

process until the one-way delay times begin to be constrained. At the same time,

the accuracy of the constrained one-way delay times will be significantly reduced

in comparison to the constraints on the round-trip delay times resulting from the

comparatively reduced noise suppression magnitude of the PLL noise (4–6). Applying
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a linear regression to the calculated one-way delay times after the third iteration we find

a one-way ranging error of about ∼ 100µs (∼ 30 km). Again, the outgoing and return

delay times are un-equal by ∼ 250± 0.1ms, proving the capability to extract individual SC

phase error with un-equal delays along each arm (τq(0) 6= τq′(0)).

Applying the optimized one-way functional values from the ranging procedure,

outlined in Table 7-2, we generate the TDI-X1 and TDI-X2 combinations (Figure 7-10).

Rescaling by the inverse arm response function, the TDI-X1 combination meets the

expected limitation (4–32). The TDI-X2 combination meets the LISA IMS requirement

to within a factor of 4 and is, again, limited by a combination of multiple EPD clock

noise coupling sources resulting in a reduced sensitivity above the simulator’s baseline

performance. Again, the poor correlation of the input noise sources with the final

combination, Figure 7-11, leads us to conclude that the ranging precisions are not a

limiting noise source and that all known noise sources have been removed from the final

combination. Further supporting this claim, the expected ranging precision using the

round-trip and one-way variances along with (4–6) is well below the TDI combination as

plotted in Figure 7-10.

Binary Confusion Noise Injection .

Finally, we introduce the low frequency simulated ’confusion noise’ into the

measurement to ensure that these low-frequency terms do not limit the ranging

precision. The confusion noise background given by:

hBackground(ω) ≃
.01

s
2π

+ .001

mHz√
Hz

(7–5)

where ’s’ is the complex Laplace frequency, and 6.277mHz mono-chromatic binary

with a single-arm strain amplitude of 3.5 × 10−20 are simultaneously injected. The

injected background noise level is set to match most estimations in the 0.1 mHz

to 1.5 mHz but does not roll off as quickly at frequencies above 1.5 mHz as most

confusion noise estimates do (Figure 8-1) [46, 103]. This is modified from the expected
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Table 7-2. LISA-like TDI-ranging estimation: The method outlined in Figure 4-3 and the experiments described in
capters 7.2.1 and 7.2.2 are used to calculate estimates of the inter-SC delay functions, (4–37 and 4–39), and
the associated ranging errors. The estimates verify the TDI-ranging capabilities and are used to generate the
TDI-combinations for Figures 7-8 and 7-10.

Iteration β (Slope) τ22′(0), τ33′(0) (Offset) δτ22′ , δτ33′ : δτ2, δτ2′ , δτ3, δτ3′ (σ)
TDI 1.0 PLL
1 (TDI 1.0) 2β2 = −66.1 fs/s± 45.4 fs/s τ22′(0) = 33.5508007898 s± 1.01 ns δτ22′ = 3.2 ns
(Round-trip) 2β3 = 58.7 fs/s± 37.4 fs/s τ33′(0) = 33.2152647154 s± 0.83 ns δτ33′ = 2.6 ns
1 (TDI 1.0) β2 = −4.07 ns/s± 13.6 ns/s τ2(0) = 16.694054656 s± 301µs δτ2′ = δτ2 = 1.12ms
(One-Way) τ ∗2′(0) = 16.8567461 s± 301µs

β3 = 26.1 ns/s± 15.9 ns/s τ3(0) = 16.51799231 s± 352µs δτ3 = δτ3′ = 0.95ms
τ ∗3′(0) = 16.6972724 s± 352µs

TDI 2.0 PLL
1 2β2 = −199.984 ns/s± 12 ps/s τ22′(0) = 33.59821021 s± 0.28µs δτ22′ = 0.895µs

2β3 = +300.052 ns/s± 7.8 ps/s τ33′(0) = 33.21476669 s± 0.18µs δτ33′ = 0.568µs
2 2β2 = −200.000015 ns/s± 71 fs/s τ22′(0) = 33.5982645303 s± 1.6 ns δτ22′ = 5.2 ns

