
Beyond the Quantum Limit
–

A Squeezed-Light Laser in GEO600

Von der Fakultät für Mathematik und Physik

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades

Doktor der Naturwissenschaften

– Dr. rer. nat. –

genehmigte Dissertation

von

Dipl.-Phys. Aleksandr Khalaidovski

geboren am 16. Januar 1982 in Kiev, Ukraine

2011



Referent: Prof. Dr. Roman Schnabel

Korreferent: Prof. Dr. Karsten Danzmann

Tag der Promotion: 21.12.2011



Abstract

Albert Einstein’s General Theory of Relativity predicts the existence of ripples in space-

time, the so-called gravitational waves (GWs). In the past two decades, an international

array of ground-based, kilometer-scale Michelson interferometers has been set up aiming

at a first observation. These Earth-bound GW detectors target signals at audio frequen-

cies in a band of ca. 10 Hz – 10 kHz. At Fourier frequencies above 1 kHz, their sensitivity

is limited by quantum noise. This shot-noise arises from the zero-point fluctuations of the

electromagnetic field, the so-called vacuum fluctuations, which enter the interferometer

through its anti-symmetric signal port. Future generations of GW observatories will even

be limited by quantum noise almost over their entire detection band [ET].

A ‘classical’ solution to further improve the signal-to-shot-noise ratio (SNR) of the

observatories consists in an increase of the circulating light power. A higher optical load

inside the interferometer will, however, lead to thermally-induced beam distortion as well

as to an increased radiation pressure noise level. This will effectively result in an upper

limit for the optical light power employable in future GW observatory generations. An

alternative approach to improve the SNR is based on the injection of so-called squeezed

states of light. Such a light field has a characteristic non-classical noise distribution in the

field quadratures. Injected from the signal port, the squeezed state replaces the vacuum

state, thereby reducing the interferometer’s quantum noise.

The first part of this thesis discusses the setup of a squeezed-light laser for the German-

British GW observatory GEO 600. During characterization of the device, a noise reduc-

tion of up to 9.6 dB below the vacuum noise level was observed in the frequency band

of 10 Hz –10 kHz, setting a new benchmark for squeezing observed at audio frequencies.

Corrected for detection losses, this value furthermore corresponds to more than 11 dB

of squeezing available for injection into the dark port of GEO 600. Situated on a

1.15 m × 1.35 m optical breadboard, the device features transportability and can be

operated independently of the GW interferometer. A key feature of the squeezed-light

laser is its unprecedented long-term stability. The longest characterization measurements

lasted for 20 h with an overall duty cycle of more than 99 %.

In the second part of this thesis, the implementation of squeezed light into GEO 600

is presented along with the results achieved. The observatory shot noise was reduced by

up to 3.4 dB, corresponding to an improvement in sensitivity by a factor of up to 1.5.

For isotropically distributed GW sources, this corresponds to an increase in detection

probability by 1.53 ≈ 3.4. This makes GEO 600 the first large-scale GW interferometer

with a non-classically enhanced sensitivity. Based on the performance of the squeezed-

light laser, a sensitivity improvement by a factor of two, corresponding to an equivalent

optical power increase by a factor of four, seems feasible in the near future.

Keywords: Interferometric gravitational-wave detector, squeezed light generation and

injection, nonclassically enhanced sensitivity, low frequency squeezing
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Kurzfassung

Im Jahre 1916 sagte Albert Einstein als Konsequenz der Allgemeinen Relativitätstheorie

die Existenz von Gravitationswellen (GWs) voraus. Ihr bis heute ausstehender direkter

Nachweis stellt eine der großen Herausforderungen der modernen Physik dar. In den

vergangenen Jahrzehnten ist zu diesem Zweck ein weltweites Netzwerk von Laserinter-

ferometern entstanden. Der Messbereich dieser erdgebundenen Detektoren erstreckt sich

über den Audiofrequenzbereich von ca. 10 Hz bis 10 kHz, wobei die Messempfindlichkeit

ab ca. 1 kHz durch Quantenrauschen limitiert wird. Dieses Schrotrauschen hat seinen

Ursprung in den Nullpunktfluktuationen des elektromagnetischen Feldes, welche durch

den Signalport ins Interferometer einkoppeln und so die Messempfindlichkeit begrenzen.

Der
”
klassische” Ansatz zur Verbesserung des Signal-zu-Rausch-Verhältnisses (SNR)

ist eine Erhöhung der in den Interferometerarmen zirkulierenden Lichtleistung. Dies

führt jedoch auch zu einer Erhöhung der in den Substraten absorbierten Leistung sowie

unausweichlich zu einer Vergrößerung des Strahlungsdruckrauschens. Einen alternativen

Ansatz zur Verbesserung des SNR bietet sogenanntes gequetschtes Licht, welches weder

zu einer Erhöhung der thermischen Last noch generell zu einem erhöhten Strahlungs-

druckrauschen führt.

Das Ziel der vorliegenden Arbeit war der Aufbau eines Quetschlichtlasers für

den deutsch-britischen Gravitationswellendetektor GEO 600 sowie die Demonstration

einer nicht-klassisch verbesserten Messempfindlichkeit. Der experimentelle Aufbau des

Quetschlichtlasers und seine Charakterisierung bilden den Schwerpunkt des ersten Teils

dieser Dissertation. Dabei wurde im Frequenzband von 10 Hz –10 kHz eine Verringerung

der Rauschleistung um bis zu 9.6 dB unter das Niveau des Vakuumrauschens beobachtet,

was in diesem Frequenzintervall einen neuen Rekordwert darstellt. Für die Einkopplung

in den Signalport von GEO 600 steht damit – nach Berücksichtigung der lediglich bei

der Charakterisierung entstehenden optischen Verluste – ein Wert von über 11 dB zur

Verfügung. Der Quetschlichtlaser stellt ein vom GW-Interferometer unabhängiges Gerät

dar, das auf einem 1.15 m× 1.35 m großen optischen Breadboard Platz findet und damit

transportabel ist. Ein Schlüsselmerkmal des Quetschlichtlasers ist seine Langzeitstabili-

tät. Bei den längsten Charakterisierungsmessungen, welche sich über einen Zeitraum von

20 Stunden erstreckten, wurde ein effektiver duty cycle von weit über 99 % beobachtet.

Der zweite Teil der vorliegenden Arbeit diskutiert die Implementierung des

Quetschlichtlasers in GEO 600 und die dabei erzielten Ergebnisse. Das Schrotrauschen

des Interferometers wurde um bis zu 3.4 dB abgesenkt. Dies entspricht einer Empfind-

lichkeitsverbesserung um den Faktor 1.5 und damit einer Erhöhung der Detektions-

wahrscheinlichkeit um 1.53 ≈ 3.4 für isotrop verteilte Quellen von Gravitationswellen.

Damit ist GEO 600 der weltweit erste Gravitationswellendetektor mit einer nicht-klassisch

verbesserten Messempfindlichkeit.

Stichworte: Gravitationswellendetektor, gequetschtes Licht im Audiofrequenzbereich,

nicht-klassische Verbesserung der Messgenauigkeit von Laserinterferometern
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CHAPTER 1
Introduction

1.1. A glimpse at gravitational waves

In his Principia, Isaak Newton described space and time as abstract parameters being

independent one from each other [Newton87]. This concept has been revisited by Albert

Einstein: As a consequence from the constancy of the speed of light, in his special theory of

relativity [Einstein05] space and time are joined together into spacetime. A decade later,

the general theory of relativity (GR) [Einstein15] dedicated to gravitation was published.

One property addressed therein was the causality of gravity: A change in the gravitational

field of an object is not observable instantly at an arbitrary distance, as implied by New-

tonian gravity, but rather propagates at the speed of light. This means that, in analogy to

electromagnetism, a ‘gravitational radiation’ exists. The first calculation of such radiation

was published by Einstein himself [Einstein16, Einstein18] only a few months after the

theory of GR and still constitutes the “leading-order quadrupole formula for the emission

of gravitational waves” (GWs) [Flanagan+05]. As electromagnetic waves are emitted by

accelerated charges, GWs are generated by accelerated masses and propagate through

spacetime as transversal waves at the speed of light. An introduction to GR is e. g.

provided by [Misner+73, Flanagan+05, Wald84, Schutz09] and the references therein.

From an experimentalist’s point of view, two questions are of particular interest: What

is the effect of a gravitational wave and how strong is the expected interaction with a

measurement apparatus? GWs are vibrations of spacetime. They manifest as a change

∆L in the proper distance L between two spacetime events that is also referred to as

strain. The GW amplitude is described by the dimensionless quantity [Aufmuth+05]

h = 2
∆L

L
. (1.1)

It is worth noting that every wave can be written as a superposition of two orthogonal

polarization modes h+ and hx which go one into the other through a rotation of 45◦.

1



1. Introduction

h +

h x

h +

0 2ππ/2 3π/2π

Figure 1.1.: The effect of a +-polarized (top) and a x-polarized (middle) gravitational wave
propagating vertical to the image plane on a ring of 8 test particles. The illustration
comprises one full cycle of the GW. Bottom: effect of a +-polarized GW on a
Michelson-type laser interferometer.

In Fig. 1.1, the effect of the two polarizations on a ring of 8 free-falling test masses is

illustrated, the direction of propagation is orthogonal to the image plane. Due to the

quadrupolar nature of gravitational radiation, an asymmetry is introduced: While in one

direction the distance between the masses is squeezed, it is stretched by the same amount

in the orthogonal direction.

Though according to GR gravitational waves are omnipresent, the effects described

are much to weak to be observed in everyday’s life. The reason for this is the high

elastic stiffness of spacetime. For an illustration, let us consider a possible laboratory

experiment. Since GWs are emitted by accelereted objects whose motion is neither

spherically nor cylindrically symmetric, a ‘rotating dumbbell’ is a good approach: Two

masses M1/2 are attached to a rod of length a and are spinning with the frequency Ω

along the axis perpendicular to the rod. The gravitational wave amplitude produced by

such a laboratory experiment is [Saulson94]

hlab =
4G

c4

µa2Ω2

R
, (1.2)
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1.2. Approaches for a direct detection

with G being Newton’s gravitational constant, c the speed of light,

µ = (M1M2)/(M1 +M2) the reduced mass and R the distance to the observer.

Even assuming extreme values like Ω/2π = 1 kHz, M1 = M2 = 103 kg, a = 1 m and

R = 300 km being the minimal distance of one wavelength, the resulting amplitude

hlab ≈ 10−39 (1.3)

is incredibly small and far beyond the detection possibilities existing today. A laboratory

source of GWs for dedicated experiments therefore appears very unlikely. More promising

sources are massive astrophysical objects as e. g. coalescing binary neutron star (NS)

or binary black hole systems, supernovae or pulsars. To give an example, a ‘close-by’

supernova at a distance of 10 kpc and hence well inside our galaxy is expected to result

in a strain of hSN ≈ 10−22 when measured on Earth [Ott09]. While still being fairly

weak, this effect is nevertheless 17 orders of magnitude stronger than expected from

the gedankenexperiment discussed above. Besides the burst sources corresponding to

catastrophic events and narrow-band sources such as pulsars or binary systems far from

coalescence, a stochastic GW background, resulting from the superposition of a large

amount of weak sources, is expected to exist. Altogether, the emission spectrum covered

by this variety of different source types extends from below 10−9 Hz up to kHz frequencies

[Blair+12]. For an extensive discussion of different source types see [Thorne87, Saulson94,

Cutler+02, Blair+12].

1.2. Approaches for a direct detection

The first attempt to directly measure GWs was undertaken almost half a century

after the first prediction of their existence by Joseph Weber [Weber60]. His detector

was designed as a large aluminium cylinder, forming a high-Q mechanical resonator.

A gravitational wave was expected to excite the fairly sharp eigenresonance of this

so-called bar detector. To measure the GW-induced elastic vibrations, piezoelectric

transducers were attached to the bar. In 1969, Weber claimed a first detection of

gravitational waves [Weber69, Weber70]. Though his results could never be confirmed

by other research groups, it was this claim that encouraged several independent re-

search groups to construct GW detectors. Until now, several resonant detectors have

been operated worldwide. For an introduction to the single projects please refer to

[ALLEGRO, AURIGA, EXPLORER/NAUTILUS, MiniGRAIL, NIOBE, Schenberg]. To

reduce thermal noise which at room temperature would mask any GW signal, these detec-

tors are operated at cryogenic temperatures. While reaching considerable strain sensiti-

vities, a drawback of the resonant detectors is their low bandwidth of typically < 100 Hz.

The newly born field of gravitational wave detection experienced an enormous encoura-

gement from the observation of the binary pulsar PSR 1913+16, reported by Hulse and

Taylor in 1975 [Hulse+75]. General Relativity predicts such a binary system to emit gravi-

tational radiation and due to this loss of energy to exhibit an orbital decay. Observations

3



1. Introduction

Figure 1.2.: Photograph of the GEO 600 gravitational wave observatory (courtesy H. Lück).

over several years revealed the orbital decay to be in agreement with the GR predictions

with an accuracy of better than 1 % [Ju+12a]. Since then, other systems with a similar

behaviour have been discovered [Deich+96, Stairs+02, Burgay+03, Faulkner+04]. For

their discovery, which is generally considered an indirect proof of the existence of gravita-

tional waves, Hulse and Taylor were awarded the Nobel Prize in 1993 [Hulse94, Taylor94].

An alternative approach for a measurement aparatus which was considered since the

1950s [Pirani56, Gertsenshtein+63, Weiss72, Forward78] is a laser interferometer. The

effect of a gravitational wave on a Michelson-type interferometer is illustrated in the

lower part of Fig. 1.1. For simplicity, the interferometer is oriented in an optimal way

to a h+-polarized GW propagating perpendicular to the image plane. In this case, the

GW strain changes the distance between the two interferometer mirrors (in the following

referred to as test masses) and the beam splitter in an asymmetric way: While one arm

of the interferometer is squeezed by the amount δlGW, the other arm is stretched by

exactly the same amount. This leads to an effective phase shift

δφGW =
4π

λ
δLGW = hGW(t)

2πL

λ
(1.4)
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1.3. Noise sources in interferometric GW observatories

between the light fields propagating the two arms of the interferometer which can be

detected as a change in the interference pattern. A Michelson-type interferometer

therefore constitutes an optimal device for GW detection. A huge advantage when

compared to resonant bar detectors is the broadband measurement sensitivity. It is worth

stressing that the phase shift induced by the GW strain described by Eq. (1.4) depends

on the arm length L as well as on the wavelength λ of the laser used. Additionally,

the sensitivity increases with the amount of optical power stored in the arms. Following

early prototype experiments [Livas+86, Newton+86, Spero+86, Shoemaker+88], several

large-scale gravitational wave observatories have been constructed all over the world in

the 1990s. This observatory network consists of:

Three LIGO interferometers [Fritschel+12] at two sites located in the states of Wa-

shington (Hanford) and Louisiana (Livingston) in the USA. While each site houses

an interferometer with 4 km arm length, at Hanford an additional 2 km interferometer

was built in the same vacuum system. To increase the storage time, the arms of the

LIGO interferometers are constructed as Fabry-Perot resonators. This approach offers

the advantage that the optical power at the interferometer beam splitter can be kept

considerably low, thereby reducing thermal effects due to absorption of laser light inside

the substrate.

Virgo [Acernese+08], a French-Italian project, is located near Pisa in Italy. It has an

arm length of 3 km and an optical layout very similar to the LIGO detectors.

GEO600 [Grote+10] is a German-British project located in Ruthe near Hannover in

Germany. Though the physical arm length is, as suggested by the name, indeed 600 m,

the arms are folded once in the vertical plane, thereby yielding an effective optical path of

1200 m. GEO 600 does not possess arm cavities but uses the techniques of power-recycling

and signal-recycling to resonantly enhance the circulating light power as well as the GW

signal.

TAMA300 [Takahashi+04] is a Japanese interferometer with 300 m arm length and

Fabry-Perot arm cavities.

Over the last decade, the observatories completed several joint measurement campaigns,

referred to as science runs. Figure 1.3 shows the observatory sensitivities (status summer

2010) in units of spectral density of the GW strain as well as of test mass displacement.

In the following section, the different noise contributions which limit the measurement

sensitivity are summarized.

1.3. Noise sources in interferometric GW observatories

The understanding of the different noises limiting the measurement sensitivity in various

frequency bands is far from trivial. Several years of commissioning activities were

required for the observatories to largely reach their design sensitivities and even after

this time some noise sources are yet to be understood. In the following, merely the most
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Figure 1.3.: Status of the observatory sensitivities in units of GW strain (top) and of test mass
displacement (bottom) in the year 2010. The Virgo V2 sensitivity curve was chosen
because it refers to the best Virgo sensitivity achieved by now at high frequencies
where the observatory is limited by quantum noise (see discussion in Section 1.3).
Source: [LIGO-Sens, Virgo-Sens, GEO-Sens].
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1.3. Noise sources in interferometric GW observatories

fundamental noises limiting the sensitivity at low, intermediate and high frequencies are

addressed.

Seismic noise

If vibrations of the terrestrial environment couple to the interferometer test masses, they

will mask any potential GW signal. This seismic noise is due to a variety of causes that

reach from human activities to the impact of ocean waves on continental coastlines. As a

rule of thumb, the seismic noise spectrum can in first-order approximation be assumed to

be white (frequency-independent) from 1 Hz to 10 Hz and to show a 1/f2 characteristics

above 10 Hz [Saulson94]. A combination of active and passive filters along with multi-

stage pendulum suspensions is used in the GW observatories for vibration isolation. Since

the motion of a mass suspended from a pendulum is suppressed by a factor proportional

to 1/f2 above the pendulum’s resonance frequency (typically a few Hertz in case of the

observatories), multiple suspensions can achieve an effective noise suppression by a factor

of 107 − 108 above some 10 Hz [Aufmuth+05]. Seismic noise is dominant at frequencies

below about 50 Hz (with the exception of Virgo, where due to a sophisticated suspension

system, the so-called Virgo super attenuator, measurements not limited by seismic noise

down to frequencies of a few Hertz [Ballardin+01] are possible).

Thermal noise

Different noise sources that result from thermally excited motions are usually referred to

as thermal noise. They can be sub-divided further into different categories [Rowan+05] as

for example coating thermal noise [Crooks+04], substrate thermal noise [Liu+00], ther-

morefractive noise [Braginsky+01] or suspension noise. A broad overview discussion with

further references is provided in [Ju+12b]. Generally, the thermal noise issue is addressed

using materials with a high Q-factor and hence with a low mechanical loss for the test

masses and the suspensions to concentrate the thermal energy in a discrete number of

modes at frequencies outside the detection band. The test masses are designed to have

the principal vibration modes above 5 kHz, while the modes of the pendulum suspensions

are at seismic-noise dominated frequencies of a few Hertz [Aufmuth+05]. In current GW

observatories operated at room temperature, the sensitivity is limited by thermal noise at

frequencies between about 50 Hz and several hundred Hertz (again, with the exception of

Virgo). Thermal noise is expected to limit the sensitivities of future generations of GW

observatories. An approach to further reduce this noise is to operate the observatories at

cryogenic temperature. Recently, the proposal for LCGT [Kuroda+10], a Japanese GW

observatory where the final suspension stages are cooled to a temperature below 20 K,

was approved. A GW laser interferometer operated at cryogenic temperatures was earlier

demonstrated in the 100 m CLIO prototype experiment [Arai+09].
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Figure 1.4.: Shot noise and radiation pressure noise in a Michelson interferometer without arm
cavities and signal-recycling. (a) Assuming P = 2.7 kW, λ = 1064 nm, m = 5.6 kg
and L = 1200 (corresponding to the GEO 600 parameters). (b) Same parameters
with a laser power increased by a factor of 10. (c) Standard quantum limit showing
the minimized optical readout noise value at any given frequency.

Quantum noise

A gravitational wave signal is ‘translated’ by the laser interferometer into a variation

of the optical power at the signal output port. A fundamental limit for the possible

measurement accuracy is set by the Poissonian distribution of the photon number

p(N) =
N̄N exp(N̄)

N !
(1.5)

arriving within a time interval at the interferometric photo detector. Here, N̄ is the

mean number per counting interval (when N̄ � 1, being a valid assumption for the

laser interferometers, the Poissonian distribution can be approximated by a Gaussian

distribution). Laser GW interferometers are operated close to their dark fringe, which

means that due to destructive interference almost no light leaves the signal port and

all optical power is reflected back to the laser. However, zero-point fluctuations of the

electromagnetic field, in the following referred to as vacuum fluctuations, are coupled

into the interferometer’s signal port and generate a signal that is not distinguishable

from a GW signal. For a ‘simple’ Michelson-type interferometer without arm cavities or

8



1.3. Noise sources in interferometric GW observatories

signal-recycling, this effect is described by the frequency-independent signal-normalized

amplitude spectral density [Rüdiger11]

hShot(f) =
1

`

√
~cλ
πP

, (1.6)

Here, ` = 2L is the total optical path, L is the arm length and P is the optical power

inside the interferometer. Since this signal-normalized quantum shot noise is inversely

proportional to the circulating power, in principle an arbitrarily precise measurement

seems possible using more and more powerful lasers. In reality, a practical upper

limit is given by the thermal effects which arise when laser light is absorbed by the

interferometer optics. Currently, shot noise is the limiting contribution to the noise

budget of the observatories at frequencies above several hundred Hertz (about 700 Hz in

case of GEO 600).

Additionally, a back-action effect has to be considered: the system being measured

is disturbed by the measurement process itself. The vacuum fluctuations coupled into

the interferometer lead to a fluctuating radiation pressure force on the test masses and

hence manifest as a displacement noise [Braginsky+92]. For a basic Michelson-type

interferometer design, this radiation pressure noise contributes to the linear noise spectral

density normalized to the GW amplitude as [Somiya11]

hRP(f) =
1

mf2`

√
4~P
π3cλ

, (1.7)

with m being the mirror mass. In contrast to shot noise, radiation pressure noise shows

a 1/f2 characteristic and is hence dominant at lower frequencies. Furthermore, the

radiation pressure noise contribution grows with increasing laser power. Both noise

sources, which can be considered as “two faces of a single noise” [Saulson94], contribute

to the total optical readout noise of a Michelson-type GW interferometer as

hORN(f) =
√
h2

Shot(f) + h2
RP(f) . (1.8)

If we try to improve the sensitivity at low frequencies lowering the optical power, this

will reduce the sensitivity at high frequencies and vice versa. For any given frequency,

an optimal power value

Popt(f) =
πcλmf2

2
(1.9)

exists for which the readout noise contribution is minimized. Plugging Eq. (1.9) into

Eq. (1.8) yields the expression

hSQL(f) =
1

πf`

√
4~
m

(1.10)

for the lowest possible optical readout noise at any given frequency, known as the standard

quantum limit (SQL). The noise contributions derived are illustrated in Fig. 1.4.
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Figure 1.5.: (a) Pictorial phase-space representation of a vacuum state. The blue area represents
a projection of the state’s Wigner function, the quasi-probability value is encoded in
the color density (the darker the color, the higher the quasi-probability value). The
dashed line shows one contour line of the Wigner function. The quantum uncertainty
is uniformly distributed in every field quadrature with X+ and X− denominating
the amplitude and phase quadrature, respectively. (b) Representation of a squeezed
vacuum state. The fluctuations are reduced in one field quadrature below the vacuum
level at the expense of the orthogonal quadrature. The areas of the noise circle (a)
and the noise ellipse (b) are identical.

1.4. Reducing the quantum noise

Although suggested otherwise by its name, the standard quantum limit does not consti-

tute a fundamental limit. It assumes that the zero-point (vacuum) fluctuations which

enter the interferometer’s signal port are in a state of minimal uncertainty with equal noise

in every quadrature of the electromagnetic field (Fig. 1.5 (a)). Because the interferometer

is operated close to its dark fringe and thus constitutes a compound mirror, the vacuum

noise is effectively reflected at the signal port and, arriving at the photo detector together

with the signal, finally inhibits an arbitrarily precise measurement.

Heisenbergs uncertainty principle forbids the product of the uncertainties in two

orthogonal quadratures of the electromagnetic field to drop below a certain value. It is,

however, possible to generate a state of the light field whose uncertainty in one quadrature

is reduced compared to a vacuum state, at the expense of an increased uncertainty in the

orthogonal quadrature. Figure 1.5 (b) illustrates such a state in quadrature phase space.

Due to the characteristic shape, it is usually denominated as a squeezed (vacuum) state.

