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Abstract

One of the main goals of a Pulsar Timing Array (PTA)– a network of one or more

radio telescopes which regularly monitor millisecond pulsars– is to detect ripples

in the fabric of space-time, produced by accelerating masses, called gravitational

waves (GWs). Currently, PTAs are the only way to search for GWs in the

nanohertz band– a portion of the spectrum in which a promising class of sources

are supermassive black hole binary (SMBHB) systems with masses in the range of

⇠ 107 � 109 M� during their slow, adiabatic inspiral phase. The majority of the

sources in the PTA frequency band are individually unresolvable, but together,

these sources contribute to a stochastic GW background which may soon be

detectable.

The focus of this research begins on the stochastic GW background. It is

shown that a level of anisotropy in the stochastic GW background may be present

and that the characterization of the GW energy density at di↵erent angular scales

carries important information. The standard analysis for isotropic backgrounds

is then generalized by decomposing the angular distribution of the GW energy

density into multipole moments. Generalized overlap reduction functions are

computed for a generic level of anisotropy and PTA configuration.

Following this, a rigorous analysis is done of the assumptions made when

calculating the standard overlap reduction functions. It is shown that for all

the overlap reduction functions, correlated phase changes introduce previously

unmodelled e↵ects for pulsars pairs that are separated by less than a radiation

wavelength.

The research then turns to the study of continuous GW sources from SMBHBs.

Here it shown that the detection of gravitational radiation from individually

resolvable SMBHB systems can yield direct information about the masses and

spins of the black holes, provided that the GW-induced timing fluctuations both

at the pulsar and at Earth are detected. This in turn provides a map of the

nonlinear dynamics of the gravitational field and a new avenue to tackle open

problems in astrophysics connected to the formation and evolution of SMBHs.
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Chapter 1

INTRODUCTION

1.1 Gravitational Waves

Gravitational waves (GWs) are ripples of space-time travelling at the speed of

light, originating from some of the most violent events in the Universe. In par-

ticular, they provide a new means for studying black holes and addressing open

questions in astrophysics and fundamental physics: from their formation, evolu-

tion and demographics, to the assembly history of galactic structures and the dy-

namical behaviour of gravitational fields in the strong non-linear regime. Specif-

ically, GW observations through a network of radio pulsars used as ultra-stable

clocks called a Pulsar Timing Array (PTA), cf. Detweiler [1979]; Estabrook and

Wahlquist [1975]; Sazhin [1978], currently represent the only direct observational

avenue for the study of individual supermassive black hole binary (SMBHB) sys-

tems in the ⇠ 108 � 109M� mass range, with orbital periods between ⇠ 1 month

and a few years. Moreover, the incoherent superposition of the cosmic popula-

tion of SMBHBs is expected to form a di↵usive GW background, which has yet

to be detected, cf. Demorest et al. [2013]; Hellings and Downs [1983]; Ja↵e and

Backer [2003]; Jenet et al. [2006]; Rajagopal and Romani [1995]; Sesana et al.

[2004, 2008]; van Haasteren et al. [2011]; Wyithe and Loeb [2003].

Ongoing observations with some of the most sensitive radio telescopes around

the world, detailed in Ferdman et al. [2010]; Hobbs et al. [2010]; Jenet et al.

[2009]; Verbiest et al. [2010] for example, as well as instrumental improvements

1



1. INTRODUCTION

culminating with the Square Kilometre Array, cf. SKA [2014], are expected to

yield the necessary timing precision to observe the stochastic GW background,

cf. Liu et al. [2011]; Verbiest et al. [2009]. In addition to stochastic GW back-

ground searches, searches for SMBHBs which are su�ciently high mass and high

frequency to rise above the background radiation are also underway, e.g. Babak

and Sesana [2012]; Ellis et al. [2012a,b]; Jenet et al. [2004]; Lee et al. [2011];

Sesana and Vecchio [2010]; Sesana et al. [2009]; Wen et al. [2011]; Yardley et al.

[2010].

1.1.1 Evidence for Gravitational Waves

The discovery of pulsar PSR B1913 + 16 – a pulsar with a companion neutron

star– by Hulse and Taylor in 1974 was the first instance where compact objects

in a relativistic system could be monitored. Hulse and Taylor [1975] claimed

that the binary should be emitting GWs, and consequently, the binary’s orbital

period Pb should shrink by an amount Ṗb due to the energy loss from gravitational

radiation. This would in turn change the time of periastron of the binary, i.e. the

point of closest approach, which was observed via radio observations of the pulsar

at the Arecibo Radio Telescope by Taylor and Weisberg [1982], see Fig 1.1. They

showed that Ṗb/(Ṗb)GR

= 1.0013(21), where (Ṗb)GR

is the prediction of Ṗb from

GR. One can see that these quantities are in excellent agreement. This has been

hailed as the first discovery of gravitational wave emission, and for this, Hulse

and Taylor were awarded Nobel prize in 1993, see Nobelprize.org [1993]. More

recently, the highly relativistic double pulsar PSR J0737� 3039A/B, see Burgay

et al. [2003]; Lyne et al. [2004a], has yielded constraints on GR which surpass

those of Taylor and Weisberg [1982] by an order of magnitude, see e.g. Kramer

and Wex [2009] and references therein.

The Background Imaging of Cosmic Extragalactic Polarization (BICEP) Col-

laboration claim to have detected primordial GW signatures, called B-modes, in

the polarization of the Cosmic Microwave Background (CMB), cf. BICEP2 Col-

laboration et al. [2014]. The BICEP2 instrument was designed to measure the

polarization of the CMB on angular scales of 1 to 5 degrees (l = 40� 200), near

the expected peak of the B-mode polarization signature of primordial GWs from

2



(a) Evidence for GWs, PSR 1913 + 16
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(b) Evidence for primordial GWs from BICEP2

Figure 1.1: Left: Evidence for GWs form the change in the periastron of PSR
1913 + 16, updated in Weisberg and Taylor [2005]. Experimental data are the
filled circles, error bars are half a percent, and the solid line is the change in pe-
riastron according to the gravitational wave emission model proposed by General
Relativity. Right: evidence for B-modes in the CMB polarization. Upper trian-
gles represent previous upper limits from other experiments, BICEP2 results are
the black circles. Figure reproduced from BICEP2 Collaboration et al. [2014].

cosmic inflation BICEP2 Collaboration et al. [2014]; Guth [1981]; Linde [1982].

Cosmological B-modes also come from gravitational lensing of polarization by

the large-scale structure of the universe, see e.g. Zaldarriaga and Seljak [1998],

occurring at much higher angular scales, l ⇠ 103. These B-modes were discovered

in 2013 by the South Pole Telescope collaboration, cf. Hanson et al. [2013]. The

BICEP2 researchers also reported a relatively large number for r: the ratio of

the GW fluctuations in the CMB to the fluctuations caused by perturbations in

the density of matter. This quantity is especially interesting, as it is determined

by the energy scale of inflation, see BICEP2 Collaboration et al. [2014] for de-

tails. The previous upper limits this ratio was r < 0.11, based on all-sky CMB

maps from the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck

Collaboration, see Planck Collaboration et al. [2013]. BICEP2’s value, however,

3



1. INTRODUCTION

is around r ⇠ 0.20, in contention with previous upper limits. At the time of

writing, there is some contention as to whether or not the BICEP2 collaboration

have underestimated the galactic foreground emission, as discussed by Falkowski

[2014], which may a↵ect the value of r.

Confirmation of BICEP2’s findings may be possible via other CMB experi-

ments such as Planck, a European space-based CMB mission e.g. Planck Collab-

oration et al. [2013], the Atacama B-mode Search (ABS), e.g. Sievers and ABS

Collaboration [2014] and POLARBEAR, e.g. The POLARBEAR Collaboration

et al. [2014].

1.1.2 Useful Definitions and Conventions

Before moving forward, a list of common definitions and equations is presented

for ease of reference.

Useful definitions

The following are commonly used formulae which will be used throughout the

text. Unless otherwise specified, natural units of c = G = 1 are used. Therefore,

1 s = 299, 792, 458 m ⇠ 3⇥ 108 m, (1.1)

and by using the Schwarzschild radius of the sun, rS = GM�/c
2 ⇠ 1480 m, one

can write the mass of the sun in units of seconds:

1 M� =
rS
c

=
GM�

c3
⇠ 4.9 µs. (1.2)

Common units used in this research are the light year, denoted “ly”, where

1 ly = 9.4⇥ 1015 m ⇠ 3.2⇥ 107s , (1.3)

and the parsec, denoted “pc”, where

1 pc = 3.3 ly ⇠ 108 s . (1.4)

4



Other useful definitions include the total mass M of a binary with component

masses m
1

,m
2

:

M = m
1

+m
2

, (1.5)

the reduced mass, µ

µ =
m

1

m
2

M
, (1.6)

the symmetric mass ratio ⌘,

⌘ =
m

1

m
2

M2

, (1.7)

and the chirp mass M

M5/3 = m
1

m
2

M�1/3 = µM2/3. (1.8)

Useful forms of Kepler’s 3rd Law.

Consider a binary system in a circular orbit with total mass M at orbital sepa-

ration r and period P . One can write Kepler’s 3rd Law as:

✓

2⇡

P

◆

2

=
M

r3
, (1.9)

(2⇡f)2 =
M

r3
, (1.10)

where P = 1/f and f is the orbital frequency of the binary. The velocity v of

the binary can be expressed in terms of the orbital frequency as

v =
2⇡r

P
= 2⇡rf , (1.11)

where 2⇡r is the circumference of a circle with radius r. Hence,

r =
v

2⇡f
. (1.12)

5



1. INTRODUCTION

Substituting Eq (1.12) into Eq (1.10) and using the fact that f
GW

= 2f
orb

, see

Eq (1.57), one can write

(⇡f
GW

)2 =
M

v3
(⇡f

GW

)3 ,

v = (⇡Mf
GW

)1/3 . (1.13)

Anther useful manipulation of Eq (1.10) is

r = M1/3⇡�2/3f
�2/3
GW

. (1.14)

1.1.3 Linearized Field Equations

Matter tells space how to curve, and space tells matter how to move.

⇠ John A. Wheeler

Einstein’s theory of General Relativity (GR) introduced a new way of thinking

about gravity, which was fundamentally di↵erent from the Newtonian paradigm.

In this section the linearized field equations will be derived and the GW solution

in a vacuum will be given. Furthermore, it will be shown that GWs have two

polarizations and travel at the speed of light. Several excellent texts on the

subject have been written, including Flanagan and Hughes [2005]; Hawking and

Israel [1987]; Misner et al. [1973]; Schutz and Ricci [1999], which can be consulted

for more details.

Mathematically, Einstein’s field equations are written as a tensor equation,

Rµ⌫ � 1

2
gµ⌫R = 8⇡Tµ⌫ , µ, ⌫ = 0, 1, 2, 3, 4 (1.15)

where Rµ⌫ is the Ricci tensor, R is the scalar curvature, gµ⌫ is the metric tensor

and Tµ⌫ is the stress-energy tensor. A more compact form of the field equations is

sometimes used, where the right-hand side is rewritten as the so-called “Einstein

tensor”, Gµ⌫ such that

Gµ⌫ = 8⇡Tµ⌫ . (1.16)

6



In the above form of the field equations, it is perhaps clearer that the stress-energy

tensor Tµ⌫ at a given event generates curvature Gµ⌫ at the same event.

Gravitational waves arise a natural solutions to the field equations. The clean-

est way to show this is to make a few simplifying assumptions: assume a flat

background metric ⌘µ⌫ and a small perturbation to this metric hµ⌫ ⌧ ⌘µ⌫ . In the

presence of this small metric perturbation, gµ⌫ can be written as

gµ⌫ = ⌘µ⌫ + hµ⌫ , (1.17)

where ⌘µ⌫ is the flat Minkowski metric, diag(�1, 1, 1, 1). Writing the metric

tensor as a sum of a flat space-time and a small perturbation is called the “linear

approximation”, and is correct to first order in hµ⌫ . The indices for the metric

perturbation are raised and lowered by ⌘µ⌫ :

hµ⌫ = ⌘µ⇢⌘⌫�h⇢�. (1.18)

Let h = ⌘µ⌫h
µ⌫ . The following math is simpler if the “trace-reversed” metric

perturbation1, h̄µ⌫ is used, where

h̄µ⌫ = hµ⌫ � 1

2
⌘µ⌫h. (1.19)

The coordinate freedom in the hµ⌫ components is still considerable: hµ⌫ , like the

metric tensor, is a 4⇥ 4 matrix with 16 components. However, both gµ⌫ and hµ⌫

are symmetric and therefore have 10 independent components. To restrict some

the degrees of freedom, we impose the gauge condition

@⌫ h̄
µ⌫ = 0, (1.20)

called the Lorentz gauge (also called the de Donder gauge), where @⌫ is partial

di↵erentiation with respect to x⌫ . The choice of this gauge applies 4 independent

conditions to 10 independent components of hµ⌫ , reducing the freedom to 6.

1This is called “trace-reversed since h̄µ
µ = �h

7



1. INTRODUCTION

Substituting Eq (1.19) into Eq (1.16) under the Lorentz gauge conditions, Eq

(1.20), yields a rather simple result,

Gµ⌫ = �1

2

✓

� @2

@t2
+r2

◆

h̄µ⌫ = �1

2
⇤h̄µ⌫ , (1.21)

where ⇤ is the D’Alembert, or wave, operator. For more details, see e.g. Flanagan

and Hughes [2005]; Misner et al. [1973]. Therefore, the linearized field equations

reduce to wave equations:

⇤h̄µ⌫ = �16⇡Tµ⌫ . (1.22)

The most straightforward solution to Eq (1.22) is the vacuum solution, where

Tµ⌫ = 0,

⇤h̄µ⌫ = 0. (1.23)

Eq (1.23) is a wave equation, and therefore admits a plane wave solution of the

form

h̄µ⌫ = Aeµ⌫e
ik↵x↵

= Aeµ⌫e
i(k ·x�!t), (1.24)

where A is the amplitude, eµ⌫ is the polarization tensor and and k↵ is the wave

vector, k↵ = (!,k). The properties of the wave vector can be derived by taking

two derivatives of Eq (1.24):

@↵,�h
µ⌫ = k↵k�h

µ⌫ (1.25)

⌘↵�@↵,�h
µ⌫ = ⌘↵�k↵k�h

µ⌫ . (1.26)

The lefthand side of Eq (1.26) is the wave equation, as required, if ⌘↵�k↵k� = 0,

which is generically true if k↵k↵ = 0, i.e. if k is light-like. One can therefore

conclude that GWs propagate at the speed of light.

Recall that there are still 6 degrees of freedom left in hµ⌫ . Indeed, it is still

possible to perform a small change in coordinates

x̄µ = xµ + ⇠µ, (1.27)

which preserves the Lorentz gauge condition if @⌫⇠µ⌫ = 0. It is possible, however,

to remove 4 more degrees of requiring that the wave be transverse, Eq (1.28), and

8



traceless, Eq (1.29), i.e.

h0µ = 0 , (1.28)

hµ
µ = 0. (1.29)

These conditions put the metric into what’s known as the Transverse and Trace-

less (TT) gauge. Since the metric perturbation is traceless, h̄TT
µ⌫ = hTT

µ⌫ . From

hereon, the metric perturbation hTT
µ⌫ will be assumed to be given in the TT gauge

and will be denoted by hij, ij = 1, 2, 3, when referring to the spatial compo-

nents only. This is a natural way of writing the metric perturbation, since the

transverse condition, Eq (1.28), ensures that it is purely spatial.

There are now just two degrees of freedom remaining which cannot be fixed

by a choice of gauge, and these are the GW polarizations: “plus” and “cross”,

whose form will be given in Sec 1.1.4, see Fig 1.2.

1.1.4 Generating Gravitational Waves: the Quadrupole

Formula

The most straightforward way to derive the GW solution of the linearized field

equations was to solve the the equations in a vacuum, thereby setting the source

term (or the stress-energy tensor) in Eq (1.22) to zero. GWs, however, are gen-

erated by T µ⌫– the right hand side of Eq (1.22). In the following paragraphs, the

leading order contributions to the spatial components of the metric perturbation

will be calculated, in an e↵ort to present the standard quadrupole formula for

the emitted gravitational radiation. The steps here closely follow Flanagan and

Hughes [2005]; Hawking and Israel [1987]; Misner et al. [1973]; Schutz and Ricci

[1999]; Shapiro and Teukolsky [1983], which may be consulted for the detailed

calculations. Here boldface is used to indicate a vector.

The linearized field equations, Eq (1.22), can be solved using a well-known

Green’s function associated with the wave operator ⇤,

G(t,x; t0,x0) = �� (t0 � [t� |x� x0|])
4⇡|x� x0| , (1.30)

9



1. INTRODUCTION

where t � |x � x0| is called the “retarded time”, which emphasizes that there is

lag between points x and x0, due to the finiteness of the speed of light. Applying

this Green’s function, Eq (1.30), to Eq (1.22) yields

h̄µ⌫(t,x) = 4

Z

d3x0Tµ⌫(t� |x� x0|,x0)

|x� x0| . (1.31)

This quantity is then evaluated far away from the source, such that D = |x�x0|.
This approximation leads to a fractional error of order L

source

/D, where L
source

is

the size of the source. For compact GW sources such as black holes, cf Sec 1.3 and

neutron stars, cf Sec 1.5.1, L
source

/D ⌧ 1. This substitution in the denominator

of Eq (1.31) and in the time argument of Tij:

Tij(t� |x� x0|,x0) ⇡ Tij(t�D,x0), (1.32)

such that

h̄µ⌫(t,x) ⇡ 4

D

Z

d3x0Tij(t�D,x0). (1.33)

Eq (1.33) is the first term in the expansion of the gravitational radiation field. In

the linearized theory, however, it is required that @µT µ⌫ = 0. Physically, this can

be thought of as the conservation of momentum of the system, or in other words,

the stress-energy tensor must be conserved.

From the gauge condition, one can massage Eq (1.33) into the form

4

D

Z

d3x0Tij =
2

D

@2

@t2

Z

d3x0⇢x0
ix

0
j, (1.34)

where ⇢ = Ttt is the mass density. This manipulation is quite involved– the reader

is referred to the careful steps outlined by Flanagan and Hughes [2005] for details.

Let Iij be the quadrupole (or second) moment of the mass distribution:

Iij ⌘
Z

d3x0⇢x0
ix

0
j . (1.35)

Eq (1.34) relates the second time derivative of the mass quadrupole to the metric

10



perturbation h̄ij, in the source’s rest frame in a relatively simple form:

h̄ij(t,x) ⇡ 2

D
Ïij . (1.36)

Mathematically, one can now see that the second moment of the mass distribution

is the lowest order contribution to the strain. The lower order contributions were

eliminated based on mathematical arguments going from Eq (1.31) to (1.33),

detailed in e.g. Flanagan and Hughes [2005]; Misner et al. [1973], however a

physical explanation of why these terms vanish may prove enlightening.

The zeroth moment of the mass distribution M
0

is the mass itself,

M
0

=

Z

d3x⇢ = M . (1.37)

The dipole (or first) mass moment is defined as

M
1

⌘
Z

d3x⇢xi = MLi (1.38)

where Li is a vector with dimension of length. If the mass distribution displays

internal motion, then the moments of the mass current, ji = ⇢vi may also be

important. The first moment of the mass current is the spin angular momentum,

S
1

,

S
1

⌘
Z

d3x⇢vjxk✏ijk = Si , (1.39)

where the cross product is written in terms of the Levi-Civita symbol, ✏ijk, which

is 1 for an even permutation of ijk, �1 for an odd permutation of the indices and

0 if there is a repeated index.

The contribution to the strain hij from Eqs (1.37), (1.38), and (1.39) can now

be calculated. The Green’s function solution to the wave equation, Eq (1.30) tells

us that the strain magnitude h scales as 1/D. The contribution from M
0

is

h ⇠ M

D
, (1.40)

but the mass does not vary dynamically since dM/dt = 0. The mass monopole

therefore does not contribute to the strain. Next consider the mass dipole, Eq

11
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(1.38). Its contribution to the strain would be

h ⇠ MLi

D
, (1.41)

however from the conservation of momentum, it is clear that d2M
1

/dt2 = 0, and

therefore does not contribute to the strain. Similarly, the contribution from the

angular momentum Si to the strain is zero since dSi/dt = 0, from conservations

laws. Therefore, it the first non-vanishing contribution to the strain comes from

the mass quadrupole, Iij, as described in Eq (1.36).

Now, let

Ī ij = Iij � 1

3
�ij trace(I), (1.42)

=

Z

d3x0⇢

✓

x0
ix

0
j �

1

3
�ij trace(I)

◆

, (1.43)

be the “reduced” quadrupole moment, cf. Misner et al. [1973]. The “reduced”

part refers to the 1/3 term which multiplies the trace of I.

The energy E carried away by the GWs can also be written in terms of the

mass quadrupole:

dE

dt
=

1

5

D...
I
2

E

⌘ 1

5

⌦

...
Ī ij

...
Ī ij

↵

, (1.44)

where the angled brackets represent the average value. Eq (1.44) is also called

the gravitational luminosity L of the source.

An example from Wheeler [2013] will help to solidify these ideas. Consider

a circular binary with orbital separation r, component masses m
1

and m
2

, and

reduced mass µ, cf. Eq (1.6). Confining the orbit of the binary to the x�y plane,

one may write the barycentric the coordinate as m
1

x
1

= m
2

x
2

, where r = x
1

+x
2

is the orbital separation of the binary. This yields to coordinates

x
1

=
rµ

m
1

(cos ✓, sin ✓, 0) , (1.45)

x
2

=
rµ

m
2

(� cos ✓,� sin ✓, 0), (1.46)

12



where ✓ is the polar angle, which can be expressed in terms of the orbital fre-

quency, f
orb

, as ✓ = 2⇡f
orb

t = !t.

It is now straightforward to substitute the above components into Eq (1.35):

Ixx =

Z

⇢x2

i d
3x = m

1

x2

1

+m
2

x2

2

(1.47)

= µ2r2
✓

1

m
1

+
1

m
2

◆

cos2 ✓ (1.48)

= µr2 cos2(!t) (1.49)

=
1

2
µr2[1 + cos(2!t)]. (1.50)

Similarly,

Iyy =
1

2
µr2[1� cos(2!t)] , (1.51)

Ixy = Iyx =
1

2
µr2 sin(2!t). (1.52)

In order to obtain the reduced quadrupole moment Ī ij, the traceless component

must be subtracted, as in Eq (1.43):

1

3
�ij�lmI

lm =
1

3
�ij[Ixx + Iyy] , (1.53)

=
1

6
�ijµr2 [1 + cos(2!t) + 1� cos(2!t)] , (1.54)

=
1

3
�ijµr2. (1.55)

The matrix Ī can now be written down, as all of its components have been

calculated:

Ī ij =
1

2
µr2

2

6

4

1/3 + cos(2!t) sin(2!t) 0

sin(2!t) 1/3� cos(2!t) 0

0 0 �2/3

3

7

5

. (1.56)

The second time derivative of the mass quadrupole is of particular interest

as it is related to the GW strain, Eq (1.36). Moreover, the energy E emitted in

13



1. INTRODUCTION

Figure 1.2: The plus and cross polarizations of a gravitational wave. A represents
a circle of test masses at rest, in the absence of a GW. the lower left image is
the response to a “+” polarized GW, and the lower right image is the response
to a “⇥” polarized GW. This is the characteristic stretching and squashing of
spacetime, due to a GW. Imagine reproduced from Wheeler [2013].

GWs is E =
D

¨̄I ij
E

. Taking two derivatives of Eq (1.56) one can write:

¨̄I
ij
= �2µr2!2

2

6

4

cos(2!t) sin(2!t) 0

sin(2!t) � cos(2!t) 0

0 0 0

3

7

5

. (1.57)

Note that the GW frequency in a circular binary is twice the orbital frequency.

In other words, for each cycle made by the binary motion, the GW signal goes

through two full cycles and f
GW

= 2f
orb

. From Eq (1.57), it is clear that the

magnitude of the GW energy is

E = �2µr2!2 , (1.58)
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and from Kepler’s 3rd Law to relate the binary mass, angular frequency and

orbital separation, cf. Sec 1.1.2, one can write the GW energy in the familiar

form,

E = �1

2

µM

r
. (1.59)

Eq (1.57) also highlights the two independent GW polarizations amplitudes, h
+

and h⇥, defined as

h
+

(t) =
2

D

✓

Ī11 � Ī22

2

◆

= � 4

D
µr2!2 cos(2!t) (1.60)

h⇥(t) =
2

D

✓

Ī12 + Ī21

2

◆

= � 4

D
µr2!2 sin(2!t) . (1.61)

The magnitude h of a typical non-zero component of hij is readily obtained by

using Eq (1.14):

h =
4!2/3µM2/3

D

=
4

D
⇡2/3f

2/3
GW

M5/3. (1.62)

Finally, the gravitational luminosity L is calculated from the third time derivative

of the mass quadrupole
...
Ī

ij
,

...
Ī

ij
= �4µr2!3

2

6

4

� sin(2!t) cos(2!t) 0

cos(2!t) sin(2!t) 0

0 0 0

3

7

5

, (1.63)

and by Eq (1.44),

dE

dt
= �1

5

⌦

...
Ī jk

...
Ī jk

↵

= �1

5
(4µr2!3)2

⌦

2 sin2(2!t) + 2 cos2(2!t)
↵

(1.64)

= �32

5

µ2M3

r5
, (1.65)

where Kepler’s 3rd Law was used to write ! in terms of mass and orbital separa-
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tion.

