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Decrease your frequency by expanding your horizon.

Increase your Q by purifying your mind. Eventually,

you will achieve inner peace and view the internal

harmony of our world.

— A lesson from a harmonic oscillator
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Abstract

Recent significant achievements in fabricating low-loss optical and mechanical
elements have aroused intensive interest in optomechanical devices which couple
optical fields to mechanical oscillators, e.g., in laser interferometer gravitational-
wave (GW) detectors. Not only can such devices be used as sensitive probes
for weak forces and tiny displacements, but they also lead to the possibilities of
investigating quantum behaviors of macroscopic mechanical oscillators, both of
which are the main topics of this thesis. They can shed light on improving the
sensitivity of quantum-limited measurement, and on understanding the quantum-
to-classical transition.

This thesis is a collection of publications that I worked on together with the UWA
group and the LIGO Macroscopic Quantum Mechanics (MQM) discussion group.
In the first part of this thesis, we will discuss different approaches for surpassing
the standard quantum limit for the displacement sensitivity of optomechanical
devices, mostly in the context of GW detectors. They include: (i) Modifying
the input optics. We consider filtering two frequency-independent squeezed light
beams through a tuned resonant cavity to obtain an appropriate frequency depen-
dence, which can be used to reduce the measurement noise of the GW detector
over the entire detection band; (ii) Modifying the output optics. We study a
time-domain variational readout scheme which measures the conserved dynamical
quantity of a mechanical oscillator: the mechanical quadrature. This evades the
measurement-induced back action and achieves a sensitivity limited only by the
shot noise. This scheme is useful for improving the sensitivity of signal-recycled
GW detectors, provided the signal-recycling cavity is detuned, and the optical
spring effect is strong enough to shift the test-mass pendulum frequency from 1
Hz up to the detection band around 100 Hz; (iii) Modifying the dynamics. We
explore frequency dependence in double optical springs in order to cancel the
positive inertia of the test mass, which can significantly enhance the mechanical
response and allow us to surpass the SQL over a broad frequency band.

In the second part of this thesis, two essential procedures for an MQM experi-
ment with optomechanical devices are considered: (i) state preparation, in which
we prepare a mechanical oscillator in specific quantum states. We study the prepa-
rations of both Gaussian and non-Gaussian quantum states, and also the creation
of quantum entanglements between the mechanical oscillator and the optical field.
Specifically, for the Gaussian quantum states, e.g., the quantum ground state, we
consider the use of passive cooling and optimal feedback control in cavity-assisted
schemes. For non-Gaussian quantum states, we introduce the idea of coherently



iv Chapter 0. Abstract

transferring quantum states from the optical field to the mechanical oscillator. For
the quantum entanglement, we consider the entanglement between the mechani-
cal oscillator and the finite degrees-of-freedom cavity modes, and also the infinite
degrees-of-freedom continuum optical mode. (ii) state verification, in which we
probe and verify the prepared quantum states. A similar time-dependent ho-
modyne detection method as discussed in the first part is implemented to evade
the back action, which allows us to achieve a verification accuracy that is below
the Heisenberg limit. The experimental requirements and feasibilities of these
two procedures are considered in both small-scale cavity-assisted optomechanical
devices, and in large-scale advanced GW detectors.
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Figure 1.1 – A schematic plot of an atomic-force microscope (left), and a
gravitational-wave (GW) detector (right).

Measuring weak forces lies in the heart of modern physics: on the small scale,
atomic-force microscopy [1] probes microscopic structures, or even Casimir force,
by measuring the displacement of a micro-mechanical cantilever [2]; on the large
scale, gravitational-wave (GW) detectors search for ripples in spacetime, by mea-
suring the differential displacements of spatially-separated test masses induced by
tiny gravitational tidal forces [cf. Fig. 1.1] [3–5]. The core of all these systems is
an optomechanical device with mechanical degrees of freedom coupled to a coher-
ent optical field, as shown schematically in Fig. 1.2. With the availability of highly
coherent lasers and low-loss optical and mechanical components, optomechanical
devices can attain such a high sensitivity that even the quantum dynamics of the
macroscopic mechanical oscillator has to be taken into account, which leads to
the fundament quantum limit for the measurement sensitivity — the so-called
“Standard Quantum Limit”.

Standard Quantum Limit (SQL).—The SQL was first realized by Braginsky in
the 1960’s, when he studied whether quantum mechanics imposes any limit on
the force sensitivity of bar-type GW detectors. As we will see, such a limit is
directly related to the fundamental Heisenberg uncertainty principle, and it applies
universally to all devices that use a mechanical oscillator as a probe mass. Its force
noise spectral density SF

SQL reads:

SF
SQL(Ω) = 2~|m[(Ω2 − ω2

m) + 2iγmΩ]|, (1.1)
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Figure 1.2 – A schematic plot of an optomechanical system (left), and
the corresponding spacetime diagram (right). The output optical field that
contains the information of the oscillator motion is measured continuously
by a photodetector. For clarity, the input and output optical fields are
placed on opposite sides of the oscillator world line.

with Ω the angular frequency, m the mass, ωm the eigenfrequency, and γm the
damping rate of the mechanical oscillator.

In the case of an interferometric GW detector, such as LIGO [3], the mechanical
oscillators are kg-scale test masses suspended with a pendulum frequency around
1 Hz. Since the frequency of the GW signal that we are interested in is around
100 Hz, they can be well approximated as free masses with ωm ∼ 0. In addition,
the gravitational tidal force on two test masses separated by L is Ftidal = mLḧ
with h the GW strain, which in the frequency domain reads −mLhΩ2. Therefore,
the corresponding h-referred SQL reads:

SSQL
h (Ω) =

2~
mΩ2L2

, (1.2)

where we have ignored the damping rate γm because the quality factor of a typical
suspension is very high.

There are two perspectives on the origin of the SQL. The first is based upon
the dynamics of the optomechanical system. At high frequencies, the quantum
fluctuation of the optical phase gives rise to phase shot noise, which is inversely
proportional to the optical power; while at low frequencies, the quantum fluctu-
ation of the optical amplitude creates a random radiation-pressure force on the
mechanical oscillator and induces radiation-pressure noise which is directly pro-
portional to the optical power. If these two types of noise are not correlated, they
will induce a lower bound on the detector sensitivity independent of the optical
power. The locus of such a lower bound gives the SQL, as shown schematically
in Fig. 1.3. The second perspective is based upon the fact that oscillator posi-
tions at different times do not commute with each other—[x̂(t), x̂(t′)] ̸= 0 (t ̸= t′).
Therefore, according to the Heisenberg uncertainty principle, a precise measure-
ment of the oscillator position at an early time will deteriorate the precision of
a later measurement. Since we infer the external force by measuring the changes
in the oscillator position, this will impose a limit on the force sensitivity. These
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Figure 1.3 – A schematic plot of the displacement noise spectral density
for a typical GW detector. When we increase the power, the shot noise will
decrease and the radiation-pressure noise will increase, and vise versa. The
locus of the power-independent lower bound of the total spectrum defines
the SQL (blue).

two perspectives are intimately connected to each other due to the linearity of the
system dynamics, as will be shown in Chapter. 2.

Surpassing the SQL.—From these previous two perspectives on the SQL, we can
find different approaches towards surpassing it, as discussed extensively in the
literature. The first approach is to modify the input and output optics such that
the shot noise and the radiation-pressure noise are correlated, because the SQL
exists only when these two noises are uncorrelated. As shown by Kimble et al [6],
by using frequency-dependent squeezed light, the correlation between the shot
noise and the radiation-pressure noise allows the sensitivity to be improved by the
squeezing factor over the entire detection band. The required frequency depen-
dence can be realized by filtering frequency-independent squeezed light through
two detuned Fabry-Pérot cavities before sending into the dark port of the inter-
ferometer. Motivated by the work of Corbitt et al. [7], we figure out that such a
frequency dependence can also be achieved by filtering two frequency-independent
squeezed lights through a tuned Fabry-Pérot cavity. In addition to the detection
at the interferometer dark port, another detection at the filter cavity output is
essential to maximize the sensitivity. The configuration is shown schematically in
Fig. 1.4. An advantage of this scheme is that it only requires a relatively short
filter cavity (∼ 30 m), in contrast to the km-long filter cavity proposed in Ref. [6].
It can be a feasible add-on to advanced GW detectors. This is discussed in detail
in Chapter 3.

The second approach is to modify the dynamics of the mechanical oscillator, e.g.,
by shifting its eigenfrequency to where the signal is, and amplifying the signal at
the shifted frequency. This is particularly useful for GW detectors in which the
pendulum frequency of the test masses is very low. If the test-mass frequency is
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Figure 1.4 – A schematic plot showing the double-squeezed input configu-
ration of an advanced GW detector. Two frequency-independent squeezed
(SQZ) light are filtered by a tuned Fabry-Pérot cavity before being injected
into the dark port of the interferometer. Two photodetections (PD) are
made, at both the filter cavity, and at the interferometer outputs, to maxi-
mize the sensitivity.

shifted to ωm, the corresponding SQL surpassing ratio is:

η ≡
SF
SQL|modified

SF
SQL|freemass

=
Ω2

|(Ω2 − ω2
m) + 2iγmΩ|

. (1.3)

This is equal to the quality factor ωm/(2γm)—which can be approximately 107—
around the resonant frequency ωm, thus achieving a significant enhancement.
One might naively expect that such a modification of test-mass dynamics can
be achieved by a classical feedback control. However, classical control can modify
the test-mass dynamics but not increase the sensitivity. This is because a classi-
cal control feeds back the measurement noise and signal in the same manner. We
have to implement a quantum feedback which modifies the test-mass dynamics
without increasing the measurement noise. One possible way to achieve a quan-
tum feedback is to use the optical-spring effect. This happens when a test-mass
is coupled to a detuned optical cavity: the intra-cavity power, or equivalently the
radiation-pressure force on the test-mass, depends on the location of the test-mass
as shown in Fig. 1.5, which creates a spring. One issue with the optical spring is
the anti-damping force which destablizes the system. This arises from the delay
in the response with a finite cavity storage time. To stabilize the system, one can
use a feedback control method as described in Ref. [8]. An interesting alternative
is to implement the idea of a double optical spring by pumping the cavity with
two lasers at different frequencies [9, 10]. One laser with a small detuning provides
a large positive damping, while another with a large detuning, but with a high
power, provides a strong restoring force. The resulting system is self-stabilized
with both positive rigidity and positive damping, as shown schematically in the
right panel of Fig. 1.5.
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Figure 1.5 – Plot showing the optical spring effect in a detuned optical
cavity. The radiation pressure is proportional to the intra-cavity power
which depends on the position of the test mass. The non-zero delay in the
cavity response gives rise to an (anti-)damping force. By injecting two laser
beams at different frequencies, this creates a double optical spring and the
system can be stabilized (right panel).

One limitation with such a modification of the test-mass dynamics mentioned
above is that it only allows a narrow band amplification around the shifted reso-
nant frequency. Recently, as realized by Khalili, this limitation can be overcome
by using the frequency dependence of double optical springs, with which the re-
sponse function of the free test-mass becomes:

−mΩ2 +K1(Ω) +K2(Ω) (1.4)

with K1 and K2 the optical rigidity. Ideally, if K1(0) + K2(0) = 0, K ′
1(0) +

K ′
2(0) = 0 and K ′′

1 (0) + K ′′
2 (0) = 2m, the inertia of the test mass is canceled,

and a broadband resonance can be achieved. The advantage of this scheme is its
immunity to the optical loss compared with modifying the input and/or output
optics. Another parameter regime we are interested in is where two lasers with
identical power are equally detuned, but with opposite signs. Even though this
does not surpass the SQL, yet it allows us to follow the SQL at low frequencies
instead of at one particular frequency in the case shown by Fig. 1.3. This is
discussed in details in Chapter 4.

A third method is to measure conserved dynamical quantity of the test-mass,
also called quantum nondemolition (QND) quantities, which at different times
commute with each other. There will be no associated back action, in contrast to
the case of measuring non-conserved quantities. For a free mass, the conserved
quantity is the momentum (speed), and it can be measured, e.g., by adopting
speed-meter configurations [11–15]. For a high-frequency mechanical oscillator,
the conserved quantities are the mechanical quadratures X1 and X2, which are
defined by the equations:

x̂

δxq
≡ X̂1 cosωmt+ X̂2 sinωmt,

p̂

δpq
≡ −X̂1 sinωmt+ X̂2 cosωmt, (1.5)

with δxq ≡
√

~/(2mωm) and δpq ≡
√
~mωm/2. The quadratures commute with
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themselves at different times [X̂1(t), X̂1(t
′)] = [X̂2(t), X̂2(t

′)] = 0. To measure
mechanical quadratures in the cavity-assisted case, one can modulate the optical
cavity field strength sinusoidally at the mechanical frequency, as pointed out in
the pioneering work of Braginsky [16]. In this case, the measured quantity is
proportional to:

E(t)x̂(t) = E0x̂(t) cosωmt = E0[X̂1 + X̂1 cos 2ωmt+ X̂2 sin 2ωmt]/2. (1.6)

If the cavity bandwidth is smaller than the mechanical frequency (the so-called
good-cavity condition), the 2ωm terms will have insignificant contributions to the
output, and we will measure mostly X̂1, achieving a QND measurement. However,
such a good-cavity condition is not always satisfied, especially in broadband GW
detectors and small-scale devices. Here, we consider a time-domain variational
method for measuring the mechanical quadratures, which does not need such a
good-cavity condition. By manipulating the output instead of the input field,
the measurement-induced back action can be evaded in the measurement data,
achieving essentially the same effect as modulating the input field. This approach
is motivated by the work of Vyatchanin et al. [17, 18], in which a time-domain
variational method is proposed for detecting GWs with known arrival time.

Macroscopic Quantum Mechanics.—We have been discussing the SQL for mea-
suring force with optomechanical devices, and have already seen that the quan-
tum dynamics of the mechanical oscillator plays a significant role. A natural
question follows: “Can we use such a device to probe the quantum dynamics of
a macroscopic mechanical oscillator, and thereby gain a better understanding of
the quantum-to-classical transition, and of quantum mechanics in the macroscopic
regime? ” The answer would be affirmative if we could overcome a large obstacle
in front of us: the thermal decoherence. The coupling between the mechanical os-
cillator and high-temperature (usually 300 K) heat bath induces random motion
which is many order of magnitude higher than that of the quantum zero-point
motion.

The solution to such a challenge lies in the optomechanical system itself—that is,
the optical field. As the typical optical frequency ω0 is around 3 × 1014 Hz (in-
frared), each single quantum ~ω0 has an effective temperature of ~ω0/kB ∼ 15, 000
K, which is much higher than the room temperature. This means that the optical
field is almost in its ground state, with low entropy, and can create an effectively
zero-temperature heat bath at room temperature. This fact illuminates two ap-
proaches to preparing a pure quantum ground state of the mechanical oscillator:
(i) Thermodynamical cooling. In this approach, the mechanical oscillator is cou-
pled to a detuned optical cavity. There is a positive damping force in the optical
effect when the cavity is red detuned (i.e., tuned to below the resonant frequency
of the cavity). If the optomechanical damping γopt is much larger than its orig-
inal value γm, the the oscillator is settled down in thermal equilibrium with the
zero-temperature optical heat bath, as shown schematically in Fig. 1.6. With this
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Figure 1.6 – Plot showing that the mechanical oscillator is coupled to both
the environmental heat bath with temperature T = 300 K, and to the optical
field with effective temperature Teff = 0 K. The effective temperature of the
mechanical oscillator is given by Tm =

γmT+γoptTeff

γm+γopt
. This approaches zero

if γopt ≫ γm, which is intuitively expected.

method, many novel experiments have already demonstrated significant reduc-
tions of the thermal occupation number of the mechanical oscillator [9, 19–37]. In
this thesis, we will discuss such a cooling effect in the three-mode optomechanical
interaction where two optical cavity modes are coupled to a mechanical oscillator
(i.e., to a mechanical mode) [refer to Chapter 6 for details]. Due to the opti-
mal frequency matching—the frequency gap between two cavity modes is equal to
the mechanical frequency—this method significantly enhances the optomechanical
coupling, given the same input optical power as the existing two-mode optome-
chanical interaction used in those cooling experiments. In addition, it is also
shown to be less susceptible to classical laser noise. (ii) Uncertainty reduction
based upon information. Since the optical field is coupled to the oscillator, even
if there is no optical spring effect, the information of the oscillator position con-
tinuously flows out and is available for detection. From this information, we can
reduce our ignorance of the quantum state of the oscillator, and map out a classi-
cal trajectory of its mean position and momentum in phase space. The remaining
uncertainty of the quantum state will be Heisenberg-limited if the measurement
is fast and sensitive enough (i.e., the information extraction rate is high), and the
thermal noise induces an insignificant contribution to the uncertainty of the quan-
tum state. In this way, the mechanical oscillator is projected to a posterior state,
also called the conditional quantum state. The usual mathematical treatment of
such a process is by using the stochastic master equation [38–42]. Since we are not
interested in the transient behavior, the frequency-domain Wiener filter approach
provides a neat alternative to obtain the steady-state conditional variance of the
oscillator position and momentum (defining the remaining uncertainty). Such an
approach also allows us to include non-Markovian noise, which is difficult to deal
with by using the stochastic master equation. To localize the quantum state in
phase space (zero mean position and momentum), one just needs to feed back the
acquired classical information with a classical control. There is a unique optimal
controller that makes the residual uncertainty minimum, and close to that of the
conditional quantum state [43].

Due to the intimate connection between the quantity of information in a sys-
tem and its thermodynamical entropy, these two approaches merge together in
the case of cavity-assisted cooling scheme. This is motivated by the pioneering
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work of Marquardt et al. [44] and Wilson-Rae et al. [45]. They showed that
there is a quantum limit for the achievable occupation number, which is given by
γ2/(2ωm)

2. In order to achieve the quantum ground state, the cavity bandwidth
γ has to be much smaller than ωm, and this is the so-called good-cavity limit,
or resolved-sideband limit. The usual understanding of such a limit is from the
thermodynamical point of view, and we point out that it can also be understood
as an information loss. By recovering the information at the cavity output, we can
achieve a nearly pure quantum state, mostly independent of the cavity bandwidth.
This is explained in Chapter 7.

Preparing non-Gaussian quantum states.—In the above-mentioned situations, the
quantum state is Gaussian. By Gaussian, we mean that its Wigner function, which
describes the distribution of the position and momentum in phase space, is a two-
dimensional Gaussian function. Since it is positive and remains Gaussian, it is
describable by a classical probability. A unequivocal signature for ‘quantumness’
is that the Wigner function can have negative values, e.g. in the well-known
‘Schrödinger’s Cat’ state or the Fock state. To prepare these states, it generally
requires nonlinear coupling between the mechanical oscillator and external degrees
of freedom. For optomechanical systems, this can be satisfied if the zero-point
uncertainty of the oscillator position xq is the same order of magnitude as the
linear dynamical range of the optical cavity which is quantified by ratio of the
optical wavelength λ to the finesse F :

λ/(Fxq) . 1. (1.7)

This condition is also the requirement that the momentum kick induced by a single
photon in a cavity be comparable to the zero-point uncertainty of the oscillator
momentum. Usually, λ ∼ 10−6 m and F ∼ 106, which indicates that xq ∼ 10−12

m and mωm ∼ 10−10. This is rather challenging to achieve with the current
experimental conditions.

Here we propose a protocol for preparations of a non-Gaussian quantum state
which does not require nonlinear optomechanical coupling. The idea is to inject a
non-Gaussian optical state, e.g., a single-photon pulse created by a cavity QED
process [46–48], into the dark port of the interferometric optomechanical device, as
shown schematically in Fig. 1.7. The radiation-pressure force of the single photon
on the mechanical oscillator is coherently amplified by the classical pumping from
the bright port. As we will show, the qualitative requirement for preparing a
non-Gaussian state becomes:

λ/(F xq) .
√
Nγ. (1.8)

Here, Nγ = I0 τ/(~ω0) (I0 is the pumping laser power, and ω0 the frequency) is
the number of pumping photons within the duration τ of the single-photon pulse,
and we gain a significant factor of

√
Nγ, as compared with Eq. (1.7), which makes

this method experimentally achievable.
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Figure 1.7 – Possible schemes for preparing non-Gaussian quantum states
of mechanical oscillators. The left panel shows the schematic configuration
similar to that of an advanced GW detector with kg-scale suspended test
masses in both arm cavities. The right panel shows a coupled-cavity scheme
proposed in Ref. [31], where a ng-scale membrane is incorporated into a
high-finesse cavity. In both cases, a non-Gaussian optical state is injected
into the dark port of the interferometer.

Quantum entanglement.—As one of the most fascinating features of quantum me-
chanics, quantum entanglement has aroused many interesting discussions concern-
ing the foundation of quantum mechanics, and it also finds tremendous applica-
tions in modern quantum information and computing. If two or more subsystems
are entangled, the state of the individual cannot be specified without taking into
the others. Any local measurement on one subsystem will affect others instan-
taneously according to the standard interpretation, which violates the so-called
“local realism” rooted in the classical physics. The famous “Einstein-Podolsky-
Rosen” (EPR) paradox refers to the quantum entanglement for questioning the
completeness of quantum mechanics [49]. To great extents, creating and testing
quantum entanglements has been the driving force for gaining better understand-
ing of quantum mechanics.

Interestingly, the optomechanical coupling not only allows us to prepare pure
quantum states, but also to create quantum entanglements involving macroscopic
mechanical oscillators. Since this directly involves macroscopic degrees of free-
dom, such entanglements can help us gain insights into the quantum-to-classical
transition and various decoherence effects which are significant issues in quantum
computing, and many quantum communication protocols [50].

In the case of a cavity-assisted optomechanical system, it is shown that stationary
EPR-type quantum entanglement between cavity modes and an oscillator [51], or
even between two macroscopic oscillators [52–54] can be created. We also analyze
such optomechanical entanglement in the three-mode system. The optimal fre-
quency matching that enhances the cooling also makes the quantum entanglement
easier to achieve experimentally. Additionally, we investigate how the finite cavity
bandwidth that induces the cooling limit influences the entanglement in general
optomechanical devices. We show that the optomechanical entanglement can be
significantly enhanced if we recover the information at the cavity output. In some
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cases, the existence of the entanglement critically depends on whether we take
care of the information loss or not.

Motivated by the work of Ref. [54] which shows that the temperature—the strength
of thermal decoherence—only affects the entanglement implicitly, we analyze the
entanglement in the simplest optomechanical system with a mechanical oscillator
coupled to a coherent optical field. Simple though this system is, analyzing the
entanglement is highly nontrivial because the coherent optical field has infinite
degrees of freedom. The results are very interesting—the existence of the optome-
chanical entanglement is indeed not influenced by the temperature directly, and
the entanglement exists even when the temperature is high and the mechanical
oscillator is highly classical. We obtain an elegant scaling for the entanglement
strength, which only depends on the ratios between the characteristic frequencies
of the optomechanical interaction and the thermal decoherence. This is discussed
in detail in Chapter 8.

State verification.—Being able to prepare pure quantum states or entanglements
does not tell the full story of an MQM experiment. We need a verification stage,
during which the prepared states are probed and verified, to follow up the prepa-
ration stage. Suppose the preparation stage finishes at t = 0, the task of the
verifier is to make an ensemble measurement of different mechanical quadratures:

X̂ζ(0) = x̂(0) cos ζ +
p̂(0)

mωm

sin ζ, (1.9)

with x̂(0) and p̂(0) the oscillator position and momentum at t = 0. By building
up the statistics, we can map out their marginal distributions, from which the
full Wigner function of the quantum state can be constructed. By comparing
the verified quantum state with the prepared one, we can justify the quantum
state preparation procedure. This is a rather routine procedure in the quantum
tomography of an optical quantum state. However, this is nontrivial with op-
tomechanical devices. Unlike the quantum optics experiments where the optical
quadrature can be easily measured with a homodyne detection, in most cases
that we are interested in, we only measure the position x̂(t) instead of quadra-
tures and the associated back action will perturb the quantum state that we try to
probe. Similar to what is discussed in the first part of this thesis, we also use the
time-domain variational measurement to probe the mechanical quadratures with
the quantum back action evaded from the measurement data. Given a continuous
measurement from t = 0 to Tint, we can construct the following integral estimator:

X̂ =

∫ Tint

0

dt g(t) x̂(t) ∝ x̂(0) cos ζ ′ +
p̂(0)

mωm

sin ζ ′, (1.10)

with cos ζ ′ ≡
∫ Tint

0
dt g(t) cosωmt and sin ζ ′ ≡

∫ Tint

0
dt g(t) sinωmt. In this way, a

mechanical quadrature X̂ζ′ can be probed. Here, g(t) is some filtering function,
which is determined by the time-dependent homodyne phase and also by the way
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in which data at different times are combined. By optimizing the filtering function,
we can achieve a verification accuracy that is below the Heisenberg limit.

A three-stage MQM experiment.—By combining the state preparation and the
verification, we can outline a complete procedure for an MQM experiment. In
order to probe various decoherence effects, and the quantum dynamics, we can in-
clude an evolution stage during which the mechanical oscillator freely evolves. We
discuss such a three-stage procedure: the preparation, evolution, and verification
in advanced GW detectors. The details are in Chapter 11.





Chapter 2

Quantum Theory of
Gravitational-Wave Detectors

2.1 Preface

This chapter gives an overview of the quantum theory of gravitational-
wave (GW) detectors. It is a modified version of the chapter contributed
to a book in progress—Advanced Gravitational-Wave Detectors—edited
by David Blair. This chapter is written by Yanbei Chen, and myself.
It gives a detailed introduction on how to analyze the quantum noise
in advanced GW detectors by using input-output formalism, which is
also valid for general optomechanical devices. It discusses the origin
of the Standard Quantum Limit (SQL) for GW sensitivity from both
the dynamics of the optical field, and of the test-mass, which leads us
to different approaches for surpassing the SQL: (i) creating correlations
between the shot noise and back-action noise; (ii) modifying the dynamics
of the test-mass, e.g., through the optical-spring effect; (iii) measuring
the conserved dynamical quantity of the test-mass. For each of these
approaches, the corresponding feasible configurations to achieve them
are discussed in detail. This chapter presents the basic concepts and
mathematical tools for understanding later chapters.

2.2 Introduction

The most difficult challenge in building a laser interferometer gravitational-wave
(GW) detector is isolating the test masses from the rest of the world (e.g., ran-
dom kicks from residual gas molecules, seismic activities, acoustic noises, thermal
fluctuations, etc.), whilst keeping the device locked around the correct point of
operation (e.g., pitch and yaw angles of the mirrors, locations of the beam spots,
resonance condition of the cavities, and dark-port condition for the Michelson
interferometer). Once all these issues have been solved, we arrive at the issue
that we are going to analyze in this chapter: the fundamental noise that arises
from quantum fluctuations in the system. A simple estimate, following the steps
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of Braginsky [55], will already lead us into the quantum world — as it will turn
out, the superb sensitivity of GW detectors will be constrained by the back-action
noise imposed by the Heisenberg Uncertainty Principle, when it is applied to test
masses as heavy as 40 kg in the case of Advanced LIGO (AdvLIGO). As Bra-
ginsky realized in his analysis, there exists a Standard Quantum Limit (SQL) for
the sensitivities of GW detectors — further improvements of detector sensitivity
beyond this point require us to consider the application of techniques that manip-
ulate the quantum coherence of light to our advantage. In this chapter, we will
introduce a set of theoretical tools that will allow us to analyze GW detectors
within the framework of quantum mechanics; using these tools, we will describe
several examples in which the SQL can be surpassed.

The outline of this chapter is as follows: In Section 2.3, we will make an order-of-
magnitude estimate of the quantum noise in a typical GW detector, from which we
can gain a qualitative understanding of the origin of the SQL; then, in Section 2.4,
we will introduce the basic concepts and tools to study the quantum dynamics
of an interferometer, and the associated quantum noise. In Section 2.5, we will
analyze the quantum noise in some simple systems to illustrate the procedures
for implementing these tools – these simple systems are the fundamental building
blocks for an advanced GW detector. We will start to study the quantum noise in
a typical advanced GW detector in Section 2.6. We will increase the complexity
step by step, each of which is connected in sequence to the simple systems analyzed
in the previous section. Section 2.7 will present a rigorous derivation of the SQL
from a more general context of linear continuous quantum measurements. This
can enhance the understanding of the results in the previous section, and also pave
the way to different approaches towards surpassing the SQL. In Section 2.8, we
will talk about the first approach to surpassing the SQL by building correlations
among quantum noises, and, in Section 2.9, we will illustrate the second approach
to beating the SQL by modifying the dynamics of the test mass — in particular, we
will discuss the optical spring effect to realize such an approach. Section 2.10 will
present an alternative point of view on the origin of the SQL. This will introduce
the idea of a speed meter as a third option for surpassing the SQL ,in Section 2.11
— two possible experimental configurations of the speed meter will be discussed.
Finally, in Section 2.12, we will conclude with a summary of the main results in
this chapter.

2.3 An Order-of-Magnitude Estimate

Here, we first make an order-of-magnitude estimate of the quantum limit for the
sensitivity. We assume that test-masses have a reduced mass of m, and it is being
measured by a laser beam with optical power I0, and an angular frequency ω0.
Within a measurement duration τ , the number of photons is Nγ = I0τ/(~ω0).
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Figure 2.1 – A schematic plot of the displacement noise spectrum for
a typical interferometer. Increasing or decreasing the optical power, the
power-independent lower bound of the total spectrum will trace over the
SQL.

For a coherent light source (e.g., an ideal laser), the number of photons follows
a Poisson distribution, and thus its root-mean-square fluctuation is

√
Nγ. The

corresponding fractional error in the phase measurement, also called the shot
noise, would be δϕsh = 1/

√
Nγ. For detecting GWs with a period comparable to

τ , the displacement noise spectrum of the shot noise is:

Sx
sh ≈ δϕ2

sh

k2
τ =

~c2

I0ω0

, (2.1)

with k ≡ ω0/c as the wave number.

Meanwhile, the photon-number fluctuation also induces a random radiation-pressure
force on the test-mass, which is the radiation-pressure noise (also called the back-
action noise) Its magnitude is δFrp =

√
Nγ~k/τ , which is equal to the number

fluctuation multiplied by the force of a single photon ~k/τ . Since the response
function of a free mass in the frequency domain is −1/mΩ2, the corresponding
noise spectrum is:

Sx
rp ≈

δF 2
rp

m2Ω4
τ =

I0ω0

c2
~

m2Ω4
. (2.2)

The total noise spectrum is a sum of Sx
sh and Sx

rp, namely:

Sx
tot = Sx

sh + Sx
rp =

~ c2

I0ω0

+
I0ω0

c2
~

m2Ω4
≥ 2~
mΩ2

, (2.3)

as illustrated in Fig. 2.1. The corresponding lower bound that does not depend
on the optical power is Sx

SQL ≡ 2~/(mΩ2). In terms of GW strain h, it reads

Sh
SQL =

1

L2
Sx
SQL =

2~
mΩ2L2

, (2.4)

with L being the arm length of the interferometer. This introduces us to the
SQL [55–57], which arises as a trade-off between the shot noise and radiation-
pressure noise. In the rest of this chapter, we will develop the necessary tools to



16 Chapter 2. Quantum Theory of Gravitational-Wave Detectors

analyze quantum noise of interferometers from first principles, and to derive the
SQL more rigorously. This will allow us to design GW detectors that surpass this
limit.

2.4 Basics for Analyzing Quantum Noise

To rigorously analyze the quantum noise in a detector, we need to study its
quantum dynamics, of which the basics will be introduced in this section.

2.4.1 Quantization of the Optical Field and the Dynamics

For the optical field, the quantum operator of its quantized electric field is

Ê = u(x, y, z)

∫ +∞

0

dω

2π

√
2π~ω
Ac

[
âωe

ikz−iωt + â†ωe
+iωt−ikz

]
. (2.5)

Here â†ω and âω are the creation and annihilation operators, which satisfy [âω, â
†
ω′ ] =

2π δ(ω − ω′); A is the cross-sectional area of the optical beam; u(x, y, z) is the
spatial mode, satisfying (1/A)

∫
dxdy|u(x, y, z)|2 = 1.

For ground-based GW detectors, the GW signal that we are interested in is in
the audio frequency range from 10 Hz to 104 Hz. It creates sidebands on top of
the carrier frequency of the laser ω0 (3 × 1014Hz). Therefore, it is convenient to
introduce operators at these sideband frequencies to analyze the quantum noise.
The upper and lower sideband operators are â+ ≡ âω0+Ω and â− ≡ âω0−Ω, from
which we can define the amplitude quadrature â1 and phase quadrature â2 as:

â1 = (â+ + â†−)/
√
2, â2 = (â+ − â†−)/(i

√
2) . (2.6)

They coherently create one photon and annihilate one photon in the upper and
lower sidebands, and this is, therefore, also called the two-photon formalism ([58]).
The electric field can then be rewritten as

Ê(x, y; z, t) = u(x, y, z)

√
4π~ω0

Ac
[â1(z, t) cosω0t+ â2(z, t) sinω0t] .

where ω is approximated as ω0 and the time-domain quadratures are defined as

â1,2(z, t) ≡
∫ +∞

0

dΩ

2π

(
â1,2e

−iΩt+ikz + â†1,2e
iΩt−ikz

)
. (2.7)

These correspond to amplitude and phase modulations in the classical limit 1.

1To see such correspondence, suppose the electric field has a large steady-state amplitude A:

Ê(z, t) = [A+ â1(z, t)] cosω0t+ â2(z, t) sinω0t ≈ A

[
1 +

â1(z, t)

A

]
cos

[
ω0t−

â2(z, t)

A

]
.
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free propagation Linear transform

Figure 2.2 – Two basic dynamical processes of the optical field in analyzing
the quantum noise of an interferometer.

After having introduced this quantization, we can look further at the dynamics of
the optical field. The equations of motion that we will encounter turn out to be
very simple, and only two are relevant, as shown in Fig. 2.2: (i) A free propagation.
Given a free propagation distance of L, the new field Ê ′(t) is

Ê ′(t) = Ê(t− τ) , (2.8)

with τ ≡ L/c; (ii) Continuity condition on the mirror surface.

Ê2(t) =
√
TÊ4(t)−

√
RÊ1(t), (2.9)

Ê3(t) =
√
RÊ4(t) +

√
TÊ1(t) , (2.10)

with transmissivity T , reflectivity R, and a sign of convention as indicated in the
figure. These equations relate the optical field before and after the mirror. Due
to the linearity of this system, they are both identical to the classical equations
of motion.

In later discussions, different quantities of the optical field will always be compared
at the same location, and they will all share the same spatial mode. In addition,
the propagation phase shift can be absorbed into the time delay. Therefore, we

will ignore the factors u(x, y, z)
√

4π~ω0

Ac
, and e±ikz, hereafter.

2.4.2 Quantum States of the Optical Field

To determine the expectation value and the quantum fluctuation of the Heisen-
berg operators (related to the quantum noise), e.g., ⟨ψ|Ô|ψ⟩, not only should we
specify the evolution of Ô, but we also need to specify the quantum state |ψ⟩. Of
particular interest to us are vacuum, coherent, and squeezed states.

Vacuum state.—The vacuum state |0⟩ is, by definition, the state with no excitation
and for every frequency, âΩ|0⟩ = 0. The associated fluctuation is:

⟨0|âi(Ω)âj(Ω′)|0⟩sym = πδijδ(Ω− Ω′), (i, j = 1, 2). (2.11)
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Figure 2.3 – A schematic plot of the electric field and the fluctuations of
amplitude and phase quadrature (shaded area). The left panel shows the
time evolution of E, and the right panel shows E in the space expanded by
the amplitude and phase quadratures (E1, E2).

Equivalently, the double-sided spectral densities 2 for â1,2 are

S̃a1(Ω) = Sa2(Ω) = 1, Sa1a2(Ω) = 0 . (2.12)

Coherent state.—The coherent state is defined by [59] as:

|α⟩ ≡ D̂[α]|0⟩ ≡ exp[
∫

dΩ
2π
(αΩ â

†
Ω − α∗

ΩâΩ)]|0⟩ , (2.13)

which satisfies âΩ′|α⟩ = α(Ω′) |α⟩ . The operator D̂ is unitary, so D̂†D̂ = Î. We
can use this to make a unitary transformation for studying the problem

|ψ⟩ → D̂†|ψ⟩, Ô → D̂†ÔD̂ , (2.14)

which leaves the physics invariant. This means that the coherent state can be
replaced by the vacuum state, as long as we perform corresponding transforma-
tions of Ô into D̂†ÔD̂. For the annihilation and creation operators, we have
D̂†(α)âΩD̂(α) = âΩ+αΩ and D̂†(α)â†ΩD̂(α) = â†Ω+α

∗
Ω, i.e., the original operators

plus some complex constants.

An ideal single-mode laser with a central frequency ω0 can be modeled as a co-
herent state, and αΩ = π ā δ(Ω− ω0), with ā =

√
2I0/(~ω0) and I0 is the optical

power. Under transformation D̂, the electric field reads [cf. Eq. (2.7)]:

Ê(t) = [ā+ â1(t)] cosω0t+ â2(t) sinω0t , (2.15)

which is simply a sum of a classical amplitude and quantum quadrature fields.
This is what we intuitively expect for the optical field from a single-mode laser,
namely “quantum fluctuations” superimposed onto a “classical carrier”. In Fig. 2.3,

2For any pair of operators Ô1 and Ô2, the double-sided spectral density is defined through

1

2π
⟨0|Ô1(Ω

′)Ô†
2(Ω)|0⟩sym ≡ 1

2π
⟨0|Ô1(Ω

′)Ô†
2(Ω) + Ô†

2(Ω)Ô1(Ω
′)|0⟩ ≡ 1

2
SO1O2(Ω)δ(Ω− Ω′) .
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Phase squeezingAmplitude squeezing

Figure 2.4 – The fluctuations of the amplitude and phase quadratures
(shaded areas) of the squeezed state. The left two panels show the case of
amplitude squeezing; the right two panels show the phase squeezing.

we show E(t) and the associated fluctuations in the amplitude and phase quadra-
tures schematically. As we will see later, these fluctuations are attributable to the
quantum noise and the associated SQL.

Squeezed state.—A more complicated state would be the squeezed state:

|[χ]⟩ ≡ exp[
∫ +∞
0

dΩ
2π

(
χΩ â

†
+â

†
− − χ∗

Ω â+â−
)
]|0⟩ ≡ Ŝ[χ]|0⟩ . (2.16)

Similar to the coherent-state case, we can also better understand a squeezed state
by making a unitary transformation of the basis through Ŝ. By redefining χΩ ≡
ξΩ e

−2iϕΩ (ξΩ, ϕΩ ∈ ℜ), for quadratures, this leads to:

Ŝ†â1Ŝ = â1(cosh ξ + sinh ξ cos 2ϕ)− â2 sinh ξ sin 2ϕ , (2.17)

Ŝ†â2Ŝ = â2(cosh ξ − sinh ξ cos 2ϕ)− â1 sinh ξ sin 2ϕ . (2.18)

Let us look at two special cases: (i) ϕ = π/2. We have

Ŝ†â1Ŝ = e−ξâ1, Ŝ†â2Ŝ = eξâ2, (2.19)

in which the amplitude quadrature fluctuation is squeezed by e−ξ while the phase
quadrature is magnified by eξ; (ii) ϕ = 0. The situation will just be the opposite.
Both cases are shown schematically in Fig. 2.4.

2.4.3 Dynamics of the Test-Mass

Similarly, due to the linear dynamics, the quantum equations of motion for the
test masses (relative motion) are formally identical to their classical counterparts:

˙̂x(t) = p̂(t)/m, ˙̂p(t) = Î(t)/c+mLḧ(t). (2.20)

Here x̂ and p̂ are the position and momentum operators, which satisfy [x̂, p̂] = i~;
Î(t)/c is the radiation pressure, which is a linear function of the optical quadra-
ture fluctuations; mLḧ(t) is the GW tidal force. Since the detection frequency
(∼100Hz) is much larger than the pendulum frequency (∼1 Hz) of the test-masses
in a typical detector, they are treated as free masses.
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2.4.4 Homodyne detection
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Figure 2.5 – A schematic plot of two homodyne readout schemes.

In this section, we will consider how to detect the phase shift of the output optical
field which contains the GW signal. To make a phase sensitive measurement, we
need to measure the quadratures of the optical field, instead of its power. This can
be achieved by a homodyne detection in which the output signal light is mixed with
a local oscillator, thus producing a photon flux that depends linearly on the phase
(i.e., on the GW strain). Specifically, for a local oscillator L(t) = L1 cosω0t +
L2 sinω0t and output b̂(t) = b̂1(t) cosω0t+ b̂2(t) sinω0t, the photocurrent is i(t) ∝
|L(t) + b̂(t)|2 = 2L1b̂1(t) + 2L2b̂2(t) + · · · . The rest of the terms, represented by
“· · · ”, contain either frequency components that are strictly DC and around 2ω0,
and terms quadratic in b̂. In such a way, we can measure a given quadrature
b̂ζ(t) = b̂1(t) cos ζ + b̂2(t) sin ζ , by choosing the correct local oscillator, such that
tan ζ = L2/L1.

In order to realize the above ideal superposition, there are two possible schemes:
introducing the local oscillator from the injected laser (external scheme as shown
in the right panel of Fig. 2.5); or intentionally offsetting the two arms at the very
beginning, with a very small phase mismatch, which results in the so-called DC
readout scheme, as shown in the left panel of Fig. 2.5.

2.5 Examples

Before analyzing the quantum noise in an advanced interferometric GW detector,
it is illustrative to first consider three examples: (i) A test mass coupled to an op-
tical field in free space; (ii) A tuned Fabry-Pérot cavity with a movable end mirror
as the test mass; (iii) A detuned Fabry-Pérot cavity with a movable end mirror.
These three examples summarize the main physical processes in an advanced GW
detector. Understanding them will not only help us to get familiar with the tools
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for analyzing quantum noise in a GW detector, but can also provide intuitive
pictures which will be useful in understanding more complicated configurations.

2.5.1 Example I: Free Space
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Figure 2.6 – A schematic plot of the interaction between the test mass
and a coherent optical field in free space (left); and the associated physical
quantities (right).

The model is shown schematically in Fig. 2.6. The laser-pumped input optical
field can be written as [cf. Eq. (2.15)]:

Êin(t) = [
√

2I0/(~ω0) + â1(t)] cosω0t+ â2(t) sinω0t. (2.21)

The output field Êout(t) is simply:

Êout(t) = Êin(t− 2τ − 2x̂/c) , (2.22)

with a delay time τ ≡ L/c. We define output quadratures b̂1 and b̂2 through:

Êout(t) = [
√
2I0/(~ω0) + b̂1(t)] cosω0t+ b̂2(t) sinω0t. (2.23)

Since the displacement of the test mass is small, and the uncertainty of ω0x̂/c is
much smaller than unity, we can make a Taylor expansion of Eq. (2.22) in a series
of ω0x̂/c. Up to the leading order, we obtain the following input-output relations:

b̂1(t) = â1(t− 2τ) , (2.24)

b̂2(t) = â2(t− 2τ)− 2

√
2I0
~ω0

ω0

c
x̂(t− τ) , (2.25)

where, for simplicity, we have assumed that ω0L/c = nπ, with n an integer.

The equation of motion for the test-mass displacement x̂ is simply:

m¨̂x(t) = F̂rp(t) +
1

2
mLḧ(t) . (2.26)

Here we have chosen an inertial reference frame, as indicated in Fig. 2.6, such that
the gravitational tidal force is equal to 1

2
mLḧ(t); the radiation-pressure force F̂rp

on the test-mass is given by:

F̂rp(t) = 2
A
4π

|Êin(t− τ)|2 = 2
I0
c

[
1 +

√
2~ω0

I0
â1(t− τ)

]
, (2.27)
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where in the second equality we have kept to the first order of the amplitude
quadrature. There is a DC component in the radiation-pressure force, which
can be balanced in the experiment (e.g., by the wire tension in the case of a
suspended pendulum). We are interested in the perturbed part, proportional to
the amplitude quadrature, which accounts for the radiation-pressure noise.

We can solve Eqs. (2.24), (2.25) and (2.26) by transforming them into the fre-
quency domain, after which we obtain:

b⃗(Ω) = M a⃗(Ω) + D⃗ h(Ω) , (2.28)

where a⃗ = (â1, â2)
T, b⃗ = (b̂1, b̂2)

T (superscript T denoting transpose); the trans-

fer matrix M and transfer vector D⃗ can be read off from the following explicit
expression of Eq. (2.28):[

b̂1(Ω)

b̂2(Ω)

]
= e2iΩτ

[
1 0
−κ 1

] [
â1(Ω)
â2(Ω)

]
+

[
0

eiΩτ
√
2κ

]
h(Ω)

hSQL

, (2.29)

with

κ =
8I0ω0

mc2Ω2
, hSQL =

√
8~

mΩ2L2
. (2.30)

As we can see, the GW signal is contained in the output phase quadrature b̂2. It
can be decomposed into signal and noise components:

b̂2(Ω) = ⟨b̂2(Ω)⟩+∆b̂2(Ω) , (2.31)

where ⟨b̂2(Ω)⟩ is the expectation value of the output, which is proportional to
the GW signal h, and ∆b2 is the quantum fluctuation with zero expectation. By
defining ⟨b̂2(Ω)⟩ ≡ T h, we introduce the following quantity:

T = eiΩτ
√
2κ

1

hSQL

, (2.32)

which is the transfer function from the GW strain h to the output phase quadra-
ture. This particular form indicates that the output phase modulation is propor-
tional to the GW strain, delayed by a constant time τ . The noise part

∆b̂2(Ω) = e2iΩτ â2(Ω)− e2iΩτκ â1(Ω) , (2.33)

contains two parts: (i) the first one is the shot noise n̂sh ≡ e2iΩτ â2, which arises
from the phase-quadrature fluctuation of the input optical field and has a flat
spectrum [cf. Eq. (2.12)]:

Ssh(Ω) = 1; (2.34)

and (ii) the second one is the radiation-pressure noise n̂rp ≡ (−e2iΩτκ â1). This
arises from the amplitude-quadrature fluctuation, and has the following noise
spectrum:

Srp(Ω) = κ2 , (2.35)
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with a frequency dependence of 1/Ω4.

Given the coherent state of the input optical field, the amplitude and phase-
quadrature fluctuations are not correlated. Therefore, we can obtain the total
noise spectrum simply by summing up Ssh and Srp. By normalizing with the
transfer function T , the signal-referred noise spectrum can be written as:

Sh(Ω) =
1

|T |2
S∆b̂2

(Ω) =

[
1

κ
+ κ

]
h2SQL

2
≥ h2SQL. (2.36)

The shot-noise contribution (first term) is inversely proportional to the optical
power (κ ∝ I0) and the radiation-pressure noise (second term) is proportional to
I0. The balance between them gives the SQL for detecting GWs with this simple
device. We will find that although this model is simple, it summarizes the main
features of a GW detector.

2.5.2 Example II: A Tuned Fabry-Pérot Cavity
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Figure 2.7 – A schematic plot of the tuned-cavity model (left); and the
associated physical quantities (right).