It was Caves who in 1981 for the first time proposed to improve the signal-to-noise ratio

(SNR) of a GW interferometer by utilizing squeezed states [Caves81]. This is especially

10
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Figure 1.6.: Quantum-noise-limited strain sensitivities of a Michelson interferometer (compare
to Fig. 1.4). (a) Assuming P = 2.7 kW, λ = 1064 nm, m = 5.6 kg and L = 1200 m
(corresponding to the GEO 600 parameters). (b) Same parameters with a laser
power increased by a factor of 10. (c) Same parameter as trace (a), but with 10 dB
of squeezing injected into the signal port. The squeezing angle is optimized for a
broadband sensitivity improvement [Jaeckel+90]. This is experimentally realized
using an additional optical resonator to introduce a frequency-dependent orientation
to the squeezing ellipse [Kimble+01]. (d) Standard quantum limit showing the
minimized optical readout noise value at any given frequency for vacuum fluctuations
entering the signal port.

remarkable considering that at this time interferometric GW detectors were yet to be

constructed and squeezed light was also known merely as a theoretical concept. Later

works extended the idea to a broadband sensitivity improvement that would allow to

push the sensitivity below the SQL [Yuen83b, Unruh83, Jaeckel+90]. The basic idea

is to substitute the vacuum state entering the signal port by an appropriately oriented

squeezed vacuum. Where shot noise is dominant, the noise in the phase quadrature needs

to be reduced as far as possible. At low frequencies it is, on the other hand, the noise in

the amplitude quadrature that limits the sensitivity. The effect of squeezing injection is

shown in Fig. 1.6. Therein, a squeezing factor of 10 dB, leading to a broadband sensitivity

improvement by a factor of 3.3, was assumed. At shot-noise-dominated frequencies, the

11
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Figure 1.7.: Transition from a conventional Michelson-type GW interferometer (left) to an inter-
ferometer with squeezing injection (right).

same effects can be reached by a laser power increase by a factor of 10, however at the

expense of a reduced sensitivity at low frequencies.

It is worth noting that the injection of squeezed states can only improve the interfero-

meter sensitivity at frequencies where it is limited by quantum noise. Current observatory

generations are limited by shot noise at frequencies above several hundred Hertz, while

radiation pressure noise is not yet an issue. For noise reduction in only one quadrature (in

this case the phase quadrature), the simple injection scheme shown in Fig. 1.7 is sufficient.

It is realized using a Faraday rotator (FR) and a polarizing beam splitter (PBS). The

squeezed field is reflected at the polarizer, experiences a 45 degree polarization rotation

passing the FR and another 45 degree rotation in the same direction after having been

reflected at the signal-recycling mirror of the interferometer. Due to the total polarization

rotation of 90 degrees, the squeezed beam is transmitted by the PBS together with the

output beam of the interferometer (carrying the GW signal) and arrives at the photo

detector.

1.5. Experimental generation of squeezed light

The first experimental demonstration of squeezed states of light was achieved in

the 1980s by Slusher et al. [Slusher+85], closely followed by other research teams

[Wu+87, Pereira+88]. In the following two decades, interest moved away from proof

of principle experiments to the construction of robust sources of squeezing with the

main concern of improving the squeezing figures. For this purpose, below-threshold

optical parametric oscillators proved to be very efficient squeezed-light sources. In these,

squeezing is generated via parametrical down-conversion in a χ(2) nonlinear crystal.

12



1.6. Structure of the thesis

Strong squeezing at the carrier wavelength of the currently operated GW detectors,

being 1064 nm, can e.g. be generated in MgO:LiNbO3 [Vahlbruch+08, Mehmet+10] or

periodically poled KTP (PPKTP) [Eberle+10], pumped by a second-harmonic 532 nm

beam. Additional requirements on a squeezed-light source for GW detectors were im-

posed by their audio-frequency operation band. Proof of principle experiments included

the development of novel control schemes to generate squeezing at audio frequencies

[McKenzie+04, McKenzie+05, Vahlbruch+06, Vahlbruch+07, Chelkowski+07] as well as

the demonstration of high degrees of squeezing [Mehmet+10, Eberle+10, Mehmet+11].

Finally, the implementation of squeezed light was tested in a suspended GW prototype

detector [Goda+08b].

1.6. Structure of the thesis

The goal of the work presented in this thesis was the construction and characterization

of a compact, transportable squeezed-light laser for the gravitational wave observatory

GEO 600. Furthermore, a non-classically enhanced sensitivity of a large-scale GW obser-

vatory by squeezed light was to be demonstrated for the first time ever. The structure

of this thesis basically follows the different stages of the experiment.

Chapter 2 provides a theoretical introduction to the concept of squeezed states as well

as to the techniques necessary for squeezing generation and detection.

The layout of the GEO 600 squeezed-light laser is described in detail in Chapter 3. In

particular the long-term stability of the squeezing output is addressed since the generated

degree of squeezing has to remain stable on timescales of hours to days to ensure a non-

varying observatory sensitivity.

In Chapter 4, a characterization of the squeezed-light laser is presented. Up to

9.6 dB of noise reduction was measured over the entire frequency band of Earth-bound

GW observatories. The longest characterization measurements addressing the long-term

stability lasted for 20 h, an overall duty cycle of more than 99 % was observed.

The integration of the squeezed-light laser in GEO 600 is discussed in Chapter 5. In

the frequency range where the observatory sensitivity is limited by shot noise (above

700 Hz), a broadband noise reduction of up to 3.5 dB was achieved. This corresponds to

an increase in detection rate for isotropically distributed GW sources in that frequency

band by a factor of up to 3.4. Due to the application of squeezed light, GEO 600 has

achieved its best ever sensitivity since the implementation of the DC readout scheme.

Finally, an analysis of current optical loss sources is provided along with a discussion of

the loss reduction feasible in the near future.

The results of the thesis are summarized in Chapter 6. Ultimately, an outlook to the

squeezing contributions expected in future generations of GW observatories is provided.

13
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CHAPTER 2
From classical light to quantum optics

In this field (of physics), almost everything is already

discovered, and all that remains is to fill a few holes.

Prof. P. von Jolly to Max Planck, 1874

With these words Philipp von Jolly, a friend of the Planck family, seeked to dissuade the

17-years old Max Planck from dedicating his life to the field of physics [Lightman05]. Yet

living in a ‘classical’ world, little did he know that a whole new theory of quantum me-

chanics was to emerge and that Planck’s ideas would contribute to it in an essential way.

Starting from Maxwell’s equations, in this chapter a quantized description of the

electromagnetic field is derived. Thereupon, different states of the light field that

are important for the work presented in this thesis, are discussed. Finally, basics

of nonlinear optics required for the understanding of the generation of non-classical

states of the light field are summarized. The discussions in Sections 2.1 – 2.6 follow

the References [Gerry+06, Bachor+04].

2.1. Quantization of a single-mode electromagnetic field

A classical description of electromagnetic fields propagating in free space is given by

Maxwell’s equations, which in SI units read as

~∇ · ~B = 0 ~∇ · ~E = 0 (2.1 a, b)

~∇× ~B − µ0ε0
∂ ~E

∂t
= 0 ~∇× ~E +

∂ ~B

∂t
= 0 , (2.1 c, d)
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2. From classical light to quantum optics

with ~E and ~B denominating the electric and the magnetic field vectors, respectively.

Applying the rotation operator to Eq. (2.1 d) and considering Eqs. (2.1 a) and (2.1 c),

after a short calculation yields the wave equation

∇2 ~E − µ0ε0
∂2 ~E

∂t2
= 0 (2.2)

that has per definitionem to be satisfied by any electric field. For simplicity, let us

consider a single-mode field confined to a one-dimensional cavity that is oriented along

the z-axis and has perfectly reflective mirrors. In addition, the polarization vector of

the field is, without loss of generality, assumed to be parallel to the x-axis. A possible

monochromatic solution satisfying Eq. (2.2) and the boundary conditions is given by

~E(~r, t) = ~exEx(z, t) = ~ex

(
2ω2

V ε0

)1/2

q(t) sin(kz) , (2.3)

with ω being the frequency of the field mode and ~ex being a unit polarization vector. For

simplicity, the higher-order modes 2ω, 3ω, ..., likewise satisfying the boundary conditions,

are omitted in the following. The wave number k is related to the frequency via k = ω/c

and V denominates the effective volume of the cavity. The time-dependent factor q(t)

has the dimension of a length and will act as a canonical position as shown below. From

Eq. (2.3) and Eq. (2.1 c), the magnetic field in the cavity is

~B(~r, t) = ~eyBy(z, t) = ~ey

(µ0ε0
k

)(2ω2

V ε0

)1/2

q̇(t) cos(kz) , (2.4)

where ~ey is a unit polarization vector. In this model, the time derivative of the canonical

variable q(t) corresponds to the canonical momentum of a ‘particle’ of unit mass

q̇(t) = p(t) . (2.5)

The Hamiltonian, describing the energy of the field mode, is given by the integral

H =
1

2

∫
dV

(
ε0E

2
x +

1

µ0
B2
y

)
(2.6)

over the cavity volume. Eq. (2.6) can be further simplified to

H(q, p) =
1

2

(
p2 + ω2q2

)
. (2.7)

Formally, a single-mode field is hence identical to a harmonic oscillator of unit mass with

the electric and magnetic fields playing the role of canonical position and momentum.

This allows us to identify the classical variables q and p with the operators q̂ and p̂ that

satisfy the commutator relation

[q̂, p̂] = q̂p̂− p̂q̂ = i~ . (2.8)

16



2.2. Number or Fock states

This approach is known as canonical quantization [Cohen-Tannoudji+99]. Therewith,

the electric and magnetic fields become operators as well, and the Hamiltonian can be

expressed as

Ĥ(q̂, p̂) =
1

2

(
p̂2 + ω2q̂2

)
. (2.9)

It is worth noting that the canonical quantization constitutes an intuitive process which

does not follow a precisely described mathematical rule.

Introducing the linear combinations

â =
1√
2~ω

(ωq̂ + ip̂) and â† =
1√
2~ω

(ωq̂ − ip̂) (2.10)

with [
â, â†

]
= 1 , (2.11)

the electric and magnetic field operators can be expressed as

Êx(z, t) = E0

(
â+ â†

)
sin(kz) ,

B̂y(z, t) =
B0

i

(
â− â†

)
cos(kz) .

(2.12)

Here E0 = (~ω/ε0V )1/2 and B0 = (µ0/k)
(
ε0~ω3/V

)1/2
. This finally allows us to write

the Hamiltonian as

Ĥ = ~ω
(
â†â+

1

2

)
. (2.13)

While the position and momentum operators are Hermitian and therefore correspond

to observables, this is not the case for â and â†. They are usually referred to as the

annihilation and the creation operator, respectively.

2.2. Number or Fock states

An understanding of the name convention for â and â† can be obtained from the analysis

of the energy eigenstates |n〉 of the single-mode field with the energy eigenvalues En and

hence with

Ĥ |n〉 = ~ω
(
â†â+

1

2

)
|n〉 = En |n〉 . (2.14)

If Eq. (2.14) is multiplied by â, we obtain the new eigenvalue equation

âĤ |n〉 = ~ω
(
ââ†â+

1

2
â

)
|n〉 = Enâ |n〉 . (2.15)

Using the commutation relation from Eq. (2.11), Eq. (2.15) can be expressed as

~ω
(

1 + â†â+
1

2

)
â |n〉 = Enâ |n〉 (2.16)

17



2. From classical light to quantum optics

and thus as

Ĥ (â |n〉) = ~ω
(
â†â+

1

2

)
(â |n〉) = (En − ~ω) (â |n〉) . (2.17)

Eq. (2.17) describes the eigenvalue problem for â |n〉, being an eigenstate of the Hamilto-

nian with the energy eigenvalue En−~ω. This explains the name ‘annihilation operator’.

When â is applied to a number state |n〉, a quantum of energy is ‘destroyed’:

â |n〉 = cn |n− 1〉 , (2.18)

with cn being a normalization constant. Similarly, the application of â† to |n〉 ‘creates’ a

photon of energy ~ω.

While an upper limit for the energy of a state |n〉 does not exist, a lower boundary is

set by the fact that the energy of the harmonic oscillator must be positive. Therefore, a

lowest energy state which satisfies the condition

â |0〉 ≡ 0 (2.19)

with

Ĥ (â |0〉) = (E0 − ~ω) (â |0〉) ≡ 0 (2.20)

must exist. The eigenvalue problem for this state that is usually referred to as the vacuum

or ground state is given by

Ĥ |0〉 = ~ω
(
â†â+

1

2

)
|0〉 =

1

2
~ω |0〉 , (2.21)

where ~ω/2 is the so-called zero-point energy of the electromagnetic field.

The energy eigenvalues En of the Hamiltonian are, due to the effect of the creation

and annihilation operators discussed above, given by

En = ~ω
(
n+

1

2

)
with n = 0, 1, 2, ... . (2.22)

The Hamiltonian can therefore also be written as

Ĥ = ~ω
(
n̂+

1

2

)
, (2.23)

where n̂ = â†â is the number operator with

n̂ |n〉 = n |n〉 . (2.24)

To satisfy the identity < n|n >= 1, the condition cn =
√
n for the normalization constant

from Eq. (2.18) can be derived. This yields the useful relations

â |n〉 =
√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉 . (2.25)

18



2.2. Number or Fock states

From this, we can immediately deduce that a state with an arbitrary number n of photons

can be generated from the ground state by the repeated application of the creation

operator â†:

|n〉 =

(
â†
)n

√
n!
|0〉 . (2.26)

The number states {|n〉} form a complete set of orthogonal vectors in Fock-space.

One interesting property of these states is that, while they have a well-defined energy

given by Eq. (2.22), this is not the case for the electric field as directly follows from

Eq. (2.12):

〈n| Êx(z, t) |n〉 = E0 sin(kz)
(
〈n| â |n〉+ 〈n| â† |n〉

)
= 0 . (2.27)

The mean field of a number state therefore vanishes. The energy density of the field is

given by

〈n|
(
Êx(z, t)

)2
|n〉 = E2

0 sin2(kz) 〈n|
(

(â)2 + (â†)2 + ââ† + â†â
)
|n〉

= E2
0 sin2(kz)

(
〈n| 2â†â+ 1 |n〉

)
= E2

0 sin2(kz)

(
n+

1

2

) (2.28)

and is different from zero. The fluctuations of the field can be described by the variance

that is defined as 〈(
∆Êx(z, t)

)2
〉
≡
〈
Ê2
x(z, t)

〉
−
〈
Êx(z, t)

〉2
(2.29)

or by the standard deviation

∆Êx =

√〈(
∆Êx(z, t)

)2
〉
. (2.30)

For the Fock states, this so-called uncertainty is

∆Êx =
√

2E0 sin(kz)

(
n+

1

2

) 1
2

. (2.31)

This expression describes a very important property: Even when n = 0, the fluctuations

of the field do not vanish but reach a minimum value which is usually referred to as the

zero-point or vacuum fluctuation.
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2. From classical light to quantum optics

2.3. Quadrature operators

So far the creation and annihilation operators, which are non-Hermitian and therefore do

not correspond to real physical observables, were discussed. We can, however, introduce

the linear combinations of â and â†

X̂+ ≡ 1

2

(
â+ â†

)
(2.32)

X̂− ≡ 1

2i

(
â− â†

)
. (2.33)

They are Hermitian and therefore describe values that can be accessed in a measurement

process (to be precise, X̂+ and X̂− essentially correspond to the position and momentum

operators, but are scaled to be dimensionless). When we for clarity explicitly include the

time dependence of the creation and annihilation operators as â(t) = â(0) exp(−iωt) ≡
â exp(−iωt) and â†(t) = â†(0) exp(iωt) ≡ â† exp(iωt), the operator for the electric field

may be written as

Êx(z, t) = 2E0 sin(kz)
[
X̂+ cos(ωt) + X̂− sin(ωt)

]
. (2.34)

From this form it is obvious that X̂+ and X̂− are associated with the field amplitudes

oscillating out of phase with each other by 90◦. This explains the fact that they are

usually referred to as quadrature operators.

From the commutation relation [
X̂+, X̂−

]
=

i

2
(2.35)

and the well-known relation [Heisenberg27]

∆Ô1∆Ô2 ≥
1

2

∣∣∣〈[Ô1, Ô2

]〉∣∣∣ (2.36)

for any two operators Ô1/2, it directly follows that

∆X̂+∆X̂− ≥ 1

4
. (2.37)

While obviously 〈n| X̂+ |n〉 = 〈n| X̂− |n〉 = 0, this is again not the case for the quadrature

variations of a number state:

〈n|
(
X̂+
)2
|n〉 =

1

4
〈n| â2 + (â†)2 + 2ââ† + 1 |n〉 =

1

4
(2n+ 1) ,

〈n|
(
X̂−
)2
|n〉 = −1

4
〈n| â2 + (â†)2 − 2ââ† − 1 |n〉 =

1

4
(2n+ 1) .

(2.38)

The uncertainties are equally distributed over the two field quadratures. When n = 0,

Heisenberg’s uncertainty principle (Eq. (2.36) is minimized and a state of minimum

uncertainty is obtained.
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2.4. Coherent states

2.4. Coherent states

A disadvantage of the number states |n〉 is that they have a uniform phase distribution, or,

to put it in other words, do not have a well-defined phase. This makes them inappropriate

for the description of real fields as for example laser beams. Even approaching the classical

limit with n → ∞, the mean field 〈n| Êx |n〉 remains equal to zero. This does, however,

not match a classical field that we know to oscillate sinusoidally in time at a fixed point

in space. A set of states better suited to describe the ‘classical’ world of laser fields etc. is

given by the eigenstates of the annihilation operator:

â |α〉 = α |α〉 . (2.39)

The eigenvalues α may be complex since â is a non-Hermitian operator. It is legitimate

to expand |α〉 as

|α〉 =

∞∑
n=0

Cn |n〉 , (2.40)

since the number states form a complete set. Plugged into Eq. (2.39), this yields

â |α〉 = α

∞∑
n=0

Cn |n〉 =

∞∑
n=1

Cn
√
n |n− 1〉 (2.41)

and thus

Cn
√
n = α Cn−1 (2.42)

after equating the coefficients of |n〉 on both sides. An iteration of the procedure results

in the relation

Cn =
α√
n
Cn−1 =

α2√
n(n− 1)

Cn−2 = . . . =
αn√
n!
C0 . (2.43)

Eq. (2.40) may thus be rewritten as

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 (2.44)

and the constant C0 can be determined from the normalization requirement 〈α|α〉 = 1.

The normalized expression for the so-called coherent states |α〉 finally reads

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 . (2.45)

Writing α in polar coordinates as α = |α| exp(iθ), it can be shown that the expectation

value of the electric field operator

〈α| Êx(~r, t) |α〉 = 2 |α|
(

~ω
2ε0V

)1/2

sin(ωt− ~k~r − θ) (2.46)
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2. From classical light to quantum optics

is similar to what would be expected from a classical field. The fluctuations in Êx(~r, t) are

identical to those in a vacuum state. For this reason, the coherent state may be regarded

as a nearly classical-like one. It is, in fact, the best quantum mechanical description of a

laser field [Scully+02]. The absolute value of the complex parameter α is, as evident from

Eq. (2.46), related to the amplitude of the field and furthermore equals the expectation

value of the photon number operator:

n = 〈α| n̂ |α〉 = |α|2 (2.47)

It hence simply describes the average photon number of the field. The fluctuation of the

photon number

∆n̂ =

√
〈n̂2〉 − 〈n̂〉2 (2.48)

can, using

〈α| n̂2 |α〉 = 〈α| â†ââ†â |α〉
= 〈α|

(
â†â†ââ+ â†â

)
|α〉

= |α|4 + |α|2 = n2 + n

(2.49)

be calculated to

∆n̂ =
√
n . (2.50)

This is characteristic for a Poissonian distribution. Correspondingly, the probability of

detecting n photons is described by

Pn = |〈n|α〉|2 = e−n
nn

n!
, (2.51)

which is indeed a Poissonian distribution with a mean value of n.

It is worth mentioning that different approaches can be followed to define coherent

states. An alternative to the method described above is the application of the unitary

displacement operator defined as

D̂(α) = exp
(
αâ† − α∗â

)
with D̂†(α) = D̂(−α) (2.52)

to a vacuum state:

|α〉 = D̂(α) |0〉 . (2.53)

Using the disentangling theorem

exp(Â+ B̂) = exp(Â) + exp(B̂) + exp

(
−1

2

[
Â, B̂

])
, (2.54)

Eq. (2.53) can be shown to be identical to Eq. (2.45).
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2.5. Phase-space pictures of coherent states

X+

X-
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Figure 2.1.: (a) Pictorial phase-space representation of a coherent state of amplitude |α| and
phase-angle θ. The fluctuations are uniformly distributed in every field quadrature
with X+ and X− denominating the amplitude and phase quadrature, respectively.
(b) Representation of a vacuum state with n = 0.

2.5. Phase-space pictures of coherent states

A coherent state |α〉 with α = |α| eiθ and〈
X̂+
〉
α

=
1

2
(α+ α∗) = Re(α) ,〈

X̂−
〉
α

=
1

2i
(α− α∗) = Im(α)

(2.55)

can be represented pictorially in the complex α-plane as shown in Fig. 2.1 (a). The

coherent amplitude is given by a phasor with the length |α| =
√
n while θ represents

the phase angle. The ‘area of uncertainty’ is represented by the blue-shaded circle. It is

worth stressing that the fluctuations are with

∆X+ = ∆X− = ∆Xθ =
1

2
(2.56)

equal in all directions of phase space and that the error circle is the same for all coherent

states. Fig. 2.1 (b) shows the phase-space representation of a vacuum state. Though

these pictures are qualitative only, they are useful to visualize the distribution of noise

in the various field quadratures, as for example in case of the squeezed states discussed

in Section 2.6.

In classical mechanics, the phase-space distribution constitutes a particularly impor-

tant concept. A harmonic oscillator can e. g. be fully described by a function P (q, p)

providing the probability to find a particular pair of q and p values in a simultaneous

measurement [O’Connell82, Leonhardt97]. From such a known probability distribution,

all statistical quantities of the oscillator can be predicted. Per definition, such a function

has to be normalized and positive.
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2. From classical light to quantum optics

The situation is much more complex for a quantum mechanical state, where Heisen-

berg’s uncertainty relation impedes a simultaneous and arbitrarily precise measurement

of two non-commuting variables. It is, however, possible to define a similar distribution

function W (q, p). Due to the properties of quantum phase space, this ‘probability

distribution’ can become ill-behaved, e. g. assuming negative values. Therefore, it is called

a quasiprobability distribution (QPD). Although an arbitrary number of QPD-functions

may be formulated, one of them proved to be particularly useful. It was introduced by

E. P. Wigner in 1932 [Wigner32] as the earliest QPD and is known as the Wigner function

(WF). For an arbitrary density operator

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (2.57)

the Wigner function reads

W (q, p) ≡ 1

2π~

∫ ∞
−∞

dx exp(ipx/~)

〈
q − 1

2
x

∣∣∣∣ ρ̂ ∣∣∣∣q +
1

2
x

〉
(2.58)

with |q + 1
2x〉 being the eigenkets of the position operator. Some basic properties of the

Wigner function are that it is real for Hermitian operators ρ̂:

W ∗(q, p) = W (q, p) (2.59)

and with ∫ ∞
−∞

dp

∫ ∞
−∞

dqW (q, p) = 1 (2.60)

normalized because of the normalization of the density operator. For a pure state with

ρ̂ = |ψ〉 〈ψ| it can be shown that integrating over the momentum yields the probability

density for the position variabe q∫ ∞
−∞

W (q, p)dp = |ψ(q)|2 (2.61)

and vice versa. However, it must be kept in mind that for some non-classical states

W (q, p) can take negative values and may therefore not be mistaken with a true proba-

bility distribution.

The Wigner function offers a powerful tool to visualize in phase-space the quantum

states discussed above. For example, the Wigner function of a vacuum state given by

W0(q, p) =
1

π
exp(−q2 − p2) (2.62)

is shown in Fig. 2.2 (a). It is formally identical to the Wigner function of a coherent

state that merely represents a displaced vacuum (Eq. (2.53)) and can be written as the

displaced Wigner function

W0(q, p) =
1

π
exp

(
−(q − q0)2 − (p− p0)2

)
. (2.63)
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2.5. Phase-space pictures of coherent states
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Figure 2.2.: Wigner function (a) for a vacuum state and (b) for a Fock state with n = 1.

Both are Gaussian distributions with a balanced amount of fluctuations in all quadra-

tures. An example for the quasi -probability nature of the Wigner function, namely the

WF of a single-photon Fock state

Wn(q, p) =
2q2 + 2p2 − 1

π
exp(−q2 − p2) , (2.64)

is illustrated in Fig. 2.2 (b). It is clearly non-Gaussian and has negative values near the

origin.
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2. From classical light to quantum optics

2.6. Squeezed states

For any three operators Ô1, Ô2, Ô3 that satisfy the commutation relation
[
Ô1, Ô2

]
= iÔ3,

it can be shown that (see Eq. (2.36))〈(
∆Ô1

)2
〉〈(

∆Ô2

)2
〉
≥ 1

4

∣∣∣〈Ô3

〉∣∣∣2 . (2.65)

For the coherent states which are, as discussed above, minimum uncertainty states having〈(
∆X̂+

)2
〉

=

〈(
∆X̂−

)2
〉

=
1

4
, (2.66)

this expression reduces to the equality〈(
∆X̂+

)2
〉〈(

∆X̂−
)2
〉

=
1

16
. (2.67)

Equation (2.65) obviously sets a minimal limit to the amount of fluctuations present in

two orthogonal quadratures. It does, however, not forbid the fluctuations in one of the

quadratures to drop below the minimum uncertainty of a vacuum state at the expense of

increased fluctuations in the orthogonal quadrature. States of the electromagnetic field

which do with 〈(
∆X̂θ

)2
〉
<

1

4
(2.68)

have such a non-classical noise distribution are known as squeezed states, in the following

simply denominated as squeezed states.