2β3 = +300.000013 ns/s± 26 fs/s τ33′(0) = 33.2146434958 s± 0.58 ns δτ33′ = 1.9 ns
3 (TDI-2.0) 2β2 = −200.000028 ns/s± 68 fs/s τ22′(0) = 33.5982645401 s± 1.5 ns δτ22′ = 5.0 ns
(Round-trip) 2β3 = +300.000020 ns/s± 25 fs/s τ33′(0) = 33.2146435166 s± 0.58 ns δτ33′ = 1.9 ns
3 (TDI-2.0) β2 = −103.3 ns/s± 1.4 ns/s τ2(0) = 16.68021 s± 31µs δτ2 = δτ2′ = 99µs
(One-Way) τ ∗2′(0) = 16.91805 s± 31µs

β3 = +152.24 ns/s± 1.4 ns/s τ3(0) = 16.48824 s± 32µs δτ3 = δτ3′ = 105µs
τ ∗3′(0) = 16.72640 s± 32µs

Confusion Noise
TDI 2.0

3 (Round-Trip) 2β2 = −199.999991 ns/s± 50 fs/s τ22′(0) = 33.6012734891 s± 1.1 ns δτ22′ = 3.7 ns
2β3 = +300.000137 ns/s± 22 fs/s τ33′(0) = 33.2100302983 s± 0.49 ns δτ33′ = 1.6 ns

3 (One-Way) β2 = −96.81 ns/s± 2.3 ns/s τ2(0) = 16.73546 s± 53µs δτ2 = δτ2′ = 169µs
τ ∗2′(0) = 16.86582 s± 53µs

β3 = +149.439 ns/s± 1.4 ns/s τ3(0) = 16.53994 s± 32µs δτ3 = δτ3′ = 102µs
τ ∗3′(0) = 16.67009 s± 32µs
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Figure 7-10. Dynamic LISA-like experimental results: The suppression of the TDI X1

combination is limited by the expected arm-length time-dependence
defined by (4–32) with ∆β = 250 ns/s. The TDI X2 combination removes the
input laser noise, the ’far’ PLL residual phase noise, and the
time-dependent coupled laser noise to reveal the 6.277mHz GW signal.
The sensitivity limitation comes, most likely, as a result of multiple
unaccounted for EPD noise as a result of the time-changing delay. This is
determined based on a comparatively improved performance using the
static-PLL simulation and the fact that the time-changing delay is the major
difference between these measurements.

situation to ensure that the addition low-frequency noise does not limit the ranging

precision. The monocromatic GW phase modulation due to the RXJ0806.3+1527

binary is a factor of 100 smaller than the expected strain amplitude averaged over

a 1 year measurement. That said, the GW phase modulation amplitude is simply

programmed to be out-of-phase when injected into the individual arms simulator and

with no consideration for the GW polarization or detector orientation over the course of

the year.

Again, the optimized ranging estimation places bounds on the β accuracy better

than ∼ 50 fs/s and a round-trip ranging precision of ∼ 3.7 ns (∼ 1.1m). Thus, this
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Figure 7-11. Cross-correlated TDI combinations - Dynamic Transponder and LISA-like:
The magnitude squared cross-correlation of the measured laser phase
noise and PLL noise show a poor correlation with the TDI-X2 combination
for frequencies below for all frequencies in the dynamic TDI-PLL simulation
(4-way delay estimate: chapter 7.2.2). As with the static case (Figure 7-9),
the laser noise correlates with the calculated TDI-X2 combination for
frequencies above 100 mHz in the dynamic TDI-transponder measurement
(2-way delay estimate: chapter 7.1.2). The poor correlation of the input
noise sources with the TDI combinations verify that the input noises have
been sufficiently removed using the TDI-ranging arm-length estimate.

confusion noise result achieves a ranging precision on the same order as the simulator’s

phase-locked performance, proving that low-frequency noise has little to no effect on the

ranging tone cancellation or the measured arm-lengths.