Now we consider the case of a tuned Fabry-Pérot cavity. In Fig. 2.7, we show
the model schematically. In comparison with the previous case, an additional
mirror with transmissivity (of power) T , and reflectivity R, are placed in front
of the test-mass, in effect “wrapping” around the original system. We define the
new input and output optical fields Ê ′

in,out, in a similar way to that of Êin,out, by

simply replacing a⃗, b⃗ with new amplitude and phase quadratures α⃗, β⃗. We need to
determine a new input-output relation between α̂1,2 and β̂1,2. From the continuity
condition on the front mirror surface [cf. Eqs. (2.9) and (2.10)], we have:

Êin =
√
RÊout +

√
TÊ ′

in , (2.37)

Ê ′
out =

√
TÊout −

√
RÊ ′

in . (2.38)

Correspondingly, a⃗, b⃗ are related to new quadrature fields α⃗, β⃗ by:

a⃗ =
√
R b⃗+

√
T α⃗ , (2.39)

β⃗ =
√
T b⃗−

√
R α⃗ . (2.40)

Together with Eq. (2.28), it would be straightforward to obtain the new input-
output relation. Generally, the expression is rather cumbersome. We will focus
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on the case in which the transmissivity T is small (i.e., a high-finesse cavity).
In addition, since the GW sideband frequency Ω we are interested in is around
100 Hz, Ω τ is much smaller than unity even when the cavity length L is 4 km.
Therefore, we can make a Taylor expansion of the new input-output relation as
a series of the dimensionless quantities T and Ω τ . Up to the leading order, this
leads to:[

β̂1(Ω)

β̂2(Ω)

]
= e2iϕ

[
1 0

−K 1

] [
α̂1(Ω)
α̂2(Ω)

]
+ e−iϕ

[
0√
2K

]
h

hSQL

. (2.41)

We have introduced:

ϕ ≡ arctan(Ω/γ), K ≡ 2γ ιc
Ω2(Ω2 + γ2)

, (2.42)

with the cavity bandwidth γ ≡ Tc/(4L), parameter ιc ≡ 8ω0Ic/(mLc), and intra-
cavity power Ic ≡ 4I0/T .

The same as the previous free-space case, we need to read out the phase quadrature
of the output field which contains the GW signal. The corresponding signal-
referred noise spectrum Sh has a similar form to the previous free-space case, but
with κ replaced by K [cf. Eq. (2.36)], i.e.:

Sh(Ω) =

[
1

K
+K

]
h2SQL

2
≥ h2SQL. (2.43)

For frequencies around Ω ∼ γ, the shot noise spectrum almost decreases by a
factor of 1/T 2 in comparison with the free-space case. This is attributable to
the coherent amplification of the optical power and the signal. The additional
mirror serves as a quantum feedback, which allows signals to build up coherently,
whilst noise adds up incoherently over time. [On the other hand, a classical
feedback will not normally increase the signal-to-noise ratio, as feeding back what
is already known will not increase knowledge.] For frequencies Ω > γ, the shot
noise increases as Ω2, rather than remaining constant in the previous case. This is
due to the non-zero response time of the cavity, and signal with frequencies higher
than γ are averaged out. Therefore, the cavity bandwidth roughly determines the
detection bandwidth.

2.5.3 Example III: A Detuned Fabry-Pérot Cavity

If the cavity is not tuned, as shown schematically in Fig. 2.8, namely, ω0τ =
θ + nπ (θ ̸= 0) with n an integer, the free propagation will not only induce a
phase shift, but also a rotation of the quadratures. This simply arises from the
following fact: given a free-space propagation of τ , and from the relation Êout(t) =
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Figure 2.8 – A schematic plot of a detuned cavity; and the associated
physical quantities (right). Here, θ is the detuned phase.

Êin(t− τ), the quadrature evolves as:[
b̂1(Ω)

b̂2(Ω)

]
= eiΩτ

[
cosω0τ − sinω0τ
sinω0τ cosω0τ

] [
â1(Ω)
â2(Ω)

]
, (2.44)

which is a delay and rotation.

Correspondingly, Eqs. (2.39) and (2.40) are modified:

a⃗ =
√
RR2θ b⃗+

√
T Rθ α⃗ , (2.45)

β⃗ =
√
T Rθ b⃗−

√
R α⃗ , (2.46)

where Rθ is the rotation matrix, defined as

Rθ ≡
(

cos θ − sin θ
sin θ cos θ

)
. (2.47)

Similarly, if the detuned phase is small, with θ ≪ 1, we can make a Taylor
expansion of these equations in series of θ, T and Ω τ . After some manipulation,
the new input-output relation can be expressed in the following compact form:

β⃗(Ω) =
1

C
[M α⃗(Ω) + D⃗ h(Ω)], (2.48)

where

C = Ω2[(Ω + iγ)2 −∆2] + ∆ιc, (2.49)

M =

[
−Ω2(Ω2 + γ2 −∆2)−∆ ιc 2γ∆Ω2

−2γ∆Ω2 + 2γιc −Ω2(Ω2 + γ2 −∆2)−∆ιc

]
, (2.50)

D⃗ =

[
∆Ω

(−γ + iΩ)Ω

]
2
√
γιc

hSQL

, (2.51)

with detuning frequency ∆ ≡ θ/τ . Here we have ignored the tiny frequency-
dependent phase correction Ω θ/ω0. Unlike in the previous two cases, the GW
signal here appears in both amplitude and phase quadratures. To readout the
GW signal, we can make a homodyne detection of a certain output quadrature:

β̂ζ(Ω) = β̂1(Ω) cos ζ + β̂2(Ω) sin ζ. (2.52)
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Given a coherent state input, the corresponding signal-referred noise spectrum
density is

Sh(Ω) =
(cos ζ, sin ζ)MMT(cos ζ, sin ζ)T

|D1 cos ζ +D2 sin ζ|2
, (2.53)

with D1,2 being the components of the vector D⃗. This expression recovers the
previous two cases: (i) the tuned cavity, by setting ∆ = 0, and phase quadrature
measurement ζ = 0; (ii) the free-space case, by setting the cavity bandwidth
γ → ∞. We will postpone discussing the physical significance of this formula
until we consider a signal-recycled GW detector, which can actually be mapped
into a detuned Fabry-Pérot cavity.

2.6 Quantum Noise in an Advanced GW Detec-

tor
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Figure 2.9 – A schematic plot of an advanced GW detector. The beam
splitter (BS) splits the laser light into two beams. The internal test-mass
(ITM) and end test-mass (ETM) with optical coatings on their surface form
the Fabry-Pérot arm cavities which amplifies both the signal and optical
power. The power recycling mirror (PRM) can further increase the circu-
lating power. The signal-recycling mirror (SRM) folds the signal back into
the interferometer, and it significantly enriches the dynamics of the system,
as discussed in the main text.

After having introduced some basic principles and examples, we are now ready
to analyze the quantum noise of a typical advanced GW detector: a Michelson
interferometer with Fabry-Pérot arm cavities, a power-recycling mirror (PRM),
and a signal-recycling mirror (SRM). This is shown schematically in Fig. 2.9.

To make a direct one-to-one correspondence between the input-output relation of
an advanced GW detector and the three examples we have considered, we will
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gradually introduce important optical elements, and discuss them in the follow-
ing sequence: (i) a simple Michelson interferometer with only end test-masses
(Sec. 2.6.1); (ii) a power-recycled interferometer with both power-recycling mir-
ror and arm cavities (Sec. 2.6.2); (iii) a power- and signal-recycled interferometer
(Sec. 2.6.3).

2.6.1 Input-Output Relation of a Simple Michelson Inter-
ferometer
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Figure 2.10 – A schematic plot of a simple Michelson interferometer (left);
and its mathematical model with propagating optical fields (right).

A simple Michelson interferometer is shown schematically in Fig. 2.10. Ideally,
the interferometer is set up to have identical arms, so that at the zero working
point of the interferometer (i.e., when locked on a dark fringe), fields entering
from each port will only return to that port. The carrier light enters and exits
from the common (bright) port, while the differential port remains dark. The
differential motion of the test mass x̂A− x̂B, which contains the GW signal causes
a differential phase modulation, and therefore induces an output signal out of the
differential (dark) port, at which we make homodyne detections.

We follow steps similar to those in Sec. 2.5.1 to derive the input-output relation
here. As we will see, the input-output relation of the differential displacement
we are interested in is exactly the same as the free-space scenario considered in
Sec. 2.5.1. The laser-pumped input optical field into the common port is:

Êin
c (t) = [

√
2I0/(~ω0) + ĉ1(t)] cosω0t+ ĉ2(t) sinω0t. (2.54)

With no laser pumping, the input field into the differential port is simply:

Êin
d (t) = [â1(t) cosω0t+ â2(t) sinω0t] . (2.55)
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The fields, after passing through the half-half beam splitter, and while propagating
towards ETMA and ETMB, are:

Êin
A,B(t) =

Êin
c (t)∓ Êin

d (t)√
2

. (2.56)

The fields returning from the ETM are

Êout
A,B(t) = Êin

A,B(t− 2τ − 2x̂A,B/c) , (2.57)

where τ ≡ L/c is the time for light to propagate from the beam splitter to each
of the ETMs. To the leading order in x̂A,B, we have:

Êout
d (t) =

Êout
B (t)− Êout

A (t)√
2

≡ [b̂1(t) cosω0t+ b̂2(t) sinω0t] , (2.58)

with

b̂1(t) = â1(t− 2τ), (2.59)

b̂2(t) = â2(t− 2τ)−
√

2I0
~ω0

ω0

c
x̂d(t− τ), (2.60)

where we have assumed ω0L/c = nπ, with n an integer; and have defined the
differential-mode motion:

x̂d(t) ≡ x̂B(t)− x̂A(t) . (2.61)

Radiation-pressure forces acting on the two test-masses have both common and
differential components, which are proportional to ĉ1 and â1 respectively. If test
masses have nearly the same mass, m, then ĉ1 (â1) will only induce common-
mode (differential-mode) motion. Mathematically, we have, up to leading order
in fluctuations/modulations:

F̂A,B(t) = 2
I0
c

[
1 +

√
~ω0

I0

ĉ1(t− τ)∓ â1(t− τ)√
2

]
. (2.62)

For the differential mode:

F̂B(t)− F̂A(t) = 2

√
2~ω0I0
c

â1(t− τ) . (2.63)

This means that the motion of the differential mode under both the radiation-
pressure force and the tidal force, F h

A,B = ∓mLḧ(t)/2, from GW is:

m ¨̂xd(t) = F̂B(t)− F̂A(t)+F
h
B(t)−F h

A(t) = 2

√
2~ω0I0
c

â1(t− τ)+mLḧ(t) . (2.64)



2.6. Quantum Noise in an Advanced GW Detector 29

Eqs. (2.59), (2.60) and (2.64) are identical to Eqs. (2.24), (2.25) and (2.26), if we
identify the previous 2 x̂ by the differential displacement x̂d here. Since the GW
signal also increases by a factor of 2, due to the differential motion of two arms,
the signal strength will not change. Therefore, the signal-referred noise spectrum
obtained in the free-space case also applies [cf. Eq. (2.36)], namely:

Sh(Ω) =

[
1

κ
+ κ

]
h2SQL

2
, (2.65)

except for the fact that here:

κ =
4I0ω0

mc2Ω2
, hSQL =

√
4

mΩ2L2
. (2.66)

2.6.2 Interferometer with Power-Recycling Mirror and Arm
Cavities
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Figure 2.11 – A schematic plot of a Michelson interferometer with a power-
recycled mirror (PRM) and additional ITMs to form arm cavities (left). The
corresponding propagating fields are indicated in the right diagram.

In order to decrease the shot noise, we need to increase the optical power. It
would be difficult to achieve a high optical power by solely increasing the input
power. Instead, we can add a power-recycling mirror, as first proposed by [60]
(see Fig. 2.11). The output optical field from the common port gets coherently
reflected back into the interferometer, and amplifies the circulation power. Since
we are only concerned with the optical field in the differential port, the effect of the
PRM can easily be included by simply replacing the input I0 in Êc

in(t) (Eq. 2.54)
by:

I ′0 ≡
4

TPRM

I0 , (2.67)

where TPRM is the power transmissivity of the PRM. Further improvement of the
sensitivity comes from the arm cavities formed by the ITMs and ETMs. These
cavities are tuned on resonance, further increasing the optical power circulating in
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the arms, and also coherently amplifying the GW signal by increasing the effective
arm length.

The input-output relation at the differential port also has the same form as the
tuned Fabry-Pérot cavity discussed in Sec. 2.5.2. This can be shown as follows:
The new optical fields Êin′

A and Êout′
A are related to Êin

A and Êout
A simply by:

Êin
A =

√
RIÊ

out
A +

√
TIÊ

in′

A , (2.68)

Êout′

A =
√
TIÊ

out
A −

√
RIÊ

in′

A , (2.69)

where
√
RI and

√
TI are the reflectivity and transmissivity, respectively, of the

ITM. Similar relations hold for the fields propagating in the arm cavity B. These
new fields are connected to the new input Êin′

c and Êin′

d by:

Êin′

A,B =
Êin′

c (t)∓ Êin′

d (t)√
2

. (2.70)

In addition, the new output in the differential port is:

Êout′

d =
Êout′

B (t)− Êout′
A (t)√

2
. (2.71)

The relations between the new inputs Êin′

d , Êout′

d and outputs Êin
d , Ê

out
d , at the

differential port, are simply defined by:

Êin
d =

√
RIÊ

out
d +

√
TIÊ

in′

d , (2.72)

Êout′

d =
√
TIÊ

out
d −

√
RIÊ

in′

d . (2.73)

These have the same form as Eqs. (2.37) and (2.38). Therefore, as long as we are
only concerned with the fields at the differential port, the new input and output
are related to the previous ones without arm cavities in a similar way as that of a
single tuned Fabry-Pérot cavity. There is only one difference: in the single tuned
cavity analysis, we assumed the front mirror is fixed, while in the GW detector,
both ITMs and ETMs can move and the relative motion is detected, which has
a reduced mass of m/2 in each arm. By further taking into account a factor of
two increase in the sensitivity from two arms, the resulting signal-referred noise
spectrum reads [cf. Eq. (2.43)]:

Sh(Ω) =

[
1

K
+K

]
h2SQL

2
, (2.74)

with

K ≡ 2γ ιc
Ω2(Ω2 + γ2)

, hSQL =

√
8~

mΩ2L2
. (2.75)

The cavity bandwidth, γ ≡ TIc/(4L), and the parameter ιc are the same as in
Eq. (2.42), but with Ic ≡ 8I0/(TPRMTI), which is enhanced by both the power-
recycling and arm cavities. To illustrate this sensitivity, we can choose the follow-
ing specifications for different parameters (close to those of the AdvLIGO): mass
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Figure 2.12 – The GW strain-referred sensitivity of an advanced GW de-
tector with power-recycled mirror and arm cavities, given the specifications
detailed in the main text. Here, we have normalized the spectrum by hq,
which is defined to be hSQL at 100 Hz.

of individual test mass m = 40 kg, intra-cavity optical power Ic = 800 kW, arm
cavity length L = 4 km, optical angular frequency ω0 = 1.9×1015s−1 (wavelength
equal to 1µ m), arm cavity bandwidth γ/(2π) = 100 Hz. The corresponding
sensitivity is shown in Fig. 2.12, and it achieves the SQL round 100 Hz.

2.6.3 Interferometer with Signal-Recycling
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Figure 2.13 – A schematic plot of a Michelson interferometer with a power-
(PRM) and signal-recycled mirrors (SRM) and additional ITMs to form
arm cavities (left). The corresponding propagating fields are indicated in
the right-hand diagram, with θ being the detuned phase.

Now we are ready to analyze the quantum noise in an advanced GW detector
with both power- and signal- recycling. The schematic plot of the configuration is
shown in Fig. 2.13, where a signal-recycling mirror is added onto the differential
port, as first proposed by [61, 62]. After previously introducing all the techniques,
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Figure 2.14 – Mapping from a three-mirror cavity to a two-mirror cavity
by defining the effective transmissivities (teff , t

′
eff) and reflectivities (reff , r

′
eff)

of the signal-recycling cavity.

the effect on the detector sensitivity also becomes apparent. With the same idea,
we can relate the new input and output fields Êin′′

d , Êout′′

d to the Êin′

d , Êout′

d fields
analyzed in the previous section. The relation reads:

Êin′

d (t) =
√
RSÊ

out′

d (t− 2θ/ω0) +
√
TSÊ

in′′

d (t− θ/ω0) , (2.76)

Êout′′

d (t) =
√
TSÊ

out′

d (t− θ/ω0)−
√
RSÊ

in′′

d (t) , (2.77)

with θ the detuned phase and RS and TS the reflectivity and transmissivity of
the SRM, respectively. The corresponding quadratures will undergo rotations
identical to those shown in the single detuned cavity analysis [cf. Eqs. (2.45)
and (2.46)]. The expression for this input-output relation is very lengthy and
complicated [8, 63]. We will follow the approach in Ref. [64] and map the entire
signal-recycled interferometer into a single detuned cavity, which will then allow
us to directly use the results obtained in Sec. 2.5.3.

The idea behind this mapping is based upon the fact that the length, LSR, of the
signal-recycling cavity formed by the ITMs and the SRM is, of the order of 10
meters, which is very short compared with km long arm cavity. The propagation
phase shift of the sidebands around 100 Hz, eiΩLSR , is negligible [65, 66]. As shown
schematically in Fig. 2.14, the signal-recycling cavity can be replaced by one mirror
with a set of effective reflectivities and transmissivities, which are related to TS,I
and RS,I by:

reff = −
√
RS +

√
RI e

2iθ

1 +
√
RIe2iθ

, t′eff =

√
RI +

√
RS RI e

2iθ

1 +
√
RS RI e2iθ

, (2.78)

teff = t′eff =

√
TS TI e

iθ

1 +
√
RS RI e2iθ

. (2.79)

From the resonant condition of the effective cavity:

r′effe
2iΩresL/c = 1, (2.80)

we can define its effective bandwidth γeff and detuning ∆eff through:

Ωres ≡ −∆eff − i γeff . (2.81)
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Up to the leading order of TI , ∆eff and γeff can be expressed in terms of
√
TS,I ,

√
RS,I

and θ through

∆eff =
2
√
RSγI sin 2θ

1 +RS + 2
√
RS cos 2θ

, γeff =
(1−RS)γI

1 +RS + 2
√
RS cos 2θ

, (2.82)

with the bandwidth of the arm cavity γI ≡ c TI/(4L).
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Figure 2.15 – The GW strain-referred sensitivity of a signal-recycling GW
detector given a phase-quadrature detection ζ = π/2. The solid curve cor-
responds to the RSE scheme with θ = π/2 and

√
RS = 0.6. The dashed

curve shows the case with θ = 1.1 and
√
RS = 0.9.

After this equivalent mapping into a single detuned cavity, it is straightforward to
obtain the input-output relation for the signal-recycling interferometer, through
the following replacement in Eq. (2.48):

γ → γeff , ∆ → ∆eff . (2.83)

For illustration, we assume an ideal phase-quadrature detection with ζ = π/2; the
corresponding GW strain-referred sensitivity is given by [cf. Eq. (2.53)]:

Sh(Ω) =
4γ2eff(ιc +∆effΩ

2)2 + [∆effιc + Ω2(γ2eff −∆2
eff + Ω2)]2

4γeffιcΩ2(γ2eff + Ω2)
h2SQL. (2.84)

One interesting example is when θ = π/2, giving

γeff =
1 +

√
RS

1−
√
RS

γ, ∆eff = 0 . (2.85)

The resulting noise spectrum is the same as the previous case without signal-
recycling, but with an increased detection bandwidth (a factor of (1+

√
RS)/(1−√

RS)). This is the so-called Resonant-Sideband-Extraction (RSE) scheme which
will be implemented in AdvLIGO. The spectrum is shown in Fig. 2.15. In gen-
eral, θ ̸= π/2 and we also show the noise spectrum in the case for a SR cavity
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detuned phase θ = 1.1. As we can see, there are two minima in the sensitivity
curve. Interestingly, they surpass the SQL around the most sensitive frequency
(∼ 100Hz for given specifications). To gain a better insight into these features
which surpasses the SQL, we need to examine the origin of the SQL from a more
general picture of linear continuous measurements. Not only will it allow us to
understand this particular example, but it can also provide an insight into the
SQL, and thus help us to find other approaches to surpass it.

2.7 Derivation of the SQL: a General Argument

Probe Detector

Figure 2.16 – A schematic model of a linear continuous measurement pro-
cess.

Throughout the previous discussions, we have learnt that there are two types of
noise, namely shot noise and radiation-pressure noise. They together give rise
to the SQL of the detector sensitivity. Actually, the SQL exists in general linear
continuous measurements, and it is directly related to the fundamental Heisenberg
Uncertainty Principle [57]. We will elaborate on this point in this section.

The model of a typical measurement process is shown schematically in Fig. 2.16.
The signal – a classical force G (e.g., from the GW) is driving the probe (e.g., the
test mass) which is in turn coupled to an external detector (e.g., the optical field).
The detector reads out the probe motion by monitoring its displacement x̂, and
at the same time it exerts a back-action force F̂ onto the conjugate momentum of
the probe. The signal force G can then be extracted from the detector output Ŷ ,
which contains both the signal and the fundamental measurement noise Ẑ (i.e.,
the shot noise). Mathematically, the displacement-referred output Ŷ , i.e., the
measurement result, can be written as:

Ŷ (t) = x̂0 + Ẑ(t) +

∫ t

−∞
dt′Rxx(t− t′)[F̂ (t′) +G(t′)]. (2.86)

Here x̂0 is the free-evolution value of the probe displacement when the detector is
detached, and it has the following two-time commutator:

[x̂0(t), x̂0(t
′)] = −i~Rxx(t− t′) , (2.87)

where Rxx(t) is the response function of the probe to the external force. Here, we
require that the detector is tunable, and has a parameter ϵ, with:

Ẑϵ(t) =
ϵ

ϵ0
Ẑϵ0(t) , F̂ϵ(t) =

ϵ0
ϵ
F̂ϵ0(t) . (2.88)
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The fact that Ŷ (t) is the measurement result itself dictates that

[Ŷ (t), Ŷ (t′)] = 0 , (2.89)

because measuring Ŷ (t) continuously should not impose any additional noise [57].
In addition, since Ẑ and F̂ are operators that belong to a different system (the
detector) from the probe, they both commute with the probe displacement x̂0. It
is therefore required that the two-time commutator of Ẑ and F̂ terms in Ŷ must
cancel from x̂0. In fact, because Ẑ and F̂ have different scalings in ϵ, and because
the cancelation must happen at all orders of ϵ, we can obtain:

[Ẑ(t), Ẑ(t′)] = [F̂ (t), F̂ (t′)] = 0 , [Ẑ(t), F̂ (t′)] = i~ δ(t− t′) . (2.90)

This indicates that the shot noise and the back-action noise do not commute at
the same moment. In the frequency domain, this can be written as:

[Ẑ(Ω), Ẑ(Ω′)] = [F̂ (Ω), F̂ (Ω′)] = 0 , [Ẑ(Ω), F̂ (Ω′)] = 2π i~ δ(Ω− Ω′) . (2.91)

If we introduce the single-sided (cross) spectral densities SZZ(Ω), SFF (Ω) and
SZF (Ω), the above commutation relations dictate the Heisenberg Uncertainty
Principle:

SZZ(Ω)SFF (Ω)− |SZF (Ω)|2 ≥ ~2 . (2.92)

This generally will not set a bound on the noise spectrum in measuring the probe
displacement [cf. Eq. (2.86)] which is given by:

Sx(Ω) = SZZ(Ω) + 2ℜ[Rxx(Ω)SZF (Ω)] + |Rxx(Ω)|2SFF (Ω) (2.93)

with Rxx(Ω) the Fourier transform of Rxx(t). However, when there is no correla-
tion between the shot noise and the back-action noise, namely SZF = 0, it induces
the SQL for the displacement measurement:

Sx(Ω) ≥ 2|Rxx(Ω)|
√
SZZ(Ω)SFF (Ω) ≥ 2~|Rxx(Ω)| ≡ Sx

SQL. (2.94)

In the case of GW detection, the external force is the GW tidal force on the test
masses and we have G(t) = mLḧ(t) (m is the reduced mass). Therefore, the SQL
for the GW signal-referred sensitivity reads

Sh
SQL =

2~
m2Ω4L2|Rxx(Ω)|

. (2.95)

For a free mass, Rxx(Ω) = −1/(mΩ2); this gives the free-mass SQL:

Sh
SQL =

2~
mΩ2L2

, (2.96)

which justifies the order-of-magnitude estimate we obtained in Eq. (2.4).

From the above derivation, we immediately realize that there are two possible
approaches to surpassing the free-mass SQL: (i) Creating correlations between the
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shot noise Ẑ and the back-action noise F̂ with non-zero SZF . Correspondingly,
the inequality in Eq. (2.94) is not satisfied, and the total noise spectrum will
not be bounded by the SQL; (ii) Modifying the dynamics of the probe: The
free-mass SQL will no longer be relevant if the probe has a different response
to the external force than the free mass. In particular, for an oscillator with a
resonance frequency ωm and decay rate γm, the response function reads Rxx(Ω) =
1/[−m(Ω2 − ω2

m + iγmΩ)], and then around resonance frequency:

Sh
SQL|oscillator
Sh
SQL|freemass

=

√
(Ω2 − ω2

m)
2 + γ2mΩ

2

Ω2

∣∣∣
Ω=ωm

=
γm
ωm

. (2.97)

The free-mass SQL can therefore be surpassed by a significant amount of the
mechanical quality factor ωm/γm around its resonance frequency. We will explore
these two approaches in detail in the next two sections.

2.8 Beating the SQL by Building Correlations

In this section, we will focus on the first approach to beat the SQL, by creat-
ing correlations between the shot noise and the back-action noise. This can be
achieved by: (i) signal-recycling; (ii) squeezed input; (iii) variational readout. The
details of these methods will be discussed.

2.8.1 Signal-recycling

In the previous section [cf. Sec. 2.6.3], we showed that the signal-recycled interfer-
ometer can be mapped into a detuned cavity, in which the amplitude and phase
quadratures will rotate and mix with each other. When their fluctuations are
reflected back to the test mass by the signal-recycling mirror, both will contribute
to the radiation-pressure noise, similarly for the shot noise, which will have contri-
butions from both fluctuations. Therefore, the shot noise and radiation-pressure
noise naturally acquire correlations. In the case of phase-quadrature readout, it
can be shown that this correlation is given by [64]:

SZF = ~
∆eff(∆

2
eff + 3γ2eff − Ω2)

2γeff(γ2eff + Ω2)
. (2.98)

This accounts for the two minima in the sensitivity curve, which surpass the SQL,
as shown in Fig. 2.15.
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Figure 2.17 – A schematic plot of the frequency-dependent squeezed in-
put configuration. A frequency-independent squeezed light, filtered by two
detuned Fabry-Pérot cavities in sequence, produces the required frequency
dependence.

2.8.2 Squeezed input

As pointed out in the pioneering work of [6], a frequency-dependent squeezed
input can be used to surpass the SQL; in this case, the shot noise and radiation-
pressure noise are naturally correlated as a result of the correlation between the
amplitude and phase quadratures of the input squeezed light. To illustrate this
point, we will only look at the scheme discussed in Sec. 2.6.2 without a signal-
recycling mirror. It can be easily generalized and extended to general schemes.
Given a squeezed input, the amplitude and phase quadrature will be transformed
according to Eqs. (2.17) and (2.18). As shown in [6], if the squeezing angle ϕ has
the following frequency dependence:

ϕ(Ω) = −arccotK(Ω), (2.99)

the amplitude and phase fluctuations are squeezed at low and high frequencies,
respectively, and the noise spectrum will be reduced by a overall squeezing factor
of e2q, namely:

Sh
sqz = e−2q

[
K +

1

K

]
h2SQL

2
, (2.100)

which surpasses the SQL at around the most sensitive frequencies, as indicated in
Fig. 2.18. It is possible to achieve a frequency-dependent squeezing, as prescribed
in Eq. (2.99), because different sideband frequencies all represent different degrees
of freedom, and therefore squeezing them in different ways is totally allowed. In
practice, one must invent the right device that generates such a frequency depen-
dence. This usually implies devices with a certain time scale that is comparable
to the detection band of the detector, which is very long compared with usual
quantum optical devices.



38 Chapter 2. Quantum Theory of Gravitational-Wave Detectors

10 100 1000
0.1

1

10

100

f @HzD

Sh

hq

SQL

Figure 2.18 – The GW strain-referred sensitivity of a frequency-dependent
squeezing input interferometer (solid curve). The squeezing factor is e−2q =
0.1. The other specification is the same as Fig. 2.12.

Kimble et al. invented one such device – a detuned Fabry Pérot cavity. For
Fabry-Pérot Michelson interferometers, they showed that a squeezing angle of
arctanK can be generated by feeding a frequency-independent squeezed light into
two consecutive Fabry-Pérot cavities, each with a perfect end mirror, and pre-
scribed values of detuning and bandwidth. The specifications for the filter cavity
parameters can be obtained by using the technique given in the Appendix of [13].
This technique is valid for general schemes, such as a signal-recycling configura-
tion, shown explicitly in [67], in which the noise spectrum is also reduced by the
squeezing factor for the entire detection band.

2.8.3 Variational Readout: Back-Action Evasion
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Figure 2.19 – A schematic plot of the variational-readout configuration.
The output is filtered by two detuned Fabry-Pérot cavities before the de-
tection.
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Figure 2.20 – The GW strain-referred sensitivity of a variational-readout
scheme (solid curve). The low-frequency back-action noise is completed
evaded, thus achieving a sensitivity limited only by shot noise.

Another natural way to build correlations is to measure a certain combination of
the amplitude quadrature b̂1 and phase quadrature b̂2 at the output, namely:

b̂ζ = b̂1 cos ζ + b̂2 sin ζ

= (â1 cos ζ + â2 sin ζ)− â1K sin ζ +
√
2K h

hSQL

sin ζ. (2.101)

The shot noise (â1 cos ζ + â2 sin ζ) and the radiation-pressure noise â1K sin ζ has
non-zero correlation. If the detection angle ζ has the following frequency depen-
dence:

ζ(Ω) = arccotK(Ω), (2.102)

we can completely evade the effect of back-action, and obtain a shot-noise only
sensitivity, namely:

Sh
var =

h2SQL

2K
. (2.103)

Such back-action- evading scheme was first invented by Vyatchanin et al. in
a time domain formalism [17, 18], aimed at detecting GWs with known arrival
time. The above frequency-domain formalism was developed by Kimble et al., and
it is valid for all possible stationary signals. The required frequency dependency
can be achieved in a similar way to that of frequency-dependent squeezing, i.e., by
filtering the output through detuned Fabry-Pérot cavity, as shown schematically
in Fig. 2.19. The specifications for the filter cavities can also be obtained by using
the results in Ref. [13]. The corresponding sensitivity curve is shown in Fig. 2.20.

2.8.4 Optical losses

In the above discussions, we have assumed an ideal lossless situation. However,
in reality, there are multiple channels in which losses can be introduced. These
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include the scattering and losses in the optical elements, and the non-zero trans-
mission of the end mirrors. These optical losses will introduce uncorrelated vac-
uum fluctuations, and destroy the quantum coherence. They can be modeled by
an overall reduction of the field amplitude by

√
1− ϵ, and then an introduction

of
√
ϵ for the vacuum:

b⃗→
√
1− ϵ⃗b+

√
ϵn⃗ . (2.104)

Here n⃗ is associated with the uncorrelated vacuum fluctuations. They will not
only affect the injected squeezed state but also the output field, which undermines
the sensitivity. As shown by Kimble et al., the squeezed-input configuration is
reasonably robust against optical loss as long as the filter cavities have a length
comparable to the arm cavity (∼ 4 km). However, the variational-readout scheme
is very susceptible to the optical losses. If we apply the condition in Eq. (2.102),
the noise spectrum with the output loss [cf. Eq. (2.104)] is:

Sh
loss(Ω) =

[
ϵ

2(1− ϵ)K sin2 ζ
+

1

2K

]
h2SQL. (2.105)

At low frequencies, K ∼ Ω−2 and sin2 ζ ∼ Ω4, and thus the first term scales as
Ω−2. This means that the loss will severely affect the low-frequency sensitivity.
In addition, as shown by Kimble et al., around the frequency where the SQL is
attained for a conventional scheme without a signal-recycling mirror, the SQL
beating ratio of a variational-readout scheme with loss is given by:

µ ≡

√
Sh
SQL

Sh
var

≈ 4
√
ϵ, (2.106)

only if the interferometer can manage a factor of 1/
√
ϵ times stronger optical

power. Given a typical loss of 0.01, this produces a factor of 0.3 and a power 10
times greater, which is rather challenging. Therefore, a low-loss optical setup is
essential for implementation.

2.9 Optical Spring: Modification of Test-Mass

Dynamics

Apart from building correlations, as shown by Eq. (2.97), the free-mass SQL
can also be surpassed by modifying the dynamics of the test-mass. One might
expect that this will require a significant modification of the topology of current
GW detectors. As it turns out, a detuned signal-recycling interferometer natu-
rally achieves this. This is intimately connected to the rotation of the amplitude
and phase quadrature in the signal-recycling cavity, which produces correlations
between the shot noise and radiation-pressure noise. As we have previously men-
tioned, the radiation pressure force not only depends on the amplitude quadrature,
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but also on the phase quadrature. Since the latter contains the test-mass displace-
ment, it induces a position-dependent force and modifies the test-mass dynamics;
This phenomenon is also called the “optical-spring” effect. A similar idea, but
with a different configuration, was first proposed by [68], and is the so-called
“optical bar” GW detector.

2.9.1 Qualitative Understanding of Optical-Spring Effect

Figure 2.21 – The optical power as a function of cavity detuning ∆ (left).
A double optical spring, Ktot(Ω) = K1(Ω)+K2(Ω), which has both positive
rigidity and damping (right). The black curve (right) shows a parametric
plot of the optical spring K(Ω) as a function of detuning.

The optical-spring effect can be understood qualitatively by looking at the case
of a single detuned cavity. The displacement of the end mirror (test-mass) x will
change the intra-cavity power Ic, which in turn changes the radiation-pressure
force. In the adiabatic limit, the intra-cavity power as a function of x reads:

Ic(x) =
γ2Imax

c

γ2 + [∆ + (ω0x/L)]2
, (2.107)

which is shown in the left panel of Fig. 2.21. Since the radiation-pressure force is
equal to F (x) = Ic(x)/c, such a position-dependent force will introduce a rigidity,
which is minus the derivative of the force −dF (x)/dx, around the equilibrium
point x = 0. Depending on the sign of the detuning, it will create either negative
or positive rigidity. In the case of a detuned signal-recycling configuration for
AdvLIGO, a strong optical-spring effect can shift the pendulum frequency of 1
Hz up to the detection band. Around the new resonant frequency, we can surpass
the free-mass SQL. This actually accounts for the low-frequency dip in Fig. 2.15.
One can refer to Ref. [63] for a detailed discussion of the mechanical resonance
due to this optical-spring effect.

Due to a delayed response of the intra-cavity power to the test-mass motion, the
optical spring also has a friction component. For ∆ < 0, such a delayed response
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gives a positive damping, which pumps energy out of the test mass. For ∆ > 0,
the damping is negative, which will destabilize the system. Using the input-output
relation derived in Sec. 2.5.3, one can easily determine the expression for an optical
spring in the frequency domain as:

K(Ω) = −2Icω0

Lc

∆

(Ω−∆+ iγ)(Ω + ∆+ iγ)
. (2.108)

For sideband frequencies Ω < ∆, γ, we can perform a Taylor expansion and obtain

K(Ω) =
2Icω0

Lc

[
∆

γ2 +∆2
+

2iγ∆

(γ2 +∆2)2
Ω

]
≡ Kopt − iγoptΩ. (2.109)

We have introduced the rigidity Kopt (real part of K) and the damping γopt (imag-
inary part). As we can see, the positive (negative) rigidity is always accompanied
by a negative (positive) damping. In either case, the system is unstable. To
stabilize the system, one can use a feedback control as described by [8]. An inter-
esting alternative is to implement the idea of a double optical spring, by pumping
the cavity with two lasers at different frequencies [9, 10]. One laser with a small
detuning provides a large positive damping while another with a large detune,
but with a high power, provides a strong restoring force. The resulting system is
self-stabilized with both positive rigidity and positive damping, as shown schemat-
ically in the right panel of Fig. 2.21.

2.10 Continuous State Demolition: Another View-

point on the SQL

In the previous section [cf. Sec. 2.7], we derive the SQL by focusing on the
quantum nature of the detection (the optical field). In this section, we will derive
the SQL from another perspective — continuous state demolition. This will guide
us to finding new approaches to surpassing the SQL.

In the Heisenberg picture, suppose we attempt to measure the position of a free
mass successively at discrete times separated by τ . We measure x̂ at time t1, then
right after t1, the quantum state of the test mass is characterized by a standard
deviation comparable to the individual-measurement error ϵ, or:

∆x(t1 + 0) = ϵ . (2.110)

The value of ϵ decreases indefinitely as individual-measurement sensitivity in-
creases. Applying free-mass quantum mechanics for the duration of t ∈ (t1, t2),
we have

[x̂(t1 + 0), x̂(t2 − 0)] =
i~(t2 − t1)

m
=
i~τ
m

. (2.111)
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The decreasing ϵ will lead to an increasing variance in ∆x(t2 − 0) right before
the second measurement. This is because the Heisenberg Uncertainty Principle
dictates that:

∆x(t1 + 0) ·∆x(t2 − 0) ≥ ~τ/(2m) , (2.112)

and

∆x(t2 − 0) >
~τ
2mϵ

. (2.113)

This large variance in the x(t2 − 0) distribution will be reduced down to ϵ by the
subsequent measurement on x(t2) — but at the price of demolishing a quantum
state with a large spread of x(t2) into classical superpositions of quantum states
with much smaller variances.

If the successive measurements are done without coordination, i.e., if the meters
that collapse the mirror’s states at t1 and t2 are not correlated, then the demolition
will cause an additional noise, because the new center of the wavefunction after
collapse is randomly chosen among a distribution with variance ∆x(t2 − 0). If we
now characterize the noise of each individual measurement in position, we obtain,

∆x ≥ max

(
ϵ,

~τ
2mϵ

)
≥
√

~τ
2m

. (2.114)

This provides us with the scale of the standard quantum limit. In fact, if for
any pulse with duration τ , which can vary at all scales, our measurement error is
always:

∆x ∼
√

~τ
2m

, (2.115)

then the noise spectral density of the device is characterized by:

Sx(Ω) ∼ ~
2mΩ2

. (2.116)

Therefore, the SQL can be traced back to the fact that the test mass positions at
different times do not commute with themselves [cf. Eq. (2.111)].

2.11 Speed Meters

This alternative viewpoint on the SQL naturally brings us to the idea of a speed
meter, which measures the speed (momentum) instead of the position of the test
mass. Since the momentum of a free mass is a conserved dynamical quantity,
and its Heisenberg operators at different times commute with each other, one can
measure it continuously without imposing additional noise, thus allowing us to
surpass the SQL.
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Apart from beating the SQL, other more practical issues that make the speed
meter attractive are the following: (i) the previous schemes require frequency-
dependent squeezing or readout which has led to the requirement of two extra
km-scale filter cavities — a high cost in practical construction; (ii) the high value
of K at low frequencies leads to a strong sensitivity to optical losses. As it turns
out, these issues are resolved simultaneously when we try to build a speed meter,
which has a constant sensitivity to the speed of test masses in low frequencies —
the requirement for frequency dependence on squeezing and readout quadrature
therefore vanishes. In fact, if we imagine an interferometer with a constant κ
[cf. Eq. (2.29)] or K [cf. Eq. (2.41)] in the input-output relation, it will indeed
respond to the speed of the mirror position.

Here we will discuss two realizations, both found as prototypes in the early pa-
pers of [11, 69], but later gradually deformed into the shape of km-scale laser
interferometers [12–14].

2.11.1 Realization I: Coupled cavities

BS
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ETM Sloshing cavity

Figure 2.22 – A schematic plot of a speed-meter configuration with coupled
cavities. A sloshing cavity is added after the dark port. Such a configuration
can be mapped into a three-mirror cavity as schematically shown in the
right-hand panel, forming a pair of coupled cavities.

A possible Michelson variant is shown in Fig. 2.22. An additional sloshing cavity is
added after the interferometer output. It has an input-mirror with transmissivity
Ts and a totally-reflected end mirror. There is another extraction mirror (with a
transmissivity of T0) between the interferometer output and the sloshing cavity,
through which we read out the signal. This configuration emerges from the two-
resonator model of Braginsky and Khalili, where it was pointed out that if two
resonators are coupled, then a sloshing of signal light between the two cavities
cancel each other out, leaving only a sensitivity to the change in mirror position,
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i.e., the speed. The characteristic sloshing frequency is given by:

ωs =

√
Tsc

2L
. (2.117)

The explicit expression for the response function of the output to the test mass
motion can be found by analyzing the input-output relation, giving:

T (Ω) =
ω0

L

iΩ

Ω2 − ω2
s + iγΩ

, (2.118)

with γ ≡ 4T0c/L due to the extraction mirror. This can also be derived by fitting
the speed meter into the two-resonator model. We can map the speed meter
configuration into a three-mirror cavity, as shown schematically in Fig. 2.22. The
‘x̂’ corresponds to the differential motion of the end test masses. The left cavity
corresponds to the power-recycled Michelson interferometer, and the right cavity
is still the sloshing cavity. The optical fields are summarized by two cavity modes
α̂ and β̂. Their equations of motion are:

α̇(t) + γ α̂(t) = iωs β̂(t) + i
ω0

L
x̂(t), (2.119)

β̇(t) = iωs α̂(t). (2.120)

We have assumed that both cavity modes are on resonance with respect to the
carrier laser frequency. In addition, we attribute the decay only to the left cavity
(due to the extraction mirror). The coupling between the two modes is manifested
by the sloshing terms on the right hand side (proportional to ωs). Solving the
above equation in the frequency domain will immediately give the result in Eq.
(2.118).

The GW strain sensitivity of such a configuration can be derived by using the
input-output formalism that we have introduced. Given a frequency-independent
squeezing (phase squeezing factor e−2q), the result is [refer to Ref. [13] for more
details]:

Sh =

[
e−2q

2Ksm

+
e2q(cot ζ −Ksm)

2

2Ksm

]
h2SQL , (2.121)

where ζ is the readout quadrature angle, and

Ksm =
16ω0γIc

mcL[(Ω2 − ω2
s)

2 + γ2Ω2]
. (2.122)

The first term in Sh is the shot-noise term, and the second is the radiation-pressure
noise. At low frequencies, Ksm is almost a constant. By choosing cot ζ = Ksm(0),
the low-frequency radiation-pressure (back-action) can be completely evaded. We
show the resulting GW strain sensitivity in Fig. 2.23.

There is, however, a subtle issue: the original Braginsky and Khalili argument
stated that momentum can be measured without additional noise — yet in speed
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Figure 2.23 – The GW strain-referred sensitivity of the speed meter scheme
shown in Fig. 2.22. We have chosen γ/2π = 210 Hz, ωs/2π = 180 Hz and
Ic = 800 kW. The dotted curve is the case without a phase-squeezed input,
and the solid curve has e−2q = 0.1 (a 10 dB squeezing).

meters, we still need back-action evasion: is this still consistent? The answer is
yes, because when speed is coupled to an external observable, it ceases to be pro-
portional to the conserved, canonical momentum. Here, we sketch a mathematical
proof by Khalili. Suppose the Lagrangian is:

L =
1

2
mẋ2 + αȧ1x , (2.123)

which is the model of a speed meter: the time derivative of the external observable
a1 represents the sloshing. Here, the quantity α is a coupling constant. This is
equivalent to:

L =
1

2
mẋ2 − αa1ẋ , (2.124)

where the coupling becomes a speed coupling, but the canonical momentum is
given by:

p =
∂L
∂ẋ

= mẋ− αa1 , (2.125)

which is conserved, but differs from the kinetic momentum, mẋ. This means
that a meter that measures speed must add a constant αa1/m, in order to evade
the back-action. Note that this is a constant combination between the output
phase quadrature and amplitude quadrature — therefore, back-action evasion is
straightforward without requiring additional filtering. This is manifested by the
fact that Ksm is almost constant at low frequencies.

2.11.2 Realization II: Zero-area Sagnac

Another possible speed meter configuration is a zero-area Sagnac interferometer,
which is shown schematically in Fig. 2.24. This has a different optical topology
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Figure 2.24 – A schematic plot of a Sagnac-type speed meter configuration.

from the Michelson scheme, where the light travels through two opposite loops in
the interferometer. To understand its response to the test-mass motion, we can
look at a single trip. The light propagating towards arm A first picks up a phase
shift proportional to ETMA, displacement x̂A(t), and it accumulates another phase
shift due to motion of ETMB, but at t−τ (τ is the delay time). A similar situation
holds for the light propagating towards arm B, but with the roles of ETMA and
ETMB swapped. When they recombine at the beam splitter, the total phase shift
is simply:

ϕtot(t) ∝ x̂A(t) + x̂B(t− τ)− x̂B(t)− x̂A(t− τ) ≈ [ ˙̂xA(t)− ˙̂xB(t)]τ. (2.126)

It naturally has no response to a static change in arm length, but only to the dif-
ferential speed of the two test masses. Therefore, it is a natural speed meter. This
has been recognized by the GW community, but connection with the “Quantum
Nondemolition” (QND) speed meter, has never been made. As shown in [14], the
GW strain sensitivity of such a configuration is identical to the previous coupled-
cavities configuration.

2.12 Conclusions

We have introduced the basic concepts for studying the quantum dynamics and
associated quantum noise of an interferometric GW detector. Different insights
into the origin of the SQL allow us to find out possible approaches towards sur-
passing it. In particular, we have considered modifying the input/ouput optics
using either frequency-dependent squeezing or a variational readout, and modi-
fying the test mass dynamics through the optical spring effect; and measuring a
QND observable of the test mass by using a speed meter. This not only serves as
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a review of advanced configurations for future GW detectors, but it additionally
provides valid examples to help clarify many subtle issues in continuous quantum
measurement.



Chapter 3

Modifying Input Optics: Double
Squeezed-input

3.1 Preface

In this chapter, we consider improving the sensitivity of future interfero-
metric GW detectors by modifying their input optics. In particular, we
discuss simultaneously injecting two squeezed light, filtered through a res-
onant Fabry-Pérot cavity, into the dark port of the interferometer. This
is motivated by the work of Corbitt et al. [7], in which a similar scheme,
but with a single squeezed light was proposed and analyzed. Here we
show that the extra squeezed light, together with an additional homo-
dyne detection suggested previously by Khalili [70], allows a reduction of
quantum noise over the entire detection band. To motivate future imple-
mentations, we take into account a realistic technical noise budget for the
Advanced LIGO (AdvLIGO), and numerically optimize the parameters
of both the filter and the interferometer for detecting gravitational-wave
signals from two important astrophysics sources: neutron-star–neutron-
Star (NS-NS) binaries and Bursts. Assuming the optical loss of the ∼ 30
m filter cavity to be 10 ppm per bounce, and 10dB squeezing injection,
the corresponding quantum noise with optimal parameters decreases by a
factor of 10 at high frequencies and goes below the technical noise at low
and intermediate frequencies. This is a joint research by Farid Khalili,
Yanbei Chen and myself. It is published in Phys. Rev. D 80, 042006
(2009).

3.2 Introduction

During the last decade, several laser interferometric gravitational-wave (GW) de-
tectors including LIGO [3], VIRGO [4], GEO600 [5] and TAMA [71] have been
built and operated almost at their design sensitivity, aiming at extracting GW
signals from various astrophysical sources. At present, the development of next-
generation detectors, such as AdvLIGO [72], is also under way, and the sensitivities
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of these advanced detectors are anticipated to be limited by quantum noise over
almost the whole observational band from 10 Hz to 104 Hz. At high frequencies,
the dominant quantum noise is photon shot noise, caused by phase fluctuation of
the optical field; while at low frequencies, the radiation-pressure noise, due to the
amplitude fluctuation, dominates and it exerts a noisy random force on the probe
masses. These two noises, if uncorrelated, will impose a lower bound on the noise
spectrum, which is called the Standard Quantum Limit (SQL). In terms of the
GW strain h ≡ ∆L/L, this limit is given by

SSQL
h =

8~
mΩ2L2

. (3.1)

This can also be derived from the fact that position measurements of the free test
mass do not commute with themselves at different times [73].
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Figure 3.1 – Schematic plot of the proposed configuration. Two squeezed
light beams ŝ, p̂ are injected from both side of the filter cavity rather than
the one which was considered in Refs. [7, 70]. The signal is detected by
the main homodyne detector (MHD) and an additional detector (AHD) is
placed at the idle port of the filter cavity.