A useful quantity which can now be derived from Eqs (1.65) and (1.59) is the

change in the GW frequency per unit time, ḟ
GW

. This quantity can be derived

by taking the time derivative of Kepler’s 3rd Law:

(⇡f
GW

)2 =
M

r3
(1.66)

2(⇡2f
GW

)
df

GW

dt
= �3M

r4
dr

dt
(1.67)

f
GW

df
GW

dt
= �3M

2⇡2

1

r4
dr

dE

dE

dt
, (1.68)

but dr/dE is simply (dE/dr)�1, which is easily calculated from Eq (1.59):

dE

dr
=

1

2

µM

r2
= �E

r
. (1.69)

Substituting Eqs (1.69) and (1.65) into (1.68) yields

f
GW

df
GW

dt
= �

✓

3M

2⇡2r4

◆✓

2r2

µM

◆✓

32

5

µ2M3

r5

◆

. (1.70)

Eq (1.14) was used to write r in terms of the mass and frequency of the binary,

and applying the definition of chirp mass, Eq (1.8), gives the final result:

df
GW

dt
=

96

5
⇡8/3M5/3f

11/3
GW

. (1.71)

The expression for f
GW

(t) is obtained by integrating Eq (1.71) from some time t

to the time of coalescence, tc:

f
GW

(t) = ⇡�1M�5/8



256

5
(tc � t)

��3/8

. (1.72)

Similarly, one can derive the orbital separation of the binary at any time by

writing dE/dt = (dE/dr)(dr/dt) and substituting Eqs (1.65), (1.59) and (1.69).

Integrating r from some time t to the time of coalescence tc, gives:

r(t) =

✓

256

5
µM2

◆

1/4

(tc � t)1/4. (1.73)
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1.2 The post-Newtonian Approximation

There are very few exact solutions to Einstein’s field equations – see e.g. Stephani

et al. [2003] for a collection of known exact solutions– and numerical solutions

to the field equations are still very computationally demanding, e.g. Bona et al.

[1995]; Centrella et al. [2010]; Pretorius [2005]. Instead of writing down the

exact solution for 2-body dynamics, a perturbative expression– the so-called post-

Newtonian (pN) approximation– is often used. The pN approximation is used to

compute the amplitude of the GW and the evolution of the orbital phase of a

compact binary. Here the perturbation parameter is the characteristic velocity v

of the binary, Eq (1.13), where v ⌧ 1. Expansions in terms of other parameters,

such as the mass ratio, are also used when appropriate, cf. Buonanno et al. [2009].

The order n of the expansion is denoted by pnN, which is given in terms of (v/c)2n.

The evolution of the orbital phase during the binary’s inspiral is complete to order

(v/c)7, see Blanchet [2014]; Buonanno et al. [2009]; Damour et al. [2009]. The

Newtonian approximation is the n = 0 leading order term. Note that n can take

on integer and half integer values, and that in General Relativity, p0.5N= 0, see

e.g. Blanchet [2014] and references therein.

The pN approximation for the change in GW frequency, df/dt is given by

several authors, e.g. up to p1.5N by Cutler and Flanagan [1994] and up to p2N by

Blanchet et al. [1995]; Poisson and Will [1995]. Consider a compact binary with

GW frequency f , component masses m
1

, m
2

at a distance D from the observer.

From Eq (1.57), one can write the GW strain as

h ⇠ A cos(⇡f
GW

t), (1.74)

where A ⇠ f
2/3
GW

M5/3Q(angles)/D is the GW amplitude, cf. Eq (1.62), and

Q(angles) contains the geometric parameters of the binary (right asenction, dec-

lination, orbital inclination). If the total angular momentum of the binary is L̂,

and each compact object has a spin Ŝ
1

, Ŝ
2

, the pN approximation for the change

in the GW frequency ḟ
GW

to p2N order is
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df
GW

dt
=

96

5
⇡8/3M5/3f

11/3
GW



1�
✓

743

336
+

11

4
⌘

◆

(⇡Mf
GW

)2/3 + (4⇡ � �) (⇡Mf
GW

)

+

✓

34103

18144
+

13661

2016
⌘ +

59

18
⌘2 + �

◆

(⇡Mf
GW

)4/3 + · · ·
�

(1.75)

where

� =
1

12

2

X

i=1



113
⇣mi

M

⌘

2

+ 75⌘

�

L̂ · Ŝi , (1.76)

� =
⌘

48

h

�247
⇣

Ŝ
1

· Ŝ
2

⌘

+ 721
⇣

L̂ · Ŝ
1

⌘⇣

L̂ · Ŝ
2

⌘i

. (1.77)

For more details on this, the “Taylor F2” expansion, see e.g. Blanchet [2014];

Buonanno et al. [2009]. Note that the chirp mass M dominates the Newtonian

contribution, and the symmetric mass ratio ⌘ enters the expansion at p1N. Con-

tributions from the spins enter at p1.5N via the � term, hence this order is usually

called the “spin-orbit” coupling. In this case, the coupling is between the spin of

the compact object and the orbital angular momentum, L̂ · Ŝi. The p2N contri-

bution is called the “spin-spin” contribution, as this term includes the interaction

of the binary’s spins with each other, Ŝ
1

· Ŝ
2

.

The maximum value of Eq (1.76) is achieved for an equal mass binary when

its spins Ŝi are aligned with the orbital angular momentum L̂, such that

�
max

=
2

12

"

113

✓

1

2

◆

2

+ 75

✓

1

4

◆

#

=
47

6
⇡ 7.83. (1.78)

The maximum value of Eq (1.77), �, is also achieved for an equal mass binary

with spins aligned with the total angular momentum:

�
max

=
1

48

1

4
(�247 + 721) =

474

192
⇡ 2.47 . (1.79)

The pN approximation is truncated at p2N since higher order terms will be further
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suppressed by factors of v2n. Recall from Eqs (1.13) and (1.75) that

v
p

1

N

= (⇡Mf
GW

)2/3 ⇡ 8.4⇥ 10�3

✓

M

109M�

◆

2/3 ✓
f
GW

50 nHz

◆

2/3

, (1.80)

v
p

1.5
N

= (⇡Mf
GW

) ⇡ 7.7⇥ 10�4

✓

M

109M�

◆✓

f
GW

50 nHz

◆

, (1.81)

v
p

2

N

= (⇡Mf
GW

)4/3 ⇡ 7.1⇥ 10�5

✓

M

109M�

◆

4/3 ✓
f
GW

50 nHz

◆

4/3

. (1.82)

A multiplicative factor of (4⇡� �) ⇠ 5, Eq (1.75), boosts the contribution to the

p1.5N term, for optimal �, cf. Eq (1.76), to ⇠ 10�3, which is comparable to the

p1N term. For optimal alignments and mass ratios, the p2N contribution gains

an additional factor of order 10, cf. Eqs (1.75) and (1.77), however, it is still at

least an order of magnitude smaller than the p1.5N contribution.

1.3 Supermassive Black Holes

Supermassive black holes (SMBHs) in the range 106 � 109 M� are found in the

centres of most nearby galaxies, cf. e.g. Ferrarese and Ford [2005]; Magorrian

et al. [1998]. Moreover, studies by e.g. Ghez et al. [2005] indicate that the centre

of our own Milky Way hosts a ⇠ 4⇥106 M� SMBH, see e.g. the review by Genzel

et al. [2010]. The focus of this section will be on SMBH binaries, and how galaxy

mergers– and therefore SMBHB mergers– can lead to GWs in the PTA band.

The origin of SMBHs is still a very active area of research: there are currently

three main competing theories on their formation, with the SMBH progenitors

commonly referred to as “seeds”, e.g. Volonteri [2010], which are summarized in

Fig 1.3. The first theory proposes that SMBH seeds form from Pop III stars which

collapse into BHs with masses in the range of 100�300M�, see e.g. Alvarez et al.

[2009]; Whalen and Fryer [2012], top evolutionary track in Fig 1.3. The second

theory claims that 104 � 106M� seeds form directly from baryon collapse in dark

matter halos e.g. Regan and Haehnelt [2009]; Shang et al. [2010]; Wise et al.

[2008], see middle evolutionary track in Fig 1.3. The third competing argument

presented in Djorgovski et al. [2008] supports the formation of 104�106M� SMBH

seeds from the relativistic collapse of the first star clusters, see lower evolutionary
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Figure 1.3: The three principal black hole seed theories, from Volonteri [2012].

track of BH seeds in Fig 1.3. Low frequency GW signatures from these seeds (or

the lack thereof) will be a useful tool to distinguish between the aforementioned

theories, e.g. Arun et al. [2009]; Sesana et al. [2004, 2007]; Volonteri [2010].

The current paradigm is that these massive black holes grow by accretion and

mergers, e.g. King [2003]; Volonteri [2010, 2012] and references therein. Observa-

tions of distant active galactic nuclei, e.g. Haehnelt and Rees [1993], imply that

SMBHs were also common in the past. If, as the current paradigm suggests, the

SMBH host galaxy experiences many mergers during its lifetime, see e.g. Peebles

[1982]; White and Rees [1978], then SMBHBs are the natural product of cosmic

evolution.

Observational evidence for SMBHBs exists in the quasar OJ287: a 12 yr

light structure arises from the SMBHB system where a secondary SMBHB, m
2

=

1.4⇥108M�, perturbs the accretion disc of the primary SMBH,m
1

= 1.8⇥1010M�

at regular intervals, causing increased emission in the jet, see Kidger et al. [1992];

Sillanpaa et al. [1988]; Valtonen et al. [2008, 2012]. Other observational signatures

of SMBHB systems are outlined in e.g. Roedig et al. [2014].

The following calculations show that GWs emitted by SMBHBs during their

coalescence history span a frequency range that extends from the nHz to µHz
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regime, accessible via Pulsar Timing Array experiments.

Consider a pair of non-spinning, or Schwarzschild SMBHs. The maximum

frequency of the GWs emitted by the binary is emitted at the innermost stable

circular orbit (ISCO), at f
max

:

f
max

=
1

⇡63/2M
⇠ 4.4⇥ 10�6

✓

M

109 M�

◆�1

Hz, (1.83)

A frequency of 10�6 Hz is ⇠1/week– the high-frequency limit of PTAs. Assuming

that a SMBHB is 106 yr from coalescence (tc = 0), one can scale the GW frequency

of the binary using Eq (1.72):

f
GW

(t) = 7.1⇥ 10�8

✓ M
4.4⇥ 108 M�

◆�5/8 ✓
t

106 yr

◆�3/8

Hz . (1.84)

Therefore, PTAs can access GWs generated by SMBHBs starting from 106 yrs

before coalesce to ISCO, or equivalently, in the frequency range

7.1⇥ 10�8

✓ M
4.4⇥ 108 M�

◆�5/8✓
t

106 yr

◆�3/8

Hz f 4.4⇥ 10�6

✓

M

109 M�

◆�1

Hz .

(1.85)

These binaries are at orbital separations r of

r(t) = 9.6⇥ 10�3

✓

µ

2.5⇥ 108 M�

◆

1/4 ✓
M

109 M�

◆

1/2 ✓
t

106 yr

◆

1/4

pc , (1.86)

cf. Eq (1.73), and have a GW strain magnitude, Eq (1.62) of

h ⇠ 5⇥ 10�16

✓ M
109 M�

◆

5/3 ✓
DL

1 Gpc

◆�1

✓

f
GW

10�8 Hz

◆

2/3

(1.87)

where M is the redshifted value of the chirp mass, M = M(1 + z) at redshift z

corresponding to the luminosity DL distance of 1 Gpc.

Pulsar Timing Arrays can access GW in the nHz-µHz frequency band, and

therefore it is clear that SMBHBs are are excellent GW source candidates.
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Figure 1.4: Contribution of di↵erent redshift intervals to the build-up of the GW
signal at two di↵erent frequencies, f = 8⇥10�9 Hz and 10�7 Hz, computed using
Monte Carlo sampling (solid lines) and a semi-analytical approach (dotted lines).
In each panel, the upper histograms refer to f = 8 ⇥ 10�9 Hz and the lower
histograms refer to f = 10�7 Hz. Figure and caption reproduced from Sesana
et al. [2008]’s Fig 4.

1.4 The Stochastic Gravitational Wave Back-

ground from SMBHBs

The cosmic population of SMBHBs is expected to form a di↵usive GW back-

ground, which may soon be detected by PTAs. To show that the background is

truly stochastic, one can do a simple order of magnitude estimate for the num-

ber of sources N in a frequency interval �f = 1/T
obs

, where T
obs

is the total

observation time of a PTA, typically 10 yrs. We wish to estimate

�N =
dN

df
�f =

dN

dt

✓

df

dt

◆�1

�f , (1.88)
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and letting f = f
GW

, ḟ
GW

/ M5/3
c f

11/3
GW

by Eq (1.71). Therefore

�N / M�5/3
c f

�11/3
GW

�f
dN

dt
. (1.89)

To roughly estimate dN/dt, one needs to estimate the number of galaxies in the

Universe, N
gal

⇠ 1011, cf. Beckwith et al. [2006], the number of major mergers

each galaxy undergoes, N
merger

(order of a few, see e.g. Conselice et al. [2003])

and the age of the Universe, which is taken to be a Hubble time, H�1

0

. Using

these ingredients, one may write down an order of magnitude estimate of dN/dt:

dN

dt
⇠ N

gal

⇥N
merger

H
0

(1.90)

⇠ 1011 galaxies⇥ 1 merger/galaxy

1010 yr
(1.91)

⇠ 10 mergers/yr. (1.92)

We can now write down an order of magnitude estimate of the number of sources

�N in a frequency interval �f :

�N ⇠ 3.7⇥ 1012
✓ Mc

109 M�

◆�5/3 ✓
f
GW

10�8 Hz

◆�11/3 ✓
T
obs

10 yr

◆�1

✓

dN/dt

10 merg/yr

◆

.

(1.93)

It is clear that �N � 1. One may therefore safely assume that a stochastic GW

background exists.

1.4.1 The characteristic strain

In stochastic GW background searches, the amplitude of the GW background is

usually given in terms of a characteristic strain, hc = A(f
GW

/1yr�1)↵, where ↵ =

�2/3 for SMBHBs. In this section, the reason for the ↵ = �2/3 scaling relation

will be made clear via arguments presented in Phinney [2001]. In other words,

Phinney’s theorem implies that the energy density in GWs per log frequency

interval is equal to the product of the comoving number density of event remnants

and the redshifted energy that each event produced, per log frequency interval.

Let fr be the GW frequency in the source’s rest frame such that fr = f
GW

(1+
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z), for some redshift z and frequency f
GW

observed at the Earth. The total energy

emitted in GWs between frequencies fr and fr + dfr is

dEgw

dfr
dfr. (1.94)

Next, let N(z)dz be the number of events per unit of comoving volume occurring

between redshift z and z+dz. Define ⌦gw(f) to be the present day GW energy

density per logarithmic frequency interval f , divided by the critical energy density

⇢c = 3H2

0

/(8⇡) needed to close the Universe, i.e.

⌦gw(f) ⌘ 1

⇢c

d⇢gw(f)

d ln f
, (1.95)

where ⇢gw is the GW energy density. The total present day energy in GWs is

therefore:

"gw ⌘
Z 1

0

⇢c⌦gw(f)d ln f ⌘
Z 1

0

⇡

4
f 2h2

c(f)
df

f
, (1.96)

where hc is the characteristic amplitude of the GW spectrum over a logarithmic

frequency interval. Note that hc is related to the 1-sided (0 < f < 1) spectral

density Sh,1 of the GW background by h2

c(f) = fSh,1. The present day energy

density "gw must be equal to the sum of the energy densities radiated at each

redshift, divided by a factor of (1 + z) to account for gravitational redshifting

since the time of emission. We can therefore write the "gw as:

"gw =

Z 1

0

Z 1

0

N(z)
1

1 + z

dE

dfr
fr
dfr
fr

dz. (1.97)

Since fr = f(1 + z), one can write dfr/fr = df/f and simplify:

"gw =

Z 1

0

Z 1

0

N(z)
1

1 + z
fr
dE

dfr

df

f
dz. (1.98)

Equating Eqs (1.96) and (1.98) one can write down Phinney [2001]’s main theo-

rem:

⇢c⌦gw(f) =
⇡

4
f 2h2

c(f) =

Z 1

0

N(z)
1

1 + z

✓

fr
dEgw

dfr

◆

dz. (1.99)

This is the main result, which implies that the energy density in GWs per log
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frequency interval is equal to the product of the comoving number density of event

remnants and the redshifted energy that each event produced, per log frequency

interval. For the purposes of PTAs, we are interested in how this result can help

us to estimate the magnitude of the characteristic strain of the stochastic GW

background, hc(f), generated by the incoherent superposition of SMBHBs.

In the following paragraphs, the amplitude A of the characteristic strain is

estimated at a reference frequency of 1/yr�1: hc(f) = A(f/1 yr�1)�2/3.

In the Newtonian limit, let us consider a circular binary with chirp mass M,

Eq (1.8). Such a binary, which merges due to GW emission in less than a Hubble

time, has

dEgw

dfr
=

dE

dt

✓

dfr
dt

◆�1

=
⇡

3

M5/3

(⇡fr)1/3
, (1.100)

using Eqs (1.65) and (1.71), and assuming that the binary’s separation is small

enough that it merges within a Hubble time. Substituting Eq (1.100) into

Eq (1.98) gives the scaling relations for ⌦gw and the characteristic strain hc.

Firstly,

⌦gw(f) =
1

⇢c

Z 1

0

N(z)
1

1 + z



fr
⇡

3

M5/3

(⇡fr)1/3

�

dz , (1.101)

=
8⇡5/3

9H2

0

f 2/3M5/3

Z 1

0

N(z)
1

(1 + z)1/3
dz . (1.102)

Let N
0

=
R1
0

N(z)dz be the present-day comoving number density of merged

remnants and
⌦

(1 + z)1/3
↵

=
1

N
0

Z z
max

z
min

N(z)

(1 + z)1/3
dz . (1.103)

Eq (1.102) can therefore be rewritten as

⌦gw(f) =
8⇡5/3

9H2

0

f 2/3M5/3N
0

⌦

(1 + z)1/3
↵

. (1.104)

Similarly, from Eq (1.99) one can derive an expression for the characteristic strain
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hc(f):

h2

c(f) =
4

⇡

1

f 2

N
0

⌦

(1 + z)1/3
↵ ⇡

3
f

M5/3

(⇡f)1/3
(1.105)

=
4

3
⇡�1/3f�4/3M5/3N

0

⌦

(1 + z)1/3
↵

, (1.106)

and therefore hc / f�2/3. To estimate the amplitude of the characteristic strain,

we require estimates of the black hole chirp mass M, the comoving number

density of merged remnants N
0

and
⌦

(1 + z)1/3
↵

. Phinney [2001] shows that in a

flat Universe, one can expect
⌦

(1 + z)1/3
↵

= 0.74, and that this estimate is not

very sensitive to the cosmology chosen. According to simulations carried out in

Rajagopal and Romani [1995], N
0

= 10�4 Mpc�3. The characteristic strain can

therefore be written as a function of frequency using the aforementioned typical

values for N
0

,
⌦

(1 + z)1/3
↵

. For a SMBHB with m
1

= m
2

= 109M�, and find that

the strain scales as

hc(f) ⇠ 2⇥ 10�16(f/1yr�1)�2/3 . (1.107)

Indeed, when setting a limit on the stochastic GW background, one identifies

the value of the amplitude A of the GW background reported at a reference

frequency at 1/yr�1: hc(f) = A(f/1yr�1)�2/3, see Fig 1.5. The best current limit

on the amplitude A of the characteristic strain of the stochastic isotropic GW

background from SMBHBs is from Shannon et al. [2013], who report a value

of A < 2.4 ⇥ 10�15, at 95% confidence. Other more speculative stochastic GW

background sources, such as cosmic strings and relic GWs, have di↵erent values of

↵. For cosmic strings ↵ = �7/6 and for relic GWs �1  ↵  �0.8, see Grishchuk

[1975]; Maggiore [2000]. Limits on the amplitude of these GW background are

found in e.g. Jenet et al. [2006]; Sanidas et al. [2012]; van Haasteren et al. [2011].

1.5 Pulsar Timing Arrays as Gravitational Wave

Detectors

The detection of GWs is one of the key scientific goals of Pulsar Timing Arrays

(PTAs). A PTA uses a network of radio telescopes to regularly monitor stable
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Figure 1.5: The GW strain spectrum from PTAs in the nHz band to ground-
based laser interferometers in the kHz band. Note the lack of sensitivity in the
PTA band to frequencies of 1/yr– this is due to solar system ephemeris errors.
Pulsar TOA fitting processes remove low-frequency information, making PTAs
less sensitive to the lower frequency limit of the PTA band. Image reproduced
from Demorest et al. [2009].

millisecond pulsars, constituting a galactic-scale GW detector, cf. Ferdman et al.

[2010]; Hobbs et al. [2010]; Jenet et al. [2009]; Verbiest et al. [2010]. Gravitational

radiation a↵ects the propagation of radio pulses between a pulsar and a telescope

at the Earth. The di↵erence between the expected and actual time-of-arrival

(TOA) of the pulses – the so-called timing residuals – carries information about

the GWs, cf. Detweiler [1979]; Estabrook and Wahlquist [1975]; Sazhin [1978],

which can be extracted by correlating the residuals from di↵erent pulsar pairs.

1.5.1 Neutron Stars and Pulsars

Neutron stars were first theorized by Baade and Zwicky [1934a,b], almost imme-

diately after the discovery of the neutron by Chadwick [1932]. Detailed calcu-
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lations of their structure were performed soon thereafter, see e.g. Oppenheimer

and Volko↵ [1939], however, neutron stars were not actually discovered until 1967,

when S. J. Bell1, under the supervision of A. Hewish, discovered the first evidence

for pulsars, reported in Hewish et al. [1968]. This would earn Hewish and Ryle

the Nobel Prize for Physics in 1974, see Nobelprize.org [1974] for details.

Pulsars are neutron stars with their spin axis misaligned with their magnetic

field axis, Fig 1.6. They have been used to provide the most stringent tests of

General Relativity and alternative theories of gravity (e.g. Kramer et al. [2006];

Lyne et al. [2004b] and references therein) and have provided stringent evidence

that GW exist– e.g. Taylor and Weisberg [1982]; Kramer and Wex [2009]. Pulsars

can be characterized by their period P and spin-down rate, or period derivative,

Ṗ . According to Lorimer and Kramer [2012] and references therein, the general

pulsar population has a typical period and spin-down rate of P ⇠ 0.5 s and

Ṗ ⇠ 10�15 ss�1. With these two quantities one can define the characteristic age

of a pulsar, ⌧ = P/(2Ṗ ), which for the above typical values yields a characteristic

age of ⇠ 107 yr, and a typical magnetic field strength B /
p

PṖ ⇠ 1012 G.

Of particular interest to this body of work are millisecond pulsars (MSPs)–

pulsars with P ⇠ 3 ms and Ṗ ⇠ 10�20 ss�1, first discovered by Backer et al.

[1982]. MSPs are “old pulsars” with weaker magnetic fields, here ⌧ ⇠ 109 yr and

B ⇠ 108 G, which were spun-up by mass transfer up by a companion, such as

a white dwarf or a main sequence star. In fact, 80% of all MSPs are found in

binary systems. Weaker magnetic fields cause less glitches, and therefore MSPs

tend to be the most stable timers of all pulsars.

Each radio pulse received form a pulsar has its own profile. In order to get

a typical signal, one needs to integrate over a certain time which may vary from

pulsar to pulsar. The integration process is a coherent addition of many pulses

which becomes very stable over time with small TOA errors. The Hulse-Taylor

pulsar PSR 1916+13, for example, can be profiled for 5 mins and the resulting

TOA error is 20µs or less.

Stable TOAs, and hence small timing residuals, are important for detecting

GWs, since the strain PTA are sensitive to goes as the timing residual �t over

1now Dame (Susan) Jocelyn Bell Burnell, DBE, FRS, FRAS
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Figure 1.6: A rotating neutron star with its spin axis misaligned with its magnetic
field axis, called a pulsar. Electromagnetic radiation centred on the magnetic field
axis is produced above the surface of the pulsar. Due to the misalignment of the
magnetic and rotational axes, pulsars are often referred to as cosmic lighthouses,
since the received light appears to pulse as the beam crosses our line of sight.

the observation time T
obs

,

h ⇠ �t

T
obs

. (1.108)

The characteristic strain of the GW background from SMBHBs has been es-

timated to be hc ⇠ 10�15, therefore to detect the stochastic background, one

would require pulsars with residuals of the order

�t ⇠ 3.2⇥ 10�7

✓

hc

10�15

◆✓

T
obs

10 yr

◆

s , (1.109)

or roughly 300 ns.

The MSP TOAs are typically transformed to the solar system barycentre

(SSB), described in detail in Sec 1.5.2, as to be in an inertial reference frame

with the pulsar. To accurately model a TOA, one needs to take into account

various time delays in the radio pulse: the Roemer delay, Shapiro delay, Einstein
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delay, the interaction with the interstellar medium (ISM), and even the rotation

of the Earth on its axis induces daily modulations of R�/c ⇠ 21 ms. These e↵ects

are now briefly described– more details can be found in e.g. Maggiore [2007].