Finally, once the long-term residual quadratic phase drifts have been removed

from the strain measurement, the time-domain comparisons between the TDI-X2

outputs of the phase-locked and confusion noise experiments are plotted in Figure 7-12

to show the additional low-frequency noise. These TDI−X2 noise spectra with and

without the confusion noise are plotted, Figure 8-1, in particular, in terms of the actual

LISA length strain in cycles/
√
Hz along with the low-frequency acceleration noise,

mid-frequency shot-noise, and scaled by the high-frequency sensitivity loss. We

also plot the theoretical ’1-year’ averaged strain of a few actual gravitational wave

sources and the expected GW confusion background [103] in comparison with the
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Figure 7-12. Confusion noise time-series comparison: The time series of the dynamic
LISA-like simulations with and without a confusion noise background
(chapters 7.2.2 and 7.2.2) are plotted explicitly after low-pass filtering the
aliased noise near the sampling-frequency. The added low-frequency
confusion noise is readily apparent when comparing the results of the
measured 6.277mHz binary with the binary plus confusion noise (7–5).

injected background (7–5) and GW signal. The deviation in the spectral amplitude

(≃ 7mCyc/
√
Hz) is caused by spreading of the GW into approximately 3 frequency

bins7 .

7 204µcycles/Hz ×
√
10000 s = 20.4mCyc/

√
Hz ≃ 3× 7mCyc/

√
Hz
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CHAPTER 8
CONCLUSION

In this dissertation we have presented how LISA and other space-based interfero-

meters will achieve the strain sensitivities required to measure astronomically interesting

GW sources using advanced stabilization techniques such as cavity locking and arm

locking as well as through the application of post-processing time-delay interferometry

combinations. We have considered how the LISA-IMS science observables are

formed and how the differential proof-mass length is constructed from these individual

heterodyne PD observables. We have presented the design, phase precision, and likely

low-frequency limiting noise sources of LISA-like phasemeters and how they are used in

heterodyne interferometry. A method of using the phasemeters to electronically simulate

the inter-SC laser field transmission characteristics including the time-changing delay,

Doppler shift, and GW modulation was developed, tested, and used to perform some of

the first hardware based arm-locking experiments.

Time-delay interferometry simulations using µcycle phasemeters, multi-second delay

EPD units, and the UFLIS laser benchtop were developed and compared to the noise

sources expected in LISA. The simulations tested the ability of time-delay interferometry

combinations to cancel the laser phase noise and extract the GW information with,

both, static (constant arm-length) and dynamic (time-changing arm-length) LISA-like

characteristics. We have also presented a simple but powerful method of estimating

the time-dependent arm-lengths using a TDI-ranging reference tone modulated onto

the laser field at frequencies above the GW frequency measurement band. The

post-processing formation of the TDI-X2 combination which optimally cancels the

ranging tone provides a functional constraint on the time-changing inter-SC delays to

an accuracy better than that required to remove the laser phase noise from the TDI

combinations.
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Figure 8-1. Compiled results and comparison with TDI for LISA: In this figure we have
compiled all the results of the TDI simulations and attempt to make a direct
comparison with the expected LISA strain sensitivity. The baseline spectral
noise of the UFLIS simulator (grey-blue) from the TDI-Transponder
(chapter.7.1.1) measurements is plotted. The velocity corrected TDI-X2.0

spectrum of the dynamic arm TDI simulation with (cyan) and without (blue)
the injected binary confusion noise (dotted-magenta) is plotted in
comparison with the IMS sensitivity requirement. The three TDI simulations
are scaled by the frequency factors of (3–2) to account for the
high-frequency GW-sensitivity loss expected in LISA. The DRS and IMS
requirement are root-square summed and scaled by (3–2) to produce the
effective single-link LISA sensitivity with (black) and without (dotted-black)
the 2

√
5/3 sensitivity factor. An estimate of the confusion noise limit is

plotted (dotted-red) along with the four brightest verification binaries rescaled
from a 1-year averaged strain sensitivity to noise spectra in cycles/

√
Hz. The

strain magnitude of the 1 year averaged RX-J0806 binary and the 10000 s
EPD injected GW have amplitudes such that they result in similar LSD
amplitudes in this figure. The results of these experiments verify the ability to
account for a ≃ 0.4 s (0.1Gm) un-equal arm-length mis-match and 75m/s
velocity coupled laser noise by TDI-ranging the inter-SC distance to an
accuracy of 5 ns (1.5m) and forming the TDI-X2 combination to extract the
GW information to within a factor of 5 of the single-link LISA sensitivity.
RX-J0806 ∼ 4× 10−22/Hz