The existence of the SQL was first realized by Braginsky in the 1960’s [55, 74].
Since then, various approaches have been proposed to beat the SQL. One recog-
nized by Braginsky is to measure conserved quantities of the probe masses, also
called Quantum Nondemolition (QND) quantities. This can be achieved, e.g. by
adopting “speed meter” configurations [11–15, 69], which measure the conserved
quantity—momentum rather than the position. An alternative is to change the
dynamics of the probe mass, e.g. by using optical rigidity [75, 76], in which case
the above-mentioned free mass SQL is no longer relevant. As shown by Buonanno
and Chen [8, 63, 64], optical rigidity exists in signal-recycled (SR) interferometric
GW detectors; therefore we can beat the SQL without radical redesigns of the
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existing topology of the interferometers. Another approach is to modify the in-
put and/or output optics of the interferometers, such that photon shot noise and
radiation-pressure noise are correlated. After the initial paper by Unruh [77], this
was further developed by other authors [6, 7, 17, 78–83]. A natural way to achieve
this is injecting a squeezed vacuum state, whose phase and amplitude fluctuations
are correlated, into the dark port of the interferometer. With great advancements
in preparation of the squeezed state [84, 85], squeezed-input interferometers will
be promising candidates for third-generation GW detectors. As elaborated in the
work of Kimble et al. [6], frequency-dependent squeezing is essential to reduce
the quantum noise at various frequencies of the observation band. In addition,
they demonstrated that this can be realized by filtering the frequency-independent
squeezed vacuum state through two detuned Fabry-Pérot cavities before sending
into the interferometer. Their results were extended by Purdue and Chen [13]
who discussed the filters for general cases.

Another method, which also uses an additional filter cavity and squeezed state, but
in a completely different way, was proposed by Corbitt, Mavalvala, and Whitcomb
(hereafter referred to as CMW) [7]. They proposed to use a tuned optical cavity
as a high-pass filter for the squeezed state. This scheme does not create the noises
correlation, but instead, renders their spectral densities frequency-dependent. At
high frequencies, the phase-squeezed vacuum state gets reflected by the filter and
enters the interferometer such that high-frequency shot noise is reduced; while
at low frequencies, ordinary vacuum transmits through the filter and enters the
interferometer, thus low-frequency radiation-pressure noise remains unchanged.
One significant advantage is that the squeezed vacuum state does not really enter
the filter cavity, and thus it is less susceptible to the optical losses. However,
it does not perform so well as hoped, and there is a noticeable degradation of
sensitivity in the intermediate-frequency range. One of us — Khalili [70] pointed
out that this has to do with the quantum entanglement between the optical fields
at the two ports of the filter cavity. Equivalently, it can be interpreted physically
as follows: some information about the phase and amplitude fluctuations flows
out from the idle port of the filter cavity and the remaining quantum state which
enters the interferometer is not pure. In order to recover the sensitivity, the filter
cavity needs to have a low optical loss, such that this information can be collected
by an additional homodyne detector (AHD) at the idle port. Given an achievable
optical loss of the filter cavity ∼ 10 ppm per bounce, Khalili showed that we can
obtain the desired sensitivity at intermediate frequencies. A natural extension
of this scheme is to send an additional squeezed vacuum state into the idle port
of the filter cavity, such that the low-frequencies radiation-pressure noise is also
suppressed. The corresponding configuration is shown schematically in Fig. 3.1,
where two squeezed vacuum states ŝ and p̂ are injected from two ports of the
filter cavity, and some ordinary vacuum state n̂ leaks into the filter due to optical
losses. By optimizing the squeezing angles of these squeezed states, we will show
that the resulting quantum noise is reduced over the entire observational band.
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The outline of this chapter is as follows: in Sec. 3.3, we will calculate the quantum
noises in this double squeezed-input CMW scheme with AHD (later referred to as
CMWA). We will use the same notation as in Ref [64], which enables us to extend
the results in Ref. [70] to the case of signal-recycled interferometers easily. In Sec.
3.4, we numerically optimize the parameters of this new scheme, as employed in
the search for GW signals from NS-NS binaries and Bursts. Finally, we summarize
our results in Sec. 3.5. For simplicity, we will neglect the optical losses inside the
main interferometer, but we do consider the losses from the filter cavity, and also
from the non-unity quantum efficiency of the photodiodes. The losses from the
main interferometer are not expected to be important, as shown in Refs. [6, 8, 70].
The main quantities used in this paper are listed in Table 3.1.

Table 3.1 – Main quantities in this paper.

Quantity Value for Estimates Descriptions
Ω GW frequency
c 3.0× 108 m/s Speed of light
ω0 1.8× 1015 s−1 Laser frequency
m 40 kg Test mass
L 4 km Arm cavity length
Ic 840 kW Optical power
ιc =

8ω0Ic
mLc

(2π × 100)3s−3

γarm 2π × 100 s−1 Cavity bandwith
rSR SRM reflectivity
ϕSR Phase detuning of SR cavity
δ Effective detuning
γ Effective bandwidth
ϕ MHD homodyne angle
ζ AHD homodyne angle
Lf 30 m Filter cavity Length

γI,E,L =
T 2
I,E,L

2τf

γf = γI + γE + γL Filter cavity bandwith

ri (i = s, p) (ln 10)/2 (10dB) Squeezing factors
θi (i = s, p) Squeezing angles
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3.3 Quantum noise calculation

3.3.1 Filter cavity

In this section, we will derive single-sided spectral densities of the two outgoing
fields â and q̂ as shown in Fig. 3.1. From the continuity of optical fields, we can
relate them to the ingoing fields, which include two squeezed vacuum states ŝ , p̂
and one ordinary vacuum n̂ entering from the lossy mirror (LM) [70]. Specifically,
we have

â(Ω) = RI(Ω)ŝ(Ω) + T (Ω)p̂(Ω) +AI(Ω)n̂(Ω), (3.2)

q̂(Ω) = RE(Ω)p̂(Ω) + T (Ω)ŝ(Ω) +AE(Ω)n̂(Ω). (3.3)

Here â = (âA, âφ)
T, q̂ = (q̂A, q̂φ)

T are amplitude and phase quadratures (sub-
script A stands for amplitude and φ for phase). In our case, the carrier light beam
is resonant inside the filter cavity. Therefore, the effective amplitude reflectivity
R, transmissivity T and loss A can be written as,

RI(Ω) =
γI − γE − γL + iΩ

γf − iΩ
, RE(Ω) =

γE − γI − γL + iΩ

γf − iΩ
, (3.4a)

T (Ω) =
−2

√
γIγE

γf − iΩ
, (3.4b)

AI(Ω) =
−2

√
γIγL

γf − iΩ
, AE(Ω) =

2
√
γEγL

γf − iΩ
, (3.4c)

where γf ≡ γI + γE + γL. They satisfy the following identities:

|RI(Ω)|2 + |T (Ω)|2 + |AI(Ω)|2 = |RE(Ω)|2 + |T (Ω)|2 + |AE(Ω)|2 = 1, (3.5a)

R∗
I (Ω)T (Ω) +RE(Ω)T ∗(Ω) +A∗

I (Ω)AE(Ω) = 0. (3.5b)

If the input and end mirrors of the filter cavity are identical, namely γI = γE, we
will have RI,RE ∼ 1 and T ∼ 0 when Ω ≫ γf and RI,RE ∼ 0 and T ∼ 1 when
Ω ≪ γf . Therefore, the squeezed vacuum ŝ enters the interferometer at high
frequencies while p̂ becomes significant mostly at low frequencies. By adjusting
the squeezing factor and angle of these two squeezed fields, we can reduce both
the high-frequency shot noise, and the low-frequency radiation-pressure noise,
simultaneously.

To calculate the noise spectral densities, we assume that these two squeezed vac-
uum sates have frequency-independent squeezing angles θi (i = s, p), and can be
represented as follows:

ŝ = R̃(rs, θs)v̂ s , p̂ = R̃(rp, θp)v̂ p , (3.6)
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with

R̃(r, θ) ≡
(

cosh r − cos θ sinh r − sin θ sinh r
− sin θ sinh r cosh r + cos θ sinh r

)
. (3.7)

Here r is the squeezing factor, and v̂ i = (v̂iA, v̂iφ)
T are ordinary vacuums with

single-sided spectral densities: SA(Ω) = Sφ(Ω) = 1, SAφ(Ω) = 0 [6].

The noise spectral densities of the two filter-cavity outputs can then be written
as

S̃ââ(Ω) = |RI(Ω)|2R̃(2rs, 2θs) + |T (Ω)|2R̃(2rp, 2θp) + |AI(Ω)|2̃I, (3.8)

S̃q̂q̂(Ω) = |RE(Ω)|2R̃(2rp, 2θp) + |T (Ω)|2R̃(2rs, 2θs) + |AE(Ω)|2̃I, (3.9)

S̃âq̂(Ω) = RE(Ω)T ∗(Ω)R̃(2rp, 2θp) +R∗
I (Ω)T (Ω)R̃(2rs, 2θs)

+ AE(Ω)A∗
I (Ω)̃I, (3.10)

where S̃âq̂(Ω) is the cross correlation between two outputs; Ĩ is the identity matrix
and

S̃i(Ω) =

(
SA,i(Ω) SAφ,i(Ω)
SAφ,i(Ω) Sφ,i(Ω)

)
, (3.11)

with i = ââ, q̂q̂, âq̂, whose elements are single-sided spectral densities.

3.3.2 Quantum noise of the interferometer

According to Ref. [64], the input-output relation, which connects the ingoing
fields â and the GW signal h with the outgoing fields b̂, for a signal-recycled
interferometer can be written as:

b̂ =
1

M

(
C̃ â +D

h

hSQL

)
. (3.12)

In the above equation,

M = [δ2 − (Ω + iγ)2]Ω2 − δ ιc, (3.13)

and C̃ is the transfer function matrix, with elements:

C̃11 = C̃22 = Ω2(Ω2 − δ2 + γ2) + δ ιc, (3.14a)

C̃12 = −2γ δΩ2, C̃21 = 2γ δΩ2 − 2γ ιc, (3.14b)

where ιc ≡ 8ω0Ic/(mcL). The elements of the transfer function vector D are

D1 = −2δ
√
γ ιc Ω, D2 = −2(γ − iΩ)

√
γ ιc Ω. (3.15a)
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The effective detuning δ, and bandwidth γ, are given by:

δ =
2 rSR γarm sin(2ϕSR)

1 + r2SR + 2 rSR cos(2ϕSR)
, (3.16a)

γ =
(1− r2SR)γarm

1 + r2SR + 2 rSR cos(2ϕSR)
, (3.16b)

where rSR is the amplitude reflectivity of the signal-recycling mirror (SRM), and
ϕSR is the phase detuning of the SR cavity. If the main homodyne detector (MHD)
measures:

b̂ϕ(Ω) =
√
η [sinϕ b̂A(Ω) + cosϕ b̂φ(Ω)] +

√
1− η v̂(Ω), (3.17)

where ϕ is the homodyne angle and v̂ is the additional vacuum state due to the
non-unity quantum efficiency of the photodiode, and then the corresponding h-
referred quantum-noise spectral density can be written as:

Sh(Ω) = h2SQL

(sinϕ cosϕ)C̃ S̃I C̃
†(sinϕ cosϕ)T + 1−η

η
|M |2

(sinϕ cosϕ)D̃ D̃†(sinϕ cosϕ)T
. (3.18)

This can be minimized by adjusting the squeezing angle θ of ŝ and p̂. We can
estimate the optimal θ qualitatively from the asymptotic behavior of the resulting
noise spectrum. At very high frequencies (Ω ≫ γ), from Eq. (3.2), â ∼ ŝ and
thus:

Sh(Ω) ∝ cosh(2rs) + cos[2(ϕ+ θs)] sinh(2rs). (3.19)

If the squeezing angle of ŝ :

θs =
π

2
+ nπ − ϕ, (3.20)

where n is integer, we achieve the optimal case, namely Sh ∝ e−2rs . Similarly, at
very low frequencies (Ω ≪ γ), we have â ∼ p̂ and the spectral density Sh ∝ e−2rp

if

θp = arctan

[
2 cosϕ sin β

cos(β − ϕ) + 3 cos(β + ϕ)

]
. (3.21)

More accurate values for optimal θs,p can be obtained numerically, as we will show
in the next section. Given optimal θs,p, the sensitivity of this double squeezed-
input scheme improves at both high and low frequencies. However, for the same
reason as in the case of single squeezed-input that the two outputs of the filter
cavity are entangled [70], this double squeezed-input scheme does not perform
well in the intermediate frequency range. To recover the sensitivity, we need to
use an additional homodyne detector (AHD) at the idle port E of the filter cavity.
The corresponding measured quantity is:

q̂ζ(Ω) =
√
η [sin ζ b̂A(Ω) + cos ζ b̂φ(Ω)] +

√
1− η v̂′(Ω) (3.22)

where ζ is the homodyne angle and v′(Ω) is the additional vacuum state, which
enters due to the non-unity quantum efficiency of photodiode. We combine q̂ζ(Ω)

with the output b̂ϕ(Ω) using a linear filter K(Ω), obtaining:

ô(Ω) = b̂ϕ(Ω)−K(Ω) q̂ζ(Ω). (3.23)
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Correspondingly, the noise spectral density of this new output ô(Ω) can be written
as:

Sô(Ω) = Sb̂ϕ
(Ω)− 2ℜ[K(Ω)Sb̂ϕ,q̂ζ

(Ω)] + |K(Ω)|2Sq̂ζ(Ω). (3.24)

The minimum quantum noise is achieved when K(Ω) = Sb̂ϕ,q̂ζ
(Ω)/Sb̂ϕ

(Ω), and the
resulting h-referred noise spectrum with the AHD is then:

SAHD
h (Ω) = Sh(Ω)− h2SQL

η|(sinϕ cosϕ)C̃ S̃IE(sin ζ cos ζ)T|2

(sinϕ cosϕ)D̃D̃†(sinϕ cosϕ)T Sζ(Ω)
, (3.25)

where Sζ(Ω) ≡ η(sin ζ cos ζ)S̃E(sin ζ cos ζ)T + 1 − η. The second term has a
minus sign, which shows explicitly that the sensitivity increases as a result of the
additional detection.

3.4 Numerical Optimizations

In this section, we will take into account realistic technical noise, and numerically
optimize interferometer parameters for detecting GW signals from specific astro-
physics sources, which include Neutron-Star-Neutron-Star (NS-NS) binaries and
Bursts.

For a binary system, according to Ref. [86], spectral density of the GW signal is
given by

Sh(2πf) =
π

12

(GM)5/3

c3r2
Θ(fmax − f)

(πf)7/3
. (3.26)

Here the “chirp” mass M is defined as M ≡ µ3/5M2/5 with µ and M being
the reduced mass and total mass of the binary system. With other parameters
being fixed, the corresponding spectrum shows a frequency dependence of f−7/3.
Therefore, as a measure of the detector sensitivity, we can define an integrated
signal-to-noise ratio (SNR) for NS-NS binaries as:

ρ2NSNS ∝
∫ fmax

fmin

f−7/3df

Squant
h (2πf) + Stech

h (2πf)
. (3.27)

The upper limit of the integral fmax ∼ fISCO ≈ 4400× (M/M⊙) Hz is determined
by the innermost stable circular orbit (ISCO) frequency, and the lower limit fmin

is set to be 10 Hz, at which the noise can no longer be considered as stationary.
Here we choose M = 2.8M⊙, which is the same as in Ref. [87]. Here Squant

h is the
quantum noise spectrum derived in the previous sections and Stech

h corresponds to
the technical noise obtained from Bench [88].

Other interesting astrophysical sources are Bursts [89]. The exact spectrum is not
well-modeled and a usual applied simple model is to assume a logarithmic-flat
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Table 3.2 – Optimization results for NS-NS SNRs

ParametersConfigurations
ρ rSR ϕSR γI γE ϕ θp ζ

AdvLIGO 1.0 0.8 1.4 — — −1.0 — —
FISAdvLIGO 1.0 0.7 1.5 — — −1.2 −0.6§ —

CMW 1.0 0.8 1.6 240 240 −0.8 −0.6 —
CMWA 1.2 0.7 1.6 230 210 0.0 −0.1 0.7

§ This is the squeezing angle θ in the case of single squeezed-input.

Table 3.3 – Optimization results for Bursts SNRs

ParametersConfigurations
ρ rSR ϕSR γI γE ϕ θp ζ

AdvLIGO 1.0 0.7 1.5 — — −0.2 — —
FISAdvLIGO 1.5 0.8 1.6 — — 0.0 −1.6§ —

CMW 1.5 0.8 1.6 0.0 0.0 0.0 −1.4 —
CMWA 1.5 0.8 1.6 140 140 0.0 −0.2 0.9

signal spectrum, i.e. Sh(2πf) ∝ f−1. The corresponding integrated SNR is then
given by:

ρ2Bursts ∝
∫ fmax

fmin

d log f

Squant
h (2πf) + Stech

h (2πf)
. (3.28)

The integration limit is taken to be the same as in the NS-NS binaries case.

To estimate the SNR and also motivate future implementation of this scheme, we
assume the filter cavity has a length of ∼ 30 m and an achievable optical loss
of 10 ppm per bounce and also consider the non-unity quantum efficiency of the
photodiodes η = 0.9 for both MHD and AHD. Other relevant parameters will be
further optimized numerically. For comparison, we will also optimize other related
configurations, which includes AdvLIGO, AdvLIGO with frequency-independent
squeezed-input (FISAdvLIGO for short), and the CMW scheme. Specifically, the
free parameters for these different schemes that need to be optimized are the
following:

AdvLIGO: rSR , ϕSR , ϕ , (3.29a)

FISAdvLIGO: rSR , ϕSR , ϕ , θ , (3.29b)

CMW: rSR , ϕSR , ϕ , γI, γE, θs , θp, (3.29c)

CMWA: rSR , ϕSR , ϕ , γI, γE, θs , θp , ζ . (3.29d)

The resulting optimal parameters for different schemes are listed in Tables 3.2 and
3.3. They are rounded to have two significant digits at most in view of various
uncertainties in the technical noise. The integrated SNR ρ is normalized with
respect to that of the AdvLIGO configuration. The optimal θs from the numerical
result is in accord with the asymptotic estimation, namely θs ≈ (π/2)−ϕ (cf. Eq.
(3.20)).
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Figure 3.2 – Quantum-noise spectra of different schemes with optimized
parameters for detecting gravitational waves from NS-NS binaries. The
optimal values for the parameters are listed in Table. 3.2.

The corresponding quantum-noise spectrums of different schemes optimized for
detecting gravitational waves from NSNS binaries are shown in Fig. 3.2. The
AdvLIGO, FISAdvLIGO and CMW schemes almost have the identical integrated
sensitivities and the CMWA scheme shows a moderate 20% improvement in SNR.
This is attributable to the fact that the signal spectrum of NSNS binaries has
a f−7/3 dependence and low-frequency sensitivity is very crucial. However, due
to low-frequency technical noise, advantages of the CMWA scheme are at most
limited in the case for detecting low-frequency sources.

The case for detecting GWs from Bursts is shown in Fig. 3.3. All other three
schemes have a significant 50% improvement in terms of SNR over AdvLIGO. The
sensitivities of the optimal FISAdvLIGO, CMW and CMWA at high frequencies
almost overlap each other. In addition, the detuned phase ϕSR of the signal-
recycling cavity of those three are nearly equal to π/2, which significantly increases
the effective detection bandwidth of the gravitational-wave detectors and is the
same as in the Resonant-Sideband Extraction (RSE) scheme. This is because a
broadband sensitivity is preferable in the case of Bursts which have a logarithmic-
flat spectrum.

To show explicitly how different parameters affect the sensitivity of the CMWA
scheme, we present the quantum-noise spectra of different schemes, by using the
same parameters as the optimal CMWA in Fig. 3.4. In the case of AdvLIGO,
we obtain a RSE configuration with ϕSR ≈ π/2. The quantum noise of FISAd-
vLIGO with squeezing angle θ = θs is lower at high frequencies, but higher at low
frequencies than the RSE AdvLIGO. FISAdvLIGO with θ = θp behaves in the
opposite way, with a significant increase of sensitivity at low frequencies but worse
sensitivity at high frequencies. The CMW scheme with double squeezed-input,
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Figure 3.3 – Quantum-noise spectra of different schemes which are opti-
mized for detecting GWs from Bursts. The optimal values for the parame-
ters are listed in Table. 3.3.
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Figure 3.4 – Quantum-noise spectrums of different schemes using the same
parameters as the optimal CMWA to show how different parameters affect
sensitivity of the CMWA scheme.
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just as expected, can improve the sensitivity at both high and low frequencies but
performs not so well at intermediate frequencies. The CMWA scheme performs
very nicely over the whole observational band compared with others and it would
be more attractive if the technical noise of the AdvLIGO design could be further
decreased.

3.5 Conclusions

We have proposed and analyzed the double squeezed-input CMWA scheme as an
option for increasing the sensitivity of future advanced GW detectors. Given an
achievable optical loss of the filter cavity, and 10 dB squeezing, this CMWA con-
figuration shows a noticeable reduction in quantum noise at both high and low
frequencies compared with other schemes. Since the length of the filter cavity
considered here is around 30 m, with the development of better low-loss coating
and squeezing-state sources, the CMWA scheme could be a promising and rela-
tively simple add-on to AdvLIGO, without needing to dramatically modify the
existing interferometer topology.



Chapter 4

Modifying Test-Mass Dynamics:
Double Optical Spring

4.1 Preface

In this chapter, we will discuss the approach to surpassing the free-mass
Standard Quantum Limit (SQL) by modifying the the test-mass dynam-
ics with double optical springs. We explore the frequency dependence of
the optical spring effect. In particular, we show that the frequency depen-
dence of double optical springs allows us to create a “negative inertia”,
which cancels the positive inertia of the test-mass with the mechanical
response significantly enhanced. This can surpass the free-mass SQL over
a broad frequency range. In addition, we show the feasibility of demon-
strating such an effect with Gingin high optical power test facility. The
same setup could eventually be implemented in future advanced GW de-
tectors. This is a joint effort by Farid Khalili, Stefan Danilishin, Helge
Mueller-Ebhardt, Yanbei Chen, Chunnong Zhao, and myself. It is an
ongoing research project.

4.2 Introduction

There are two types of fundamental quantum noise in an advanced gravitational-
wave (GW) detector: one, known as measurement shot noise, originates from
fundamental phase fluctuations of light waves, while the other one, caused by
quantum fluctuations of light wave amplitude, and resulting in fluctuations of
radiation pressure on the test-masses of the interferometer, called the back-action
noise. If these two are not correlated, they impose a lower bound on the detector’
sensitivity, which is in essence the Standard Quantum Limit (SQL) [55–57]. For
a free probe mass, the SQL, written in terms of GW strain amplitude spectrum,
is given by:

hfmSQL =

√
2~

mΩ2L2
, (4.1)
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where m is the reduced mass, and L the arm length of an interferometric GW
detector. In order to further improve the sensitivity, many approaches were pro-
posed in the literature to surpass this limit. Most of them, such as variational
measurement [6], are based on the utilization of the cross correlations between the
shot noise and back-action noise. These methods, however, are extremely suscep-
tible to the influence of optical loss, and impose the following severe limitation on
the amount by which these methods can beat the SQL (see, e.g.,, [90]):

ξ =
h

hfmSQL

= 4

√
1− η

η
. (4.2)

Here, h is the sensitivity of the GW detector in terms of the GW strain spectrum;
η is the unified quantum efficiency of the meter readout. Estimates show that, at
present, η is limited mostly by the photodetector quantum efficiency. Given the
values of η span a range of 0.95− 0.99 (considered as moderately optimistic), this
yields:

ξ & 0.5− 0.3 . (4.3)

which is not very useful.

There is another method to overcome the free-mass SQL, which is not influenced
by optical loss, and thus not susceptible to this limitation. Instead of reducing
the total noise, it increases the signal displacement of the test mass, and thus
surpasses the free-mass SQL by converting an initially free test-mass into a more
“responsive” object, e.g., a harmonic oscillator. In the general case, the SQL for
force detection is equal to:√

SF
SQL(Ω) =

√
2~m|χ−1(Ω)| , (4.4)

where χ/m is the mechanical susceptibility, which is in essence the system Green’s
function Fourier transform. Correspondingly, the SQL for the system character-
ized by χ in terms of GW strain is equal to

hSQL =
1

L

√
SF
SQL(Ω)

mΩ2
= hfmSQL

√
|χ−1(Ω)|

Ω2
(4.5)

For a free mass, χ−1 = −Ω2, and the factor in the square root is simply unity,
while for a mechanical oscillator χ−1 = −(Ω2−ω2

m)+iγmΩ, and the corresponding
SQL is smaller than the one for the free mass by a significant factor of

√
ωm/γm,

which can be 104 for a high-Q oscillator.

To modify the dynamics of a free test mass into that of a harmonic oscillator, a
well-known approach of using optical rigidity induced by the position-dependent
radiation-pressure force is widely used. Unfortunately, with a single optical spring,
only narrow-band gain can be obtained. We show here that by using two optical
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springs and exploiting their frequency dependence, it is possible to create a neg-
ative optical inertia [91], which compensates positive inertia of the test mass, and
thus allows the free-mass SQL to be surpassed over a broad frequency band.

The outline of this chapter is as follows: in Sec. 4.3, we give a general mathematical
treatment of the optical negative inertial and derive the resulting mechanical
response function; in Sec. 4.4, we try to address the problem when the cavity
bandwidth is an issue as in case of Gingin setup; in Sec. 4.6, we conclude our
results and outline future works in this direction.

4.3 General considerations

It is shown in Ref. [64] that a signal-recycled interferometric GW detector can
be mapped into a detuned Fabry-Pérot optical cavity. We do not need to go
into the details of an interferometer and can only consider a single cavity for a
general discussion. As previously proposed in Ref. [10], instead of a single carrier
light beam considered in Ref. [64], here we include two carrier light beams with
different frequencies, and each of them will induce an optical rigidity and affect
the dynamics of the test mass. The resulting effective mechanical susceptibility χ
of the test mass can be read off from the response of the test mass displacement
x to the external force F , namely:

x(s) =
χ(s)F (s)

m
=⇒ χ−1(s) = s2 +

K1(s) +K2(s)

m
, (4.6)

with s = −iΩ. The optical rigidities K1,2 are given by:

K1,2 =
mJ1,2δ1,2

s2 + 2γs+∆2
1,2

(4.7)

with

J1,2 =
4ω1,2I1,2
mcL

, ∆1,2 =
√
γ2 + δ1,2 . (4.8)

Here, γ is the cavity bandwidth, which is equal to γ = πc
2LF , with F the optical

finesse; ω1,2 are the frequencies of two carrier light beams; I1,2 are the intracavity
powers; δ1,2 = ωc1,2 − ω0 are the detunings with respect to the cavity resonant
frequency given by ω0.

The negative inertia regime is reached when:

K1(0) +K2(0) = 0 ,
1

2

∂2[K1(s) +K2(s)]

∂s2

∣∣∣
s=0

+m = 0 . (4.9)

The first equation indicates that the static rigidity from two carrier light beams
cancel each other while the second equation gives a zero inertia which can signif-
icantly enhance the mechanical response to the external force (i.e., the GW tidal
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force, in the context here). These two conditions provide us with the following
two equations:

J1δ1
∆2

1

+
J2δ2
∆2

2

= 0 ,
J1δ1(∆

2
1 − 4γ2)

∆6
1

+
J2δ2(∆

2
2 − 4γ2)

∆6
2

= 1. (4.10)

Solving these equations with respect to J1δ1 and J2δ2, one gets:

J1δ1 =
∆2

1(
1

∆2
1

− 1

∆2
2

)(
1− 4γ2

∆2

) , J2δ2 =
∆2

2(
1

∆2
2

− 1

∆2
1

)(
1− 4γ2

∆2

) , (4.11)

where

∆2 =

(
1

∆2
1

+
1

∆2
2

)−1

. (4.12)

In the practically interesting case of

δ1 ∼ δ2 ≫ γ , (4.13)

we have:

J1 =
δ1(

1

δ21
− 1

δ22

) , J2 =
δ2(

1

δ22
− 1

δ21

) , (4.14)

which implies the following relation between the optical powers of the two carriers
and their detunings:

J1
J2

≡ Ic1
Ic2

≈ −δ1
δ2
. (4.15)

One can easily see that these detunings should have opposite signs, in order to
compensate for the static rigidity. Note also that because J1,2 > 0, the detuning
with the larger magnitude has to be negative.

Substituting Eq. (4.11) into Eq. (4.6), one gets the following expression for the
mechanical response function:

χ−1(s) = s2 − ∆2
1∆

2
2(s

2 + 2γs)

(s2 + 2γs+∆2
1)(s

2 + 2γs+∆2
2) (1− 4γ2/∆2)

. (4.16)

In order to reveal the characteristic features of this expression, we expand it into
a Taylor series in s:

χ−1(s) ≈ 1

1− 4γ2

∆2

[
−2γs+ 4γs3

(
1

∆2
− 2γ2

∆4
1 +∆2

1∆
2
2 +∆4

2

∆4
1∆

2
2

)

+ s4
(

1

∆2
− 12γ2

∆4
1 +∆2

1∆
2
2 +∆4

2

∆4
1∆

2
2

+ 16γ4
∆4

1 +∆4
2

∆2∆4
1∆

4
2

)]
+O(s5) . (4.17)

Assuming again that δ1 ∼ δ2 ≫ γ, we obtain the following simple expression for
the mechanical response function:

χ−1(s) ≈ −2γs+
4γs3

∆2
+
s4

∆4
+O(s5) . (4.18)
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4.4 Further Considerations: Removing the Fric-

tion Term

In Eq. (4.18) of the previous section, there is a friction term ∼ γs in the effective
response function, which limits the low-frequency improvement. It will not be
important if the cavity bandwidth is narrow, as mentioned. However, to exper-
imentally demonstrate the “negative inertia” effect with the Gingin High Power
Facility, it would be rather challenging for the given specifications. One might
think that this friction term could be removed by using a feedback control. How-
ever, this will not work because any classical feedback does not allow us to improve
the detector sensitivity. Even though the controlled dynamics of the test mass
will not have the friction term, the quantum limit will still be given by the original
response function χ(Ω) rather than the controlled one. This is shown explicitly
in Ref. [63], where a feedback control is used to control the instability induced by
the optical spring, while the sensitivity for detecting GWs remains unaffected.

We thus need to remove the friction term internally with the help of the optical
spring (a quantum feedback control method) instead of externally with a classical
feedback control. For this purpose, in addition to Eq. (4.9), we need to further
impose the following requirement on the optical spring:

∂[K1(s) +K2(s)]

∂s

∣∣∣
s=0

= 0. (4.19)

It seems rather trivial to satisfy this condition, as we have five free parameters:
J1,2, δ1,2 and γ. As it turns out, there are no reasonable solutions (imaginary
roots). To solve this problem, we realize that in an actual signal-recycled in-
terferometer, the signal-recycling cavity acts as an effective mirror and one can
tune cavity bandwidth of two carriers over a large range [64, 65]. In the case
of the Gingin setup, a three-mirror coupled cavity can achieve the same effect.
Therefore, we do not need to assume the same cavity bandwidth γ for both carri-
ers. Given different cavity bandwidths γ1,2, we find that sthe following achievable
specifications can satisfy both conditions in Eqs. (4.9) and (4.19):

∆1/2π = 200Hz, ∆2/2π = −500Hz, γ1/2π = 36Hz, γ2/2π = 400Hz. (4.20)

With test mass m = 0.8 kg and a cavity length L = 80m, the intracavity powers
for the two carriers are

I1 = 3kW, I2 = 10 kW. (4.21)

The resulting response function, compared with that of the free-mass, is shown in
the Fig. 4.1. As we can see, this setup provides us with significant improvement
at low frequencies.
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Figure 4.1 – The resulting response function with a double optical spring
(solid), compared with that of a free mass (dashed).

4.5 “Speed-meter” type of response

In this section, we will look at another parameter regime, in which two optical
springs have equal but opposite detunings, and this cancel each other. In this case,
the test mass dynamics is not modified, but we can achieve a “speed-meter” type
of response. Unlike a typical speed meter, which allows us to surpass the SQL
at low frequencies, the scheme considered does not. However, its sensitivity can
follow the SQL over a large range at low frequency, which is also very interesting.

The “speed-meter” type of response can be achieved if we choose the right quadra-
ture. From Eqs. (47) and (48) in the scaling-law paper [64], the response of the
two output quadratures to the test-mass displacement is given by:

RY1F =

√
γIc

2~
∆

(Ω−∆+ iγ)(Ω + ∆+ iγ)
(4.22)

RY2F = −
√
γIc

2~
(γ − iΩ)

(Ω−∆+ iγ)(Ω + ∆+ iγ)
(4.23)

where γ is the cavity bandwidth, and ∆ is the cavity detuning, and Ic = 8ω0Ic/(Lc).
If we read out

Ŷζ = Ŷ1 sin ζ + Ŷ2 cos ζ (4.24)

at the quadrature angle

ζ = arctan
γ

∆
, (4.25)

the resulting response of Ŷζ to the displacement will be:

RYζF =

√
γIc

2~
iΩ cos ζ

(Ω−∆+ iγ)(Ω + ∆+ iγ)
. (4.26)
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For a small cavity bandwidth γ < ∆, and at low frequencies Ω < ∆, so we simply
have

RYζF ≈
√
γIc

2~
cos ζ

∆2
(−iΩ). (4.27)

This basically indicates that the detector has a “speed-meter” type of response.

In our case, we consider that the two carriers A and B have opposite detun-
ings so that the optical-spring effects perfectly cancel each other, as discussed in
the double-optical-spring (DOS) paper [10]. If we further require the detection
quadrature angle ζA = −ζB is opposite for two carriers, the responses of them
[cf. Eq. (4.27)] will be the same, Ŷ A

ζ = Ŷ B
ζ , and we essentially have two identical

probes. By combining their two readouts with kernel functions KA and KB, we
have:

Ŷtot = KA(Ω)ŶA +KB(Ω)ŶB. (4.28)

By optimizing KA and KB using the technics introduced in the Ref. [10], we can
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Figure 4.2 – The top figure shows the DOS noise curve normalized with
respect to the standard quantum limit at 100 Hz. The bottom one shows
the corresponding optimal kernel functions for the two carriers.

obtain maximal sensitivity. For a numerical estimate, we choose the following
specifications:

∆/(2π) = 100Hz, γ/(2π) = 50Hz, ζ = arctan(0.5), IA = IB = 400 kW. (4.29)
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The resulting noise curve and the optimal kernel functions are shown in Fig. 4.2.
At low frequencies, we almost follow the SQL. There is actually an analytical
formula for the noise curve, which is:

Sh(Ω) =
1

L2

[
1

|RYζF |2
+
S2
SQL(Ω)

4
|RYζF |2

]
≥ Sh

SQL, (4.30)

where SSQL = ~/(mΩ2) and the optical power is twice that of an individual carrier.
Given the response in Eq. (4.27), we have:

Sh(Ω) = Sh
SQL

[
1

|RYζF |2SSQL

+
SSQL(Ω)

4
|RYζF |2

]
∝ Sh

SQL. (4.31)

Thiss basically means that we can follow the SQL but never be able to surpass it.
This is in contrast with a true “speed meter” in which the SQL can be surpassed
significant as long as we have a sufficient large optical power. The next question
would be how we could recover the true “speed-meter” response in the DOS
configuration.

4.6 Conclusions and future work

We have shown the possibility of a “negative inertia” effect attributable to the
specific frequency dependence of double optical springs. This is capable of re-
ducing the effective inertia of the probe mass, and thus can significantly enhance
the mechanical response of the interferometer to GW signals. This effect the in-
terferometer to surpass the free-mass SQL over a wide frequency band. There
are several issues that need to be further investigated: (i) the stability of the
system. What feedback control method is necessary to stabilize the system? (cf.
the discussions in Ref. [63] for the single optical spring case); (ii) if one uses a
third carrier for readout purposes, how much improvement in sensitivity could
be obtained, compared to the current double-carrier case? In addition, we have
considered the “speed-meter” type of response, and have shown that a double
optical spring allows us to follow the SQL at low frequencies.



Chapter 5

Measuring a Conserved Quantity:
Variational Quadrature Readout

5.1 Preface

In this chapter, we consider surpassing the Standard Quantum Limit
(SQL) for measuring a weak force with a mechanical oscillator. By using
a time-dependent variational readout, we can measure the mechanical
quadrature—a conserved quantity of the oscillator motion—and evade
measurement-induced back-action. This is motivated by the pioneering
work of Vyatchanin et al. [17, 18], in which such a back-action-evading
variational scheme is proposed to detect a force signal with known arrival
time. Here, we will go beyond such a limitation and make it suitable for
all possible stationary signals, which can be characterized by their spec-
trum. This will be useful for: (i) improving the sensitivity of future GW
detectors if the test-mass frequency (∼1 Hz) is upshifted to the detec-
tion band (∼ 100 Hz) by the optical-spring effect and (ii) improving the
sensitivity of an atom force microscopy with a high-frequency mechani-
cal oscillator as the probe. This is a continuing joint research effort by
Stefan Danilishin, Yanbei Chen, and myself.

5.2 Introduction

Due to recent significant achievements in fabricating high-quality mechanical de-
vices, electromechanical and optomechanical devices have played important roles
in probing weak forces and tiny displacements. Two notable examples on the
large scale and small scale are: (i) a gravitational-wave detector, in which kg-
scale test-masses are coupled to high-power optical field for probing tiny ripples
in the spacetime—gravitational waves [72], and (ii) an atomic-force microscope,
in which a micromechanical oscillator coupled to an electric or optical field is used
to probe atomic forces [1]. Their force sensitivity is limited by the SQL [74], and
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Readout

which has a spectral density of:

SSQL
F (Ω) =

~
|Rxx(Ω)|

, (5.1)

where the mechanical response Rxx(Ω) = −1/m[(Ω2 − ω2
m)] for a high-Q oscillator

with eigenfrequency ωm. The origin of such a limit comes from the fact that we try
to measure the external force by monitoring the changes in the oscillator position
x̂ at different times, which do not commute with each other, i.e.,

[x̂(t), x̂(t′)] = − i~
mωm

sinωm(t− t′). (5.2)

This leads to the following Heisenberg uncertainty principle:

∆x(t)∆x(t′) ≥ ~
2mωm

sinωm(t− t′), (5.3)

which basically means that the oscillator positions at different times cannot be
simultaneously measured with an arbitrarily high accuracy; this gives rise to the
SQL for the force sensitivity.

There are two approaches to overcoming such a limit [74]: (i) a stroboscopic
measurement. Thiss measures the oscillator with pulses separated by an integer
times the oscillation period. From the commutator relation Eq. (5.2), we learn
that if t − t′ = 2nπ/ωm, [x̂(t), x̂(t′)] = 0, and, then they are simultaneously
measurable; (ii) as quadrature measurement. Instead of measuring the oscillator
position, this measures quantum nondemolition (QND) observables—mechanical
quadratures X̂1,2 which are defined through the equation:

x̂(t) ≡ X̂1(t) cosωmt+
X̂2(t)

mωm

sinωmt. (5.4)

These observables satisfy

[X̂1(t), X̂1(t
′)] = [X̂2(t), X̂2(t

′)] = 0, [X̂1(t), X̂2(t
′)] = i~δ(t− t′). (5.5)

Therefore, if we are able to detect the force by measuring only one of the quadra-
tures, e.g., X̂1(t), there will not be an associated quantum limit. To realize such a
measurement, Braginsky et al. proposed to modulate the electro/optomechanical
interaction strength G at the mechanical frequency, namely G(t) = G0 cosωmt
[16]. Specifically, the interaction Hamiltonian can be written as:

Ĥint = ~G(t)x̂(t)â1(t) = ~G0 cosωmt

[
X̂1(t) cosωmt+

X̂2(t)

mωm

sinωmt

]
â1(t)

=
1

2
~G0

[
X̂1(t) + X̂1(t) cos 2ωmt+

X̂2(t)

mωm

sin 2ωmt

]
, (5.6)
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where â1(t) represents the electrical/optical degrees of freedom. If â1(t) is changing
slowly compared with 2ωm and it does not have a significant fluctuation at 2ωm,
we will measure the QND observable X̂1 without imposing any back-action. For
optomechanical devices, this can be realized with a mechanical oscillator coupled
to a high-finesse cavity, such that the cavity bandwidth γ is much smaller than
the mechanical frequency, as proposed by Clerk et al. [92].

Here, we will consider another regime where the probing field is not slowly chang-
ing and has fluctuations at 2ωm, e.g., one with a large cavity bandwidth in the
case of a cavity-assisted scheme. With a time-domain variational readout, we can
evade the measurement-induced back-action from the output data, thus realizing
a quasi-QND measurement. This will be useful for small-scale atomic force mi-
croscopy, where a high-finesse cavity could be difficult to incorporate. It is also
useful for large-scale GW detectors, because a large cavity bandwidth is preferred
for increasing the detection bandwidth.

The outline of this chapter is as follows: In Sec. 5.3, we will analyze the dynamics
of an optomechanical system. In Sec. 5.4, we will consider the time-domain vari-
ational scheme and demonstrate how the back action can be evaded if effectively
sense only one of the quadrature. One limitation for such a scheme is that it lose
the resonant gain. In Sec. 5.5, we will introduce another variational scheme which
mimics a stroboscopic measurement, in which we can recover the resonant gain
by introducing an insignificant back-action.

5.3 Dynamics

Figure 5.1 – A schematic plot showing an optomechanical system. A
mechanical oscillator with eigenfrequency ωm interacts with a cavity mode
â, which is also coupled to the input (âin) and output (âout) optical modes.

A schematic plot of a typical cavity-assisted optomechanical device is shown in
Fig. 5.1. In the limit of a large cavity bandwidth γ ≫ ωm, with the cavity mode
adiabatically eliminated, the input-output relation for the optical field becomes,

b̂1(t) = â1(t), (5.7)

b̂2(t) = â2(t) + (α/~)x̂(t). (5.8)
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Here â1,2 (b̂1,2) are the input (output) amplitude and phase quadratures; α de-
termines the interaction strength, and it is related to the optical power I0 by
α ≡ 8

√
2(F/λ)

√
~I0/ω0 where F is the cavity finesse, and ω0 the laser frequency.

The equations of motion for the oscillator are

˙̂x(t) = p̂(t)/m, (5.9)

˙̂p(t) = −mω2
mx̂(t) + α â1(t) + ξ̂th(t). (5.10)

Here, we can split the oscillator position into a perturbed part δx̂, and a free
oscillation part x̂q, which is given by:

x̂q(t) = δxq[X̂0 cosωmt+ P̂0 sinωmt], (5.11)

where δxq ≡
√
~/(2mωm). The perturbed part includes the effects of the radiation-

pressure noise, thermal noise, and external driving force (our signal), namely:

δx̂(t) =
∫ t

0
dt′Gx(t− t′)[α â1(t

′) + ξth(t
′) + Fext(t

′)], (5.12)

where Gx(t) ≡ Θ(t) sinωmt/(mωm) denotes the Green’s function.

5.4 Variational quadrature readout

In order to make the detection scheme work for all possible signals, we need to
discretize the measurement process into small time sections, the sum of which tells
us the shape of the signal. This idea is similar to the discrete sampling variational
measurement discussed in Ref. [93, 94], in which a back-action-evading scheme
for a free mass is proposed. Here, we try to derive the noise spectrum for this
scheme, and focus on the oscillator case.

Suppose we divide the measurement from t = 0 to t = T into N sections (the
spectral resolution bandwidth is given by 1/T ). For simplicity, we assume that
each section has the same duration ∆τ , namely ∆τ = T/N . With time-dependent
homodyne detection, we can construct the following N integral estimators for the
output signal:

Ŷi =
∫ τi+1

τi
dt
[
g
(i)
1 (t)b̂1(t) + g

(i)
2 (t)b̂2(t)

]
, (τi = i∆τ, i = 0, 1, · · · , N−1). (5.13)

In order to form a quasi-QND measurement, each section should measure the
same quadrature. This is because:

[Ŷi, Ŷj] = 0 (i ̸= j), [X̂ζ , X̂ζ′ ] ̸= 0. (5.14)

That is, different quadratures are probed, the added noise between different sec-
tions will be Heisenberg-limited. This condition can be trivially satisfied if τ
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is equal to an integer times the oscillation period, and g2 is the corresponding
periodic function. One simple choice would be:

∆τ = τm = 2π/ωm, g
(j)
2 (t) = g

(i)
2 (t+ j τm − i τm). (5.15)

In this case, the filtering function has the following Fourier decomposition:

g2(t) =
1

τm

+∞∑
n=−∞

g̃2,n(nωm) e
−i n ωmt, g̃2,n(nωm) =

∫ τm
0
dt g2(t) e

i n ωmt. (5.16)

We encounter one immediate problem with this scheme: each section only senses
â1 for one oscillation period, while the effects of back-action accumulate from
t = 0. The back-action of each section can not be evaded, if the filtering functions
only satisfy the back-action-evading (BAE) condition (cf. Eq. (5.18). As it turns
out, we have to sacrifice the sensitivity around the mechanical resonance. This
is because of the following argument: by swapping the integration order, the
back-action part of the estimator:

δŶi =
∫ τi+1

τi
dt g

(i)
1 (t)â1(t) + (α2/~)

∫ τi+1

τi
dt â1(t)

∫ τi+1

t
dt′Gx(t

′ − t) g
(i)
2 (t′)

+ (α2/~)
∫ τi
0
dt â1(t)

∫ τi+1

τi
dt′Gx(t

′ − t) g
(i)
2 (t′). (5.17)

If the BAE condition is satisfied, namely:

g
(i)
1 (t) + (α2/~)

∫ τi+1

t
dt′Gx(t

′ − t) g
(i)
2 (t′) = 0. (5.18)

We have
δŶi = (α2/~)

∫ τi
0
dt â1(t)

∫ τi+1

τi
dt′Gx(t

′ − t) g
(i)
2 (t′). (5.19)

Therefore, to eliminate this accumulated back-action, we require
∫ τi+1

τi
dt′Gx(t

′ −
t) g

(i)
2 (t′) = 0 for any t, which automatically leads to:∫ τi+1

τi
dt g

(i)
2 (t)x̂q(t) = 0. (5.20)

If this is the case, we obtain:

Ŷ BAE
i =

∫ τi+1

τi
dt g

(i)
2 (t)[â2(t) + (α/~)

∫ t

τi
dt′Gx(t− t′)Fext(t

′)]. (5.21)

We can recover the sensitivity around ωm by using stroboscopic variation mea-
surement, as we will discuss in Sec. 5.5. Even though we do not have resonance
gain, this scheme could still be interesting if the signals that we are searching for
do not have frequency components at ωm.

In the following, we will derive the noise spectrum for such a scheme. Using these
BAE estimators, we can construct the output spectrum for the entire measurement
process; we have:

Ẑn = τm

N−1∑
k=0

Ŷ BAE
k ei n ωeτk , ωe ≡ 2π/T. (5.22)



74
Chapter 5. Measuring a Conserved Quantity: Variational Quadrature

Readout

The corresponding spectrum SZZ would be defined through

⟨ẐnẐn′⟩ = SZZ δnn′Nτm. (5.23)

Substituting the expressions for g2 and Ŷ BAE
k into the above equation, and after

some straightforward calculations, we obtain:

SZZ(nωe) =
∞∑

k=−∞

|g̃k(k ωm)|2
[
1

2
+
α2

~2
4 sin2(nωeτm/2)

(nωeτm + 2kπ)2
R2

xx(nωe)SF (nωe)

]
(g̃k(±ωm) = 0), (5.24)

where the mechanical response function Rxx(ω) = [m(ω2 − ω2
m)]

−1. Taking the
limit T → ∞ (i.e., a very good bandwidth resolution), we have:

SZZ(Ω) =
∞∑

k=−∞

|g̃k(k ωm)|2
[
1

2
+
α2

~2
sin2(ω τm/2)

[(ω τm/2) + k π]2
R2

xx(Ω)SF (Ω)

]
, (5.25)

where q is the squeezing factor—a 10 dB squeezing gives e−2q = 0.1; SF (Ω) is the
force noise spectrum that contains both thermal noise, and the external driving
force. This result is intuitively expected. Basically, the displacement sensitivity
is the original one multiplied by the sinc function due to the discrete sampling.
Therefore, if the GW signal has a characteristic frequency much lower than the
mechanical frequency, the filtering function g2 should be mostly a constant. In
this case, the normalized noise is given by:

Sh(Ω) =
1

m2L2Ω4

[
~2

2α2

(Ω τm/2)
2

sin2(Ω τm/2)
R−2

xx (Ω) + Sth
F (Ω)

]
. (5.26)

Even though this is shot-noise limited, this sensitivity does not really increase
a lot at low frequencies, because it rises as 1/Ω2 and physically we know that
the oscillator does not has a good response at low frequencies. However, we show
that back-action can be evaded simply by manipulating the output, for all possible
signal.