In analogy to the displacement operator, a squeeze operator for mathematical genera-

tion of squeezed states can be defined as

Ŝ(ζ) = exp

[
1

2

(
ζ∗ââ− ζâ†â†

)]
with ζ = reiθ . (2.69)

Usually, r is referred to as the squeeze parameter, while θ is the squeezing angle:

0 ≤ r <∞ , 0 ≤ θ ≤ 2π . (2.70)

If the squeeze operator acts on a vacuum state, it will create a sort of ‘two-photon coherent

state’, since photons can be created or destroyed only in pairs by Ŝ(ζ). To obtain the

quadrature variances of a squeezed vacuum state, the expectation values of â, â2, etc. are

required. It can be shown using the Baker-Hausdorf lemma that

Ŝ†(ζ)âŜ(ζ) = â cosh(r)− â†eiθ sinh(r)

Ŝ†(ζ)â†Ŝ(ζ) = â† cosh(r)− âe−iθ sinh(r) .
(2.71)
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2.6. Squeezed states

With these relations, the quadrature variances of the squeezed vacuum state can be

calculated to〈(
∆X̂+

)2
〉

=
1

4

[
cosh2(r) + sinh2(r)− 2 sinh(r) cosh(r) cos(θ)

]
〈(

∆X̂−
)2
〉

=
1

4

[
cosh2(r) + sinh2(r) + 2 sinh(r) cosh(r) cos(θ)

]
.

(2.72)

For θ = 0, Eq. (2.72) reduces to 〈(
∆X̂+

)2
〉

=
1

4
e−2r〈(

∆X̂−
)2
〉

=
1

4
e2r .

(2.73)

The fluctuations in the X̂+ quadrature are for r > 0 hence ‘squeezed’ when compared with

a vacuum state, while the X̂− variance increases correspondingly. In the following, this

quadrature is referred to as anti-squeezed. The uncertainty product given in Eq. (2.67) is

still satisfied and the squeezed vacuum state is thus also a state of minimum uncertainty.

It is evident from Eq. (2.72) that the choice θ = π will lead to squeezing in the X̂−

quadrature. To simplify the discussion of squeezing for all other values of θ, it is useful

to define the rotated quadrature operators Ŷ + and Ŷ − as(
Ŷ +

Ŷ −

)
=

(
cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

)(
X̂+

X̂−

)
. (2.74)

This allows us to write Eq. (2.72) as〈(
∆Ŷ +

)2
〉

=
1

4
e−2r〈(

∆Ŷ −
)2
〉

=
1

4
e2r

(2.75)

for any given squeezing angle.

In analogy with the coherent states, once again a more general description of a squeezed

coherent state can be obtained applying the squeeze operator to Eq. (2.53):

|α, ζ〉 = D̂(α)Ŝ(ζ) |0〉 . (2.76)

A consequence worth mentioning is that for a squeezed state the expectation value of the

photon number operator 〈
â†â
〉

= |α|2 + sinh2(r) (2.77)

increases when compared with a coherent state. This once more illustrates that by the

squeezing process photons are generated. Their statistics is restricted to even values
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2. From classical light to quantum optics

(pairs) by the form of the squeeze operator as shown above.

A pictorial phase-space representation for a state squeezed in the X̂+ and in an arbitrary

quadrature is shown in Fig. 2.3 (a) and (b), respectively. Later on, it is generally referred

to as a squeezing ellipse. A more sophisticated description is given by the Wigner function

of a squeezed vacuum state that can be shown to be [Leonhardt97]

Ws(q, p) =
1

π
exp(−e2ζq2 − e−2ζp2) . (2.78)

It is, like for a normal vacuum state that is approached choosing ζ = 0, a Gaussian

distribution. The effect of quadrature squeezing manifests in the unbalanced variances.

The Wigner function of a squeezed vacuum state is shown in Fig. 2.3 (c).

2.7. Basics of nonlinear optics

The considerations presented in Section 2.1 were based on Maxwell’s equations for vacuum

and treated only the states of the light field without any interactions with matter. It is,

however, the nonlinear response of a material system to an optical field that is responsible

for the generation of squeezed states. In the following, some basic concepts of nonlinear

optics are presented. The discussions follow [Boyd08] that is also recommended to the

dedicated reader for a detailed introduction to nonlinear optics.

2.7.1. Nonlinear polarization

If a homogenious electric field ~E is applied to a dielectric material, a force ~F = q ~E

acts on the charge carriers, so that a separation of charges is induced. The separation

strength is described by the polarization which gives the electric dipole moment induced

per unit volume of the dielectric material. In the case of conventional optics, the induced

displacement |~d| is rather small and the restoring force is (according to Hook’s law)

proportional to |~d|. The polarization

~P = ε0χ
(1) ~E(t) (2.79)

thus depends linearly on the applied electric field. Here ε0 is the vacuum permittivity

and the constant of proportionality χ(1) is the so-called linear susceptibility. This ap-

proximation is, however, no longer valid in case of intense electric fields. The generalized

optical response can then be expressed by the power series

~P = ε0

[
χ(1) ~E(t) + χ(2) ~E2(t) + χ(3) ~E3(t) + . . .

]
≡ ~P (1) + ~P (NL) (2.80)

with χ(i) denoting the higher-order susceptibilities being (i+1)-rank tensors. Herein, the

linear polarization component describes the interactions known from ‘classical’ linear
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Figure 2.3.: Pictorial phase-space representation of a state (a) squeezed in the X̂+ and (b) in an
arbitrary quadrature. The blue area represents a projection of the state’s Wigner
function, the quasi-probability value is encoded in the color density (the darker the
color, the higher the quasi-probability value). The dashed line shows one contour
line of the Wigner function. (c) Wigner function for a squeezed vacuum state with
r = 0.7 and θ = 0.
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2. From classical light to quantum optics

optics for which the frequency of the applied electric field is conserved. As shown

below, already the second-order nonlinear interaction leads to the generation of additional

frequency components. For a single-frequency field

E(t) = E0e−iωt + c. c. (2.81)

this means that due to the second-order polarization (Eq. (2.80))

P (2) = 2ε0χ
(2)
[
E0E

∗
0 + E2

0e−2iωt
]

+ c. c. (2.82)

an additional field at twice the frequency is generated. In the case that two or more

frequencies are involved, the χ(2) interaction correspondingly leads to the generation of

sum and difference frequencies.

In the most general description, a huge variety of components of the susceptibility

tensors have to be determined to fully describe any nonlinear interaction. This problem

can fortunately be simplified considering the physical properties of electric fields as well

as symmetry properties of nonlinear crystals. It can be shown that χ(2) interactions like

e. g. the sum-frequency generation

P (2)(ω3 = ω1 + ω2) = 4ε0deffE(ω1)E(ω2) (2.83)

can be described by an effective susceptibility value deff [Boyd08]. It is finally worth

mentioning that χ(2) interactions can only occur in materials which do not display central

symmetry. Therefore, in amorphous materials like glass as well as in many crystals,

χ(2) vanishes and no second-order nonlinear interactions can be observed. For the work

described in this thesis, two different crystal species, namely LiNbO3 and KTiOPO4

(KTP), have been used as χ(2) materials. In the following, a brief discussion of the

second-order processes is provided.

2.7.2. Sum-frequency generation

Starting with Maxwell’s equations in matter and assuming a medium which is free of

sources and contains no free currents, the optical wave equation can be derived as

∇2 ~E − 1

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P

∂t2
. (2.84)

In case of a lossless, dispersionless, isotropic medium the linear polarization component

is parallel to ~E and the wave equation can be simplified further to

∇2 ~E −
ε(1)

c2

∂2 ~E

∂t2
=

1

ε0c2

∂2 ~P (NL)

∂t2
(2.85)

where ε(1) = 1+χ(1) is the relative permittivity. Eq. (2.85) has the form of a driven wave
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Figure 2.4.: Sum-frequency generation in a χ(2) nonlinear medium of length L.

equation in which the nonlinear polarization component ~P (NL) drives the electric field.

Whenever ∂2 ~P
∂t2
6= 0, charges are accelerated and emit energy in form of electromagnetic

radiation.

To describe the process of sum-frequency generation (SFG), let us assume collimated,

monochromatic, continous-wave input beams at the frequencies ω1/2 to be coupled at

normal incidence into a χ(2) nonlinear medium as shown in Fig. 2.4. Eq. (2.85) holds

separately for each frequency component. For the sum-frequency component generated

at ω3 = ω1 + ω2 by the nonlinear interaction, the solution to the wave equation is

E3(z, t) = A3(z)ei(k3z−ω3t) + c. c. , (2.86)

where

k3 =
n3ω3

c
and n3 =

√
ε(1)(ω3) , (2.87)

thus being a plane wave at frequency ω3 propagating in the +z-direction. Due to the

nonlinear source term in Eq. (2.85), the field amplitude A3(z) is a slowly varying function

of z. In the marginal case of a linear wave equation with P (NL) → 0, this variation

disapperars and A3 becomes a constant.

Representing the incident light fields in a manner similar to Eq. (2.86) as

Ej(z, t) = Ej(z)e
−iωjt + c. c. ≡ Ajei(kjz−ωjt) + c. c. where j = 1, 2 , (2.88)

the amplitude of the nonlinear polarization can be written as (see Eq. (2.83))

P3(z, t) = P3eiω3t + c. c. , (2.89)

where

P3 = 4ε0deffE1E2 = 4ε0deffA1A2ei(k1+k2)z . (2.90)
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2. From classical light to quantum optics

Substituting Eq. (2.86) and Eq. (2.90) into the wave equation and assuming the field

amplitudes to vary slowly as discussed above, a set of coupled-amplitude equations can

be derived:

dA1

dz
=

2ideffω
2
1

k1c2
A3A

∗
2e−i∆kz (2.91)

dA2

dz
=

2ideffω
2
2

k2c2
A3A

∗
1e−i∆kz (2.92)

dA3

dz
=

2ideffω
2
3

k3c2
A1A2ei∆kz . (2.93)

Therein, ∆k = k1 + k2 − k3, usually referred to as the wavevector mismatch, describes

the phase relation between the polarization and the electric field. This set of coupled

differential equations fully describes the interaction of the three electric fields inside a

lossless medium.

To derive a solution for Eq. (2.93), let us first consider the special case of a weak

conversion and thus A1 = A2 = const. This allows us to write the amplitude of the

sum-frequency field as

A3(L) =
2ideffω

2
3A1A2

k3c2

∫ L

0
ei∆kzdz =

2ideffω
2
3A1A2

k3c2

(
ei∆kL − 1

i∆k

)
, (2.94)

where L denominates the length of nonlinear interaction. From Eq. (2.94), the intensity

of the wave generated at the sum-frequency can be calculated to

I3 = 2n3c|A3|2 =
8d2

effω
2
3I1I2

n1n2n3ε0c2
L2 sinc2

(
∆kL

2

)
, (2.95)

where

sinc2

(
∆kL

2

)
≡ sin2(∆kL/2)

(∆kL/2)2
. (2.96)

Evidently, in the case of perfect phase matching (∆k = 0 for a plane wave and ∆k > 0 for

Gaussian beams, for a detailed discussion see [Lastzka-PhD]) the conversion is maximal.

On a microscopic scale this means that the individual atomic dipoles are properly phased

and that the field emitted by each of them constructively adds to the generated field

propagating in +z-direction. Figure 2.5 shows the conversion efficiency as a function of

the phase-mismatch.

2.7.3. Phase matching - general considerations

Up to now, the depletion of the two input fields was neglected assuming a weak conversion.

It can, however, be shown that in the case of significant conversion leading to a depletion

of the input fields, the condition ∆k = 0 has to be maintained to maximize the conversion
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Figure 2.5.: Conversion efficiency as a function of phase mismatch in the case of weak conversion.

efficiency (here and in the following again, for simplicity, regarding plane waves). The

demand

∆k = k1 + k2 − k3
!

= 0 (2.97)

can be alternatively expressed as

n1(ω1) · ω1 + n2(ω2) · ω2 = n3(ω3) · ω3 . (2.98)

In the particular case of second-harmonic generation with ω1 = ω2 and hence n1(ω1) =

n2(ω2), Eq. (2.98) can be further simplified to

n1(ω1) = n3(ω3) . (2.99)

Unfortunately, the refractive index of lossless materials is usually a monotonically in-

creasing function of frequency, an effect known as normal dispersion. Evidently, no

optimal phase matching can be achieved in such a medium. In principle, this problem

could be circumvented making use of the decrease of the refractive index that occurs

near an absorption feature. This solution, however, bears the drawback of an increased

absorption loss so that in the end an efficient frequency conversion is not possible.

A more elegant phase-matching technique uses the fact that the refractive indices of

many crystals changes with the direction of polarization of the applied electric fields.

This effect is known as birefringence and depends on the crystal structure, so that not

all crystals display birefringence. For this thesis, especially uniaxial crystals like LiNbO3
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2. From classical light to quantum optics

or KTP are important. In general, this classification includes crystals with a trigonal, a

tetragonal and a hexagonal lattice system. Uniaxial crystals can be characterized by the

so-called crystal- or c-axis. A wave with wavevector ~k propagating through the crystal

is called ordinary if it is polarized orthogonally to the plane that is spanned by ~k and ~c.

Light polarized in the plane containing the wave vector and the crystal axis is in contrast

called extraordinary. Both waves experience the ordinary and extraordinary refractive

indices no and ne, respectively. The extraordinary refractive index is a function of the

angle θ between ~k and the crystal axis. The limit θ → 0 equalizes the two indices of

refraction.

2.7.4. Phase matched second-harmonic generation in a LiNbO3 crystal

Typically phase matching can be accomplished using either the temperature dependence

of the refractive index or tuning the angle between the crystal axis and the propagation

direction of the laser beam. A disadvantage of the angle-tuning method is that in the

case θ /∈ {0, π/2}, the Pointing vector and the propagation vector ~k are not parallel for

extraordinary rays. The ordinary and the extraordinary beams therefore quickly diverge

from one another, thus limiting the achievable conversion efficiency. For this reason, in

the following the temperature-tuning method is discussed.

Figure 2.6 shows the ordinary and extraordinary indices of refraction of pure LiNbO3,

described by the relations [Hobden+66]

n2
o =4.9130 +

1.173 · 105 + 1.65 · 10−2T 2

λ2 − (2.12 · 102 + 2.7 · 10−5T 2)2 − 2.78 · 10−8λ2 ,

n2
e =4.5567 +

0.970 · 105 + 2.70 · 10−2T 2

λ2 − (2.01 · 102 + 5.4 · 10−5T 2)2 − 2.24 · 10−8λ2

+ 2.605 · 10−7T 2 ,

(2.100)

with T being the crystal temperature in degrees K and λ being the wavelength in nm.

Such crystals are per convention called negative uniaxial because no(ω) is always larger

than ne(ω). In the case of second-harmonic generation (SHG), ω1 = ω2 = ω3/2. To

achieve phase-matching, the second-harmonic field thus needs to have extraordinary

polarization, while the harmonic field is ordinarily polarized. The concrete example given

in Fig. 2.6 treats the up-conversion of 1064 nm light (which is the standard wavelength in

current GW interferometers) to 532 nm. This type of phase-matching in which the two

input fields (in the case of the SHG given by a single field interacting with itself) have

the same polarization and are orhogonally polarized to the field generated at frequency

ω3 is called Type I.
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Figure 2.6.: Ordinary and extraordinary indices of refraction of LiNbO3 as a function of wave-
length. (a) at room temperature with no(1064 nm) 6= ne(532 nm) and thus with
∆n 6= 0. (b) at T = 316 K, the indices of refraction are equalized leading to an op-
timal phase-matching for the SHG process. (c) Zoom-out showing the characteristic
dependence of the two indices of refraction on the wavelength.

From Eq. (2.100) and its visualization in Fig. 2.6 it is evident that the two indices of

refraction depend on the temperature. The condition for an optimal frequency conversion,

ne(532 nm) = no(1064 nm), can thus be reached by tuning the crystal temperature.

2.7.5. Quasi phase matching

In the case of perfect phase matching, the power is constantly converted from the

input field to the generated second-harmonic field. If a phase mismatch is present,

after a certain interaction length the output wave will get out of phase with its driving

polarization and power will flow back to the fundamental ω1 field. The coherent build-up

length of the interaction is defined as

Lcoh =
2

∆k
(2.101)

and evidently approaches ∞ for ∆k → 0. This power oscillation can be used to achieve

phase matching in periodically poled crystals, being crystals with a periodically inverted

optical axis as a function of position along the direction of propagation. An inverted

orientation of the c-axis also inverts the sign of the effective nonlinear coefficient deff

and thus can compensate for ∆k 6= 0. For a quasi-phase-matched structure, an optimal

period length

Λ = 2Lcoh =
2π

k1 + k2 − k3
(2.102)
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Figure 2.7.: Energy-level diagram of (a) sum-frequency generation and (b) difference-frequency
generation.

can be derived. To provide a concrete example, Lcoh can be shown to be about 3.4µm

for the second-harmonic generation in LiNbO3 using 1064 nm light. The fabrication

of periodically poled crystals employs a static electric field to periodically invert the

orientation of the ferroelectric domains of a ‘common’ crystal [Yamada+93]. A big

experimental advantage of periodically poled media is that they make it possible to

reach higher effective nonlinearities and furthermore do not pose as strict constraints on

the required temperature stabilization as does the phase-matching procedure based on

temperature-tuning.

2.7.6. Parametric amplification

Up to now we have considered only the sum-frequency generation and the particular

case of the SHG. Another possible nonlinear effect is the difference-frequency generation

(DFG) described by

P (2)(ω3 = ω1 − ω2) = 2ε0χ
(2)E1E

∗
2 . (2.103)

While this process at the first glance appears to be very similar to the sum-frequency

generation, an important difference can be deduced from the description of the two

processes in a photon energy-level diagram as illustrated in Fig. 2.7. In the case of

DFG, for every photon created at the frequency ω3, a photon with frequency ω1 must be

annihilated and an additional photon with ω2 must be created due to energy conservation.

This effect can be employed for optical amplification: If a strong (pump) field at the

frequency ω1 and a weak (signal) field at ω2 are injected into the nonlinear medium,

the signal field is amplified by the nonlinear interaction. For this reason, the process

of difference-frequency generation is also referred to as optical parametric amplification

(OPA). Here ‘parametric’ means that in this process the initial and the final quantum

mechanical states of the system are identical. Considering the OPA process on the atomic

level, an atom absorbs a photon with energy ~ω1 and jumps to a virtual level. This is

followed by a decay that happens as a stimulated two-photon process. If no field at the
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2.8. Generation of squeezed light

frequency ω2 is present, spontaneous processes will also lead to the generation of photons

at the difference frequency. This effect, known as parametric fluorescence, is however

much weaker than in the case of stimulated emission.

If the nonlinear crystal is placed inside an optical resonator, the length of interaction

is considerably increased so that high amplification factors can be reached. In the case

that the nonlinear amplification denoted by g exceeds the total optical loss κ (g > κ),

oscillation can occur so that even without a bright input field at frequency ω2, two

fields at the frequencies ω2 and ω3 are created from a pump field at ω1. Such a device

is known as an optical parametric oscillator (OPO) and constitutes a useful source of

frequency-tunable laser radiation. The special case of g = κ is referred to as OPO

threshold. Below-threshold oscillators are denominated as optical parametric amplifiers

(OPAs) and can be used to amplify or to deamplify an input field, depending on the phase

relation between the pump and the signal fields. This process also leads to a coupling

of the quantum noise present in the two field quadratures and thus makes it possible

to generate squeezed states of light. In the following section, a quantum mechanical

description of the squeezing process is provided.

2.8. Generation of squeezed light

Most schemes for squeezed light generation are based on a parametric process inside some

kind of nonlinear medium. A detailed review over a variety of schemes is provided in

[Bachor+04]. Reference [Franzen-PhD] presents a selection of 74 milestone-experiments

in the field of squeezed states preparation. For the work discussed in this thesis,

the parametric down-conversion process discussed above was chosen for squeezed light

generation. The nonlinear crystal was pumped with a field at the frequency ωp. Thus,

pairs of photons at the frequency ω = ωp/2 were created. The Hamiltonian for this

process can be expressed as [Gerry+06]

Ĥ = ~ωâ†â+ ~ωpb̂
†b̂+ i~χ(2)

(
ââb̂† − â†â†b̂

)
, (2.104)

where â is the mode of the signal field and b̂ refers to the pump field. Let us assume

the interaction to be weak enough for the pump field not to be depleted of photons,

like for the derivation of the sum frequency amplitudes given above in Section 2.7.2.

Furthermore, the pump field is assumed to be in a coherent state |β〉. The operators b̂

and b̂† can be approximated by

b̂→ βe−iωpt and b̂† → β∗eiωpt . (2.105)

This leads to the parametric approximation to Eq. (2.104)

Ĥ = ~ωâ†â+ i~χ(2)
(
β∗ââeiωpt − βâ†â†e−iωpt

)
. (2.106)
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Figure 2.8.: Schematic of a balanced homodyne detector. The signal field â interferes with a
strong local oscillator field b̂ at a balanced beam splitter. The difference of the
photo currents generated with the photo detectors in the two beam splitter ports is
processed by a Fast Fourier Transform spectrum analyzer.

For the interaction of the two field modes, this yields the time-dependent Hamiltonian

Ĥ(t) = i~χ(2)
(
β∗ââei(ωp−2ω)t − βâ†â†e−i(ωp−2ω)t

)
. (2.107)

Considering the fact that the pump frequency was chosen to be twice the signal frequency,

Eq. (2.107) finally simplifies to

Ĥ(t) = i~χ(2)
(
β∗ââ− βâ†â†

)
. (2.108)

The evolution operator associated with the described parametric process is

Û(t, 0) = exp(−iĤt/~) = exp(χ(2)β∗tââ− χ(2)βtâ†â†) . (2.109)

Evidently, it has the same form as the squeeze operator introduced in Eq. (2.69). Thus,

squeezed states of the light field discussed in Section 2.6 can be generated by parametric

down-conversion inside a χ(2) nonlinear medium.

2.9. Detection of squeezed light

Beyond any doubt, a key instrument in optical experiments is the photo detector. It

converts photons to freely moving electrons and thus produces a photo current propor-

tional to the incident light power. To properly measure squeezed states, it is, however,

necessary to obtain information about the quantum noise distribution in the different

field quadratures. An appropriate method to measure quadrature squeezing is given by

balanced homodyne detection, first proposed for squeezed states in 1983 by Yuen and

Chan [Yuen+83a]. The basic setup is illustrated in Fig. 2.8. The squeezed field interferes
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2.9. Detection of squeezed light

with a reference laser beam having the same frequency at a 50/50 beam splitter (BS)

and the two BS outputs are thereupon measured with photo detectors. For simplicity,

the BS splitting ratio is assumed to be perfectly balanced and optical loss is neglected.

We can represent the two input beams as

â = α+ δâ and b̂ = eiφ
(
β + δb̂

)
. (2.110)

This approach is known as linearization and is valid as long as the fluctuations can be

assumed to be small [Bachor+04]. In Eq. (2.110), φ refers to the relative phase difference

between the signal (â, squeezed) and the local oscillator field (b̂). In the experiment, the

phase difference can be controlled by a phase shifter device (for example by a steering

mirror mounted on a piezo-electric element). The BS output fields are

ĉ =
1√
2

(
â+ b̂

)
and d̂ =

1√
2

(
â− b̂

)
. (2.111)

From these, the photo currents – that are proportional to the photon numbers – can be

calculated via

îc ∝ ĉ†ĉ and îd ∝ d̂†d̂ . (2.112)

Thus, the photo current measured at port c can be expressed as

îc ∝ ĉ†ĉ

=
1

2

[
α2 + β2 + 2αβ cos(φ) + 2α

(
δX̂+

a + cos(φ)δX̂+
b − sin(φ)δX̂−b

)
+2β

(
δX̂+

b + cos(φ)δX̂+
a + sin(φ)δX̂−a

)]
+O(δ2) .

(2.113)

Here, all higher-order fluctuation terms have been neglected in accordance with the

linearization. Similarly, the other photo current can be calculated to

îd ∝ d̂†d̂

=
1

2

[
α2 + β2 − 2αβ cos(φ)− 2α

(
cos(φ)δX̂+

b − sin(φ)δX̂−b − δX̂+
a

)
−2β

(
cos(φ)δX̂+

a + sin(φ)δX̂−a − δX̂+
b

)]
+O(δ2) .