√
1 year = 2.2× 10−18/

√
Hz = 10.5mCyc/

√
Hz

EPD-GW ∼ 4.3× 10−20/Hz
√
10000 s = 4.3× 10−18/

√
Hz = 20.5mCyc/

√
Hz
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The experimental results show that more than 10 orders of magnitude of laser

frequency noise can be canceled using appropriately time-shifted data streams with

the TDI−X2 data combination. We have also verified that the ability to cancel the laser

frequency noise using a TDI−X1 data combination is limited by the relative velocities

between the spacecraft. Meanwhile, we have also demonstrated that the TDI-X2

combination accounts for this inter-SC velocity limited TDI−X1 combination. The

simulations have also verified the removal of the residual phase lock loop noise added

at the far spacecraft and have showed that the PLL noise extraction is possible with

relaxed one-way ranging requirements due as compared to the round-trip requirements.

The results of these TDI experiments demonstrated the ability to account for a ≃ 0.4 s

(0.1Gm) un-equal arm-length mis-match and 75m/s velocity coupled laser noise by

TDI-ranging the inter-SC distance to an accuracy of 5 ns (1.5m) by forming the TDI-X2

combination to extract the GW information to within a factor of 5 of the single-link LISA

sensitivity.

In the process of developing the UFLIS-TDI simulator, we have developed and

tested data analysis tools which use the raw phasemeter data streams to extract

the light-travel time function and generate the TDI-X2 data streams. We have also

added a confusion noise GW-background to the TDI simulations and verified that this

low-frequency background does not interfere with our ranging capabilities.

The combination of these experiments, validating the multi-second time-changing

inter-SC characteristics, and the experiments performed in [105], verifying the optical

noise couplings, represent the essential characteristics of a LISA-like interferometry

measurement system and the post-processing cancellation of laser phase noise using

the appropriate TDI combinations. Future UFLIS experiments should include real,

LISA-like GW signals using data-sets generated with LISA-tools like Synthetic LISA

[55]. The use of independent clock sources and the verification that clock noise sources

can be accounted for in the TDI combinations would also be useful. Finally, simulations
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with three independently stabilized lasers might also be valuable towards verifying the

constrains on the one-way ranging capabilities.
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APPENDIX A
TIME VARYING FRACTIONAL DELAY INTERPOLATION FUNCTION

function [xOut,tOut] = TVFDfilter(x,fs,beta,Tau,N)

% [xOut,tOut] = TVFDfilter(x,fs,beta,Tau,N)

%

% Computes a time-stretched/compressed and time-shifted data-set

% with an N-point Lagrange fraction delay filter as defined in

% "Post-processed time-delay interferometry for LISA" by Shaddock et. al.

%

% INPUTS:

% x = time series input [amplitude]

% fs = sampling frequency [Hz]

% beta = fractional shift rate (in s/s)

% Tau = absolute time-shifting value in seconds

% N = interpolation length (number of points to use in

% Fractional Delay Filter)

%

% OUTPUTS:

% xOut = output amplitude vector

% tOut = output time vector

%

% Ira Thorpe, Shawn Mitryk

% Updated 2-18-12

L = length(x);

M = (N-1)/2;

k = (-(N-1)/2):1:((N-1)/2);

offset = floor(Tau*fs);

Dfrac = -(Tau-(offset/fs))*fs;

xOutShift(1:L-N+1) = 0;

for i=1:L-N+1

DTaufrac = beta*i;

td = (N-1)/2+Dfrac-DTaufrac;

b1 = gamma(td+1)/(gamma(N+1)*gamma(td-N+1));

b2 = gamma(N)./(gamma(k+(N-1)/2+1).*gamma(N-k-(N-1)/2));

w = ((pi*N)/(sin(pi*td)))*b1*b2;

h = sinc(Dfrac-DTaufrac-k).*w;

xOutShift(i) = sum(h.*(x(i:i+N-1)’));

end
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xOut = xOutShift(N+M+1:L-N+1)’;

tOut = (0:length(xOut)-1)’/fs;

An up-to-date version of these functions and their application in producing the
results demonstrated in these experiments can be obtained from [106].
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APPENDIX B
TDI 2.0 COMBINATION FUNCTION

function [TDI2Out, TDI1Out] = TDIComb(fs, s21, s31, s12, s13, tau33,

tau13, beta3o, tau22, tau12, beta2o)

% [TDI2Out, TDI1Out] = TDIComb(fs, s21, s31, s12, s13, tau33,

% tau13, beta3, tau22, tau12, beta2)

%

% Computes the TDI 1.0 and TDI 2.0 Combinations based on the 6-variable

% arm-length delays. Based on "Data combinations accounting for LISA

% spacecraft motion" by Shaddock et. al.