5.5 Stroboscopic variational measurement

In order to recover the sensitivity around the mechanical resonance, we have
to devote most of the measurement time to the amplitude quadrature, and only
measure the phase quadrature for a short period of time ∆t≪ ω−1

m every oscillator
cycle — the idea of stroboscopic variational measurement. This is different from
what is proposed in Ref. [93] and here the driving field is still constant in time.

As in previous considerations, we divide the measurement into N sections with
∆τ = τm. Instead of measuring both amplitude and phase quadrature simulta-
neously, we measure the phase quadrature during [τi, τi +∆t], and switch to the
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amplitude quadrature during [τi+∆t, τi+1]. Mathematically, we have the following
2N integral estimators:

X̂i =
∫ τi+1

τi+∆t
dt g

(i)
1 (t) b̂1(t), Ŷi =

∫ τi+∆t

τi
dt g

(i)
2 (t) b̂2(t). (5.27)

To minimize the back-action, we can construct the following quantities:

Ôi ≡
i−1∑
n=0

X̂n(t) + Ŷi(t). (5.28)

Basically, for each phase quadrature readout, we take into account all the back-
action imposed during the history. One can easily find that as long as g1(t) and
g2(t) are periodic functions at the mechanical frequency and

g
(i)
1 (t) +

∫ τi+∆t

τi
dt′Gx(t

′ − t)g
(i)
2 (t′) = 0, (t < τi) (5.29)

we have

Ôi =
∫ τi+∆t

τi
dt g

(i)
2 (t)â2(t) + (α/~)g(i)2 (t)

∫ t

0
dt′Gx(t− t′)[αH(t′)â1(t

′) + Fext(t)],
(5.30)

where H(t) is a periodic function of τm and H(t) = Θ(t) − Θ(t − ∆t) during
[0, τm]. Therefore, most of the back actions are evaded, and the remaining part
is imposed during the period when we measure the phase quadrature. This is
exactly the same as in the stroboscopic measurement, but with an important
difference that the probing light beam is always on in our case, which is more
feasible experimentally. By applying the same procedure as in the previous case,
we can evaluate the output spectrum from:

Ẑn = τm

N−1∑
k=1

(Ôk − Ô0) e
i n ωeτk . (5.31)

Here we remove the initial condition term of the oscillator position by subtracting
Ôk with Ô0. After some manipulations, and expanding the results in series of
ωm∆t, we find:

SZZ(nωe) =
∞∑

k=−∞

|g̃k(k ωm)|2
∆t

2τm
+

N0∑
k=−N0

|g̃k(k ωm)|2
[

α4∆t5

24 ~2m2τm sin2(nωeτm/2)
+
α2∆t2

2~2τ 2m
R2

xx(nωe)SF (nωe)

]
,

(5.32)

where N0 ωm∆t ≪ 1 so that the Taylor expansion is justified, and terms with
larger k are small and do not contribute to the summation. Suppose g2 only has a
frequency component at ωm. Taking the continuous limit, the normalized spectral
density for detecting GWs is given by:

Sh(Ω) =
1

m2L2Ω4

[
~2τm

α2R2
xx(Ω)∆t

+
α2τm∆t

3

12m2R2
xx(Ω) sin

2(Ω τm/2)
+ Sth

F (Ω)

]
. (5.33)
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Due to the presence of the sin factor in the denominator, the back-action noise
never vanishes, even at the mechanical resonance. However, the added noise in
principle can be arbitrarily small, if the optimal time scale is chosen, and the
measurement is sufficiently sensitive.

5.6 Conclusions

We have considered two types of variational measurement schemes for measuring
the QND variable—the mechanical quadrature. In both cases, there are insignif-
icant contributions from the back action-noise to the sensitivity. In contrast to
the approach of modulating the interaction strength, and requiring a good-cavity
condition, we have considered the case with a large cavity bandwidth. There-
fore, these schemes are more suitable for small-scale cavity-assisted devices and
large-scale broadband GW detectors.



Chapter 6

MQM with Three-Mode
Optomechanical Interactions

6.1 Preface

In this chapter, we discuss the Macroscopic Quantum Mechanics (MQM)
of a three-mode optomechanical system, in which two orthogonal trans-
verse optical cavity modes are coupled to one mechanical mode through
radiation pressure. This work is motivated by the investigations of three-
mode parametric instability in large-scale gravitational-wave (GW) de-
tectors with high-power optical cavities, as first pointed out by Braginsky
et al. [95]. We realized that the same mechanism that induces instability,
in a different parameter regime, can also be used to cool the mechanical
resonator down to its quantum ground state. Different from the classical
analysis by Braginsky et al., we present a full quantum analysis of three-
mode optomechanical parametric interactions, which properly takes into
account quantum fluctuations and correlations. We obtain the quantum
limit for the ground state cooling with three-mode interactions. In addi-
tion, we show that it can also create tripartite optomechanical quantum
entanglement between the cavity modes and the mechanical oscillator.
Compared with the conventional cavity-assisted optomechanical devices
using a single cavity mode, three-mode interactions can achieve an op-
timal frequency matching: the frequency separation of the two cavity
modes is equal to the mechanical-mode frequency. This allows the carrier
and sideband fields to simultaneously resonate and coherently build up.
Such a mechanism significantly enhances the optomechanical couplings
in the quantum regime. It allows us to explore quantum behaviors of op-
tomechanical interactions in small-scale table-top experiments. We show
explicitly that given experimentally achievable parameters, three-mode
scheme can realize quantum ground-state cooling of milligram scale me-
chanical oscillators and create robust stationary tripartite optomechan-
ical quantum entanglements. This chapter summarizes a joint research
effort by Chunnong Zhao, Li Ju, David Blair, Zhongyang Zhang and me.
The relevant publications are Phys. Rev. A 78, 063809 (2008), Phys.
Rev. A 79, 063801 (2009), andu Phys. Rev. Letts. 104, 243902 (2009).
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6.2 Introduction

Optomechanical interactions have recently become of great interest, for their po-
tential in exploring the quantum behavior of macroscopic objects. Various experi-
ments have demonstrated that the mechanical mode of a mechanical oscillator can
be cooled significantly through two-mode optomechanical interactions [9, 19, 21–
28, 31, 32, 34]. The basic setup consists of a Fabry-Pérot cavity with an end
mirror. Linear oscillations of the mirror mechanical mode at frequency ωm scatter
the optical-cavity mode (usually TEM00) at frequency ω0 into Stokes (ω0 − ωm)
and anti-Stokes (ω0 + ωm) sideband modes, which have the same spatial mode
shape as the TEM00 mode. The optical cavity is appropriately detuned such that
the anti-Stokes sideband is close to resonance. Therefore, the anti-Stokes process
is favored over the Stokes process. As a natural consequence of energy conserva-
tion, the thermal energy of the mechanical mode has to decrease in order to create
higher-energy anti-Stokes photons at ω0+ωm. If the cavity-mode decay rate, which
is related to the optical finesse, is smaller than the mechanical-mode frequency,
theoretical analysis shows that these experiments can eventually achieve the quan-
tum ground state of a macroscopic mechanical oscillator [44, 45, 96], which would
be a significant breakthrough in physics from both experimental and theoretical
points of view. With the same scheme, many interesting issues have been raised
in the literature, such as teleportation of a quantum state into mechanical degrees
of freedom [97], creation of stationary quantum entanglements between the cav-
ity mode and the mechanical oscillator [51, 98], or even between two oscillators
[53, 54]. This in turn could be implemented in future quantum communications
and computing.

The concept of three-mode optomechanical parametric interactions was first in-
troduced and analyzed theoretically in the pioneering work of Braginsky et al.
[95]. It was shown that three-mode interactions inside high-power optical cavities
of large-scale laser interferometric gravitational-wave (GW) detectors have the
potential to induce instabilities, which would severely undermine the operation
of detectors. This analysis was elaborated by many other authors to more accu-
rately simulate the real situation in next-generation advanced gravitational-wave
detectors [99–102] and to find strategies for suppressing instability [103, 104]. Re-
cently, the UWA group experimentally demonstrated three-mode interactions in
an 80-m high-power optical cavity by exciting the mechanical modes and observing
resonant scattering of light into a transverse cavity mode [105].

In contrast to the two-mode case, in three-mode interactions, a single mechani-
cal mode of the mechanical oscillator scatters the main cavity TEM00 mode into
another transverse cavity mode, which has a different spatial distribution from
the TEM00 mode. Specifically, when the TEM00 mode is scattered by the me-
chanical mode, the frequency is split into Stokes and anti-Stokes sidebands at
ω0 ±ωm, and in addition, the spatial wavefront is also modulated by the mechan-
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ical mode. Three-mode interactions strongly arise when both the modulation
frequency and spatial mode distribution are closely matched to those of another
transverse optical-cavity mode. Under these circumstances, both the carrier and
sideband modes are simultaneously resonant inside the cavity and get coherently
build up. Taking into account the resonance of the mechanical mode, the system
is triply resonant, with the interaction strength scaled by the product of the two
optical quality factors and the mechanical quality factor. If the transverse optical
cavity mode has a frequency lower than the TEM00 mode, the Stokes sideband
will be on resonance and the interaction provides positive amplification of the
mechanical mode, while if the transverse mode has a frequency above the main
cavity TEM00 mode, the anti-Stokes sideband will resonate, and the system has
negative gain and the mechanical mode will be cooled. The underlying principle
of both two and three mode interactions is similar to the Brillouin scattering,
except that the modulation occurs not through changes in refractive index of the
medium, but through bulk surface motion of a macroscopic mechanical oscillator
(i.e. the mechanical mode) which modulates the optical path of the light.

While three-mode interactions are inconvenient by-products of the design of ad-
vanced GW detectors, they can be engineered to occur in small-scale systems
with low mass resonators, which can serve as an optomechanical amplifier and be
applied to mechanical-mode cooling [106, 107]. Besides, due to its triply resonant
feature, the three-mode system has significant advantages compared with the two-
mode system and allows much stronger optomechanical couplings. To motivate
experimental realizations, we have suggested a small-scale table-top experiment
with a milligram mechanical oscillator in a coupled cavity [107]. Using the extra
degree of freedom of the coupled cavity, the cavity mode gap (i.e., the difference
between the two relevant cavity modes) can be continuously tuned such that it
is equal to plus or minus the mechanical-mode frequency, which maximizes the
three-mode interaction strength. We also pointed out that, in the negative-gain
regime, this experimental setup can be applied to resolved-sideband cooling of a
mechanical oscillator down to its quantum ground state. In that paper, we used
the classical analysis presented by Braginsky et al. to obtain the effective thermal
occupation number n̄ of the mechanical mode. This analysis breaks down when
n̄ ≪ 1 and the quantum fluctuations of the cavity modes have to be taken into
account. To overcome this limitation, we used the similarity in the Hamiltonian
of the two-mode and the three-mode system, and argued that the quantum limit
for cooling in both systems is the same without investigating the detailed dynam-
ics. However, in order to gain a quantitative understanding of the three-mode
system in the quantum regime, it is essential to develop a full quantum analysis
which includes the dynamical effects of the quantum fluctuations. Besides, as we
will show, the quantum analysis reveals a most interesting non-classical feature of
three-mode systems: stationary tripartite quantum entanglement.

The outline of this chapter is as follows: in Sec. 6.3, we start from the classi-
cal analysis given by Braginsky et al. and then quantize it with the standard
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approach. In Sec. 6.4, we use the quantized Hamiltonian as the starting point
to analyze the dynamics of the three-mode system. Further, based upon the
Fluctuation-Dissipation-Theorem (FDT), we derive the quantum limit for the
achievable thermal occupation number in cooling experiments. To motivate future
small-scale experiments, we provide an experimentally achievable specification for
the quantum ground state cooling of a mechanical oscillator. In Sec. 6.5, we in-
vestigate the stationary tripartite optomechanical quantum entanglement, and we
show that the same specification for the cooling experiments can also be applied
to realize robust stationary optomechanical entanglements.

6.3 Quantization of three-mode parametric in-

teractions

In this section, we will first present the classical formulations of three-mode op-
tomechanical parametric interactions given by Braginsky et al. [95], and then
apply standard procedures to obtain the quantized version.

Classical Picture. A detailed quantitative classical formulation of three-mode
interactions was given in the Appendix of Ref. [95]. A Lagrangian formalism was
used to derive the classical equations of motion and analyze the stability of the
entire three-mode optomechanical system. The formalism can be easily converted
into Hamiltonian language, which can then be quantized straightforwardly. For
convenience, we will use slightly different notation and definitions for the optical
fields. Further, we assume that the two optical-cavity modes are the TEM00

and TEM01 modes, and that the mechanical mode has a torsional mode shape
(about the vertical axis) which has a large spatial overlap with the TEM01 mode
as shown in Fig. 6.1. This can be easily extended to general cases with other
transverse optical modes and mechanical modes. Assuming the electric field is
linearly polarized in the transverse direction perpendicular to the z axis, the
electromagnetic fields (E,H) of the cavity modes can be written as:

Ei(t) =

(
~ωi

ϵ0V

)1/2

fi(r⃗⊥) sin(kiz)qi(t), (6.1)

Hi(t) =
ϵ0
ki

(
~ωi

ϵ0V

)1/2

fi(r⃗⊥) cos(kiz)q̇i(t). (6.2)

Here, i = 0, 1 represent the TEM00 and TEM01 modes; fi(r⃗⊥) are the transverse
mode shapes; ωi denotes the eigenfrequency; ki are the wave numbers; V is the
volume of the optical cavity; qi(t) are the generalized coordinates of the fields;
and q̇i(t) are the time derivatives of qi(t). At the present stage, the appearance
of ~ωi is just to make the generalized coordinates q̂i dimensionless. The classical
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TEM00 TEM01 Torsional modeTEM00 TEM01

Figure 6.1 – Spatial shapes of the TEM00, and of TEM01 modes and the
mechanical torsional mode.

Hamiltonian of this system is given by:

H = Hm +
1

2

∫
dr⃗⊥(L+ xuz)[ϵ0(E0 + E1)

2 + µ0(H0 +H1)
2], (6.3)

where L is the length of the cavity; x is the generalized coordinate of the mechani-
cal mode; uz is the vertical displacement. The free Hamiltonian of the mechanical
mode is

Hm =
1

2
~ωm(q

2
m + p2m) (6.4)

with qm ≡ x/
√

~/(mωm), and pm is the momentum normalized with respect to√
~mωm.

After integrating over the transverse direction, and taking into account the mode
shapes, we obtain:

H = Hm +H0 +H1 +Hint. (6.5)

Defining dimensionless canonical momentum pi(t) ≡ q̇i(t)/ωi, the free Hamiltonian
of the two cavity modes are:

Hi =
1

2
~ωi(q

2
i + p2i ) (6.6)

and the interaction Hamiltonian is given by

Hint = ~G0qm(q0q1 + p0p1), (6.7)

where the coupling constant is defined as G0 ≡
√
Λ ~ω0ω1/(mωmL2), with the

geometrical overlapping factor Λ ≡ (L
∫
dr⃗⊥uzf0f1/V )2.

Given the above Hamiltonian, it is straightforward to derive the classical equations
of motion and analyze the dynamics of the system, which would be identical to
those in the Appendix of Ref. [95]. To quantify the strength of three-mode
interactions, Braginsky et al. introduced the parametric gain R, as defined by:

R = ± 2ΛI0ω1

mωmL2γ0γ1γm
= ±2ΛI0Q0Q1Qm

mω0ω2
mL

2
, (6.8)

where ± correspond to either positive gain or negative gain; I0 is the input optical
power of the TEM00 mode; and we have defined optical and mechanical-mode
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quality factors Qi = ωi/γi (i = 0, 1,m). Due to optomechanical interaction, the
decay rate γm of the mechanical mode will be modified to an effective one γ′m,
which is

γ′m ≈ (1−R)γm. (6.9)

When R > 1, the decay rate becomes negative and this corresponds to instability.
In this paper, we are particularly interested in the regime whereR < 0 which gives
rise to the mechanical-mode cooling. The effective thermal occupation number
n̄′
th of the mechanical mode is given by

n̄′
th =

n̄thγm
γ′m

=
n̄th

1−R
(6.10)

with n̄th denoting the original thermal occupation number. It seems that when
−R ≫ 1, n̄′

th can be arbitrarily small. However, in this case, the classical analysis
breaks down and the quantum fluctuations of the cavity modes will set forth a
quantum limit for the minimally achievable n̄′

th, which will be detailed in the
following quantum analysis.

Quantized Hamiltonian. The classical Hamiltonian derived above can be quantized
by identifying the generalized coordinate and momentum as Heisenberg operators,
which satisfy the following commutation relations:

[q̂j, p̂j′ ] = i δjj′ , (j, j′ = 0, 1,m). (6.11)

The quantized Hamiltonian is then given by

Ĥ =
1

2

∑
i=m,0,1

~ωi(q̂
2
i + p̂2i ) + ~G0q̂m(q̂0q̂1 + p̂0p̂1) + Ĥext, (6.12)

where we have added Ĥext to take into account the coupling between cavity modes
and external continuum optical fields due to the non-zero transmission of the cav-
ity. This Hamiltonian is convenient for discussing stationary tripartite quantum
entanglement as will be shown in Sec. 6.5, as these generalized coordinates qi
and pi correspond to the amplitude and phase quadratures in the quantum optics
entanglement experiments.

To discuss the ground-state cooling as will be investigated in Sec. 6.4, it is il-
luminating to introduce annihilation operators for the two cavity modes â ≡
(q̂0 + i p̂0)/

√
2 and b̂ ≡ (q̂1 + i p̂1)/

√
2, so that the normally-ordered quantized

Hamiltonian can be rewritten as:

Ĥ =
1

2
~ωm(q̂

2
m + p̂2m) + ~ω0â

†â+ ~ω1b̂
†b̂+ ~G0q̂m(â

†b̂+ b̂†â) + Ĥext. (6.13)
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6.4 Quantum limit for three-mode cooling

In this section, we will start from the Hamiltonian in Eq. (6.13) to derive the
dynamics and discuss the quantum limit for the ground-state cooling experiments
using three-mode optomechanical interactions. As we will see, due to similar
mathematical structure as in the two-mode case, the corresponding quantum limit
for three-mode cooling is identical to the resolved-sideband limit derived by Mar-
quardt et al. [44] and Wilson-Rae et al. [45] in the two-mode case.

Equations of Motion. The dynamics of this three-mode system can be derived
from the quantum Langevin equations (QLEs). In the experiments, the TEM00

mode is driven on resonance at ω0. Therefore, we choose a rotating frame at ω0,
obtaining the corresponding nonlinear QLEs as:

˙̂qm = ωmp̂m, (6.14)

˙̂pm = −ωmq̂m − γmp̂m −G0(â
†b̂+ b̂†â) + ξth, (6.15)

˙̂a = −γ0 â− i G0q̂mb̂+
√
2γ0 âin, (6.16)

˙̂
b = −(γ1 − i∆)b̂− i G0q̂mâ+

√
2γ1 b̂in. (6.17)

Here the TEM00 and TEM01 mode gap is given by ∆ ≡ ω1 − ω0; G0(â
†b̂ + b̂†â)

corresponds to the radiation pressure which modifies the dynamics of the mechan-
ical mode and is also responsible for the quantum limit; we have added thermal
noise ξth whose correlation function, in the Markovian approximation, is given by
⟨ξth(t)ξth(t′)⟩ = 2γmn̄thδ(t − t′). In obtaining the above equations, we have also
used the Markovian approximation for Ĥext, namely:

Ĥext = i ~(
√
2γ0 â

†âin +
√
2γ1 b̂

†b̂in −H.c.) (6.18)

with H.c. denoting the Hermitian conjugate.

To solve the above equations, we can linearize them by replacing every Heisen-
berg operator with the sum of a steady part and a small perturbed part, namely
ô = ō + δô(ϵ) with ϵ ≪ 1. We treat the Brownian thermal noise ξth, the vacuum
fluctuations

√
γ0δâin,

√
γ1δb̂in and δq̂m as being of the order of ϵ. In the experi-

ments, the TEM00 mode is pumped externally with a large classical amplitude āin
while the TEM01 mode is not with b̄in = 0. Therefore, to the zeroth order of ϵ,
the steady part of the cavity modes are simply given by

ā =
√

2/γ0 āin =
√
2I0/(γ0~ω0), b̄ = −iG0āq̄m. (6.19)

Without loss of generality, we can set q̄m = 0. Therefore, b̄ = 0 and this allows us
to eliminate the TEM00 mode from the first-order equations, which are:

δ ˙̂qm = ωm δp̂m, (6.20)

δ ˙̂pm = −ωm δq̂m − γm δp̂m −G0ā(δb̂+ δb̂†) + ξth, (6.21)

δ
˙̂
b = −(γ1 + i∆)δb̂− i G0ā δq̂m +

√
2γ1 δb̂in. (6.22)
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Here we have chosen an appropriate phase reference such that āin is real and
positive. The above equations can be solved in the frequency domain, namely:

q̃m(Ω) = −ωm[F̃rp(Ω) + ξ̃th(Ω)]

(Ω2 − ω2
m) + i γmΩ

, (6.23)

δb̃(Ω) =
G0 ā δq̃m(Ω) + i

√
2γ1δb̃in(Ω)

(Ω−∆) + i γ1
, (6.24)

where the radiation pressure

F̃rp(Ω) =
2G2

0 ā
2∆ δq̃m(Ω)− 2G0ā

√
γ1[(γ1 − iΩ)δq̃2(Ω)−∆ δp̃2(Ω)]

[(Ω−∆) + i γ1][(Ω + ∆) + i γ1]
(6.25)

with the amplitude and phase quadratures δq̃2(Ω) = [δb̃(Ω) + δb̃†(−Ω)]/
√
2 and

δp̃2(Ω) = [δb̃(Ω)−δb̃†(−Ω)]/(
√
2i). In the expression for F̃rp, the part proportional

to δq̃m is due to the optical spring effect. For a high quality-factor oscillator with
ωm ≫ γm, the decay rate γm and the eigenfrequency ωm of the mechanical mode
will be modified to new effective values γ′m and ω′

m, as given by:

γ′m = γm +
4G2

0 ā
2∆ωmγ1

[(ωm −∆)2 + γ21 ][(ωm +∆)2 + γ21 ]
, (6.26)

ω′
m = ωm +

G2
0ā

2∆(ω2
m −∆2 − γ21)

[(ωm −∆)2 + γ21 ][(ωm +∆)2 + γ21 ]
. (6.27)

In our case, the TEM00 and TEM01 mode gap is ∆ = ω1 − ω0 = ωm. In the
resolved-sideband case with γ1 ≪ ωm, we obtain:

γ′m ≈ γm +
G2

0ā
2

γ1
; ω′

m ≈ ωm − G2
0ā

2

4ωm

. (6.28)

If we define the parametric gain as R = (γm − γ′m)/γm, then in this case

R = −G
2
0ā

2

γ1γm
= − 2ΛI0ω1

mωmL2γ0γ1γm
. (6.29)

This is identical to Eq. (6.8) in the negative-gain regime, which was obtained from
classical analysis by Braginsky et al. [95]. However, in contrast to Eq. (6.10), the
resulting thermal occupation number of the mechanical mode is given by

n̄′
th =

n̄thγm
γ′m

+ n̄quant =
n̄th

1−R
+ n̄quant (6.30)

where the extra term n̄quant originates from the vacuum fluctuations in Frp, i.e.
terms proportional to δp̃2 and δq̃2. Since, in the case of large R, or equivalently
strong optomechanical coupling, n̄′

th ≈ n̄quant and the mechanical mode will finally
reach a thermal equilibrium with the cavity modes. The lowest achievable thermal
occupation number n̄quant will be determined by this optical heat bath (i.e., cavity
mode + external continuum mode).
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To derive this quantum limit n̄quant, we will apply the Fluctuation-Dissipation-

Theorem (FDT). Specifically, given any two quantities Â(t) and B̂(t) which lin-
early depend on field strength, we can define the forward correlation function:

CÂB̂(t− t′) ≡ ⟨Â(t)B̂(t′)⟩ (t > t′), (6.31)

where ⟨ ⟩ denotes the ensemble average. According to the FDT, we have

SÂB̂(Ω) + SÂB̂(−Ω)

SÂB̂(Ω)− SÂB̂(−Ω)
=
eβ ~Ω + 1

eβ ~Ω − 1
= 2n̄eff(Ω) + 1, (6.32)

or equivalently,

n̄eff(Ω) =
SÂB̂(−Ω)

SÂB̂(Ω)− SÂB̂(−Ω)
. (6.33)

where SÂB̂(Ω) is the power spectral density (Fourier transform of CÂB̂), β =
1/(kBTeff) and the effective thermal occupation number n̄eff ≡ 1/(eβ ~Ω − 1). In
our case, we can simply substitute A,B with the amplitude of the TEM01 mode δb̂
by fixing q̂m = 0. From Eq. (6.24) and using the fact that for vacuum fluctuation
⟨δb̃in(Ω)δb̃†in(Ω′)⟩ = 2πδ(Ω− Ω′), we obtain:

Sδb̂ δb̂(Ω) =
2γ1

(Ω−∆)2 + γ21
. (6.34)

Since the mechanical mode have a very high intrinsic quality factor (ωm ≫ γm),
the energy transfer between the cavity modes and the mechanical mode only
happens around ωm. Therefore, from Eq. (6.33) and Eq. (6.34), the final quantum
limit is given by:

n̄quant ≈ n̄eff(ωm) =

(
γ1
2ωm

)2

, (6.35)

where we have used the fact that for the resonant case, ∆ = ω1 − ω0 = ωm. To
achieve the quantum ground state, i.e. n̄quant ∼ 0, we require ωm ≫ γ1 and this is
simply the resolved-sideband limit obtained in the pioneering works of Marquardt
et al. [44] and Wilson-Rae et al. [45].

The reason why the quantum limit for three-mode cooling is identical to the two-
mode case can be readily understood from the fact that the TEM00 mode is elim-
inated from the optomechanical dynamics as shown explicitly in Eq. (6.20)(6.21)
(6.22) and we essentially obtain an effective two-mode system. As suggested by
Yanbei Chen [private communication], this equivalence can be made more obvious
by mapping this three-mode system into a power and signal-recycled laser inter-
ferometer, as shown in Fig. 6.2. The TEM00 and TEM01 modes can be viewed
as the common and differential modes in the interferometer, respectively. The
torsional mode corresponds to the differential motion of the end mirrors and ∆
is equivalent to the detuning of the signal-recycling cavity. In the power- and
signal-recycled interferometer, even though there is no high-order transverse op-
tical mode involved, the two degrees of freedom of the power-recycling mirror
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Figure 6.2 – Equivalent mapping from a three-mode system to a power-
and signal-recycled interferometer. The TEM00 and TEM01 modes can be
viewed as the common and differential optical modes in the interferometer
respectively. The torsional mechanical mode is equivalent to the differential
motion of two end mirrors in the interferometer. By adjusting the positions
of the power-recycling mirror (PRM) and signal-recycling mirror (SRM),
we can make the carrier and sideband modes simultaneously resonate inside
the cavity, the same as in the three-mode scheme.

and the signal recycling mirror enable simultaneous resonances of the carrier and
sideband modes, which is achieved naturally with the three-mode optomechanical
scheme.

The above discussion shows that, mathematically, two-mode interactions and
three-mode interactions are very similar. However, it is very important to empha-
size that, from an experimental point of view, there is an important difference.
Specifically, the steady-state amplitude ā in the radiation pressure Frp is amplified
by the optical resonance, while for the two-mode case, this amplitude is highly
suppressed due to large detuning. In other words, in order to achieve the same
optomechanical coupling strength experimentally, the input optical power in the
two-mode scheme needs to be 1 + (∆/γ0)

2 times larger than the the three-mode
scheme. This is a large factor in the resolved-sideband regime with ∆ ≫ γ0 (the
optimal ∆ = ωm). Besides, in the three-mode interactions, the condition ∆ = ωm

also naturally optimizes the energy transfer from the mechanical mode to the cav-
ity mode [44, 45, 108]. Therefore, the three-mode scheme greatly enhances the
optomechanical coupling and is able to achieve resolved-sideband limit without
compromising the intra-cavity optical power. As mentioned in Ref. [106], the am-
plitude and laser phase noise can also be reduced significantly with three-mode
scheme, simply due to the filtering of the cavity resonance.

To motivate future cooling experiments with three-mode interactions, we now
present an experimentally achievable specification for the quantum ground state
cooling of a milligram-scale mechanical oscillator. We choose that the mass of
the mechanical oscillator m = 0.1mg; the length of the cavity L = 2 cm; the
mechanical-mode frequency ωm/2π = 106 Hz; the mechanical-mode quality factor
Qm ≡ ωm/γm = 107; and the optical finesse F = 104. Given an input optical
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power of the TEM00 mode I0 = 50mW, and the environmental temperature
T = 4K, the corresponding effective thermal occupation number of the mechanical
oscillator ∼ 0.5.

6.5 Stationary tripartite optomechanical quan-

tum entanglement

As shown in the works of Vitali et al. [51] and Paternostro et al. [98], optome-
chanical interaction provides a very efficient way of generating stationary quantum
entanglements among cavity modes and the mechanical mode. Once experimen-
tally realized, it will have significant impact on future quantum communications.
Following their formalism, we will investigate the stationary tripartite quantum
entanglement in the three-mode optomechanical system by first analyzing the
dynamics and then evaluating the entanglement measure —the logarithmic nega-
tivity EN defined in Refs. [109, 110].

Starting from the Hamiltonian in Eq. (6.12), the corresponding nonlinear QLEs
in the rotating frame at the laser frequency ωL can be written as:

˙̂qm = ωmp̂m, (6.36)

˙̂pm = −ωmq̂m − γmp̂m −G0(q̂0q̂1 + p̂0p̂1) + ξth, (6.37)

˙̂q0 = −γ0q̂0 +∆0p̂0 +G0q̂mp̂1 +
√

2γ0q̂
in
0 , (6.38)

˙̂p0 = −γ0p̂0 −∆0q̂0 −G0q̂mq̂1 +
√

2γ0 p̂
in
0 , (6.39)

˙̂q1 = −γ1q̂1 +∆1p̂1 +G0q̂mp̂0 +
√

2γ1q̂
in
1 , (6.40)

˙̂p1 = −γ1p̂1 −∆1q̂1 −G0q̂mq̂0 +
√

2γ1 p̂
in
1 , (6.41)

where ∆0 = ω0−ωL, and ∆1 = ω1−ωL. Slightly different from the cooling experi-
ments, here we need to externally drive both the TEM00 and TEM01 modes simul-
taneously, to create tripartite quantum entanglement. We choose an appropriate
phase reference such that the classical amplitude p̄i = 0 and q̄i ̸= 0 (i = 0, 1),
which is related to the input optical power Ii by q̄i =

√
2Ii/(~ωiγi). Similar to

the previous case, we can linearize the above equations as:

˙̂xT = Mx̂T + n̂T, (6.42)

with T denoting the transpose:

x̂T ≡ ( δq̂m, δp̂m, δq̂0, δp̂0, δq̂1, δp̂1 )T, (6.43)

n̂T ≡ ( 0, ξth,
√
2γ0 δq̂

in
0 ,

√
2γ0 δp̂

in
0 ,

√
2γ1 δq̂

in
1 ,

√
2γ1 δp̂

in
1 )T, (6.44)
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and matrix M is given by:

M =


0 ωm 0 0 0 0

−ωm −γm G0q̄1 0 G0q̄0 0
0 0 −γ0 ∆0 0 0

G0q̄1 0 −∆0 −γ0 0 0
0 0 0 0 −γ1 ∆1

G0q̄0 0 0 0 −∆1 −γ1

 . (6.45)

At first sight, this mathematical structure is identical to the one analyzed by
Paternostro et al. [98]. Apart from differing in the coupling constants (here we
need to consider the overlapping factor Λ), there is another important difference:
after linearization, the radiation pressure term G0(q̂0q̂1 + p̂0p̂1) in Eq. (6.37) is
proportional to q̄0δq̂1 + q̄1δq̂0, rather than to q̄0q̂0 − q̄1q̂1, as considered in Ref.
[98]. As we will show, similar to the case for cooling experiments, the coherent
build-up of both the TEM00 and TEM01 modes, and the optimal mode gap ω1 −
ω0 = ωm enhance the entanglement significantly, which make it easier to achieve
experimentally.

Assuming the system is stable, i.e., all eigenvalues of M have negative real parts,
the stationary solutions to Eq. (6.42) can be written formally as:

x̂i(∞) =
∑
j

∫ ∞

0

dt′[eM(t−t′)]ijn̂j(t
′), (6.46)

where we have neglected the initial-condition terms, which decay away as the sys-
tem approaches the stationary state. We assume that all the noises are Markovian
Gaussian processes, and that the correlation functions are:

σij(t− t′) ≡ Dij δ(t− t′), (6.47)

where Dij are the elements of matrix D, and

Dij = Diag[0, 2γmkBT/(~ωm), γ0, γ0, γ1, γ1]. (6.48)

The corresponding stationary covariance matrix among the cavity modes and the
mechanical mode can then be written as:

V(∞) =

∫ ∞

0

dt[eMt]D[eMt]T, (6.49)

and the components ofV can be obtained by solving the following linear equations:

MV +VMT = −D. (6.50)

For this tripartite continuous-variable system (one mechanical mode + two cavity
modes), one necessary and sufficient condition for separability is the positivity of
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partially-transposed covariance matrix [111–113]. In our case, a partial transpose
is equivalent to time reversal and can be realized by reversing the momentum of
the mechanical mode from p̂m to −p̂m, namely

Vpt = V|p̂m→−p̂m . (6.51)

By evaluating the positivity of the eigenvalue of Vpt, we can directly determine
whether entanglement exists or not. To reveal the richness of the entanglement
structure, we will not directly analyze the positivity of Vpt for the entire system,
but rather, following Ref. [98], we look at the entanglement between any bipartite
subsystem using the logarithmic negativity EN . Given the 4×4 covariance matrix
Vsub for any bipartite subsystem,

Vsub =

[
A2×2 C2×2

CT
2×2 B2×2

]
, (6.52)

the logarithmic negativity EN is defined by [110, 111]

EN = max[0,− ln 2σ−] (6.53)

with σ− ≡
√
Σ−

√
Σ2 − 4 detVsub/

√
2, and Σ ≡ detA+ detB− 2 detC.

For numerical estimations, we will use the same specification as given in the pre-
vious section for the cooling experiments. We will focus on the situation relevant
to the experiments, with ω1−ω0 = ωm, and the TEM00 mode driven on resonance
(∆0 = 0, ∆1 = ωm). In Fig. 6.3, we show the resulting EN as a function of the
input optical powers of both optical modes. Given the specifications, the entan-
glement strength between each optical mode and the mechanical mode becomes
stronger as the optical power of their counterpart increases (until the system be-
comes unstable). This is understandable, because we have a q̂m(q̂0q̂1 + q̂0q̂1) type
of interaction, and the coupling strength between the TEM00 mode and the me-
chanical mode directly depends on the classical amplitude of the TEM01 and vice
versa. For the entanglement between the two optical modes, this reaches a maxi-
mum when both modes have medium power. This can be attributable to the fact
that the entanglement between these two optical modes is mediated by the me-
chanical mode, and both E0m

N and E1m
N should be large to give a reasonable E01

N .
Besides, as shown explicitly in Fig. 6.4, the condition ω1−ω0 = ωm will naturally
optimize the entanglement between the TEM01 mode and the mechanical mode.
This is because the Lorentzian profiles of the TEM01 mode and the mechanical
have the largest overlap when ∆ = ωm. In this case, both the TEM01 mode and
the mechanical mode are driven by the same vacuum field, which gives the max-
imal entanglement. Therefore, the optimal condition for the cooling experiment
will simultaneously optimize the entanglement strength, as has also been observed
by Genes et al. [108].

To illustrate the robustness of this tripartite entanglement, we show the depen-
dence of EN on the environmental temperature in Fig. 6.5. The entanglement
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Figure 6.3 – Logrithmic negativity EN as a function of the input optical
powers of both modes. Other specifications are identical to those for cooling
experiments given in the previous section. The left panel shows E0m

N for the
entanglement between the TEM00 mode and the mechanical mode; The
middle panel presents E1m

N for the TEM01 mode and the mechanical mode;
the right panel shows E01

N for the TEM00 mode and the TEM01 mode.

Figure 6.4 – Logarithmic negativity E1m
N as a function of the cavity modes

gap ∆ ≡ ω1 − ω0. As we can see, the condition ∆ ≈ ωm, which optimizes
the cooling, also maximizes the entanglement between the TEM01 mode
and the mechanical mode. Here we have assumed I0 = 4.5W (higher I0
will make the system unstable for small ∆) and I1 = 0.W. Since it can be
viewed as an effective two-mode system in this case with I1 = 0, we simply
recover the results given by Vitali et al. [51].
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Figure 6.5 – Logarithmic negativity as a function of temperature. The
solid curve stands for E0m

N , the dashed curve for E0m
N and dash-dot curve

for E01
N . We have chosen the optimal parameters for each curve.

between the optical modes and the mechanical mode is very robust and it persists
even when the temperature goes up to 80 K. Although the entanglement between
the two optical modes is relatively weak, it changes more slowly as the tempera-
ture increases, and it vanishes when the temperature becomes higher than 15K.
The robustness of the optomechanical entanglement was also shown previously
by Vitali et al. [51]. This is attributable to the strong optomechanical coupling,
which suppresses the thermal decoherence of the mechanical mode. With both
the TEM00 mode and the TEM01 mode on resonance, we can obtain much higher
intra-cavity power, as compared with the equivalent detuned two-mode system.
Given moderate input optical power, this allows us to achieve stronger entangle-
ment between the optical modes and the mechanical mode of a massive mechanical
oscillator (∼ mg). Of course, this robustness of entanglement is conditional on
the fact that the mirrors of the cavity can sustain a high optical power ∼ 104W .
If the beam size is of the order of mm, this corresponds to a power density of
around 106 W/cm2, which is achievable with the present technology [114].

To verify this tripartite entanglement experimentally, we can apply the same pro-
tocol as proposed in Refs. [51, 98, 115]. Specifically, through measuring the
outgoing field, we can build up statistics and construct the covariance matrix
Vexp of this tripartite system based on the measurement results, and then analyze
whether the partially-transposed covariance matrix Vpt

exp fails to be positive defi-
nite. If Vpt

exp has a negative eigenvalue, this will give an unambiguous signature for
quantum entanglement, because any classical correlation always gives a positive
definite Vpt

exp. Besides, we can also use Vexp to evaluate the logarithmic negativity
EN of any bipartite subsystem to determine whether entanglement exists or not
in a given subsystem. Since the tripartite entanglement is stationary, this means
that the optomechanical interactions protect the quantum entanglement from the
thermal decoherence, which is a significant problem in non-stationary quantum
entanglements. In principle, we can make a sufficiently long integration of the
output signal such that the shot noise is negligibly small, and Vexp should be a
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direct verification of what we have obtained theoretically.

6.6 Three-mode interactions with a coupled cav-

ity
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Figure 6.6 – The optical modes of a single Fabry-Pérot cavity with length
∼ 10 cm. The panel (a) shows the mode distribution for a near-concentric
cavity with g-factor ∼ −1 which is suitable for observing PI, while panel (b)
is the near-planar case with g-factor ∼ 1 which suits for cooling experiment.
In both cases, there are no symmetric modes on the opposite side of the
TEM00 mode because the higher-order mode TEMmn marked with ‘?’ are
highly lossy due to diffraction losses. This is preferred for experimental
realizations of three-mode interactions because we know from Eq. (6.8)
that any symmetric mode on the opposite side of the TEM00 mode will
reduce the absolute value of the parametric gain. However, both cavities
are marginally stable and very susceptible to misalignment.

In this section, we will discuss how to explore three-mode interactions using a
coupled cavity. To make our analysis close to realistic experiments, we consider
a torsional acoustic mode with frequency ∼ 1 MHz interacting with the optical
TEM10 and TEM00 modes. This configuration is chosen because MHz frequency
can be easily achieved in a mm-scale structure, and the torsional mode has a large
spatial overlap with the TEM10 mode.

To begin with, let us consider a single Fabry-Pérot cavity to see why a coupled

M0 M1 M2

Ein

Eout

E01

E10

E01eidf01/2

E10e-idf01/2

E12

E21

E12eidf12/2

E21e-idf12/2

+   - +   - - +

M0 M1 M2

+   - +   - - +
r0
t0

r1
t1

r2
t2

Figure 6.7 – The optical fields of the coupled cavity. Here δϕ01,12 are
the round-trip phase shifts of light in the sub-cavity (formed by M0 and
M1), and in the main cavity (formed by M1 and M2), respectively. We use
the convention that the mirrors have minus reflectivity on the side with a
coating layer.
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cavity is necessary. The free spectral range of a single cavity with length ∼ 10 cm
is approximately 1 GHz. Therefore, as shown in Fig. 6.6, one has to build either a
near-planar or near-concentric cavity to obtain a desired mode gap around 1 MHz
between the TEM10 and TEM00 modes. For both cases, the cavity is marginally
stable and susceptible to misalignment. It is also difficult to get accesses to both
instability and cooling regimes in a single setup. Creating a coupled Fabry-Perot
cavity solves these problems. As we will show later, the resulting scheme is stable.
Additionally, we can easily tune between the instability and cooling regimes. The
coupled cavity is showed schematically in Fig. 6.7. It is similar to the configuration
of power- or signal-recycling interferometers [8, 62] when one considers either the
common mode or the differential mode. The field dynamics can be easily obtained
as shown in Ref. [116], by treating the sub-cavity as an effective mirror, with
frequency- and mode-dependent transmissivity and reflectivity. Specifically, the
effective transmissivity t01 is:

t01 ≡
E12

Ein

=
t0t1

1 + r0r1eiδϕ01
, (6.54)

and the effective reflectivity r10 is given by:

r10 ≡
E12

E21

= −r1 −
t21r0e

iδϕ01

1 + r0r1eiδϕ01
. (6.55)

The corresponding E12 inside the main cavity can be written as:

E12 =
Eint01

1 + r10r2eiδϕ12
=

Eint01
1− |r10|r2ei[arg(r10)+δϕ12+π]

. (6.56)

The resonance occurs when the phase factor in Eq. (6.56) is equal to 2nπ,
which critically depends upon the phase angle of the effective reflectivity, namely
arg(r10). Specifically, when the TEM00 mode resonates inside the main cavity,
which requires that δϕTEM00

01 = δϕTEM00
12 = 2nπ, the phase shift of the TEM10

mode δϕTEM10
ij is:

δϕTEM10
ij =

2Lij

c
∆ω − 2Φij

g + 2n′π, ij = 01, 12, (6.57)

where ∆ω ≡ ω1 − ω0 is the mode gap between TEM10 and TEM00; Φg is the
Gouy phase and n, n′ are integers. In order to satisfy the resonant condition
for three-mode interactions, we need to adjust δϕTEM10

01 , which changes arg(r10),
such that ∆ω = ±ωm. To achieve this, one obvious way is to change the length
of sub-cavity L01, but this turns out to be impractical due to a small tuning
range. An alternative and more practical approach, as shown in Fig. 6.8, is to
add another lens or concave mirror inside the sub-cavity to tune the Gouy phase
Φ01

g . The resulting scheme is similar to the proposed stable recycling cavity for
next-generation gravitational-wave detectors [117]. With the additional lens, the
Gaussian beam gets focused inside the sub-cavity. Since the Gouy phase changes
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M0 L1 M2M1
Tuning

L01 L12

Laser & mode-

matching optics

Tuning

Figure 6.8 – The optical layout for the table top experiment, where a 1
MHz torsional micro-oscillator (M2) interacts with the optical TEM10 mode
and the TEM00 mode. By tuning the positions of mirror M0 and lens L1, we
can continuously change the frequency of TEM10. If the losses in L1 were
an issue, it could easily be replaced by a concave mirror.

from almost −π
2
to π

2
within one Rayleigh range around the waist, one can easily

obtain a desired δϕTEM10
01 simply by adjusting the position of M0 near the waist.

This might lead to problems with power density due to the small waist size, but
for the table top experiment we consider here, the power density is quite low.

The corresponding Φ01
g with an additional lens can be derived straightforwardly

by using the ray transfer relation for a Gaussian beam, which is given by

q′ =
fq

f − q
. (6.58)

Here f is the focal length of L1; q
(′) ≡ z(

′) + iz
(′)
R ; z is the displacement relative to

the waist; zR is the Rayleigh range and superscript ′ denotes quantities after the
lens. This dictates

z′ =
f(zf − z2 − z2R)

(f − z)2 + z2R
, (6.59)

z′R =
zRf

2

(f − z)2 + z2R
. (6.60)

The resulting Gouy phase at any point is given by

Φg(z) =

{
arctan (z/zR) , z < zL
arctan [(z − zL + z′L)/z

′
R] + arctan (zL/zR)− arctan (z′L/z

′
R) , z ≥ zL

(6.61)

where z
(′)
L is the position of L1 relative to the waist. Gouy phase Φ01

g is the
difference between wavefront at M0 and M1, namely

Φ01
g = Φg(zM0)− Φg(zM1), (6.62)

where zM0 and zM1 are the positions of M0 and M1 relative to the waist respectively.
Therefore, by adjusting the positions of M0 and L1 as shown in Fig. 6.8, we can
continuously tune Φ01

g such that ∆ω = ωm.

Equations (6.54) to (6.62) provide the design tools of the coupled cavity for three-
mode interactions. To realize the experiment, we first need to design the main
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M0 L1 M2M1
(a)   Mode matching for Stokes mode (R>0)

236 mm 74 mm 75 mm

M0 L1 M2M1

(b) Mode matching for Anti-Stokes mode (R<0)

232 mm 77 mm 75 mm

Figure 6.9 – The mode matching for the positive gain and negative gain
by adjusting the relative position of M0 and L1. Only small adjustment is
needed to tune from one case to another.
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Figure 6.10 – Panels (a) and (b) show the mode gap between TEM10

and TEM00 as a function of position of M0 relative to L1 and position of
L1 relative to M1 respectively. The dots in both figures are the situations
considered in Fig. 6.9. Clearly, we can tune between the instability and
cooling regimes continuously.

cavity and specify L12, ωm, the radius of curvatures (RoCs) of M0,M1,M2 and the
focal length of L1. From Eq. (6.56) and Eq. (6.57), we can find out the required
arg(r01) which gives the right mode gap between TEM10 and TEM00. This will
gives us one constraint. Combining with the requirement of mode matching to
M0, we can fix two degrees of freedom of the system, namely the positions of M0

and L1. To demonstrate this principle explicitly, we present a solution that is
close to a realistic experimental setup. We assume the following:

L12 = 75 mm ωm = 1MHz f = 100 mm,

R0 = 500 mm r0 =
√
0.999 A0 = 500 ppm,

R1 = 100 mm r1 =
√
0.9 A1 = 500 ppm,

R2 = ∞ mm r2 =
√
0.9995 A2 = 500 ppm.

Here, Ri(i = 0, 1, 2) are RoCs; ri denotes the amplitude reflectivity; ti is the
amplitude transmissivity and Ai is the optical loss which satisfy r2i + t2i + Ai =
1 (i = 0, 1, 2).