The Roemer delay of a pulse, denoted �R,�, is caused by the position of the

Earth in the Solar System: if the Earth is in the direction of the pulsar, the pulse

arrives early by a factor of t
0

. If the Earth is on the opposite side of its orbit,

then the pulse signal arrives later by a factor of t
0

with respect to the Sun.

The Einstein delay�E,� accounts for the time dilation from the moving pulsar

and the gravitational redshift caused by solar system objects, such as the sun and

the planets. This delay could also arise due to the presence of a binary companion,

since most MSPs are in binary systems.

The Shapiro delay �S,� is the extra time required by the pulses to travel

through the curved space-time containing massive objects such as the sun, planets

and/or the MSP’s companion, see e.g. NRAO [2014]. For example, a pulse grazing

the surface of the sun would have a Shapiro delay of �S,� ⇡ 120µs, three orders

of magnitude larger than the residual required, cf. Eq (1.109).

The final time delay to be considered here is due to the ISM. The ISM is

primarily composed of gases and dust, thus having an e↵ective refractive index

which changes the frequency of the radio pulses coming from the pulsar. A radio

pulse with frequency ⌫ travels with a group velocity vg:

vg ' c

✓

1� nee
2

2⇡me⌫2

◆

, (1.110)

where ne is the electron number density, me is the electron mass and e is the

electron charge, e.g. Maggiore [2007]; NRAO [2014]. Therefore, the travel time

over a distance L would be

Z L

0

dl

vg
' L

c
+

✓

e2

2⇡mec

◆

Z L

0

nedl. (1.111)

From Eq (1.111) a quantity called the Dispersion Measure (DM) is defined, cf.

e.g. Lorimer and Kramer [2012], where DM ⌘ R L

0

nedl. As the DM is not known

a priori, it becomes one of the dimensions of the parameter space in which we

perform data analysis of the signal, cf. e.g. van Haasteren et al. [2011]. This is
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the final correction missing from the general formula to find the time of arrival

of a pulse at the SSB, tSSB. By defining

tSSB = ⌧obs � D

⌫2

+�E,� +�R,� ��S,�, (1.112)

where D = e2/(2⇡mec)DM, we have established a coordinate time at which the

signal recorded by our laboratory clock on Earth at ⌧obs would have arrived if

the absence of the gravitational potential of the solar system and the interaction

with the ISM. Now the time delay depends only on the properties of the source.

Indeed, most pulsar su↵er from “timing noise”, described in e.g. Perrodin et al.

[2013], which limits the accuracy of their root-mean-square timing residuals.

The 300 ns accuracy, see Eq (1.109), is currently achievable in only a few

MSPs, such as J0437�4715– see e.g. Lorimer [2008]; Verbiest et al. [2008], which

is the best known timer.

1.5.2 PTA response to Gravitational Waves

GWs perturb the null geodesics of the radio waves travelling from the pulsar to

the Earth, so changes in the TOAs could signal the presence of a GW. Let us

consider a source emitting gravitational radiation in the PTA regime and consider

a GW metric perturbation hµ⌫(t) in the transverse and traceless (TT) gauge, see

Sec 1.1.3 for details. Recall that i, j = x, y, z are the spatial indices.

Information about the source is encoded in 2 independent polarization ampli-

tudes: h
+

(t) and h⇥(t). We write

hij(t, ⌦̂) = e+ij(⌦̂)h+

(t, ⌦̂) + e⇥ij(⌦̂)h⇥(t, ⌦̂) , (1.113a)

hij(f, ⌦̂) = e+ij(⌦̂)h+

(f, ⌦̂) + e⇥ij(⌦̂)h⇥(f, ⌦̂). (1.113b)

The polarization tensors eAij(⌦̂) are uniquely defined once one specifies the wave
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principal axes described by the unit vectors m̂ and n̂:

e+ij(⌦̂) = m̂im̂j � n̂in̂j , (1.114a)

e⇥ij(⌦̂) = m̂in̂j + n̂im̂j . (1.114b)

Following the steps outlined in Anholm et al. [2009]; Detweiler [1979] but

giving more detail, we will now derive the 2-pulse response function of a PTA to

a GW. Starting with a metric perturbation in the ⌦̂ = ẑ direction described by

hµ⌫(t, ⌦̂ = ẑ), which will be referred to as hµ⌫(t � z) from here on, we can look

at the background described by

gµ⌫ = ⌘µ⌫ + hµ⌫(t� z) (1.115)

=
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We then consider a null vector, sµ, in Minkowski space-time, then in perturbed

space-time so that sµ ! �µ according to

�µ = sµ � 1

2
⌘µ⌫hµ⌫s

�, (1.117)

which is obtained from the linearized equations of motion in a TT gauge. The null

vector in Minkowksi space-time that points from the pulsar to the solar system

barycentre is

sµ = ⌫(1,�↵,��,��), (1.118)

where ↵, �, � are the direction cosines of x, y, z, respectively. The corresponding

perturbed vector, �µ, is calculated from Eq (1.117). The first 2 components are

calculated explicitly as an example. Using Eq (1.117) one can find:

�t = st � 1

2
⌘t⌫h⌫�s

�, (1.119)
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but from Eq (1.115) it is clear that only ⌘tt gives a non-zero value, so we write

�t = st � 1

2
⌘ttht�s

� = 1, (1.120)

since the first row of the hµ⌫ matrix is all zero. Therefore �t = ⌫. It is less trivial

to calculate �x:

�x = sx � 1

2
⌘x⌫h⌫�s

� (1.121)

= �↵� 1

2
(⌘xtht�s

� + ⌘xxhx�s
� + . . . ) (1.122)

= �↵� 1

2
(0� ↵h

+

� �h⇥) (1.123)
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✓

1� 1

2
h
+

◆

+
�

2
h⇥. (1.124)

The other components are calculated similarly and the final vector is

�µ = ⌫

0

B
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@
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1� 1
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+

�
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+

�
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2
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1

C
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C

A

. (1.125)

Radio pulses from the pulsars follow geodesics through space-time. The geodesic

equation, cf. e.g. Maggiore [2007], with a�ne parameter � tells us that

d�t

d�
= ��t

µ⌫�
µ�⌫ , (1.126)

where

�t
µ⌫ = �1

2
gt�

✓

@g⌫�
@xµ

+
@gµ�
@x⌫

� @gµ⌫
@x�

◆

. (1.127)

Letting the indices vary, the only non-vanishing term is

� 1

2
gtt

✓

�@gµ⌫
@xt

◆

=
1

2
ġµ⌫ , (1.128)
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and so

�t
µ⌫ =

1

2

0

B

B

B

B

@

0 0 0 0

0 ḣ
+

ḣ⇥ 0

0 ḣ⇥ �ḣ
+

0

0 0 0 0

1

C

C

C

C

A

. (1.129)

The geodesics can then be written in terms of the spatial indices only, i, j:

d�t

d�
= �1

2
ġij�

i�j (1.130)

= �1

2
[ġxx�

x�x + 2ġxy�
x�y + ġyy�

y�y] (1.131)

= �1

2

⇥

ġxx(�
x)2 + ġyy(�

y)2
⇤� ġxy�

x�y, (1.132)

and gxx, gxy, gyy and their derivatives can be computed from Eq (1.115), yielding

� ḣ
+

2

⇥

(�x)2 � (�y)2
⇤� 1

2
ḣ⇥�

x�y. (1.133)

Using Eq (1.125) we can substitute the values of �i :

(�x)2 � (�y)2 =

"

�↵

✓

1� 1

2
h
+

◆

2

+
1

2
�h⇥

#

2

� (�y)2, (1.134)

and after some algebra and to leading order in h:

(�x)2 � (�y)2 = ⌫2(↵2 � �2) +O(h) and �x�y = ⌫2↵� +O(h). (1.135)

Since �t = ⌫ from Eq (1.125), the following is obtained by Eqs (1.126), (1.133):

d⌫

d�
= �1

2
ḣ
+

⌫2(↵2 � �2)� ḣ⇥⌫
2↵�. (1.136)

Recall that hA = hA(t� z), where A = +,⇥ and ⌫ = dt/d�, @hA/@z = �@hA/@t

and dz/d� = �⌫�. Now write the time derivatives as derivatives with respect to

�:
dh

d�
=

@hA

@t

dt

d�
+

@hA

@z

dz

d�
. (1.137)
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Making the above substitutions gives us an expression for dhA/dt:

dhA

d�
=

✓

@hA

@t

◆

⌫ +
@hA

@t
(�⌫�) (1.138)

ḣA =
dhA

d�

1

⌫(1 + �)
. (1.139)

Substituting Eq(1.139) back into Eq(1.136) and simplifying:

� 1

⌫

d⌫

d�
=

dh
+

d�

(↵2 � �2)

1 + �
+

dh⇥

d�

↵�

1 + �
. (1.140)

Let us define �hA = hp
A � he

A. This can be thought of as the di↵erence between

the metric perturbation at the pulsar, called the “pulsar term” with space-time

coordinates (tp, ~xp), and the receiver has space-time coordinates (t, ~x). Integrating

the above equation and expanding to first order in �hA:

⌫(t)

⌫
0

' 1� 1

2

(↵2 � �2)

1 + �
�h

+

� ↵�

1 + �
�h⇥. (1.141)

Therefore, for an observer at the SSB, the frequency is shifted according to

the 2-pulse function

z(t, ⌦̂) ⌘ ⌫(t)� ⌫
0

⌫
0

=
1

2

(↵2 � �2)

1 + �
�h

+

+
↵�

1 + �
�h⇥, (1.142)

where ⌫(t) is the received frequency at the SSB.

1.5.3 Timing Residuals from a Stochastic GWBackground

We will now briefly examine what happens when we combine the contributions

from GWs in N di↵erent directions, ⌦̂n. As before, we consider a metric perturba-

tion, hµ⌫ in a TT gauge which is the sum of hn
µ⌫ metric perturbations. Explicitly

we can write

hµ⌫ =
N
X

n

hn
µ⌫(t� ⌦̂n · ~x), (1.143)

where t and ~x form xµ: a 4-vector in a Minkowski background. As before, let us

define a null vector in Minkowski space, sµ = dxµ/d� = ⌫(1,�↵,��,��) which
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we will now call ⌫(1,�p̂). The null geodesic perturbed by hµ⌫ is described by

�µ = sµ + �sµ. We are again interested in describing the geodesics defined in Eq

(1.127), which result in �t
µ⌫ = 1

2

ġµ⌫ = 1

2

ḣµ⌫ . Therefore

d�t

d�
= �1

2
ḣµ⌫�

µ�µ (1.144)

= �1

2
ḣµ⌫(s

µ + �sµ)(s⌫ + �s⌫) (1.145)

= �1

2
ḣµ⌫s

µs⌫ , (1.146)

and since sµ = ⌫(1,�p̂) we can simplify the above expression to

d�t

d�
= �1

2
ḣij⌫

2p̂ip̂j , (1.147)

where i, j are spatial indices. We now wish to write the right-hand side of

Eq(1.147) in terms of d�, which can be done by using Eq (1.137):

dhn
µ⌫(t� ⌦̂n · ~x)

d�
=

@hn
µ⌫(t� ⌦̂n · ~x)

@t

dt

d�
+

@hn
µ⌫(t� ⌦̂n · ~x)
@(⌦̂n · ~x)

d(⌦̂n · ~x)
d�

=
@hn

µ⌫(t� ⌦̂n · ~x)
@t

⌫ � @hn
µ⌫(t� ⌦̂n · ~x)

@t

d~x

d�
⌦̂n

=
@hn

µ⌫(t� ⌦̂n · ~x)
@t

✓

⌫ � ⌦̂n
d~x

d�

◆

. (1.148)

Recall however that d~x/d� = ⌫ · (�p̂), and therefore the full expression can then

be written as

dhn
µ⌫(t� ⌦̂n · ~x)

d�
=

@hn
ij(t� ⌦̂n · ~x)⌫(1 + ⌦̂n · p̂)

@t
. (1.149)

Substituting Eq (1.149) into Eq (1.147) gives an expression with derivatives in

terms of �, and for simplicity, we write hn
ij(t� ⌦̂n · ~x) = hn

ij(t, ⌦̂n):

d�t

d�
= �1

2

"

dhn
ij(t, ⌦̂n)

d�

1

⌫(1 + ⌦̂n · p̂)

#

⌫2p̂ip̂j (1.150)
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⌫

d⌫

d�
= �1

2

dhn
ij(t, ⌦̂n)

d�

p̂ip̂j

1 + ⌦̂n · p̂
, (1.151)

which can be readily integrated to yield

z(t, ⌦̂) ⌘ ⌫(t)� ⌫
0

⌫
0

=
N
X

n

1

2

p̂ip̂j

1 + ⌦̂n · p̂
�hn

ij(t, ⌦̂n) (1.152)

where

�hij(t, ⌦̂) ⌘ hij(t, ⌦̂)� hij(tp, ⌦̂) (1.153)

is the di↵erence between the metric perturbation at the Earth hij(t, ⌦̂), the so-

called Earth term, with coordinates (t, ~x), and at the pulsar hij(tp, ⌦̂), the so-

called pulsar term, with coordinates (t
p

, ~xp).1 The fractional frequency shift over

the entire sky (for a stochastic GW background) is obtained by integrating Eq

(1.152) is:

z(t) =

Z

d⌦̂z(t, ⌦̂). (1.154)

and the observable quantity in PTAs in the timing residual, obtained from inte-

grating the fractional frequency shift:

r(t) =

Z t

dt0z(t0). (1.155)

The timing residuals are then cross-correlated to search for stochastic GW

background signals. This is procedure is outlined in the following section.

1Note that the equivalent expression in Anholm et al. [2009], Eq. (9), has a sign error, as
acknowledged by the authors, see the discussion of Eq (29) in e.g. Book and Flanagan [2011].
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1.6 The Overlap Reduction Function

Let us consider a plane wave expansion for the metric perturbation hij(t, ~x) pro-

duced by a stochastic background:

hij(t, ~x) =
X

A

Z 1

�1
df

Z

S2

d⌦̂ hA(f, ⌦̂) e
i2⇡f(t�ˆ

⌦ · ~x) eAij(⌦̂) , (1.156)

where f is the frequency of the GWs, the index A = + ,⇥ labels the two in-

dependent polarizations, the spatial indices are i, j = 1, 2, 3, the integral is on

the two-sphere S2, and our sign convention for the Fourier transform g̃(f) of a

generic function g(t) follows the GW literature convention

g̃(f) =

Z

+1

�1
dt g(t) e�i2⇡ft . (1.157)

The unit vector ⌦̂ identifies the propagation direction of a single gravitational

wave plane, that can be decomposed over the GW polarization tensors eAij(⌦̂)

and the two independent polarization amplitudes, see Eqs (1.113a), (1.113b),

(1.114a), (1.114b). For a stationary, Gaussian and unpolarized background the

polarization amplitudes satisfy the following statistical properties:

hh⇤
A(f, ⌦̂)hA0(f 0, ⌦̂0)i = �2(⌦̂, ⌦̂0)�AA0�(f � f 0)H(f)P (⌦̂) , (1.158)

where h · i is the expectation value and �2(⌦̂, ⌦̂0) = �(cos ✓ � cos ✓0)�(� � �0)

is the covariant Dirac delta function on the two-sphere, cf. Finn et al. [2009].

This condition implies that the radiation from di↵erent directions are statisti-

cally independent. Moreover, we have factorized the power spectrum such that

P (f, ⌦̂) = H(f)P (⌦̂), where the function H(f) describes the spectral content

of the radiation, and P (⌦̂) describes the angular distribution of the GW energy

density on the sky. For now we assume that this is isotropic.

The search for a stochastic GW background contribution in PTA data relies

on looking for correlations induced by GWs in the residuals from di↵erent pul-

sars. These correlations in turn depend on the spectrum H(f) of the radiation,

cf. Eqs (1.158), and the antenna beam pattern convolved with the angular distri-
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bution P (⌦̂) of the GW energy density in the sky, which is described below. For

now, we consider P (⌦̂) = 1, the isotropic case, however a more general treatment

is given in Chapter 2.

The cross-correlated timing residuals enter into the likelihood function through

the evaluation of the overlap reduction function (ORF)– a dimensionless function

which quantifies the response of the pulsar pairs to the stochastic GW back-

ground. The ORF is in turn a function of the frequency of the GW background,

the distance to each pulsar, and the angular separation of each pulsar pair and

is usually normalized such that pulsar pairs with zero angular separation have a

maximal detector response of 1 for an isotropic distribution of GW energy density.

To write down the ORF, we consider a frame in which

tp = te � L = t� L ~xp = Lp̂ , (1.159a)

te = t ~xe = 0 , (1.159b)

where the indices “e” and “p” refer to the Earth and the pulsar and L is the

distance to the pulsar. In this frame we can therefore write Eq (1.153) using

Eq (1.113b)

�hij(t, ⌦̂) =
X

A

Z 1

�1
dfeAij(⌦̂) hA(f, ⌦̂) e

i2⇡ft
h

1� e�i2⇡fL(1+ˆ

⌦ · p̂)i .

(1.160)

The fractional frequency shift produced by a stochastic background is simply

given by integrating Eq. (1.152) over all directions. Using Eqs (1.160) and (1.154),

we obtain:

z(t) =

Z

d⌦̂ z(t, ⌦̂)

=
X

A

Z 1

�1
df

Z

S2

d⌦̂FA(⌦̂)hA(f, ⌦̂)e
i2⇡ft

h

1� e�i2⇡fL(1+ˆ

⌦ · p̂)i(1.161)
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where FA(⌦̂) are the antenna beam patterns for each polarization A, defined as

FA(⌦̂) =



1

2

p̂ip̂j

1 + ⌦̂ · p̂ eAij(⌦̂)

�

. (1.162)

Regardless of whether the analysis is carried out in a frequentist framework, and

therefore one considers a detection statistic, see e.g. Anholm et al. [2009], or

one builds a Bayesian analysis, e.g. van Haasteren et al. [2009], the key physical

quantity that is exploited is the correlation of the timing residuals for every pair

of pulsars timed by a PTA.

The expected value of the correlation between a residual r(t), see Eq (1.155),

from a pulsar, say a, at time tj, with that from a di↵erent pulsar, say b, at time

tk depends on terms of the form:

hr⇤a(tj)rb(tk)i =

⌧

Z tj

dt0
Z tk

dt00z⇤a(t
0)zb(t

00)

�

=

⌧

Z tj

dt0
Z tk

dt00
Z

+1

�1
df 0

Z

+1

�1
df 00z̃⇤a(f

0)z̃b(f
00) e�i2⇡(f 0t0�f 00t00)

�

=

Z tj

dt0
Z tk

dt00
Z

+1

�1
dfe�i2⇡f(t0�t00)H(f) (ab)�(f). (1.163)

In analogy with Allen and Romano [1999], we define the quantity in the previous

equation that depends on the relative location of the pulsars in the PTA, and the

angular distribution of the GW energy density as the overlap reduction function:

(ab)�(f) ⌘
Z

d⌦̂ab(f, ⌦̂)

"

X

A

FA
a (⌦̂)F

A
b (⌦̂)

#

, (1.164)

where

ab(f, ⌦̂) ⌘
h

1� ei2⇡fLa(1+ˆ

⌦ · p̂a)i h1� e�i2⇡fLb(1+
ˆ

⌦ · p̂b)i . (1.165)

In Eq (1.163), the frequency spectrum of the background, whether from SMB-

HBs or other sources or processes in the early Universe, is described by the func-

tion H(f), and (ab)�(f) contains information about the angular distribution of
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GW background power. Under the assumption that the background is isotropic,
(ab)�(f) is a known function that simply depends on the location of the pulsars

timed by the array.

In this case, the overlap reduction function (ORF) (1.164) becomes:

(ab)�(f) =

Z

d⌦̂ab(f, ⌦̂)
X

A

FA
a (⌦̂)F

A
b (⌦̂) , (1.166)

which is the result derived by Hellings and Downs [1983] and is known (up to a

normalization constant) as the Hellings and Downs curve, which will be calculated

explicitly in Sec 1.7. Eq (1.166) can be further simplified if one assumes that many

radiation wavelengths separate the pulsars from the Earth and from each other,

i.e. that fL � 1. If this is the case, the contribution from ab quickly converges

to zero, such that Eq (1.166) becomes and Earth-term-only expression, except

for the auto-correlation, when pulsar a = pulsar b. In this instance, the GWs

add coherently at the pulsar, and ab ⇠ 2. Therefore in general ab ⇡ 1 + �ab.

This concept is further explored in Sec 2.3, and Chapter 3 explores where this

assumption breaks down.

1.7 The Hellings and Downs Curve

For a pair of pulsars a and b, the we define a reference frame by first placing

pulsar a on the z-axis and pulsar b in the x � z plane. One can explicitly write

geometry as follows:

p̂a = (0, 0, 1), (1.167a)

p̂b = (sin ⇣, 0, cos ⇣), (1.167b)

⌦̂ = (sin ✓ cos�, sin ✓ sin�, cos ✓), (1.167c)

m̂ = (sin�,� cos�, 0), (1.167d)

n̂ = (cos ✓ cos�, cos ✓ sin�,� sin ✓), (1.167e)
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where ⇣ is the angular separation of the two pulsars, cos ⇣ = p̂a · p̂b, see Fig 1.7.

In this frame F⇥
a = 0, and Eq. (1.164) reduces to

(ab)�m
l = (1 + �ab)

Z

S2

d⌦̂F+

a (⌦̂)F+

b (⌦̂). (1.168)

It is now straightforward to compute the antenna beam patterns, FA
a and FA

b :

F⇥
a = 0, (1.169a)

F+

a = �1

2
(1� cos ✓), (1.169b)

F⇥
b =

(sin� sin ⇣)(cos ✓sin ⇣cos��sin ✓cos ⇣)

1+cos ✓cos ⇣ + sin ✓sin ⇣ cos�
, (1.169c)

F+

b =
1

2

(sin� sin ⇣)2�(sin ⇣cos ✓cos�� sin ✓cos ⇣)2

1+cos ✓ cos ⇣ + sin ✓ sin ⇣ cos�
. (1.169d)

Substituting Eq. (1.169) into Eq. (1.168), the overlap reduction functions become:

(ab)� = �1

4
(1 + �ab)

⇥
Z ⇡

0

d✓ sin ✓

Z

2⇡

0

d�
(1� cos ✓)[(sin� sin ⇣)2�(sin ⇣cos ✓cos�� sin ✓cos ⇣)2]

1 + sin ⇣ sin ✓ cos�+ cos ⇣ cos ✓
.

(1.170)

One can write Eq (1.170) as the sum of two integrals:

(ab)� =
1

4
(Q+R)(1 + �ab) , (1.171)

where

Q = N

Z ⇡

0

d✓ sin ✓(1�cos ✓)

Z

2⇡

0

d�(1�cos ⇣cos ✓�sin ⇣sin ✓ cos�)(1.172)

where N = 1/
p
4⇡ and

R = �2N sin2 ⇣

Z ⇡

0

d✓ sin ✓(1� cos ✓)I , (1.173)
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Figure 1.7: The “computational” reference frame: pulsar a is on the z-axis at a
distance La from the origin, pulsar b is in the x-z plane at a distance Lb from the
origin making an angle ⇣ with pulsar a, ⌦̂ is the direction of GW propagation and
m̂⇥ n̂ = ⌦̂. The polar and azimuthal angles are given by ✓ and �, respectively.

where

I ⌘
Z

2⇡

0

d�
sin2 �

1 + cos ⇣cos ✓ + sin ⇣sin ✓ cos�
. (1.174)

Evaluating Eqs (1.173) and (1.172), one obtains

Q =
1p
4⇡

Z ⇡

0

d✓ sin ✓(1� cos ✓)

Z

2⇡

0

d�(1� cos ⇣ cos ✓ � sin ⇣ sin ✓ cos�),

=
2⇡p
4⇡

Z ⇡

0

d✓ sin ✓(1� cos ✓)(1� cos ✓ cos ⇣),

=
p
4⇡

✓

1 +
cos ⇣

3

◆

. (1.175)

When solving for R, note that the “I” integral, Eq (1.174), is evaluated via contour

integration in Anholm et al. [2009]. In this work, a symbolic program was used
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to evaluate it1. Integrating Eq (1.174), one obtains

I = 2⇡
1 + cos ⇣ cos ✓ � | cos ⇣ + cos ✓|

sin2 ⇣ sin2 ✓
(1.176)

I = 2⇡

8

<

:

⇣

1�cos ⇣
sin

2 ⇣

⌘

�

1�cos ✓
sin

2 ✓

�

, 0 < ✓ < ⇡ � ⇣
⇣

1+cos ⇣
sin

2 ⇣

⌘

�

1+cos ✓
sin

2 ✓

�

, ⇡ � ⇣ < ✓ < ⇡
(1.177)

The final form of Eq (1.173) is therefore

R = �
p
4⇡



(1� cos ⇣)

Z ⇡�⇣

0

d✓
(1� cos ✓)2

sin ✓
� (1 + cos ⇣)

Z ⇡

⇡�⇣

d✓ sin ✓

�

,

=
p
4⇡(1� cos ⇣)4 ln

✓

sin
⇣

2

◆

. (1.178)

Using Eq (1.171), one may write the isotropic solution to Eq (1.170):

(ab)� =

p
⇡

2



1 +
cos ⇣

3
+ 4(1� cos ⇣) ln

✓

sin
⇣

2

◆�

(1 + �ab) . (1.179)

This equation is the Hellings and Downs curve up to a multiplicative factor

4
p
⇡/3, which is used to normalize the curve such that it has a maximum value

of 1.0 at ⇣ = 0, i.e. pulsar a = pulsar b.