(2.114)

A very interesting result follows when we now analyze the difference of the two photo

currents and require the local oscillator to dominate the output and thus to be much

more intense than the signal beam:

|β|2 � |α|2 . (2.115)

This allows us to drop all terms proportional to α in first-order approximation and to

express the difference photo current as

î− ∝ îc − îd ∝ β
(

cos(φ)δX̂+
a + sin(φ)δX̂−a

)
∝ βδX̂φ

a . (2.116)
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2. From classical light to quantum optics

The fluctuations of the signal beam in the quadrature Xφ are amplified by the coherent

amplitude β of the local oscillator, while the LO noise is completely suppressed. Thus,

the noise of the LO beam can be much higher than the minimal uncertainty of an ideal

technical-noise-free beam without affecting the measurement result. In reality, an upper

limit for the tolerable LO noise is set by the balancing of the homodyne detector. An

arbitrary quadrature can be accessed by the homodyne detector measurement using the

phase-shifter device.

In the experiments discussed in this thesis, the variance [Bachor+04]

V (̂i−) ∝ β2V (X̂φ
sqz) (2.117)

of the difference photo current was measured and the noise distribution analyzed in the

frequency-domain using a Fast-Fourier-Transform (FFT) spectrum analyzer. Please note

that the measured variance scales quadratically with the LO amplitude and thus linearly

with the intensity of the LO beam.

In experimental publications, the measured degree of squeezing is usually provided in

Decibel (dB). A simple but useful relationship that allows the reader to convert dB values

into squeeze factors and vice versa is given by

r =
ln
(

10
V [dB]
10

)
2

and V [dB] = −10 log10

(
e−2r

)
, (2.118)

where ‘V [dB]’ is the reduction in noise power with respect to a vacuum state measured

by the spectrum analyzer.

2.10. Influence of optical loss

In a ‘classical’ experiment, any optical loss can be compensated for by increasing the

intensity of the light source. This is no longer the case for experiments involving squeezed

light. Any optical loss will reduce the degree of squeezing. A simple model to describe

this problem can be derived using a beam splitter as follows: An optical loss ε (e. g. arising

from absorption, scattering or a detection efficiency smaller than unity) is equivalent to

a beam splitter with power reflectivity R ≡ ε and power transmission T ≡ η = (1 − ε).
Through the second BS port, vacuum fluctuations couple into the squeezed field. This

results in an increased noise in the squeezed quadrature, while the noise in the anti-

squeezed quadrature is hardly affected. Mathematically, the problem can be described

using the BS transfer matrix [Bachor+04]. It can be shown that the optical loss acts on

the fluctuations of an input field as

δX̂φ
out =

√
ηδX̂φ

in +
√

1− ηδX̂vac . (2.119)
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Figure 2.9.: Influence of a decreasing detection efficiency on the detected degree of squeezing,
illustrated at the example of various initial squeezing values (2 dB – 16 dB). The
higher the initial squeezing value, the stronger the degradation. Two theoretical
limits worth mentioning are a maximal detected squeezing value of 10 dB in the case
of a total optical loss of 10 % and a maximal level of 3 dB for 50 % loss.

This calculation can be performed independently for each angle φ. Since the vacuum

fluctuations do not show an angle dependence, the squeezing angle remains unchanged

but the degree of squeezing is reduced. Using Eq. (2.118), the relation

V ′ [dB] = −10 log10

(
η 10

V [dB]
10 + (1− η)

)
(2.120)

can be derived. Here, V [dB] is the variance of the squeezed state (measured in dB) prior

to an optical loss, while the post-loss variance is given by V′ [dB]. The effect of optical

loss is visualized in Fig. 2.9. The higher the initial degree of squeezing, the stronger the

degradation at a fixed loss value. From Eq. (2.120), it immediately follows that even in

the case of infinite initial squeezing a loss of 10 % restricts the squeezing degree to 10 dB

and a loss of 50 % reduces the maximal squeezing value down to 3 dB. In the marginal

case of a vacuum input state, the quantum noise is obviously not affected at all.

A particular loss source in the balanced homodyne detection scheme worth mentioning

is a non-perfect contrast of the two fields. The contrast can be evaluated measuring the

fringe visibility

V =
Imax − Imin

Imax + Imin
(2.121)
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2. From classical light to quantum optics

at one of the homodyne detector photo diodes (for an experimental discussion of the

visibility measurement, see Section 3.7). Here, Imin/max refer to the minimal and maximal

photo current values, respectively, that can be obtained. In the case of perfect interference

the fringe visibility approaches unity. The visibility contributes quadratically to the

detection efficiency which thus can be expressed as

ηtot = ηprop · ηPD · ηVIS . (2.122)

Here, ηprop addresses the total optical propagation loss, ηPD accounts for imperfect photo

detectors and ηVIS = V2 finally addresses the homodyne mode-mismatch.
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CHAPTER 3
A squeezed-light laser for GEO 600

Though the idea to improve interferometric GW detectors by squeezed light is con-

siderably old [Caves81], more than twenty years of research and development were

necessary before a concrete implementation could finally be undertaken. Since the first

observation in 1985 [Slusher+85], the degree of squeezing has been constantly improved,

recently reaching a value of almost 13 dB [Eberle+10]. In the GW detection band,

the generation of squeezing remained an unsolved problem for a long time. It was

not until 2004 that squeezing at audio frequencies down to 280 Hz could be generated

for the first time [McKenzie+04], soon followed by the creation of a coherent con-

trol scheme [Vahlbruch+06, Chelkowski+07] that allowed the observation of frequency-

independent squeezing over the entire Earth-bound gravitational wave detection band

from 10 Hz to 10 kHz [Vahlbruch+07]. The same experiment also demonstrated that the

sensitivity of a table-top Michelson-type interferometer could be improved by squeezed

light injection at kHz-frequencies. Finally, in 2008 a conceptual design considering the

concrete application at the GEO 600 detector site was proposed [Vahlbruch-PhD]. In this

chapter, the experimental setup of the GEO 600 squeezed-light laser is presented.

3.1. Lessons learned from the past

The goal of the GEO 600 squeezed-light laser project was to combine the lessons learned

from previous setups and to construct a stable and compact experiment that would

provide high squeezing values in the GW detection band in a permanent operation mode

in which it is to be used in GEO 600. The two most important insights concerning audio

frequency squeezing are that it is highly sensitive to

1. control beam noise at the fundamental squeezing frequency [Bowen+02] as well as

2. to any scattered light [Vahlbruch+07].
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3. A squeezed-light laser for GEO 600

The coherent control scheme described below is based on the fact that no light at exactly

the same frequency as the generated squeezed field enters the squeezed-light source.

Therefore, no technical noise (predominant at audio frequencies) is introduced into the

system. Unfortunately, such noise is carried not only by a control beam but also by

scattered photons. If such photons, scattered for instance from the main beam of the

squeezed-light laser and being in exactly the same mode as the squeezed field, enter the

squeezed-light source and interfere with the squeezed field, this will mask squeezing at

audio Fourier frequencies in a very efficient way. Even marginal amounts of scattered light

are sufficient to degrade the performance of the squeezed-light source [McKenzie+04].

An issue even more important is that usually multiple scattering processes at com-

ponents constantly moving due to acoustic and thermal excitations and having very

different frequency-response characteristics, are experienced by the scattered photons. As

discussed in [Vahlbruch-PhD, Vahlbruch+07], each movement creates optical sideband

fields at the corresponding frequencies and harmonics, which are later on read out by

the homodyne detector and thus impede a quantum shot-noise limited measurement.

Scattered light has therefore been shown to result in a continuous noise level mono-

tonically increasing with decreasing frequency and making itself noticeable already at

kHz-frequencies. To achieve a flat (white) squeezing level over the entire GW detection

band of 10 Hz – 10 kHz, it is therefore necessary to

1. suppress stray light generation as effectively as possible,

2. to avoid re-scattering by identifying and blocking all residual light beams arising

from imperfect AR or HR-coatings and

3. to minimize the acoustically and thermally excited motion of all mechanical parts.

It is worth stressing that in principle one of the three approaches is sufficient, since it is

of no relevance whether no stray light is created, whether it is created and subsequently

dumped and so on. In practice, however, a combination of all measures is required.

Regarding the generation of stray light and its avoidance, the following mechanisms were

addressed:

• contamination of the optical surfaces (e.g. by dust)

• imperfection of the surface itself (namely the surface micro-roughness as well as

damages)

• reflections from imperfect anti-reflection (AR) coatings as well as residual trans-

mission of highly reflective mirrors

To deal with the first mechanism, it appeared convenient to construct the squeezed-light

laser in a class 100 cleanroom facility at the AEI in Hanover. The class is defined

according to the US FED STD 209E Cleanroom Standards and denotes the number of

particles of 0.5µm size or larger permitted per cubic foot of air. For the class 100 lab,

this practically resulted in maximally several tens of particles even when several persons
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3.2. Preparation of the laser beams

worked inside simultaneously; the particle concentration dropped to zero as soon as the

lab was abandoned.

The second issue adressed was the surface quality of the optics used. The highly

reflective (HR) steering mirrors were produced by the manufacturer ATFilms [ATF]

and had a super-polished reflective surface (resulting in an rms surface roughness of

approximately 0.5 Å) with a scratch/dig ratio of 10/5. The power reflectivity was

specified to be Rs,p ≥ 99.995%, measurements have shown that even higher values of

Rs,p ≥ 99.9987% were achieved, thereby further reducing the amount of stray light. To

balance the stress applied to the optics by the dielectric coating as well as to minimize

stray light propagating close to the original beam, the other side of the mirrors was

AR-coated (Rs,p < 0.2%).

The lenses and dichroic beam splitters used (both also from ATFilms), as well as all

resonator optics, were specified to have a comparably low surface roughness. The only

optics with ‘conventional’ surfaces were the Faraday rotators, beam splitters, polarizing

beam splitters and waveplates (along with some 532 nm optics, which are, however

not as critical for the stray light considerations). To clean the surfaces, the polymer

solution [First Contact] was employed.

Setting the working environment to the AEI imposed the constraint of portability on

the squeezed-light laser. Therefore, the experiment is set up on an optical breadboard.

The board dimensions of 1.35 m× 1.13 m were determined by the maximal amount

of space available on the GEO 600 detection bench, an optical table inside the main

GEO 600 building where the designated squeezed-light laser position is. To maintain

the requirement of transportability by manpower resulting from the limited clearence

inside the building and thus to keep the weight low, the GEO squeezer board produced

by [TMC] is made of aluminium. It uses a honeycomb core structure with a cell profile

of 3.2 cm2 as well as a black anodized aluminium top plate (to absorb potential stray

light). The bottom plate consists of stainless steel, the board is specified to be used in a

cleanroom environment and has a weight of only about 70 kg. The long-term performance

of the experiment proved the breadboard to have the required high mechanical stability.

To protect the experiment from residual dust particles as well as from laminar air flow,

the breadboard is covered by a case made of opaque acrylic glass. Another advantage is

that thereby the experiment is additionally shielded against external stray light sources.

Figure 3.1 shows a photograph of case and breadboard.

3.2. Preparation of the laser beams

The experiment is driven by a monolithic non-planar Nd:YAG ring laser (NPRO)

with 2 W single-mode output power at 1064 nm, produced by the company Inno-

Light [InnoLight], in the following referred to as Mephisto or as main laser. The

monolithic implementation of the laser cavity leads to a high mechanical stability and
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3. A squeezed-light laser for GEO 600

Figure 3.1.: Photograph of the optical breadboard covered by a protective case made of opaque
acrylic glass. Thereby, the experiment inside is shielded against residual dust
particles, external stray light as well as against laminar air flow disturbing the
measurements at low frequencies.

consequently to a high stability of the optical frequency. The pump radiation for the

lasing process is provided by two pump diode arrays at 808 nm. Fluctuations in pump

power (as well as any other non-equilibrium state) lead to relaxation oscillations which

can be observed as an increased intensity noise around the oscillation frequencies. To

reduce this noise, a fraction of the generated laser light is detected with a PIN photo diode

inside the laser head and an error signal for pump power stabilization is generated. This

feedback loop, the so-called noise eater, allows, especially at the relaxation oscillation

frequencies, a suppression of the intensity noise by typically 30 – 40 dB.

The laser crystal temperature is internally stabilized to improve the long-term stability

(with a specified frequency drift of less than 1 MHz per minute). The set point of the

stabilization loop can, however, be changed to allow for a fast frequency tuning of the

laser field. The tuning range extends over 30 GHz with a thermal tuning coefficient of

−3 GHz/K and a response bandwidth of 1 Hz. Additionally, a piezoelectric transducer

(PZT) is attached to the laser crystal. A change in the voltage results in a change of the

mechanical stress applied to the laser cavity and thus changes the laser frequency. This

tuning possibility has a much higher bandwidth (of 100 kHz) and makes it possible to
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cover a tuning range of approximately 100 MHz with a tuning coefficient of ca. 1 MHz/V.

Both tuning ports are essential for locking the frequency of the main laser to the GEO 600

master laser (see Section 5.2). The same ports are available for the auxiliary units to be

locked to the main squeezing laser, as described below.

An implementation of the coherent control scheme (explicitly discussed in

[Vahlbruch+06, Vahlbruch-PhD, Vahlbruch+07, Chelkowski-PhD]) requires two addi-

tional auxiliary optical frequencies. The basic idea is to remove all noisy fields that

could by means of interference introduce noise to the squeezed field at audio frequencies.

To control the length of the squeezer cavity, a beam polarized orthogonally to the

squeezed field is used. Just as the index of refraction of a birefringent crystal depends

on the polarization, so does the optical length of the squeezing resonator. To adjust a

simultaneous resonance for the two polarizations, the control field has to be frequency-

shifted. Furthermore, the squeezing angle control is done with another independent

beam of different frequency as discussed below in Section 3.6.3. The two control fields

are provided by NPRO lasers of approximately 190 mW output power at 1064 nm each

(Mephisto OEM series), in the following denominated as AUX1 and AUX2. They

have specifications similar to the Mephisto unit and possess the same frequency tuning

possibilities.

As mentioned earlier, one main constraint of the setup was a long-term mechanical

stability, since after the implementation in GEO 600 every beam misalignment will lead

to a degradation of the squeezing value and thus will affect the detector sensitivity. To

reduce a misalignment of the laser beams over long time scales, mostly rigid optics mounts

as well as monolithic flexure mounts for steering mirrors were employed.

Figure 3.2 shows the setup of the preparatory stage that contains the phase-locked loops

(PLLs) of the three lasers as well as the generation of the second-harmonic pump field.

Since light back-reflected from optical surfaces or resonators might cause the noise eater

electronics to oscillate or even damage the pump diodes [Heurs-PhD], a Faraday isolator

(LINOS FI-1060-5SI with an isolation of approx. 40 dB) is used to suppress back-reflected

light. The power behind the FI was measured to be about 2 W (using an OPHIR 3A

thermal power sensor and an OPHIR Nova II power meter with a total accuracy of 3%).

Finally, collimator lenses placed close to the laser aperture allow fairly collimated beams

with similar beam parameters to optimize the optical beat at the PLL photo detectors.

The PLLs are a commercial solution offered by the manufacturer InnoLight GmbH.

They are used to lock the frequency of the auxiliary lasers (slave) to the one of the main

(master) laser with a pre-defined frequency offset. The PLLs consist of two parts: a photo

detector (PLL PDs, containing an InGaAs photo diode) and the control electronics. All

controllers include two actuator outputs: A slow ramp signal is used to scan the slave

laser’s crystal temperature, while a fast ramp signal is connected to the laser crystal PZT.

The electronics provide an auto-lock mode: in the case of lock-loss, the lock is restored

without external software control.
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Figure 3.2.: Schematic of the preparatory setup stage, including the phase-locked loops (PLLs)
of the auxiliary lasers to the main laser and the frequency-up-conversion of the main
laser beam in the second-harmonic generator (SHG). For clarity reasons, mode-
matching lenses and steering mirrors are omitted. Details are provided in the text.

To stabilize the length of the squeezing resonator, the AUX2-beam was used. The

frequency offset between the two polarization modes required for simultaneous resonance

was 20 MHz (for details see Section 3.5). This external frequency reference was provided

by an AD9959 direct digital synthesizer (DDS) [AD-DDS]. It consists of 4 cores that

allow independent frequency, phase and amplitude control on each channel. All channels

share a common system clock and are therefore inherently synchronized. The DDS is

supplied with an external reference clock frequency chosen to be 500 MHz. If required, a

synchronization of several devices is possible.

The control beam to stabilize the angle of the squeezing ellipse is provided by the

AUX1-laser. The frequency offset has been chosen to a value of 15.2168 MHz owing

to favorable conditions at the GEO 600 detector site (namely for the control field to

be anti-resonant inside the GEO 600 signal-recycling cavity, for details see Section 5.2).

Since the coherent control scheme requires a demodulation at twice the offset frequency,

an ultra low noise OCXO (Oven Controlled Crystal Oscillator) manufactured by Wenzel

Associates [Wenzel] with a phase noise between 132 dBc/Hz and 175 dBc/Hz at 10 Hz and

10 kHz, respectively, and an output frequency νWenzel = 30.4336 MHz is used. The device

is complemented by an ultra low noise power splitter and an ultra low noise regenerative

divider (division by a factor of two) to provide all the signals necessary for the coherent

control scheme.
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The optical powers required at the PLL photo detectors were merely several µW. A

small fraction of the main laser beam (approx. 18 mW) was tapped off behind the FI

and distributed to the coherent control PLLs, while the remaining power was used for

second-harmonic generation (Section 3.3), a local oscillator for the on-board homodyne

detector (Section 3.7) as well as for a bright alignment beam mode-matched into the

squeezer cavity (Section 3.6). Additionally, 3.1 mW were tapped off directly behind the

laser and used for an external PLL to the GEO 600 laser as described in Section 5.2.

Similarly, a small fraction of the auxiliary laser beams was used for interference at the

PLL detectors while the rest was either used for the coherent control applications or

dumped.

3.3. Second-harmonic generation

The squeezed-light source for GEO 600 is based, like all squeezers constructed at the AEI,

on the principle of optical parametric down-conversion in a nonlinear χ(2) crystal. As

described in Section 2.7, this process requires a strong pump field at twice the frequency

of the squeezed field. This pump beam is generated via the physically very similar

process of second-harmonic generation (SHG). The SHG is a self-interaction process and

therefore requires high optical power densities. To achieve such in an experiment using

continuous-wave laser radiation and moderate laser powers, the nonlinear medium is

placed in a Fabry-Perot resonator. In the following, the mechanical and optical design of

the resonator as well as the electronic control are discussed.

3.3.1. Design of the SHG resonator

Two main degrees of freedom must be controlled to achieve an optimal frequency up-

conversion, namely the length of the resonator as well as the crystal temperature.

Fig. 3.3 provides a brief overview over several possible and commonly used resonator

designs. A ‘hemilithic’ design, as in Fig. 3.3 (b), which offers the advantage of a movable

coupling mirror and thereby of an adjustable resonator length, is preferable for second-

harmonic generation. A CAD drawing of the mechanical housing (design by Christian

Gräf [Gräf-Diploma]) is shown in Figure 3.4. For thermal isolation as well as to protect

the cavity from air flow perturbation, the crystal is situated in a housing which is in the

following referred to as the oven. The temperature actuation is realized via a Peltier

element [Telemeter]. For temperature sensing, a negative temperature coefficient (NTC)

thermistor [Hygrosens] was placed inside the L-shaped copper plate that separates crystal

and Peltier. The crystal is wrapped in indium foil to ensure good temperature coupling.

On the top side, the stack is completed by another L-shaped element made of Macor

ceramics which is supposed to ensure thermal isolation and to reduce the formation of a

temperature gradient inside the crystal. The entire stack is situated in an U-shaped block

made of polyoxymethylen (POM). An aluminium plate holds the coupling mirror which
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A B A B A B

(a) (b) (c)

Figure 3.3.: Possible linear resonator designs. (a) Monolithic resonator. Facet A is highly-
reflective (HR) coated for both, 1064 nm and 532 nm light, while the coating of
facet B can be chosen according to the explicit requirements (e.g. singly resonant
with a high escape efficiency for a squeezed-light source). The laser frequency is
stabilized to the cavity length. (b) Semi-monolithic (hemilithic) resonator: A is
still HR-coated, while B is anti-reflective (AR) coated for the two wavelengths. A
coupling mirror situated on a ring piezo-electric transducer completes the resonator.
This design offers the benefit of cavity length tunability while the internal loss is still
kept low. (c) Nonlinear crystal placed in a linear resonator. The two crystal facets
are now AR-coated.

PELTIER

NONLINEAR   CRYSTAL

COPPER  PLATE
WITH  THERMISTOR

MACOR  PLATE

RING ACTOR
                PZT 

COUPLING 
MIRROR

VITON
O - RING

Figure 3.4.: Left: CAD drawing of the nonlinear resonator. The designs of the second-harmonic
generator and the squeezed light source are identical. Crystal and coupling mirrors
are shown in false colors for clarity, a detailed description is given in the text.
Right: Photograph of the fully assembled oven for second-harmonic generation.
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Figure 3.5.: Radius of the SHG beam waist as a function of the optical cavity length, determined
by the air gap between the coupling mirror and the AR-coated crystal facet. The
cavity stability range extends from 19.8 mm to 25.6 mm. Parameters: crystal length:
6.5 mm, n(LiNbO3, 1064 nm) = 2.232, crystal radii of curvature: 8 mm, coupling
mirror radius of curvature: 25 mm.

is mechanically pressed on the ring actor PZT (outer diameter: 16 mm, inner diameter:

8 mm, thickness: 7 mm, range: 1.75µm at 350 V [PIa]).

The nonlinear medium is a 7% MgO:LiNbO3 crystal measuring 2× 2.5× 6.5 mm3. One

surface has a radius of curvature (ROC) of 8 mm and is HR-coated for both, 1064 nm

and 532 nm light, the other surface is plano and AR-coated for both wavelengths. The

coupler is a meniscus mirror with a diameter of 12.7 mm. The inner facet has a radius of

curvature of 25 mm and a power reflectivity of R1064 = 90% and R532≤ 2%, respectively.

The outer facet is AR-coated (R1064< 0.1% and R532< 0.2%) and has an ROC of 20 mm.

All values are specified for an angle of incidence (AOI) of 0◦. This results in a finesse of

F ≈ 59 for the fundamental 1064 nm field.

One last tunable parameter is the length of the air gap between the planar crystal

surface and the inner mirror facet. The results of a [finesse] simulation of the cavity

stability are shown in Fig. 3.5. For a stable operation, the air gap can extend from

19.8 mm to 25.6 mm. For the SHG cavity, an air gap of 24 mm has been chosen, resulting

in an expected beam waist radius of 29.0µm situated at a distance of 3.5 mm from the HR-

coated facet. Taking into account the refractive index of LiNbO3 at 1064nm, n = 2.232,

the optical cavity length is L = 77 mm, which leads to a linewidth (full width half

maximum, FWHM) of ∆fFWHM ≈ 66 MHz and a free spectral range of ∆fFSR ≈ 3.9 GHz.
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Figure 3.6.: Open-loop gain of the SHG temperature controller, measured with a SR785 dynamic
signal analyzer. The unity-gain frequency is approximately 800 mHz.

3.3.2. Temperature stabilization

The conversion efficiency of the fundamental 1064 nm light to the 532 nm pump wave-

length strongly depends on the phase matching of the two fields. In our case, the

phase matching is optimized using the temperature dependence of the refractive indices.

For thermal stabilization, the crystal is put into indirect thermal contact with a NTC

thermistor (over a layer of indium foil and the L-shaped copper plate). The NTC is a

resistor with a large negative temperature coefficient and serves as a sensor. Its resistance

value is compared with an external reference resistor (usually a potentiometer) that acts

as a set value. Any deviations from the set value result in a proportional voltage signal

which is amplified, converted into a proportional current and then applied to the Peltier

element as a control signal. The temperature controller has an integrator with a cut-off

frequency of 120 mHz and two differentiators with cut-off frequencies of 400 mHz and

700 mHz, as well as a low-pass filter at 8 Hz (Q = 0.577) before the Peltier input. The

open-loop gain of the system is shown in Figure 3.6, a detailed circuit diagram of the

temperature controller is given in Appendix B of reference [Vahlbruch-PhD]. From the
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3.3. Second-harmonic generation

set resistance value, the temperature of maximal conversion efficiency was calculated to

approximately 55 ◦C, the maximal output power was 187 mW.

3.3.3. Length stabilization

To stabilize the length of the resonator, the Pound-Drever-Hall (PDH) technique was

utilized [Drever+83] (a common modulation-demodulation technique, see [Black01] for a

detailed description). To avoid electrical beat signals at audio frequencies which might

introduce excess noise to the squeezed field, a modulation frequency of 76.5 MHz has been

chosen (considering the frequencies utilized at the GEO 600 site). A custom-made electro-

optical modulator (EOM), consisting of a MgO:LiNbO3 crystal placed in a resonance

circuit, was constructed with a reflection of < 1 % for the electric modulation field. Due

to the residual transmittance of the HR-coated facet of the SHG crystal, a fraction of

the intra-cavity field could be detected in transmission by PDSHG (see Fig. 3.2). For

the photo detector, a V4TUF design was chosen (designed by H. Vahlbruch, circuit

board in B.10 of reference [Vahlbruch-PhD]). It possesses an input port for an electrical

local oscillator (LO) signal as well as an on-board mixer, so that a demodulated error

signal is readily provided. This signal is processed by a servo control electronics (circuit

diagram published in B.3 - B.5 of reference [Vahlbruch-PhD]) which is equipped with two

integrators (at 8940 Hz and 400 Hz), a notch-filter at 8.3 kHz and a low-pass filter at

10 kHz. The unity-gain frequency of the control loop is approximately 5 kHz. To supply

EOM1 and PDSHG (Fig. 3.2) with the LO frequency of 76.5 MHz, channel 0 of the AD9959

DDS was used, the output power is ca. −2.2 dBm.