%

% INPUTS:

% fs = Sample frequency

%

% s21 = Sensor signal (sending: SC2 receiving: SC1)

% s31 = Sensor signal (sending: SC3 receiving: SC1)

% s12 = Sensor signal (sending: SC1 receiving: SC2)

% s13 = Sensor signal (sending: SC1 receiving: SC3)

%

% tau33 = Round-trip delay from SC1 through SC2 (Arm3)

% tau13 = One-way delay time from SC1 to SC2 (Arm3)

% beta3 = Arm3 time compression factor

% beta = (velocity between SC1 & SC2/speed of light)

% tau22 = Round-trip delay from SC1 through SC3 (Arm2)

% tau12 = One-way delay time from SC1 to SC3 (Arm2)

% beta2 = Arm2 time compression factor

%

% OUTPUTS:

% TDI2Out = TDI2.0 Combination

% TDI1Out = TDI1.0 Combination

%

% Shawn Mitryk

% Updated 2-18-12

L1 = length(s12);

N = 51;

M = (N-1)/2;

alpha2 = (1-2*beta2o);

alpha3 = (1-2*beta3o);

gamma2 = (1-beta2o);

gamma3 = (1-beta3o);
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beta3 = 1-alpha3;

beta2 = 1-alpha2;

% TDI 2.0 shift values

Tau23 = (tau22)*alpha3+(tau33)

beta23 = 1-(alpha2*alpha3)

Tau32 = (tau33)*alpha2+(tau22)

beta32 = 1-(alpha3*alpha2)

Tau232 = alpha2^2*tau33 + alpha2*tau22 + tau22

beta232 = 1-(alpha2^2*alpha3)

Tau323 = alpha3^2*tau22 + alpha3*tau33 + tau33

beta323 = 1-(alpha3^2*alpha2)

% Calculate the sensor signals from the one-way signals

[chan12.data, chan12.t] = TVFDfilter(s12,fs,beta2o,tau12,N);

[chan13.data, chan13.t] = TVFDfilter(s13,fs,beta3o,tau13,N);

chan21.data = s21(2*N:L1-M);

chan31.data = s31(2*N:L1-M);

chan22.data = chan21.data + chan12.data;

chan33.data = chan31.data + chan13.data;

% Form the TDI Combinations based on the 6-variable delays

L2 = length(chan22.data);

[chan2_2s.data,chan2_2s.t]

= TVFDfilter(chan22.data,fs,beta2,tau22,N);

[chan3_3s.data,chan3_3s.t]

= TVFDfilter(chan33.data,fs,beta3,tau33,N);

[chan22_23s.data,chan2_23s.t]

= TVFDfilter(chan22.data,fs,beta23,Tau23,N);

[chan33_32s.data,chan3_32s.t]

= TVFDfilter(chan33.data,fs,beta32,Tau32,N);

[chan22_232s.data,chan2_232s.t]

= TVFDfilter(chan22.data,fs,beta232,Tau232,N);
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[chan33_323s.data,chan3_323s.t]

= TVFDfilter(chan33.data,fs,beta323,Tau323,N);

chan22a.data = chan22.data(2*N:L2-M)’;

chan33a.data = chan33.data(2*N:L2-M)’;

chan22_2a.data = chan22_2s.data;

chan33_3a.data = chan33_3s.data;

chan22_23a.data = chan22_23s.data;

chan33_32a.data = chan33_32s.data;

chan22_232a.data = chan22_232s.data;

chan33_323a.data = chan33_323s.data;

tdi1a.data = chan22a.data + chan33a.data

- chan22_2a.data - chan33_3a.data;

tdi1b.data = - chan22_23a.data - chan33_32a.data

+ chan22_232a.data + chan33_323a.data;

tdi2.data = tdi1a.data + tdi1b.data;

TDI1Out = tdi1a.data;

TDI2Out = tdi2.data;

An up-to-date version of these functions and their application in producing the
results demonstrated in these experiments can be obtained from [106].
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