Note that for an isotropic stochastic GW background, the detector response

for ⇣ = 0 is twice that of ⇣ = ⇡, see Fig 1.8. Considering the response to an

incoming GW at some angle ✓ may help one to understand this observation. If

⇣ = 0, which is the case for coincident and co-aligned pulsars (i.e. a = b), the

antenna beam pattern, Eq (1.169), is given by

F+

a F+

b =
1

2
(1� cos ✓)

1

2
(1� cos ✓) (1.180)

=
1

4
(1� cos ✓)2. (1.181)

Note that in this particular geometry, there is no � dependence. Integrating this

1Note that there is a sign typo in Anholm et al. [2009]’s appendix in the equation above
C9 (it does not have a number). Eq (1.176) has the correct sign. This was first reported in
Mingarelli et al. [2013]
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Figure 1.8: The overlap reduction function for an isotropic stochastic GW back-
ground, called the Hellings and Downs curve.

response over d⌦̂ = sin ✓d✓ gives

1

4

Z ⇡

0

d✓ sin ✓(1� cos ✓)2 =
2

3
. (1.182)

When ⇣ = ⇡, the antenna beam pattern is given by

F+

a F+

b =
1

2
(1� cos ✓)

1

2
[1� cos(⇡ � ✓)] (1.183)

=
1

4
sin2 ✓ , (1.184)

and integrating over ✓ yields

1

4

Z ⇡

0

d✓ sin ✓(sin2 ✓) =
1

3
. (1.185)

It is therefore clear that particular geometries are more (or less) sensitive to
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stochastic background signals. Note that this is an Earth-term-only argument,

and does not take into account the pulsar term which adds an additional factor

of 2 to the ORF at ⇣ = 0.

More generally, this dependence can be explained in terms of the alignment of

the GW direction, ⌦̂ and the position of the pulsar, p̂, see Fig 1.7. The product

⌦̂ · p̂ enters into the ORF via the antenna beam patterns given in Eq (1.162),

where F+

a,b / (1+ ⌦̂ · p̂)�1, and ab, Eq (1.165). When ⌦̂ is parallel or antiparallel

to p̂, ⌦̂ · p̂ = ±1.

When ⌦̂ · p̂ = �1, the photons emitted from the pulsar surf the GWs, and

there is no redshift. This surfing e↵ect can be seen mathematically when consid-

ering the metric perturbation including the pulsar term: since the signal at the

Earth is the same as the signal at the pulsar, �hij(t, ⌦̂) = 0, cf. Eq (1.153). Note

however that the ORF is integrated over the whole sky, and this is just one piece

of the integration.

One may also be concerned with the case where ⌦̂ · p̂ = 1, since there appears

to be a divergence in the antenna beam pattern caused by zero division. If

however the complete antenna beam pattern is considered, then

F+

a = �1

2

sin2 ✓

1 + cos ✓
= �1

2
(1� cos ✓) , (1.186)

which is just Eq (1.169), where the numerator has been computed from pipje+ij =

� sin2 ✓ for pulsar a on the z-axis. When ⌦̂ · p̂ = 1, then ✓ = 0 and F+

a =

0. Note as well that in this case the photons from the pulsar travel over the

maximum number of radiation wavelengths, fL, resulting in a significant amount

of “stretching and squashing”, cf. Figs 1.2, 1.7. The additional phases introduced

by the GW then largely cancel out, limiting the detector response.

1.8 Thesis Summary

Detecting a stochastic gravitational wave background, particularly radiation from

individually unresolvable SMBHB systems, is one of the primary targets for Pul-

sar Timing Arrays. Increasingly more stringent upper limits are being set on

these signals under the assumption that the background radiation is isotropic.

46



However, some level of anisotropy may be present and the characterization of

the gravitational wave energy density at di↵erent angular scales carries impor-

tant information. In Chapter 2, we show that the standard analysis for isotropic

backgrounds can be generalized in a conceptually straightforward way to the case

of generic anisotropic background radiation by decomposing the angular distribu-

tion of the gravitational wave energy density on the sky into multipole moments.

We introduce the concept of generalized overlap reduction functions which char-

acterize the e↵ect of the anisotropy multipoles on the correlation of the timing

residuals from the pulsars timed by a Pulsar Timing Array. In a search for a signal

characterized by a generic anisotropy, the generalized overlap reduction functions

play the role of the so-called Hellings and Downs curve used for isotropic ra-

diation. We compute the generalized overlap reduction functions for a generic

level of anisotropy and Pulsar Timing Array configuration. We also provide an

order of magnitude estimate of the level of anisotropy that can be expected in

the background generated by SMBHB systems.

Current stochastic background searches assume that pulsars in a PTA are

separated from each other and the Earth by many GW wavelengths, and that all

pulsars lie at the same distance L from the Earth. As more millisecond pulsars

are discovered and added to PTAs, some may indeed be separated by less than

a radiation wavelength, resulting in correlated GW phase changes between close

pulsars in the array. In Chapter 3 we investigate how PTA overlap reduction

functions (ORFs), up to quadrupole order, are a↵ected by these additional corre-

lated phase changes, and how these correlated phase changes are in turn a↵ected

by relaxing the assumption that all pulsars are equidistant from the Earth. We

find that in the low frequency GW background limit of f = 10�9 Hz, and for pul-

sars at varying distances from the Earth, that these additional correlations only

a↵ect the ORFs by a few percent for pulsar pairs at large angular separations,

as expected. However when nearby (order of 100 pc) pulsars are separated by

less than a radiation wavelength in the low frequency limit, the correlated phase

changes can introduce variations of up to a factor of about three in the magnitude

of the ORF. These correlated phase changes rapidly converge to zero, however

this convergence is slower particularly for the quadrupole (l = 2) ORFs. We

write down a small angle approximation for the correlated phase changes which
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can easily be implemented in search pipelines, and for completeness, examine the

behaviour of the ORFs for pulsars which lie at a radiation wavelength from the

Earth.

In Chapter 4, we show that the detection of gravitational radiation from

individually resolvable super-massive black hole binary systems can yield direct

information about the masses and spins of the black holes, provided that the

gravitational-wave induced timing fluctuations both at the pulsar and at the

Earth are detected. This in turn provides a map of the non-linear dynamics of

the gravitational field and a new avenue to tackle open problems in astrophysics

connected to the formation and evolution of super-massive black holes. We discuss

the potential, the challenges and the limitations of these observations.

Conclusions and work in progress are presented in Chapter 5.
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Chapter 2

CHARACTERIZING

GRAVITATIONAL WAVE

STOCHASTIC BACKGROUND

ANISOTROPY WITH PULSAR

TIMING ARRAYS

This chapter is based on: C. M. F. Mingarelli, T. Sidery, I. Mandel, A. Vecchio,

“Characterizing stochastic gravitational wave background anisotropy with pulsar

timing arrays”, Physical Review D, Vol 88, 062005 (2013), cited as Mingarelli

et al. [2013]. I wrote the draft of this paper, derived all of the generalized overlap

reduction functions, examined the behaviour of the pulsar term, wrote the codes

and made all of the figures.

2.1 Introduction

The detection of gravitational waves (GWs) is one of the key scientific goals of Pul-

sar Timing Arrays (PTAs). A PTA uses a network of radio telescopes to regularly

monitor stable millisecond pulsars, constituting a galactic-scale GW detector Fer-

dman et al. [2010]; Hobbs et al. [2010]; Jenet et al. [2009]; Verbiest et al. [2010].
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Gravitational radiation a↵ects the propagation of radio pulses between a pulsar

and a telescope at the Earth. The di↵erence between the expected and actual

time-of-arrival (TOA) of the pulses – the so-called timing residuals – carries infor-

mation about the GWs Detweiler [1979]; Estabrook and Wahlquist [1975]; Sazhin

[1978], which can be extracted by correlating the residuals from di↵erent pulsar

pairs. This type of GW detector is sensitive to radiation in the 10�9 � 10�7 Hz

frequency band, a portion of the spectrum in which a promising class of sources

are super-massive black hole binary (SMBHB) systems with masses in the range

of ⇠ 107 � 109M� during their slow, adiabatic in-spiral phase Ja↵e and Backer

[2003]; Rajagopal and Romani [1995]; Sesana [2013]; Sesana et al. [2008, 2009];

Wen et al. [2011]; Wyithe and Loeb [2003]. Other forms of radiation could be

observable by PTAs, such as cosmic strings Kuroyanagi et al. [2013]; Pshirkov

and Tuntsov [2010]; Sanidas et al. [2012] and/or a background produced by other

speculative processes in the early universe, see e.g. Zhao [2011].

A PTA can be thought of as an all-sky monitor that is sensitive to radiation

from the whole cosmic population of SMBHBs radiating in the relevant frequency

band. The overwhelming majority of sources are individually unresolvable, but

the incoherent superposition of the very weak radiation from the many binaries

in the population gives rise to a stochastic background1 whose detection is within

reach of current or planned PTAs Sesana [2013]; Sesana et al. [2008]; Siemens et al.

[2013]. In addition, some of the binaries may be su�ciently luminous to stand out

above the di↵use background level and could be individually observed Sesana and

Vecchio [2010]; Yardley et al. [2010]. The search for GWs from a SMBHB back-

ground Demorest et al. [2013]; Hellings and Downs [1983]; Jenet et al. [2006]; van

Haasteren et al. [2011] and from individual resolvable sources Babak and Sesana

[2012]; Ellis et al. [2012a,b]; Jenet et al. [2004]; Lee et al. [2011]; Yardley et al.

[2010] has recently catalysed the PTA GW search e↵ort, and it is plausible that in

the next 5 to 10 years GWs could indeed be detected. If not, stringent constraints

can be placed on aspects of the assembly history of SMBHBs Koushiappas and

Zentner [2006]; Malbon et al. [2007]; Volonteri et al. [2003]; Yoo et al. [2007].

In all the searches carried out so far, it has been assumed that the stochastic

1It would be more appropriate to call this radiation a foreground, but to be consistent with
the established terminology we will keep referring to it as a background.
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background, regardless of its origin, is isotropic Demorest et al. [2013]; Hellings

and Downs [1983]; Jenet et al. [2006]; van Haasteren et al. [2011]. This is well

justified if the background is produced by some physical processes in the early

universe or is largely dominated by high-redshift sources. Under the assumption

of isotropy, the correlated output from the data from any two pulsars in the

array depends only on the angular separation of the pulsars and is known as

the Hellings and Downs curve Hellings and Downs [1983]. However, a PTA also

carries information about the angular distribution of the GW power on the sky. It

is therefore important to address how this information is encoded in the data, and

the implications for analysis approaches. In fact, if evidence for a signal is found

in the data, testing the assumption of isotropy could be one of the methods to

confirm its cosmological origin. If, on the other hand, one expects some deviations

from isotropy, which may be the case for the SMBHB background created by a

finite population, e.g. Cornish and Sesana [2013]; Ravi et al. [2012], it is useful

to be able to extract constraints on the underlying physical population.

In this paper we show how the correlated output from pulsar pairs in a PTA

is related to the anisotropy of the signal, i.e. the angular distribution of GW

power on the sky, and how one can extract this information by measuring the

multipole moments that characterise the anisotropy level, following an analogous

approach to those applied to the case of ground-based Allen and Ottewill [1997]

and space-based Cornish [2002] laser interferometric observations. By doing this,

we generalize the Hellings and Downs curve to an arbitrary angular distribution

on the sky. We also provide an estimate for the expected level of anisotropy for

the background produced by an arbitrary population of sources, and in particular,

the population of SMBHB systems.

The paper is organized as follows. In Section 2.2, we estimate the expected

level of anisotropy in a background produced by a population of SMBHB systems.

We show that at low frequencies, where the PTA sensitivity is optimal and the

number of sources that contribute to the background is very large, the expected

level of anisotropy is small, and likely undetectable. However towards the high-

frequency end of the sensitivity window, where the actual number of sources

decreases sharply, the anisotropy level could be significant, increasing at smaller

angular scales. In Section 2.3 we show that the present analysis approaches for
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isotropic backgrounds can be generalized in a conceptually straightforward way

to the case of anisotropic signals by decomposing the angular distribution of the

GW power on the sky into multipole moments. We introduce the concept of

generalized overlap reduction functions, which replace the Hellings and Downs

curve. Each one of these characterizes the e↵ect of a given anisotropy multipole

on the correlation of the timing residuals from a pulsar pair. In Section 2.4 we

derive expressions for the generalized overlap reduction functions for an arbitrary

stochastic background angular distribution on the sky and PTA configuration.

This is essential for future analyses of PTA data which include anisotropy as part

of the model. Section 2.5 contains our conclusions and suggestions for future

work.

2.2 Approximate level of anisotropy in the stochas-

tic GW background

Until now, it has been assumed that the stochastic GW background is isotropic.

We now relax this assumption: each direction on the sky need not contribute

to the stochastic GW background in the same way, and the function P (⌦̂) de-

scribes this angular dependence (the “hot” and “cold” spots). As in Allen and

Ottewill [1997], we decompose the angular distribution function on the basis of

the spherical harmonic functions,

P (⌦̂) ⌘
X

lm

cml Y
m
l (⌦̂) , (2.1)

where the sum is over 0  l < +1, and |m|  l. The coe�cients cml are the mul-

tipole moments of the radiation which characterise the angular distribution of the

background. We adopt the convention that the monopole moment is normalized

as

c0
0

=
p
4⇡ . (2.2)

The angular distribution of the radiation is encoded in the values of the radi-

ation multipole moments cml , which become unknown parameters in the analysis.

In Section 2.4 we will show how the cml ’s enter the likelihood function of PTA
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timing residuals, and how an arbitrary angular distribution a↵ects the correla-

tion of radiation at any two pulsars timed by an array. This provides a way of

measuring the multipole moments. In the remainder of this Section we provide

an estimate of the expected level of anisotropy in a background generated by the

population of SMBHB systems.

In order to gain some insight into this problem, let us consider an idealized

situation, constructed as follows. Let us assume that the universe is populated

by identical sources with number density n. If we want to estimate the level

of anisotropy, we need to estimate the expected value of the energy density in

GWs coming from sources in a solid angle d⌦ centred on a direction ⌦̂ and

compare it to the energy density produced by sources in a cone centred on a

di↵erent direction ⌦̂0. For this example we consider a Euclidean, static universe

(or equivalently su�ciently nearby sources, such that we do not take into account

e↵ects of expansion and redshift).

In a conical volume dV = D2dDd⌦ within the solid angle d⌦ and at distance

between D and D+ dD, the expected number of sources which contribute to the

background is:

dN = nD2dDd⌦ . (2.3)

The actual number of sources is then governed by Poisson statistics, with mean

µ = dN and variance �2 = dN . If the volume dV is su�ciently small that

dN ⌧ 1, then the probability of finding one source is

P (1) = dNe�dN ⇡ dN. (2.4)

Since the probability of having more than one source within this volume is neg-

ligible, the probability of finding no sources is simply 1� P (1) = 1� dN .

The expected total number of sources, µN , present in the whole volume within

a solid angle d⌦ between the minimum and maximum distance, Dm and DM ,

respectively (to be discussed later), is given by the sum of the contributions from

each slice in the cone. Similarly, the variance �2

N is the sum of the variances from
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each conical slice. We therefore obtain

µN = �2

N =

Z DM

Dm

nD2dDd⌦ , (2.5a)

=

✓

n
4⇡

3
D3

M

◆ ✓

d⌦

4⇡

◆

"

1�
✓

Dm

DM

◆

3

#

. (2.5b)

We now want to compute the expected contribution to the GW energy density

per frequency interval and its variance. The GW energy density of each source

scales as 1/D2. If we assume that all the sources are identical – the generalization

to a distribution of masses is straightforward, but is not needed to explain the

key points – we can write (with slight abuse of notation) the contribution to the

energy density per source simply as

d⇢
gw

dN
=

A

D2

, (2.6)

where A is an appropriate constant factor, equal for all sources.

The expected GW energy density from sources in a small conical volume dV at

distance D, again chosen so that it has a vanishingly small probability of having

more than one source, dN ⌧ 1, see Eqs. (2.3) and (2.4), is

dµ
gw

(D) ⇡ P (1)
d⇢

gw

dN
⇡ dN

A

D2

= nAdDd⌦ , (2.7)

The variance of the energy density from sources in this conical volume is

d�2

gw

(D) ⇡ P (1)

✓

d⇢
gw

dN

◆

2

� (dµ
gw

(D))2 ⇡ nA2

D2

dDd⌦, (2.8)

where the last equality relies on the consistent application of the condition dN ⌧
1 (which can always be satisfied by choosing a su�ciently small shell thickness

dD).

We can now compute the expected contribution to the GW energy density µ
gw

and its variance �2

gw

from all sources in a solid angle d⌦. The mean energy density

and variance are given by the sum of contributions from all slices of thickness dD;
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using Eqs. (2.7) and (2.8), this yields:

µ
gw

=

Z DM

Dm

dµ
gw

(D)

dD
dD , (2.9a)

= nAd⌦

Z DM

Dm

dD , (2.9b)

= nADM



1� Dm

DM

�

d⌦ , (2.9c)

and, using the fact that the variance of a sum is the sum of variances,

�2

gw

=

Z DM

Dm

d�2

gw

(D)

dD
dD , (2.10a)

= nA2d⌦

Z DM

Dm

dD

D2

, (2.10b)

= nA2



DM �Dm

DMDm

�

d⌦ . (2.10c)

We define the level of anisotropy as the ratio of the standard deviation in the

GW power emanating from a given solid angle to the expected power from that

angle:

�
gw

µ
gw

= (nd⌦)�1/2 [(DM �Dm)DMDm]
�1/2

=
�

nD3

Md⌦
��1/2

✓

1� Dm

DM

◆

Dm

DM

��1/2

. (2.11)

We can now return to the choice of the minimal and maximal distance, Dm and

DM . The maximal distance at which sources can be located is set by cosmology

and the history of SMBH formation. Meanwhile, the minimal distance of interest

to us, Dm, corresponds to the maximal distance at which individual binaries can

be resolved. Individually resolvable binaries can be subtracted from the data,

and are treated separately from the stochastic background. An individual source

can be e�ciently searched for with matched filtering techniques, see e.g. Babak

and Sesana [2012]; Ellis et al. [2012a,b]; Petiteau et al. [2013]. Therefore, we

expect the power necessary to detect a single SMBH binary to be significantly
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less than the power necessary to measure a stochastic background. Thus, in

order for a stochastic background to be detectable after all individual sources

that are presumed to be detectable up to distance Dm are removed, the total power

in the background must be significantly greater than the power in the weakest

individually resolvable source:

4⇡nADM



1� Dm

DM

�

� A

D2

m

. (2.12)

Another way to interpret the preceding condition is to consider the idealized sit-

uation when the stochastic background provides the dominant noise source: opti-

mal matched filtering would make it possible to individually resolve and subtract

coalescing SMBH binaries with signal power far below the noise (background)

levels.

We can recast the condition on the detectability of a stochastic background,

Eq. (2.12), as
�

nD3

M

�

✓

Dm

DM

◆

2



1�
✓

Dm

DM

◆�

� 1 . (2.13)

If we define y ⌘ Dm/DM , where 0  y  1, this condition yields

�

nD3

M

�

y2 (1� y) � 1 , (2.14)

where nD3

M is the total number of sources in the universe, modulo a factor of

order unity. We can now rewrite the level of anisotropy (2.11) in the following

form:

�
gw

µ
gw

=

⇢✓

1

d⌦

◆ 

y

(nD3

M) (1� y)y2

��

1/2

(2.15a)

=

✓

4⇡

d⌦

◆

↵(y)

N
0

�

1/2

, (2.15b)

where N
0

= (4⇡/3)nD3

M(1 � y3) is the total number of sources that contribute

to the background and ↵(y) ⌘ (y2 + y + 1)/(3y). Note that by virtue of con-

dition (2.14), the second term in Eq.(2.15a) is always smaller than unity when-

ever the stochastic background is detectable, and is actually ⌧ 1. The level of
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anisotropy scales as N
�1/2
0

, and increases by going to small angular scales d⌦.

However, there is an observational limit on the angular resolution of PTAs which

will prevent very small angular scales from being probed. Furthermore, at smaller

angular scales, the signal will be progressively dominated by a smaller number

of, possibly individually unresolvable, sources. The number of sources in a cone

of solid angle d⌦ is

µN =
nD3

Md⌦

3

"

1�
✓

Dm

DM

◆

3

#

, (2.16a)

=
d⌦

3

�

nD3

M

�

(1� y3), (2.16b)

=

✓

d⌦

4⇡

◆

N
0

. (2.16c)

When this quantity is larger but notmuch larger than unity, we expect to be in the

middle ground between searches for individual sources and standard stochastic-

background searches. If this occurs on resolvable angular scales where anisotropy

is significant (cf. Eq. (2.15a) and Eq. (2.18) below), it will be interesting to check

the e�ciency of current search pipelines in this regime.

Using the results from e.g. Sesana et al. [2008] we can provide an order-of-

magnitude estimate of the expected level of anisotropy that characterizes the

SMBHB background. From Figure 4 of Sesana et al. [2008], reproduced in Fig

1.4 we can see that the total number of sources that contribute in a frequency

interval of width T
obs

, where T
obs

is the observation time, can be approximated

as:

N
0

⇡ 5⇥ 105
✓

f

10�8 Hz

◆�11/3 ✓

5 yr

T
obs

◆

, (2.17)

where we used the fact that, during a SMBHB inspiral, the time the binary spends

in a given frequency band scales as dt/df / f�11/3, Eq (1.71). Substituting

Eq. (2.17) into Eq. (2.15b) and converting between the average angular scale d⌦
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and the multipole moment index l using d⌦ = 4⇡/2l, we obtain:

�
gw

(f)

µ
gw

(f)
⇡ 3⇥ 10�3

✓

f

10�8 Hz

◆

11/6✓5 yr

T
obs

◆�1/2✓
l

2

◆

1/2

↵1/2 ,

⇡ 0.2

✓

f

10�7 Hz

◆

11/6✓5 yr

T
obs

◆�1/2✓
l

2

◆

1/2

↵1/2 . (2.18)

There will be few SMBHBs beyond redshift ⇠ 5, and individual sources are

likely to be resolvable up to redshift⇠ 1, so sources that contribute to the stochas-

tic background are within redshift range ⇡ 1–5, see e.g. Sesana et al. [2008] and

Fig 1.4. Therefore, both y and ↵ will be factors of order unity. We have confirmed

this with a more careful calculation that takes cosmology and the redshifting of

gravitational waves into account; however, we note that our simplified treatment

relied on a constant density (rate) of coalescing SMBHBs in the Universe, and on

a fixed amplitude at a given frequency for all sources, which corresponds to the

assumption of a fixed source mass.

As expected, the level of anisotropy at low frequencies and large angular scales

is small. However, it can become non-negligible, at the tens of percent level, at

frequencies ⇠ 10�7 Hz.

2.3 Anisotropic stochastic backgrounds

For an anisotropic background, whose angular power spectrum is unknown, P (⌦̂)

is a function of the unknown angular power distribution on the sky. We can gen-

eralize the concept of the overlap reduction function, Eq (1.164), by decomposing

P (⌦̂) on the basis of spherical harmonic functions according to Eq. (2.1). The

weight of each of the components is given by an unknown coe�cient cml , which

needs to be determined by the analysis. The overlap reduction function (1.164)

therefore becomes
(ab)�(f) =

X

lm

cml
(ab)�m

l (f) (2.19)

where

(ab)�m
l (f) ⌘

Z

d⌦̂Y m
l (⌦̂)ab(f, ⌦̂)

"

X

A

FA
a (⌦̂)F

A
b (⌦̂)

#

(2.20)
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are the (complex-form) generalized overlap reduction functions. Given an array

of pulsars on the sky, the functions (ab)�m
l are uniquely defined and known.

The generalization of e.g. the standard Bayesian analysis for an isotropic

stochastic background such as the one reported in van Haasteren et al. [2009] to

the case in which the assumption of isotropy is relaxed is, at least conceptually,

straightforward. The model parameters that describe the stochastic background

are not only those that enter the frequency spectrum H(f) – for example the over-

all level and spectral index in the common case of a power-law parametrization of

H(f), appropriate for the background from SMBHBs – but also the coe�cients

that describe the angular distribution on the sky, that is, how much power is

associated to each spherical harmonic decomposition of the overall signal. An

initial implementation of this analysis is reported in Taylor and Gair [2013].