The results of mode matching for both positive- (instability) and negative-gain
(cooling) configurations are shown in Fig. 6.9. In Fig. 6.10, we show the mode
gap between TEM10 and TEM00 as a function of the position of M0 relative to
L1 and the position of L1 relative to M1. In this particular case, the dependence
is almost linear with a slope ∼ 2mm/MHz for both panels. This indicates that
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Figure 6.11 – The normalized gain of the TEM00 mode and the TEM10

mode in the positive and negative gain configurations. The mode gap is
equal to ωm ∼ 1MHz, which fulfils the resonant condition for the three-
mode opto-acoustic interactions. Here we simply assume that the size of
the mirrors is infinite so the quality factor of the TEM10 mode is solely
due to optical losses such as absorption. This assumption is reasonable
when the mode number is small. Given the specifications in the main text,
Qa ≈ Qs = 2.4 × 109 and ωm/γa < 1. Therefore, it can be implemented
in the resolved-sideband cooling. (a) the TEM10 mode is 1 MHz below the
TEM00 mode; (b) the TEM10 mode is 1 MHz above the TEM00 mode.

to tune within a cavity linewidth ∼ 0.1 MHz, the mirror position needs to be
adjusted within several 100µm, which can be achieved easily. Therefore, we can
continuously tune between instability and cooling regimes. Fig. 6.11 shows the
resulting resonance curves for both cases with the corresponding mode match-
ing shown in Fig. 6.9. The corresponding mode gap between the TEM10 and
TEM00 modes is equal to ωm ∼ 1MHz. More importantly, there is no symmetric
mode on the opposite side of the TEM00 mode, whose presence could contribute
a parametric gain with the opposite sign, thereby suppressing the overall effects.
The absolute value of parametric gain R could be larger than 1, if we further
assume that the intra-cavity power Ic is 100 mW, Qm = 106, the mass of the
oscillator m = 1 mg and the wavelength of light is 1064 nm. Since the cavity
is in the resolved-sideband regime where the cavity linewidth is much smaller
than the mechanical frequency [44], this configuration can also be applied in the
resolved-sideband cooling of acoustic modes, which is less susceptible to quantum
noise.

6.7 Conclusions

We have analyzed the three-mode optomechanical parametric interactions in the
quantum picture. We have derived the quantum limit for cooling experiments
with three-mode interactions based upon the Fluctuation-Dissipation-Theorem.
We have shown the existence of tripartite quantum entanglements in this system.
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The simultaneous resonances of the carrier and sideband modes in the three-mode
system allows more efficient mechanical-mode cooling and more robust optome-
chanical entanglement than in the two-mode system. This work provides the
theoretical basis for the feasibility of realizing both ground-state cooling and sta-
tionary optomechanical quantum entanglements using three-mode optomechanical
parametric interactions in small-scale table-top experiments and also large-scale
GW interferometers.





Chapter 7

Achieving the Ground State and
Enhancing Optomechanical
Entanglement

7.1 Preface

In the previous chapter, we have seen that in order to achieve the quan-
tum ground state of a mechanical oscillator, with three-mode or even
general optomechanical devices, the cavity bandwidth needs to be smaller
than the mechanical frequency. This is the so-called resolved-sideband or
good-cavity limit. In this chapter, we provide a new but physically equiv-
alent insight into the origin of such a limit: that is information loss due to
a finite cavity bandwidth. With an optimal feedback control to recover
this information, we can surpass the resolved-sideband limit and achieve
the quantum ground state. Interestingly, recovering this information can
also significantly enhance the optomechanical entanglement. Especially
when the environmental temperature is high, the entanglement will ei-
ther exist or vanish, depending critically on whether the information is
recovered or not, which is a vivid example of a quantum eraser. This is a
joint research effort by Stefan Danilishin, Helge Müller-Ebhardt, Yanbei
Chen, and myself. This is available on line at arXiv:1003.4048.

7.2 Introduction

Recently, achieving the quantum ground state of a macroscopic mechanical oscil-
lator has aroused great interest among physicists. It will not only have significant
impact on quantum-limited measurements [74] but will also shed light on quantum
entanglements involving macroscopic mechanical degrees of freedom [50–54, 98],
which can be useful for future quantum computing and help us to understand
transitions between the classical and quantum domains [118–121].

By using conventional cryogenic refrigeration, O’Connell et al. have successfully
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cooled a 6 GHz micromechanical oscillator down to its ground state [122]. Mean-
while, in order to cool larger-size and lower-frequency mechanical oscillators at
high environmental temperature, there have been great efforts in trying different
approaches: active feedback control, and parametrically coupling the oscillator to
optical or electrical degrees of freedom [9, 19–37, 123]. The cooling mechanism has
been extensively discussed, and certain classical and quantum limits have been
derived [43–45, 106, 108, 124–127]. In the case of cavity-assisted cooling schemes,
pioneering theoretical works by Marquardt et al. [44] and Wilson-Rae et al. [45]
showed that the quantum limit for the occupation number is (γ/2ωm)

2 1. This
dictates that, in order to achieve the ground state of the mechanical oscillator,
the cavity bandwidth γ must be smaller than the mechanical frequency ωm, which
is the so-called “resolved-sideband” or “good-cavity” limit. This limit is derived
by analyzing the quantum fluctuations of the radiation pressure force on the me-
chanical oscillator. From a physically equivalent perspective, it can actually be
attributable to information loss: information of the oscillator motion leaks into
the environment without being carefully treated, which induces decoherence.

This perspective immediately illuminates two possible approaches for surpassing
such a limit: (i) the first one is to implement the novel scheme proposed by Elste et
al. [128], in which the quantum noise is destructively interfered, and information
of the oscillator motion around ωm does not leak into the environment. Corbitt
suggested an intuitive understanding by thinking of an optical cavity with a mov-
able front mirror rather than a movable end mirror in those cooling experiments
[private communication]. In this hypothetical scheme, the optical fields directly
reflected, and those filtered through the cavity, both contain the information of
the front-mirror motion. If the cavity detuning is appropriate, these two pieces
of information destructively interfere with each other, and the quantum coher-
ence of the mechanical oscillator is maintained. (ii) the second approach is to
recover the information by detecting the cavity output. This will work because a
conditional quantum state—the best knowledge of the oscillator state, conditional
on the measurement result—is always pure for an ideal continuous measurement
with no readout loss. Indeed, when the cavity bandwidth is much larger than
the mechanical frequency, the cavity mode will follow the oscillator dynamics and
can therefore be adiabatically eliminated. The quantum noise can be treated
as being Markovian and a standard Stochastic-Master-Equation (SME) analysis
has already shown how the conditional quantum state approaches a pure state
under a continuous measurement [38–42]. For the non-zero cavity bandwidth
considered here, the cavity mode has a dynamical timescale comparable to that
of the mechanical oscillator. Correspondingly, the quantum noise has correlations
at different times, and is non-Markovian. To estimate the conditional state, a
Wiener-filtering approach is more transparent than the SME [129]. As we will
show, the conditional quantum state of the oscillator in the cavity-assisted cool-

1There is a factor of two difference in defining the cavity bandwidth here compared with the
one defined in Ref. [44].
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ing schemes is indeed almost pure, with a residual impurity contributed by the
thermal noise, and by imperfections in detections and optomechanical entangle-
ment between the oscillator and the cavity mode. In order to further localize the
oscillator in phase space and achieve its ground state, an optimal feedback control
is essential [43]. In Fig. 7.1, the final occupation number of the unconditional
state and optimally controlled state is shown. As long as the optimal control is
applied, the minimally achievable occupation number of the oscillator will not be
constrained by the resolved-sideband limit.
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Figure 7.1 – A contour plot of the occupation number as a function of
cavity bandwidth γ and detuning ∆ for the unconditional state (left) as
obtained in Refs. [44, 45] and optimally controlled state (right), for which
the details are in Secs. 7.4, 7.5, 7.6.

Another interesting issue in the optomechanical system is creating a quantum
entanglement between the cavity mode and the oscillator, or even between two
oscillators [51, 53, 54, 98, 125, 130]. Intuitively, one might think that such an
entanglement must be very vulnerable to thermal decoherence, and that the envi-
ronmental temperature needs to be extremely low in order to create it. However,
as shown in Ref. [54], and in a more recent investigation [131], the environmental
temperature—even though being an important factor—affects the entanglement
implicitly, and only the ratio between the interaction strength and thermal de-
coherence matters. The reason why, in Refs. [51, 53, 98, 125], the temperature
plays a dominant role in determining the existence of the entanglement can also
be traced back to information loss, as briefly mentioned in Ref. [131]. Here, we
will address this issue more explicitly. Fig. 7.2 shows that by recovering the in-
formation contained in the cavity output, the optomechanical entanglement can
even be revived at high temperature. This is a vivid example of a quantum eraser
first proposed by Scully and Drühl [132] and later demonstrated experimentally
[133]: quantum coherence can be revived by recovering lost information.

The outline of this chapter is as follows: in Sec. 7.3, we will analyze the system
dynamics by applying the standard Langevin-equation approach and derive the
spectral densities of important dynamical quantities. In Sec. 7.4, we obtain un-
conditional variances of the oscillator position and momentum, and evaluate the
corresponding occupation number, which recovers the resolved-sideband limit. In
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Recovering information

Without recovering information

Figure 7.2 – Optomechanical entanglement strength EN as a function of
temperature T with (solid) and without (dashed) recovering information
(details are in Sec. 7.7).

Sec. 7.5, conditional variances are derived via the Wiener-filtering approach, which
clearly demonstrates that the conditional quantum state is almost pure. In Sec.
7.6, we show the occupation number of the optimally controlled state and the
corresponding optimal controller to achieve it. In Sec. 7.7, we consider the op-
tomechanical entanglement and demonstrate that significant enhancements in the
entanglement strength can be achieved after recovering information. In Sec. 7.8, to
motivate cavity-assisted cooling experiments, we consider imperfections in a real
experiment and obtain a numerical estimation of the occupation number given
a set of experimentally achievable specifications. Finally, we conclude with our
main results in Sec. 7.9.

7.3 Dynamics and Spectral Densities

Figure 7.3 – Schematic plot of an optomechanical system with a mechanical
oscillator x̂ coupled to a cavity mode â, which in turn couples to the external
ingoing (âin) and outgoing (âout) optical field.

In this section, we will analyze the optomechanical dynamics and derive the spec-
tral densities of relevant quantities which are essential for calculating the occupa-
tion number of the mechanical oscillator.
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7.3.1 Dynamics

Even though the dynamics of such a system has been discussed extensively in the
literature [44, 45, 108], we will go through some equations for the coherence of
this article. An optomechanical system and the relevant dynamical quantities are
shown schematically in Fig. 7.3. The corresponding Hamiltonian is given by:

Ĥ = ~ωc â
†â+

p̂2

2m
+

1

2
mω2

mx̂
2 + ~G0x̂ â

†â+ i ~
√

2γ (âine
−i ω0 tâ† −H.c.). (7.1)

Here, ωc and ω0 are the cavity resonant frequency and the laser frequency, respec-
tively; â is the annihilation operator for the cavity mode, which satisfies [â, â†] = 1;
x̂ and p̂ denote the oscillator position and momentum, with [x̂, p̂] = i ~; m is the
mass of the oscillator; G0 ≡ ω0/L is the optomechanical coupling constant, with
L the cavity length. In the rotating frame at the laser frequency ω0, a set of
nonlinear Langevin equations can be obtained:

˙̂x(t) = p̂(t)/m, (7.2)

˙̂p(t) = −γmp̂(t)−mω2
mx̂(t)− ~G0â

†(t)â(t) + ξ̂th(t), (7.3)

˙̂a(t) = −(γ − i∆)â(t)− i G0x̂(t)â(t) +
√

2γ âin(t), (7.4)

where the cavity detuning ∆ ≡ ω0 − ωc. To take into account the fluctuation-
dissipation mechanism of the oscillator coupled to a thermal heat bath at tempera-
ture T , we have included the mechanical damping γm and the associated Brownian
force ξ̂th, of which the correlation function is ⟨ξ̂th(t)ξ̂th(t′)⟩ = 2mγmkBTδ(t−t′) in
the high-temperature limit. In a cooling experiment, the cavity mode is driven by
a coherent laser and, to a good approximation, the system is linear. To linearize
the system, we simply replace any operator ô(t) with the sum of a steady-state
part and a small perturbed part, namely ô(t) → ō + ô(t)2. We assume that the
mean displacement of the oscillator is equal to zero: x̄ = 0. The solution to ā
is simply ā =

√
2γ āin/(γ − i∆), and āin =

√
I0/(~ω0) with I0 the input optical

power. We have chosen an appropriate phase reference such that ā is real and
positive. The resulting linearized equations are:

m[¨̂x(t) + γm ˙̂x(t) + ω2
mx̂(t)] = −~ Ḡ0[â

†(t) + â(t)] + ξ̂th(t), (7.5)

˙̂a(t) + (γ − i∆)â(t) = −i Ḡ0x̂(t) +
√

2γ âin(t), (7.6)

with Ḡ0 ≡ G0ā. The input-output relation of the cavity, which relates the cavity
mode to the external continuum optical mode, is [39]:

âout(t) =
√
η[−âin(t) +

√
2γ â(t)] +

√
1− η n̂(t), (7.7)

where η is the quantum efficiency of the photodetector, and n̂ is the associated
vacuum fluctuation that is not correlated with âin. The linearized dynamics of

2For simplicity, we use the same ô to denote its perturbed part.
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this system are fully described by Eqs. (7.5), (7.6) and (7.7) which can be solved
in the frequency domain.

Mechanical oscillator part.—By denoting the Fourier component of any quantity
O as Õ(Ω), the solution for the oscillator position is:

x̃(Ω) = R̃eff(Ω)[F̃BA(Ω) + ξ̃th(Ω)]. (7.8)

Here, the back-action force F̃BA(Ω) is:

F̃BA(Ω) = 2 ~ Ḡ0
√
γ χ(Ω)[(γ − iΩ)ṽ1(Ω)−∆ ṽ2(Ω)], (7.9)

where we have defined the amplitude quadrature ṽ1(Ω) and the phase quadra-
ture ṽ2(Ω) of the vacuum fluctuation, namely ṽ1(Ω) ≡ [ãin(Ω)+ ã†in(−Ω)]/

√
2 and

ṽ2(Ω) ≡ [ãin(Ω) − ã†in(−Ω)]/(i
√
2). Due to the well-known “optical-spring” ef-

fect, the mechanical response of the oscillator is modified from its original value
R̃xx(Ω) = −[m(Ω2 + 2 i γmΩ− ω2

m)]
−1 to an effective one given by:

R̃eff(Ω) ≡ [R̃−1
xx (Ω)− Γ̃(Ω)]−1, (7.10)

with Γ̃(Ω) ≡ 2 ~ Ḡ2
0∆χ, and χ ≡ [(Ω + ∆+ iγ)(Ω−∆+ iγ)]−1.

Cavity mode part.—The solution for the cavity mode is:

ã(Ω) =
Ḡ0 x̃(Ω) + i

√
2γ ãin(Ω)

Ω +∆+ iγ
. (7.11)

In terms of amplitude and phase quadratures, this can be rewritten as:

ã1(Ω) =
√
2γ χ[(−γ + iΩ)ṽ1(Ω) + ∆ ṽ2(Ω)]−

√
2 Ḡ0 χ∆ x̃(Ω), (7.12)

ã2(Ω) =
√
2γ χ[−∆ ṽ1(Ω)− (γ − iΩ)ṽ2(Ω)] +

√
2 Ḡ0 χ (γ − iΩ) x̃(Ω). (7.13)

Cavity output part.—Similarly, we introduce amplitude and phase quadratures
for the cavity output: Ỹ1(Ω) ≡ [ãout(Ω) + ã†out(−Ω)]/2, and Ỹ2(Ω) ≡ [ãout(Ω) −
ã†out(−Ω)]/2. Their solutions are:

Ỹi(Ω) = Ỹ vac
i (Ω) +

√
η R̃YiF (Ω) x̃(Ω), (i = 1, 2). (7.14)

The vacuum parts Ỹ vac
i of the output, which induce measurement shot noise, are

the following:

Ỹ vac
1 (Ω) =

√
1− η ñ1(Ω) +

√
η χ[(∆2 − γ2 − Ω2)ṽ1(Ω) + 2 γ∆ ṽ2(Ω)], (7.15)

Ỹ vac
2 (Ω) =

√
1− η ñ2(Ω) +

√
η χ[−2 γ∆ ṽ1(Ω) + (∆2 − γ2 − Ω2)ṽ2(Ω)]. (7.16)

The output responses R̃YiF (Ω) are defined as [64]:

R̃Y1F (Ω) ≡ −2
√
γ Ḡ0∆χ, R̃Y2F (Ω) ≡ 2

√
γḠ0(γ − iΩ)χ. (7.17)
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7.3.2 Spectral Densities

Given the above solutions, we can analyze the statistical properties of the dy-
namical quantities. We consider all noises to be Gaussian and stationary but not
necessarily Markovian. Their statistical properties are fully quantified by their
spectral densities. We define a symmetrized single-sided spectral density S̃AB(Ω)
according to the standard formula [6]:

2πδ(Ω− Ω′)S̃AB(Ω) = ⟨A(Ω)B̃†(Ω′)⟩sym = ⟨Ã(Ω)B̃†(Ω′) + B̃†(Ω′)Ã(Ω)⟩. (7.18)

For vacuum fluctuations â1,2, we simply have S̃a1a1(Ω) = S̃a2a2(Ω) = 1 and
S̃a1a2(Ω) = 0.

Mechanical oscillator part.—The spectral density for oscillator position is [cf.
Eq. (7.8) and Eq. (7.9)]

S̃xx(Ω) = |R̃eff(Ω)|2S̃tot
FF (Ω), (7.19)

with total force-noise spectrum:

S̃FF (Ω) = 4 ~mΩ3
q γ |χ|2(γ2 + Ω2 +∆2) + 2 ~mΩ2

F , (7.20)

where we have introduced characteristic frequencies for the optomechanical inter-
action Ωq ≡ (~ Ḡ2

0/m)1/3, and the thermal noise ΩF ≡
√

2γmkBT/~. The spectral
density for the oscillator momentum is simply S̃pp(Ω) = m2 Ω2S̃xx(Ω).

Cavity mode part.—The spectral density for the cavity mode is a little compli-
cated:

Saa(Ω) = M0M
†
0 +M0M1

† +M1M0
† +M2S̃xx(Ω). (7.21)

Here, the elements of the matrix Saa are denoted by S̃aiaj(Ω) (i, j = 1, 2); the
matrix M0 is:

M0 ≡
√

2γ χ

[
−γ + iΩ ∆
−∆ −γ + iΩ

]
; (7.22)

the matrix M1 is:

M1 ≡ 2
√
2~Ḡ2

0

√
γ|χ|2R̃eff(Ω)

[
−∆(γ − iΩ) ∆2

(γ − iΩ)2 −∆(γ − iΩ)

]
; (7.23)

the matrix M2 is:

M2 ≡ 2Ḡ2
0|χ|2

[
∆2 −∆(γ + iΩ)

−∆(γ − iΩ) γ2 + Ω2

]
. (7.24)

The cross-correlations between the cavity mode and the output [SaY ]ij ≡ S̃aiYj
(Ω)

are given by

SaY = M0M
†
3 +M0M

†
1 +M1M

†
3 +

√
2γM2S̃xx(Ω), (7.25)
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with

M3 ≡
[
∆2 − γ2 − Ω2 2γ∆

−2γ∆ ∆2 − γ2 − Ω2

]
. (7.26)

The cross-correlation between the cavity mode and the oscillator is the following:[
S̃a1x(Ω)

S̃a2x(Ω)

]
= 2~Ḡ0

√
γχ∗R̃∗

eff(Ω)M0

[
γ + iΩ
−∆

]
+
√
2Ḡ0χ

[
−∆
γ − iΩ

]
S̃xx(Ω).

(7.27)
For the oscillator momentum, S̃akp(Ω) = imΩ S̃akx (k = 1, 2).

Cavity output part.—As an important feature of the quantum noise in this op-
tomechanical system, there is a nonvanishing correlation between the shot noise
Ŷ vac
i and the quantum back-action noise F̂BA, and it has the following spectral

densities [cf. Eqs. (7.9), (7.15) and (7.16)]:

S̃FY vac
1

(Ω) = 2
√

~mγ ηΩ3
q (γ + iΩ)χ∗, (7.28)

S̃FY vac
2

(Ω) = 2
√

~mγ ηΩ3
q ∆χ∗ (7.29)

where χ∗ is the complex conjugate of χ. Correspondingly, the spectral densities
for the output quadratures are:

S̃YiYj
(Ω) = δij + η R̃YiF (Ω)R̃

eff
xx(Ω)S̃FY vac

j
(Ω)

+ η [R̃YjF (Ω)R̃
eff
xx(Ω)S̃FY vac

i
(Ω)]∗ + η R̃YiF (Ω)R̃

∗
YjF

(Ω)S̃xx(Ω). (7.30)

The information of the oscillator position x̂, contained in the output Ŷi, is quan-
tified by the the cross-correlations between x̂ and Ŷi, which are:

S̃xYi
(Ω) =

√
η R̃eff

xx(Ω)S̃FY vac
i

(Ω) +
√
η R̃∗

YiF
(Ω)S̃xx(Ω). (7.31)

Similarly, for the oscillator momentum, S̃pYk
(Ω) = −imΩ S̃xYk

(Ω) (k = 1, 2).

7.4 Unconditional Quantum State and Resolved-

Sideband Limit

In the red-detuned regime (∆ < 0), where the cavity-assisted cooling experiments
are currently working, a delayed response of the cavity mode to the oscillator
motion gives rise to a viscous damping which can significantly reduce the thermal
occupation number of the oscillator, as shown schematically in Fig. 7.4. Physi-
cally, it is because the mechanical response is changed into an effective one [cf.
Eq. (7.10)], while the thermal force spectrum remains the same. The ground
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Figure 7.4 – A block diagram for an optomechanical system. The optome-
chanical cooling can be viewed as a feedback mechanism. This reduces the
thermal occupation number of the oscillator, which has an effective temper-
ature much lower than the heat bath. Meanwhile, some information of the
oscillator motion flows into the environment without being appropriately
recovered, leading to the resolved-sideband limit.

state can be achieved when the occupation number is much smaller than one.
If we neglect the information of the oscillator motion contained in the output,
the resulting quantum state of the oscillator will be unconditional and the corre-
sponding occupation number of the oscillator can be obtained with the following
standard definition:

N ≡ 1

~ωm

(
Vpp
2m

+
1

2
mω2

mVxx

)
− 1

2
, (7.32)

where the variances of the oscillator position Vxx and momentum Vpp are related
to the spectral densities by the following formula:

Vxx,pp =

∫ ∞

0

dΩ

2π
S̃xx,pp(Ω). (7.33)

Since N is dimensionless, it only depends on the following ratios:

Ωq/ωm, γ/ωm, ∆/ωm, ΩF/ωm, γm/ωm. (7.34)

The oscillator mass and frequency only enter implicitly. As long as these ratios
are the same in different experiments, the final achievable thermal occupation
number of different oscillators will be identical.

The resulting N is shown in the left panel of Fig. 7.1. To highlight the quantum
limit, we have fixed the interaction strength Ωq with Ωq/ωm = 0.5, and we have
neglected the thermal force noise. In the optimal cooling regime with ∆ = −ωm,
a simple closed form for the occupation number can be obtained [108]

N = γ2/(2ωm)
2 +

[1 + (γ/ωm)
2](Ωq/ωm)

3

4[1 + (γ/ωm)2 − 2(Ωq/ωm)3)]
. (7.35)

The resolved-sideband limit is achieved for a weak interaction strength Ωq → 0,
and

Nlim = γ2/(2ωm)
2. (7.36)

In the next section, we will demonstrate that such a limit can indeed be surpassed
by recovering the information contained in the cavity output.
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7.5 Conditional quantum state and Wiener fil-

tering

Since, given a non-zero cavity bandwidth, the cavity output contains the informa-
tion of the oscillator position [cf. Eq. (7.31)], according to the quantummechanics,
measurements of the output will collapse the oscillator wave function and project
it into a conditional quantum state that is in accord with the measurement result.
The conditional state or equivalently its Wigner function is completely determined
by the conditional mean [xcond, pcond] and the covariance matrix Vcond between
the position and momentum. More explicitly, the Wigner function reads

W (x, p) =
1

2π
√
detVcond

exp

[
−1

2
δX⃗Vcond−1

δX⃗T

]
, (7.37)

with δX⃗ = [x − xcond, p − pcond]. Since more information is acquired, the condi-
tional quantum state is always more pure than its unconditional counterpart. In
the limiting case of an ideal measurement, the conditional quantum state of the
mechanical oscillator would be pure with variances constrained by the Heisenberg
Uncertainty, i.e., detVcond|pure state = ~2/4.

To derive the conditional mean and variances, a mathematical tool that is usually
applied is the Stochastic-Master-Equation (SME), which is most convenient for
treating Markovian process [38–42]. In the case considered here, however, the
cavity has a bandwidth comparable to the mechanical frequency, and the quantum
noise is non-Markovian. The corresponding conditional mean and variance can be
derived more easily with the Wiener-filtering approach. As shown in Ref. [129],
the conditional mean of any quantity ô(t), given a certain measurement result
Y (t′) (t < t′), can be written as:

o(t)cond ≡ ⟨ô(t)⟩cond =

∫ t

−∞
dt′Ko(t− t′)Y (t′). (7.38)

Here, Ko(t) is the optimal Wiener filter, and is derived by using the standard
Wiener-Hopf method. Its frequency representation is:

K̃o(Ω) =
1

ψ̃+(Ω)

[
S̃oY (Ω)

ψ̃−(Ω)

]
+

≡ G̃o(Ω)

ψ̃+(Ω)
, (7.39)

where [ ]+ means taking the causal component and ψ̃± is a spectral factorization
of the output S̃Y Y ≡ ψ̃+ψ̃−, with ψ̃+ (ψ̃+) and its inverse analytical in the upper-
half (lower-half) complex plane, and we have introduced G̃o(Ω). The conditional
covariance between Â and B̂ is given by:

V cond
AB ≡ ⟨Â(0)B̂(0)⟩condsym − ⟨Â(0)⟩cond⟨B̂(0)⟩cond

=

∫ ∞

0

dΩ

2π

[
S̃AB(Ω)− G̃A(Ω)G̃

∗
B(Ω)

]
. (7.40)
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Figure 7.5 – A contour plot for the effective occupation number of the
conditional quantum state. For comparison, we have chosen the same spec-
ifications as in the unconditional case.

Since the first term is the unconditional variance, the second term can be inter-
preted as reductions in the uncertainty due to acquiring additional information
from the measurement.

These results can be directly applied to an optomechanical system. Suppose we
measure the following quadrature of the cavity output:

Ŷζ = Ŷ1 sin ζ + Ŷ2 cos ζ, (7.41)

and its spectral density is:

S̃Y Y (Ω) = S̃Y1Y1(Ω) sin
2 ζ + ℜ[S̃Y1Y2(Ω)] sin(2ζ) + S̃Y2Y2(Ω) cos

2 ζ (7.42)

The cross-correlation between Ŷζ and the oscillator position (momentum) is simply

S̃xY,pY = S̃xY1,pY1(Ω) sin ζ + S̃xY2,pY2(Ω) cos ζ. (7.43)

Substituting for the spectral densities S̃YiYj
, S̃xYi,pYi

and S̃xx,pp, derived in sub-
section 7.3.2 into Eq. (7.40), we can obtain the conditional covariances of the
oscillator position and momentum, namely V cond

xx , V cond
pp and V cond

xp .

To quantify how pure the conditional quantum state is, the occupation number,
defined in Eq. (7.32), is no longer an adequate summarizing figure. This is because
generally V cond

xp is not equal to zero, and a pure squeezed state can have a large
occupation number, as defined in Eq. (7.32). A well-defined figure of merit is the
uncertainty product, which is given by:

U ≡ 2

~

√
V cond
xx V cond

pp − V cond
xp

2. (7.44)

From this, we can introduce an effective occupation number:

Neff = (U − 1)/2, (7.45)

which quantifies how far the quantum state deviates from the pure one with
Neff = 0. This is identical to the previous definition [cf. Eq. (7.32)] in the
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limiting case of V cond
xx = V cond

pp /(m2ω2
m) and V

cond
xp = 0, which is actually satisfied

in most of the parameter regimes plotted in Fig. 7.1.

For a numerical estimate, and for comparing with the unconditional quantum
state in the previous section, we assume the same specification and an ideal phase
quadrature detection with ζ = 0 and η = 1. The resulting effective occupation
number is shown in Fig. 7.5. Just as expected, the conditional quantum state
is not constrained by the resolved-sideband limit and is almost independent of
detailed specifications of γ and ∆. The residual occupation number or impurity
of the state, shown in Fig. 7.5, is due to the information of the oscillator motion
being confined inside the cavity. Such a confinement is actually attributable to
the quantum entanglement between the cavity mode and the oscillator, as we will
discuss in Sec. 7.7.

7.6 Optimal feedback control

Figure 7.6 – A block diagram for the feedback control scheme. A force
is applied onto the mechanical oscillator, based on the measurement result,
with a control kernel C̃. In the detuned case (∆ ̸= 0), the radiation pressure
and the control force work together to place the mechanical oscillator near
its quantum ground state.

Even though the conditional quantum state has minimum variances in position
and momentum, the oscillator itself actually wanders around in phase space, with
its center given by the conditional mean [xcond(t), pcond(t)] at any instant t. In
order to localize the mechanical oscillator and achieve its ground state, we need
to apply a feedback control, i.e., a force onto the oscillator, according to the
measurement results. Such a procedure is shown schematically in Fig. 7.6. De-
pending on different controllers, the resulting controlled state will have different
occupation numbers. The minimum occupation number can only be achieved if
the unique optimal controller is applied. In Ref. [43], the optimal controller was
derived for a general linear continuous measurement. It can be directly applied
to the optomechanical system with non-Markovian quantum noise, as considered
here.

Specifically, given the measured output quadrature Ŷζ , the feedback force applied
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to the oscillator can be written in the time and the frequency domains as:

F̂FB(t) =

∫ t

−∞
dt′C(t− t′)Ŷζ(t

′) , and F̃FB(Ω) = C̃(Ω)Ỹζ(Ω) , (7.46)

where C(t) is a causal control kernel. The equation of motion for the oscillator
will be modified to [cf. Eq. (7.6)]:

m[¨̂xctrl(t)+ γm ˙̂xctrl(t)+ω2
mx̂ctrl(t)] = −~ Ḡ0[â

†(t)+ â(t)] + ξ̂th(t)+ F̂FB(t). (7.47)

In the frequency domain, the controlled oscillator position x̂ctrl is related to the
uncontrolled one x̂ by:

x̃ctrl(Ω) = x̃(Ω) +
R̃eff

xx(Ω)C̃(Ω)Ỹζ(Ω)

1− R̃eff
xx(Ω)R̃YζF (Ω)C̃(Ω)

. (7.48)

As shown in Ref. [43], by minimizing the effective occupation number of the
controlled state, the optimal controller can be derived, and it is given by:

C̃opt(Ω) = − R̃eff
xx(Ω)

−1
K̃opt

ctrl(Ω)

1− R̃Y F (Ω)K̃
opt
ctrl(Ω)

, (7.49)

where

K̃opt
ctrl(Ω) =

1

ψ̃+(Ω)

G̃x(Ω)−
Gx(0)√

V cond
pp /V cond

xx − iΩ

 , (7.50)

with G̃x(Ω) = [S̃xY (Ω)/ψ̃−(Ω)]+, as defined in Eq. (7.39).

From Eq. (7.48), we can find out the spectral densities and the covariance for
the controlled position and momentum. As it turns out, there is an intimate
connection between the optimally-controlled state and the conditional quantum
state. Due to the requirement of stationarity, this ensures that V ctrl

xp = 0 [Vxp =

(1/2)mV̇xx(0) = 0], and therefore the optimally-controlled state is always less pure
than the conditional state. The corresponding purity of the optimally controlled
state is [43]

Uopt
ctrl =

2

~

√
V ctrl
xx V ctrl

pp |optimally controlled =
2

~

[√
V cond
xx V cond

pp + |V cond
xp |

]
. (7.51)

The occupation numberN for the optimally-controlled state was shown in Fig. 7.1
in the introduction. Since V cond

xp is quite small compared with V cond
xx,pp, the result-

ing occupation number is very close to that of the conditional quantum state.
Therefore, as long as the optimal controller is applied, the mechanical oscillator
is almost in its quantum ground state, and the resolved-sideband limit does not
impose significant constraints.
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7.7 Conditional Optomechanical Entanglement

and Quantum Eraser

In this section, we will analyze the optomechanical entanglement between the
oscillator and the cavity mode. In particular, we will show: (i) the residual
impurity of the conditional quantum state of the oscillator is induced by this
optomechanical entanglement; (ii) if the environmental temperature is high, the
existence of entanglement critically depends on whether the information in the
cavity output is recovered or not. In other words, the quantum correlation is
affected by the “eraser” of certain information, which manifests in the idea of the
“quantum eraser” proposed by Scully and Drühl [132].

The existence of optomechanical entanglement is shown in the pioneering work
by Vitali et al. [51]. The entanglement criterion, i.e., inseparability, is based upon
positivity of the partially transposed density matrix [111, 112, 134]. In the case
of Gaussian variables considered here, this reduces to the following uncertainty
principle in phase space:

Vpt +
1

2
K ≥ 0, K =

(
0 −2i
2i 0

)
, (7.52)

with K denoting the commutator matrix. Partial transpose is equivalent to time
reversal and the momentum of the oscillator changes sign. The corresponding
partially transposed covariance matrix Vpt = V|p̂→−p. From the Williamson
theorem, there exists a symplectic transformation S ∈ Sp(4,R) such that STVptS =⊕2

i=1 Diag[λi, λi]. Using the fact that S
TKS = K, the above uncertainty principle

requires λi ≥ 1. If ∃λ < 1, the states are entangled. The amount of entanglement
can be quantified by the logarithmic negativity EN [109, 110], which is defined as

EN ≡ max[− lnλ, 0]. (7.53)

Given a 4 × 4 covariance matrix V between the oscillator [x̂, p̂] and the cavity
mode [â1, â2], the simplectic eigenvalue λ has the following closed form:

λ =

√
Σ−

√
Σ2 − 4 detV/

√
2, (7.54)

where Σ ≡ detA+ detB− 2 detC and

V = ⟨[x̂, p̂, â1, â2]T [x̂, p̂, â1, â2]⟩sym =

[
A2×2 C2×2

CT
2×2 B2×2

]
. (7.55)

In Ref. [51], the information contained in the cavity output was ignored and
unconditional covariances were used to evaluate the entanglement measure EN .
We can call this unconditional entanglement. If the information were recovered,
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Figure 7.7 – Contour plots of the logarithmic negativity EN for uncondi-
tional (left) and conditional (right) entanglement between the cavity mode
and the oscillator. We have assumed that Ωq/ωm = 0.5 to make sure that the
resulting optomechanical system is stable in the parameter regimes shown
in the figure. To manifest the entanglement, we have ignored thermal noise.

conditional covariances obtained in Eq. (7.40) would replace the unconditional
counterparts. In Fig. 7.7, we compare the unconditional and conditional entangle-
ment. It clearly shows that the entanglement strength increases dramatically in
the conditional case. Additionally, the regime where the entanglement is strong is
in accord with where the conditional quantum state of the oscillator is less pure
as shown in Fig. 7.5. Indeed, there is a simple analytical relation between the
effective occupation number Neff and the logarithmic negativity EN in this ideal
case with no thermal noise—that is

EN = −2 ln
[√

Neff + 1−
√

Neff

]
≈ 2
√
Neff , (7.56)

for small Neff [109]. Therefore, the limitation of a cooling experiment actually
comes from the optomechanical entanglement, which justifies our claim in Sec. 7.5.

If we take into account the environmental temperature as shown in Fig. 7.2 in the
introduction part, the unconditional entanglement vanishes when the temperature
is higher than 10 K given the following specifications: γ/ωm = 1, ∆/ωm = −1,
Ωq/ωm = 1 and Qm = 5× 105 with ωm/2π = 106 Hz. In contrast, the conditional
one exists even when the temperature becomes higher than 100 K. Therefore,
only when the information contained in the cavity output is properly treated will
the observer be able to recover the quantum correlation between the oscillator
and the cavity mode at high temperature. In fact, the temperature is not the
dominant figure that determines the existence of quantum entanglement. A recent
investigation showed that, in the simple system with an oscillator interacting
with a coherent optical field, quantum entanglement always exists between the
oscillator and outgoing optical field [131]. The resulting entanglement strength
only depends on the ratio between the characteristic interaction strength Ωq and
the thermal-noise strength ΩF , rather than on the environmental temperature. We
can make some correspondences to the results in Ref. [131] by assuming a large
cavity bandwidth. In such a case, the cavity mode exchanges information with the



114
Chapter 7. Achieving the Ground State and Enhancing

Optomechanical Entanglement

Figure 7.8 – Logarithmic negativity EN as a function of cavity bandwidth
and environmental temperature. We have chosen Ωq/ωm = 1, ∆ = 0, Qm =
5× 105 and ωm/2π = 106 Hz. The shaded regimes are where entanglement
vanishes.

external outgoing field at a timescale much shorter than the thermal decoherence
timescale of the oscillator. In Fig. 7.8, we show the resulting EN of the conditional
entanglement as a function of cavity bandwidth and environmental temperature
with fixed interaction strength. The entanglement can persist at a very high
temperature (104 K, as shown in this plot!) as long as the cavity bandwidth is
large. This, to some extent, recovers the results obtained in Ref. [131].

7.8 Effects of imperfections and thermal noise

To motivate cavity-assisted cooling experiments, we will consider the effects of
various imperfections that exist in a real experiment, which include nonunity
quantum efficiency of photodetection, thermal noise, and optical loss. The effects
of nonunity quantum efficiency and thermal noise have already been taken into
account in the equations of motion. With an optical loss, some uncorrelated
vacuum fields enter the cavity in an unpredictable way. A small optical loss will
not modify the cavity bandwidth significantly but will introduce an additional
force noise, which is [cf. Eq. (7.28)]

Sadd
FF (Ω) = 4 ~mΩ3

q γϵ |χ|2(γ2 + Ω2 +∆2), (7.57)

where γϵ ≡ c ϵ/(4L) is the effective bandwidth that is induced by an optical loss of
ϵ. For numerical estimations, we will use the following experimentally achievable
parameters:

m = 1mg, I0 = 3mW, F = 3× 104, ωm/(2π) = 105Hz,

Qm = 5× 106, L = 1 cm, η = 0.95, ϵ = 10 ppm, (7.58)

where F is the cavity finesse, and Qm ≡ ωm/(γm) is the mechanical quality
factor. This gives a coupling strength of Ωq/ωm ≈ 0.6 (for ∆ = −ωm), and a
cavity bandwidth γ/ωm = 2.5. The final results will not change if we increase
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Figure 7.9 – Occupation number of the optimally-controlled state as a
function of the temperature and the cavity detuning. The other specifica-
tions are chosen to be achievable in a real experiment, and are detailed in
the main text.

both the mass and power by the same factor, which essentially gives the same
effective interaction strength.

In Fig. 7.9, we show the corresponding occupation number for the controlled state
as a function of environmental temperature and cavity detuning. An occupation
number less than one can be achieved when the environmental temperature be-
comes lower than 10 K given the above specifications. If the oscillator can sustain
a higher optical power, one can increase the interaction strength to reduce thermal
excitations.

7.9 Conclusions

We have shown that both the conditional state and the optimally-controlled state
of the mechanical oscillator can achieve a low occupation number, even if the
cavity bandwidth is large. Therefore, as long as the information of the oscillator
motion contained in the cavity output is carefully recovered, the resolved-sideband
limit will not pose a fundamental limit in cavity-assisted cooling experiments.
This work can help in the understanding of the intermediate regime between
optomechanical cooling and feedback cooling, which will be useful in the search for
the optimal parameters for a given experimental setup. In addition, we have shown
that the optomechanical entanglement between the cavity mode and the oscillator
can be significantly enhanced by recovering information, and its existence becomes
insensitive to the environmental temperature.





Chapter 8

Universal Entanglement Between
an Oscillator and Continuous
Fields

8.1 Preface

In the previous two chapters, we have studied the optomechanical entan-
glement between the optical cavity modes and the mechanical oscillator,
both of which have finite degrees of freedom. In this chapter, we study the
entanglement between a mechanical oscillator and a coherent continuous
optical field which contains infinite degrees of freedom. This system is in-
teresting because it lies in the heart of all optomechanical systems. With
a rigorous functional analysis, we develop a new mathematical framework
for treating quantum entanglement that involves infinite degrees of free-
dom. We show that quantum entanglement is always present between
the oscillator and the continuous optical field—even when the environ-
mental temperature is high, and the oscillator is highly classical. Such
a universal entanglement is also shown to be able to survive more than
one mechanical oscillation period, if the characteristic frequency of the
optomechanical interaction is larger than that of the thermal noise. In
addition, we introduce effective optical modes, which are ordered by their
entanglement strength, to better understand the entanglement structure,
in analogy with the energy spectrum of an atomic system. In particular,
we derive the optical mode that is maximally entangled with the me-
chanical oscillator, which will be useful for future quantum computing,
and for encoding information into mechanical degrees of freedom. This
is a joint research effort by Stefan Danilishin, Yanbei Chen and myself.
It is published in Phys. Rev. A 81, 052307 (2010).
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Figure 8.1 – A schematic plot of the model and the corresponding space-
time diagram. Here x̂, â and b̂ denote the oscillator position, ingoing and
outgoing field respectively. For clarity, we intentionally place â and b̂ on
different sides of the oscillator world line. The tilted lines represent the
light rays. The optical field entering after the moment of interest (t=0) is
out of causal contact, and thus irrelevant.

8.2 Introduction

Entanglement, as one of the most fascinating features of quantum mechanics, lies
in the heart of quantum computing and many quantum communication protocols
[50]. Great efforts have been devoted to theoretical and experimental investiga-
tions of quantum entanglements in different systems with discrete or continuous
variables. Due to recent significant achievements in fabricating high-Q mechani-
cal oscillators, the quantum entanglement with mechanical degrees of freedom has
aroused great interest. Especially, many table-top experiments have demonstrated
significant cooling of the mechanical degrees of freedom via feedback or passive
damping (self-cooling) [9, 19–37, 123], which in principle allows us to achieve the
quantum ground state [43–45, 106, 108, 124–127]. More recently, with a conven-
tional cryogenic refrigeration, O’Connell et al. have succeeded in the ground-state
cooling of a micromechanical oscillator [122]. These experiments not only illumi-
nate quantum-limited measurements [74], but also pave the way for creating quan-
tum entanglement with mechanical degrees of freedom. Theoretical analysis shows
that by coupling a mechanical oscillator to a Fabry-Pérot cavity, one can create
stationary (Einstein-Podosky-Rosen) EPR-type quantum entanglement between
optical modes and an oscillator [51], or even between two macroscopic oscillators
[52, 53]. In Ref. [54], it was shown that entanglement between two oscillators can
also be created by conditioning on the continuous measurements of the common
and differential optical modes in a laser interferometer.

Here, we consider the quantum entanglement between a mechanical oscillator and
a coherent optical field, which models the essential process in all above-mentioned
optomechanical systems. There are two important motivations behind this: (i)
evaluation of entanglement involving a field which contains infinite degrees of
freedom. The entanglement structure itself is an interesting problem. To our
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knowledge, only finite-degrees-of-freedom entanglements have been investigated
in the literature; (ii) the effect of thermal decoherence. There is an interesting
observation: on the one hand, the environmental temperature enters as an explicit
factor and directly determines the existence of the optomechanical entanglement
considered in Refs. [51–53]; on the other hand, only the ratio between the op-
tomechanical interaction and thermal decoherence determines the existence of
the entanglement instead of the thermal decoherence alone, and the environmen-
tal temperature only influences the entanglement strength implicitly as shown in
Refs. [54, 135]. By studying this essential process, we can have a complete picture
of the thermal decoherence.

The model and its spacetime diagram are shown schematically in Fig. 8.1. A
similar system was analyzed previously by Pirandola et al. [136]. They used a
narrow-detection-band approximation to introduce sideband modes, which maps
the outgoing field into two effective degrees of freedom. In the situation here,
sideband modes are not well-defined, because the interaction turns off at t = 0
and only the half-space [−∞, 0] is involved. Instead, we will directly evaluate
the entanglement between the oscillator and the outgoing field b̂ (with infinite
degrees of freedom), using the positivity of partial transpose (PPT) criterion [109–
113, 134, 137]. Only in the weak-interaction and low-thermal-noise limit can we
make correspondences between our results and those obtained in Ref. [136].

The outline of this chapter is as follows: in Sec. 8.3, we will analyze the dynamics
of this system, and introduce the covariance between the dynamical quantities,
which will be essential for analyzing the quantum entanglement. In Sec. 8.4, we
take the continuous limit and extend the PPT criterion to the case with infinite
degrees of freedom. In addition, we apply a rigorous functional analysis and obtain
the entanglement measure of which a simple scaling is derived. In Sec. 8.5, we
study the survival time of the entanglement under thermal decoherence. In Sec .
8.6, we introduce effective optical modes to understand the entanglement structure
and obtain the maximally-entangled mode. In Sec. 8.7, we make a numerical
estimate given a set of experimental achievable specification to motivate future
experiment to investigate entanglement. We conclude with our main results in
Sec. 8.8.

8.3 Dynamics and Covariance Matrix

Due to the linearity of the system dynamics, its Heisenberg equations of motion
are formally identical to the classical equations of motion, apart from the fact that
every dynamical quantity is now treated as a quantum operator. For the optical
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field, the standard input-output relations are:

b̂1(t) = â1(t), (8.1)

b̂2(t) = â2(t) + κ x̂(t). (8.2)

Here, â1 (b̂1) and â2 (b̂2) are the amplitude and phase quadratures of the ingo-
ing (outgoing) optical field. They are defined through the optical electric field:

Êin(t) =
√

4π~ω0

Sc [(ā+ â1(t)) cosω0t+ â2(t) sinω0t] which contains a steady-state

part ā and quantum fluctuation parts â1,2. In this equation, S is the cross-sectional

area of the optical beam, ā =
√
I0/(~ω0) with I0 the optical power and ω0 the

laser frequency. A similar relation for Êout and b̂1,2 also holds. In Eq. (8.2), the
displacement of the mechanical oscillator x̂ modulates the phase quadrature of
the outgoing optical field with an optomechanical coupling constant κ ≡ ω0ā/c.
To quantify the interaction strength, we introduce a characteristic interaction
frequency Ωq, which is defined by Ωq ≡

√
~κ2/m.

For the mechanical oscillator, the equations of motion are given by:

˙̂x(t) =
p̂(t)

m
, (8.3)

˙̂p(t) = −γm p̂(t)−mω2
mx̂(t) + F̂rad(t) + ξ̂th(t). (8.4)

Here, p̂ is the oscillator momentum. To include the fluctuation-dissipation mech-
anism of the oscillator coupled to the thermal heat bath at temperature T , we
have introduced the mechanical damping γm, and the corresponding thermal force
noise ξ̂th which has the following correlation function in the high temperature
limit: ⟨ξ̂th(t)ξth(t′)⟩ = 2mγmkBT δ(t − t′) ≡ 2~mΩ2

F δ(t − t′) with ΩF a charac-

teristic frequency of the thermal noise. The presence of thermal noise ξ̂th ensures
the correct commutator between x̂(t) and p̂(t) [39]. The radiation-pressure force
F̂rad, up to the first order in the quantum fluctuation, is proportional to â1(t), and
F̂rad(t) = ~κ â1(t).

The above equations completely quantify the linear dynamics of the system and
they can be easily solved. The solution to oscillator position x̂ is simply:

x̂(t) =

∫ t

−∞
dt′Gx(t− t′)

[
~κ â1(t′) + ξ̂th(t

′)
]
, (8.5)

where the Green’s functionGx(t) ≡ e−γmt sin(ωmt)/(mωm). The radiation-pressure
term ~κ â1 induces quantum correlations between the oscillator and the optical
field, but it is undermined by ξ̂th. This leads to the question of whether quantum
entanglement exists or not, after evolving the entire system from t = −∞ to 0.