3.3.4. Optical performance

The shape of the cavity eigenmode is completely determined by the optical and mechan-

ical resonator parameters described above. To mode-match the Mephisto laser beam to

the SHG cavity, three superpolished lenses (with ROCs of 25mm, 50mm and 100mm,

respectively) have been employed. Only 385 mW of 1064 nm light were used to pump the

SHG while most of the remaining power was dumped. This resulted in a 532 nm output

power of ca. 187 mW. Taking into account the non-perfect mode-matching of ≈ 92% to

the SHG cavity, a conversion efficiency of

ηconv =
Pout

Pin
=
noutfout

ninfin
≈ 0.53 (3.1)

could be derived, with Pout/in denoting the measured optical powers at 532 nm and

1064 nm, respectively, and nout/in referring to the photon numbers involved. While this

value is sufficient in the present experiment, further applications for the second and third

generation of GW detectors may require higher ηconv values. Values greater 90 % can be

reached making periodically poled potassium titanyle phosphate (PPKTP) the nonlinear

material of choice as described in Appendix A.
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3. A squeezed-light laser for GEO 600

PZT

curved end mirror

R = 99.975%
ROC = 1 m

flat coupling mirror

flat coupling mirror
T                   = 1.2 %

L         = 42 cm

p-pol

beam waist: 370 µm

Figure 3.7.: Sketch of the travelling-wave Fabry-Perot resonator used as a mode-cleaner in the
local oscillator path. The beam waist radius of 370µm (for 1064 nm light) was
determined by the cavity round-trip length of 42 cm as well as by the ROC of the
curved end mirror. The mode-cleaner employed for the 532 nm squeezed-light source
pump beam has an identical design, only the mirror parameters vary as discussed in
the text.

3.4. Ring mode-cleaner resonators

Before being injected into the squeezed-light source, the 532 nm pump beam is transmit-

ted through a spatial mode-cleaning travelling-wave resonator, in the following referred to

as a mode-cleaner or MC. Another MC is used to filter the local oscillator beam utilized

for homodyne detection. Such filter cavities, first proposed in [Willke+98, Uehara97],

offer several advantages. First, they act as a low-pass filter for laser amplitude and phase

noise. At the frequency ∆fFWHM/2, the amplitude noise of the transmitted laser field is

attenuated by a factor of 2, at Fourier frequencies much larger than the MC cavity

linewidth merely quantum shot-noise is present. Second, an effective spatial mode-

filtering is provided; the cavity eigenmode is determined by the geometric parameters

described below. The result is a transmitted beam with a high power content in the

TEM00 mode, while all higher-order-mode light is reflected from the MC. The measure-

ments reported in [Willke+98] actually have shown the higher-order mode content of the

transmitted beam to be lower than 0.1 % for the design used. Third, and actually being

most important for the reported experiment, the RF-modulation applied to the laser

beams for the PDH cavity locks leads to high-frequency phase noise on the employed

beams. This phase fluctuations, leading to a reduced overlap of the squeezed field with

the local oscillator beam at the homodyne detector, have been shown to diminish the

maximal degree of squeezing achievable [Franzen+06, Takeno+07]. The mode-cleaners

serve as low-pass filters for the high-frequency phase noise and thereby make it possible to

reach higher squeezing values, as demonstrated in Ref. [Vahlbruch+08]. Furthermore, the

MC used for the squeezed-light source pump beam is a crucial component for alignment

purposes as described in Section 3.6.
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Figure 3.8.: Open-loop gain of the cavity length control loop for the homodyne detection beam
mode-cleaner cavity (MC1064). The unity-gain frequency is 9 kHz.

3.4.1. Local oscillator beam for homodyne detection (1064 nm)

The two mode-cleaners are constructed as travelling-wave Fabry-Perot ring cavities with

a round-trip length of 42 cm. Figure 3.7 shows a sketch of the design, the values are given

for a wavelength of 1064 nm. The cavity is formed by three mirrors. Two of them serve

as cavity couplers, they have planar surfaces and a power transmittance of Tp-pol = 1.2 %

for p-polarized light. The third mirror is plano/curved with a ROC of 1.0 m and has

a residual transmittance of 100 ppm. All mirrors have super-polished surfaces and are

AR-coated at the facet averted from the cavity. To maximize the mechanical stability, the

mirrors are glued with epoxy to an Invar spacer, thereby resulting in a quasi-monolithic

cavity design. The material is chosen for the very low thermal expansion coefficient of

only about 2.0× 10−6 K−1 at room temperature (compared with aluminium with about

23.0× 10−6 K−1). The intra-cavity field determined in its shape by the mirror curvature

and the round-trip length has its waist centrally between the two flat coupling mirrors

with a waist radius of 370µm. Further important cavity parameters are

∆fFSR ≈
c

L
= 714 MHz, F ≈ π

√
ρ1ρ2ρ3

1− ρ1ρ2ρ3
= 259, ∆fFWHM =

∆fFSR

F ≈ 2.76 MHz
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3. A squeezed-light laser for GEO 600

Waveplate
for LO power 

control

MC 1064

Figure 3.9.: Photograph of the Invar mode-cleaner employed in the GEO 600 squeezed-light laser.
To reduce residual phase noise and beam pointing fluctuations, the mode-cleaner is
situated as close to the diagnostic homodyne detector (not shown) as possible.

with ρi =
√
Ri being the amplitude reflectivities.

To keep the cavity on resonance with the laser field, the PDH technique was employed.

The required phase modulation was, again, provided by EOM1 with νmod(EOM1) =

76.5 MHz. A fraction of the field reflected by the cavity was detected, demodulated

at νmod(EOM1) and processed by a servo electronics equipped with two integrators (at

492 Hz and 9.4 kHz), a notch-filter at 10.890 kHz and a low-pass filter at 13 kHz. This

design resulted in the open-loop transfer function of the system shown in Figure 3.8. The

unity-gain frequency is about 9 kHz. Figure 3.9 shows a photograph of the mode-cleaner.

A λ/2 waveplate situated in front of the cavity allows an adjustment of the optical power

of the local oscillator beam.

3.4.2. 532 nm squeezed-light source pump beam

While the cavity design and geometry is identical to the one described above, the mirror

parameters vary slightly. The coupling mirrors have a power transmission of Tp-pol =

5500 ppm for p-polarized light, the curved end mirror a value of T = 150 ppm. This

results in a calculated finesse value of F = 562 and in a calculated cavity linewidth of
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3.5. Squeezed-light source

∆fFWHM = 1.27 MHz. For cavity length stabilization, the 532 nm beam is transmitted

through another custom-made EOM driven at a power of −2.6 dBm. The modulation

frequency is 122.6 MHz. The beam reflected by the cavity is detected by PDMC532 and

processed by a servo identical to the one described above. The open-loop transfer function

of the system is not shown since it is similar to the one plotted in Fig. 3.8.

3.5. Squeezed-light source

The core of the entire experiment is a 9.3 mm× 1.5 mm× 1.0 mm crystal of periodically

poled potassium titanyl phosphate (KTiOPO4, PPKTP). This choice of material, first

proposed for GW observatory squeezed-light sources in [Goda+08a], offers several advan-

tages when compared with LiNbO3 which was used in previous experiments.

First, the phase-matched-condition does not as strongly depend on the crystal tem-

perature as is the case for lithium niobate. As shown in Ref. [McKenzie-PhD], the

phase-matched temperature for PPKTP is approximately 35◦C with a FWHM of 5◦C,

while it is approximately 64◦C with a FWHM of 1.3◦C for lithium niobate. Therefore,

PPKTP imposes less strict conditions for the temperature stabilization of the squeezed-

light source. Furthermore, the operation temperature is closer to room temperature.

Second, the effective nonlinear coefficient deff, PPKTP is several times larger than

deff, LiNbO3 as summarized in [Goda-PhD] (with |deff, PPKTP| ≈ 10.8 pm/V). This means

that less 532 nm power is required to reach the same squeezing values.

Third, the optical absorption of PPKTP at the wavelength of 532 nm is supposed to

be smaller than the one of lithium niobate. This reduces the sensibility of the system

and hence of the squeezing degree to pump power fluctuations, when no pump power

stabilization scheme is implemented (see Section 3.8). The optical loss at 1064 nm is,

on the other hand, similarly large for both media, so that the intra-cavity loss does not

increase when PPKTP is used. The results reported in this work as well as in [Eberle+10]

showed PPKTP to be superior to LiNbO3 as nonlinear squeezing medium at 1064 nm and

1550 nm in every respect at moderate pump powers.

Figure 3.10 shows a sketch of the squeezing resonator. Like in the case of the SHG,

it is composed of a HR-coated crystal surface (R = 99.975 %, ROC = 12 mm) and a

meniscus coupling mirror (R1064 = 92%, R532 = 20%), while the intra-cavity crystal

facet is AR-coated for the two wavelengths. The air gap between the AR crystal surface

and the coupling mirror is 22.5 mm long which results in an optical round-trip cavity

length of 79 mm, taking into account the crystal’s refractive index n1064 nm
PPKTP = 1.8302.

The beam waist radius predicted by a finesse simulation is 33µm. Further important

cavity parameters were calculated to be

∆fFSR ≈ 3.80 GHz, F(1064 nm) ≈ 75, ∆fFWHM(1064 nm) ≈ 50 MHz.
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3. A squeezed-light laser for GEO 600

ring PZT actuatorAR @ 532/1064 nm
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Figure 3.10.: (a) Sketch of the squeezed-light source. A 9.3 mm long PPKTP crystal is used
as nonlinear medium. The cavity has a finesse of 75, a linewidth of 50 MHz and a
FSR of 3.8 GHz. (b) Photograph of the GEO 600 squeezed-light source. The crystal
housing is similar to the one used for the second-harmonic generator.

The mechanical design of the squeezed-light source is identical to the one used for the

SHG. Again, the crystal is temperature-stabilized inside an oven housing to ensure the

phase-matched condition between the fundamental (squeezed) and the second-harmonic

(pump) field. The operating temperature is, however, significantly lower. A value of

34 ◦C – 35 ◦C could be estimated, assuming a typical performance of the temperature

sensor. No absolute calibration was performed since the absolute value is of no relevance

for the experiment. The temperature stabilization loop is similar to the one described

in Section 3.3 and allowed a control bandwidth of about 1 Hz. In the following sections,

the coherent control scheme used for the cavity length and for the squeezing phase

stabilization (schematically shown in Figure 3.11) is described.

3.6. Squeezed-light cavity length control beam and pump beam

alignment

To generate squeezing at MHz-frequencies, one single laser source can be used

for SHG, control and homodyne detection purposes (as e. g. described in detail in

[Chelkowski-PhD]). A part of the laser light is frequency up-converted and used to

pump the squeezed-light source. Along with this 532 nm pump beam, a fraction of the

1064 nm beam with phase-modulation sidebands for control purposes is injected into the

squeezed-light cavity. This beam has exactly the same mode and polarization as the
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Figure 3.11.: Scheme of the squeezing control and detection stages. Two additional laser beams,
phase-locked to the main laser, are used to stabilize the squeezer cavity length
as well as the squeezing phase. Furthermore, a bright alignment beam can be
injected into the cavity to allow a mode-matching of the 532 nm pump beam into
the squeezed-light source. An on-board diagnostic balanced homodyne detector
finally allows for a characterization of the squeezed-light laser. For clarity reasons,
only the main components are shown, details are provided in the text.

generated squeezed field and thus allows a control of the cavity length as well as of

the phase of the squeezed field. Unfortunately, this beam also carries technical noise at

frequencies up to several MHz which completely masks squeezing at audio frequencies

and makes such a control scheme unusable for GW observatory purposes.

In the following, the alignment procedures and the coherent control scheme

([Vahlbruch+06, Vahlbruch-PhD, Vahlbruch+07, Chelkowski-PhD]) for generation of

squeezing at audio Fourier frequencies are presented.

3.6.1. Alignment beam

The so-called bright alignment beam (BAB) with frequency ωs-pol
0 originates from the

main Mephisto laser and has a power of 20.9 mW. This auxiliary field is injected into the

squeezed-light source through the HR-coated facet and the transmitted field is monitored

by the photo detector PDalign. The BAB was employed for several purposes as discussed

in the following.

In the first place, the beam was used to properly align the coupling mirror of the

nonlinear resonator. As long as no control scheme was implemented, the alignment beam

could also be used for cavity length stabilization due to the RF-sidebands applied by

EOM1. Finally, after implementation of the control scheme, the ωs-pol
0 -beam was used

for a reversed alignment of the 532 nm pump beam path. A spatial overlap between the
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3. A squeezed-light laser for GEO 600

pump field and the squeezer cavity eigenmode is very important, not only to reach high

parametric gain values (which are easily reached with PPKTP in any case), but also to

avoid an interaction of the pump field with any higher-order 1064 nm modes inside the

cavity. Such an interaction could lead to squeezing or even to anti-squeezing of other

spatial modes which would result in an additional noise contribution to the squeezed

TEM00 mode and thus reduce the amount of squeezing achievable. When the bright

1064 nm alignment beam was injected into the squeezed-light source, it was partially

frequency up-converted to produce a weak 532 nm alignment beam. Even though the

conversion efficiency was quite poor due to the high under-coupling of the squeezer cavity,

the obtained beam power was sufficient to allow a mode-matching to the 532 nm mode-

cleaner cavity and thereby to perform a reversed mode-matching procedure. PDpump,

optimized for the detection of very weak beams with merely some µW light power, was

used to monitor the field reflected by MC532. Furthermore, the BAB is necessary for the

alignment of the squeezed beam with respect to GEO 600 as discussed in Section 5.2.

While the bright alignment beam can be used to optimize the experimental alignment

at any time, it has, however, to be dumped whenever the squeezed-light source is operated

targeting squeezing at audio frequencies. Otherwise it would obscure any squeezing at

frequencies up to several MHz.

3.6.2. Cavity length control

The first parameter addressed by the coherent control scheme by means of the AUX2-

laser beam with an optical power of 63 mW is the length of the squeezing resonator.

The control field is p-polarized and thus has a polarization orthogonal to the one of

the squeezed field. Due to the crystal’s birefringence, the cavity resonance condition is

different for each polarization. The bright alignment beam was used to determine the

resonance conditions, simultaneously injecting the ωs-pol
0 beam and the AUX2 beam into

the squeezing resonator and monitoring the resonant curves of the cavity in transmission

using PDalign. When no 532 nm light is injected into the squeezing resonator, we found

the frequency offset necessary to allow for a simultaneous resonance to be 12.6 MHz. This

value, however, slightly changes due to the power absorbed by the crystal when a pump

beam is injected. Therefore, the frequency offset was chosen to be 20 MHz. It is controlled

by PLL2 as described above, the frequency reference is provided by the AD9959 digital

signal generator. A fine-tuning of the polarization degeneration can be performed by

slightly changing the squeezer crystal temperature, thereby compensating for the cavity

length change induced by optical power absorption. A drawback of this approach is

that the control scheme is relatively sensitive to pump power fluctuations. Long-term

operations therefore required the implementation of a pump power stabilization scheme

as discussed in Section 3.8.

Like the SHG and the mode-cleaners, the squeezed-light source cavity length is also

stabilized with a PDH lock. The required phase modulation was provided by EOM3
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Figure 3.12.: (a) Resonance peaks of the p-polarized length control beam transmitted by the
squeezing resonator and detected at PDlength. The mode-matching to the cavity
was in the order of 99% and is similar to the values achieved for the other reso-
nators employed throughout the experiment. (b) Corresponding error signal after
demodulation at νmod(EOM3) = 44.44 MHz. The signal-to-noise ratio (SNR) was
37.

with νmod(EOM3) = 44.44 MHz. The beam transmitted by the squeezed-light source is

separated from the s-polarized squeezed field at a polarizing beam splitter and detected

by PDlength. Figure 3.12 shows one free spectral range of the squeezer cavity as well

as the error signal generated by demodulation at νmod(EOM3). The error signal was

processed by a servo equipped with two integrators (492 Hz and 7.2 kHz) and a low-pass

filter at 6 kHz. The unity-gain frequency of the control loop was 5 kHz.

3.6.3. Controlling the squeezing angle - theoretical considerations

While the squeezer cavity length control is independent from the nonlinear process, a

beam that senses the nonlinearity is required to stabilize the phase of the squeezed

field with respect to the pump field as well as to the local oscillator field employed

for homodyne detection. The control field used must be coherent with the squeezed

field, which is, in the reported experiment, solved by an independent but phase-locked

laser beam. In the following, the theoretical principles derived in [Chelkowski-PhD] are

summarized.

The goal of the enterprise is to derive an expression for the field exiting the squeezing

resonator when a control field shifted by a frequency Ω with respect to the fundamental

squeezing frequency ω0 is injected into the squeezed-light source. Following the notation

used in Ref. [Chelkowski-PhD], this field is denominated as QCF = Quadrature Control

Field. Prior to any nonlinear interaction, the QCF, which can be described by the real-

valued amplitude αΩ, represents a single-sideband field with respect to the fundamental
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3. A squeezed-light laser for GEO 600

field at ω0. Hence, the expectation values of the annihilation operators for the upper

(ω0 + Ω) and lower (ω0 − Ω) sideband frequency fields are

〈â+〉 ≡ 〈â(ω0 + Ω)〉 = αΩ and 〈â−〉 ≡ 〈â(ω0 − Ω)〉 = 0 . (3.2)

With the formalism derived by Caves and Schumaker [Caves+85], the quadrature ampli-

tudes can be written as

â1 =
1√
2

(â+ + â†−) and â2 =
1

i
√

2
(â+ − â†−) , (3.3)

with the indices 1 and 2 referring to the amplitude and the phase quadrature, respectively.

The optical parametric amplification and deamplification of the single quadratures can

be described as a transformation

b ≡
(
b̂1(Ω)

b̂2(Ω)

)
= Ŝ(r, θ)a Ŝ†(r, θ) ≡ Ŝ(r, θ)

(
â1(Ω)

â2(Ω)

)
Ŝ†(r, θ) , (3.4)

where

Ŝ(r, θ) = er(â+â− exp(−2iθ)−â†+â
†
− exp(2iθ)) with Ŝ†(r, θ) = Ŝ(−r, θ) (3.5)

is the squeezing operator known from Section 2.6. The values

0 ≤ r <∞ and 0 ≤ θ ≤ 2π (3.6)

describe the degree of squeezing and the squeezing phase, respectively [Caves+85]. Con-

sidering the relations

Ŝ(r, θ) â± Ŝ
†(r, θ) = â± cosh(r) + â†∓e2iφ sinh(r) (3.7)

Ŝ(r, θ) â†± Ŝ
†(r, θ) = â†± cosh(r)− â∓e−2iφ sinh(r) (3.8)

that can be obtained from application of the Baker-Hausdorff lemma [Gerry+06], the

expression

b =

(
cosh(r) + sinh(r) cos(2θ) sinh(r) sin(2θ)

sinh(r) sin(2θ) cosh(r)− sinh(r) cos(2θ)

)(
â1

â2

)
(3.9)

follows as the most general description for the squeezed quadrature vector after the

nonlinear χ(2) interaction. The two orthogonal squeezed quadratures can then in a further

step be employed to obtain any arbitrary quadrature θ through linear combination.

Considering Eq.’s (3.2) and (3.3), the expectation values

〈b̂1(Ω)〉 =
αΩ√

2
[cosh(r) + sinh(r) cos(2θ)] +

αΩ

i
√

2
[sinh(r) sin(2θ)] (3.10)

〈b̂2(Ω)〉 =
αΩ√

2
[sinh(r) sin(2θ)] +

αΩ

i
√

2
[cosh(r)− sinh(r) cos(2θ)] (3.11)
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3.6. Squeezed-light cavity length control beam and pump beam alignment

for the squeezed quadrature amplitudes follow directly from Eq. (3.9). A Fourier trans-

form

b̂1(t) = b̂1(Ω)e−iΩt + b̂∗1(Ω)eiΩt , (3.12)

b̂2(t) = b̂2(Ω)e−iΩt + b̂∗2(Ω)eiΩt , (3.13)

regarding, as the entire consideration, only a single frequency Ω, finally transfers the

squeezed quadrature amplitude values into the time domain and thus directly allows us

to derive an expression for the electric field

EQCF ∝ 〈b̂+(t) + b̂−(t)〉 with b̂±(t) ≡ 1

2

[
b̂1(t)± ib̂2(t)

]
e∓iω0t , (3.14)

namely

EQCF ∝ 1 + g√
2g

αΩ cos(ω0t+ Ωt)− 1− g√
2g

αΩ cos(ω0t− Ωt− 2θ) (3.15)

with g = e2r being the nonlinear gain for a single-path χ(2) interaction. Equation (3.15)

instantly allows us to deduce the effect of the nonlinear χ(2) interaction on the single-

sideband control field: While the injected field possesses only the frequency component

Ω, the field exiting the squeezing resonator is composed of the two sidebands ω0 ± Ω. It

thus contains information on the squeezing phase, being the relative phase between the

two generated sidebands.

An intuitive understanding of this effect can be gained from the optical down-conversion

process. Due to the χ(2) interaction, the single-sideband field experiences a parametric

amplification with the 532 nm beam serving as the pump. The single-sideband field can-

not be deamplified, due to energy conservation, since no field is present at ω− = ω0 − Ω.

In the course of the amplification process, two 1064 nm photons are generated from

one 532 nm photon. Again, energy conservation enforces the production of a photon at

ω− = ω0 − Ω, when the ω+ = ω0 + Ω is amplified, effectively resulting in the generation

of the lower sideband.

The generated double-sideband field allows a direct control of the squeezing angle. The

only experimental condition for low-frequency squeezing is that Ω has to be large enough

to not introduce by interference technical laser noise at the frequencies of interest and

still small enough for the field to sense a significant parametric gain inside the nonlinear

resonator. In our case, this has been solved by choosing Ω/2π = 15.2168 MHz. To

generate an adequate control signal, the detected photo current

IQCF ∝ |EQCF|2 ∝ α2
Ω

2g
[(1 + g) cos(ω0t+ Ωt)− (1− g) cos(ω0t− Ωt− 2θ)]2 (3.16)

has finally to be mixed down with an electrical local oscillator signal

Idemod ∝ αdemod cos(2Ωt+ χ) , (3.17)
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Figure 3.13.: Schematic of the squeezing angle control loop. The quadrature control field injected
as a single sideband into the squeezed-light source (illustrated by box (a) in which
ω0 is chosen as the central frequency) is turned into a field with sidebands at
ω0 ± Ω (box (b)) by the nonlinear interaction. When the detected photo current
is demodulated at the frequency 2Ω, a sinusoidal error signal is obtained which is
used to stabilize the length of the 532 nm pump beam path.

that has twice the optical offset frequency, while χ denotes the demodulation phase

and αdemod is the field amplitude. A lengthy but simple calculation results in the clear

expression

εQCF
phase ∝ IQCFIdemod ∝ −α

2(1− g2)

4g
cos(χ− 2θ) +O(4Ω) +O(2ω0) (3.18)

for the error signal with α2 = α2
Ωαdemod. The high frequency (HF) components can be

removed electronically through low-pass filtering, and the demodulation phase can be

chosen in the experiment, which finally leads to the sinusoidal error signal

εQCF
phase ∝

(g2 − 1)

4g
α2 cos(2θ) . (3.19)

This signal depends only on the phase of the squeezed field and thus can be directly used

to stabilize the angle of the squeezing ellipse.

3.6.4. Controlling the squeezing angle - experimental realization

From the experimental point of view, the stabilization of squeezing ellipse angle is

identical to the stabilization of the 532 nm pump beam path length, since the phase

offset between this pump field and the generated squeezed field directly determines the

64



3.7. Control of the 1064 nm homodyne detector local oscillator field

squeezing angle. Therefore, a phase-shifting device is placed into the 532 nm beam path.

The PZT employed therein has a high dynamic range, the maximal displacement available

is 11µm when the device is operated at 370 V (length: 27 mm, max. range 30µm at

1000 V [PIb]). Such a dynamic range is required to compensate for large low-frequency

drifts (e. g. thermally induced). Since the effect of the large PZT on the beam alignment

is significant, it is placed in the path between SHG and MC532. Thus, any fluctuation in

pointing of the 532 nm beam onto the squeezed-light resonator, which would considerably

deteriorate the degree of squeezing, is excluded. Pointing fluctuations will result only in

a reduced mode-matching of the 532 nm beam to MC532 and hence in a pump power

change, which can be compensated for by a power stabilization scheme as discussed in

Section 3.8.