Before we compute the expressions for the generalized overlap reduction func-

tions, it is important to consider the function ab(f, ⌦̂), defined in Eq. (1.165) and

present in Eqs. (1.164) and (2.20), which introduces the frequency dependence of

the overlap reduction functions. From a physical point of view ab(f, ⌦̂) encodes

the fact that the correlation of the timing residuals carries information about

both the Earth and pulsar terms for the two pulsars whose timing residuals are

correlated. The relevant scale in the function ab(f, ⌦̂) is

2⇡fL(1 + ⌦̂ · p̂) = 6.5⇥ 103
✓

f

10�8 Hz

◆✓

L

1 kpc

◆

(1 + ⌦̂ · p̂) , (2.21)

which introduces rapid oscillations around unity, cf. Anholm et al. [2009], that

depend on the distance and location to the pulsars. For all astrophysically rel-

evant situations fL � 1, see Eq. (3.1), and when one computes the integral in

Eq. (2.20) the frequency dependent contributions to the integral rapidly average

out to zero as the angle between the pulsar pairs, ⇣, increases. The generalized

overlap reduction function Eq. (2.20) is therefore well approximated by

(ab)�m
l ' (1 + �ab)

Z

d⌦̂Y m
l (⌦̂)

"

X

A

FA
a (⌦̂)F

A
b (⌦̂)

#

, (2.22)

where �ab is the Kronecker delta. We will provide some more details in Sec-

59



2. CHARACTERIZING GRAVITATIONAL WAVE STOCHASTIC
BACKGROUND ANISOTROPY WITH PULSAR TIMING
ARRAYS

tion 2.4.3. Here we note that the approximation (2.22) is equivalent to consid-

ering only the correlation of the Earth-term for two distinct pulsars. As we are

considering many sources over the whole sky then the pulsar terms will only con-

tribute to the correlation if the distance between two pulsars is of the order of

one wavelength or less, and for the frequencies and pulsars being considered this

is only true for auto-correlation. The auto-correlation term carries contributions

from the Earth and pulsar terms, and therefore the value of of the integral is

multiplied by a factor of 2. Note also, that the generalized overlap reduction

function (2.22) does not depend on frequency.

The decompositions (2.19), (2.20) and (2.22) are based on the usual complex-

basis spherical harmonic functions Y m
l (⌦̂), whose definitions are given in Sec-

tion 2.4.2. One can alternatively consider a decomposition on a real basis Ylm(⌦̂),

that are defined in terms of their complex analogs by1:

Ylm =

8

>

<

>

:

1p
2

⇥

Y m
l + (�1)mY �m

l

⇤

m > 0

Y 0

l m = 0
1

i
p
2

⇥

Y �m
l � (�1)mY m

l

⇤

m < 0

(2.23)

Consequently, the real-form generalized overlap reduction functions are:

(ab)�lm =

8

>

<

>

:

1p
2

⇥

(ab)�m
l + (�1)m (ab)��m

l

⇤

m > 0
(ab)�0

l m = 0
1

i
p
2

⇥

(ab)��m
l � (�1)m (ab)�m

l

⇤

m < 0

(2.24)

In the next Section we compute the (ab)�m
l ’s for a generic pulsar pair and discuss

their properties.

2.4 Generalised overlap reduction functions

In this Section we compute the generalized overlap-reduction functions, Eq. (2.22)

for a generic pulsar pair and explore their properties. Anholm et al. [2009] con-

sidered the particular case of the overlap-reduction function between two pulsars

1Here we adopt the convention that the real-form spherical harmonic functions and gener-
alized overlap reduction functions are written with indices l and m in the subscript, whereas in
the complex-from, m is raised as a superscript.
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for radiation described by dipole anisotropy. Here we go beyond, and consider

an arbitrary angular distribution of the background. Our approach is based on

decomposing the power of the GW background at di↵erent angular scales onto

spherical harmonics, cf. Eq. (2.1) and for the specific case of a dipole distribution

we show that our result is equivalent to the one presented in Anholm et al. [2009].

In the case of an isotropic background, pulsar pairs timed by a PTA map

uniquely into the Hellings and Downs curve. That is to say, any pulsar pair

is uniquely identified by an angular separation, which in turn corresponds to

a value of the overlap reduction function. This is no longer the case for an

anisotropic distribution. For a given distribution of the GW power on the sky,

the generalized overlap reduction functions depend on the angular separation

between two pulsars and their specific location in the sky with respect to the

background radiation. Equivalently, if one considers two di↵erent pulsar pairs

with the same angular separation but di↵erent sky locations, the overlap reduction

function that describes the correlation between the two pulsars will be di↵erent.

To illustrate this, we show a selection of the best pulsars currently being timed

by the European Pulsar Timing Array (EPTA), see EPTA [2013]1, in Figure 2.1,

where we plot the real-valued overlap reduction functions, using Eq (2.24), for

the isotropic case and for l = 2 and m = 1. It can clearly be seen that the overlap

reduction function no longer fits a single curve in the anisotropic case.

In our analysis we will closely follow the approach considered by Allen and

Ottewill [1997], who considered the equivalent problem in the case of ground-

based laser interferometers.

2.4.1 Choice of coordinate frames

We introduce a “cosmic rest-frame” where the angular dependency of the anisotropy

is described, and a “computational frame”, in which some of the key expressions

take a particularly simple form, and provide some intuitive clues into the prob-

lem, cf. Eq (1.167). Given any two pulsars, say pulsars a and b, we define the

1These are J0613�0200; J1012+5307; J1022+1001; J1024�0719; J1600�3053; J1640+2224;
J1643�1224; J1713+0747; J1730�2304; J1744�1134; J1853+1303; J1857+0943; J1909�3744;
J1911+1347; J1918�0642; J1939+2134; J2145�0750 and J2317+1439.
These are the current EPTA “Priority 1” pulsars, however the prioritization is subject to change.
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Figure 2.1: The real-value overlap reduction functions �
00

and �
21

for 18 EPTA
pulsars in the cosmic rest-frame. Note that for illustrative purposes, we have not
included the autocorrelation term (⇣ = 0).

computational frame as the frame in which pulsar a is on the z-axis, pulsar b

is in the x � z plane, and their angular separation is denoted by ⇣. This is the

standard frame that is used in e.g. Anholm et al. [2009] to compute the Hellings

and Downs curve for the isotropic case. Therefore, overlap reduction functions

in the computational frame only depend on the pulsar pair’s angular separation,

⇣. We now outline a method where one can rotate from the cosmic rest-frame to

the computational frame, and vice versa, by means of rotation matrices.

Let us consider a generic vector ~v, and let vu (unprimed) be the component

in the cosmic rest-frame and vu
0
(primed) the component in the computational

frame, which will be di↵erent for every pulsar pair. The components of the vector

in the two di↵erent frames are related by:

vu
0

= Rz(�)Ry(�)Rz(↵)v
u,

= R(↵, �, �) vu, (2.25)
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where R(↵, �, �) is the rotation matrix given by:

R(↵, �, �) = (2.26)
0

B

@

cos � sin � 0

� sin � cos � 0

0 0 1

1

C

A

0

B

@

cos � 0 � sin �

0 1 0

sin � 0 cos �

1

C

A

0

B

@

cos↵ sin↵ 0

� sin↵ cos↵ 0

0 0 1

1

C

A

.

Indeed, we must carry out three rotations to go from the cosmic rest-frame to the

computational frame. If the pulsars Pa and Pb in the cosmic rest-frame have polar

coordinates (✓a,�a) and (✓b,�b), respectively, the three angles of the rotations are:

↵ = �a , (2.27a)

� = ✓a , (2.27b)

tan � =
sin ✓b sin(�b � �a)

cos ✓a sin ✓b cos(�a � �b)� sin ✓a cos ✓b
. (2.27c)

The condition on � has two solutions within the range [0,2⇡] and we choose the

one that gives a positive x0 coordinate in the computational frame for Pb.

Having calculated the relevant angles we can apply these to the rotation of

spherical harmonics, where we know from Eq. (4.260) in Arfken [1985]:

Y m
l (⌦̂0) =

l
X

k=�l

Dl
km(↵, �, �)Y

k
l (⌦̂), (2.28)

and

Y m
l (⌦̂) =

l
X

k=�l

⇥

Dl
mk(↵, �, �)

⇤⇤
Y k
l (⌦̂

0), (2.29)

where equations (2.28) and (2.29) rotate from the computational frame into the

cosmic rest-frame, and back to the computational frame, respectively. The matrix

Dl
mk(↵, �, �) is given by Eq. (4.12) in Rose [1957]

Dl
mk(↵, �, �) = e�im↵dlmk(�)e

�ik� , (2.30)
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and for m � k

dlmk(�) =



(l � k)!(l +m)!

(l + k)!(l �m)!

�

1/2 (cos �
2

)2l+k�m(� sin �
2

)m�k

(m� k)!

⇥
2

F
1

✓

m� l,�k � l;m� k + 1;� tan2

�

2

◆

, (2.31)

where
2

F
1

is the hypergeometric Gaussian function. For m < k, dlmk can be

derived from the unitary property, and yields

dlmk(�) = dlkm(��) = (�1)m�kdlkm(�) , (2.32)

as in Eq. (4.15) in Rose [1957]. We also note that the dlmk(�)’s are real. Since
(ab)�m

l in Eq. (2.20) is a function of Y m
l , we can now write the generalized overlap

reduction function in the cosmic rest-frame as

(ab)�m
l (f) =

l
X

k=�l

[Dl
mk(↵, �, �)]

⇤�0k
l (f), (2.33)

where (ab)�0m
l (f) (primed) is the generalized overlap reduction function in the

computational frame.

2.4.2 Generalized overlap reduction functions in the com-

putational frame

In order to compute the generalized overlap reduction function in the cosmic rest-

frame, Eq. (2.20) or (2.24), one needs to compute the relevant function in the

computational frame then rotate it via Eq. (2.33) using the matrix (2.30). Here

we compute the generalized overlap reduction functions in the computational

frame. For ease of notation, we drop the primes, but it understood that in this

section all the analysis is done in the primed, computational frame.

The spherical harmonic function Y m
l (✓,�) of order m and degree l, 0  m  l
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is defined as

Y m
l (✓,�) =

s

(2l + 1)

4⇡

(l �m)!

(l +m)!
Pm
l (cos ✓)eim�, (2.34)

= Nm
l Pm

l (cos ✓)eim�, (2.35)

where 0  ✓  ⇡ is the azimuthal angle and 0  �  2⇡ is the polar angle and

the Pm
l (cos ✓) are the associated Legendre polynomials

Pm
l (x) =

(�1)m

2ll!
(1� x2)m/2 dl+m

dxl+m
(x2 � 1)l , (2.36a)

P�m
l (x) = (�1)m

(l �m)!

(l +m)!
Pm
l (x) , (2.36b)

and

Nm
l =

s

(2l + 1)

4⇡

(l �m)!

(l+m)!
, (2.37)

is the normalization. The Hellings and Downs curve – or equivalently the over-

lap reduction function for an isotropic background – can be derived (up to a

normalization constant) setting l = m = 0, i.e. Y 0

0

= 1/
p
4⇡.

For each pair of pulsars, the computational frame is defined by the geometry

given in Eq (1.167), and in this reference frame Eq. (2.22) reduces to

(ab)�m
l = (1 + �ab)

Z

S2

d⌦̂Y m
l (⌦̂)F+

a (⌦̂)F+

b (⌦̂). (2.38)

With this choice of frame, the generalized overlap reduction functions can

be easily computed. It is worth pointing out that in this frame the �m
l ’s are

real 8l ,m, and therefore ��m
l = (�1)m�m

l since Y �m
l = (�1)m (Y m

l )⇤, where the

star here denotes the complex conjugate. One then need only take into account

the transformation properties of the associated Legendre polynomials defined in

Eq. (2.36).

In Appendix A.1 we provide comprehensive details of the derivations, whereas

here we will just show the main results. For the case l = m = 0, Eq. (2.38), we

obtain the overlap reduction function for the case of an isotropic background,

which was derived in Eq (1.179), up to a multiplicative factor 4
p
⇡/3. In fact

65



2. CHARACTERIZING GRAVITATIONAL WAVE STOCHASTIC
BACKGROUND ANISOTROPY WITH PULSAR TIMING
ARRAYS

the Hellings and Downs curve is normalized in such a way that is unity when

one considers the auto-correlation of the timing residuals form the same pulsar

(a = b and therefore ⇣ = 0). Note that for the isotropic case the rotation from

the computational frame into the cosmic frame has no e↵ect.

More generally, it is rather straightforward to compute analytical expressions

for the case of a dipole (l = 1) anisotropy. In this case the generalized overlap

reduction functions in the computational frame read (cf. Appendix A.1.2):

(ab)��1

1

= �1

2

r

⇡

6
sin ⇣

⇢

1 + 3(1� cos ⇣)



1 +
4

(1 + cos ⇣)
ln

✓

sin
⇣

2

◆��

(1 + �ab),

(2.39a)

(ab)�0

1

= �1

2

r

⇡

3

⇢

(1 + cos ⇣) + 3(1� cos ⇣)



(1 + cos ⇣) + 4 ln

✓

sin
⇣

2

◆��

(1 + �ab),

(2.39b)

(ab)�1

1

= �(ab)��1

1

, (2.39c)

and are shown in Figure 2.2(b). The generalized functions for m = ±1 satisfy

��1

1

= ��1

1

, since m is odd.

Eq. (2.39) are equivalent to the result obtained in Anholm et al. [2009], where

the dipole overlap reduction function is derived for a dipole in the direction:

D̂ = (sin↵a cos ⌘, sin↵a sin ⌘, cos↵a) , (2.40)

where

D̂ · p̂a = cos↵a, D̂ · p̂b = cos↵b, (2.41)

and so

D̂ · p̂b = cos↵a cos ⇣ + sin↵a sin ⇣ cos ⌘. (2.42)

In this case the function that describes the angular distribution in the sky is

P (⌦̂) = D̂ · ⌦̂, therefore :

P (⌦̂) = cos↵a cos ✓ + sin↵a sin ✓ cos(�� ⌘). (2.43)
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Figure 2.2: The Earth-term only, generalized overlap reduction functions �m
l in

the computational frame for l = 0 , 1 , 2 , 3 as a function of the angular separation
of pulsar pairs. In the computational frame, ��m

l = (�1)m�m
l . For the l = 0 case,

�0

0

is the Hellings and Downs curve up to the multiplicative constant 4
p
⇡/3.
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(a) Di↵erence of real parts

0 20 40 60 80 100 120 140 160 180
Angular separation of pulsars, ⇣ [deg]

�0.03

�0.02

�0.01

0.00

0.01

0.02

O
R

F
Im

ag
in

ar
y

pa
rt

,�
m l

�0
0

�0
1

�0
2

(b) Imaginary part

Figure 2.3: Generalized overlap reduction functions (ORF) with the pulsar term.
(a) The di↵erence between the exact solution and the Earth term-only solution for
fL = 10 in the computational frame. These oscillations are already quite small
for ⇣ = 60� and rapidly converge to zero for larger values of ⇣. (b) The value
of the complex component of the pulsar term for fL = 10 in the computational
frame. Recall that the Earth-term only solution is always real, but introducing
the pulsar term gives rise to complex-valued overlap reduction functions, even in
the computational frame. Notice that these oscillations induced by the pulsar
term are at least an order of magnitude smaller than the real part but do not,
however, converge as quickly as the real component. The �0

0

function has no
imaginary component.

Following our approach we can decompose P (⌦̂) onto the basis of spherical har-

monic functions and we obtain:

P (⌦̂) = 2

r

⇡

3
cos↵aY

0

1

(⌦̂)�
r

2⇡

3
(sin↵acos ⌘ � i sin↵asin ⌘)Y

1

1

(⌦̂)

+

r

2⇡

3
(sin↵a cos ⌘ + i sin↵a sin ⌘)Y

�1

1

(⌦̂)

= 2

r

⇡

3

n

cos↵aY10

(⌦̂)�sin↵acos ⌘Y11

(⌦̂)+sin↵asin ⌘Y11

(⌦̂)
o

(2.44)

The dipole overlap reduction function derived in Anholm et al. [2009] (see Eq.
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(C23) in Appendix 2), can therefore be written in terms of a linear combination of

the generalized overlap reduction functions ab��1

1

, ab�0

1

and ab�1

1

, or the analogous

real expressions, and the actual values of the coe�cients c�1

1

, c0
1

and c1
1

returned

by the analysis provide the direction of the dipole moment that describes the

radiation.

It is su�ciently straightforward to derive analytical expressions for the gener-

alized overlap reduction function describing a quadrupole (l = 2) anisotropy (cf.

Appendix A.1.3):

(ab)��2

2

= �2

2

,

(ab)��1

2

= ��1

2

,

(ab)�0

2

=
1

3

r

⇡

5

⇢

cos ⇣+
15

4
(1� cos ⇣)



(1 + cos ⇣)(cos ⇣+3) +8 ln

✓

sin
⇣

2

◆��

(1 + �ab),

(2.45a)

(ab)�1

2

=
1

4

r

2⇡

15
sin ⇣

⇢

5 cos2 ⇣+15 cos ⇣�21�60
(1� cos ⇣)

(1 + cos ⇣)
ln

✓

sin
⇣

2

◆�

(1 + �ab),

(2.45b)

(ab)�2

2

=�1

4

r

5⇡

6

(1�cos ⇣)

(1+cos ⇣)



(1+cos ⇣)(cos2 ⇣+4 cos ⇣ � 9)�24(1�cos ⇣) ln

✓

sin
⇣

2

◆�

⇥ (1+�ab) , (2.45c)

which are shown in Figure 2.2(c). For higher order l the integrals become suf-

ficiently complex that we have not tried to derive analytical expressions. It is

however easy to derive numerically the results, and an example for l = 3 is shown

in Figure 2.2(d).

2.4.3 The pulsar term for generalised overlap reduction

functions

In our analysis we have approximated the generalized overlap reduction function,

Eq. (2.20), as (2.22) because current PTA analysis operates in the regime in which

fL � 1. In other words, we have only considered the Earth-term contribution of
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the background in correlating data from di↵erent pulsars. At any given frequency,

ab(f, ⌦̂) introduces rapid oscillations that depend on the distance and location to

the pulsars and the frequency of the gravitational radiation. When one integrates

over the whole sky, all the possible directions of propagation of the background,

the oscillations average to 1. Physically, this is a consequence of the fact that

PTAs operate in the short-wavelength regime, that is the gravitational wavelength

is much smaller than the distance to the pulsars.

In Anholm et al. [2009] it was shown that Eq. (2.22) is an excellent approxi-

mation for fL � 1 for the isotropic (or monopole) case. The same is true for all

the higher order moments l, and here we provide some examples. Let us consider

l = 0, 1, 2 and the generalized overlap reduction functions which are non-zero at

zero angular separation, that is �0

0

, �0

1

, and �0

2

. The functions which are zero at

⇣ = 0 have a very weak pulsar term dependence and are therefore not considered

here. We will also make the assumption that the distance to both pulsars is the

same.

The Earth term is always real for overlap reduction functions calculated in

the computational frame. By introducing the pulsar term, the overlap reduction

functions are in general complex; in fact, only �0

l is real for all l. The pulsar term

adds oscillations which are at most twice the value of the Earth term for ⇣ = 0

and are quickly attenuated as ⇣ increases. These oscillations can be seen in Figure

2.3(a), which shows the di↵erence between the exact solutions of Eq. (2.20) for

�0

l , where l = 0, 1, 2, and the Earth-term only solutions Eq. (2.20), where we

approximate ab ⇠ 1. Note that these oscillations have almost converged to zero

at ⇣ = 60� for fL = 10. For larger values of fL, the pulsar term oscillations,

such as the ones seen in Figure 2.3(a), become tighter and move to the left.

The imaginary part behaves in a similar oscillatory fashion. The oscillations in

Figure 2.3(b) are at least an order of magnitude smaller than those of the real part,

and can be thought of as a small change in phase. These oscillations converge

much more slowly and in the case of �0

1

they go to zero only at considerable

angular separations.
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2.5 Conclusions

We have considered how an arbitrary level of anisotropy in the GW energy of a

stochastic background a↵ects the correlations of the data from pulsars in PTAs

and the implications for analysis. In fact the characterization of the GW power

at di↵erent angular scales carries important information about the signal.

We have considered the relevant case of the background from SMBHB systems.

We have estimated that the level of anisotropy is small, as one would expect, and

likely undetectable at present/near future sensitivity in the low-frequency region,

where PTAs have optimal sensitivity. The level of anisotropy increases as one goes

to higher frequencies, due to the fact that the e↵ective number of sources which

dominate the signal decreases. Anisotropy may therefore become important in a

regime in which the sources are still individually unresolvable (with the exception

of possibly a few), but the total number may not be su�ciently large to generate

a smooth, di↵use background. This raises interesting questions regarding what is

the optimal analysis strategy in this regime, which needs to be addressed. Sesana

is currently carrying out a detailed study of the anisotropy level that can be

expected from astrophysically realistic populations of SMBHBs.

We have then shown that the present analysis techniques to search for isotropic

stochastic backgrounds can be generalized to arbitrary levels of anisotropy by de-

composing the angular distribution of the GW power on the sky into multipole

moments. We have introduced the generalized overlap reduction functions �m
l

that describe the correlation from the timing residuals from two pulsars for every

(l,m) anisotropy multipole. We have provided ready to use expressions for the

�m
l ’s that can be used in the analysis of the data of the PTAs currently in oper-

ation and that are an essential element of an analysis pipeline aimed at this type

of signal. A Bayesian analysis approach based on the formalism that we have

presented has been developed by Taylor and Gair [2013]. It is also important to

note that some data analysis methods currently use “compression” algorithms to

speed up the processing of the data, see van Haasteren [2013]. As a result of this,

the high frequency sensitivity is compromised. This is the frequency band where

anisotropy is more significant, and therefore future development of data analysis

techniques will need to take this into account.
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Chapter 3

THE EFFECT OF SMALL

PULSAR DISTANCE

VARIATIONS IN STOCHASTIC

GW BACKGROUND

SEARCHES WITH PTAs

This chapter is currently being prepared for publication in Physical Review D as

“C. M. F. Mingarelli and T. Sidery, The e↵ect of small pulsar distance variations

in stochastic gravitational wave background searches with Pulsar Timing Arrays”.

I calculated the magnitude of the overlap reduction functions presented here, the

Taylor series expansion, wrote and executed all the numerical codes used to make

Table 3.1 and all the figures except for the contour plots. I wrote the draft of

this paper, and all the text included here.

3.1 Introduction

Einstein’s theory of gravity has been challenged and tested for almost a century.

Many aspects of the theory have been exhaustively tested but the gravitational

wave (GW) prediction remains extremely challenging to verify directly, although
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indirect evidence supports their existence BICEP2 Collaboration et al. [2014];

Hulse and Taylor [1975]; Kramer and Wex [2009]; Kramer et al. [2006]; Taylor

and Weisberg [1982]. To this end, Hellings and Downs [1983], who built on ideas

proposed by Detweiler [1979]; Estabrook and Wahlquist [1975]; Sazhin [1978],

put forward the idea of a Pulsar Timing Array (PTA). A PTA is a type of GW

detector which uses one or more radio telescopes to regularly monitor a selection

of ultra-stable millisecond pulsars: the propagation time of radio waves from each

pulsar to the Earth is a↵ected by the GW-induced space-time perturbations along

its path. The di↵erence between the expected and actual time-of-arrival of the

radio pulses, called the timing residual, carries information about the GWs which

can be extracted by correlating the residuals from pulsar pairs in the PTA. The

signal received at the Earth is in fact a linear combination of the GW perturbation

at the time when the GW transits at the pulsar, the so-called “pulsar term”, and

then when the GW passes the Earth, called the “Earth term”.

The sensitivity of a PTA to gravitational radiation is set by the total ob-

servation time, normally 10 years, yielding a lower frequency bound of 1/10

yr�1 ⇠ 10�9 Hz. The cadence of observation, typically a few months, gives an up-

per frequency bound of ⇠ 10�7 Hz. A promising class of sources in this frequency

band are supermassive black hole binary (SMBHB) systems with masses in the

range of ⇠ 107 � 109 M� during their slow, adiabatic inspiral phase, cf. Ja↵e

and Backer [2003]; Rajagopal and Romani [1995]; Sesana [2012]; Sesana et al.

[2008, 2009]; Wen et al. [2011]; Wyithe and Loeb [2003]. Other more specula-

tive sources from the early Universe, including cosmic strings Kuroyanagi et al.

[2013]; Pshirkov and Tuntsov [2010]; Sanidas et al. [2012] and relic GWs, see

e.g. Zhao [2011], are also expected to be found in this frequency band. Searches

of increasing sensitivity are currently ongoing in the European PTA (EPTA), e.g.

Ferdman et al. [2010], the Parkes PTA, e.g.Verbiest et al. [2010], and the North

American Nanohertz Gravitational Wave Observatory (NANOGrav), e.g. Jenet

et al. [2009], which together form the International PTA (IPTA), e.g. Hobbs

et al. [2010].

In stochastic GW background background searches, the cross-correlated tim-

ing residuals enter into the likelihood function through the evaluation of the

overlap reduction function (ORF)– a dimensionless function which quantifies the
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response of the pulsar pairs to the stochastic GW background. The ORF is in

turn a function of the frequency of the GW background, the distance to each pul-

sar, and the angular separation of each pulsar pair and is usually normalized such

that pulsar pairs with zero angular separation have a maximal detector response

of 1 for an isotropic distribution of GW energy density.