Since the variables involved are Gaussian, and linear dynamics will preserve Gaus-
sianity, the quantum entanglement is completely encoded in the covariance matrix
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V. With the optical field labeled by the continuous time coordinate t, elements
of V involving optical degrees of freedom are defined in the functional space
L2[−∞, 0]. Specifically,

V =

[
A CT

C B

]
. (8.6)

Here Aij = ⟨X⃗i X⃗j⟩sym (i, j = 1, 2), with vector X⃗ ≡ [x̂(0), p̂(0)] and ⟨X⃗i X⃗j⟩sym ≡
⟨X⃗i X⃗j+X⃗j X⃗i⟩/2 denoting the symmetrized ensemble average; Cij andBij should
be viewed as vectors and operators in L2[−∞, 0]. In the coordinate representation,

(t|Cij) = ⟨X⃗i b̂j(t)⟩sym and (t|Bij |t′) = ⟨b̂i(t) b̂j(t′)⟩sym, in which ( | ) denotes the
scalar inner product in L2[−∞, 0].

8.4 Universal entanglement

According to Refs. [110, 138], in order for one particle and a joint system of ar-
bitrarily large N particles to be separable, a necessary and sufficient condition is
that the partially-transposed density matrix ϱT1

1|N (with respect to the first parti-

cle) should be positive semidefinite, i.e., ϱT1

1|N ≥ 0. In phase space of continuous
Gaussian variables, this reduces to the Uncertainty Principle:

Vpt +
1

2
K ≥ 0. (8.7)

Here, the commutator matrix K =
⊕N+1

k=1 2σy with σy denoting a Pauli matrix.
According to the Williamson theorem, there exists a symplectic transformation
S ∈ Sp(2N+2,R) such that STVptS =

⊕N+1
k=1 Diag[λk, λk]. Using the fact that

STKS = K, the above Uncertainty Principle reads λk ≥ 1. If this fails to be the
case, i.e., ∃λk < 1, the states are entangled. The amount of entanglement can be
quantified by the logarithmic negativity EN [109], which is defined as:

EN ≡ max[−
∑

k lnλk, 0] for k : λk < 1. (8.8)

In the case considered here, N approaches ∞, and the partial transpose is equiv-
alent to time reversal and therefore Vpt = V|p̂(0)→−p̂(0). According to Ref. [109],
λk can be obtained by solving an eigenvalue problem:

Vptv =
1

2
λKv, (8.9)

where v ≡ [α0, β0, |α), |β)]T with |f) denoting the vector in L2[−∞, 0]. Nor-
malizing x̂ and p̂ with respect to their zero-point values, the commutator reads
[x̂, p̂] = 2 i. For the optical field, we set [b̂1(t), b̂2(t

′)] = 2i δ(t− t′), which gives the
coordinate representation of K.
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Figure 8.2 – Logarithmic negativity EN as a function of the ratio Ωq/ΩF .
A mechanical quality factor Qm = 103 is chosen.

Due to uniqueness of |α) and |β) in terms of α0 and β0 for any λ < 1 (non-singular),
Eq. (8.9) leads to the following characteristic equation [cf. Eq. (8.6)]

det[A+ λσy −CT(λσy +B)−1C]. = 0 (8.10)

It can be shown that:

(λσy +B)−1 =

[
1 +B†

λM
−1Bλ −B†

λM
−1

−M−1Bλ M−1

]
, (8.11)

where we have used the fact that B†
12 = B21 in L2[−∞, 0] and have defined

Bλ ≡ B12 − i λ and M ≡ B22 −B†
λBλ.

To solve this characteristic equation, we need to invert the operator M which can
be achieved via the Wiener-Hopf method 1. Given any function |g) = M−1|h), in
the frequency domain as:

g̃(Ω) =

∫ 0

−∞
dt eiΩ tM−1|h) = 1

ψ̃−

[
h̃

ψ̃+

]
−

. (8.12)

Here, [ ]− means taking the causal part of the given function (i.e., with poles in
the lower-half complex plane), and the factorization

ψ̃+ψ̃− ≡ Λ + i λ ~κ2(G̃x − G̃∗
x) + 2~mκ2Ω2

F G̃xG̃
∗
x (8.13)

with Λ ≡ 1 − λ2, and G̃x denoting the Fourier transformation of Gx(t). In the
above equation, ψ̃+(ψ̃−) and its inverse are analytic in upper-half (lower-half)
complex plane, and ψ̃+(−Ω) = ψ̃∗

+(Ω) = ψ̃−(Ω). In deriving Eq. (8.13), we have
used ⟨âi(t) âj(t′)⟩sym = δij δ(t − t′), and the correlation function for the thermal
noise.

Finally, an implicit polynomial equation for the symplectic eigenvalue λ is derived
from Eq. (8.10). As it turns out, there always exists one eigenvalue λ whose

1An introduction of this method in solving a similar problem can be found in the appendix
of Ref. [139].
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magnitude is smaller than one. In Fig. 8.2, the corresponding logarithmic nega-
tivity (c.f. Eq. (8.8)) is shown as a function of Ωq/ΩF . For a high-Q oscillator
Qm ≡ ωm/γm ≫ 1, up to the leading order of 1/Qm, a very elegant expression for
EN can be derived:

EN =
1

2
ln

[
1 +

25

8

Ω2
q

Ω2
F

]
. (8.14)

This only depends on the ratio between Ωq and ΩF , which clearly indicates the
universality of the quantum entanglement. The reason why thermal decoherence
(ΩF ) alone determines the existence of entanglement in Refs. [51–53] originates
from the finite transmission of the cavity, and the information of the cavity mode
and the oscillator motion leaks into the environment, inducing additional deco-
herence. This is addressed thoroughly in Ref. [139].

8.5 Entanglement survival duration

We now investigate how long such an entanglement can survive under thermal de-
coherence. After turning off the optomechanical coupling at t = 0, the mechanical
oscillator freely evolves for a finite duration τ , driven only by thermal noise. Due
to the thermal decoherence, entanglement will gradually vanish. Mathematically,
the symplectic eigenvalue will become larger than unity when τ is larger than
the survival time τs. By replacing [x̂(0), p̂(0)] with [x̂(τ), p̂(τ)] and making similar
analysis, up to the leading order of 1/Qm, we find that τs satisfies a transcendental
equation:

4Ω4
F θ

2
s − (2Ω2

F + Ω2
q)

2 sin2 θs − 25ω4
m = 0, (8.15)

with θs ≡ ωmτs. In the case of Ωq < ΩF < ωm, the oscillating term can be
neglected, leading to:

θs =
5

2

ω2
m

Ω2
F

=
5Qm

2 n̄th + 1
, (8.16)

where we have defined the thermal occupation number n̄th through kBT/(~ωm) =
n̄th+(1/2). Therefore, in this case, if Qm is larger than n̄th, the entanglement will
be able to survive longer than one oscillation period. Since Qm > n̄th is also the
requirement that the thermal noise induces a momentum diffusion smaller than
its zero-point uncertainty [74], this condition is what we intuitively expect. In the
strong interaction case with Ωq ≫ ΩF , the transcendental equation can be solved
numerically, showing that θs > 1 is always valid, and that the entanglement can
survive at least up to one oscillation period.
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8.6 Maximally-entangled mode

To gain insight into the structure of this entanglement, we apply the techniques
in Ref. [140] and decompose the outgoing field into independent single modes, by
convoluting them with some weight functions fi, namely

Ôi ≡ (fi|b̂), [Ôi, Ô
†
j ] = 2 δij, (8.17)

which requires (fi|fj) = δij. If we define gi1 ≡ ℜ[fi] and gi2 ≡ ℑ[fi], the single-
mode quadratures will be

X̂i ≡ (Ôi + Ô†
i )/

√
2 =

∫ 0

−∞dt gi1 b̂1 − gi2 b̂2, (8.18)

Ŷi ≡ (Ôi − Ô†
i )/(i

√
2) =

∫ 0

−∞dt gi2 b̂1 + gi1 b̂2. (8.19)

Different choices of weight function will generally give optical modes that have
different strengths of entanglement with the mechanical oscillator. The function
of particular interest is the one that gives an effective optical mode maximally
entangled with the oscillator. Using the fact that logarithmic negativity is an
entanglement monotone, the optimal weight function can be derived from the
following constrained variational equation:

δ Esub
N

δ gi
+ µi gi = 0 (i = 1, 2), (8.20)

where we have neglected unnecessary indices, µk is a Lagrange multiplier due to
the constraint (f |f) = 1, and Esub

N quantifies the entanglement in the subsystem
consisting of the oscillator and the effective optical mode [x̂(0), p̂(0), X̂, Ŷ ]. As it
turns out, the optimal weight functions g1,2 have the shape of a decay oscillation,
with poles ω given by the following polynomial equation:

[(ω − ωm)
2 + γ2m][(ω + ωm)

2 + γ2m] + χ = 0, (8.21)

where the parameter χ is a functional of g1,2, and also depends on Ωq and ΩF .
Therefore, the weight functions are

gk(t) = Ak e
γg t cos(ωg t+ θk) (k = 1, 2), (8.22)

with γg and ωg being imaginary and real parts of ω. Analytical solutions to
parameters Ak, ωg, γg and θk require exact expression for χ in terms of gk, Ωq

and ΩF , which is rather complicated. Instead, we numerically optimize these
parameters to maximize Esub

N .

Taking into account (f |f) = 1, A1 and A2 can be reduced to a single parameter
ζ, which is defined through

A2
k =

4 γg(γ
2
g + ω2

g) cos
2[ζ + k(π/2)]

γ2g + ω2
g + γ2g cos(2θk) + γg ωg sin(2θk)

. (8.23)
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Figure 8.3 – Logarithmic negativity Esub
N as a function of quantity (ωg −

ωm)/ωm in the weak-interaction and low-thermal-noise case (upper panel)
and strong-interaction and high-thermal-noise case (lower panel). In the
first case, we have chosen Qm = 103, Ωq/ωm = ΩF /ωm = 2 × 10−2. In
the second case, Qm = 106 (independent of Qm for higher Qm), Ωq/ωm =
50, ΩF /ωm = 20 and ζ = π/3.

From Eq. (8.21), ω2
g − γ2g = ω2

m − γ2m. In addition, a local unitary transformation
(rotation and squeezing) will not change the symplectic eigenvalue. Without loss
of generality, we can fix θ1 = π/2 and θ2 = 0. Therefore, only two parameters ωg

and ζ need to be optimized.

In the special case of the weak-interaction and low-thermal-noise limit (Ωq, ΩF ≪
ωm), the optimal ζopt is equal to π/4, which indicates A1 ≈ A2 = 2

√
γm for a high-

Q oscillator. In addition, as shown in the upper panel of Fig. 8.3, the optimal
ωopt
g = ωm, leading to:

f(t) = 2
√
γme

γmt±i ωmt+ϕ0 . (8.24)

Therefore, the optimal weight function has the same shape as the Stokes and Anti-
Stokes sideband modes. This is similar to what been obtained in Refs. [136, 140];
however, due to causality, the weight function here is defined in L2[−∞, 0] rather
than in L2[−∞,∞] which is essential for defining sideband modes.

In the case of strong interaction and high thermal noise (Ωq, ΩF > ωm), the
optimal ωg deviates from ωm and depends on ΩF and Ωq, as shown in the lower
panel of Fig. 8.3. More generally, the optimal ζopt = π/3, and ωopt

g can be fitted

by ωopt
g ≈ (0.64Ω2

F + 0.57Ω2
q)

1/2. Correspondingly, the logarithmic negativity can
be approximated as:

Esub
N ≈ 1

2
ln

[
1 +

15.Ω2
q

13.Ω2
F + Ω2

q

]
, (8.25)

which again manifests universality of the entanglement. Therefore, as long as the
optimal weight function is chosen, one can always recover quantum correlations
between the oscillator and the outgoing field.
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Table 8.1 – Experimental specifications:

m ωm/(2π) Qm T I0 η
small scale 50ng 105Hz 107 4K 0.1W 0.05
large scale 40kg 1Hz 1010 300K 800kW 0.05

In principle, by choosing a weight function orthogonal to the optimal one obtained
above, one can derive the next-order optimal mode. Repeating this procedure will
generate a complete spectrum of effective optical modes ordered by Esub

N , which
is analogous to obtaining the wavefunctions and corresponding energy levels with
variational method in atomic systems. This not only helps to understand the full
entanglement structure but also sheds light on experimental verifications of such
universal entanglement. Rather than trying to recover the infinite-dimensional
covariance matrix in Eq. (8.6), we can apply right weight functions to extract
different effective optical modes and form low-dimension sub-systems. Taking the
sub-system consisting of the oscillator and the maximally entangled optical mode
for instance, 4×4 covariance matrix can be determined by measuring correlations
among different quadratures. This can be achieved by using a local oscillator
with time-dependent phase, which allows to probe both mechanical quadratures
[139] and those of the effective optical mode. For example, a quadrature Ôζ =

X̂ sin ζ + Ŷ cos ζ can be measured with the following local oscillator light beam:

L(t) ∝ L1(t) cosω0t+ L2(t) sinω0t (8.26)

with L1(t) = g1(t) cos ζ+g2(t) sin ζ, and L2(t) = g2(t) cos ζ−g1(t) sin ζ. Synthesis
of multiple measurements will recover the covariance matrix that we need to verify
the entanglement.

8.7 Numerical Estimates

To motivate future experiments for realizing such a universal entanglement, we
will include an important imperfection in a real experiment—the optical loss which
comes from the finite transmission of the mirror. This will induce an uncorrelated
vacuum field n̂1,2 and the input-output relation will be modified to [cf. Eqs. (8.3)
and (8.4)]

b̂1(t) =
√
1− η â1(t) +

√
η n̂1(t) (8.27)

b̂2(t) =
√
1− η [â2(t) + κ x̂(t)] +

√
η n̂2(t) (8.28)

with η < 1 quantifying the optical loss. For a typical optical setup, η can be the
order of 0.05 or less. As it turns out, such a small optical loss almost has no effect
on the entanglement strength.
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To make numerical estimates and demonstrate experimental feasibility, we will
consider experimentally achievable specifications for both small-scale and large-
scale experiments, which are listed in Table 8.1. For the small scale, the parame-
ters are chosen to be close to that of table-top cooling experiments with microme-
chanical oscillator, and it gives ΩF/Ωq ≈ 40 and Qm/n̄th ≈ 10. For the large scale,
it is close to that of an advanced gravitational-wave detector with kg-scale test
masses interacting with a high-power optical field [3], and we have ΩF/Ωq ≈ 1
and Qm/n̄th ≈ 10−3. In both cases, there is non-vanishing entanglement between
the mechanical oscillator and the optical field, and this entanglement can survive
up to one mechanical oscillation period.

8.8 Conclusions

We have demonstrated that quantum entanglement exists universally in a system
with a mechanical oscillator coupled to continuous optical field. The entanglement
measure — logarithmic negativity — displays an elegant scaling which depends on
the ratio between characteristic interaction and thermal-noise frequencies. Such
scaling should also apply in electromechanical systems, whose dynamics are similar
to what we have considered.





Chapter 9

Nonlinear Optomechanical
System for Probing Mechanical
Energy Quantization

9.1 Preface

In the previous chapters, we have been discussing linear optomechanical
devices, of which the dynamics are quantified by linear equations of mo-
tion. Motivated by the pioneering theoretical work of Santamore, Martin
and Zureck [141, 142], and by recent experimental work of Thompson et
al. [31], we consider the quantum limit for probing mechanical energy
quantization with mechanical modes parametrically coupled to external
degrees of freedom. We find that the resolution of a single mechanical
quantum requires a strong-coupling regime—the decay rate of external
degrees of freedom should be smaller than the parametric coupling rate.
In the case of cavity-assisted optomechanical systems, the zero-point mo-
tion of the mechanical oscillator needs to be comparable to the linear dy-
namical range of the optical system, which is characterized by the optical
wavelength divided by the cavity finesse. If this condition is satisfied, the
nonlinearity of the optomechanical system will become important in the
quantum regime. Since a direct probe of the mechanical energy naturally
means that we are able to create a non-Gaussian Fock state in the me-
chanical oscillator, this condition also sets the requirement for creating
a non-Gaussian state in optomechanical devices. This is a collaborative
research effort by Stefan Danilishin, Thomas Corbitt, Yanbei Chen, and
myself. It is published in Phys. Rev. Lett. 103, 1000402 (2009).

9.2 Introduction

Recently, significant cooling of mechanical modes of harmonic oscillators has
been achieved by extracting heat through parametric damping or active feed-
back [21, 31]. Theoretical calculations suggest that oscillators with a large ther-
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Figure 9.1 – The left panel presents the schematic configuration of coupled
cavities in the proposed experiment [31]. The right panel shows the opti-
cal modes, and we denote the reflectivity and transmissivity of the optical
elements by ri and ti (i = 1, 2,m).

mal occupation number (kBT ≫ ~ωm) can be cooled to be close to their ground
state, if they have high enough quality factors [44]. Once the ground state is
approached, many interesting studies of macroscopic quantum mechanics can be
performed, e.g. teleporting a quantum state onto mechanical degrees of freedom
[97], creating quantum entanglement between a cavity mode and an oscillator
[51] and between two macroscopic test masses [54]. Most proposals involve the
oscillator position being linearly coupled to photons, in which case the quantum
features of the oscillator, to a great extent, are attributable to the quantization of
photons. In order to probe the intrinsic quantum nature of an oscillator, one of the
most transparent approaches is to directly measure its energy quantization, and
the quantum jumps between discrete energy eigenstates. Since linear couplings
alone will not project an oscillator onto its energy eigenstates, nonlinearities are
generally required [141–143]. For cavity-assisted optomechanical systems, one ex-
perimental scheme, proposed in the pioneering work of Thompson et al. [31], is
to place a dielectric membrane inside a high-finesse Fabry-Pérot cavity, forming a
pair of coupled cavities 1. If the membrane is appropriately located, a dispersive
coupling between the membrane position and the optical field is predominantly
quadratic, allowing the detection of mechanical energy quantization.

In this chapter, we show that in the experimental setup of Thompson et al.,
the optical field also couples linearly to the membrane. Due to the finiteness of
cavity finesse (either intentional for readout or due to optical losses), this linear
coupling introduces quantum back-action. Interestingly, it sets forth a simple
Standard Quantum Limit (SQL), which dictates that only those systems whose
cavity-mode decay rates are smaller than the optomechanical coupling rate can
successfully resolve energy levels. We will further show that a similar constraint
applies universally to all experiments that attempt to probe mechanical energy
quantization via parametric coupling with external degrees of freedom (either
optical or electrical).

1A similar configuration has been proposed by Braginsky et al. for detecting gravitational-
waves, Phys. Lett. A 232, 340 (1997) and Phys. Lett. A 246, 485 (1998).
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9.3 Coupled Cavities

The optical configuration of the coupled cavities is shown in Fig. 9.1. Given the
specifications in Ref. [31], the transmissivities of the membrane and end mirrors
are quite low, and thus a two-mode description is appropriate [144, 145], with the
corresponding Hamiltonian:

Ĥ = ~ωm(q̂
2 + p̂2)/2 + ~ω0(â

†â+ b̂†b̂)− ~ωs(â
†b̂+ b̂†â)

+ ~G0q̂(â
†â− b̂†b̂) + Ĥext + Ĥξ. (9.1)

Here, q̂, p̂ are the normalized position and momentum of the membrane; â, b̂ are
annihilation operators of cavity modes in the individual cavities (both resonate
at ω0); ωs ≡ tmc/L is the optical coupling constant for â and b̂, through the
transmission of the membrane [145]; G0 ≡ 2

√
2ω0xq/L is the optomechanical

coupling constant with L denoting the cavity length, and the zero-point motion
is xq ≡

√
~/(2mωm); Ĥext and Ĥξ correspond to the coupling of the system to

the environment and quantify the fluctuation and dissipation mechanism. By
introducing optical normal modes, namely the common mode ĉ ≡ (â+ b̂)/

√
2 and

differential mode d̂ ≡ (â− b̂)/
√
2,

Ĥ/~ =
ωm

2
(q̂2 + p̂2) + ω−ĉ

†ĉ+ ω+d̂
†d̂+G0q̂(ĉ

†d̂+ d̂†ĉ)

+ i(
√

2γc ĉ
†ĉin +

√
2γd d̂

†d̂in − H.c.) + Ĥξ/~ (9.2)

where ω± ≡ ω0 ± ωs and in the Markovian approximation Ĥext is written out
explicitly in the second line (with γc,d denoting decay rates, and H.c. for Hermitian
conjugate).

Before analyzing the detailed dynamics, here we follow Thompson et al. [31] and
Bhattacharya and Meystre [144], by assuming ωm ≪ ωs and G0 ≪ |ω+ − ω−| =
2ωs, analogous to the dispersive regime in a photon-number counting experiment
with a superconducting qubit [146, 147]. This allows us to treat ~G0q̂(ĉ

†d̂+ d̂†ĉ)
as a perturbation, and diagonalize the Hamiltonian formally. Up to G2

0/(2ωs)
2,

the optical and optomechanical coupling parts of the original Hamiltonian can be
written as:

Ĥ/~ =

(
ω− − G2

0q̂
2

2ωs

)
ô†ô+

(
ω+ +

G2
0q̂

2

2ωs

)
ê†ê. (9.3)

At first sight, the frequency shift of the eigenmodes ô and ê is proportional to q̂2.
Since the frequency separation of the two normal modes is 2ωs ≫ γc,d, they can
be independently driven and detected. Besides, with γc,d < ωm, only the averaged

membrane motion is registered and, q̂2 = N̂+1/2, with N̂ denoting the number of
quanta. Therefore, previous authors had concluded that such a purely dispersive
coupling allows quantum non-demolition (QND) measurements of the mechanical
quanta.
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However, the new eigenmodes ô and ê are given by:

ô = ĉ− [(G0d̂)/(2ωs)]q̂, ê = d̂+ [(G0ĉ)/(2ωs)]q̂. (9.4)

If we pump ĉ with classical amplitude c̄, and left d̂ in vacuum state, the de-
tected mode ô will have a negligible linear response. However, the idle mode
ê ≈ [G0c̄/(2ωs)]q̂, which is dominated by linear coupling. If we choose to drive d̂,
the role of ô and ê will simply interchange. Such linear coupling can potentially
demolish the energy eigenstates that we wish to probe. We can make an order-
of-magnitude estimate. The optomechanical coupling term in Eq. (9.2), at the
linear order, is G0q̂(c̄ d̂ + c̄∗d̂†). According to the Fermi’s golden rule, it causes
decoherence of energy eigenstate near the ground level at a rate of:

τ−1
dec = G2

0|c̄|2S̃d̂(−ωm) ≈ G2
0|c̄|2γd/(2ω2

s), (9.5)

where we have assumed that ĉ is on resonance, and

S̃d̂ ≡
∫
dt eiωt⟨d̂(t)d̂†(0)⟩ = 2γd/[(ω − 2ωs)

2 + γ2d ]. (9.6)

On the other hand, from Eq. (9.3) and linear response theory [148], the measure-
ment time scale to resolve the energy eigenstate (i.e. measuring N̂ with a unit
error) with a shot-noise limited sensitivity is approximately given by:

τm ≈ [γ2cω
2
s/(G

4
0|c̄|2)]S̃ĉ(0) = 2ω2

sγc/(G
4
0|c̄|2), (9.7)

where S̃ĉ(0) is the spectral density of ĉ at zero frequency. Requiring τm ≤ τdec
yields

(γcγd/G
2
0) . 1. (9.8)

In the case when the transmissivity of the end mirrors t1 = t2 ≡ t0, we have
γc = γd = c t20/(2L). Defining the cavity finesse as F ≡ π/t20, the above inequality
reduces to λ/(Fxq) . 8

√
2. Therefore, to probe mechanical energy quantization,

it requires a strong-coupling regime (cf. Eq. (9.8)), or equivalently, for such an
optomechanical system, zero-point mechanical motion xq to be comparable to the
linear dynamical range λ/F of the cavity.

We now carry out a detailed analysis of the dynamics according to the standard
input-output formalism [39]. In the rotating frame at the laser frequency ω+, the
nonlinear quantum Langevin equations are given by

˙̂q = ωm p̂, (9.9)

˙̂p = −ωm q̂ − γm p̂−G0(ĉ
†d̂+ d̂†ĉ) + ξth, (9.10)

˙̂c = −γc ĉ− i G0 q̂ d̂+
√

2γc ĉin, (9.11)

˙̂
d = −(γd + 2 i ωs) d̂− i G0 q̂ ĉ+

√
2γd d̂in. (9.12)

Here, the mechanical damping and associated Brownian thermal force ξth originate
from Ĥξ under the Markovian approximation. These equations can be solved
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perturbatively by decomposing every Heisenberg operator α̂ into different orders,
such that α̂ = ᾱ + ϵ α̂(1) + ϵ2α̂(2) + O[ϵ3]. We treat G0/(2ωs), and the vacuum

fluctuations
√
2γc ĉ

(1)
in and

√
2γd d̂

(1)
in (simply denoted by

√
2γc ĉin and

√
2γd d̂in in

later discussions) as being of the order of ϵ (ϵ≪ 1).

To the zeroth order, c̄ =
√
2I0/(γc~ω0), with I0 denoting the input optical power,

and d̄ = 0. Up to the first order, the radiation pressure term reads G0c̄[d̂
(1)+ d̂(1)†]

(c̄ is set to be real by choosing an appropriate phase reference). In the frequency
domain, it can be written as:

F̃rp =
2
√
γdG0 c̄[(γd − iω)ṽ1 − 2ωsṽ2] + 4G2

0c̄
2ωsq̃

(ω + 2ωs + iγd)(ω − 2ωs + iγd)
, (9.13)

where ṽ1, ṽ2 and q̃ are the Fourier transformations of v̂1(t) ≡ (d̂in + d̂†in)/
√
2,

v̂2(t) ≡ (d̂in− d̂†in)/(i
√
2) and q̂(t), respectively. The first part, containing vacuum

fluctuations, is the back-action F̂BA, which induces the quantum limit. The other
part proportional to q̃ is due to the optical-spring effect. Within the time scale for
measuring energy quantization, of the order of γ−1

c (≪ γ−1
m ), the positive damping

can be neglected but the negative rigidity has an interesting consequence — it
modifies ωm to an effective ωeff (< ωm). Correspondingly, the position of the
high-Q membrane is

q̂(t) = q̂m + Λ2
∫ t

0
dt′ sinωeff(t− t′)[F̂BA(t

′) + ξth(t
′)], (9.14)

with Λ ≡
√
ωm/ωeff . The free quantum oscillation q̂m = Λ (q̂0 cosωeff t+p̂0 sinωeff t)

and q̂0 and p̂0 are the initial position and momentum normalized with respect to√
~/(mωeff) and

√
~mωeff , respectively.

The dispersive response is given by the second-order perturbation O[ϵ2]. Adiabat-
ically eliminating rapidly oscillating components and assuming ωm ≪ ωs which
can be shown to maximize the signal-to-noise ratio, we obtain

ĉ(2)(t) = −iG0

∫ t

0
dt′e−γc(t−t′)q̂(t′) d̂(1)(t′)

≈ G2
eff c̄ N̂(t)/(2iγc ωs) . (9.15)

Here Geff ≡ ΛG0 and N̂(t) ≡ N̂0 + ∆N̂(t) contains the number of mechanical
quanta N̂0 ≡ (q̂20 + p̂20)/2 and the noise term ∆N̂(t) due to the back-action and
thermal noise. To read out N̂(t), we integrate output phase quadrature for a du-
ration τ . According to the input-output relation ĉout+ ĉin =

√
2γc ĉ, the estimator

reads:

Ŷ (τ) =
∫ τ

0
dt[û2(t)−G2

eff c̄ N̂(t)/(
√
γc ωs)], (9.16)

where û2 ≡ (ĉin−ĉ†in)/(i
√
2). For Gaussian and Markovian process, the correlation

function ⟨ĉ2(t) ĉ†2(t′)⟩ = δ(t− t′)/2. For typical experiments, the thermal occupa-
tion number n̄th ≡ kBT/(~ωm) is much larger than unity, and ⟨ξth(t) ξth(t′)⟩ ≈
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Figure 9.2 – The resolution ∆N for measuring mechanical energy quanti-
zation depending on the integration duration τ with total noise (Solid) and
quantum noise only (Dashed).

2γmn̄th δ(t − t′). Through evaluating the four-point correlation function of back-
action noise and ξth(t) in ⟨∆N̂(t)∆N̂(t′)⟩, we obtain the resolution ∆N as a
function of τ :

∆N2 =

(
γcω

2
s

G4
eff c̄

2τ

)
+

5

6

(
γdG

2
eff c̄

2τ

2
√
2ω2

s

)2

+
5

6

(
γmkBTτ√
2 ~ωeff

)2

. (9.17)

In order to successfully observe energy quantization, the following conditions are
simultaneously required: (i) the resolution ∆N2 should have a minimum equal or
less than unity. (ii) this minimum should be reachable within τ that is longer than
the cavity storage time 1/γc (which in turn must be longer than the oscillation
period 1/ωeff of the membrane). (iii) the system dynamics should be stable when
taking into account optical rigidity which is approximately equal to G2

0c̄
2/ωs for

ωm ≪ ωs.

Specifically, the SQL in condition (i), set by the first two terms in ∆N2, gives
γcγd/G

2
eff . 1, or equivalently (γcγd/G

2
0) . Λ2. If we neglect the optical spring

effect (Λ = 1), we simply recover Eq. (9.8). A strong negative optical rigidity
(ωeff ≪ ωm, i.e. Λ ≫ 1) can significantly enhance the effective coupling strength
and ease the requirements on optomechanical properties. However, a small ωeff

also makes the system susceptible to the thermal noise. Taking account of all the
above conditions, the optimal ωeff = ωm

√
n̄th/Qm with mechanical quality factor

Qm ≡ ωm/γm, and there is a nontrivial constraint on the thermal occupation
number, namely (n̄th/Qm) ≤ [G2

0/(ωsγc)]
2/3.

For a numerical estimate, we use a similar specification as given in Ref. [31],
but assume a slightly higher mechanical quality factor Qm, a lower environmental
temperature T , and a lower input optical power I0 such that all mentioned con-
ditions are satisfied. The parameters are the following: m = 50 pg, ωm/(2π) =
105Hz, Qm = 3.2 × 107, λ = 532 nm, L = 3 cm, rm = 0.9999, F = 6 × 105, T =
0.1K and I0 ≈ 5 nW. The resulting resolution ∆N is shown in Fig. 9.2, and we
are able to resolve single mechanical quantum when τ ≈ 0.1 ms.
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Even though we have been focusing on a double-sided setup where t1 ≈ t2, the
quantum limit also exists in the single-sided case originally proposed in Ref. [31].
Ideally, a single-sided setup consists of a totally-reflected end mirror and the
vacuum fluctuations only enter from the front mirror. Therefore, the quantum
noises inside the two sub-cavities have the same origin, but different optical path.
Through similar input-output calculations, we find that if laser detuning is equal to
±ωs, the quantum noises destructively interfere with each other at low frequencies,
due to the same mechanism studied in great details in Ref. [128], achieving an ideal
QND measurement. However, in reality, the end mirror always has some finite
transmission or optical loss which introduces uncorrelated vacuum fluctuations.
As it turns out, the quantum limit is similar to Eq. (9.8), only with γc,d replaced
by the damping rate of two sub-cavities.

9.4 General Systems

Actually, the SQL obtained above applies to all schemes that attempt to probe
mechanical energy quantization via parametric coupling. Let us consider n me-
chanical modes parametrically coupled with n′ normal external modes, describable
by the following Hamiltonian:

Ĥ =
n∑

ν=1

~Ων(q̂
2
ν + p̂2ν)/2 +

n′∑
i=1

~ωi â
†
i âi (9.18)

+
n′∑

i,j=1

n∑
ν=1

~χijν q̂ν(â
†
i âj + â†j âi) + Ĥext + Ĥξ .

Here Greek indices identify mechanical modes and Latin indices identify external
modes; Ων and ωi are eigenfrequencies; q̂ν , p̂ν are normalized positions and mo-
menta; âi are annihilation operators of the external degrees of freedom; χijν = χjiν

are coupling constants. Similarly, we focus on the regime where |χijν | ≪ |ωi −ωj|
(dispersive) and Ων ≪ |ωi − ωj| (adiabatic), and obtain

Ĥ =
n∑

ν=1

~Ων(q̂
2
ν + p̂2ν)/2 +

n′∑
i=1

~ω′
iô

†
i ôi + Ĥext + Ĥξ, (9.19)

where, up to χ2
ijν/|ωi − ωj|2,

ω′
i = ωi +

∑
ν

χiiν q̂ν +
∑
j ̸=i

∑
ν

(χijν q̂ν)
2

ωi − ωj

. (9.20)

In order to have quadratic couplings between a pair of external and mechanical
modes, ô1 and q̂1 for instance, we require that χ11ν = 0 and χ1iν = χ1i1δ1ν , and
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then

ω′
1 = ω1 +

∑
i̸=1

χ2
1i1

ω1 − ωi

q̂21. (9.21)

However, there still are linear couplings which originate from idle modes. This is
because, up to χijν/|ωi − ωj|,

ôi = âi +
∑
j ̸=i

χij1âj
ωi − ωj

q̂1 ≈ âi +
χ1i1ā1
ωi − ω1

q̂1 (i ̸= 1). (9.22)

where â1 is replaced with its classical amplitude ā1, for ā1 ≫ âi. From Eq.
(9.21) and (9.22), both linear and dispersive couplings are inversely proportional
to |ωi − ω1|. Therefore, we only need to consider a tripartite system formed by
q̂1, ô1 and ô2 which is the closest to ô1 in frequency. The resulting Hamiltonian is
identical to Eq. (9.2), and thus the same standard quantum limit applies.

9.5 Conclusions

We have demonstrated the existence of standard quantum limit for probing me-
chanical energy quantization in general systems where mechanical modes para-
metrically interact with optical or electrical degrees of freedom. This work will
shed light on choosing the appropriate parameters for experimental realizations.



Chapter 10

State Preparation: Non-Gaussian
Quantum State

10.1 Preface

As we conclude from the previous chapter, in order to create non-
Gaussian quantum states, a nonlinear optomechanical coupling is gen-
erally required. This is rather challenging to achieve, especially when
the mass of the mechanical oscillator is large and the frequency is low.
In this chapter, we propose a protocol for coherently transferring non-
Gaussian quantum states from the optical field to a mechanical oscil-
lator, which does not require a nonlinear coupling in the optomechani-
cal system. We demonstrate its experimental feasibility in both future
gravitational-wave detectors and table-top optomechanical devices. This
work not only outlines a feasible way to investigate non-classicality in
macroscopic optomechanical systems, but also presents a new and el-
egant approach for solving non-Markovian open quantum dynamics in
general linear systems. This is a joint research effort by Farid Khalili,
Stefan Danilishin, Helge Müller-Edhardt, Huan Yang, Yanbei, and my-
self. It has been submitted to Phys. Rev. Letts. for reviewing.

10.2 Introduction

Recently, there have been intensive experimental and theoretical studies on the
investigation of quantum behaviors of macroscopic mechanical oscillators in op-
tomechanical devices [149]. These activities are motivated by: (i) the necessity
to achieve and go beyond the Standard Quantum Limit (SQL) for high-precision
measurements with mechanical probes [74], (ii) the testing and interpretation of
quantum theory with macroscopic degrees of freedom [150], and (iii) quantum in-
formation processing with optomechanical devices [149]. Non-Gaussian quantum
states, such as Fock states, lie in the heart of all these endeavors [151, 152]. A
6 GHz micromechanical oscillator has been recently prepared in a single-quantum
state by first cooling it down to the ground state with a dilution refrigeration,
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Figure 10.1 – Possible experimental schemes: (i) an interferometric
gravitational-wave detector with kg-scale test masses (left) [72] and (ii)
A tabletop coupled cavity scheme with a ng-scale membrane (right) [31].

and then later swapping the quantum state between it and a superconducting
qubit [122]. This is possible due to the intrinsic nonlinearity in the qubit sys-
tem [143, 147]. For optomechanical system, to achieve nonlinearity in the quan-
tum regime, the zero-point displacement xq =

√
~/(2mωm) of the oscillator with

mass m and frequency ωm is required to be comparable to the cavity linear dy-
namical range given by the optical wavelength λ divided by the cavity finesse
F [31, 142, 153, 154]:

λ/(Fxq) . 1. (10.1)

Since, in a typical setup, λ ∼ 10−6m and F . 106, this gives xq & 10−12m, which
is rather challenging to achieve.

Here, we propose a protocol for preparations of non-Gaussian quantum states with
optomechanical devices, which does not require an optomechanical nonlinearity.
The idea is to inject a non-Gaussian optical state, e.g., a single-photon pulse cre-
ated by a cavity QED process [46–48], into the dark port of an interferometric op-
tomechanical device as shown schematically in Fig. 10.1. The radiation-pressure
force of the single photon on the mechanical oscillator is coherently amplified by
the classical pumping from the bright port, and, as we will show, the qualitative
requirement for preparing a non-Gaussian state becomes:

λ/(F xq) .
√
Nγ. (10.2)

Here Nγ = I0 τ/(~ω0) (I0 is the laser power into the bright port and ω0 the
frequency) is the number of pumping photons within the duration τ of the single-
photon pulse, and we gain a significant factor of

√
Nγ compared with Eq. (10.1),

making this scheme experimentally achievable.

To motivate experiments and make correct predictions, it is crucial to understand
(i) the dynamics: how the mechanical oscillator interacts with the single-photon
pulse, and (ii) the conditional process: how the continuous measurement affects
the final quantum state. For the dynamics, we will study the full quantum dynam-
ics without using either the rotating-wave approximation [155], or the three-mode
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approach [97, 156], because the interaction timescale will be shorter than one me-
chanical oscillation period, in order to minimize the thermal decoherence effect—a
strong optomechanical coupling. For the conditional process, the non-trivial quan-
tum correlations at different times in the photon pulse make the open quantum
dynamics highly non-Markovian, which does not allow a transparent study with
the standard Stochastic-Master-Equation (SME) approach [38–42]. We develop a
path-integral approach. This solves the non-Markovian dynamics elegantly and
gives an explicit expression for the final quantum state of the mechanical oscillator,
which is also valid for general linear systems.

The outline of this chapter is as follows: in Sec. 10.3, we will make an order-of-
magnitude estimate of the experiment requirements of such a protocol by consid-
ering a simple case. In Sec. 10.4, we will present the path-integral based approach
to treat non-Gaussian state preparation in general optomechanical systems, and
an explicit relation between the optical state and the oscillator state is obtained.
In Sec. 10.5, we will apply this result to the single-photon case, and find justifi-
cations for the previous order-of-magnitude estimate. Finally, we will summarize
our main results in Sec. 10.6. In the Appendix, there are further details of the
equations and concepts that we have introduced in the main sections.

10.3 Order-of-Magnitude Estimate

The model of such optomechanical devices is shown in Fig. 10.2. The oscillator
position x̂ is coupled to a thermal bath and also the cavity mode â (mediated
by radiation pressure) which in turn interacts with ingoing âin and outgoing âout
optical fields. To gain a qualitative picture, we first make an order-of-magnitude
estimate by considering a simple case in which the cavity bandwidth is large with â
adiabatically eliminated and the oscillator is a free mass (frequency ωm ∼ 0) with
the thermal force ignored. The corresponding Heisenberg equations of motion
read [refer to App. 10.7.1 for more details]:

˙̂x(t) = p̂(t)/m , ˙̂p(t) = α â1(t) , (10.3)

b̂1(t) = â1(t) , b̂2(t) = â2(t) + (α/~)x̂(t) . (10.4)

Here, the coupling constant α ≡ 8
√
2(F/λ)

√
~I0/ω0; â1,2 (b̂1,2) are the amplitude

and phase quadratures of the ingoing field âin (outgoing field âout) with â1 ≡
(âin + â†in)/

√
2 and â2 ≡ (âin − â†in)/(i

√
2) (the same for the relation between b̂1,2

and âout).

Suppose, at t = −τ , the oscillator is prepared in some initial quantum state
|ψm⟩ =

∫∞
−∞ψm(x)|x⟩ dx and is interacting with a single photon up to t = 0. With

a short photon pulse (i.e., a short interaction duration), the oscillator position
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Figure 10.2 – A model of the optomechanical device shown in Fig. 10.1
(upper left), its spacetime diagram (right), and the couplings (lower left).
Ingoing and outgoing rays (tilted lines) are placed on opposite sides of the
oscillator world line (vertical) for clarity. The ingoing field contains a pho-
ton pulse, while the outgoing field—which contains the information of the
oscillator motion—is measured continuously.

almost does not change, and we obtain:

X̂(0) = X̂(−τ), P̂ (0) = P̂ (−τ) + κ Â1 , (10.5)

B̂1 = Â1, B̂2 = Â2 + κ X̂(0) . (10.6)

We have normalized the oscillator position and momentum by their zero-point
uncertainties: X̂ ≡ x̂/xq ( xq ≡

√
~/2mωm ) and P̂ ≡ p̂/pq ( pq ≡

√
~mωm/2 );

we have introduced Âj =
√
2/τ

∫ 0

−τ
dt âj(t) (j = 1, 2) which has an uncertainty

∆Âj = 1 with ∆Â ≡ ⟨ψ|(Â−Ā)2|ψ⟩1/2; B̂j =
√

2/τ
∫ 0

−τ
dt b̂j(t); κ ≡ α

√
2τ xq/~ =

16
√
NγF xq/λ. These two equations are similar to those for studying the atom-

light interaction in a quantum memory [157, 158]. They can be transformed back
into an evolution operator: Û = exp[iκÂ1X̂] in the Schrödinger picture. The
quantum state of the system at t = 0 is simply |ψ⟩ = Û |ψo⟩|ψm⟩ with |ψo⟩ the
initial optical state. Given a measurement of B̂2 with a precise result y, the
oscillator is projected into a conditional quantum state: |ψc

m⟩ = ⟨y|Û |ψo⟩|ψm⟩
which, in the coordinate representation ψc

m(X) ≡ ⟨X|ψc
m⟩, reads

ψc
m(X) = ψo(y − κX)ψm(X) (10.7)

—the optical state is mapped onto the mechanical oscillator. A significant map-
ping requires that ψo(y − κX) dominates over ψm(X) in determining the profile
of ψc

m(X). In momentum space, this dictates that the momentum uncertainty
induced by the optomechanical interaction should be large than that from the
initial state ψm(X), i.e., κ∆Â1 > ∆P̂ (−τ). Suppose the oscillator is initially in
its quantum ground state with ∆P̂ (−τ) = 1. Since ∆Â1 = 1, this condition reads
κ > 1, i.e., λ/(F xq) < 16

√
Nγ, which justifies Eq. (10.2).

In the above considerations, we have ignored the important thermal decoherence
effect. In a real experiment, it is essential that the momentum fluctuations due
to the thermal force within the interaction duration τ—∆P̂th = (Sth

FF τ)
1/2/pq—

should be small compared with that from the optomechanical interaction, namely,
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Table 10.1 – Possible experimental specifications

parameters λ F m ωm/2π Qm T I0 τ
large scale 1µm 6000 4 kg 1Hz 108 300 K 200 W 1 ms
small scale 1µm 104 1 ng 105 Hz 107 4 K 0.2µW 0.01 ms

∆P̂th < κ. In the high temperature limit, the force spectrum Sth
FF of the ther-

mal force is 2mωmkBT/Qm with T the environmental temperature and Qm the
mechanical quality factor. More explicitly, such a requirement reads

λ/(F xq)
√
nth/Qm

√
ωmτ < 8

√
Nγ. (10.8)

with nth ≡ kBT/(~ωm) the thermal occupation number. These two conditions
[cf. Eqs. (10.2) and (10.8)] set the benchmarks for a successful non-Gaussian
state-preparation experiment. They can be satisfied with experimentally feasible
specifications as shown in Table 10.1, in which the first row is close to that of a
large-scale gravitational-wave detector and the second row to that of a small-scale
optomechanical device in Ref. [31]. Such a qualitative picture will be justified by
a rigorous treatment below.

10.4 General Formalism

For a quantitative study, we divide the entire process from t = −τ to t = 0
into N segments and later take the continuous limit. The n-th segment con-
sists of: (i) a free evolution, which is described by an evolution operator: Ûn ≡
exp[−iĤn τ/(N~)] with Ĥn the system Hamiltonian at t = (n−N)τ/N , and (ii)
a measurement of the outgoing field at a certain quadrature ŷ = b̂1 cos θ+ b̂2 sin θ,
which is described by a projection operator: P̂n = δ(ŷ− yn) with yn the measure-
ment result of ŷ. After the entire process and conditioning on the measurement
results y = (y1, · · · , yN), the system is projected into a conditional quantum state:

ρ̂c(y) = P̂y ρ̂i P̂†
y/w(y) (10.9)

with P̂y ≡ P̂N ÛN · · · P̂1Û1 and w[y] ≡ Trth,o,m[P̂yρ̂iP̂†
y] the probability for ob-

taining measurement results y. The initial density matrix ρ̂i of the system is
ρ̂th(−τ) ⊗ ρ̂o(−τ) ⊗ ρ̂m(−τ) with ρ̂th, ρ̂o, and ρ̂m for the thermal bath, optical
field, and mechanical oscillator, respectively.

The conditional quantum state of the mechanical oscillator ρ̂cm is obtained by
tracing out the degrees of freedom of both the thermal heat bath and optical
field, i.e.,

ρ̂cm(y) = Trth,o[ρ̂
c(y)] = Trth,o[P̂y ρ̂i P̂†

y]/w(y). (10.10)
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In the standard SME approach, such a trace operation is made right after each
segment and this requires that these degrees of freedom at different segments
to be not correlated. However, it is not satisfied here, due to quantum corre-
lations among different segments (non-Markovian) arising from the non-trivial
initial optical state. We apply a different approach based upon a path inte-
gral. By using the facts that: P̂y = Û(τ)P̂H

N P̂H
N−1 · · · P̂H

1 ≡ Û(τ)P̂H
y , where

Û(τ) ≡
∏N

n=1Ûn (time-ordered) and P̂H
n ≡ δ(ŷn − yn) with ŷn ≡ Û †(nτ

N
) ŷ Û(nτ

N
),

and the optical quadrature at different times commute: [ŷn, ŷn′ ] = 0, we obtain

P̂H
y =

∏N
n=1δ(ŷn − yn) =

∫
dNξ
(2π)N

exp[i
∑N

n=1 ξn(ŷn − yn)]. In the continuous limit
N → ∞, the total projection operator can be rewritten as a path integral:

P̂y = Û(τ)
∫

D[ξ] exp

{
i

∫ 0

−τ

dt ξ(t)[ŷ(t)− y(t)]

}
, (10.11)

which allows us to take the entire measurement history, and trace out the optical
field in a single step, instead of sequentially as in the SME approach.

To obtain an explicit expression for the conditional quantum state of the mechan-
ical oscillator, i.e., its Wigner function, we evaluate the generating function:

J [αx, αp; y] = Trm[e
iαxx̂+iαpp̂ ρ̂cm(y)], (10.12)

which is related to theWigner function byW [x, p; y] =
∫

d2α
(2π)2

e−i(αxx+αpp)J [αx, αp; y].

From the facts that: Û(τ)† x̂ Û(τ) = x̂(0) and [x̂(0), ŷ(t)] = 0 (t < 0) (also true
for p̂), and the property P̂†

yP̂y = P̂y, we obtain

J [α; y] = Trth,m,o[e
iαx′

0 P̂H
y ρ̂i]/w(y), (10.13)

where vectors α ≡ (αx, αp), x̂0 ≡ (x̂(0), p̂(0)), and superscript ′ denotes trans-
pose. To move forward, we need to specify the initial density matrix ρ̂i of
the system. For the thermal bath in thermal equilibrium at temperature T ,
ρ̂th(−τ) = e−Ĥth/kBT/Tr[e−Ĥth/kBT ]. For the optical field, we consider an arbi-
trary spatial profile f(x/c) for the photon pulse of which the creation operator

reads Γ̂† ≡
∫ 0

−τ
dt f∗(t)â†in(t). In the P-presentation, a general initial state of such a

mode can be written as ρ̂o(−τ) =
∫
d2ζ P (ζ)|ζ⟩⟨ζ| with the vector ζ ≡ (ℜ[ζ],ℑ[ζ])

and |ζ⟩ ≡ exp[ζ Γ̂† − ζ∗Γ̂]|0⟩. Since the timescale of the photon profile f(t) will
automatically set the interaction duration, we can extend −τ to −∞ which is
equivalent to turning on the optomechanical interaction adiabatically. In this
case, the initial state of the oscillator—coupled to the thermal bath—decays away
before the optomechanical interaction starts, and thus does not influence ρ̂cm.