The control field, provided by the AUX1 laser, with an optical power of 25µW, is injected

into the squeezed-light source at the HR-coated facet, as illustrated in Fig. 3.13. It

experiences the nonlinear χ(2) interaction, in the course of which a second sideband at

ω0 − Ω is generated. The resulting field is detected in reflection from the squeezing

resonator at the photo detector PDphas. After demodulation at the frequency 2Ω that

is provided by the ultra low noise Wenzel OCXO, the error signal shown in Fig. 3.14 is

obtained and is fed back to the phase shifter. The unity gain frequency is several kHz. In

case a higher bandwidth should be required at any time (e. g. due to different laboratory

conditions at the detection site), a second phase-shifter is available in the setup. It is

constructed as a 6× 6× 8 cm3 brass block with a weight of ca. 2.5 kg. Inside the block,

the steering mirror is clamped to a ring PZT in a very stiff way. This stiff construction,

together with the high mass, allows an effective suppression of the eigenresonances at low

frequencies and thus makes it possible to achieve a control bandwidth of about 7 kHz as

shown in Fig. 3.15, however at the expense of the microscopic dynamic range of the PZT.

When required, the two actuators can be used for a single control loop and addressed

through a frequency-separating filter. Thereby, one part of the control loop with low

bandwidth but a high actuation range would address large low-frequency drifts, while

the other part would allow a compensation of the HF jitter.

3.7. Control of the 1064 nm homodyne detector local oscillator

field

Before the squeezed field is injected into GEO 600, a characterization of the squeezed-light

laser output was necessary. For that purpose, an on-board diagnostic homodyne detector

was set up. The detection scheme is shown in the right part of Fig. 3.11. The s-polarized

squeezed field emitted by the squeezed-light source is separated from the p-polarized

length control field at a polarizing beam splitter and is guided to the signal port of the

homodyne detector through a λ/2-PBS set. At a later stage, when operated in GEO 600,

the waveplate is rotated by 90◦, thereby closing the diagnostic port.
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Figure 3.14.: Error signal for the squeezing angle control loop, generated by demodulating the
quadrature control field at twice the offset frequency Ω.
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Figure 3.15.: Open-loop gain of the squeezing phase stabilization loop. The phase-shifter PZT
is clamped to a massive brass holder. The unity-gain frequency is about 7 kHz.
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3.7. Control of the 1064 nm homodyne detector local oscillator field

The main functional principle of a homodyne detector was presented in Section 2.9.

The squeezed vacuum field contains only a few photons, so that in the case of a direct

detection any signal produced at the photo detector would be completely obscured by the

dark noise of the detector itself. Therefore, this weak field is interfered with a strong local

oscillator beam at a 50/50 beam splitter. In consequence, the signal (or, to be precise,

one single field quadrature) undergoes a strong optical amplification. To eliminate the

technical noise inherent to the LO beam, the difference of the two photo currents is

generated. In a balanced detector, this signal does in first-order approximation not

contain LO noise contributions and provides information on the quantum noise in the

observed field quadrature. The homodyne output signal is monitored using a fast Fourier

transform (FFT) spectrum analyzer. For measurements in the audio frequency band,

long integration times (of several minutes when measuring down to mHz frequencies)

are required. Therefore, a stabilization of the measurement quadrature of the homodyne

detector is necessary.

The signal for a homodyne angle stabilization is, once again, obtained from the

quadrature control field. In Eq. (3.15), the expression for the QCF after nonlinear

interaction was derived. This field, copropagating with the squeezed beam (about 1µW

is transmitted through the squeezing resonator), is overlapped with the optical LO field

ELO ∝ αLO exp(−i(ω0t+φ)) + c. c. at the homodyne beam splitter. The fields at the two

beam splitter outputs read

EH1/2 =
1√
2

[
ELO ± EQCF

]
∝ 1√

2

[
αLOe−i(ω0t+φ)

±
{

1 + g√
2g

αΩ cos(ω0t+ Ωt)− 1− g√
2g

αΩ cos(ω0t− Ωt− 2θ)

}]
+ c.c. .

(3.20)

The difference of the photocurrents measured at the two ports is given by

Idiff ∝ |EH1|2 − |EH2|2

∝ 4
√

2√
g
αLOαΩ cos(ω0t+ φ)

× [(1 + g) cos(ω0t+ Ωt)− (1− g) cos(ω0t− Ωt− 2φ)]

∝
√

8

g
αLOαΩ [(1 + g) cos(−Ωt+ φ)− (1− g) cos(Ωt+ 2θ + φ) +O(2ω0)] .

(3.21)

Experimentally, the subtraction is realized in a compact electronic circuit (the circuit

board design is published in [Vahlbruch-PhD] Fig. B8-9, page 153-4). A low-pass filtering

stage which is followed by a demodulation at the frequency Ω leads to the signal

εQCF
hmd ∝ IdiffIdemod

∝
√

2

g
α [(1 + g) cos(χ+ φ)− (1− g) cos(χ− φ− 2θ) +O(2Ω)]

(3.22)
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Figure 3.16.: Red trace: error signal for the homodyne readout quadrature control loop, gene-
rated by demodulating the quadrature control field at the QCF offset frequency.
Blue trace: triangle waveform applied to the phase-shifter PZT.

where α = αΩαLOαdemod. A last low-pass filtering finally leaves us with an error signal

depending on the squeezing angle θ as well as on the local oscillator phase φ, while the

demodulation phase χ can be chosen. After the squeezing angle is stabilized using the –

completely independent – pump path control loop, the homodyne error signal depends

merely on φ and thereby can be directly employed to stabilize the homodyne detection

angle.

For the experimental realization, another high-mass brass phase-shifter holder is placed in

the squeezing path. This is completely equivalent to the actuation of the local oscillator

beam phase. Again, a control bandwidth of several kHz could be achieved, the obtained

error signal is shown in Fig. 3.16.

To minimize pointing effects, the phase-shifter is located in close proximity to the

homodyne beam splitter. Any pointing fluctuation would lead to a reduced fringe

visibility (in the following simply abbreviated as visibility) at the homodyne detector. To

maximize the visibility and to reduce phase noise, the local oscillator beam is transmitted

through the mode-cleaning resonator discussed in Section 3.4. On the other side, the

beam parameters of the squeezed beam are matched to the LO beam. For this purpose,

the bright alignment beam was employed. It has, apart from the optical power, exactly
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the same parameters as the squeezed beam and therefore allowed an adjustment of the

homodyne visibility. The realized fringe visibility was

V =
Vmax − Vmin

Vmax + Vmin
≈ 0.9875 , (3.23)

where Vmax/min are the maximal/minimal voltages of a single homodyne photo diode

measured while the relative phase between the homodyne local oscillator beam and the

bright alignment beam is varied. This leads to a homodyne detection efficiency of

ηhmd,vis = V2 ≈ 0.975 (3.24)

and thus corresponds to a detection loss of 2.5% due to non-perfect interference of the two

beams. This value was sufficient for the application as a diagnostic homodyne detector.

For a further visibility improvement, an additional diagnostic cavity providing a beam

parameter reference would be helpful. While crucial for other experiments, the detected

value of squeezing is of minor relevance in this special case, since the homodyne detector

is by-passed in any case when the squeezed-light laser is operated in GEO 600.

3.8. Pump power stabilization

A permanent employment in a GW observatory imposed an additional demand on the

GEO 600 squeezed-light laser: the generated degree of squeezing has to remain stable

on timescales of hours to days (in the following referred to as long-term) in order to

ensure a non-varying observatory sensitivity. During the characterization of the long-term

performance of the system, the stability of the squeezing degree was, however, found to

depend on the power stability of the 532 nm pump beam. In the following, the effects

of a time-dependent pump power value on the squeezing degree are discussed. Finally,

the extension of the coherent control scheme by a pump power stabilization scheme is

presented.

3.8.1. Theoretical considerations

The squeezing output in several ways depends on the 532 nm pump beam power. Pump

power fluctuations will change the degree of squeezing and anti-squeezing, as well as

the angle of the squeezing ellipse, as shown below. One reason for the varying pump

power is that the power of the 1064 nm laser beam used to pump the SHG device is not

stabilized. The fluctuations of the 1064 nm laser power therefore directly couple into the

532 nm power value. Please note that the nonlinear coupling mechanism can – due to

the power dependence of the SHG conversion efficiency – furthermore lead to an even

greater relative power change for the second-harmonic beam. Furthermore, degradation

of beam alignment into the SHG (being a weeks- or month-timescale effect) will also
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3. A squeezed-light laser for GEO 600

lead to a slowly changing pump power level. This time-dependence of the 532 nm pump

power is not compensated by the control loops described above. A first characterization

of the degree of squeezing has shown that it slowly degrades without a pump power

stabilization employed. Though a detailed analysis of the power fluctuation has not been

performed, values of several percent have been observed. For the calculations presented

in the following, a worst-case scenario of ± 5 % has been assumed. To account for a

long-term alignment degradation, additionally a value of −10 % is considered. Please

note that both are arbitrary values employed to visualize the effect on the degree of

squeezing.

Squeezing as a function of pump power

The fluctuation of the pump beam power will result in two different effects. First, the

anti-squeezing and squeezing variances

Ra/s = 1± ηtot
4
√
P/Pth

(1∓
√
P/Pth)2 + 4κ2

(3.25)

depend on the pump power P [Takeno+07]. In this expression a and s and the upper

and lower signs denote the anti-squeezing and the squeezing, respectively, η describes the

total detection efficiency and Pth is the OPO threshold power. The normalized frequency

κ =
2πf

γ
with γ =

c(T + L)

l
(3.26)

is a function of cavity parameters, where T is the power transmittance of the output

coupling mirror, L is the intra-cavity loss and l the optical cavity round-trip length,

while f is the frequency as measured with a spectrum analyzer. Please note that the

frequency dependence is provided in a wrong way in reference [Takeno+07], where the

factor 2π is omitted. The total detection efficiency

ηtot = ρ ξ V2 ηhmd (3.27)

depends on the cavity escape efficiency ρ = T/(T + L), the total propagation loss (1-

ξ), the fringe visibility V and finally on the quantum efficiency of the homodyne photo

detectors ηhmd. Finally, for some calculations it might be useful to express Eq. (3.25) in

terms of the optical gain

g =
1

(1−
√
P/Pth)2

(3.28)

of the squeezer cavity.

The direct dependence of the squeezing degree on the pump power is relatively weak.

When we assume realistic parameters

ηhmd = 0.99, V = 0.985, ξ = 0.98, ρ ≈ 0.95, and
P

Pth
= 0.5,

70



3.8. Pump power stabilization

average squeezing

average anti-squeezing

-10

-5

 0

 5

 10

 15

 0  5  10  15  20  25

N
or

m
al

iz
ed

 m
ag

ni
tu

de
 [d

B
]

Frequency [MHz]

Figure 3.17.: Simulation of the frequency-dependent squeezed field assuming real experimental
parameters (see text). The total assumed detection loss is approximately 10.5 %.
The squeezing (red line) and anti-squeezing (orange line) is shown as a function
of frequency. The FWHM of the squeezer cavity is 51.5 ± 0.5 MHz. The blue
dashed lines indicate the expected effect of a ± 10% pump power fluctuation. With
≈ ±0.13 dB it is negligible for the squeezing and therefore is not expected to affect
the experimental performance.

the detected level of squeezing

Va/s = 10 log10(Ra/s) (3.29)

in our hypothetical system would be 9 dB at frequencies much smaller than the cavity

linewidth. A pump power change even by ±10% would lead to a deviation of merely

+0.135 dB or −0.124 dB, respectively. The anti-squeezing would vary by approximately

0.5 dB as shown in Fig. 3.17. At this point, an ideal system without phase noise

contributions is described. It is, however, obvious that the direct dependence of the

squeezing and anti-squeezing values on the pump power alone is not significant for the

long-term stability considerations.

Thermal effects

The thermally-induced mechanism is much more severe for the employed coherent control

scheme. Since the nonlinear crystal has a non-vanishing absorption coefficient for 532 nm

light, any pump power change results in a change of the absorbed power and thus in a
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Figure 3.18.: TKSim [Lastzka-PhD] simulation of the temperature change of the nonlinear crystal
for a 532 nm pump power increase from 35 mW to 38.5 mW. (a) Lateral cut parallel
to the axis of beam propagation at an arbitrary position inside the crystal (the
gaussian beam properties are not considered by the simulation). (b) Cross-section
perpendicular to the axis of propagation. The y-axis shows the effective optical
path increase due to the created temperature gradient. Since an implementation of
the complete system consisting of crystal and copper plate was not possible with
TKSim, the results are shown merely to visualize the temperature gradient, while
exact numbers could not be derived. Values of t = 1 ms and αPPKTP = 2.4 %/cm
were used for the observation time and the absorption coefficient, respectively.

change of the crystal temperature. The reported absorption coefficients cover a range

of 0.5 %/cm to 4.5 %/cm, a detailed discussion is provided in Ref. [Meier-PhD], where a

value of 2.4 %/cm was observed.

Figure 3.18 shows the simulated effect of a pump power increase by 10 % from 35 mW to

38.5 mW on the temperature distribution inside the crystal. The result is a temperature

gradient with the highest temperature change at the axis of propagation. The simulation

was performed with the program TKSim by N. Lastzka [Lastzka-PhD]. Please note that

the simulation relies on a set of material parameters not known exactly for the nonlinear

crystal employed in the squeezer cavity and is provided here to visualize the qualitative

effect rather than to derive exact numbers. Nonetheless, the results obtained support the

model for the influence of the 532 nm pump power change on the coherent control scheme

derived below. Coming back to the simulation, one drawback worth mentioning is that

it does not account for the different materials employed in the oven. Furthermore, the

temperature coupling between the crystal and the copper plate as well as between the
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Figure 3.19.: Sketch of the setup employed to characterize the dependence of the degeneracy
condition on the 532 nm beam power. The cavity length was stabilized via the p-pol
length control beam, the QCF was not injected. The s-polarized bright alignment
beam was injected and detected in transmission by PDchar as a function of the
pump power employed. The polarization of the pump field ensured the optical gain
to be close to 1 for the measurement. PBS: polarizing beam splitter, DBS: dichroic
bream splitter, PD: photo detector.

copper plate and the NTC sensor is unknown. It was thus not possible to calculate the

temperature change expected to be sensed by the NTC. It may, however, be expected

to be considerably smaller than the increase at the optical axis due to the relatively big

volume of the copper plate.

A measurement on another (similar) squeezer cavity showed the NTC value to change

by approximately 3 Ω for a pump power increase from 35 mW up to 38.5 mW. This

corresponds to a value of ≈ 0.8 mK.

The changed temperature gradient inside the crystal is not sensed in an efficient way

by the implemented temperature stabilization loop and therefore cannot be compensated

for. Please note that this problem is not fundamental and in principle can be solved by

a calibrated temperature stabilization scheme. The alternative pump power stabilization

solution presented later on is, however, both, simpler and more precise. Due to the

temperature dependence of the refractive index, a pump power variation results in a

change of the optical cavity length.

To evaluate the expected effect for the squeezed-light laser, let us assume the following

starting condition: The length of the squeezing resonator is stabilized using the p-

polarized control beam and the degeneracy condition between the s- and the frequency-

shifted p-polarized light is adjusted using the crystal temperature as a fine-adjustment
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3. A squeezed-light laser for GEO 600

tool. When operated in this way, the temperature is optimized with regard to the

phase-matching condition and the squeezing resonator delivers the maximal amount of

squeezing possible at the chosen pump power. Now the pump power increases and the

higher thermal load leads to a cavity length increase. While the resonator is still held on

resonance with the PDH control loop, the polarization degeneracy is no longer fulfilled

to 100 %. Thus, the increased power results in a cavity that is perfectly resonant for

p-polarized light but slightly detuned from resonance for the s-polarized squeezed field.

A separate characterization measurement was performed in order to obtain quantitative

results for the detuning of the squeezing resonator to be expected at a certain pump power

deviation from the set value. For this, the bright alignment beam and the setup shown in

Figure 3.19 were used. The length of the squeezing resonator was stabilized using the p-

polarized field, and a pump power of P532 nm = 34.5 mW was injected into the squeezing

resonator, while the coherent control field was blocked. The crystal temperature was

optimized for a polarization degeneration and the pump beam polarization shifted by

90◦. This ensured that lowest nonlinear conversion took place while the 532 nm power

was still present and absorbed inside the crystal. Now the pump power was varied and

the change in the alignment beam power (being proportional to the intracavity power and

hence to the cavity’s resonant curve) recorded by the diagnostic photo detector PDchar.

This measurement directly allowed deducing the resonator detuning as a function of

the relative pump power change. The normalized results are shown in Fig. 3.20. The

measured data (red crosses) are in good agreement with the simulation of the cavity

resonant curve (blue line). From the known cavity parameters given above, it is directly

possible to deduce that a pump power fluctuation of only 1% will already lead to a

detuning of 0.3 MHz for the s-polarized quadrature control beam. A pump power change

of 5% will result in a detuning of 1.5 MHz and 10% even in a detuning by ca. 3 MHz.

Considering the cavity FSR of ≈ 3.8 GHz, a detuning by 3 MHz corresponds to an

optical path length change by about 0.42 nm. Taking into account the temperature

dependence of the refractive index as well as of the crystal length [Wiechmann+93]

∆n

∆T

∣∣∣∣
1064 nm

≈ 6.14× 10−6 1

K
and

∆L

∆T
≈ 6× 10−7 1

K
, (3.30)

the increase of the crystal temperature at the optical axis could be estimated to ap-

proximately 3.7 mK. This value, together with the 0.8 mK sensed at the NTC in a

similar system, allows a rough estimate of the changed temperature gradient inside the

nonlinear crystal. Both results are in good agreement with the TKSim simulation shown

in Fig. 3.18.

Expected squeezing degradation

When the squeezing resonator is detuned from resonance, the generated squeezed field is

affected in several ways.
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Figure 3.20.: (a) Measurement of the alignment beam power transmitted through the squeezing
resonator as a function of pump power (upper x-axis). A power of 34.5 mW,
corresponding to the envisioned GEO 600 operations condition, was employed as set
value. The measured data (red crosses) are in good agreement with the simulation
of the cavity resonant curve (blue line) employing experimental parameters. From
this, a calibration of the cavity detuning corresponding to the pump power change
was calculated (lower x-axis) (b) Frequency zoom-out showing the location of the
measured data with respect to the resonant curve.

1. First, the coherent control scheme is based on a single-sideband field used for

stabilization of the squeezing ellipse angle. The other sideband at the frequency

ω0 − Ω is generated by the nonlinear χ(2) interaction. The phase relation between

the two sidebands is then used as reference in the control scheme. To provide an

intuitive understanding of the detuning effect, Fig. 3.21 shows the phase shift

Φ(f) = arg

(
τ1τ2e

il2πf
c

1− ρ1ρ2e
2il2πf
c

)
(3.31)

experienced by an optical field transmitted through the squeezing resonator. Here,

τ1/2 and ρ1/2 denote the amplitude transmittances and reflectivities, respectively,

of the resonator coupling mirrors. In the coherent control scheme, the optical phase

difference ∆0 = Φ(fQCF)− Φ(−fQCF) of the two sidebands is used as reference to

stabilize the phase of the squeezed field. When the cavity is now detuned from
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Figure 3.21.: Left: Phase rotation experienced by an optical field transmitted through the
squeezing resonator in dependence of its detuning. The phase difference between the
two QCF sidebands, serving as reference for the squeezed field phase stabilization,
is always larger for a resonant (∆0) than for a detuned (∆det) cavity. The difference
∆0−∆det is small for detunings much smaller than the cavity linewidth and reaches
a constant maximal value for frequencies much larger than the lindewidth. The
shown frequency offset was chosen to be 3 MHz, corresponding to the effect of a
10 % variation of the 532 nm pump power. Right: Zoom-out at large detuning
values for a visual illustration of the effect described with an arbitrary example
frequency offset of 15 MHz.

resonance by fdet, the two sidebands experience a phase rotation different from the

previous condition, which results in

∆det = Φ(Ω± fdet)− Φ(−Ω± fdet) 6= ∆0, (3.32)

as illustrated on the right side of Fig. 3.21. As a consequence, the squeezing ellipse

experiences a rotation by an angle

Θ(fdet = −1.5 MHz) ≈ −5.6 mrad ≈ −0.32 deg,

Θ(fdet = −3.0 MHz) ≈ −22.5 mrad ≈ −1.29 deg

depending on the detuning and hence on the pump power variation. This rotation

directly translates into the degree of squeezing detected at the diagnostic homodyne

detector as

V ′a/s,Θ = Va/s cos2 Θ + Vs/a sin2 Θ. (3.33)

Vs/a denominates the values of squeezing and anti-squeezing, respectively, while Θ

is the rotation angle. Trace (a) of Fig 3.22 shows the simulated degradation of

squeezing under a fixed readout angle (V ′a/s,Θ) that was initially optimized for the
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3.8. Pump power stabilization

highest squeezing at the nominal pump power. For the simulation, a state with

9.3 dB of squeezing and 16.75 dB of anti-squeezing was assumed.

2. The homodyne angle stabilization loop is affected by the resonator detuning in the

same way. In this case, however, the optical beat of the double-sideband QCF

field and the LO field at frequency f0 is employed for stabilization. It is hence the

average value of the phase differences between the f0 field and the two sideband

fields that serves as reference. Depending on the detuning, the homodyne readout

quadrature is rotated by

φ(fdet = −1.5 MHz) ≈ −2.8 mrad ≈ −0.16 deg,

φ(fdet = −3.0 MHz) ≈ −11.3 rad ≈ −0.65 deg.

Thus, the readout quadrature is co-rotating with the squeezed field quadrature and

therefore to some extent compensates for the squeezing degradation as shown in

trace (b) of Fig. 3.22.

3. An additional parameter is the detuning-dependent nonlinear gain experienced by

the two sidebands which will result in a change of the sideband amplitudes and

hence in a further effect on the resulting phase difference. Please note that this

effect is not accounted for by the simulation results shown in Fig. 3.22. Quantitative

results on the gain contribution may be obtained by solving Eq. (3.14) for the

quadrature control field transmitted by the squeezing resonator as a function of

sideband frequency. Equally omitted is the effect of the nonlinear gain on the

cavity bandwidth, which will result in a dependence of the effective linewidth on

the gain value as well as on the phase relation between the fundamental and the

pump fields inside the squeezer cavity.

4. The magnitude of the error signal used for the homodyne angle stabilization loop

(given in Eq. (3.19)) depends on the intensity of the coherent control beam transmit-

ted through the squeezing resonator as well as on its nonlinear gain. Both values will

change when a detuning is introduced. Here, the QCF intensity change is mainly

due to a different nonlinear gain experienced by the two sidebands. Additionally,

a small contribution (0.2 % for a 3 MHz detuning when no gain is considered) will

arise from the changing cavity transmittance |τ(fdet)|2.

In case the zero-crossing point of the error signal is chosen as operation point,

an intensity change does not have an effect on the detection angle. Since in the

homodyne locking scheme an electronic offset is added to the error signal in order to

adjust the desired ellipse orientation, an operation at the mid-point of the sinusoidal

error signal will usually not be the case. Depending on the operation point, a

changing error signal magnitude will result in a rotation of the readout quadrature,

which is the stronger the closer the operation point is to the turning point of the

error signal.
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Figure 3.22.: Simulated degree of squeezing detected at a fixed homodyne angle, initially opti-
mized for the nominal pump power of 34.5 mW. The upper x-axis shows the pump
power deviation in percent, the lower x-axis gives the resulting cavity detuning for
s-polarized light. (a) only considers the rotation of the squeezing ellipse induced by
the detuning. (c) additionally takes into account the reduced squeezing output of a
detuned cavity. (d) additionally accounts for the optical gain changing with pump
power. (e) finally takes into account the detuning-induced rotation of the homodyne
readout quadrature. Additionally, (b) shows the effect of the co-rotation of the
readout quadrature on trace (a) disregarding the effects of a changing nonlinear
gain.

It is worth mentioning that the same kind of effect will also arise from a power

fluctuation of the auxiliary laser beam used as the QCF. For operation in GEO 600,

the mid-point of the sinusoidal error signal is therefore chosen as operation point.

5. The amount of squeezing produced is no longer the highest possible value as can be

seen from Fig. 3.17. This effect is not particularly strong as long as the detuning

values are significantly smaller than the cavity linewidth. A detuning by several

MHz can, however, result in a measurable effect which is shown in Fig. 3.22.

6. As long as the cavity is held on resonance, the phase shift experienced by the

squeezed field is equal in magnitude (with an opposite sign) for the sidebands at the

upper and the lower Fourier frequencies. This results in a frequency-independent

orientation of the squeezing ellipse in phase space. When the resonance condition is
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3.8. Pump power stabilization

no longer fulfilled, the phase shifts experienced by the upper and the lower sidebands

of the squeezed field are no longer equal, which leads to a frequency-dependent

rotation of the squeezing ellipse, as was shown in [Chelkowski+05]. In the discussed

case, this effect is, however, negligible in a first-order consideration since frequencies

far smaller than the cavity linewidth are considered.