Current searches assume that many GW wavelengths, or radiation wave-

lengths, separate the pulsars from the Earth and from each other. The number

of radiation wavelengths is calculated by taking the product of the GW back-

ground frequency f and the distance to the pulsar L. When this product is large,

fL � 1, the pulsar term is only evaluated for the autocorrelation term. This is

called the “short-wavelength approximation”, and is used in all stochastic GW

background searches to date. However, as PTAs become more densely populated

with millisecond pulsars, either by dedicated pulsar searches with current radio

telescopes (e.g. Barr et al. [2013]; Keith et al. [2010]; Stovall et al. [2013]) or

by future radio telescopes currently under development such as the Five Hun-

dred Meter Aperture Spherical Radio Telescope (FAST, e.g. Nan [2008]) and/or

the Square Kilometre Array (SKA, e.g. Lazio [2013]), pulsars in a PTA may no

longer lie many radiation wavelengths apart. Moreover, Sesana’s new models of

the stochastic GW background – generated by the cosmic population of SMBHBs

which include additional environmental e↵ects, such as eccentricity at the mo-

ment of pairing– predict an ultra-low frequency GW background, f < 3 ⇥ 10�9,

see Sesana [2013]. A low frequency GW background paired with nearby pul-

sars such as J0437�4715, which is only 160 pc away (see ATNF [2014]), yield

a minimum fL value of order 10. Hence, in a low frequency GW background,

J0437�4715 is 10 radiation wavelengths away from the Earth.

In this paper we investigate the importance of the additional correlated phase

terms arising from the GW transiting at the pulsar– modelled by the pulsar term–

by systematically exploring how the angular separation and distance variations

of pulsars in a PTA a↵ect the ORF in stochastic GW background searches. The

correlated phase changes introduce imaginary components into the ORFs. There-

fore, we investigate the magnitude of each ORF instead of separately examining

the real and imaginary parts. For the purposes of this study, we restrict our-

selves to the isotropic, dipole and quadrupole ORFs, derived in Mingarelli et al.
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[2013]. Pulsars from the IPTA mock data challenge are used throughout to give

concrete examples of how and when additional phase terms should be included

in the ORFs.

An overview of stochastic GW backgrounds is given in Sec 1.4 and an in-

troduction to the PTA ORF can be found in Sec 1.7. In Sec 3.2 we illustrate

how relaxing the assumption that all the pulsars in a PTA are at the same dis-

tance from the Earth a↵ects the magnitude of the ORFs. We also calculate the

strong pulsar term region around a pulsar, where substantial contributions from

the pulsar term may be present. In Sec 3.3, we approximate the pulsar term for

pulsar pairs separated by a su�ciently small angle as to have significant pulsar

term contributions. We show that this approximation captures the most impor-

tant behaviour of the pulsar term. For completeness, we further investigate the

behaviour of the pulsar term when a pulsar is within one radiation wavelength

from the Earth in Sec 3.4. Moreover, we give an exact solution to a piece of

the ORF which includes the pulsar term, in an e↵ort to accurately compute the

autocorrelation term. Conclusions are presented in Sec 3.5.

3.2 Correlated phase changes from small varia-

tions in pulsar distances

Consider the behaviour of the function ab(f, ⌦̂), defined in Eq. (1.165) and

present in Eq. (1.164), which introduces the frequency and distance-dependence

of the ORFs. When correlating the timing residuals from pulsars in a PTA, one

can think of ab(f, ⌦̂) as the term which encodes the information about both

the pulsar terms. Assuming La = Lb = L, the typical scale of ab(f, ⌦̂) for the

current pulsar population and PTA sensitivity is:

fL(1 + ⌦̂ · p̂) = 103
✓

f

10�8 Hz

◆✓

L

1 kpc

◆

(1 + ⌦̂ · p̂). (3.1)

Large values of fL introduce rapid oscillations to the ORF that depend on the

distance and location of the pulsars, as well as the frequency of the GW back-

ground. Inspecting Eq (1.165), one can see that the pulsar term oscillations are
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produced by the nested cosines (which give rise to Bessel Functions) that appear

when one expands the square brackets of Eq (1.165). For most astrophysically

relevant situations to date fL � 1, therefore, when one computes the integral in

Eq. (1.164) the frequency dependent contributions to the integral rapidly average

out to zero as the angle between the pulsar pairs increases, details in Anholm

et al. [2009]; Mingarelli et al. [2013]. In the fL � 1 case, the ORF Eq. (1.164) is

therefore well approximated by Eq (2.22). Note that the approximation (2.22) is

equivalent to considering the pulsar term for the autocorrelation only (i.e. when

a = b), and is otherwise an Earth term only expression.

3.2.1 Low frequency GW backgrounds

Oscillations introduced to the ORF by the pulsar term are very tight, and very

small for pulsars at ⇠ 1 kpc in GW backgrounds of f ⇠ 10�8 Hz, cf. Eq (3.1)

or Anholm et al. [2009]; Mingarelli et al. [2013]; Taylor and Gair [2013]. However,

nearby pulsars such as J0437�4715, J1856�3754 and J2144�3933 lie at 160 pc

from the Earth, see ATNF [2014]. Nearby pulsars in a low frequency GW back-

ground, generated for example by eccentric SMBHBs, detailed in Sesana [2013],

would lie at ⇠ 10 radiation wavelengths from the Earth:

fL(1 + ⌦̂ · p̂) = 10

✓

f

10�9 Hz

◆✓

L

100 pc

◆

(1 + ⌦̂ · p̂). (3.2)

We now explore how relaxing the assumption that all pulsars in a PTA are

at the same distance from the Earth1, i.e. La = Lb, a↵ects the ORFs for nearby

pulsars in the current low frequency limit of PTAs. Since we have a concrete

lower bound of fL = 10, we fix the dimensionless product fLa = 10 and vary

fLb from 10 to 14. Larger values of fLb were computed, up to fLb = 20 for

all the ORFs, however the oscillations converged to zero increasingly rapidly as

fL increased. Therefore these curves were omitted from Figs 3.2 and 3.3. The

analysis was also carried out for fLb fixed varying fLa with analogous results,

and is therefore not reported here.

1For data analysis purposes, pulsar TOAs are shifted to the solar system barycentre. We
refer to distances from the Earth for simplicity and clarity.
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Figure 3.1: Geometry of pulsar pairs in the “strong pulsar term regime”. Here
Px, where x = a, b, is pulsar x, Lx is the distance to pulsar x from Earth and ⇣
is the angular separation of the pulsar pairs. The dimensionless product fLx is
the number of radiation wavelengths from the Earth to pulsar x. The geometry
indicates two possible movements: pulsar b is moved radially by ⇣fLa radiation
wavelengths from a, or pulsar b is moved further away from a by an amount
fLb � fLa, along the z-axis.

We first study the magnitude of the isotropic ORF (ab)�0

0

(fL, ⇣), which in

the short wavelength approximation and with normalization � = 3/(4
p
⇡) is

the Hellings and Downs [1983] curve. The normalization ensures that the Hellings

and Downs curve is identically equal to 1 for zero angular separation (the auto-

correlation term). Since this normalization is applied to the isotropic ORF, it is

also applied to the dipole and quadrupole ORFs for consistency. The analysis

continues with the study of the dipole, l = 1, m = 0, 1 and quadrupole l = 2,

m = 0, 1, 2 ORFs for completeness, though as indicated in Eq (2.18), we expect

the stochastic GW background to be largely isotropic at low frequencies.

The �m values of the ORFs are not explicitly shown, since in our reference

frame, described in Eq (1.167),

(ab)�m
l (fL, ⇣) = (�1)m(ab)�m

l (fL, ⇣) . (3.3)

One may be surprised that all the ORFs are evaluated, since previous studies by

Mingarelli et al. [2013] indicated that the m = 0 ORFs were the most sensitive
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to the pulsar term. That study, however, only considered pulsars at the same

distance from the Earth. Small pulsar-to-pulsar distance variations will introduce

correlated phase changes which are important for all the ORFs, as we show in

Figs 3.2, 3.3.

We probe the strong pulsar term regime– where the pulsars are separated by

less than a few radiation wavelengths – by continuously moving pulsar b towards

or away from pulsar a along the z-axis. This change in distance is given by

fLb � fLa, as shown in Fig 3.1. Pulsar b is also moved radially away from

a by an angle ⇣, and therefore b lies at ⇣fLa radiation wavelengths from a in

this geometry. The e↵ect of these continuous movements on the magnitude of

the ORFs is shown in the contour plots in Figs 3.2, 3.3. The overall shape of

the ORFs in the strong pulsar term regime is a function of the geometry of the

pulsars and how they are aligned with the GW energy density, which is in turn

described by the standard spherical harmonics Y m
l . A detailed explanation of

the features seen in the contours in Figs 3.2 and 3.3 is given in Appendix B and

the most significant di↵erences between the complete ORF, Eq (1.164), and the

Earth-term-only ORF, Eq (2.22), are highlighted in Table 3.1.

3.2.2 The Hellings and Downs curve

Firstly, we explore the behaviour of the isotropic overlap reduction function when

the pulsars are separated from each other by a few radiation wavelengths, either

radially or in the z-direction, cf. Fig 3.1. The contour plot Fig 3.2(b) complements

Fig 3.2(a) as it shows the continuous displacement of pulsar b from pulsar a. We

find that for a fixed pulsar a with fLa = 10, the largest value of the ORF is

achieved for ⇣ = 0 and fLb � fLa = 0, see Table 3.1, as expected. Moreover, we

find that the strongest pulsar term e↵ects occur when pulsar b located less than a

radiation wavelength away from a, with the strongest correlations occurring when

pulsar b is less than half a radiation wavelength from a. The magnitude of the

oscillations drops dramatically when pulsar b is moved one radiation wavelength

away from pulsar a. Moreover, the peak of the oscillations moves to the right

as fLb increases, and the period of the oscillations increases. This behaviour is

present in all the ORFs, cf. Table 3.1 and Figs 3.2, 3.3. Indeed, it is clear that
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Figure 3.2: The e↵ect of pulsar distance variations on the magnitude of the
isotropic and dipole overlap reduction functions, with fLa = 10 fixed. Panels on
the left hand side are truncated at 40 degrees, as pulsar term oscillations rapidly
converge to zero.
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(d) Strong pulsar term regime of (ab)�1
2(fL, ⇣)
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(f) Strong pulsar term regime of (ab)�2
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Figure 3.3: The e↵ect of pulsar distance variations on the magnitude of the
quadrupole overlap reduction functions, with fLa = 10 fixed. Panels on the left
hand side are truncated at 40 degrees since error bars on each point are expected
to be of the order of 10�20%. Moreover it is clear that the pulsar term oscillations
rapidly converge to zero. Note that the maximum value of some ORFs is achieved
for small, but non-zero, angular separations between pulsar pairs.
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as fLb increases, the ORF converges to the Earth-term only solution, the solid

(blue) line in Fig 3.2(a).

Our analysis of the isotropic ORF therefore indicates that the pulsar term

only adds a significant additional piece to the standard, Earth-term only ORF

for pulsars within 10 radiation wavelengths from the Earth, separated by no more

than half a GW wavelength. This corresponds to a strong pulsar-term induced

ORF response when ⇣  3� in agreement with Fig 3.2(a), with fLb = 10.

3.2.3 The dipole overlap reduction function

In Mingarelli et al. [2013], we claimed that out of the dipole ORFs, (ab)�0

1

is the

most sensitive to the pulsar term, since it is the only dipole ORF with a non-zero

value at zero angular separation. This claim was based on the assumption that the

pulsars were equidistant from the Earth. Relaxing this assumption and including

the pulsar term, we find that all of the dipole ORFs show strong pulsar term

behaviour, when separated by less than a radiation wavelength. This behaviour

is clearly shown in Figs 3.2(c), 3.2(d), 3.2(e), 3.2(f).

For the �0

1

(fL, ⇣) ORF, the largest contribution from the pulsar term arises

from the scenario where fLa = fLb = 10, seen in both Fig 3.2(c), 3.2(d). In

Fig 3.2(c), one can see that by moving pulsar b one radiation wavelength to

fLb = 11, the dashed-dot (red) curve, the additional contribution of the pulsar

term is negligible. As fLb increases by one for each subsequent curve, it is clear

that the pulsar term contribution converges to zero. Therefore the ORF becomes

essentially an Earth-term only expression as the pulsars are separated by many

radiation wavelengths. We then study the strong pulsar term regime of �0

1

(fL, ⇣),

Fig 3.2(d), using the geometry detailed in Fig 3.1 to draw a circle of influence

around pulsar a. Here we find that the strong pulsar term region is extended in

the fLb�fLa direction, indicating that the pulsar term is important when pulsar

b is up to one radiation wavelength away (in the z direction) from pulsar a. This

strong pulsar term range is twice that of the isotropic ORF in the z-direction,

but in terms of radial radiation wavelengths, ⇣fLa, the sensitivity is very similar

to that of the isotropic ORF. The shape is due to a combination of geometric

e↵ects and the transverse nature of GWs, described in Appendix B.
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For the �1

1

(fL, ⇣) ORF, the largest contribution from the pulsar term arises

from the scenario where fLa = fLb, as shown in Fig 3.2(f), but the maximum is

achieved at a non-zero angular separation of ⇣ = 1.9�. Note that the fractional

di↵erence between the full ORF and the Earth-term-only ORF at ⇣ = 1.9� is

49! This ORF also di↵ers from the previous ones in that the relatively large

oscillatory behaviour is present up to ⇣ . 20�. Moving pulsar b one radiation

wavelength to fLb = 11– the dashed-dot (red) curve in Fig 3.2(e)– the additional

contribution of the pulsar term is still remarkable, with its peak at ⇣
max

= 3.5�,

and a fractional di↵erence between the full and Earth-term only ORF of 7.

The strong pulsar term region is extended in the fLb � fLa direction, as

it was for �0

1

(fL, ⇣), with the exception of having no response at ⇣ = 0, see

Fig 3.2(f). The peak is centered on ⇣fLa ⇠ 0.5 and extends to ⇣fLa ⇠ 1,

which translates into important pulsars term features for pulsars separated by

0� < ⇣ . 6�, in agreement with Fig 3.2(e) and Table 3.1. The oscillations are

slower to converge for this ORF, and therefore one may wish to include these

additional correlated phase changes in stochastic GW background searches, up

to ⇣ ⇠ 15� when fLb ⇠ 10� 12, see Fig 3.2(e).

3.2.4 The quadrupole overlap reduction function

Here we examine how varying the distances to pulsars in a PTA a↵ects the be-

haviour of the l = 2, m = 0, 1, 2 quadrupole ORFs (ab)�m
2

(fL, ⇣). The key figures

for this analysis are given in Fig 3.3. As before, we fix fLa = 10 and vary fLb

from 10 to 14. The values of fLb up to 20, however as before, these additional

curves converged to zero very quickly, providing little insight. The roles of fLb

and fLa were switched and the analysis carried out again, yielding nearly iden-

tical results.

Starting with the (ab)�0

2

(fL, ⇣) ORF, Fig 3.3(a), the two main curves of interest

are the fLb = 10 and fLb = 11 curves. This ORF displays a feature which was

previously seen in the �1

1

(fL, ⇣)– the maximum value of the ORF for equidistant

pulsars occurs when ⇣ 6= 0. Although the ORF is twice the Earth-term for

fLa = fLb = 10 at ⇣ = 0, as expected, the maximum value of the ORF is at

2.4�, where it is triple the value of the Earth term, with a fractional di↵erence of
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2. It is also interesting to note that by moving pulsar b a radiation wavelength

away from pulsar a, corresponding to fLb = 11, the autocorrelation term is also

three times larger than the Earth term, see Table 3.1. Moreover, for fLb = 11,

the autocorrelation term is larger than the fLa = fLb = 10 case.

The full m = 1 and m = 2 quadrupole ORFs also feature a remarkable

departure from the Earth-term only expression for pulsars separated by less than

a radiation wavelength, and converge more slowly to the Earth-term-only ORF

(solid blue line), Figs 3.3(c), 3.3(d), 3.3(e), 3.3(f). The largest fractional di↵erence

between the full and Earth-term ORFs occurs in the (ab)�0

2

(fL, ⇣) ORF for fLa =

fLb = 10 at ⇣ = 3.1�: here the maximum fractional di↵erence is 188!

It is clear that in general the largest value for the ORFs is achieved when

the pulsars are equidistant. However, pulsars up to 2 radiation wavelengths away

(denoted below as �
number

= 2), which in terms of physical distance scales as

Lb = 17

"

✓

�
number

2

◆✓

f

10�9 Hz

◆�1

+

✓

La

100 pc

◆

#

pc, (3.4)

could contribute additional correlated phase terms to the ORF which may need

to be modelled.

3.3 Small angle approximation

In Sec 3.2 we showed that the pulsar term is important to include in the evalu-

ation of most of the ORFs if the pulsars are separated by less than a radiation

wavelength, see Table 3.1 for details. Motivated by the possibility of having pul-

sars separated by such a small angle, we give a small angle approximation of the

pulsar term for the ORFs, up to O(⇣2) which closely follows the true behaviour of

the complete isotropic ORF. Since the pulsar term, Eq (1.165), is not a function

of angular distribution of the GW energy density, this approximation can be used

for all PTA ORFs, however it is advised to extend the approximation to O(⇣3)

for l � 1. We show how this approximation compares to the full isotropic ORF

for fLa=b = 10, 51.2, 100, see Figure 3.4.

Without loss of generality, we work in the “computational frame”, described
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in Eq (1.167). This is indeed a convenient choice of geometry, as in this reference

frame F⇥
a = 0. For anisotropic ORFs, one will need to rotate the the pulsars

back into the cosmic rest frame from this “computational frame” using Wigner

D matrices given in Allen and Ottewill [1997]; Mingarelli et al. [2013].

For the isotropic case, Y 0

0

= 1/
p
4⇡ and therefore Eq. (1.164) reduces to

(ab)�0

0

=
1p
4⇡

Z

S2

d⌦̂
h

1� ei2⇡fLa(1+ˆ

⌦ · p̂a)i h1� e�i2⇡fLb(1+
ˆ

⌦ · p̂b)iF+

a (⌦̂)F+

b (⌦̂).

(3.5)

We define

M = 2⇡fLa(1 + cos ✓), (3.6)

N = 2⇡fLb(1 + cos ✓ cos ⇣ + sin ✓ sin ⇣ cos�) , (3.7)

in order to write ab(f, ⌦̂) in terms of sine and cosine functions, separating the

function into real and imaginary components:

ab(f, ⌦̂) = (1� eiM)(1� e�iN), (3.8)

= cos(M �N)� cosM � cosN + 1

+i[sin(M �N)� sinM + sinN ]. (3.9)

The contour plots in Figs 3.2, 3.3 indicate that an approximation which allows

fLa and fLb to vary is best for anisotropic ORFs, hence, we first present a

Taylor series expansion of ab(f, ⌦̂) for small ⇣ for any fLa and fLb, and then

set La = Lb = L as a special case.

For small ⇣, one can write down an approximation of the ab(f, ⌦̂) as:

ab(f, ⌦̂)real ⇡ 1� cosM � cosN + cos(M �N)

+⇣2⇡fLb sin ✓ cos� [sinN + sin(M �N)]

+⇣2⇡fLb

�

2⇡fLb sin
2 ✓ cos2 � [cosN � cos(M �N)]

� cos ✓ [sin(N) + sin(M �N)]} , (3.10)
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and

ab(f, ⌦̂)imag

⇡ � sinM + sinN + sin(M �N)

+⇣2⇡fLb sin ✓ cos� [cosN � cos(M �N)]

+⇣2
��2⇡2f 2L2

b sin
2 ✓ cos2 � [sinN + sin(M �N)]

�⇡fLb cos ✓ [cosN � cos(M �N)]} . (3.11)

When La = Lb = L we find this reduces to

ab(f, ⌦̂) ⇡ 2� 2 cosN + 2⇣⇡fL sinN cos� sin ✓

+⇣2⇡fL[� cos ✓ sinN + 2⇡fL(cosN � 1) sin2 ✓ cos2 �]

+i⇣2⇡fL sin ✓ cos�(cosN � 1)

+i⇣2⇡fL[cos ✓(1� cosN)� 2⇡fL sinN sin2 ✓ cos2 �] .

(3.12)

Numerically, we find that Eq (3.12) is a good approximation for to Eq (1.165)

for when evaluating the isotropic ORF for

⇣ . 2.3�
✓

fL

10

◆

, (3.13)

as seen in Figure 3.4. When ⇣ = 0, Eq (3.12) simplifies to 2 � 2 cosM , where

M = N = 2⇡fL(1 + cos ✓). One may safely ignore the �2 cosM term since it

is suppressed by a factor of at least 1/fL. Sec 3.4 gives more details on this.

As one may expect, the imaginary part of ab(f, ⌦̂) vanishes for the La = Lb

isotropic case but is otherwise non-vanishing. This fact is somewhat masked by

the use of the magnitude of the ORFs, instead of the individual real and imaginary

components.

Using the pulsars found in the IPTA Mock Data Challenge 1, see IPTA [2012],

we found that the smallest separation between pulsar pairs was ⇣ ⇠ 3.5� for pul-

sars J1853+1303 and J1857+0943. Although this angle is indeed small, and

according to Table 3.1 puts the pulsars in the strong pulsar term regime for

anisotropic ORFs, the distances to these pulsars found in the ATNF [2014] cat-
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Figure 3.4: The small angle approximation of the isotropic ORF compared to the
full ORF. Moving from right to left: the solid line is the full ORF and the dashed
line is the approximation given by Eq (3.12) for fL = 10 (online blue), fL = 51.2
(green), and fL = 100 (magenta). Empirically, we find that the approximation
holds for ⇣ . 2.3�(fL/10), Eq (3.13). Afterward the ORF reverts to the Earth-
term only solution which, due to its slowly varying initial slope, appears to be
flat over 0�  ⇣  3�.

alogue, are 1.6 kpc and 0.9 kpc, respectively. Therefore, their fL values in the

low frequency limit are 168 and 90, respectively. The Earth-term only ORF is

therefore still a reasonable approximation for pulsar pairs in the IPTA mock data

challenge.

3.4 Correlated phase changes for pulsars within

a radiation wavelength of Earth

The ATNF [2014] pulsar catalogue lists 107 pulsars which are less than 1 kpc away,

16 of which are closer than 300 pc, and three which are only 160 pc away. Our

results suggest that one can ignore the pulsar term (except for the autocorrelation)

if the distance between the pulsars Lb � La in the z-direction is larger than a

radiation wavelength, and/or ⇣fL � 1, cf. Figs 3.2, 3.3, depending on the ORF.
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Figure 3.5: In both panels (ab)�0

0

(fL, ⇣) is the solid curve, (ab)�0

1

(fL, ⇣) is the
dashed curve (blue) and (ab)�0

2

(fL, ⇣) is the dotted curve (red). These functions
are the most sensitive to the pulsar term, as they have non-zero values at ⇣ = 0.
(a) The behaviour of the pulsar term only for (ab)�0

0

(fL, ⇣), (ab)�0

1

(fL, ⇣) and
(ab)�0

2

(fL, ⇣) when La = Lb = L and fL = 1. This is found by subtracting the
Earth term from the numerically integrated overlap reduction function. (b) The
imaginary part only of (ab)�0

0

(fL, ⇣), (ab)�0

1

(fL, ⇣) and (ab)�0

2

(fL, ⇣) when fL = 1.
As there is no imaginary part in the computational frame where the Earth term
is calculated, we cannot display the di↵erence as done is (a). Note that these
imaginary values are only a factor a few smaller than their real counterparts,
with the exception of (ab)�0

0

(fL, ⇣) where the imaginary part is zero. Moreover,
they do not quickly converge to zero as in previous cases for fL � 10
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The last assumption we relax in this study is that many radiation wavelengths

separate the Earth from the pulsars. Although current astrophysical constraints

place a lower limit of fL = 10, this limit may decrease as more pulsars are found

and added to PTAs. Therefore for completeness, we investigate the behaviour of

the ORFs when fL ⇠ 1, i.e. when the Earth and the pulsar are separated by

only one radiation wavelength.

Previously, we assumed that the �2 cosM contribution to the isotropic ORF

integral was small as it would be suppressed by at least 1/fL, see Sec 3.3. Here

we investigate if this argument holds for fL = 1. We therefore calculate the

exact expression for the product of �2 cosM , the antenna beam pattern and the

fundamental harmonic as an example. Analogous calculations may be carried out

for higher multipole moments.

Let M = 2⇡fL(1 + cos ✓). We look to solve

ab�0

0

(fL, ⇣ = 0) = �

Z

S2

d⌦̂
X

A

(2� 2 cosM)Y 0

0

FA
a F

A
b . (3.14)

The product of the antenna beam pattern, FA
a F

A
b , the harmonic Y 0

0

(or any

harmonic) and the factor of 2 yields the usual doubling of PTA ORFs when

⇣ = 0, normally modelled by a delta function (1 + �ab). The � = 3/(4
p
⇡) is

the normalization applied to all ORFs, which guarantees that the isotropic ORF

yields a value of 1 for the autocorrelation term.