By substituting in the initial state and Baker-Campbell-Hausdorff formula, the
generating function becomes:

J =
1

w(y)

∫
d2ζD[ξ] ei[ζ

∗Γ̂−ζ Γ̂†, B̂]⟨0|eiB̂|0⟩P (ζ), (10.14)
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where B̂ ≡ α x̂′
0 +
∫ 0

−∞ dt ξ(t)[ŷ(t)− y(t)]. Further evaluation of J requires us to
manipulate the statistics of the measured optical quadrature ŷ(t) and the oscillator
motion x̂0. We apply the tools introduced in Ref. [129] [refer to App. 10.7.2
for some details] to (i) simplify the statistics of ŷ(t), while maintaining its full
information by causally whitening it into ẑ(t) such that ⟨ẑ(t)ẑ(t′)⟩ = δ(t− t′), and
(ii) separate x̂0 into a quantum part R̂ and a classical part which can be inferred

from ẑ by using the optimal Wiener filter K—x̂0 ≡ R̂+
∫ 0

−∞ dtK(−t)ẑ(t)—such

that R̂ is not correlated with ẑ(t), namely ⟨0|R̂ ẑ(t)|0⟩ = 0. With these tools, the
path integral can be completed, and it gives

J =
1

w(y)

∫
d2ζe−[αVcα′+∥z−2 ζL′∥2]/2+iαx′

ζP (ζ). (10.15)

Here Vc ≡ ⟨0|R̂′R̂|0⟩ with R̂ = (R̂x, R̂p); the modulus of a function: ∥g∥2 ≡∫ 0

−∞ g(t)g∗(t)dt; xζ ≡ xc + ζ∗γ + ζγ∗; xc ≡ (xc, pc) =
∫ 0

−∞ dtK(−t)z(t) with z(t)
measured results of ẑ(t) and K = (Kx, Kp); γ ≡ [Γ̂, R̂] and L ≡ (ℜ[L],ℑ[L])
with L(t) ≡ [Γ̂, ẑ(t)], which characterize the contribution of the photon Γ̂ to both
the oscillator motion R̂ and the output field ẑ, and determine the efficiency of the
state transfer.

Finally, the Wigner function for the quantum state of the oscillator reads (the
normalization factor is ignored):

W =

∫
d2ζe−[(x−xζ)V−1

c (x−xζ)
′+∥z−2 ζL′∥2]/2P (ζ) (10.16)

with χ ≡ x − xζ . This formula directly relates the optical state to the resulting
state of the mechanical oscillator. Since no specific Hamiltonian is assumed in
deriving it, it is valid for general linear quantum dynamics. For cavity-assisted
optomechanical systems, γ, Vc,K and L can be obtained from the standard input-
output relations in Refs. [44, 45, 96] by using the formalism in Ref. [129]. The state
transfer efficiency can be measured quantitatively by the fidelity defined as z ≡
Tr[ρ̂cm ρ̂o] which is equal to the overlapping between two quantum states [157, 158]
[cf. App. 10.7.3].

10.5 Single-photon Case

As an example, we consider the simplest case where the optical field is in a single-
photon state with ρ̂o = |1⟩⟨1| and P (ζ) = e|ζ|

2
∂2δ(2)(ζ)/∂ζ∂ζ∗. From Eq. (10.16),

the normalized Wigner function reads:

W =
1− γV−1

c γ† − ∥L∥2 + |γ V−1
c δx′ + Z|2

2π
√
detVc(1− ∥L∥2 + |Z|2)

e−δxV−1
c δx′/2, (10.17)
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Figure 10.3 – Distributions of measurement results (left panels) and the
corresponding Wigner function of the oscillator given the most probable
measurement result (middle panels) and less probable result but with a sig-
nificant non-Gaussianity (right panels). The upper panels show the case
with a specification close to a gravitational-wave detector, and the lower
panels close to a small-scale optomechanical device as listed in Table 10.1.
We have used normalized coordinates (with respect to xq and pq) and in-
troduced Ωq ≡

√
~m/α2.

where δx ≡ x− xc and Z ≡
∫ 0

−∞ dt z(t)L(t). Since the measurement results z(t)
only appear in the above Wigner function in terms of an integral, i.e., Z, the
conditional process is easy to study and the random vector Z = (ℜ[Z], ℑ[Z])
follows a two-dimensional distribution:

w[Z] =
1− ∥L∥2 +ZZ ′

2π
√
detVL

e−Z V−1
L Z′/2 (10.18)

with VL ≡
∫ 0

−∞ dtL′L.

With Eq. (10.17), we can justify the previous order-of-magnitude estimate by using
the same specifications listed in Table 10.1. As an example, we assume a photon
profile of f(t) =

√
2γfe

(γf+iωf )t. The resulting Wigner functions of the mechanical
oscillator are shown in Fig. 10.3. In the case of an advanced gravitational-wave
detector, ωf/2π = γf/2π = 70 Hz, and the state transfer fidelity z = 0.58
(Z = 0.3 − 0.5i) and z = 0.95 (Z = 0); in the case of a small-scale device,
ωf/ωm = 0.1, γf/ωm = 0.3, and the corresponding z = 0.34 (Z = 0.5− 0.5i) and
z = 0.56 (Z = 0). In both cases, the Wigner function has negative regions—a
unique quantum feature. The prepared non-Gaussian quantum state can be inde-
pendently verified using the quantum tomography protocol proposed in Ref. [139]
which allows us to reconstruct the quantum state with a sub-Heisenberg accuracy.
This is essential for revealing these nonclassical negative regions.
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10.6 Conclusions

We have outlined an experimental protocol for creating non-Gaussian quantum
states in a macroscopic mechanical oscillator with optomechanical interactions.
The radiation-pressure induced by the photon pulse is coherently amplified, and
this allows us to transfer the optical state to the mechanical oscillator. Starting
from an order-of-magnitude estimate, we have convinced ourself that this protocol
is feasible for both future gravitational-wave detectors and small-scale table-top
experiments. This has been confirmed by a more rigorous treatment in which a
path integral is constructed for the measurement process. Such a path-integral-
based approach provides an elegant treatment of the non-Markovian conditional
dynamics in an open quantum system, and it is valid for general linear continuous
measurements.

10.7 Appendix

10.7.1 Optomechanical Dynamics

In this section, we will briefly review the dynamics of a typical cavity-assisted
optomechanical system, in order to justify some of the equations in the main text.
The Hamiltonian for such an optomechanical system (shown schematically in Fig.
10.2) can be written as [cf. Refs. [44, 45, 96]]

Ĥ =
p̂2

2m
+

1

2
mω2

mx̂
2 + ~ωc â

†â+ ~G0x̂ â
†â

+ i ~
√

2γ (âine
−i ω0 tâ† −H.c.) + Ĥγ + Ĥγm . (10.19)

Here, x̂ and p̂ are the position and momentum operators for the oscillator; â is
the annihilation operator for the cavity mode; G0 ≡ ωm/L is the optomechanical
coupling constant with L the cavity length; γ is the cavity bandwidth; Ĥγ and

Ĥγm describe the dissipation mechanism of the cavity mode and the mechanical
oscillator, respectively.

In the rotating frame at the laser frequency ω0, the above Hamiltonian leads to
the following standard Langevin equations for the mechanical oscillator:

˙̂x(t) =
p̂(t)

m
, (10.20)

˙̂p(t) = −γmp̂(t)−mω2
mx̂(t) + ~G0â

†(t)â(t) + F̂th(t), (10.21)

with F̂th the thermal force noise, and for the cavity mode:

˙̂a(t) + (γ − i∆)â(t) = i G0â(t)x̂(t) +
√
2γ âin(t), (10.22)
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with ∆ ≡ ω0 − ωc. The standard input-output relation for the cavity mode is
given by [refer to Ref. [39]]

âin(t) + âout(t) =
√
2γ â(t). (10.23)

Since the cavity mode is coherently driven with a laser, the above equation can
be linearized by replacing every quantity ô with a sum of the classical steady part
ō and a perturbed part. The equations of motion for the perturbed parts of the
oscillator read

˙̂x(t) =
p̂(t)

m
, (10.24)

˙̂p(t) = −γmp̂(t)−mω2
mx̂(t) + Ḡ0 â1(t) + F̂th(t), (10.25)

where the amplitude quadrature â1(t) ≡ [â(t) + â†(t)]/
√
2 and Ḡ0 ≡

√
2~G0ā.

Similarly, for the cavity mode,

˙̂a(t) + (γ − i∆)â(t) = i
Ḡ0√
2~
x̂(t) +

√
2γ âin(t). (10.26)

In the limit of a large cavity bandwidth considered in the order-of-magnitude
estimate [refer to Sec. 10.3], the time dependence of the cavity mode can be
adiabatically eliminated and we have

â(t) ≈ i
Ḡ0√
2~ γ

x̂(t) +

√
2

γ
âin(t). (10.27)

Therefore, from Eq. (10.23),

âout(t) = âin(t) + i
α√
2~
x̂(t). (10.28)

with α ≡
√
2 Ḡ0/

√
γ. By defining the output amplitude and phase quadratures

as

b̂1 =
âout + â†out√

2
, b̂2 =

âout − â†out
i
√
2

, (10.29)

we recover what has been shown in Eq. (10.4).

10.7.2 Causal whitening and Wiener filter

In this section, we will briefly introduce the concepts of causal whitening and
Wiener filtering techniques applied in this paper (One can refer to Ref. [129] for
more details). They are implemented extensively in the classical signal filtering.
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Here, the reason why these classical techniques can be applied lies in following fact:
In a linear continuous measurement, the degrees of freedom of the measurement
output ŷ(t) at different times commute with each other [74], i.e.,

[ŷ(t), ŷ(t′)] = 0. (10.30)

This basically means that in principle, they can be simultaneously measured with
arbitrarily high accuracy without imposing any limit. Therefore, they can be
treated just as classical entities, and classical filtering techniques apply.

Causal whitening.—Causal whitening is a powerful tool for simplifying the statistic
of a random variable (the measurement output in this context), while maintain-
ing its complete information. Mathematically, given the spectrum Syy(Ω) of the
output ŷ(t), we can factorize it as:

Syy(Ω) = ϕ+(Ω)ϕ−(Ω), (10.31)

such that ϕ+ (ϕ−) and its inverse are analytical functions in the upper- (lower-)
half complex plane, and ϕ∗

+ = ϕ−. The causally-whitened output in the frequency
domain is defined as

ẑ(Ω) ≡ ŷ(Ω)

ϕ+(Ω)
. (10.32)

Since

⟨ẑ(Ω)ẑ(Ω′)⟩ = 2π
Syy

ϕ+ϕ−
δ(Ω− Ω′) = 2πδ(Ω− Ω′), (10.33)

the corresponding correlation function is:

⟨ẑ(t)ẑ(t′)⟩ = δ(t− t′), (10.34)

which corresponds to a white noise with no correlations at different times. This
not only simplifies the statistics, because ẑ is uniquely defined from ŷ, it also
possesses the same amount of information concerning the motion of the mechanical
oscillator.

Wiener filter—AWiener filter is the optimal filter satisfying the least mean-square
error criterion. Given a random variable x̂ (here the oscillator position), we can
extract a maximal amount of information about x̂(0) from the measurement data
ŷ(t) (from −∞ to 0) with the Wiener filter Kx(t). The conditional mean of x̂(0)
is

x̂cond(0) =

∫ 0

−∞
dtKx(−t)ŷ(t). (10.35)

The corresponding error R̂x(t) = x̂(0)− x̂cond(0) defines the remaining uncertainty
that we cannot learn from ŷ(t). Mathematically, this dictates that such an error is
not correlated with ŷ and is orthogonal to the space defined by the measurement
results, namely,

⟨R̂x(0)ŷ(t)⟩ = 0. (10.36)



148 Chapter 10. State Preparation: Non-Gaussian Quantum State

Therefore, the decomposition that we applied in this paper and also Ref. [129]—

x̂(0) =

∫ 0

−∞
dtKx(−t)ŷ(t) + R̂x(0) (10.37)

—is very useful in separating the statistical dependence of x̂ on the measurement
ŷ and facilitates the analysis of the conditional dynamics.

The Wiener filter can be obtained using the standard Wiener-Hopf method, and
its frequency domain representation is:

Kx(Ω) =
1

ϕ+(Ω)

[
Sxy(Ω)

ϕ−(Ω)

]
+

, (10.38)

where Sxy is the cross-correlation between x̂ and ŷ, and [f(Ω)]+ means taking the
component of f(Ω) that is analytical in the upper-half complex plane.

10.7.3 State transfer fidelity

To quantify the state transfer, we follow Refs. [157, 158] by defining the fidelity
from the overlap between the two Wigner functions of the prepared oscillator state
Wm(X, P ) and the target state Wtag(X, P ):

z ≡ 2π

∫ ∞

−∞
dX

∫ ∞

−∞
dP Wm(X, P )Wtag(X, P ). (10.39)

Depending on the situation, X and P can be normalized with respect to either
the zero-point uncertainty xq and pq or xq

√
ωm/Ωq, and pq

√
Ωq/ωm.

Since the center of the prepared state is given by xc and pc, we need to shift it
to the center to compare with the target state, and this will not introduce any
statistical difference. In addition, the prepared state is a squeezed state defined
by Vc. To properly evaluate the overlap, we will apply the well-known Bogoliubov
transformation to the coordinates of the prepared state:

X̂ ′ = X̂(sinh β + cosh β cos 2ϕ)− P̂ cosh β sin 2ϕ, (10.40)

P̂ ′ = P̂ (sinh β + cosh β cos 2ϕ) + X̂ cosh β sin 2ϕ. (10.41)

By choosing an appropriate set of squeezing factor β and rotation angle ϕ, the
overlap with the target state can be maximized. Therefore, a properly modified
definition for the fidelity should be:

z′ ≡ max[z, {β, ϕ}]. (10.42)

In the case of the single-photon injection, the Wigner function of the target me-
chanical state is simply:

Wtag(X, P ) =
X2 + P 2 − 1

2π
exp

[
−X

2 + P 2

2

]
. (10.43)



Chapter 11

Probing Macroscopic Quantum
States

11.1 Preface

In this chapter, we consider a subsequent verification stage which probes
the prepared macroscopic quantum state, and verifies the quantum dy-
namics. By adopting an optimal time-dependent homodyne detection
method, in which the phase of the local oscillator varies in time, the
conditional quantum state can be characterized below the Heisenberg
limit, thereby achieving a quantum tomography. In the limiting case
of no readout loss, such a scheme evades measurement-induced back-
action, which is identical to the variational-type measurement scheme
invented by Vyatchanin et al., but in the context for detecting grav-
itational waves (GWs). To motivate Macroscopic Quantum Mechan-
ics (MQM) experiments with future GW detectors, we mostly focus on
the parameter regime where the characteristic measurement frequency
is much higher than the oscillator frequency and the classical noises are
Markovian, which captures the main features of a broadband GW detec-
tor. In addition, we discuss verifications of Einstein-Podolsky-Rosen-type
entanglement between macroscopic test masses in future GW detectors,
which enables us to test one particular version of gravity decoherence con-
jectured by Diósi and Penrose. This is a joint research effort by Stefan
Danilishin, Helge Müller-Ebhardt, Henning Rehbein, Kentaro Somiya,
Yanbei Chen, and myself. It is published in Phys. Rev. A 81, 012114
(2010).

11.2 Introduction

Due to recent significant advancements in fabricating low-loss optical, electrical
and mechanical devices, we will soon be able to probe behaviors of macroscopic
mechanical oscillators in the quantum regime. This will not only shed light on
quantum-limited measurements of various physical quantities, such as a weak
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force, but also help us to achieve a better understanding of quantum mechanics
on macroscopic scales.

As a premise of investigating macroscopic quantum mechanics (MQM), the me-
chanical oscillator should be prepared close to being in a pure quantum state. To
achieve this, there are mainly three approaches raised in the literature: (i) The
first and the most transparent approach is to cool down the oscillator by cou-
pling it to an additional heat bath that has a temperature Tadd much lower than
that of the environment T0. As a result, the oscillator will achieve an effective
temperature given by Teff = (T0 γm + Tadd Γadd)/(γm + Γadd), with γm and Γadd

denoting the damping due to coupling to the environment and the additional heat
bath, respectively. In the strong-damping regime, with Γadd ≫ γm, we achieve
the desired outcome with Teff ≈ Tadd. Since the typical optical frequency ω0 can
be much higher than kBT0/~, a coherent optical field can be effectively behaved
as a zero-temperature heat bath. Indeed, by coupling an oscillator parametrically
to an optical cavity, many state-of-the-art experiments have demonstrated signif-
icant cooling of the oscillator, achieving a very low thermal occupation number
[9, 20, 22–27, 29–32, 34, 35]. A similar mechanism also applies to electrome-
chanical systems as demonstrated in the experiments [21, 33, 36, 123]; (ii) The
second approach is to introduce additional damping via feedback, i.e., the so-
called cold-damping. The feedback loop modifies the dynamics of the oscillator in
a way similar to the previous cooling case. Such an approach has also been real-
ized experimentally [19, 28, 37]. If the intrinsic mechanical and electrical/optical
qualities of the coupled system are high, those cooling and cold-damping experi-
ments can eventually achieve the quantum ground state of a mechanical oscillator
[43–45, 106, 108, 124–127]; (iii) The third approach is to construct a conditional
quantum state of the mechanical oscillator via continuous position measurements.
Quantum mechanically, if the oscillator position is being continuously monitored,
a certain classical trajectory in the phase space can be mapped out, and the os-
cillator is projected into a posteriori state [159], which is also called a conditional
quantum state [38–41, 54, 129]. Given an ideal continuous measurement without
loss, the resulting conditional quantum state of the oscillator is a pure state.

Recently, we theoretically investigated this third approach for general linear po-
sition measurements, in great detail [129]. The analysis of this work is indepen-
dent of the scale and mass of the oscillator — these parameters will only modify
the structure of resulting noises. In particular, we applied our formalism to dis-
cuss MQM experiments with macroscopic test masses in future gravitational-wave
(GW) detectors. We demonstrated explicitly that, given the noise budget for the
design sensitivity, next-generation GW detectors such as Advanced LIGO [3] and
Cryogenic Laser Interferometer Observatory (CLIO) [160] can prepare nearly pure
Gaussian quantum states and create Einstein-Podolsky-Rosen (EPR) type entan-
glement between macroscopic test masses. Besides, we showed that the free-mass
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Standard Quantum Limit (SQL) [55, 74] for the detection sensitivity:

SSQL
x (Ω) =

2~
mΩ2

, (11.1)

where m is mass of the probing test mass, and Ω is the detection frequency. This
limit also serves as a benchmark for MQM experiments with GW detectors.

More concretely, a Gaussian conditional quantum state is fully described by its
Wigner function, as shown schematically in Fig. 11.1. This is given by:

W (x, p) =
1

2π
√
detVcond

exp

[
−1

2
X⃗Vcond−1

X⃗T

]
. (11.2)

Here, X⃗ = [x − xcond, p − pcond] with xcond and pcond denoting the conditional
means of oscillator position x and momentum p, and Vcond is the covariance
matrix between position and momentum. The purity of the conditional quantum
state can be quantified by the uncertainty product, which is defined as:

U ≡ 2

~
√
detVcond =

2

~

√
V cond
xx V cond

pp − V cond
xp

2, (11.3)

which is also proportional to the square root of the area of the uncertainty ellipse
as shown in Fig. 11.1. In Ref. [129], we related this uncertainty product U of the
conditional quautum state of test masses in GW detectors to the SQL-beating
ratio of the classical noise, and also the amount of entanglement between test
masses to the size of the frequency window (i.e., the ratio between upper and
lower ends of that frequency window) in which the classical noise goes below the
SQL.

A state-preparation stage alone does not provide a complete test of MQM. This is
because the measurement data in the state-preparation process only allow us to
measure a classical trajectory of the oscillator – quantum fluctuations are only in-
ferred from the noise budget, but are not directly visible. Therefore, the resulting
conditional quantum state critically relies on the noise model of the measure-
ment device. If such a noise model is imprecise, it will yield severe discrepancies
between the actual quantum state and the conditional one. Therefore, there is
a need for a second measurement stage which has to follow up the preparation
stage. In this chapter, we will address the above issue by considering a subsequent
state-verification procedure, in which we make a tomography of the conditional
quantum state obtained during the preparation stage. On the one hand, this
verification stage can serve as a check on the specific noise model used to verify
the prepared quantum state. On the other hand, if we insert an evolution stage
with the oscillator evolving freely before the verification, the quantum dynamics
of the oscillator can also be probed, which allows us to study different decoherence
effects, and also to check whether a macroscopic mechanical oscillator does evolve
in the same way as a quantum harmonic oscillator or not.
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Figure 11.1 – (Color online) A schematic plot of a Wigner functionW (x, p)
(left) and the corresponding uncertainty ellipse for the covariance matrix
Vcond (this can be viewed as a projection of the Wigner function). The cen-
ter of the plot is given by the conditional mean (xcond, pcond). The Heisen-
berg limit is shown as a unit circle with radius given by the zero-point
fluctuation ~/(2mωm). For a pure Gaussian conditional quantum state, the
area of the ellipse, i.e., π detVcond/(2mωm)2, is also equal to that of the
Heisenberg limit. Therefore, the uncertainty product detVcond can be used
as an appropriate figure of merit for quantifying the purity of a quantum
state.

Figure 11.2 – (Color online) A schematic plot of a random walk of the con-
ditional quantum state, i.e., its Wigner function, in phase space. Its center
is given by the conditional mean [xcond(t), pcond(t)], with the uncertainty
given by conditional variances V cond

xx,pp,xp. To verify the prepared conditional
quantum state, the only knowledge that verifier needs to know is the classi-
cal information of the conditional mean provided by the preparer, provided
the noises are Markovian.
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Since the conditional quantum state undergoes a random walk in the phase space,
as shown schematically in Fig. 11.2, the classical information of the conditional
mean, obtained by the preparer from the measurement data, needs to be passed
onto the verifier, who will then proceed with a tomography process. Suppose the
state preparation stage ends at t = 0, and the preparer obtains a conditional
quantum state whose Wigner function is W (x(0), p(0)). The task of the verifier is
to try to reconstruct this Wigner function, by synthesizing marginal distributions
of different mechanical quadratures X̂ζ(0) from ensemble measurements at t > 0,
with

X̂ζ(0) ≡ x̂(0) cos ζ +
p̂(0)

mωm

sin ζ, (11.4)

where x̂(0) and p̂(0) denote the oscillator position and momentum at t = 0, and ωm

is the oscillation frequency. This process is similar to the optical quantum tomog-
raphy, where different optical quadratures are measured with homodyne detections
[161]. However, there is one significant difference — mechanical quadratures are
not directly accessible with linear position measurements, which measure:

x̂q(t) = x̂(0) cosωmt+
p̂(0)

mωm

sinωmt, (11.5)

rather than X̂ζ . To probe mechanical quadratures, we propose the use of a time-
dependent homodyne detection, with the local-oscillator phase varying in time.
Given a measurement duration of Tint, we can construct an integral estimator,
which reads:

X̂ =

∫ Tint

0

dt g(t) x̂(t) ∝ x̂(0) cos ζ ′ +
p̂(0)

mωm

sin ζ ′ (11.6)

with cos ζ ′ ≡
∫ Tint

0
dt g(t) cosωmt, and sin ζ ′ ≡

∫ Tint

0
dt g(t) sinωmt. Therefore, a

mechanical quadrature X̂ζ′ is probed [cf. Eq. (11.4)]. Here g(t) is some filtering
function, which is determined by the time-dependent homodyne phase, and also
by the way in which data at different times are combined.

The ability to measure mechanical quadratures does not guarantee the success of
a verification process. In order to recover the prepared quantum state, it requires
a verification accuracy below the Heisenberg limit. Physically, the output of the
verification process is a sum of the mechanical-quadrature signal and some uncor-
related Gaussian noise. Mathematically, it is equivalent to applying a Gaussian
filter onto the original Wigner function W (x, p) of the prepared state [162], and
thus the reconstructed Wigner function is:

Wrecon(x, p) =

∫ ∞

−∞
dx′dp′ ψ(x− x′, p− p′)W (x′, p′), (11.7)

where the Gaussian filter ψ(x, p) is given by:

ψ(x, p) ≡ 1

2π
√
detVadd

exp

[
−1

2
ξ⃗Vadd−1

ξ⃗T
]
, (11.8)
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Figure 11.3 – (Color online) A schematic plot of the uncertainty ellipses of
reconstructed states with the same prepared Gaussian quantum state but
different levels of verification accuracy, which shows the necessity of a sub-
Heisenberg accuracy. The center of the plot is given by the conditional mean
(xcond, pcond). The shaded areas correspond to the verification accuracy.
The Heisenberg limit is shown by a unit circle. The dashed and solid ellipses
represent the prepared state and the reconstructed states respectively.

with ξ⃗ = [x, p], and Vadd denoting the covariance matrix for the added verification
noise. If the prepared quantum state is Gaussian, using the property of Gaussian
integration, the reconstructed Wigner function is:

Wrecon(x, p) =
1

2π
√
detVrecon

exp

[
−1

2
ξ⃗Vrecon−1ξ⃗T

]
, (11.9)

and the covariance matrix Vrecon is:

Vrecon = Vcond +Vadd. (11.10)

In Fig. 11.3, we show schematically the effects of different levels of verification
accuracy given the same prepared conditional quantum state. A sub-Heisenberg
accuracy, with an uncertainty area smaller than the Heisenberg limit, is essential
for us to obtain a less distorted understanding of the original prepared quantum
state. In addition, if the prepared quantum state of the mechanical oscillator is
non-Gaussian [143, 163–166], a sub-Heisenberg accuracy is a necessary condition
for unveiling the non-classicality of the quantum state, as shown schematically in
Fig. 11.4, and proved rigorously in the Appendix 11.9.1.

Verifications of quantum states below the Heisenberg limit also naturally allow
us to test whether entanglement between two macroscopic test masses in GW
detectors can indeed be established, as predicted in Ref. [54, 129], and how long
such an entangled state can survive. Survival of macroscopic entanglement can
test one particular version of gravity decoherence conjectured by Diósi [120] and
Penrose [121]. For an individual object, it is not entirely clear what is the classical
superposition of pointer states that gravity decoherence will drive it into. For an
entangled state among multiple objects, even though Gaussian, it would naturally
have to decay into one that is not entangled, within the gravity decoherence
timescale.
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Figure 11.4 – (Color online) Values of reconstructed Wigner functions on
the p = 0 plane, i.e., Wrecon(x, p = 0), for a single-quantum state, obtained
at different levels of verification accuracy. Solid curve shows the ideal case
with no verification error. Dashed and dotted curves correspond to the
cases with a verification error of 1/4 and 1/2 of the Heisenberg limit, re-
spectively. The negative regime (shaded), or the non-classicality, vanishes
as the verification error increases. This again manifests the importance of
a sub-Heisenberg verification accuracy.

As we will show, in order to achieve a sub-Heisenberg accuracy, we need to op-
timize the local-oscillator phase of the time-dependent homodyne detection as
well as the weight with which data collected at different times will be combined.
If there is no readout loss, this optimization will automatically give a detection
scheme that evades measurement-induced back action, which is the same as the
variational-type measurement scheme proposed by Vyatchanin and Matsko [18]
for detecting GW signals with known arrival time. Since, in a single measurement
setup, different quadratures do not commute with each other, namely:

[X̂ζ , X̂ζ′ ] =
i ~
mωm

sin(ζ − ζ ′), (11.11)

one needs multiple setups, where each makes ensemble measurements of one par-
ticular quadrature X̂ζ with a sub-Heisenberg accuracy — the synthesis of these
measurements yields a quantum tomography.

As a sequel to Ref. [129], and to motivate MQM experiments with future GW
detectors, we will also focus on the same parameter regime, where the charac-
teristic measurement frequency is much higher than the oscillator frequency, and
the oscillator can be treated as a free mass. In addition, we will consider situ-
ations where the spectra of the classical noise can be modeled as being white.
Non-Markovianity of noise sources — although they certainly arise in actual GW
detectors [129] and will be crucial for the success of a real experiment — is a rather
technical issue. This non-Markovianity will not change the results presented here
significantly, as we will show and address in a separate paper [in preparation.]

This chapter is organized as follows: in Sec. 11.3, we will formulate the system
model mathematically by writing down the Heisenberg equations of motion; in
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Sec. 11.4, we will provide a timeline for a full MQM experiment with preparation,
evolution and verification stages, and use simple order-of-magnitude estimates to
show that this experimental proposal is indeed plausible; in Sec. 11.6, we will
evaluate the verification accuracy in the presence of Markovian noises (largely
confirming the order-of-magnitude estimates, but with precise numerical factors);
in Sec. 11.7, we will consider verifications of macroscopic quantum entanglement
between test masses in GW detectors as a test of gravity decoherence; in Sec. 11.8,
we will summarize our main results. In the Appendix, we will present mathemat-
ical details for solving the integral equations that we encounter in obtaining the
optimal verification scheme.

11.3 Model and Equations of Motion

In this section, we will present a mathematical description of the system model, as
shown schematically in the upper left panel of Fig. 11.5. The oscillator position is
linearly coupled to coherent optical fields through radiation pressure. Meanwhile,
information of the oscillator position flows into the outgoing optical fields contin-
uously. This models a measurement process in an optomechanical system without
a cavity, or with a large-bandwidth cavity. The corresponding Heisenberg equa-
tions, valid for both preparation and verification stages, are formally identical to
classical equations of motion except that all quantities are Heisenberg operators.
The oscillator position x̂ and momentum p̂ satisfy the following equations:

˙̂x(t) = p̂(t)/m, (11.12)

˙̂p(t) = −2γmp̂(t)−mω2
mx̂(t) + α â1(t) + ξ̂F (t). (11.13)

Here, α â1 corresponds to the quantum-radiation-pressure noise, or the so-called
back-action noise; α ≡ (~mΩ2

q)
1/2 = (8 I0 ω0 ~/c2)1/2 is the coupling constant

between the oscillator and the optical fields, with I0 denoting the optical power,
and Ωq quantifying the characteristic frequency of measurement strength. We
have included the fluctuation-dissipation mechanism of the mechanical oscillator
by introducing the mechanical damping rate γm, and classical-force noise ξ̂F , i.e.,
the Brownian thermal noise. In the Markovian limit, the correlation function for
ξ̂F is given by: 1

⟨ξ̂F (t) ξ̂F (t′)⟩sym = Sth
F δ(t− t′)/2, (11.14)

where Sth
F = 4mγmkBT0 ≡ 2~mΩ2

F and we have defined a characteristic frequency
ΩF for the thermal noise.

1 Here ⟨ ⟩sym stands for a symmetrized ensemble average. For a system characterized by a
density matrix ρ̂, it is defined as

⟨ô1(t) ô2(t′)⟩sym ≡ Tr {[ô1(t)ô2(t′) + ô2(t
′)ô1(t)]ρ̂} /2 .
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Figure 11.5 – A schematic plot of the system (upper left panel) and the
corresponding spacetime diagram (right panel) showing the timeline of the
proposed MQM experiment (see Sec. 11.4.1 for detailed explanations). In
this schematic plot, the oscillator position is denoted by x̂ which is coupled
to the optical fields through radiation pressure. The ingoing and outgo-
ing optical fields are denoted by â1,2 and b̂1,2 with subscripts 1, 2 for the
amplitude and phase quadratures, respectively. In the spacetime diagram,
the world line of the oscillator is shown by the middle vertical line. For
clarity, ingoing and outgoing optical fields are represented by the left and
right regions on opposite sides of the oscillator world line, even though in
reality, the optical fields escape from the same side as where they enter. We
show light rays during the preparation and verification stages in red and
blue. In between, the yellow shaded region describes the evolution stage,
with the light turned off for a duration of τE . The conditional variance of
the oscillator motion is represented by the shaded region alongside the cen-
tral vertical line (not drawn to the same scale as for the light propagation).
At the beginning of preparation, the conditional variance is dominated by
that of the initial state (orange). After a transient, it is determined by
incoming radiation and measurements. Right after state preparation, we
show the expected growth of the conditional variance due to thermal noise
alone, and ignoring the effect of back-action noise, which is evaded during
the verification process. The verification stage lasts for a duration of τV ,
and it is shorter than τF , after which the oscillator will be dominated by
thermalization.
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The amplitude and phase quadratures of ingoing optical fields â1,2, and of outgoing

optical fields b̂1,2, satisfy the following input-output relations:

b̂1(t) =
√
η n̂1(t) +

√
1− η â1(t), (11.15)

b̂2(t) =
√
η n̂2(t) +

√
1− η

[
â2(t) +

α

~
x̂(t) +

α

~
ξ̂x(t)

]
. (11.16)

Here n̂1,2, originate from non-unity quantum efficiency of the photodetector for
η > 0. In the paraxial and narrow-band approximation, â1,2 are related to the
electrical-field strength at the central frequency ω0 by [6, 58, 59]:

Ê(t) ≡
(
4π~ω0

S c

)1/2

{[ā+ â1(t)] cosω0t+ â2(t) sinω0t} (11.17)

with ā denoting the classical amplitude, and S standing for the effective cross-
sectional area of the laser beam. A similar relation also holds for the outgoing
fields b̂1,2. In addition, they satisfy [â1(t), â2(t

′)] = [b̂1(t), b̂2(t
′)] = i δ(t − t′).

Their correlation functions are:

⟨âi(t) âj(t′)⟩sym = δije
±2qδ(t− t′)/2, (i, j = 1, 2) (11.18)

where q denotes the squeezing factor (q = 0 for a vacuum-state input), with “+”
for the amplitude quadrature and “−” for the phase quadrature. Correspondingly,
the correlation function for the back-action noise α â1 is simply

⟨α â1(t)α â1(t′)⟩sym = SBA
F δ(t− t′)/2, (11.19)

with SBA
F ≡ e2q~mΩ2

q. In Eq. (11.16), ξ̂x is the sensing noise. One example is the
internal thermal noise, and it is defined as the difference between the center of mass
motion and the surface motion of the oscillator which is actually being measured.
In the Markovian approximation, it has the following correlation function:

⟨ξ̂x(t) ξ̂x(t′)⟩sym = Sth
x δ(t− t′)/2, (11.20)

where Sth
x = ~/(mΩ2

x) and we introduce a characteristic frequency Ωx for the
sensing noise.

Note that the Ωq, ΩF , and Ωx that we have introduced are also the frequencies
at which the back-action noise, thermal noise, and sensing noise intersect the
SQL [cf. Eq. (11.1)], respectively. They are identical to what were introduced
in Ref. [129]. For conveniences of later discussions, we introduce the following
dimensionless ratios:

ζF = ΩF/Ωq, ζx = Ωq/Ωx. (11.21)

In addition, we define two characteristic timescales for the measurement and
thermal-noise strength as:

τq ≡ 1/Ωq , τF ≡ 1/ΩF . (11.22)
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11.4 Outline of the experiment with order-of-

magnitude estimate

In this section, we will describe in detail the timeline of a plausible MQM ex-
periment (subsection 11.4.1), and provide order-of-magnitude estimates of the
conditional variance of the prepared quantum state, the evolution of the prepared
quantum state, and the verification accuracy in the free-mass regime (subsections
11.4.2, 11.4.3 and 11.4.4). This will provide qualitatively the requirements on the
noise level for the success of an MQM experiment. We will give more rigorous
treatments in Sec. 11.6.

11.4.1 Timeline of proposed experiment

We have sketched a space-time diagram for the proposed MQM experiment in the
right panel of Fig. 11.5 — with time going upward, we therefore start from the
bottom of the figure.

Lock Acquisition. At the beginning, the mechanical oscillator is in a highly mixed
state, and so are the optical fields. Therefore, the first step is to “acquire lock” of
the measurement device, and reach a steady-state operation mode, during which
several τq will have elapsed. From this time onwards, the initial-state informa-
tion will have been forgotten (propagating outward within the green strip), and
the state of the oscillator will be determined by the driving fields, including the
classical-force noise and sensing noise, as well as the quantum noise. This will be
the start of the state-preparation stage (region above the 45◦ green strip).

State Preparation. This stage is a steady-state operation of the measurement
device. The quantum state of the oscillator is collapsed continuously due to ho-
modyne readouts of the photocurrent. At any instant during state preparation,
based on the measured history of the photocurrent (mostly on data within sev-
eral times τq to the past of t), the conditional expectation (xcond, pcond) for the
oscillator position x̂ and momentum p̂ can be constructed. The second moments,
describable by the covariance matrix between position and momentum, which
consists of V cond

xx , V cond
xp and V cond

pp , can be calculated from the noise model of
the measurement device — they, together with xcond and pcond, fully determine
the quantum state, i.e., the Wigner function of the oscillator at any instant [cf.
Eq. (11.2)]. For a Gaussian steady state, the construction of (xcond, pcond) and
the conditional covariance matrix from the history of the photocurrent can be
accomplished most easily using Wiener Filtering, as shown in Ref. [129].

The preparation stage terminates at t = 0, when (xcond, pcond) and the covariance
matrix will be determined by data from several −τq up to 0 as shown by the red
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strip.

State Evolution. If we want to investigate the quantum dynamics of the oscillator
and study various decoherence effects, we can delay the verification process and
allow the oscillator to freely evolve with the interaction light turned off (as rep-
resented by the yellow strip). During this period, the thermal noise will induce
diffusions of the oscillator position and momentum, thus increasing the conditional
variance as shown schematically by the broadening of the shaded region along-
side the oscillator world line. If there were any additional decoherence effect, the
variance would grow faster than the case with the thermal decoherence alone. A
follow-up verification allows us to check whether additional decoherence mecha-
nisms, such as the gravity decoherence conjectured by Diósi [120] and Penrose
[121], exist or not.

State Verification. After the evolution stage, the verification stage starts (repre-
sented by blue strip). We intentionally use different colors to label the preparation
light and verification light — symbolizing the fact that, in principle, a different
observer (verifier) could perform the verification process, and verify the quantum
state by him/herself. The only knowledge from the preparer would be the condi-
tional expectation xcond and pcond, if all noise sources are Markovian. The verifier
uses a time-dependent homodyne detection and collects the data from measuring
the photocurrents. The verification process lasts for a timescale of τV between the
characteristic measurement timescale τq and the thermal decoherence timescale
τF , after which diffusions of x̂ and p̂ in the phase space become much larger than
the Heisenberg limit. Based upon the measurement data, the verifier can con-
struct an integral estimator for one particular mechanical quadrature [cf. Eq.
11.6].

The above three stages have to be repeated many times before enough data are
collected to build up reliable statistics. After finishing the experiment, the verifier
will obtain a reconstructed quantum state of the mechanical oscillator, and then
can proceed to compare with the preparer, and to interpret the results.

11.4.2 Order-of-magnitude estimate of the conditional vari-
ance

In this and the following two subsections, we will provide order-of-magnitude
estimates for a three-staged MQM experiment including preparation, evolution
and verification stages. This gives us physical insight into the different timescales
involved in an MQM experiment, and also into the qualitative requirements for an
experimental realization. We will justify those estimates based upon more careful
treatments in the next several sections.
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Based upon the measurement data from several −τq to 0, one can construct a
conditional quantum state for the mechanical oscillator. Suppose that the phase
quadrature of the outgoing fields is being measured and the photodetection is
ideal with η = 0. Given a measurement timescale of τ (measuring from −τ to
0), variances for the oscillator position and momentum at t = 0, in the free-mass
regime with ωm → 0, are approximately equal to [cf. Eqs. (11.12), (11.13), (11.15)
and (11.16)]

δx2(0) ∼ Stot
x /τ + τ 3Stot

F /m2 ∼ N
3
4
x N

1
4
F δx

2
q, (11.23)

δp2(0) ∼ m2Stot
x /τ 3 + τStot

F ∼ N
1
4
x N

3
4
F δp

2
q. (11.24)

Here, Stot
F ≡ SBA

F + Sth
F [cf. Eqs. (11.14) and (11.19) ] and Stot

x ≡ Ssh
x + Sth

x with
Ssh
x denoting the shot noise due to â2 [cf. Eqs. (11.16) and (11.20)]; we have

defined
Nx ≡ 1 + 2 ζ2x , NF ≡ 1 + 2 ζ2F , (11.25)

while
δx2q ≡ ~/(2mΩq) , δp2q ≡ ~mΩq/2. (11.26)

The optimal measurement timescale is given by τ ∼ τq. The purity of the prepared
conditional quantum state at t = 0 is approximately equal to [cf. Eq. (11.3)]

U(0) ∼ 2

~
δx(0) δp(0) ∼ NxNF . (11.27)

If the classical noises are low, namely, Nx ∼ NF ∼ 1, the conditional quantum
state will be pure, with U(0) ∼ 1. For future GW detectors such as AdvLIGO,
both ζx and ζF will be around 0.1, and such a low classical-noise budget clearly
allows us to prepare nearly pure quantum states of the macroscopic test masses.

11.4.3 Order-of-magnitude estimate of state evolution

During the evolution stage, the uncertainty ellipse of the conditional quantum
state will rotate at the mechanical frequency in the phase space, and meanwhile
there is a growth in the uncertainty due to thermal decoherence as shown schemat-
ically in Fig. 11.6. Given a strong measurement, the variance of the resulting
conditional quantum state in position δx2(0) will be approximately equal to δx2q
as shown explicitly in Eq. (11.23) with Nx, NF ∼ 1. It is much smaller than the
zero-point uncertainty of an ωm oscillator, which is given by ~/(2mωm). There-
fore, the conditional quantum state of the oscillator is highly squeezed in position.
The position uncertainty contributed by the initial-momentum will be comparable
to that of the initial-position uncertainty after a evolution duration of τq. This can
be directly seen from an order-of-magnitude estimate. In the free-mass regime,

x̂(t) ∼ x̂(0) +
p̂(0)

m
t. (11.28)
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Figure 11.6 – (Color online) Rotation and diffusion of a highly position-
squeezed conditional quantum state, prepared by a strong measurement
with Ωq ≫ ωm. The initial-momentum uncertainty will contribute an un-
certainty in the position comparable to the initial-position uncertainty, when
the evolution duration τE ∼ τq.

For an evolution duration of τE, the corresponding variance in position is:

δx2(τE) ∼ δx2(0) +
δp2(0)

m2
τ 2E ∼ δx2(0)[1 + (ΩqτE)

2]. (11.29)

The contribution from the initial-momentum uncertainty (the second term) will
become important when ΩqτE ∼ 1, or equivalently τE ∼ τq.

Apart from a rotation, the uncertainty ellipse will also grow due to thermal deco-
herence. Variances in the position and momentum contributed by thermal deco-
herence are approximately given by [cf. Eqs. (11.12) and (11.13)]

δx2th(τE) ∼ τ 3ES
th
F /m

2 = ζ2F (ΩqτE)
3δx2q, (11.30)

δp2th(τE) ∼ τE S
th
F = ζ2F (ΩqτE)δp

2
q. (11.31)

The growth in the uncertainty ellipse will simply be:

U th(τE) ∼
2

~
δxth(τE)δpth(τE) ∼ ζ2F (ΩqτE)

2 = (τE/τF )
2. (11.32)

When τE > τF , U
th(τE) > 1, and the conditional quantum state will be dominated

by thermalization.

If there were any additional decoherence effect, the growth in the uncertainty
would be much larger than what has been estimated here. A subsequent verifica-
tion stage can serve as a check.
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11.4.4 Order-of-magnitude estimate of the verification ac-
curacy

To verify the prepared conditional quantum state, the oscillator position needs to
be measured for a finite duration to obtain information about x̂(0) and p̂(0) [cf.
Eq. (11.5) and (11.6)] or about x̂(τE) and p̂(τE) if the evolution stage is inserted.
In order for an entire state characterization to be possible, one might then expect
that an oscillation period must pass, and during this period, the thermal noise
should cause an insignificant diffusion of the oscillator momentum compared with
its zero-point uncertainty, which requires [74]:

kBT0
~ωm

< Qm (11.33)

with Qm ≡ ωm/(2γm) denoting the mechanical quality factor. This requirement is
unnecessary if the initial quantum state is prepared by a strong measurement. As
we have mentioned in the previous subsection, the resulting conditional quantum
state is highly squeezed in position, and the initial-momentum uncertainty will
make a significant contribution to the uncertainty in position after τ > τq. This
means, depending on the particular strategy, one can extract x̂ and p̂ below the
levels of δxq and δpq, respectively, as long as one is able to measure oscillator
position with an accuracy better than δxq, within a timescale of several τq. This
is certainly possible if the measurement-induced back-action is evaded.

To evade the measurement-induced back-action, one notices the fact that the
amplitude quadrature b̂1 contains â1, which is responsible for the back action,
and meanwhile the phase quadrature b̂2 contains the information of oscillator
position, part of which is contributed by the back action [cf. Eqs. (11.12)-(11.16)].
Therefore, if we measure particular combinations of b̂1 and b̂2 at different times,
by summing up those measurements, we will be able to cancel the back action and
obtain a back-action-evading (BAE) estimator for a given mechanical quadrature.
Such a cancelation mechanism is only limited by the readout loss (η ̸= 0), which
introduces uncorrelated vacuum fluctuations.

We can make an order-of-magnitude estimate to show that a sub-Heisenberg accu-
racy can be indeed achieved. With the BAE technique, the force noise that limits
the verification accuracy will only contain the thermal-noise part. Similar to Eqs.
(11.23) and (11.24) but with Stot

F replaced by Sth
F , the variances in position and

momentum during the verification stage are simply:

δx2V ∼ Stot
x /τ + τ 3Sth

F /m
2 ∼ N3/4

x ζ
1/2
F δx2q , (11.34)

δp2V ∼ m2Stot
x /τ 3 + τSth

F ∼ N1/4
x ζ

3/2
F δp2q . (11.35)

Here the optimal verification timescale would be τV ∼ ζ
−1/2
F τq, and τq < τV < τF .

A summarizing figure of merit for the verification accuracy is approximately given
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by:

Uadd|BAE ∼ 2

~
δxV δpV ∼ N1/2

x ζF . (11.36)

A sub-Heisenberg accuracy can be achieved when ζF < 1. Note that this error can
be made arbitrarily small by lowering ζF indefinitely, i.e., a very strong measure-
ment. If phase-squeezed light is injected during the verification stage, we would
have

Uadd|BAE ∼ (e−2q + 2ζ2x)
1/2ζF =

√
Ω2

F

Ω2
qe

2q
+

2Ω2
F

Ω2
x

. (11.37)

Increasing the squeezing factor always improves our verification sensitivity, with
a limit of

Uadd
lim |BAE ∼ ΩF/Ωx = ζx ζF , (11.38)

which can be much lower than unity in the case of future GW detectors, or of any
low-noise measurement device.

Had we not evaded the back-action noise, we would have
√
NF in the place of ζF ,

which means δxV δpV would be Heisenberg-limited — unless different squeezing
factors are assumed. For low squeezing (i.e., e±2q larger than both ζx and ζF ), we
need phase-squeezing for x̂ observation, and amplitude squeezing for p̂ observation,
with

Uadd|withoutBAE ∼ e−q , (11.39)

which is a significant factor (1/ζF ) worse than in the BAE scheme. Even though
there exists an optimal squeezing factor that this scheme can apply, which is:

Uadd
opt |withoutBAE ∼ ζx , (11.40)

it is still worse than the limiting situation of the BAE scheme [cf. Eq. (11.38)] by
a factor of 1/ζF (≫ 1).