Summarizing, pump power fluctuations result in an alteration of the squeezing strength

as well as in a rotation of the squeezing ellipse. While the first effect is a lasting one, the

second one can be compensated for by manipulating either the squeezing phase or the

homodyne readout angle. An experiment relying on a long-term stability of the squeezing

angle will, however, suffer severe degradation of the squeezing strength detected by the

homodyne detector at one fixed readout angle.

Figure 3.22 illustrates how the changing pump power affects the frequency-dependent

squeezing level, as far as this is accessible by the simple model given above. Trace (a)

shows the simple case where the varying optical gain is not considered at all and the

squeezing ellipse is merely rotated. This rotation is partially compensated by the co-

rotating homodyne readout quadrature, as shown by trace (b). Traces (c) and (d) again

neglect this compensation and show merely the phase of the squeezing ellipse. Trace

(c) takes into account that a detuning of the squeezing resonator reduces the effective

optical gain experienced by the s-polarized field. Though the squeezing level decreases

minimally, so does even more the anti-squeezing value. Because the rotation of the ellipse

introduces a coupling of the anti-squeezing into the squeezing via Eq. (3.33), at the end

the squeezing level at a fixed readout angle is not as strongly affected as it would be when

the anti-squeezing decrease was not considered. Trace (d) furthermore accounts for the

change of the pump power itself which leads to an asymmetric gain change. A higher

pump power leads to a higher anti-squeezing and thereby to a further reduction of the

squeezing value detected, while the effective squeezing value increases slightly for lower

pump powers. Trace (e), again, considers the co-rotation of the readout quadrature,

constituting the most complete result achievable by the derived model. Please note that

the effect of the changing nonlinear gain on the QCF sidebands as well as on the error

signal itself is not considered by the simulation. Additionally, other degrees of freedom

as e. g. the power in the QCF laser beam will also influence the control scheme. The

simulation results are therefore merely shown to derive a more intuitive understanding

of some of the different effects connected to a changing pump power level, rather than to

derive exact predictions for squeezing values. The considerations given above, along with

the experimental observation of a time-dependent degree of squeezing, however indicated

a pump power stabilization scheme to be mandatory for any long-term operations.
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3. A squeezed-light laser for GEO 600

a b

Figure 3.23.: (a) CAD drawing of the Mach-Zehnder-type interferometer. While the beam
splitters are housed in monolithic mounts, the mirror orientations may be adjusted.
One mirror is attached to a PZT actuator to control the relative length of the
two interferometer arms. (b) Photograph of the compact Mach-Zehnder-type
interferometer used to stabilize the optical power of the 532 nm squeezing pump
beam.

3.9. Experimental implementation of the pump power

stabilization

The most straightforward stabilization approach employs an electro-optical amplitude

modulator. This device is based on the Pockels effect and consists of a nonlinear crystal,

usually MgO:LiNbO3, placed in an electrical condensator. Depending on the voltage

applied, the polarization of the linearly polarized input beam is rotated by a certain

value. When the device is combined with a PBS, one PBS port can be used to set up a

control loop while the other port emits the stabilized optical field. Unfortunately, neither

commercially available nor custom devices did work at the wavelength of 532 nm. Any

polarization rotation induced by an external HV field was compensated for on a seconds-

timescale. The strength of the compensation effect depended on the optical power used.

A possible reason for this effect could be that the optical field led to microscopic charge

separation which compensated the externally-applied electric field.

The implemented pump power stabilization (which does not rely on nonlinear effects) is

realized via a Mach-Zehnder type interferometer. The device was constructed vertically,

to keep it as compact as possible and the spatial requirements low. Figure 3.23 shows

a CAD drawing as well as a photograph. One of the steering mirrors is mounted on a
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PZT actuator, thereby making it possible to change the optical power transmitted by the

interferometer. For the stabilization scheme, a small fraction of the 532 nm pump beam

is tapped off close to the squeezed-light source and monitored with a photo detector. The

recorded voltage value is compared with a reference voltage. The unity gain frequency

was 1 kHz.

This stabilization scheme made it possible to remove long-term pump power fluctua-

tions and thereby to stabilize the degree of squeezing. Another advantage of the setup is

that different squeezing values can be adjusted after a first calibration: The monitor photo

detector provides a relative measurement of the pump power employed and thereby allows

for a reproducibility being higher than when relying on power meter measurements. The

implemented power stabilization improved the long-term stability of the squeezed-light

laser output. The results achieved are discussed in Section 4.5.

3.10. Conclusion

The squeezed-light laser for GEO 600 was set up in a cleanroom environment on a

135 cm× 113 cm optical breadboard. For squeezing observation at audio Fourier frequen-

cies, the coherent control scheme was implemented. This scheme relies on two auxiliary

laser beams with a polarization and/or frequency different from the one of the squeezed

field. The two auxiliary lasers are frequency-locked to the main squeezing laser which in

turn can be locked to the GEO 600 laser system. To improve the long-term stability of

the squeezing degree, the 532 nm pump beam power is stabilized using a Mach-Zehnder

interferometer. Figure 3.24 shows a photograph of the squeezed-light laser as well as a

simplified sketch of the experimental layout. A detailed schematic including all optical

components is provided in Appendix B.
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Figure 3.24.: Top: Photograph of the GEO 600 squeezed-light laser.
Bottom: Simplified sketch of the experimental layout.
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CHAPTER 4
Characterization of the squeezed-light

laser

Not later than in the third generation of GW observatories will squeezed-light lasers

constitute a standard component to reduce quantum shot noise as well as radiation

pressure noise. Before such a component is, however, implemented in the detection

scheme, it must be thoroughly characterized to make sure no additional noise is sent

to the detector, thereby corrupting the sensitivity instead of improving it. For this

purpose, the squeezed-light laser breadboard is equipped with a diagnostic homodyne

detector. This chapter discusses the performance of the homodyne detector as well as the

squeezing output generated by the squeezed-light laser. Finally, the long-term stability

of the system, necessary for permanent GW observatory operations, is presented.

4.1. Performance of the diagnostic homodyne detector

A successful squeezing measurement down to audio frequencies crucially depends on the

common-mode rejection ratio (CMRR) of the homodyne detector. A perfect CMRR is

equivalent to the maximal suppression of any classical noise inherent to the 1064 nm local

oscillator beam. To maximize the CMR ratio, it is necessary to match the photocurrents

measured by the individual photo diodes of the homodyne detector. Perfect photo

detectors have a quantum efficiency of

QE =
photoelectrons/sec

photons/sec
= 1 (4.1)

over the entire detection surface and are thus automatically perfectly matched. In reality,

this is not the case since the quantum efficiencies are smaller than unity and differ between

photo diodes. Fortunately, it is sufficient to match the photocurrents detected by the two
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4. Characterization of the squeezed-light laser

homodyne photo diodes. To achieve this goal, the local oscillator beam is used, because

it is the noise of the LO beam that would by interference mask the squeezing and hence

disturb the measurement. Since the power reflectivity and transmittance values of the

beam splitter depend on the angle of incidence (AOI), the AOI can be adjusted such that

the difference of the two photocurrents equals zero. For the LO beam, such a procedure

automatically compensates a possibly non-perfect splitting ratio deviating from the ideal

50/50 value as well as differences in photo detector quantum efficiency. The required

changes in the AOI are small (of the order of ± 1◦), so that no significant change in the

AR-coating reflectivity values and hence no additional loss is introduced. To optimize

the balancing procedure, the homodyne beam splitter is mounted on a precision rotation

stage which makes µrad AOI adjustments possible.

Another crucial component is an electronic circuit able to amplify the weak homodyne

signal without introducing electronic noise even at low audio frequencies. For this

purpose, a custom amplifier electronics, which allowed measurements over the entire

GW detection band and below, has been designed by H. Vahlbruch.

Furthermore, the fringe visibility at the two photo detectors must be as high as possible

to minimize detection loss. After leaving the squeezed-light source, the squeezed beam

is guided through mechanically rigid components to minimize any misalignment effects.

To optimize the visibility, the alignment of the local oscillator beam can be adjusted. A

permanent monitoring of the squeezing degree would additionally require the extension

of the present experimental setup by an auto-alignment loop for the local oscillator

beam. Such a permanent monitoring, using a 95/5 beam splitter to send a small fraction

of the squeezed field to the homodyne detector, was considered in the initial design

published in [Vahlbruch-PhD]. While this additional loss would degrade the squeezing

value available for injection in GEO 600 by about 2 dB, it would provide merely about

0.2 dB of squeezing for monitoring purposes. This value is, however, too low to allow a

reasonable validation of the squeezed-light laser output. A higher BS transmission value

would, on the other hand, introduce too much optical loss to the squeezed field to reach

the science goal of the experiment. Thus, the permanent monitoring concept was omitted

in the experimental setup.

4.1.1. Stray light elimination

One particular topic, the stray light suppression, has not been discussed by now though

it was crucial for low-frequency squeezing measurements [Vahlbruch+07]. In fact, the

decision to work with super-polished optical surfaces in a cleanroom has proven to

be an excellent approach to reduce the stray light problem from the beginning on.

Figure 4.1 shows a first measurement which was performed after the experimental setup

was completed but before any residual stray light issues were adressed. It revealed a

flat (white) quantum noise spectrum down to a frequency of 10 – 20 Hz. Below this

frequency, the measured spectrum showed a monotonic roll-up, reported already in

84



4.1. Performance of the diagnostic homodyne detector

-120

-110

-100

-90

-80

-70

 10  100  1k  10k  100k

N
oi

se
 le

ve
l [

dB
V

rm
s/

sq
rt

(H
z)

]

Frequency [Hz]

(a)

(b)

Figure 4.1.: (a) Quantum noise spectrum measured after the experimental assemby was finished
and prior to any stray light countermeasures. At frequencies above 20 Hz, the
spectrum was flat, below a ‘roll-up effect’ due to parasitic optical interference was
observed. The LO power was 570µW. The electronic dark noise (trace b) was not
subtracted from the measured data, the dark noise clearance was 18 dB in the interval
of 10 Hz – 10 kHz. Both traces were pieced together from 9 FFT frequency windows:
5–200 Hz, 200–800 Hz, 800–1600 Hz, 1.6–3.2 kHz, 3.2–6.4 kHz, 6.4–12.8 kHz, 12.8–
25.6 kHz, 25.6–51.2 kHz, 51.2–102.4 kHz.

Reference [Vahlbruch-PhD] and identified there to originate from parasitic interference.

The electronic dark noise clearance was 18 dB at the frequencies of interest, the shown

data were not corrected for dark noise.

Next, the performance at lower audio frequencies was optimized. During the experi-

mental assembly, the following measures have already been taken:

• The experiment was shielded against diffuse stray light originating from the lab-

oratory environment by an opaque case made of black acrylic glass. While this

case could be opened for experimental assembly, for the measurement time the lids

were closed thereby protecting the experiment not only against stray light but also

against air flow turbulences and dust.

• The light power provided by the three laser sources exceeded the required power

many times over. Therefore, at various locations throughout the experiment excess
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light was dumped inside custom-made beam sinks (colored black to maximize the

absorption). Those locations were situated as far as possible from the homodyne

detector and the squeezed-light source to minimize the stray light input.

• As described in Section 3.3, the conversion efficiency inside the SHG was approxi-

mately 50 %. When not properly filtered, 1064 nm photons would co-propagate with

the 532 nm pump beam and directly enter the squeezed-light source. A combination

of three dichroic beam splitters was used to eliminate any remaining 1064 nm light

from the pump beam.

• The lenses used to focus the two beams onto the homodyne detector photo diodes

had super-polished surfaces and were tilted by a small angle for additional stray

light mitigation. The AR-coating quality was measured by the manufacturer to

R ≤ 0.003 % for s- and p-polarized light at an AOI of 5◦.

• The homodyne detector photo diodes were not equipped with protective windows.

Such windows are usually not anti-reflectively coated and thus lead to an increased

detection loss as well as to photons back-scattered into the squeezed-light source

through the signal port. Additionally, the semiconductor wafer from which the

photo diodes have been manufactured was AR-coated for the wavelength of 1064 nm

and for an angle of incidence of 20◦. Residual scattered photons were thus guided

in the direction of the optical breadboard and dumped there by neutral-density

(ND) filters.

After the first characterization shown in Figure 4.1, the following steps have been

gradually applied until a satisfactory performance of the experiment was achieved.

• The temporary homodyne detector enclosure was replaced by an opaque and light-

proof version. This new box is made of aluminium and is equipped with light-proof

cable feedthrough possibilities. After all adjustments are finished, the box is closed

with a cover plate. Merely two 10 mm holes allow the input of the signal and the

local oscillator beams.

• Stray light spots originating from imperfect AR-coatings were identified and

dumped using absorptive neutral-density glass filters (ND filters). In the high-

power optical paths, ND filters were also placed behind the HR steering mirrors to

eliminate residual transmitted light.

• Inside the homodyne detector, the residual AR reflection spots from the photo

diodes as well as from all other optics were dumped individually with ND filters.

The effect of such action is shown in Figure 4.2. The difference of traces (a) and (b)

is due to a single ND filter added to block the residual AR reflection of a homodyne

photo diode. A photograph of the final homodyne detector design is shown in

Figure 4.3.
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Figure 4.2.: Measurements of the balanced homodyne detector noise performed during stray
light optimization. Traces (a–c) show vacuum noise measurements. Trace (a) was
recorded with the new opaque homodyne detector enclosure in place, procuring an
improvement compared to trace (a) of Fig. 4.1. Both detection ports were open, no
squeezing was generated. In trace (b), the residual light reflected by the AR-coated
homodyne photo diodes was blocked using an ND filter. When the squeezing port
was blocked, a further improvement could be achieved as shown by trace (c). Such
behaviour is an indicator that residual stray light is still propagating inside the
experimental enclosure and has to be eliminated. The LO power was 570µW. The
electronic dark noise (d) was not subtracted from the measured data. All traces were
pieced together from 7 FFT frequency windows: 0.3–12.5 Hz, 12.5–50 Hz, 50–200 Hz,
200–800 Hz, 0.8–3.2 kHz, 3.2–12.8 kHz, 12.8–102.4 kHz.

• Stray light generation is especially high in the proximity of the lasers. These regions

were shielded by several aluminium baffles to separate the individual experiment

parts as far as possible.

• The last experimental stage containing the squeezed beam propagating to the homo-

dyne detector was additionally shielded using thin bricks made out of black plastic.

A comparison of different colors has proven the black ones to cause the smallest

scattering of 1064 nm light. The advantage of such bricks is a high modularity

which allows an adaption of the baffles to the experimental layout and thus an

incorporation of the existing structures.
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from MC 1064
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homodyne 
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Figure 4.3.: Photograph of the diagnostic homodyne detector. The black case contains two
custom-made photo diodes with a quantum efficiency of 99 % together with the
electronics necessary for photocurrent subtraction. The photo diodes do not possess
protective windows while the wafer itself is AR-coated. ND-filters absorb the residual
stray light originating from the AR-coated surfaces. The beam splitter is placed on
a precision rotation stage to optimize the common-mode rejection. Inset: Closed
homodyne detector ready for measurements. Merely two 10 mm holes allow the
two beams to enter the detector, for electronic supply and readout light-proof
feedthroughs are provided.

• Where possible, free-propagating beams were shielded by aluminium tubes. This

impeded stray light entering these beams and hence being injected with them into

the squeezing resonator and/or the diagnostic homodyne detector. Additionally,

convection was reduced due to the shielding.

These measures allowed the observation of a flat vacuum shot noise spectrum down to

frequencies below 1 Hz.
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Figure 4.4.: Measurement of the vacuum noise spectra using three different optical powers for
the local oscillator beam. The linear behaviour proves that purely quantum noise
was detected and no technical noise contaminated the measurement. The electronic
dark noise was approximately 12 dB below and thus was not subtracted from the
measured data. All traces originate from a single FFT window.

4.1.2. True quantum shot noise measurement

A first measurement necessary for the detection of squeezed light concerns a reference

value, namely the shot noise of a pure vacuum state. For this purpose the squeezing

input port of the homodyne detector must be blocked, so that merely the noise of a

vacuum state is measured. A linear dependence of the measured spectral noise power

on the optical local oscillator beam power is, as discussed in Section 2.9, a necessary

criterion for a shot-noise-limited measurement. Figure 4.4 shows the spectral noise powers

measured by the diagnostic homodyne detector for three different optical LO powers. The

corresponding power levels were 570µW, 285µW, and 143µW, respectively. The value of

570µW corresponded to the power of the alignment beam that is used for fringe visibility

optimization. As required, the measured noise levels scaled linearly with the LO power

confirming the homodyne detector to be limited by quantum noise only and thus suited

for further squeezing measurements.
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Figure 4.5.: Left: Degree of squeezing and anti-squeezing measured with different pump powers.
For clarity, only a small frequency range of 3 kHz – 12.8 kHz is shown.
Right: the blue and red points show the degree of squeezing and anti-squeezing
measured at 5 kHz, as shown in the left graph. Traces (b) and (c) show the theoretical
prediction of the expected anti-squeezing and squeezing, respectively, taking into
account an overall loss of 10.5 %. A threshold power of 61 mW was estimated from
the measurement. In trace (a), the model is extended by phase noise of 0.5◦≈ 9 mrad.

4.2. Squeezing the vacuum noise

The results of a first characterization measurement, namely the degree of squeezing and

anti-squeezing as a function of the 532 nm pump power, are shown in the left part of

Figure 4.5. It is worth noting that very low 532 nm pump powers are sufficient to produce

a high degree of squeezing. At a power of 5 mW (corresponding to about 15 mW intra-

cavity power), the quantum noise was reduced by more than 3 dB, equivalent to a factor

of two in noise power reduction. The degree of squeezing reached a maximal value of

9.5 dB at a pump power of 45 mW. This value is more than an order of magnitude below

the pump power levels necessary to reach corresponding squeezing values with similar

cavity designs using MgO:LiNbO3 as nonlinear medium.

In the right part of Figure 4.5, the measured values (taken at a frequency of 5 kHz) are

compared with the theoretical expectations. The degree of squeezing

Va/s = 10× log10(Ra/s). (4.2)

can be calculated using Eq. (3.25) to account for the dependence on the pump power

P as well as for the frequency dependence of the squeezing. In the present case, the

latter may be omitted since the considered frequencies are much smaller than the cavity

linewidth.
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Another parameter entering Eq. (4.2) is the optical loss. A rather simple model for a

visualization of the mechanism how squeezing is affected by losses can be derived from

the reflection at a beam splitter as discussed in Chapter 2. The higher the loss, the

higher is also the contribution of the vacuum noise that interferes with the squeezed

field and degrades the degree of squeezing. Furthermore, the higher the initial degree of

squeezing, the stronger the degradation. The different loss sources during the generation

and detection processes are:

• The escape efficiency ρ = T/(T + L) of the squeezed-light resonator. The trans-

mission of the coupling mirror was chosen to a value of T = 0.08. The total loss per

round-trip, due to the non-perfect AR-coating of the crystal facet as well as to the

residual power absorption of the nonlinear crystal, can be estimated to L ≈ 0.04,

thereby resulting in ρ ≈ 0.95 .

• The total propagation loss suffered by the squeezed field on the way from the squee-

zing resonator to the homodyne detector. The critical components in this path are

three polarizing beam splitters as well as a Faraday rotator, while the contribution

of the super-polished lenses is negligible. In an independent measurement, the

propagation efficiency was estimated to be ξ ≈ 0.98 .

• The fringe visibility V at the homodyne detector, contributing quadratically, was

measured to range between 0.985 and 0.9875.

• The quantum efficiency of the homodyne photo diodes. To minimize this loss,

custom-made high-efficiency diodes were used. The diameter of the active area is

500µm. Equivalent diodes have already been used in high-level squeezing expe-

riments, as e. g. reported in [Vahlbruch-PhD], and have been estimated to have a

quantum efficiency of ηhmd > 0.99 .

A consideration of all possible sources results in a total detection efficiency of ηtot ≈ 0.895.

This value perfectly corresponds to the measured squeezing and anti-squeezing levels, as

shown in Figure 4.5. The deviation at very low pump powers is probably due to a

non-perfect calibration of the pump power measurement. The OPO threshold power of

Pth ≈ 61 mW was estimated from the measurements. Please note furthermore that the

homodyne detector is merely a diagnostic device which is by-passed when the squeezed-

light laser is used in the GEO 600 detection scheme. Hence, the homodyne visibility loss

is not relevant for a later operation and has to be corrected for. Since a photo diode

from the same manufacturer is used in GEO 600, the detection loss will remain the same.

It is nevertheless corrected for at this stage to facilitate a separation of the different

experimental stages in a later loss consideration. Thus, a total loss of merely 7 % can be

deduced. This means that more than 11 dB of squeezing are available for the injection

into the dark GEO 600 port when using a considerably high pump power of 45 mW, which

also gives approximately 23 dB of anti-squeezing. To keep the latter at a more moderate

value, the device may be operated at a pump power of 35 mW, still yielding more than

10 dB of squeezing but only 17 dB of anti-squeezing.
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1 2 3 4

Figure 4.6.: Contour plot of the Wigner function of a lossless 10 dB squeezed state. From (1)
to (4), the assumed phase noise increases from 0 via 10 mrad and 100 mrad up to
a value of 500 mrad. This jitter leads to an increased projection onto the squeezed
quadrature and hence to a decreased squeezing. As discussed in the text, the residual
phase noise in our case is of the order of 10 mrad and thereby does not significantly
affect the squeezing strength. The calculation was performed with a matlab code
kindly shared by B. Hage.

So far, we have regarded a perfect system that is only limited by optical loss. In

reality, any phase noise of the pump field leads to a jitter of the squeezing ellipse and

thereby to a degradation of squeezing as illustrated in Figure 4.6. Although a ring-cavity

mode-cleaner is employed to reduce the amount of phase noise (mainly due to the HF

modulation fields used for the PDH stabilization loops), the presence of residual phase

jitter may not be excluded. As discussed in Reference [Takeno+07], the phase noise effect

on the degree of squeezing can be described as

R′a/s = Ra/scos2(θ) +Rs/asin2(θ), (4.3)

where θ describes the phase jitter. The separate contributions of optical loss and phase

jitter can not be definitely identified from the measured spectra, since both mechanisms in

the end lead to a very similar effect, namely to a degraded squeezing value. However, the

simulation results shown in trace (b) of Figure 4.5 indicate the presence of a residual phase

noise with θ / 10 mrad. Neither the optical loss nor the residual phase jitter do, however,

affect the goals formulated for the GEO 600 squeezed-light laser. On the contrary, the

goal injection value of 10 dB is even exceeded. In current GW observatories, the different

loss sources appearing at various stages of the squeezed light injection (as e. g. non-

perfect mode-matching between the detector and the output mode-cleaner (OMC), loss

inside the OMC and others) are far more dominant and in the end limit the maximal

sensitivity improvement achievable with squeezed light. This case is adressed in the

Sections 5.3, 5.5 and 6.1.
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Figure 4.7.: (a) Quantum noise power of a vacuum state, measured with a local oscillator
power of 570µW. (b) Noise power of a squeezed state generated with an opti-
cal pump power of 5 mW and detected at the same LO power as trace a. (c)
Corresponding anti-squeezing noise power spectrum. With a non-classical noise
reduction of −3.4 dB and a corresponding anti-squeezing value of 4.2 dB, a very
pure state is generated at sideband frequencies extending over the entire GW
wave detection band. Please note the flat spectra as well as the very low pump
power employed. (d) Electronic dark noise, not subtracted from the data. FFT
frequency windows: 5 Hz – 12.5 Hz, 12.5 Hz – 25 Hz, 25 Hz – 50 Hz, 50 Hz – 100 Hz,
100 Hz – 200 Hz, 200 Hz – 400 Hz, 400 Hz – 800 Hz, 800 Hz – 1.6 kHz, 1.6 kHz – 3.2 kHz,
3.2 kHz – 6.4 kHz, 6.4 kHz – 12.8 kHz. Corresponding RBWs: 62.5 mHz, 125 mHz,
250 mHz, 500 mHz, 1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz.