We now write down a solution for the product of �2 cosM ,the antenna beam

pattern and the spherical harmonic Y 0

0

= 1/
p
4⇡, integrated over the sky. We de-

compose the overlap reduction function into the sum of two components: (ab)�m
l =

1/4�(Qm
l +Rm

l ), as in Anholm et al. [2009] and Mingarelli et al. [2013]. We carry

out this computation in the reference frame described by Eq (1.167). Using Eq

A29 with l = 0 from the Appendix of Mingarelli et al. [2013] completes the

integration in �, leaving the integration in ✓:

Q0

0

= � 4⇡p
4⇡

Z ⇡

0

d✓ sin ✓(1� cos ✓)2 cos[2⇡fL(1 + cos ✓)], (3.15)

and write the solutions using spherical Bessel functions of the first kind, specifi-
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cally j
0

(x) = sin(x)/x:

Q0

0

=� 4
p
⇡

(2⇡fL)3
[4⇡fL� sin 4⇡fL] , (3.16)

= � 8
p
⇡

(2⇡fL)2
[1� j

0

(4⇡fL)] . (3.17)

To evaluate R0

0

we make use of Eq A30 from the Appendix of Mingarelli et al.

[2013] where the integral in � is already solved:

R0

0

= 8
p
⇡(1� cos ⇣)

Z ⇡�⇣

0

d✓
(1� cos ✓)2 cosM

sin ✓

+ 8
p
⇡(1 + cos ⇣)

Z ⇡

⇡�⇣

d✓ sin ✓ cosM (3.18)

= 0. (3.19)

Since ⇣ = 0 there is no contribution from the above equation, as the first piece is

pre-multiplied by 0, and the second piece is integrated from [⇡, ⇡].

Therefore, the product of �2 cosM with the antenna beam pattern and the

fundamental harmonic, evaluated at ⇣ = 0, is:

� 2�

Z

S2

d⌦̂ cos[2⇡fL(1 + cos ✓)]Y 0

0

FA
a F

A
b = � 3

8⇡2(fL)2
[1� j

0

(4⇡fL)] . (3.20)

The prefactor in Eq (3.20) scales as

3.8⇥ 10�2

✓

fL

1

◆�2

, (3.21)

which suppresses the contribution from this function for any value of fL � 1. It

is now clear that when ⇣ = 0, it is adequate to approximate the pulsar term by

multiplying the ORF by 2, and neglect the small oscillatory piece in Eq (3.20).

91



3. THE EFFECT OF SMALL PULSAR DISTANCE VARIATIONS
IN STOCHASTIC GW BACKGROUND SEARCHES WITH PTAS

3.5 Conclusion

In this paper we have allowed the pulsar distances in a PTA to vary in the

evaluation of the isotropic, dipole and quadrupole overlap reduction functions.

For the first time, we have carried out an in-depth study of the behaviour of the

pulsar term when pulsar pairs are separated by a few radiation wavelengths, see

Figs 3.2, 3.3.

In Sec 3.2, we found that in a 10�9 Hz stochastic GW background, and for

a pulsar 100 pc from the Earth, all of the ORFs evaluated return a maximum

value for pulsars which are equidistant from the Earth. The stochastic GW back-

ground is expected to be largely isotropic at 10�9 Hz, however for completeness we

calculate the fractional di↵erences between the full and Earth-term-only ORFs,

reported in Table 3.1, for ORFs up to l = 2. Interestingly, we find that the most

significant fractional di↵erences between the full and Earth-term only ORFs are

found in the anisotropic ORFs. For example, for (ab)�2

2

(fL, ⇣), the maximum

fractional di↵erence between the full and Earth-term ORF is 188 (or 18, 800%),

for pulsars separated by 3.1�, which are located at 100 pc from the Earth.

More relevant to current stochastic GW background searches is the fractional

di↵erence between the magnitude of the full and Earth-term-only isotropic ORF,

which can be as much as 100%, see Table 3.1, Figs 3.2(a), 3.2(b). Therefore, a

Taylor expansion of the pulsar term was calculated in Sec 3.3, and this expression

can be readily input into GW data analysis pipelines. We find the approximation

should be used for pulsar pairs separated by ⇣  2.3�(fL/10), Eq (3.13), and in

this regime, the Taylor series expansion closely follows the form of the full ORF.

Looking to the future, we examined the behaviour of the isotropic, dipole

and quadrupole ORFs when the pulsars are within a radiation wavelength of the

Earth in Sec 3.4. We found there would be strong deviations from the usual delta-

function like behaviour of the pulsar term, which is currently used in searches.

Throughout this paper, pulsars from the IPTA mock data challenge were used to

show that the short wavelength approximation used in current PTA searches still

holds, although this may not always be true.
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Chapter 4

OBSERVING THE DYNAMICS

OF SUPERMASSIVE BLACK

HOLE BINARIES WITH

PULSAR TIMING ARRAYS

This chapter is based on

C. M. F Mingarelli, K. Grover, R. J. E. Smith, T. Sidery, A. Vecchio, “Observing

the dynamical evolution of a super massive black hole binary using Pulsar Timing

Arrays”, Physical Review Letters, Volume 109, Issue 8 (2012), cited as Mingarelli

et al. [2012]. Minor modifications here have been made to the paper: Fig 4.1

and Fig 4.2 have been added to clarify the geometry and the importance of the

precession e↵ects respectively, and equations which were previously inline are now

in standard form. These changes are meant to improve the readability of the text,

and were not possible in the published version due to word restrictions form the

Journal. Equations which were derived in the introduction are referenced and

not repeated. I calculated the precession rate of the orbital angular momentum,

the orbital evolution timescale and velocity of the binaries and wrote the draft of

the paper.
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4. OBSERVING THE DYNAMICS OF SUPERMASSIVE BLACK
HOLE BINARIES WITH PULSAR TIMING ARRAYS

4.1 Introduction

Gravitational waves (GWs) provide a new means for studying black holes and

addressing open questions in astrophysics and fundamental physics: from their

formation, evolution and demographics, to the assembly history of galactic struc-

tures and the dynamical behaviour of gravitational fields in the strong non-linear

regime. Specifically, GW observations through a network of radio pulsars used

as ultra-stable clocks – Pulsar Timing Arrays (PTAs), e.g. Detweiler [1979]; Es-

tabrook and Wahlquist [1975]; Sazhin [1978] – represent the only direct observa-

tional avenue for the study of supermassive black hole binary (SMBHB) systems

in the ⇠ 108�109M� mass range, with orbital periods between ⇠ 1 month and a

few years, see e.g. Sesana [2012]; Volonteri [2010] and references therein. Ongoing

observations, cf. Ferdman et al. [2010]; Hobbs et al. [2010]; Jenet et al. [2009];

Verbiest et al. [2010] and future instruments, e.g. the Square Kilometre Array–

SKA [2014]– are expected to yield the necessary timing precision to observe the

di↵use GW background, cf. Liu et al. [2011]; Verbiest et al. [2009] .

This background is likely dominated by the incoherent superposition of ra-

diation from the cosmic population of massive black holes, e.g. Demorest et al.

[2013]; Hellings and Downs [1983]; Ja↵e and Backer [2003]; Jenet et al. [2006];

Rajagopal and Romani [1995]; Sesana et al. [2004, 2008]; van Haasteren et al.

[2011]; Wyithe and Loeb [2003] and within it, we expect a handful of sources

that are su�ciently close, massive and high-frequency to be individually resolv-

able, cf. Babak and Sesana [2012]; Ellis et al. [2012a,b]; Jenet et al. [2004]; Lee

et al. [2011]; Sesana and Vecchio [2010]; Sesana et al. [2009]; Wen et al. [2011];

Yardley et al. [2010].

Massive black hole formation and evolution scenarios predict the existence

of a large number of SMBHBs e.g. Koushiappas and Zentner [2006]; Malbon

et al. [2007]; Volonteri et al. [2003]; Yoo et al. [2007]. Furthermore, SMBHs

are expected to be (possibly rapidly) spinning, according to studies carried out

by Hughes and Blandford [2003]; Merritt and Ekers [2002]. In fact the dynamics

of such systems – which according to general relativity are entirely determined

by the masses and spins of the black holes, e.g. Misner et al. [1973] – leave a

direct imprint on the emitted gravitational waveforms. From these, one could
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measure SMBHB masses and their distribution, yielding new insights into the

assembly of galaxies and the dynamical processes in galactic nuclei, e.g. Wen

et al. [2011]. Moreover, measuring the magnitude and/or orientation of spins

in SMBHBs would provide new information on the role of accretion processes,

cf. Berti and Volonteri [2008]; Dotti et al. [2010]; Gammie et al. [2004]; Perego

et al. [2009]; Volonteri et al. [2005]. Finally, detections of SMBHBs could allow

us to probe general relativistic e↵ects in the non-linear regime in an astrophysical

context not directly accessible by other means, see Psaltis [2008]; Stairs [2003];

Will [2006] and references therein.

The observation of GWs with PTAs relies on the detection of the small devi-

ation induced by gravitational radiation in the times of arrival (TOAs) of radio

pulses from millisecond pulsars that function as ultra-stable reference clocks. This

deviation, called the residual, is the di↵erence between the expected (without GW

contribution) and actual TOAs once all the other physical e↵ects are taken into

account. The imprint of GWs on the timing residuals is the result of how the

propagation of radio waves is a↵ected by the GW-induced space-time perturba-

tions along the travel path. It is a linear combination of the GW perturbation at

the time when the radiation transits at a pulsar, the so-called “pulsar term”, and

then when it passes at the radio receiver, the “Earth term”, cf. Detweiler [1979];

Estabrook and Wahlquist [1975]; Sazhin [1978]. The two terms reflect the state

of a GW source at two di↵erent times of its evolution separated by

⌧ ⌘ (1 + ⌦̂ · p̂)Lp ⇠ 3.3⇥ 103 (1 + ⌦̂ · p̂)
✓

Lp

1 kpc

◆

yr, (4.1)

where ⌦̂ and p̂ are the unit vectors that identify the GW propagation direction

and the pulsar sky location at a distance Lp from the Earth, respectively, see

e.g. Sesana and Vecchio [2010]. [We use geometrical units in which G = c = 1.]

In a network (array) of pulsars all the perturbations at the Earth add coherently

and therefore boost the signal-to-noise ratio (S/N) of the signal. Each pulsar

term is at a slightly di↵erent frequency since the orbital period of the binary

evolves over the time ⌧ .

Measuring the key physics of SMBHBs is hampered by the short (typically

T = 10 yr) observation time compared to the typical orbital evolution timescale
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(cf. Eqs (1.71) and (1.72) )

f
GW

ḟ
GW

= 1.6⇥ 103
✓ M
109 M�

◆�5/3 ✓
f
GW

50 nHz

◆�8/3

yr , (4.2)

of binaries that are still in the weak field adiabatic inspiral regime, with an orbital

velocity v, cf Eq (1.13),

v = 0.12

✓

M

109 M�

◆

1/3 ✓
f
GW

50 nHz

◆

1/3

. (4.3)

Here M = m
1

+m
2

, µ = m
1

m
2

/M and M = M2/5µ3/5 are the total, reduced

and chirp mass, respectively, of a binary with component masses m
1,2, and f

GW

is the GW emission frequency at the leading quadrupole order. The chirp mass

determines the frequency evolution at the leading Newtonian order. In the post-

Newtonian (pN) expansion of the binary evolution, e.g. Blanchet [2006] in terms

of v ⌧ 1, the second mass parameter enters at p1N order (O(v2) correction);

spins contribute at p1.5N order and above (O(v3)) causing the orbital plane to

precess through spin-orbit coupling, at leading order. These contributions are

therefore seemingly out of observational reach.

The GW e↵ect at the pulsar – the pulsar term – may be detectable in future

surveys, and for selected pulsars their distance could be determined to sub-parsec

precision, see e.g. Deller et al. [2008]; Lee et al. [2011]; Smits et al. [2011]. If this

is indeed the case, it opens the opportunity to coherently connect the signal

observed at the Earth and at pulsars, therefore providing snapshots of the binary

evolution over ⇠ 103 yr. These observations would drastically change the ability

to infer SMBHB dynamics, and study the relevant astrophysical process and

fundamental physics.

In this Letter we show that for SMBHBs at the high end of the mass and

frequency spectrum observable by PTAs, say m
1,2 = 109 M� and f

GW

= 10�7

Hz, the observations of a source still in the weak-field regime become sensitive to

post-Newtonian contributions up to p1.5N, including spin-orbit e↵ects, if both the

pulsar and Earth term can be detected. This in principle enables the measure-

ment of the two mass parameters and a combination of the spin’s magnitude and
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relative orientation. We also show that the Earth-term only can still be sensi-

tive to spin-orbit coupling due to geometrical e↵ects produced by precession. We

discuss the key factors that enable these measurements, and future observational

prospects and limitations.

4.2 Signals from SMBHBs

Consider a radio pulsar emitting radio pulses at frequency ⌫
0

in the source rest-

frame. GWs modify the rate at which the radio signals are received at the Earth,

see e.g. Detweiler [1979]; Estabrook and Wahlquist [1975]; Sazhin [1978], inducing

a relative frequency shift �⌫(t)/⌫
0

= h(t � ⌧) � h(t), where h(t) is the GW

strain. The quantities that are actually produced at the end of the data reduction

process of a PTA are the timing residuals,
R

dt0 �⌫(t0)/⌫
0

, although without loss

of generality, we will base the discussion on h(t). The perturbation induced by

GWs is repeated twice, and carries information about the source at time t, the

“Earth term”, and at past time t� ⌧ the “pulsar term”.

We model the radiation from a SMBHB using the so-called restricted pN

approximation, in which pN corrections are included only in the phase and the

amplitude is retained at the leading Newtonian order, but we include the leading

order modulation e↵ects produced by spin-orbit coupling. The strain is given by

h(t) = �A
gw

(t)A
p

(t) cos[�(t) + '
p

(t) + '
T

(t)] , (4.4)

where

A
gw

(t) =
2

D
[⇡f

GW

(t)]2/3M5/3 (4.5)

is the Newtonian order GW amplitude, �(t) is the GW phase, see e.g. Eq. (232,

234) in Blanchet [2006] and Eq. (8.4) in Blanchet et al. [2006], and D is the

distance to the GW source. Ap(t) and 'p(t) are the time-dependent polarisation

amplitude and phase and '
T

(t) is an additional phase term, analogous to Thomas

precession, see Eq. (29) in Apostolatos et al. [1994].

The physical parameters leave di↵erent observational signatures in the GW

strain h(t) and are therefore found in the TOA residuals. At the leading New-

tonian order, M drives the frequency and therefore the phase �(t) evolution,
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with the second independent mass parameter entering from the p1N onwards.

SMBHs are believed to be rapidly spinning, and the spins are responsible for

three distinctive imprints in the waveform:

• they alter the phase evolution through spin-orbit coupling and spin-spin

coupling at p1.5N and p2N order, respectively, cf. Kidder et al. [1993],

• they cause the orbital plane to precess due to (at lowest order) spin-orbit

coupling and therefore induce amplitude and phase modulations in the

waveform through Ap(t) and 'p(t); and

• through orbital precession they introduce an additional secular contribution

'
T

(t) to the waveform phase.

Astrophysically we expect PTAs to detect SMBHBs of comparable component

masses, cf. Sesana and Vecchio [2010]. We therefore model the spin-orbit preces-

sion using the simple precession approximation, see e,g, Apostolatos et al. [1994],

which formally applies when m
1

= m
2

, or when one of the two spins is negligible

with respect to the other. Let S
1,2 and L be the black holes’ spins and the orbital

angular momentum, respectively. Then both S = S
1

+ S
2

and L precess around

the (essentially) constant direction of the total angular momentum, J = S + L,

at the same rate

d↵

dt
= ⇡2

✓

2 +
3m

2

2m
1

◆

(|L+ S|)f 2

GW

(t)

M
, (4.6)

as in Apostolatos et al. [1994], where ↵ is the precession angle, while preserving

the angle of the precession cone, �L, see Fig 4.1. This approximation is adequate

to conceptually explore these e↵ects, however in the case of real observations, one

will need to consider the exact expressions, cf. Kidder [1995].

The detection and particularly the measurement of the aforementioned pa-

rameters relies on coherently matching the signal with a template that faithfully

reproduces its amplitude and, importantly, its phase evolution. We therefore

consider the contribution to the total number of wave cycles a proxy for the

significance of a specific parameter. Individual terms that contribute ⇠ 1 GW
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Figure 4.1: Precession geometry for a spinning binary: here �L is the angle of the
precession cone, ↵ is the precession angle, and the total spin S = S

1

+S
2

and the
orbital angular momentum L precess around the (essentially) constant direction
of the total angular momentum, J = S+ L at a rate d↵/dt, given by Eq (4.6).

cycle or more mean that the e↵ect is in principle detectable, hence one can infer

information about the associated parameter(s).

We show that information about the parameters can only be inferred for

SMBHBs at the high end of the mass spectrum and PTA observational frequency

range. Having a su�ciently high-mass and high-frequency GW source is also

essential to ensure su�cient frequency evolution over the time ⌧ , so that the

Earth and pulsar term are clearly separated in frequency space cf. Table 4.1. We

therefore take fiducial source parameters of m
1

= m
2

= 109 M�, frequency at the

Earth at the beginning of the observation f
GW,E = 10�7 Hz and an observational

time T = 10 years to illustrate the main results. We provide scaling relations as

a function of the relevant quantities, allowing the reader to rescale the results for

di↵erent astrophysical and/or observational values.
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Figure 4.2: The precession angle ↵ = 0 at the Earth, as a reference. The red line
highlights a distance of 1 kpc, the blue line is the beginning of the observation
at the Earth and the green line is after a 10 year observation, hence is closer
to coalescence. For the a dimensionless spin parameter a = 0.98 (a = 0.10),
the solid (dashed) line is the change in ↵ for a 109M� SMBHB . Over 10 years,
�↵ ⇠ �3 rads (-2 rads), however, over 1 kpc, �↵ =⇠ 213 rads (154 rads).

4.3 Observations using the Earth-term only

We start by considering analyses that rely only on the Earth-term contribution

to the residuals, as done in Lommen and Backer [2001]; Yardley et al. [2010]. The

case of a coherent analysis based both on the Earth- and pulsar-term, introduced

in Jenet et al. [2004], is discussed later in this Letter. Table 4.1 shows that,

in general, the frequency change over 10 yr is small compared to the frequency

bin width, 3.2(10 yr/T ) nHz, e.g. Lee et al. [2011]; Sesana and Vecchio [2010].

The observed signal is e↵ectively monochromatic, making the dynamics of the

system impossible to infer. However, the presence of spins a↵ects the waveform

not only through the GW phase evolution, but also via the modulations of A
p

(t)

and '
p

(t) that are periodic over the precession period, and also introduces the
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secular contribution '
T

(t). For m
1,2 = 109 M� and fmathrmGW, E = 10�7 Hz

the orbital angular momentum precesses by �↵ = 2 rad (for dimensionless spin

parameter a ⌘ S/M2 = 0.1) and �↵ = 3 rad (for a = 0.98), as seen in Fig 4.2,

and therefore the additional modulation e↵ect on A
p

(t) and '
p

(t) is small, and

likely undetectable. However, the overall change of '
T

(t) over 10 yrs could be

appreciable: the average contribution for each precession cycle of this additional

phase term is h�'
T

i = 4⇡ or 4⇡ (1� cos�L), depending on whether ⌦̂ lies inside

or outside the precession cone, respectively, cf. Apostolatos et al. [1994]. If ⌦̂ lies

inside the precession cone, and given that the observation will cover between a

third and a half of a full precession cycle, then h�'
T

i ⇠ ⇡, which could surely

indicate the presence of spins. On the other hand, the precession cone will be

small in general since

�

�

�

�

S

L

�

�

�

�

⇠ a v
M

µ
' 0.1 a

M

µ

✓

M

109 M�

◆

1/3 ✓

f
GW

100 nHz

◆

1/3

, (4.7)

where L = µM1/2r1/2. Therefore the likelihood of ⌦̂ lying inside the precession

cone is small, assuming an isotropic distribution and orientation of sources. In

this case the Thomas precession contribution (per precession cycle) is suppressed

by a factor

(1� cos�L) ' �2

L/2 ⇠ 5⇥ 10�3 a2
✓

M

µ

◆

2

✓

M

109 M�

◆

2/3 ✓

f
GW

100 nHz

◆

2/3

, (4.8)

which will produce a negligible contribution �'
T

(t) ⌧ 1. However unlikely, spins

may still introduce observable e↵ects that need to be taken into account.

4.4 Measuring SMBHB evolution using the Earth

and pulsar term

With more sensitive observations and the increasing possibility of precisely de-

termining Lp see e.g. Smits et al. [2011], the prospect of also observing the con-

tribution from the pulsar-term from one or more pulsars becomes more realistic.

We show below that if at least one of the pulsar terms can be observed together
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with the Earth-term, this opens opportunities to study the dynamical evolution

of SMBHBs and, in principle, to measure their masses and spins. This is a

straightforward consequence of the fact that PTAs become sensitive to ⇠ 103 yr

of SMBHB evolutionary history, in “snippets” of length T ⌧ Lp that can be

coherently concatenated.

The signal from each pulsar term will be at a S/N which is significantly smaller

than the Earth-term by a factor ⇠ p

Np, where Np is the number of pulsars that

e↵ectively contribute to the S/N of the array. For example, if the Earth-term

yields an S/N of ⇠ 36
p

Np/20, then each individual pulsar term would give an

S/N ⇠ 8. The possibility of coherently connecting the Earth-term signal with

each pulsar term becomes therefore a question of S/N, prior information about

the pulsar-Earth baseline and how accurately the SMBHB location in the sky

can be reconstructed, as part of a “global fit”, e.g. Lee et al. [2011]. Assuming

for simplicity that the uncertainties on Lp and ⌦̂ are uncorrelated, this requires

that the distance to the pulsar and the location of the GW source are known

with errors <⇠ 0.01(100 nHz/f
GW

) pc and <⇠ 3(100 nHz/f
GW

)(1 kpc/Lp) arcsec,

respectively. These are very stringent constraints, see e.g. Babak and Sesana

[2012]; Sesana and Vecchio [2010]; Smits et al. [2011], and a detailed analysis

is needed in order to assess the feasibility of reaching this precision. Clearly if

an electromagnetic counterpart to the GW source were to be found, e.g. Sesana

et al. [2012]; Tanaka et al. [2012], it would enable the identification of the source

location in the sky, making the latter constraint unnecessary.

We can now consider the contribution from the di↵erent terms in the pN

expansion to the total number of cycles in observations that cover the GW source

evolution over the time ⌧ that are encoded in the simultaneous analysis of the

Earth and pulsar terms. The results are summarised in Table 4.1, for selected

values of m
1,2, and f

GW,E and for a fiducial value ⌧ = 1kpc. The wavecycle

contributions from the spin-orbit parameter are normalized to � as per Eq (1.76).

Contributions from the p2N order spin-spin terms are negligible. The results

clearly show that despite the fact that the source is in the weak field regime the

extended Earth-pulsar baseline requires the p1.5N, and in some rare cases the p2N

contribution, to accurately (i.e. within ⇠ 1 GW cycle) reproduce the full phase

evolution.
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For m
1,2 = 109 M� and f

GW,E = 10�7 Hz there is a total of 4305 GW cycles

over a 1 kpc light travel time evolution, with the majority (4267) accounted for by

the leading order Newtonian term, providing information about the chirp mass,

and tens of cycles due to the p1N and p1.5N terms (77 and 45, respectively),

that provide information about a second independent mass parameter. Spins

contribute to phasing at p1.5N with⇠ 3� cycles. Therefore their total contribution

is smaller than the p1.5N mass contribution by a factor between a few and ⇠ 10.

The additional Thomas precession phase contribution may become comparable

to the p1N mass contribution in some cases. In fact, for a = 0.1(0.98) the

binary undergoes 24 (34) precession cycles. This corresponds to a total Thomas

precession phase contribution of 306 (426) rad if ⌦̂ lies outside the precession

cone.

The modulations of A
p

(t) and '
p

(t) are characterised by a small �
L

, because

for most of the inspiral S ⌧ L, and are likely to leave a smaller imprint on the

waveform than those discussed so far. We can indeed estimate the importance of

this e↵ect for the most favourable parameter combinations. The value of '
p

(t)

oscillates over time with an amplitude which depends on the time to coalescence,

S, L, ⌦̂ and p̂. We choose the orientation of Ŝ such that �L is maximised, and

we vary ⌦̂ and p̂, each of which is drawn from a uniform distribution on the

two-sphere.

In Fig 4.3 we show that for rapidly spinning (a = 0.98) SMBHBs this e↵ect

could introduce modulations larger than ⇡/2 in '
p

(t) over 30% of the parameter

space of possible ⌦̂ and p̂ geometries. The amplitude would correspondingly

change over the same portion of the parameter space by at most 60% with respect

to its unmodulated value. Since these e↵ects are modulated, they will not be

easily identifiable.