11.5 The conditional quantum state and its evo-

lution

The previous order-of-magnitude estimates provide us with a qualitative picture
of an MQM experiment, especially in the free-mass regime where future GW
detectors will be operating. As long as ζF and ζx are smaller than unity, i.e., the
classical noise goes below the SQL around the most sensitive frequency band (Ω ∼
Ωq) of the measurement device, not only can we prepare a nearly pure quantum
state, but also we can make a sub-Heisenberg tomography of the prepared state.
In this and following sections, we will provide more rigorous treatments by directly
analyzing the detailed dynamics of the system.
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11.5.1 The conditional quantum state obtained fromWiener
filtering

The rigorous mathematical treatment of state preparation has been given in Ref.
[129]. The main idea is to treat the conditional quantum state preparation as a
classical filtering problem, which is justified by the fact that the outgoing optical
quadratures b̂1,2 at different times commute with each other, the same as in a
classical random process. For such a Gaussian linear system, the Wiener filter,
satisfying the minimummean-square error criterion, allows us to obtain an optimal
estimate for the quantum state of the oscillator, i.e., the conditional quantum
state. Based upon the measurement data y(t) (t < 0), conditional means for the
oscillator position and momentum at t = 0 can be constructed as [cf. Eq. (14) of
Ref. [129]]

xcond(0) ≡ ⟨x̂(0)⟩cond =

∫ 0

−∞
dtKx(−t)y(t), (11.41)

pcond(0) ≡ ⟨p̂(0)⟩cond =

∫ 0

−∞
dtKp(−t)y(t). (11.42)

Here Kx and Kp are causal Wiener filters. The covariance matrix is given by [cf.
Eq. (15) of Ref. [129]]:

Vcond
oioj

(0) = ⟨ôi(0)ôj(0)⟩condsym − ⟨ôi(0)⟩cond⟨ôj(0)⟩cond, (11.43)

where i, j = 1, 2 and ô1, ô2 denote x̂, p̂, respectively. In the free-mass regime, we
showed that [cf. Eqs. (52)–(54) in Ref. [129]]:

Vcond(0) =

[
N

1
4
FN

3
4
x

√
2δx2q N

1
2
FN

1
2
x ~/2

N
1
2
FN

1
2
x ~/2 N

3
4
FN

1
4
x

√
2δp2q

]
. (11.44)

With conditional means and variances, the Wigner function or equivalently the
conditional quantum state is uniquely defined [cf. Eq. (11.2)]. Correspondingly,
purity of the conditional quantum state is quantified by

U(0) =
2

~
√

detVcond(0) = NxNF . (11.45)

This simply justifies the order-of-magnitude result presented in Eq. (11.27).

11.5.2 Evolution of the conditional quantum state

In the following discussions, we will analyze how such a conditional quantum
state evolves during the evolution stage. On the one hand, this confirms the
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qualitative results presented in subsection 11.4.3. On the other hand, it provides
a quantitative understanding of the timescale for the later verification stage.

The equations of motion for the oscillator during the evolution stage are given
by Eqs. (11.12) and (11.13) except that there is no radiation pressure, as the
light is turned off 2. For simplicity, and also in consideration of the case in a
realistic experiment, we will assume an oscillator with a high quality factor, i.e.,
ωm ≫ γm. Within a timescale much shorter than 1/γm, the oscillator can be
well-approximated as a free oscillator. Correspondingly, the analytical solution
for the oscillator position reads:

x̂(t) = x̂q(t) +

∫ ∞

0

dt′Gx(t− t′)ξ̂F (t
′) . (11.46)

Here the free quantum oscillation x̂q(t) of the oscillator is given by Eq. (11.5).
We have defined the Green’s function as:

Gx(t) = Θ(t)
sin(ωm t)

mωm

, (11.47)

with Θ(t) denoting the Heaviside function.

Given an evolution duration of τE, from Eqs. (11.14) and (11.46) the correspond-
ing covariance matrix evolves as

V(τE) = RT
Φ Vcond(0) RΦ

+
Sth
F

8m2ω3
m

[
2Φ− sin 2Φ 2mωm sin2Φ
2mωm sin2 Φ m2ω2

m (2Φ + sin 2Φ)

]
, (11.48)

where Φ ≡ ωm τE, and the rotation matrix RΦ is given by:

RΦ =

[
cosΦ −mωm sinΦ

(mωm)
−1sinΦ cosΦ

]
. (11.49)

The first term in Eq. (11.48) represents a rotation of the covariance matrix
Vcond(0) due to the free quantum oscillation of the oscillator; the second term is
contributed by thermal decoherence which causes an increase in the uncertainty.

In the free-mass regime and the case of ωmτE ≪ 1, elements of the covariance

2Were the light turned on, the back action could still be evaded as long as one measures the
amplitude quadrature â1 during this period and take them into account during data processing.
Since no information of the oscillator position (contained in the phase quadrature of the outgoing
light) is collected, this is equivalent to the case with the light turned off.
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matrix can be expanded as series of Φ. Up to the leading order in Φ, we obtain

Vxx(τE) = V cond
xx +

4δx2q
~

V cond
xp ΩqτE +

δx2q
δp2q

V cond
pp (ΩqτE)

2

+ 2δx2qζ
2
F

(ΩqτE)
3

3
, (11.50)

Vxp(τE) = V cond
xp +

~
2δp2q

V cond
pp ΩqτE +

~
2
ζ2F (ΩqτE)

2 , (11.51)

Vpp(τE) = V cond
pp + 2δp2qζ

2
FΩqτE , (11.52)

with V cond
xx,xp,pp denoting the elements of Vcond(0). Up to the leading order in ΩqτE,

the uncertainty product of the resulting quantum state is:

U(τE) =
2

~
√

detV(τE) ≈ U(0) +
V cond
xx

δx2q
(τE/τF )

2, (11.53)

with τF defined in Eq. (11.22). The second term is contributed by the thermal
decoherence and can be viewed as U th(τE). Those formulas recover the results in
Eqs. (11.29) – (11.32), but now with precise numerical factors. As we can conclude
from Eq. (11.53), in order for a sub-Heisenberg tomography to be possible, the
later verification stage should finish within a timescale of τF , after which the
contribution from the thermal noise gives U th(τF ) ∼ 1.

11.6 State verification in the presence of Marko-

vian Noises

In this section, we will treat the follow-up state verification stage with Markovian
noises in detail. This can justify the order-of-magnitude estimate we have derived
in subsection 11.4.4. In addition, we will show explicitly how to construct the
optimal verification scheme that gives a sub-Heisenberg accuracy.

11.6.1 A time-dependent homodyne detection and back-
action-evasion (BAE)

In this subsection, we will analyze the time-dependent homodyne detection which
enables us to probe mechanical quadratures. We will further show how the BAE
scheme can be constructed. The BAE scheme is optimal only when there is no
readout loss (η = 0). We will consider more general situations, and derive the
corresponding optimal verification scheme in the next subsection.
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Figure 11.7 – (Color online) A schematic plot of time-dependent homodyne
detection. The phase modulation of the local oscillator light varies in time.

The equations of motion for the oscillator during the verification stage (t > τE) are
given by Eqs. (11.12) and (11.13). The corresponding solution for the oscillator
position is different from Eq. (11.46) due to the presence of the back-action noise
which starts to act on the oscillator at t = τE. Specifically, it reads

x̂(t) = x̂q(t) +

∫ ∞

τE

dt′Gx(t− t′)[α â1(t
′) + ξ̂F (t

′)] . (11.54)

Here the free quantum oscillation xq(t) is the signal that we seek to probe during
the verification stage. For optical quadratures, the equations of motion are given
by Eqs. (11.15) and (11.16). From these equations, we notice that among the
outgoing fields: b̂1 is pure noise, while b̂2 contains both signal x̂q(t) and noise. In

order to highlight this, we rewrite b̂1,2 as:

b̂1(t) =
√

1− η n̂1(t) +
√
η â1(t) ≡ δb̂1(t) , (11.55)

b̂2(t) = δb̂2(t) +
√
1− η (α/~) x̂q(t), (11.56)

with [cf. Eq. (11.54)]:

δb̂2(t) ≡
√
η n̂2(t) +

√
1− η

{
â2(t) +

α

~
ξ̂x(t)

+
α

h

∫ ∞

τE

dt′Gx(t− t′) [α â1(t
′) + ξ̂F (t

′)]
}
. (11.57)

In this way, we can directly see that â1 which causes the back-action is contained
in both the amplitude quadrature b̂1 and the phase quadrature b̂2. Therefore,
by measuring an appropriate combination of the two output quadratures, we will
be able to remove the effects of the back-action noise that is imposed on the
oscillator during the verification process at t > τE. Searching for such an optimal
combination is the main issue to be addressed in this section.

As mentioned in the introduction part, to probe mechanical quadratures and their
distributions, a time-dependent homodyne detection needs to be applied [cf. Eq.
(11.6)]. Specifically, the outgoing optical field:

B̂out(t) = b̂1(t) cosω0t+ b̂2(t) sinω0t (11.58)
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at t > τE is mixed with a strong local-oscillator light L(t) whose phase angle ϕos

is time-dependent, as shown schematically in Fig. 11.7, namely:

L(t) = L0 cos[ω0 t− ϕos(t)] (11.59)

with L0 a time-independent constant. Through a low-pass filtering (with a band-
width much smaller than ω0) of the beating signal, the resulting photocurrent
is:

î(t) ∝ 2B̂out(t)L(t)

= L0 b̂1(t) cosϕos(t) + L0 b̂2(t) sinϕos(t) , (11.60)

where the overline means averaging over many optical-oscillation periods. Note
that the Heisenberg operators for the photocurrent at different times commute
with each other, i.e.,

[̂i(t), î(t′)] = 0 , (11.61)

and are therefore simultaneously measurable, as expected. Based on the mea-
surement results of î(t) from τE to Tint, we can construct the following weighted
quantity Ŷ , with a weight function W (t):

Ŷ =

∫ Tint

0

Θ(t− τE)W (t)̂i(t)dt ≡ (g1|b̂1) + (g2|b̂2) . (11.62)

Here, the Heaviside function Θ(t − τE) manifests the fact that the verification
stage starts at t = τE; and we have introduced the scalar product of two vectors
|A) and |B) in the L2[0, Tint] space as the following:

(A|B) ≡
∫ Tint

0

A(t)B(t)dt . (11.63)

In addition, we have defined filtering functions g1 and g2 as

g1(t) ≡ Θ(t− τE)W (t) cosϕos(t), (11.64)

g2(t) ≡ Θ(t− τE)W (t) sinϕos(t). (11.65)

Since all the data can in principle be digitized and stored in hardware, the weight
function W (t) can be realized digitally during data processing. In addition, an
overall re-scaling of g1,2(t) → C0 g1,2(t), with C0 a time-independent constant, does
not affect the verification performance; also, there are multiple ways of achieving
a particular set of g1,2(t), by adjusting the phase ϕos(t) of the local oscillator and
the weight function W (t).

In light of Eqs. (11.55) – (11.57), we decompose the weighted quantity Ŷ [cf. Eq.
(11.62)] as a signal Ŷs and a noise part δŶ , namely:

Ŷ = Ŷs + δŶ . (11.66)



170 Chapter 11. Probing Macroscopic Quantum States

These are given by

Ŷs =
√

1− η (α/~) (g2|x̂q),
δŶ = (g1|δb̂1) + (g2|δb̂2). (11.67)

Since an overall normalization of g1,2 will not affect the signal-to-noise ratio as
mentioned, we can mathematically impose that:

(g2|f1) = cos ζ , (g2|f2) = sin ζ (11.68)

with
f1(t) ≡ cosωmt, f2(t) ≡ (Ωq/ωm) sinωmt (11.69)

in the coordinate representation. The signal part can then be rewritten as:

Ŷs =
√
1− η (α/~)δxq [x̂0 cos ζ + p̂0 sin ζ] , (11.70)

where we have introduced normalized the oscillator position and momentum as
x̂0 ≡ x̂(τE)/δxq and p̂0 ≡ p̂(τE)/δpq. In such a way, a mechanical quadrature of

X̂ζ would be probed [cf. Eq. (11.4)]. For the noise part, more explicitly, we have
[cf. Eqs. (11.55)–(11.57)]

δŶ = (g1|
√
η n̂1 +

√
1− η â1) + (g2|

√
η n̂2 +

√
1− η â2)

+
√

1− η (α2/h)(g2|Gx|â1)
+
√

1− η (α/~)[(g2|Gx|ξ̂F ) + (g2|ξ̂x)] , (11.71)

where the integration with Gx(t− t′) has been augmented into applying a linear
operator Gx in the L2[0, Tint] space. In the above equation, terms on the first
line are the shot noise, the term on the second line is the back-action noise, while
terms on the third line are the classical-force and sensing noises.

The optimal g1(t) and g2(t) that give a sub-Heisenberg accuracy for each quadra-
ture will be rigorously derived for general situations in the next section. If â1 and
â2 are uncorrelated and there is no readout loss with η = 0, an optimal choice for
g1 would need to cancel the entire contribution from the back-action noise term
(proportional to â1). This is equivalent to impose, mathematically, that

(g1|â1) + (α2/h)(g2|Gx|â1) = 0 (11.72)

or
|g1) + (α2/h)Gadj

x |g2) = 0 , (11.73)

where Gadj
x is the adjoint of Gx. Physically, this corresponds to bringing in a

piece of shot noise (g1|â1) to cancel the back-action noise (α2/h)(g2|Gx|â1) —
therefore achieving a shot-noise-limited only measurement. In the coordinate
representation, Eq. (11.73) can be written out more explicitly as:

g1(t) + (α2/~)
∫ Tint

t

dt′Gx(t
′ − t)g2(t

′) = 0, (11.74)
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which agrees exactly with the variational-type BAE measurement scheme first
investigated by Vyatchanin et al. [18]. It is suitable for detecting signals with
known arrival time. For stationary signals, one would prefer frequency-domain
variational techniques proposed by Kimble et al. [6], which evades the back-action
noise for all possible signals, as long as they are Gaussian and stationary.

As realized by Kimble et al. [6] in their frequency-domain treatment, when the
readout loss is significant (large η) and when the back-action noise is strong (large
α), the variational approach becomes less effective, because in such a case, the
magnitude of g1 required to bring enough â1 to cancel the back-action noise would
also introduce significant noise n̂1 [cf. Eq. (11.71)]. This reasoning apparently
leads to a trade-off between the need to evade back action, and the need to
minimize loss-induced shot noise — such an optimization will be made in the
next section.

11.6.2 Optimal verification scheme and covariance matrix
for the added noise: formal derivation

Imposing the BAE condition [cf. Eq. (11.74)] does not specify the shape of g2,
nor does Eq. (11.68), and so we have further freedom in choosing the g2 that
minimizes the noise in measuring a particular quadrature of X̂ζ . In addition,
in the presence of readout loss with η ̸= 0, totally evading back action is not
the obvious optimum, as mentioned. Therefore, we need to optimize g1 and g2
simultaneously. In this section, we first carry out this procedure formally, and
then we apply to the Markovian-noise budget in the next subsection.

The total x̂q-referred noise in the weighted estimator Ŷ can be written as [cf. Eqs.
(11.70) and (11.71)]

σ2[g1,2] =
~2

(1− η)α2δx2q
⟨δŶ δŶ ⟩sym

=
2

(1− η)Ωq

2∑
i,j=1

(gi|Cij|gj), (11.75)

where the correlation functions Cij among the noises are the following:

Cij(t, t
′) ≡ ⟨δb̂i(t)δb̂j(t′)⟩sym , (i, j = 1, 2) . (11.76)

The optimal g1,2(t) that minimize σ2 can be obtained through the standard con-
straint variational method. For this, we define an effective functional as

Jeff = (1− η)(Ωq/4)σ
2[g1,2]− µ1(f1|g2)− µ2(f2|g2)

=
1

2

∑
i,j

(gi|Cij|gj)− (µ1f1 + µ2f2|g2), (11.77)
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where µ1 and µ2 are the Lagrange multipliers due to the normalization constraints
in Eq. (11.68). Requiring the functional derivative of Jeff with respect to g1 and
g2 to be equal to zero, we obtain:

C11|g1) +C12|g2) = 0 , (11.78)

C21|g1) +C22|g2) = |µ1f1 + µ2f2) . (11.79)

Here Cij should be viewed as operators in the L2[0, Tint] space. This leads to
formal solutions for g1,2, namely:

|g1) = −C−1
11 C12|g2) , (11.80)

|g2) = M|µ1f1 + µ2f2) , (11.81)

where we have defined

M ≡
[
C22 −C21C

−1
11 C12

]−1
. (11.82)

Re-imposing Eqs. (11.68), the unknown Lagrange multipliers µ1,2 can be solved,
which are related to ζ by[

(f1|M|f1) (f1|M|f2)
(f2|M|f1) (f2|M|f2)

] [
µ1

µ2

]
=

[
cos ζ
sin ζ

]
. (11.83)

Correspondingly, the minimum σ2
min has the following quadratic form:

σ2
min = [cos ζ sin ζ]Vadd

norm

[
cos ζ
sin ζ

]
. (11.84)

Here, the normalized Vadd
norm is a 2× 2 covariance matrix, and it is given by:

Vadd
norm =

2

(1− η)Ωq

[
(f1|M|f1) (f1|M|f2)
(f2|M|f1) (f2|M|f2)

]−1

. (11.85)

This relates to the initial definition of the covariance matrix for the added verifi-
cation noise [cf. Eq. (11.8)] simply by:

Vadd = Diag[δxq, δpq]V
add
normDiag[δxq, δpq]. (11.86)

Due to the linearity in Eqs. (11.79) and (11.83), the optimal g1,2 for a given
quadrature ζ can also be rewritten formally as:

gζ1,2 = gX1,2 cos ζ + gP1,2 sin ζ , (11.87)

with gX1,2 ≡ gζ1,2(0) and g
P
1,2 ≡ gζ1,2(π/2). Such ζ-dependence of g1,2 manifests the

fact that a sub-Heisenberg tomography requires different filtering functions, or
equivalently different measurement setups, for different quadratures.
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11.6.3 Optimal verification scheme with Markovian noise

Given Makovian noises, the corresponding correlation functions for the output
noise δb̂i can be written out explicitly as [cf. Eqs. (11.14), (11.19), (11.20), and
(11.76)]:

C11(t, t
′) =

η + (1− η)e2q

2
δ(t− t′), (11.88)

C12(t, t
′) = C21(t

′, t) = (1− η)
e2qα2

2~
Gx(t

′ − t), (11.89)

C22(t, t
′) =

Λ2

4
δ(t− t′) + (1− η)

α4

~2

(
e2q

2
+ ζ2F

)
∫ ∞

0

dt1Gx(t− t1)Gx(t
′ − t1), (11.90)

with Λ ≡
√

2[η + (1− η)(e−2q + 2ζ2x)]. Substituting these Cij into Eq. (11.80)
and (11.81), we can obtain the equations for the optimal filtering functions g1 and
g2. Specifically, for g1, we have [cf. Eq. (11.80)]

g1(t) +
(1− η)e2q

η + (1− η)e2q
α2

~

∫ Tint

t

dt′Gx(t
′ − t)g2(t

′) = 0. (11.91)

For g2, by writing out M explicitly, this gives [cf. Eq. (11.81)]

Λ2

4
g2(t) + ζ ′ 2F

α4

~2

∫∫ Tint

0

dt′dt1Gx(t− t1)Gx(t
′ − t1)g2(t

′)

= µ1f1(t) + µ2f2(t) , (11.92)

where we have introduced ζ ′F , which is given by:

ζ ′F ≡
[

η(1− η)e2q

2[η + (1− η)e2q]
+ (1− η)ζ2F

]1/2
≈
[η
2
+ ζ2F

]1/2
(11.93)

and it is equal to ζF for no readout loss. Although here g1 is still defined in terms
of g2, the optimal verification strategy does not totally evade the back action, as
is manifested in the term proportional to η inside the bracket of Eq. (11.93). In
the limit of no readout loss with η = 0, it is identical to the BAE condition in
Eq. (11.74) . Typically, we have 1% readout loss η = 0.01, squeezing e2q = 10
and ζF = 0.2, so this readout loss will only shift ζF by 6%, which is negligible.
However, if the thermal noise further decreases and/or the measurement strength
increases, the effect of readout loss will become significant, entering in a similar
way as in the frequency-domain variational measurement proposed by Kimble et
al. [6].

The above integral equations for optimal g1 and g2 can be solved analytically,
as elaborated in Appendix 11.9.3, which in turn gives M and the corresponding
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Figure 11.8 – (Color online) Optimal filtering functions g1 (solid curve) and
g2 (dashed curve) in the presence of Markovian noises. We have assumed
Ωq/2π = 100 Hz, ζx = ζF = 0.2, η = 0.01 and vacuum input (q = 0). For
clarity, the origin of the time axis has been shifted from τE to 0.

Vadd [cf. Eqs. (11.82) and (11.85)]. In the free-mass regime with Ωq ≫ ωm,

closed forms for optimal g1 and g2 can be obtained, which, in terms of gX,P
1,2 [cf.

Eq. (11.87)], are given by:

gX1 = g1|ζ=0 = (Ωq/χ) e
−Ωqχ t sinΩqχ t; (11.94)

gP1 = g1|ζ=π
2
= −

√
2Ωq e

−Ωqχ t sin
(
Ωqχ t+

π

4

)
, (11.95)

and

gX2 = g2|ζ=0 = 2Ωqχ e
−Ωqχ t cosΩqχ t; (11.96)

gP2 = g2|ζ=π
2
= 2

√
2Ωqχ

2 e−Ωqχ t sin
(
Ωqχt−

π

4

)
, (11.97)

with χ ≡ [ζ ′ 2F /Λ]
1/2. The corresponding verification timescale is set by τV =

(χΩq)
−1 and τq < τV < τF . To illustrate the behavior of the optimal filtering

functions, we show gX,P
1,2 in Fig. 11.8. As we can see, the verification process

finishes after several τq, i.e., in a timescale of τV .

The corresponding covariance matrix Vadd for the added verification noise is given
by

Vadd =
1

1− η

[
Λ

3
2 ζ

′ 1
2

F δx2q −Λζ ′F~/2
−Λζ ′F~/2 2Λ

1
2 ζ

′ 3
2

F δp2q

]
. (11.98)

A more summarizing measure of the verification accuracy is the uncertainty prod-
uct of the added noise ellipse with respect to the Heisenberg limit, namely:

Uadd =
2

~
√
detVadd =

Λ ζ ′F
1− η

. (11.99)

In the ideal case with η = 0, this simply recovers the order-of-magnitude estimate
given in subsection 11.4.4. In Fig. 11.9, we show the uncertainty ellipse for the
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Figure 11.9 – (Color online) The uncertainty ellipse for the added verifi-
cation noise in the presence of Markovian noises. We assume ζx = ζF = 0.2
with vacuum input (dashed curve); and ζx = ζF = 0.2 with 10 dB squeezing
(dotted curve). For contrast, we also show the Heisenberg limit in a unit
circle, and the ideal conditional quantum state with a solid ellipse.

added noise in the case of ζx = ζF = 0.2, readout loss η = 1% and with (green
dotted curve) or without (red long-dashed curve) 10 dB input squeezing. In com-
parison, we also plot the Heisenberg limit (unit circle) and the conditional state
obtained through an ideally noiseless state preparation (blue solid ellipse). As
figure shows, the least challenging scenario already begins to characterize the con-
ditional quantum state down to the Heisenberg Uncertainty. In these two cases,
we have Λ = 1.48 and 0.62 respectively, leading to:

Uadd = 0.30 (vacuum) , 0.12 (10 dB squeezing). (11.100)

11.7 Verification of Macroscopic Quantum En-

tanglement

In this section, we will apply our protocol to verify macroscopic entanglement
between test masses in future GW detectors, which was proposed in Refs. [54,
129]. In the experiment as shown schematically in Fig. 11.10, measurements at the
bright and dark port of the interferometer continuously collapse the quantum state
of the corresponding common and differential modes of the test-mass motion. This
creates two highly squeezed Gaussian states in both modes. Since the common
and differential modes are linear combinations of the center of mass motion of test
masses in the two arms, namely x̂c = x̂E+ x̂N and x̂d = x̂E− x̂N, this will naturally
generate quantum entanglement between the two test masses, which is similar to
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Figure 11.10 – (Color online) A schematic plot of an advanced interfero-
metric GW detectors for macroscopic entanglement between test masses as
a test for gravity decoherence. For simplicity, we have not shown the setup
at the bright port, which is identical to that at the dark port.

creating entanglement by mixing two optical squeezed states at the beam splitter
[167, 168].

11.7.1 Entanglement survival time

To quantify the entanglement strength, we follow Refs. [54, 129] by evaluating the
entanglement monotone — the logarithmic negativity defined in Refs. [109, 110].
This can be derived from the covariance matrix for the Gaussian-continuous-
variable system considered here. The bipartite covariances among (x̂E, p̂E, x̂N, p̂N)
form the following covariance matrix:

V =

[
VEE VEN

VNE VNN

]
, (11.101)

where

VEE = VNN =

[
(V c

xx + V d
xx)/4 (V c

xp + V d
xp)/2

(V c
xp + V d

xp)/2 (V c
pp + V d

pp)

]
, (11.102)

VNE = VEN =

[
(V c

xx − V d
xx)/4 (V c

xp − V d
xp)/2

(V c
xp − V d

xp)/2 (V c
pp − V d

pp)

]
. (11.103)

The logarithmic negativity EN can then be written as:

EN = max[0,− log2 2σ−/~], (11.104)
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Figure 11.11 – (Color online) Logarithmic negative EN as a function of
the evolution duration τE , which indicates how long the entanglement sur-
vives. The solid curve corresponds to the case where ΩF /2π = 20Hz and
the dashed curve for ΩF /2π = 10Hz. To maximize the entanglement, the
common mode is 10 dB phase squeezed for t > τE and t < 0, while the
differential mode is 10 dB amplitude squeezed at t < 0 and switching to 10
dB phase-squeezed at t > τE .

where σ− ≡
√
(Σ−

√
Σ2 − 4 detV)/2 and Σ ≡ detVNN+detVEE−2 detVNE. In

contrast to Refs. [54, 129], now the covariance matrix V corresponds to the total
covariance matrix Vtot after the entire preparation-evolution-verification process.
For Gaussian quantum states, we have [cf. Eqs. (11.10), (11.48) and (11.98)]

Vtot = V(τE) +Vadd. (11.105)

11.7.2 Entanglement Survival as a Test of Gravity Deco-
herence

When τE increases, the thermal decoherence will increase the uncertainty [cf. Eqs.
(11.48) and (11.105)] and eventually the entanglement vanishes, which indicates
how long the quantum entanglement can survive. Survival of such quantum en-
tanglement can help us to understand whether there is any additional decoherence
effect, such as the Gravity Decoherence suggested by Diósi and Penrose [120, 121].
According to their models, quantum superpositions vanish within a timescale of
~/EG. Here, EG can be (a) self-energy of the mass-distribution-difference, namely

E
(a)
G =

∫
dxdyG[ρ(x)− ρ′(x)][ρ(y)− ρ′(y)]/r, (11.106)

with ρ denoting the mass density distribution and r ≡ |x−y|; Alternatively, it can
be (b) spread of mutual gravitational energy among components of the quantum
superposition, namely

E
(b)
G =

∫
dxdyGρ(x)ρ′(y) δr/r3/2. (11.107)
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with δr denoting the uncertainty in location. For the prepared test-mass quantum
states with width of δxq, we have

τ
(a)
G ≈ Ωq/(Gρ) , τ

(b)
G ≈ ~1/2L2Ω1/2

q /(Gm3/2) . (11.108)

where L is the distance between two test masses. Substituting the typical values
for LIGO mirrors with ρ = 2.2 g/cm3, the separation between the two input test
masses, L ≈ 10m, and m = 10 kg, we have:

τaG = 4.3× 109 s, τ bG = 1.2× 10−5 s. (11.109)

It is therefore quite implausible to test model (a); while for model (b), Ωqτ
(b)
G is

less 0.01 with Ωq/2π = 100 Hz. In Fig. 11.11, we show the entanglement survival
as a function of evolution duration. As we can see, the model (b) of gravity
decoherence can easily be tested, as the entanglement can survive for several
times the measurement timescale τq, which is much longer than the predicted τ

(b)
G .

11.8 Conclusions

We have investigated in great details a follow-up verification stage after the state
preparation and evolution. We have showed the necessity of a sub-Heisenberg
verification accuracy in probing the prepared conditional quantum state, and how
to achieve it with an optimal time-domain homodyne detection. Including this
essential building block — a sub-Heisenberg verification, we are able to outline a
complete procedure of a three-staged experiment for testing macroscopic quantum
mechanics. In particular, we have been focusing on the relevant free-mass regime
and have applied the techniques to discuss MQM experiments with future GW
detectors. However, the system dynamics that have been considered describe
general cases with a high-Q mechanical oscillator coupled to coherent optical fields.
In this respect, we note that our results for Markovian systems only depend on
the ratio between various noises and the SQL, and therefore carries over directly
to systems on other scales. In addition, the Markovian assumption applies more
accurately to smaller-scale systems which operate at higher frequencies.

11.9 Appendix

11.9.1 Necessity of a sub-Heisenberg accuracy for reveal-
ing non-classicality

As we have mentioned in the introduction, a sub-Heisenberg accuracy is a neces-
sary condition to probe the non-classicality, if the Wigner function of the prepared
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quantum state has some negative regions, which do not have any classical coun-
terpart.

To prove this necessity, we use the relation between the Q function and the Wigner
function as pointed out by Khalili [166]. Given density matrix ρ̂, the Q function
in the coherent state basis |α) is equal to [39, 169, 170]:

Q =
1

π
(α|ρ̂|α), (11.110)

which is always positive defined. This is the Fourier transform of the following
characteristic function:

J(β, β∗) = Tr[eiβ
∗âeiβâ

†
ρ̂]. (11.111)

Here, â is the annihilation operator and is related to the normalized oscillator
position x̂/δxq and momentum p̂/δpq [cf. Eq. (11.26)] by the standard relation:

â = [(x̂/δxq) + i(p̂/δpq)]/2. (11.112)

If we introduce the real and imaginary parts of β, namely, β = βr + iβi, the
characteristic function J can be rewritten as:

J(βr, βi) = e−(β2
r+β2

i )/2Tr[eiβr(x̂/δxq)+iβi(p̂/δpq) ρ̂], (11.113)

where we have used the fact that eÂeB̂ = eÂ+B̂e[Â, B̂]/2, as [Â, B̂] commutes with
Â and B̂. Inside the bracket of Eq. (11.113), it is the characteristic function for
the Wigner function W (x, p), and thus:

J(βr, βi) =
1

(2π)2

∫
dx′dp′e−(β2

r+β2
i )/2

e−iβr(x′/δxq)−iβi(p
′/δpq)W (x′, p′). (11.114)

Integrating over βr and βi, the resulting Q function is given by:

Q(x, p) =
1

2π

∫
dx′dp′e

− 1
2

[
(x−x′)2

δx2q
+

(p−p′)2

δp2q

]
W (x′, p′). (11.115)

This will be the same as Eq. (11.7), if we identify Wrecon(x, p) with Q(x, p) and

Vadd =

[
δx2q 0
0 δp2q

]
, (11.116)

which is a Heisenberg-limited error. Since squeezing and a rotation of x̂ and p̂ axes
will not change the positivity of the Q function, Eq. (11.115) basically dictates
that the reconstructed Wigner function will always be positive if a Heisenberg-
limited error is introduced during the verification stage. Therefore, only if a
sub-Heisenberg accuracy is achieved will we be able to reveal the non-classicality
of the prepared quantum state.
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11.9.2 Wiener-Hopf method for solving integral equations

In this appendix, we will introduce the mathematical method invented by N.Wiener
and E. Hopf for solving a special type of integral equations. For more details, one
can refer to a comprehensive presentation of this method and its applications by
B. Noble [171]. Here, we will focus on integral equations that can be brought into
the following form, as encountered in obtaining the optimal verification scheme:∫ +∞

0

dt′C(t, t′)g(t′) = h(t) , t > 0 . (11.117)

with

C(t, t′) = A(t− t′) +
∑
α

∫ min[t,t′]

0

dt′′B∗
α(t− t′′)Bα(t

′ − t′′) , (11.118)

where α = 1, 2, . . . and Bα(t) = 0 if t < 0.

Assuming that solution for g(t) to be a square-integrable function in L2(−∞,∞),
one can split it into causal and anticausal parts as:

g(t) = g+(t) + g−(t) , (11.119)

where g−(t) is causal part:

g−(t) =

{
0, t > 0

g(t), t 6 0
(11.120)

and g+(t) is the anticausal part of g(t):

g+(t) =

{
g(t), t > 0

0, t 6 0 .
(11.121)

This definition enables us to expand the limits of integration in (11.117) and
(11.118) to the full range −∞ < (t, t′, t′′) <∞:∫ +∞

−∞
dt′C(t, t′)g+(t

′) = h(t) , t > 0 , (11.122)

where

C(t, t′) = A(t − t′) +
∑
α

∫ +∞

−∞
dt′′[B∗

α,+(t − t′′)Bα,+(t
′ − t′′)](+,t′′) , (11.123)

and the index (+, t′′) stands for taking the causal part of a multidimensional
function in the argument t′′.
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Let us first utilize the method in a simple special case when Bα(t) ≡ 0, ∀α, this
gives a conventional Wiener-Hopf integral equation:∫ +∞

0

dt′A(t− t′)g(t′) = h(t) , t > 0 , (11.124)

which can be rewritten as:[∫ +∞

−∞
dt′A(t− t′)g+(t

′)− h(t)

]
(+,t)

= 0 . (11.125)

Applying a Fourier transform in t, and the convolution theorem, one gets:∫ +∞

−∞

dΩ

2π

[
Ã(Ω)g̃+(Ω)− h̃(Ω)

]
+
e−iΩt = 0 . (11.126)

The spectrum of the causal (anticausal) function is simply:

g̃+(−)(Ω) =

∫ ∞

−∞
dt g+(−)(t)e

iΩt . (11.127)

However, this evident relation is not operational for us, as it provides no intuition
on how to directly get g̃±(Ω) given g̃(Ω) at our disposal. The surprisingly simple
answer gives complex analysis. Without loss of generality, we can assume that
g(t) asymptotically goes to zero at infinity as: ∀t : |g(t)| < e−γ0|t| where γ0 is some
arbitrary positive number, that guarantees regularity of g̃(Ω) at −∞ < Ω < ∞.
In terms of the analytic continuation g̃(s) of g̃(Ω) to the complex plane s = Ω+iγ,
the above assumption means that all the poles of g̃(s) are located outside its band
of analyticity −γ0 < Im(s) < γ0. Thus, the partition into causal and anticausal
parts for g̃(s) is now evident:

g̃(s) = g̃+(s) + g̃−(s) (11.128)

where g̃+(s)(g̃−(s)) stands for the function equal to g̃(s) for γ > γ0(< −γ0) and
is analytic in the half plane above (below) the line γ = γ0(−γ0) 3. According to
properties of analytic continuation, this decomposition is unique and completely
determined by values of g̃(Ω) on the real axis. Moreover, as a Fourier transform of
valid L2-function, it has to approach zero when |s| → ∞. For more general cases,
this requirement could be relaxed to demand that ∞ should be a regular point
of g̃(s) so that lim

|s|→∞
g̃(s) = const. This allows to include δ-function and other

integrable distributions into consideration, though it forces us to add the constant
g(∞) to formula (11.128) as additional term. For example, for g(t) = e−α|t|, α > 0
one has the following Fourier transform:

g̃(s) =
2α

α2 + s2
=

2α

(s+ iα)(s− iα)
(11.129)

3Functions g̃+(s) and g̃−(s) are, in essence, Laplace transforms of g(t) for positive and neg-
ative time, respectively, with only a substitution of the variable s → ip.
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that has one pole s+ = −iα in the lower half complex plane (LHP) and one
s− = +iα in the upper half complex plane (UHP). To split f̃(Ω) in accordance
with (11.128) one can use the well-known formula:

g̃±(s) =
∑
{s±,k}

Res[g̃(s), s±,k]

(s− s±,k)σk
(11.130)

where summation goes over all poles {s+,k} (with σk is the order of pole s+,k) of
g̃(s) that belong to the LHP for g̃+(s) and over all poles {s−,k} of g̃(s) that belong
to the UHP for g̃−(s) otherwise, and Res[g̃(s), s] stands for residue of g̃(s) at pole
s. For our example function this formula gives:

g̃+(s) =
i

s+ iα
, g̃−(s) = − i

s− iα
. (11.131)

Using the residue theorem, one can easily show that:

g+(t) = e−αt, for t > 0 (11.132)

g−(t) = eαt, for t < 0 . (11.133)

Coming back to the Eq. (11.126), assume that function Ã(Ω) can be factorized
in the following way:

Ã(Ω) = ã−(Ω)ã+(Ω) (11.134)

where ã+(−)(Ω) is a function analytic in the UHP (LHP) with its inverse, ı.e.,
both its poles and zeroes are located in the LHP (UHP). One gets the following
equation: [

ã−(Ω)ã+(Ω)g̃+(Ω)− h̃(Ω)
]
+
= 0 . (11.135)

To solve this equation, one realizes the following fact: for any function f̃ , [f̃(Ω)]+ =
0 means that f̃ has no poles in the LHP. Multiplication of f̃ by any function g̃−
which also has no poles in the LHP will evidently not change the equality, namely,
[g̃−(Ω)f̃(Ω)]+ = 0. Multiplying Eq. (11.135) by 1/ã−(Ω), the solution reads

g̃+(Ω) =
1

ã+(Ω)

[ h̃(Ω)
ã−(Ω)

]
+
. (11.136)

On performing an inverse Fourier transform of g̃+(Ω), the time-domain solution
g+(t) can be obtained.

Now we are ready to solve Eq. (11.122) with the general kernel in Eq. (11.123).
Performing similar manipulations, one obtains the following equation for g̃+(Ω)
in the Fourier domain:[(

Ã+
∑
α

B̃αB̃
∗
α

)
g̃+ −

∑
α

B̃α(B̃
∗
αg̃+)− − h̃

]
+

= 0 , (11.137)
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where we have omitted arguments Ω of all functions for brevity. Since B̃α is a
causal function, B̃∗

α is anticausal and g̃+ is causal, (B̃∗
αg̃)− only depends on the

value of g̃ on the poles of B̃∗
α. Performing a similar factorization:

ψ̃+ψ̃− = Ã+
∑
α

B̃αB̃
∗
α, (11.138)

with ψ̃+ (ψ̃−) and 1/ψ̃+ (1/ψ̃−) analytic in the UHP (LHP), ψ+(−Ω) = ψ∗
+(Ω) =

ψ−(Ω), we get the solution in the form:

g̃+ =
1

ψ̃+

[
h̃

ψ̃−

]
+

+
1

ψ̃+

[∑
α

B̃α(B̃
∗
αg̃+)−

ψ̃−

]
+

. (11.139)

Even though g̃+ also enters the right hand side of the above equation, yet (B̃∗
αg̃+)−

can still be written out explicitly as:

(B̃∗
αg̃+)− =

∑
{Ω−,k}

g̃+(Ω−,k)Res[B̃
∗(Ω), Ω−,k]

(Ω− Ω−,k)σk
. (11.140)

Here {Ω−,k} are poles of B̃∗(Ω) that belong to UHP, and therefore g̃+(Ω−,k) are
just constants that can be obtained by solving a set of linear algebra equations,
by evaluating Eq. (11.139) at those poles {Ω−,k}.

11.9.3 Solving integral equations in Section 11.6

Here, we will use the technique introduced in the previous section to obtain an-
alytical solutions to the integral equations we encountered in subsections 11.6.2
and 11.6.3.

In the coordinate representation, the integral equations for g1,2 are the following
[cf. Eqs. (11.78) and (11.79)]:∫ Tint

0

dt′
[
C11(t, t

′) C12(t, t
′)

C21(t, t
′) C22(t, t

′)

] [
g1(t

′)
g2(t

′)

]
=

[
0
h(t)

]
, (11.141)

where Cij (i, j = 1, 2) are given by Eqs. (11.88), (11.89) and (11.90), and we have
defined h(t) ≡ µ1f1(t) + µ2f2(t). Since the optimal g1,2(t) will automatically cut
off when t > τF , we can extend the integration upper bound Tint to ∞. This
brings the equations into the appropriate form considered in Appendix 11.9.2. In
the frequency domain, they can be written as

[S̃11g̃1]+ + [S̃12 g̃2]+ = 0, (11.142)

[S̃21 g̃1]+ + [S̃22 g̃2]+ − Γ̃ = h̃, (11.143)

Γ̃ = (1− η)(Ω4
q/2)(e

2q + 2ζ2F )[G̃x(G̃xg̃2)−]+. (11.144)
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Here, S̃ij are the Fourier transformations of the correlation functions Cij. Specif-
ically, they are

S̃11 =
η + (1− η)e2q

2
, (11.145)

S̃12 = −
(1− η)e2qΩ2

q

2(Ω + ωm − iγm)(Ω− ωm − iγm)
, (11.146)

S̃21 = S̃∗
12, (11.147)

S̃22 =
Λ2

4
+

(1− η)(e2q + 2ζ2F )Ω
4
q

2[(Ω + ωm)2 + γ2m][(Ω− ωm)2 + γ2m]
. (11.148)

Since S̃11 is only a number, the solution to g̃1 is simply

g̃1 = −S̃−1
11 [S̃12g̃2]+. (11.149)

In the time-domain, this recovers the result in Eq. (11.91). Through a spectral
factorization

ψ̃+ψ̃− ≡ S̃22 − S̃−1
11 S̃12S̃21, (11.150)

we obtain the solution for g̃2:

g̃2 =
1

ψ̃+

{
1

ψ̃−

[
h̃− S̃−1

11 S̃21(S̃12g̃2)− + Γ̃
]}

+

. (11.151)

Substituting Γ̃ into the above equation, g̃2 becomes:

g̃2 =
1

ψ̃+

{
1

ψ̃−

[
h̃+ κ G̃x(G̃

∗
xg̃2)−

]}
+

(11.152)

with κ ≡ m2Ω4
qζ

′2
F . A simple inverse Fourier transformation gives g1(t) and g2(t).

The unknown Lagrange multipliers can be solved using Eq. (11.83). We can
then derive the covariance matrix Vadd for the added verification noise with Eq.
(11.85). In the free-mass regime, a closed form for Vadd can be obtained, as shown
explicitly in Eq. (11.98).
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Conclusions and Future Work

12.1 Conclusions

To conclude, this thesis has covered two main topics concerning Macroscopic
Quantum Mechanics (MQM) in optomechanical devices. The first topic con-
siders different approaches to surpassing the Standard Quantum Limit (SQL) for
measuring weak forces, which include modifying the input/output optics, and the
dynamics of the mechanical oscillator. Concerning the approach of modifying
the input optics, in Chapter 3, we have proposed simultaneously injecting two
squeezed light—filtered by a resonant optical cavity—into the dark port of the
laser interferometer GW detector. This can reduce the low-frequency radiation-
pressure noise, and the high-frequency shot noise so that the detector sensitivity
over the entire observational band from 10 Hz to 104 Hz can be improved. Given
its relatively simple setup—only a 30 m filter cavity is required— this could be a
feasible add-on to future advanced GW detectors. With the approach of modify-
ing the output optics, in Chapter 5, we have proposed the use of a time-domain
variational method, in which the homodyne detection angle has the optimal time-
dependence. Such a scheme provides a transparent way to probe the mechanical
quadrature—the conserved dynamical quantity of a mechanical oscillator—and
allows us to surpass the SQL. This works in the cases where the bandwidth of
the optical cavity is much larger than the mechanical frequency, and therefore
it can be implemented in small-scale optomechanical devices, in which high fi-
nesse is difficult to achieve, and also in large-scale broadband GW detectors (e.g.,
Advanced LIGO). With the approach of modifying the mechanical dynamics, in
Chapter 4, we have explored the frequency dependence in double optical springs,
and we have shown that it can significantly enhance the mechanical response over
a broad frequency band. This is especially useful for GW detectors because the
natural frequency of the suspended test-masses is quite low, which gives a low
mechanical response in the detection band around 100 Hz.

The second topic is concerned with exploring quantum behaviors of macroscopic
mechanical oscillators with quantum-limited optomechanical devices. In Chapter
6, we have discussed the use of three-mode optomechanical interactions to study
MQM. We have pointed out the optimal frequency matching inherent in this in-
teraction, which allows a significant enhancement of the optomechanical coupling
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compared with that in conventional two-mode interactions. Such a feature enables
us to cool milligram-scale mechanical oscillators down to their quantum ground
state and also to create quantum entanglement between the oscillator and the
cavity modes. In Chapter 7, we have discussed the quantum limit for ground
state cooling, and the creation of quantum entanglement in general optomechan-
ical devices. We have used an alternative point of view, based upon information
loss, to explain the origin of the resolved-sideband cooling limit. By recovering
the information contained in the cavity output, we can surpass such a cooling
limit without imposing stringent requirements on the cavity bandwidth. We have
also shown such an information recovery can enhance the optomechanical entan-
glement. This work can help us in finding the proper parameter regime to achieve
the quantum ground state, and to realize quantum entanglement experimentally.
In Chapter 8, we have investigated the quantum entanglement between a mechan-
ical oscillator and a continuum optical field. In contrast to the cases studied in
previous chapters, the continuum optical field contains infinite degrees of free-
dom. We have developed a new functional method to analyze the entanglement
strength, and have derived an elegant scaling which shows that the entanglement
only depends on ratio of the optomechanical coupling to the thermal decoherence
strength. This illuminates the possibility of incorporating mechanical degrees of
freedom for future quantum computing at high environmental temperature. In
Chapter 9, we have studied nonlinear optomechanical interactions for observing
mechanical energy quantization. We have derived a simple quantum limit that
only involves the fundamental parameters of an optomechanical device—this re-
quires the zero-point uncertainty of the mechanical oscillator to be comparable
to the linear dynamical range of the cavity, which is quantified by the ratio of
the optical wavelength to the cavity finesse. This limit applies universally to
all optomechanical devices, and therefore it serves as a guiding tool for choosing
the right parameters for MQM experiments. In Chapter 10, we have discussed
preparing a mechanical oscillator in non-Gaussian quantum states to explore the
non-classical features of optomechanical devices. We have proposed transferring a
non-Gaussian quantum state from the optical field to the mechanical oscillator by
injecting a single-photon pulse into the dark port of an interferometric optome-
chanical device. The radiation pressure of the single-photon pulse is coherently
amplified by the strong optical power from the bright port, which makes such a
state transfer possible. We have shown the experimental feasibility in the case of
both small-scale table-top experiments, and large-scale advanced GW detectors.
In Chapter 11, we have outlined a complete procedure for an MQM experiment, by
including a verification stage to follow up the preparation stage. With an optimal
time-dependent homodyne detection, the prepared quantum state can be probed
and verified with a sub-Heisenberg accuracy. This not only allows us to explore
the quantum dynamics of the mechanical oscillator, but also the non-classical fea-
ture of the quantum state. In particular, we have applied it to study the survival
duration of the quantum entanglement between macroscopic test-masses which
suffer from thermal decoherence. This complete procedure can also be directly
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applied to small-scale optomechanical devices.

12.2 Future work

There are still many issues that need to be further investigated for a thorough
understanding. Particularly, in Chapter 4, only preliminary results are obtained:
they only show the modified mechanical response due to the double optical spring
but not the resulting detector sensitivity. We need to combine the outputs of
the two optical fields in an optimal way to maximize the detector sensitivity. In
addition, the resulting system is dynamically unstable and we need to figure out
a way to control such an instability. In Chapter 5, we have assumed no optical
loss in the variational readout, which certainly fails actually. If the optical loss
is included, total evasion of the measurement back-action is not obviously the
optimum as we have found when studying the verification problem in Chapter 11.
Since the mathematical structure of this problem is quite different from that in the
verification case, we need to find a new method to realize such an optimization. In
Chapter 9, we have studied the optomechanical dynamics by using the Langevin
equation approach. This shows how the dynamical quantities evolve, but the effect
of measurement on the evolution of the quantum state is not discussed. Therefore,
it is necessary for us to use a different approach to study how the mechanical
oscillator jumps among different energy eigenstates, while at the same time being,
subjected to both a continuous measurement and thermal decoherence. This can
help us to address the question of whether the quantum-Zeno effect exists or not
in such a nonlinear optomechanical system. In Chapter 11, we have assumed
that the thermal force noise and measurement sensing noise are white with flat
noise spectra—a Markovian assumption. Non-Markovian noises certainly arise in
an actual GW detector. These noises at low frequencies, such as the suspension
thermal noise and the coating thermal noise, tend to rise faster than what we
have assumed. We have already developed the right tools to treat such non-
Markovianity but need further analysis to go through the details.
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