4.5 Conclusions

We have established that the coherent observation of both the Earth and pulsar

term provides information about the dynamical evolution of a GW source. The

question now is whether they can be unambigously identified. A rigorous analysis

would require extensive simulations based on the actual analysis of synthetic
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Figure 4.3: The fraction of parameter space in ⌦̂ and p̂ for which the maximum
excursion of '

p

over the time Lp(1+⌦̂ · p̂) for Lp = 1kpc exceeds a certain value,
shown on the horizontal axis. Several values of m

1,2, a and f
GW,E are considered

(see legend).

data sets. We can however gain the key information with a much simpler order

of magnitude calculation. The phase (or number of cycles) error scales as ⇠
1/(S/N). Assuming S/N ⇠ 40 means that the total number of wave cycles over

the Earth-pulsar baseline can be determined with an error ⇠ 4300/40 ⇠ 100

wave cycles. This is comparable to the p1N contribution to the GW phase and,

in very favourable circumstances, to the Thomas precession phase contribution,

and larger by a factor of a few or more than all the other contributions. It may

therefore be possible to measure the chirp mass and, say, the symmetric mass

ratio of a SMBHB, and possibly a combination of the spin parameters. E↵ects

due to the p1.5N and higher phase terms are likely to remain unobservable, as well

as amplitude and phase modulations. Correlations between the parameters, in

particular masses and spins, will further degrade the measurements. The details

will depend on the actual S/N of the observations, the GW source parameters,

and the accuracy with which the source location and the pulsar distance can be
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determined. We plan to explore these issues in detail in a future study.
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Chapter 5

CONCLUSIONS

5.1 Anisotropic stochastic GW background

searches

Searches for the stochastic GW background are currently ongoing in NANOGrav,

EPTA, PPTA and the IPTA. Within the EPTA, I am co-leading the search for

an anisotropic stochastic GW background, based on the formalism introduced in

Mingarelli et al. [2013] (equivalently Chapter 2). Indeed, in Mingarelli et al. [2013]

we show that the stochastic GWB may have a fractional degree of anisotropy of

around 20% at high frequencies, while Taylor and Gair [2013] show the e↵ect of

background-finiteness on the angular power-spectrum of the GWB. Expanding

the standard search for an isotropic background to an anisotropic background

allows one to place constraints on its degree of anisotropy, if any. In this project,

we will search over anisotropy coe�cients, the cml ’s in Eq (2.19), within the power-

law model of the strain-spectrum. At the lowest order, this will necessarily include

an upper limit on the monopole, which should be consistent with the isotropic

working group (in prep). Furthermore, we will see how much the isotropic limit is

a↵ected by inclusion of di↵erent numbers of anisotropy coe�cients in the search.

We will then explore the current angular resolution of the EPTA which depends

on the number of pulsars used. This will allow us to set a upper limit on the

multipole moment, l
max

, we should use. We may find, on the other hand, that

the upper limit on the amplitude converges once we reach a certain order, and
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there is no need to extend the analysis to l
max

.

Following this, our approach we will be to parametrize anisotropy-coe�cients

to be a function of frequency. We propose using the “hybrid time-frequency

domain” technique introduced in Lentati et al. [2013] to follow the frequency-

dependence (if any) of the background anisotropy. The motivation of this derives

from the fact that the stochasticity of the strain-spectrum begins to break down at

higher frequencies, as also shown in Sesana et al. [2008], such that the contribution

to the signal becomes dominated by a handful of bright sources.

This analysis will then be carried out again the IPTA data set, currently in

prep.

5.2 CMB-like stochastic GW background

searches

Currently, I am working with Jon Gair, Steve Taylor and Joseph Romano on

a project with the aim to describe how the formalism used to characterize the

polarization of the cosmic microwave background (CMB), see e.g. Kamionkowski

et al. [1997], can be applied to the analysis of GW backgrounds. An arbitrary

background can be decomposed into modes whose angular dependence on the

sky is given by gradients and curls of spherical harmonics. We derive the pulsar

timing overlap reduction function for individual modes and show how these can

be used to recover the components of the background. An isotropic, uncorrelated

background can be accurately recovered using only three components and there-

fore this search will be almost as sensitive as a direct search using the Hellings

and Downs overlap reduction function, see e.g. Anholm et al. [2009]; Hellings

and Downs [1983]; Mingarelli et al. [2013]. My contribution to this work is to

provide a description of known anisotropic ORFs in this new representation of

the GW backgrounds. Note that in this approach each individual mode on its

own describes a background that is correlated between di↵erent points on the

sky. A measurement of these components that is inconsistent with the expected

values for an uncorrelated background would indicate new physics.
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5.3 Future work

In June 2014, I will commence a new project in collaboration with researchers

at Caltech and NASA’s Jet Propulsion Laboratory. The aim of the project is

to find the first ever direct evidence for GWs with PTAs by means of a new

interdisciplinary collaboration in radio and infrared astronomy, data analysis and

astrophysics. I will lead a team, coordinating my e↵orts with my mentors– Tom

Prince, Joseph Lazio and Michael Kramer– and colleagues, which will search

for candidate SMBHBs using galaxy catalogues. Having obtained the merger

candidates, we will populate them with SMBHB candidates, according to an

appropriate BH mass distribution function. The result will be a realistic synthetic

map, based on the spatial distribution and masses of the merger candidates, which

can be used to predict the level of anisotropy in the local universe. I will apply

the resulting anisotropy map to an extended GW search which implements the

anisotropy formalism introduced in Chapter 2 or equivalently Mingarelli et al.

[2013], using it to constrain the priors used to evaluate the likelihood function. We

will then apply a novel extension of this formalism to the single source searches via

a new hybridized method. In this approach, we search for GW hotspots– regions

where we probabilistically believe one or more GW sources to be concentrated–

using the anisotropic formulation, and then search within those hotspots for single

sources using methods optimized for single source detection.
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Appendix A

DERIVATION OF THE

GENERALIZED OVERLAP

REDUCTION FUNCTIONS

A.1 Derivation of the generalized overlap re-

duction function

In this Appendix we provide details for the derivation of the analytical expressions

of the generalized overlap reduction functions in the computational frame, Eq

(1.167), whose expressions are presented in Section 1.7. We begin by deriving

identities and properties of integrals that will be used later in the derivations.

Further comments on the isotropic solution are provided in Section A.1.1, the

l = 1 (dipole) ORFs are derived in Section A.1.2, and the l = 2 ORFs are derived

in Section A.1.3.

In the computational frame, the antenna beam patterns for pulsar a and b

are given by Eqs (1.169). Substituting Eq. (1.169) into Eq. (2.38), the overlap

reduction functions become:
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A. DERIVATION OF THE GENERALIZED OVERLAP
REDUCTION FUNCTIONS

(ab)�m
l = �1

4
(1 + �ab)

Z ⇡

0

d✓ sin ✓

⇥
Z

2⇡

0

d�Y m
l

(1� cos ✓) [(sin� sin ⇣)2�(sin ⇣cos ✓cos�� sin ✓cos ⇣)2]

1+cos ✓ cos ⇣ + sin ✓ sin ⇣ cos�
(A.1)

One can write Eq (A.1) as the sum of two integrals:

(ab)�m
l =

1

4
(Qm

l +Rm
l )(1 + �ab) , (A.2)

where

Qm
l = Nm

l

Z ⇡

0

d✓ sin ✓(1�cos ✓)Pm
l (cos ✓)

⇥
Z

2⇡

0

d�(1�cos ⇣cos ✓�sin ⇣sin ✓ cos�)eim� (A.3)

and

Rm
l =�Nm

l 2 sin2 ⇣

Z ⇡

0

d✓ sin ✓(1�cos ✓)Pm
l (cos ✓)Im (A.4)

Im ⌘
Z

2⇡

0

d�
eim� sin2 �

1 + cos ⇣cos ✓ + sin ⇣sin ✓ cos�
, (A.5)

and the constant Nm
l is given by Eq. (2.37). The Qm

l portion of the overlap

reduction function, Eq. (A.3), is only non-zero for m = 0,±1:

Qm
l 6= 0 i↵m = 0,±1 (8l) . (A.6)
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This can be shown via integration by parts of the integral in �:

Z

2⇡

0

d�(1�cos ⇣cos ✓�sin ⇣sin ✓ cos�)eim�

= �
Z

2⇡

0

d� sin ⇣sin ✓ cos�eim� (A.7)

= � sin ⇣ sin ✓

Z

2⇡

0

d�eim� cos� (A.8)

= sin ⇣ sin ✓
im

m2 � 1
(e2i⇡m � 1) = 0 (|m| � 2) . (A.9)

For m = 0 ,±1, the integral in � is handled as a special case:

Z

2⇡

0

d�(1�cos ⇣cos ✓�sin ⇣sin ✓ cos�)eim�

=

(

2⇡(1� cos ⇣ cos ✓), m = 0

�⇡ sin ⇣ sin ✓, m = ±1
(A.10)

Note that the non-zero solutions given here are real-valued. We can now show

that the generalised overlap reduction functions in the computational frame, given

by Eq (A.1) are real 8 l ,m.

We have just shown that the Qm
l are real, therefore it remains to prove that

Rm
l , Eq. (A.4), is also real 8 l ,m. The complex component is introduced via the

� dependence in Eq (A.5),

Im ⌘
Z

2⇡

0

d�
eim� sin2 �

1 + cos ⇣cos ✓ + sin ⇣sin ✓ cos�
, (A.11)

=

Z

2⇡

0

d�
cosm� sin2 �

1 + cos ⇣cos ✓ + sin ⇣sin ✓ cos�

+ i

Z

2⇡

0

d�
sinm� sin2 �

1 + cos ⇣cos ✓ + sin ⇣sin ✓ cos�
. (A.12)

The final integral which is a function of i can be written as an odd function over

a symmetric interval for any value of m, hence it vanishes leaving only first, the
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real-valued, integral. Eq (A.5) can therefore be written as

Im =

Z

2⇡

0

d�
cosm� sin2 �

1 + cos ⇣cos ✓ + sin ⇣sin ✓ cos�
, (A.13)

which is real-valued 8 l ,m in the computational reference frame.

Lastly we introduce an identity which helps one to readily solve a common

integral involving Legendre polynomials. Formally, we show that for any n-times

di↵erentiable function g(x) and Legendre polynomial Pn(x), the following equality

holds:
Z

1

�1

dx g(x)Pn(x) =
(�1)n

2nn!

Z

1

�1

dx (x2 � 1)ng(n)(x). (A.14)

Using repeated applications of integration by parts, and using Rodrigues’ formula

for Legendre polynomials

Pn(x) =
1

2nn!
Dn((x2 � 1)n) , (A.15)

where Dn is the nth derivative with respect to x, the left-hand side of Eq (A.14)

can be written as:

Z

dx g(x)Pn(x) = g(x) · 1

2nn!
Dn�1[(x2 � 1)n]� g0(x) · 1

2nn!
Dn�2[(x2 � 1)n] + · · ·

+ (�1)n�1g(n�1)(x) · 1

2nn!
D(n�n)[(x2 � 1)n] +

Z

dx(�1)ngn(x) · 1

2nn!
[(x2 � 1)n].

(A.16)

We then evaluate Eq. (A.16) over [�1, 1] and note that in every boundary term,

after the di↵erentiations are performed, there is always a remaining term of the

form (x2 � 1)m, for some m. Thus, this term vanishes at the end-points [�1, 1]

leaving only the final integral term, thus proving Eq (A.14). We will make use of

this identity regularly in the following sections describing dipole and quadrupole

anisotropies.
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A.1.1 Note on the isotropic solution

The derivation of the isotropic solution is given in Sec 1.7. However, it is useful

to note that when one sets m = 0 and solves the Q and R integrals, one does so

for any higher harmonic with m = 0. We can therefore write that for any m = 0

Q0

l = 2⇡N0

l

Z ⇡

0

d✓ sin ✓(1� cos ✓)(1� cos ⇣ cos ✓)Pl(cos ✓),

(A.17)

R0

l = �4⇡N0

l �

Z ⇡�⇣

0

d✓
(1�cos ✓)2

sin ✓
Pl(cos ✓)� 4⇡N0

l ↵

Z ⇡

⇡�⇣

d✓ sin ✓Pl(cos ✓).

(A.18)

A.1.2 Dipole Anisotropy

The dipole anisotropy is described by the l = 1 and m = 0,±1 spherical harmonic

functions.We therefore have non-zero solutions for all Qm
l and Rm

l . Here we derive

the expressions for �0

1

and �±1

1

. Beginning with �0

1

, one may easily compute

N0

1

=
p

3/4⇡ and P 0

1

= cos ✓. Since m = 0, the integral in � is identical to that

in the isotropic case for both Q0

1

and R0

1

. We can also use (A.14) to easily solve

the integral in ✓, with x = cos ✓ and a0 = cos ⇣:

Q0

1

=
p
3⇡

Z ⇡

0

d✓ sin ✓(1� cos ✓)(1� cos ✓ cos ⇣) cos ✓

=
p
3⇡

Z

+1

�1

dx[a0x2 � x(a0 + 1) + 1]x (A.19)

= �2

r

⇡

3
↵. (A.20)
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To evaluate R0

1

, we substitute l = 1 into Eq. (A.18)

R0

1

= �4⇡

r

3

4⇡



�

Z ⇡�⇣

0

d✓
(1�cos ✓)2

sin ✓
cos ✓

+↵

Z ⇡

⇡�⇣

d✓ sin ✓ cos ✓

�

,

= �2
p
3⇡�



↵ + 4 ln

✓

sin
⇣

2

◆�

, (A.21)

so we can finally write

(ab)�0

1

= �1

2

r

⇡

3

⇢

↵ + 3�



↵ + 4 ln

✓

sin
⇣

2

◆��

(1 + �ab). (A.22)

To evaluate (ab)�1

1

, we calculate N1

1

=
p

3/8⇡ and P 1

1

(cos ✓) = � sin ✓ so that we

can easily write

Q1

1

=

r

3

8⇡

Z ⇡

0

d✓(� sin2 ✓)(1�cos ✓)

Z

2⇡

0

d�ei�(1�cos ⇣cos ✓�sin ⇣sin ✓ cos�)

= ⇡

r

3

8⇡
sin ⇣

Z ⇡

0

d✓ sin3 ✓(1�cos ✓)

=

r

2⇡

3
sin ⇣. (A.23)

Note that the solution of the integration in � is valid for any l:

Q1

l = �⇡N1

l sin ⇣

Z ⇡

0

d✓ sin2 ✓(1� cos ✓)P 1

l (cos ✓). (A.24)

We now turn our attention to R1

1

and simplify the expression by substituting

q = 1 + cos ✓ cos ⇣,

r = sin ✓ sin ⇣,
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noting that
p

q2 � r2 = | cos ✓ + cos ⇣|. It follows that

R1

1

= �2

r

3

8⇡
sin2 ⇣

Z ⇡

0

d✓ sin ✓(1�cos ✓)(� sin ✓)I
1

, (A.25)

I
1

⌘
Z

2⇡

0

d�
cos� sin2 �

q + r cos�
. (A.26)

= �⇡ (�2q3�r2| cos ✓+cos ⇣|+2qr2+2q2| cos ✓ + cos ⇣|)
r3| cos ✓ + cos ⇣| . (A.27)

As before, the value of Eq. (A.27) depends on where we are evaluating the integral

in ✓: cos ✓ + cos ⇣ is positive for 0  ✓  ⇡ � ⇣ and negative for ⇡ � ⇣  ✓  ⇡.

We now factor Eq (A.27) considering (cos ✓ + cos ⇣) > 0:

I
1

= �⇡[q � (cos ✓ + cos ⇣)]2

r3
, (A.28)

= � ⇡

sin✓ sin⇣

(1�cos ✓)(1�cos ⇣)

(1+cos ✓)(1 + cos ⇣)
. (A.29)

The case where (cos ✓ + cos ⇣) < 0 is analogous. The complete expression for I
1

is therefore

I
1

= � ⇡

sin ✓ sin ⇣

(

(1�cos ✓)(1�cos ⇣)
(1+cos ✓)(1+cos ⇣)

, 0 < ✓ < ⇡ � ⇣
(1+cos ✓)(1+cos ⇣)
(1�cos ✓)(1�cos ⇣)

, ⇡ � ⇣ < ✓ < ⇡
(A.30)

Therefore, any R1

l can be written as:

R1

l = +2⇡N1

l

�

↵
sin ⇣

Z ⇡�⇣

0

d✓
(1� cos ✓)2

1 + cos ✓
P 1

l (cos ✓)

+ 2⇡N1

l

↵

�
sin ⇣

Z ⇡

⇡�⇣

d✓(1 + cos ✓)P 1

l (cos ✓) . (A.31)
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For m = 1, l = 1, it is now straightforward to write

R1

1

= ��

↵

r

3⇡

2
sin ⇣

Z ⇡�⇣

0

d✓
(1� cos ✓)2 sin ✓

1 + cos ✓

� ↵

�

r

3⇡

2
sin ⇣

Z ⇡

⇡�⇣

d✓ sin ✓(1 + cos ✓), (A.32)

= 2�

r

3⇡

2
sin ⇣



1 +
4

↵
ln

✓

sin
⇣

2

◆�

. (A.33)

Combining Eqs(A.23) and (A.33) one finds the final expression for �1

1

:

(ab)�1

1

=
1

2

r

⇡

6
sin ⇣

⇢

1 + 3�



1 +
4

↵
ln

✓

sin
⇣

2

◆��

(1 + �ab), (A.34)

and recalling that (ab)��m
l = (ab)�m

l (�1)m, one obtains (ab)��1

1

= �(ab)�1

1

.

A.1.3 Quadrupole Anisotropy

Quadrupole anisotropy is described in terms of the l = 2,m = 0,±1,±2 spherical

harmonic functions. Two of these solutions are found immediately: since l = 2,
(ab)��m

2

= (ab)�m
2

. We now evaluate (ab)�|m|
2

, beginning with (ab)�0

2

, where N0

2

=
p

5/4⇡ and P 0

2

= 1/2(3 cos2 ✓ � 1). Firstly we find Q0

2

using (A.17) with l = 2

Q0

2

= ⇡

r

5

4⇡

Z ⇡

0

d✓ sin ✓(1�cos ✓)(1�cos ⇣ cos ✓)(3 cos2 ✓ � 1)

=
4

3

r

⇡

5
cos ⇣, (A.35)

and R0

2

can be found with (A.18) with l = 2:

R0

2

= �2⇡

r

5

4⇡
�

Z ⇡�⇣

0

d✓
(1�cos ✓)2

sin ✓
(3 cos2 ✓ � 1)

� 2⇡

r

5

4⇡
↵

Z ⇡

⇡�⇣

d✓ sin ✓(3 cos2 ✓ � 1), (A.36)

= �
p
5⇡



cos2 ⇣ + 4 cos ⇣ + 3 + 8 ln

✓

sin
⇣

2

◆�

. (A.37)
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Combining these solutions we obtain:

(ab)�0

2

=
1

3

r

⇡

5

⇢

cos ⇣+
15�

4



↵(cos ⇣+3) +8 ln

✓

sin
⇣

2

◆��

(1 + �ab). (A.38)

Using analogous techniques, we can find an expression for �1

2

. Here N1

2

=
p

5/24⇡ and P 1

2

= �3 cos ✓ sin ✓, so Q1

2

is given by substituting l = 2 into Equa-

tion (A.24):

Q1

2

= 3⇡

r

5

24⇡
sin ⇣

Z ⇡

0

d✓ sin3 ✓ cos ✓(1� cos ✓) (A.39)

= �
r

2⇡

15
sin ⇣. (A.40)

Equation (A.31) is again used with l = 2 to write R1

2

:

R1

2

= �6⇡

r

5

24⇡

�

↵
sin ⇣

Z ⇡�⇣

0

d✓
(1� cos ✓)2 cos ✓ sin ✓

1 + cos ✓

� 6⇡

r

5

24⇡

↵

�
sin ⇣

Z ⇡

⇡�⇣

d✓(1 + cos ✓) cos ✓ sin ✓ (A.41)

= �2�

↵

r

5⇡

6
sin ⇣



↵(cos ⇣ + 4) + 12 ln

✓

sin
⇣

2

◆�

. (A.42)

Hence we write the final solution as:

(ab)�1

2

=
1

4

r

2⇡

15
sin ⇣

⇢

5 cos2 ⇣+15 cos ⇣�21�60
�

↵
ln

✓

sin
⇣

2

◆�

(1 + �ab). (A.43)

Finally we write down the exact expression for (ab)�2

2

. Recall that for m = 2,

Q2

2

= 0 as shown in the introduction to this appendix. Here N2

2

=
p

5/96⇡ and

P 2

2

= 3 sin2 ✓ and using q and r as previously defined we first write down the

119



A. DERIVATION OF THE GENERALIZED OVERLAP
REDUCTION FUNCTIONS

integral I
2

:

I
2

⌘
Z

2⇡

0

d�
cos 2� sin2 �

q + r cos�
, (A.44)

=
2⇡(cos ✓ + cos ⇣)2

r4| cos ✓+cos ⇣| [2q| cos ✓+cos ⇣|�(cos ✓+cos ⇣)2�q2].

(A.45)

This expression must be evaluated in 2 separate regimes, as before, where cos ✓+

cos ⇣ is positive for 0  ✓  ⇡ � ⇣ and negative for ⇡ � ⇣  ✓  ⇡, i.e.

I
2

= 2⇡

(

�(cos ✓+cos ⇣)
(1+cos ✓)2(1+cos ⇣)2

, 0 < ✓ < ⇡ � ⇣
(cos ✓+cos ⇣)

(1�cos ✓)2(1�cos ⇣)2
, ⇡ � ⇣ < ✓ < ⇡

(A.46)

Therefore:

(ab)�2

2

=
3

4

r

5⇡

6
sin2 ⇣

Z ⇡�⇣

0

d✓
sin3 ✓(1� cos ✓)(cos ✓ + cos ⇣)

↵2(1 + cos ✓)2
(1 + �ab)

� 3

4

r

5⇡

6
sin2 ⇣

Z ⇡

⇡�⇣

d✓
sin3 ✓(cos ✓ + cos ⇣)

�2(1� cos ✓)
(1 + �ab),

= �1

4

r

5⇡

6

�

↵

⇢

↵(cos2 ⇣ + 4 cos ⇣ � 9)� 24� ln

✓

sin
⇣

2

◆�

(1 + �ab)

(A.47)
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Appendix B

FEATURES OF THE OVERLAP

REDUCTION FUNCTIONS

B.1 Strong pulsar-term e↵ects

Stochastic GW background searches all assume that many GWs separate pulsar

pairs from each other and the Earth. We can write this assumption mathemati-

cally as fL � 1, where f is the frequency of the GW background and L is the

distance to the pulsar. However, when the pulsars are separated by a few radia-

tion wavelengths or less, there is a coherent addition of the GW phase between

neighbouring pulsars, cf. Figs 3.2, 3.3. In Chapter 3, we probed the strong pulsar

term regime by fixing pulsar a and moving pulsar b radially by ⇣fLa and along the

z-axis by �fL = fLb � fLa. This geometry is illustrated in Fig 3.1. Some of the

contour plots in Figs 3.2, 3.3 showed new and interesting behaviour in the strong

pulsar term regime, including large fractional di↵erence between the magnitude

of the ORF with respect to the Earth-term-only ORF, for pulsars separated by

a few degrees, cf. Table 3.1.

Here we try to explain these features by giving an example of the interplay

between the geometry of the pulsar-Earth system its alignment with the GW

energy density decomposed over the basis of spherical harmonics. The doubling

of the ORF at ⇣ = 0 is a known feature, cf. Eq (3.12). In the following geometry,

pulsar a is aligned with the z-axis.
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Take for example the Y 0

2

spherical harmonic, see Fig B.1. In Fig B.1, we show

that the Y 0

2

spherical harmonic has both positive and negative regions which

contribute positively and negatively to the ORF respectively. The the product of

the positive/negative correlation introduced by the pulsar term (which is in turn

a function of the separation of the pulsars) and the sign of the spherical harmonic

in a particular region of the sky gives the overall sign of the ORF in that region.

By studying how the correlated phase changes interact with the distribution of

the GW energy density, we will gain some insight into the general features of the

strong pulsar-term regime.

First we examine how moving pulsar b in the z-direction a↵ects the ORF in

the strong pulsar term regime. When the pulsar pair is separated by �fL 
0.25 the pulsar terms introduce a positive correlated phase change. Since the

pulsars are embedded in a Y 0

2

-type GW background, sign of the correlation in

the ✓ < cos�1(1/
p
3) region is also positive. Therefore the sign of the ORF here

is positive. In Fig B.1, this is denoted by [+,+].

The pulsar terms are again positively correlated when 0.75 < �fL(1�cos✓) <

1. Moreover, when cos�1(�1/
p
3) < ✓ < ⇡, the contribution from the Y 0

2

dis-

tributed GW energy density is also positive.

When pulsar b is between 0.25 and 0.75 radiation wavelengths from a, the

pulsar term phases will be anti-correlated. However, this region coincides with

the region where the GW energy density is also negative, and therefore the overall

contribution to the ORF is positive. This explains why some large ORF values

are observed for pulsars which are separated by a small �fL.

Analogous arguments hold when moving pulsar b radially, separating the pul-

sars by ⇣fLa radiation wavelengths. Similar arguments can also be made to

explain the feature seen in the other anisotropic ORFs.
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(a) The Y 0
2 spherical harmonic (b) Contributions to the ORF

Figure B.1: (a) The energy density distribution for Y 0

2

. The red and blue
regions are positive and negative, respectively. (b) The Earth (green) is at the
center with the two pulsars above. The magnitude of the (ab)�0

2

(fL, ⇣) ORF is
enhanced by small 0 < �fL . 1 pulsar b displacements, over the �fL = 0 case.
Going clockwise from the top, the arrows show the direction of GW propagation.
The lighter shaded regions of the diagram show the regions of the sky from which
the signal will contribute positively to the ORF. The darker shaded regions will
contribute negatively to the ORF though their size and depend on �fL. The
brackets indicate the sign of [pulsar term correlation, sign of the background
energy density].
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