4.3. Audio- and subaudio-frequency squeezing

The second requirement for a GW-observatory squeezed-light laser is a flat (white)

squeezing spectrum in the entire frequency band of Earth-bound instruments extending

from 10 Hz up to 10 kHz. This requirement is in fact the most crucial one and required all

the described mesures to impede any stray light photons to enter either the squeezed-light

source or the homodyne detector. An additional component not necessary to achieve a

flat shot noise level but crucial for a flat squeezing is a Faraday isolator placed between

the squeezed-light source and the homodyne detector [McKenzie-PhD]. Thereby, any

light back-reflected to the OPA was eliminated. The inevitable drawback was that an in-
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Figure 4.8.: (a) Quantum noise power of a vacuum state, measured with a local oscillator power
of 570µW. (b) Noise power of a squeezed state generated with an optical pump
power of 45 mW and detected at the same LO power as trace (a). The noise
level was reduced by up to 9 dB. Please note that this does, however, correspond
to more than 11 dB of squeezing exiting the squeezing setup, because in this case
the homodyne detector is by-passed and the total optical loss reduces to 7 %. The
squeezing spectrum is, again, white at audio frequencies. At lower frequencies the
performance is slightly constrained by the air-conditioning system of the laboratory.
(c) Corresponding anti-squeezing noise power of 23 dB. The structures at 102.5 Hz are
due to parasitic electronic pick-up. (d) Electronic dark noise, not subtracted from
the data. FFT frequency windows: 12.5 Hz – 25 Hz, 25 Hz – 50 Hz, 50 Hz – 100 Hz,
100 Hz – 200 Hz, 200 Hz – 400 Hz, 400 Hz – 800 Hz, 800 Hz – 1.6 kHz, 1.6 kHz – 3.2 kHz,
3.2 kHz – 6.4 kHz, 6.4 kHz – 12.8 kHz. Corresponding RBWs: 125 mHz, 250 mHz,
500 mHz, 1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz.

creased isolation also led to a higher optical loss (increased by approximately 1.5 %).

Figure 4.7 shows the measurement of a very pure squeezed state generated at 5 mW of

532 nm pump power. The squeezing and anti-squeezing levels (of −3.4 dB and 4.2 dB,

respectively) are flat over the entire frequency band of interest and even below. The

electronic dark noise was not subtracted from the measured data.

Figure 4.8 shows the experimental performance recorded with a pump power of 45 mW.

This value corresponds to the maximal squeezing generation and thereby constitutes the

maximal pump power at which the squeezed-light source would possibly be operated in
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the GEO 600 detection scheme. The generated squeezing and anti-squeezing levels were

−9 dB and 23 dB, respectively. The slightly lower squeezing value compared to the results

shown in Fig. 4.5 is due to a fringe visibility decrease from 0.985 to 0.978. Again, white

noise levels could be observed over the entire frequency band. We assume the features in

the frequency band of 10 Hz – 20 Hz to be due to excess noise generated by the laboratory

air conditioning system which was not shut down for the presented measurement. The

structure at 102.5 Hz, visible in trace (c) of Figure 4.8, does not originate from the

experimental setup and is probably generated through parasitic electronic pick-up from

close-by experiments which could not be avoided for all measurements. It will, however,

not appear at the GEO 600 detection site. Again, the measured data was not corrected

for electronic dark noise. Such a correction would result in a squeezing level of 10 dB but

violate the spirit of this thesis in which only directly recorded data without corrective

post-processing shall be shown.

The measurements reported in this work characterized the constructed squeezed-light

laser to be suitable for GW detection operations. The device allows the generation of pure

states with a correspondingly low anti-squeezing value as well as strong squeezing injec-

tion exceeding the value of 10 dB. In the noise spectra shown, merely the frequency band

of Earth-bound GW detectors (10 Hz – 10 kHz) was considered. Though the GEO 600

squeezed-light source is also capable of generating significant squeezing below the lower

limit of 10 Hz (and even below 1 Hz), those results are of no relevance for the work in

hand. For the first and second generation of GW observatories, the sensitivity at those

frequencies will not be dominated by quantum noise, so that no additional reduction will

be possible with squeezed light injection. It is, however, worth mentioning that even

the third generation observatories which will probably be limited by quantum noise at

frequencies below 10 Hz (e.g. about 5 Hz in case of the Einstein Telescope design sensi-

tivity), can already today count on quantum noise reduction techniques available over

their entire detection frequency band. Squeezing will thus most likely constitute a key

technology to reach the envisioned detection sensitivity values as discussed in Section 6.1.

4.4. Remote control of the squeezed-light laser

A routine operation of the squeezed-light source as part of a gravitational wave ob-

servatory requires an automated control of the squeezed-light laser. To maximize the

experimental compatibility with the existing GEO 600 control scheme, the automation is

implemented using the LIGO Control and Data System (CDS) [LIGO-CDS] incorporating

the Experimental Physics and Industrial Control System (EPICS) [EPICS]. Though the

core GEO 600 slow digital control is implemented in LabView, recently added systems as

e. g. the output mode-cleaner are controlled using EPICS and LIGO CDS. Up to now,

the squeezed-light laser is controlled by a separate system, as described below. The two

systems can, however, be joined together if need arises.

95



4. Characterization of the squeezed-light laser

SHG MC 532 MC 1064SqueezerMach-Zehnder IFO Pump Phase Lock Homodyne

GEO  600  SQUEEZED  LIGHT  LASER

AI Filter

SE - FD Converter

AA Filter

Optical

Fibre Link

I/O Chassis
ADCs DACs

Front-End
Ethernet

Operators Computer

Figure 4.9.: Schematic of the interface between the squeezed-light laser and the digital control
system, exemplified at the SHG (left hand side). All other locking loops are likewise
digitally interfaced as illustrated by the open connection ports. FD: fully differen-
tial, SE: single ended, AA: anti-aliasing, AI: anti-imaging, ADC: analog-to-digital
converter, DAC: digital-to-analog converter, I/O: input/output.

4.4.1. Connecting the experiment to the CDS

The following section offers a very brief description of the implemented infrastructure and

of the locking procedures. A more detailed discussion as well as the underlying Python

code are provided in [Lastzka-PhD], the hardware implementation will be described in

details in the PhD thesis of Christian Gräf. Basically, the electronic control of the

experiment is still performed with the analog electronics discussed throughout Chapter 3,

while the lock (re)acquisition and set point control is executed by the CDS. Therefore, all

experimental channels necessary for control purposes are interfaced with the CDS via the

EPICS system. A general scheme is shown in Figure 4.9, taking the length control loop of

the SHG as a concrete example. The single-ended error signal provided at the output of

PDSHG is converted to a fully-differential (FD) signal to reduce electronic pick-up. This

error signal is still used by the SHG servo described before for cavity length stabilization.

Additionally, its copy is monitored by the CDS, while the lock acquisition itself is realized

by monitoring the DC power level of PDSHG. To remove aliasing artefacts, LIGO-design

AA filters [LIGO-Fil01, LIGO-Fil02] are used.

The digitization is performed by an analog-to-digital converter (ADC, 32 channel 16-bit

PCI-X card [General Standards Corporation]). The ADC/DAC cards are housed in an

I/O chassis. In the digital data acquisition, every mV of an input signal corresponds to

3 count units, later on simply referred to as counts. The PCI-X bus of the I/O chassis

is connected to a front-end computer via a fiber link. Inside the front-end, all the main

operations are performed. It runs the real-time system and can, however not in the
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present case, contain digital filters for a fully or partially digital control. Please note

that currently only control bandwidths up to about 1 kHz are available, this value may,

however, be extended by about an order of magnitude in the future. Another important

part is the frame builder that permanently stores the data to a hard disk and also allows

an access of the stored data via Ethernet. The front-end is finally connected to a separate

operator’s computer, the experiment is controlled via a graphical user interface (GUI).

Turning again to the SHG example, the filtered and digitized DC power level is

monitored by the control system. When a lock is requested via the GUI, a triangular

ramp signal is generated digitally and applied to the HV amplifier of the SHG PZT. As

soon as the resonance is approached and a certain threshold value of the optical power

recorded by PDSHG is exceeded, the corresponding voltage value is held and the lock

sequence begins. The loop is closed by means of a trigger signal applied to the servo via

the I/O chassis and an AI filter. From then on, the control is executed in the traditional

way by the analog electronics whose output voltage is added to the voltage generated by

the CDS. The DC power level is monitored constantly with a bandwidth of 256 Hz. In

case of lock-loss, an automatic re-lock is performed.

An overview over all implemented input channels is shown in Table 4.1. The data

acquisition frequency determinded by the hardware used is currently 216 Hz = 65536 kHz.

At the input port, the data rate is reduced by a factor of two using software-implemented

down-sampling. The resulting value of 32768 kHz is, however, used only for the squeezing

value monitoring channel, while all other channels are further down-sampled to 256 Hz.

This frequency is sufficient for monitoring and lock purposes, while the amount of

recorded data is reduced.

The other three cavities are stabilized with control loops similar to the one for the

SHG. The same is true for the Mach-Zehnder interferometer: A triangular ramp applied

to its PZT generates a sinusoidal signal at the corresponding photo detector which is used

as an error signal. An electronic offset, added by additional analog electronics, allows

the adjustment of the optical power level in transmission of the interferometer. The

operation levels were determined in an independent calibration. A photo detector signal

of 700 mV, corresponding to 2930 counts of the CDS, constitutes the normal operation

state with 35 mW power at 532 nm.

For pump phase and homodyne angle stabilization, no sophisticated routine is required.

When the remaining systems are locked and the sinusoidal error signals are generated, it is

sufficient to remotely activate the lock switch of the servo along with the corresponding

integrators. The error signal level is monitored by a separate control loop, so that a

re-lock procedure is initiated in case of lock-loss.

More input channels are provided for data acquisition and monitoring purposes. First,

the lock status of all three phase-locked loops is monitored. This information is provided

by the diagnostic port of the PLL controller itself. A remote re-lock is not possible,

the information is merely recorded for duty-cycle calculation and for data quality flags.
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Another channel, also usable for data quality flag purposes, records the lock status of the

entire experiment. Finally, the homodyne detector output is also recorded, constituting

the only high-bandwidth channel.

The output channels are summarized in Table 4.2. For every subsystem, three

electronic switches are available. Additionally, a triangular ramp signal to approach

the operating points of the cavities is provided. It is applied to the HV amplifiers as

described above. In case of the sinusoidal error signals, again a HV input is provided

to bring the subsystems into a well-defined mid-fringe initial state after every lock-loss.

Subsystem Channel Employment Sampling freq. [Hz]

SHG PD DC Level Control 256

Error Signal Monitoring 256

PZT HV Level Monitoring 256

Squeezing resonator PD DC Level Control 256

Error Signal Monitoring 256

PZT HV Level Monitoring 256

MC532 PD DC Level Control 256

Error Signal Monitoring 256

PZT HV Level Monitoring 256

MC1064 PD DC Level Control 256

Error Signal Monitoring 256

PZT HV Level Monitoring 256

Mach-Zehnder PD DC Level Control 256

Error Signal Monitoring 256

PZT HV Level Monitoring 256

Pump beam phase PD DC Level Monitoring 256

Error Signal Control 256

PZT HV Level Monitoring 256

Homodyne detector Error Signal Control 256

PZT HV Level Monitoring 256

Squeezing Level Monitoring 327681

GEO PLL PLL status Monitoring 256

Length control PLL PLL status Monitoring 256

Squeezing control PLL PLL status Monitoring 256

Total experiment Lock status Monitoring 256

1 The effective bandwidth is about 10 kHz due to the 4th order low-pass filter in the AA filter

electronics.

Table 4.1.: Overview over all input channels implemented in the digital control system.
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Subsystem Channel Type

SHG Lock Switch

Integrator 1 Switch

Integrator 2 Switch

Ramp (frequency: 0.5 Hz) Triangular

Squeezing resonator Lock Switch

Integrator 1 Switch

Integrator 2 Switch

Ramp (frequency: 1 Hz) Triangular

MC532 Lock Switch

Integrator 1 Switch

Integrator 2 Switch

Ramp (frequency: 0.2 Hz) Triangular

MC1064 Lock Switch

Integrator 1 Switch

Integrator 2 Switch

Ramp (frequency: 1 Hz) Triangular

Mach-Zehnder Lock Switch

Integrator 1 Switch

Integrator 2 Switch

HV Input Level Reset

Pump beam phase Lock Switch

Integrator 1 Switch

Integrator 2 Switch

HV Input Level Reset

Homodyne detector Lock Switch

Integrator 1 Switch

Integrator 2 Switch

HV Input Level Reset

Table 4.2.: Overview over all output channels implemented in the digital control system. The
bandwidth of every channel is 32768 Hz.
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4.4.2. Control automation

In a last step, the lock acquisition and re-acquisition of the entire experiment was

completely automated for permanent operation. The following sequence has been im-

plemented.

1. Main GEO 600 laser PLL status check

2. Squeezing angle control laser PLL status check

3. Squeezing resonator cavity length control laser PLL status check

4. Squeezing resonator cavity length stabilization

5. SHG cavity length stabilization

6. MC532 cavity length stabilization

7. Mach-Zehnder interferometer length stabilization

8. Stabilization of the squeezing ellipse angle

9. MC1064 cavity length stabilization

10. Stabilization of the homodyne detection angle

The goal of the chosen sequence was to maximize the duty cycle of the experiment. In the

case of lock-loss of a certain component, all subsystems depending on the responsible one

automatically unlocked. Thereafter the sequential locking scheme is executed starting

with the subsystem that had lost lock in the first place. Since the squeezing resonator

has demonstrated a particularly stable lock performance, it is situated at the beginning of

the sequence right after the PLL status check. The homodyne angle lock is, on the other

hand, the most sensitive subsystem. In contrast to the squeezing angle stabilization,

where a high dynamic range is available through a large PZT, the phase shifter device

of the homodyne loop offers only a small dynamic range. In the AEI cleanroom, this

led to an average operation time of 60 – 90 minutes, after which a re-lock was required.

At the GEO 600 detector site, on the other hand, much longer operation times were

achieved as described below. Please note that this loop in any case does not constrain the

performance of the GEO 600 squeezed-light laser since the homodyne detector constitutes

merely an additional diagnostic component which is disabled during operation in the GW

observatory. Therefore, no additional optimization was performed. The re-lock times of

the different subsystems are provided in Table 4.3. In the case of a total loss of lock, the

squeezing output is restored within 14 seconds. This value can, if desired, be reduced,

since up to now a soft re-lock with considerably long DC-level check times after the lock

of each subsystem is implemented. The digitally controlled system reached a very high

total duty cycle of > 99 % .

When GEO 600 is operated in science mode, the duty cycle is of the order of

90 % [Grote+10] with typical lock durations ranging from several hours up to 40 – 60

hours, being larger than for the squeezed-light laser. This difference should, however, not

significantly affect the duty cycle of a squeezed-input GEO 600. In the case of lock-loss

100



4.5. Long-term stability

Subsystem Lock (re-)acquisition time

Squeezing resonator 14 s

SHG 12 s

MC532 10 s

Mach-Zehnder 8 s

Squeezing phase lock 6 s

MC1064 4 s

Homodyne detection angle 2 s

Table 4.3.: Re-lock times of the different subsystems, defined by the order of the automated
locking sequence. These values were chosen for a soft re-lock and can, if necessary,
be reduced even further.

the squeezing beam input path will be automatically blocked, thereby ensuring that the

detector sensitivity is not degraded due to anti-squeezing input. Hence, the detection

sensitivity will be improved by squeezing most of the time and be equal to the classical

sensitivity when the squeezed-light laser is not locked. A lock-loss of GEO 600, on the

other hand, may also lead to a lock-loss of the squeezed-light source. Because the lock

acqusition time of the latter is with max. 15 seconds much shorter than the approximately

10 minutes of GEO 600, no additional performance degradation is expected.

4.5. Long-term stability

To validate the long-term performance of the experiment, the recorded homodyne de-

tector output can be analyzed employing an FFT script described in detail in Refe-

rence [Lastzka-PhD]. The upper part of Fig. 4.10 shows the long-term behaviour of

the squeezed-light source observed during characterization at the GEO 600 detector site.

The spectrogram provides the squeezing strength in dependence of the Fourier frequency

and time. The time resolution was chosen to be 15 min. Not shown in the plot is the

dark noise of the converter card which was more than 15 dB below the dark noise of the

homodyne amplifier electronics.

For this measurement, the main squeezing laser was phase-locked to the GEO 600 laser.

The squeezed-light source was operated with a 532 nm pump power of 35 mW, resulting

in a measured squeezing value of up to 9.3 dB. A histogram analysis of the measurement is

shown in the lower part of Fig. 4.10. Such operation conditions on average correspond to

a squeezing value of 10.5 dB available for the injection into GEO 600. The longest quasi-

continuous squeezing observation extended over 20 hours, the test run was terminated

by maintenance work at GEO 600. The longest total lock of the squeezed-light laser

extended over 8.5 hours, the overall duty cycle exceeded the value of 99.9 % .
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Figure 4.10.: Top: Squeezing spectrogram generated by the dump spectra.py Python script
developed by N. Lastzka [Lastzka-PhD]. The time resolution is 15 minutes, each
time bin was generated by the application of an FFT to a 60 sec long dataset. The
data were recorded continuously at the output of the homodyne detector through
a fast CDS channel. The duty cycle of the squeezed-light laser for this long-term
characterization exceeded 99.9%, merely 8 lock-losses were observed over 20 hours.
They are ”hidden” randomly in the spectrogram since the analyzed data segments
are equidistant and no particular starting time was selected. The longest continuous
lock lasted over 8.5 hours. The lower squeezing value around 6 kHz originates from
electronic pick-up at the GEO 600 detector site.
Bottom: Histogram analysis of the data shown above. The frequency of 3 kHz
was arbitrarily chosen from the frequency band where the observatory noise is
dominated by quantum shot noise.
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4.5.1. Future CDS work

Up to now, the goal of the digital experimental control was to substitute an operator

and thus to enable a stable long-term operation without the requirement for a manual

re-lock. Therefore, digital control was implemented only where it was crucially necessary

for locking loop automation. There are, however, other components and applications

that will benefit from a remote access in the near future:

• The nonlinear crystal temperature of SHG and squeezed-light source is controlled

via an entirely analog device. A monitor channel can be implemented to read out

the resistance value of a second NTC thermistor placed in the oven for monitoring

purposes. Furthermore, it is convenient to substitute the current temperature

controller by a fully digital loop. Since a high control bandwidth is not required, this

can be implemented without any obstacles. In the case of the squeezed-light source,

a digital crystal temperature control offers the major advantage of enabling to

maintain an optimal resonance condition for both polarizations, thereby maximizing

the degree of squeezing. As a monitor channel for the squeezing quality, a copy of

the GEO 600 h(t) signal can be employed.

• For long-term operations, an auto-alignment of the squeezed beam into the GEO 600

interferometer must be implemented, as is discussed in Section 5.5.

• In the case of lock-loss of the squeezing phase orientation, the quadrature that is

injected into the dark port is no longer well-defined. Such a noisy state will, with

a high probability, disturb the detector performance and in the worst case lead to

a lock-loss of the entire observatory. This can be avoided if the squeezing input

port is blocked automatically as soon as a lock-loss is detected. Additionally, data

quality flags can be created marking the time intervals when the system operated

without squeezed input as well as the times of lock-loss and lock re-acquisition with

a possibly disturbed performance.

• If desired, the diagnostic homodyne detector can be accessed remotely. Such a loop

would allow a direct monitoring of the squeezing strength at any time. It would,

however, require experimental modifications:

– The λ/2-waveplate leading the squeezed beam either to the homodyne detector

or to the output port must be replaced by a motorized one.

– A remote optimization of the homodyne visibility is required, therefore two

steering mirrors have to be replaced by mirrors attached to motorized mounts.

– Automatic control is also required for the shutter of the bright alignment

beam, the implementation of another automated shutter in the 532 nm pump

beam is furthermore advisable for safety reasons.

In the intermediate and far future, a fully digital control scheme of the entire experiment

may be implemented. It does, at the current stage, however not offer significant advan-

tages since an analog control scheme is already in place and functioning satisfactorily.
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4.6. Conclusion

Summarizing the descriptions given above, the GEO 600 squeezed-light laser constitutes

the prototype of a compact, transportable, fully automated and long-term stable audio-

frequency squeezed-light source. With a total size of only 1.5 m2 the setup is suitable for

experiments with restricted spatial conditions. The area may be reduced even further, if

necessary, e. g. applying even more compact setup procedures such as optical bonding of

the components or separating the laser and the squeezing stages.

The key feature of the reported squeezed-light source is the high long-term stability

along with a high squeezing value. At the nominal operation conditions for a long-term

employment in the GW observatory, 9 dB of squeezing, corresponding to 10.5 dB directed

to GEO 600, could be observed over up to 20 hours. The longest total lock of the entire

system extended over 8.5 hours. Due to the GEO - HF upgrade program and to the

works conducted at the detector site, no undisturbed extended long-term characterization

of the system could be performed. A permanent observatory operation with squeezing

input after the end of the GEO - HF upgrade will allow deducing the stability of the

generated squeezing degree on a timescale of weeks or months. The results reported in

this Chapter let us, however, expect that the performance of the squeezed-light laser will

not significantly affect the duty cycle of GEO 600, while more than 10 dB of squeezing

will be available for injection over most of the time. These results furthermore do, to the

best of our knowledge, set a new benchmark for the longest continuous operation of a

squeezed-light source along with the highest degree of squeezing reported at audio- and

subaudio frequencies.
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CHAPTER 5
Squeezing the GEO 600 quantum noise

GEO 600 is one of the world’s most sensitive optical measurement devices that during

the last decade has been permanently developed and improved to reach the current

performance. In the course of the GEO - HF upgrade [Willke+06, Lück+10], several

additional modifications have been or are still to be implemented. One of them was

the integration of squeezed light. In principle, the squeezing injection constitutes a

completely independent upgrade. However, some of the changes performed during the

GEO - HF upgrade (like the installation of an output mode-cleaner or the switch to a new

readout scheme) do have a beneficial effect on the squeezed-input GEO 600. Therefore,

this chapter presents a short description of the initial optical GEO 600 layout and of

the changes during the GEO - HF program that are related to the squeezed-light laser.

Thereupon, the integration of the squeezing into the GEO detection scheme is discussed

and the results achieved are presented.

5.1. GEO 600 in a nutshell

GEO 600 is a Michelson-type laser interferometer with a physical arm length of about

600 m each. A simplified schematic of the GEO 600 optical layout is shown in Fig. 5.1.

Detailed descriptions and discussions of subsystems, which are briefly summarized in

this Chapter, are provided by [Willke+02, Winkler+07, Grote+08, Grote+11] and the

references given therein. The input laser field at the wavelength of 1064 nm is generated

by an injection-locked laser-diode-pumped Nd:YAG master-slave system. Therein, the

800 mW output power of the NPRO master laser is amplified in a four-mirror slave ring

cavity to a value of maximal 12 W. The laser output is subsequently filtered by two

ring mode-cleaner resonators with suspended optics (having a finesse of 2700 and 1900,

respectively) in order to reduce the amount of spatial fluctuations and thereafter injected

into the interferometer. In contrast to the LIGO and Virgo detectors, GEO 600 does not
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Figure 5.1.: Simplified optical layout of GEO 600 without squeezed light injection. A detailed
discussion is given in the text. BS: beam splitter, FI: Faraday isolator, MPR:
power-recycling mirror, MSR: signal-recycling mirror, MFe/MFn: far interferometer
steering mirrors (east/north arm), MCe/MCn: near interferometer end mirrors
(east/north), OMC output mode-cleaner, PD h(t): photo detector for interferometer
signal measurement. Please note: The near mirrors in the drawing are shown
displaced in the horizontal plane for a clearer illustration.

possess Fabry-Perot arm cavities. The interferometer arms are, however, folded once in

the vertical plane to achieve an optical arm length of approximately 1200 m. Selected

interferometer parameters are summarized in Table 5.1. All main interferometer optics

are suspended from triple cascaded pendulums in a vacuum in the upper 10−9 mbar

region. The last, quasi-monolithic suspension stage furthermore minimizes thermal noise

contributions in the suspensions.

The operation point of GEO 600 is, like for the other GW detectors, close to the so-

called dark fringe, being the state where due to destructive interference at the beam

splitter the optical power at the signal port of the interferometer is minimal. Due to

energy conservation, almost the entire incident light is back-reflected by the interferome-

ter which acts as a compound mirror. This fact makes it possible to resonantly increase

the circulating optical power by placing a mirror between the input mode-cleaners and
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the interferometer beam splitter. This so-called power-recycling mirror (MPR) has a

power reflectivity of 99.91 % and leads to a power buildup factor of about 1000. The

increased power leads to an improved detector sensitivity at frequencies where shot noise

is the limiting factor. During the measurements reported in this thesis, the output of the

master-slave laser system was chosen such that the optical power at the beam splitter

was 2.7 kW. Another mirror with a power reflectivity of 98.1 % is employed to enhance

the gravitational wave signal output of the interferometer. In analogy to the MPR it is

called signal-recycling mirror (MSR).

It is worth noting that the length of the signal-recycling cavity (SRC) formed by the

interferometer end mirrors and the MSR can, during operations, be deliberately changed,

thereby introducing a detuning from carrier resonance. Such a detuning makes it possible

to shape the response function of the detector and thus to increase the sensitivity at

certain frequencies at the expense of deterioration in the remaining frequency band.

For the LSC S5 science run, a detuning value of 550 Hz was employed throughout the

run, leading to a GEO 600 peak sensitivity centered around this frequency [Grote+08]. A

detuned operation, however, also has several disadvantages [Hild+07]. With regard to the

squeezing input, it introduces a frequency dependence for the phase of the upper and lower

sidebands of the squeezed field, thereby leading to a frequency-dependent orientation of

the squeezing ellipse inside the interferometer. To allow a broadband sensitivity improve-

ment of a GW detector by squeezed light, an additional optical resonator that counter-

rotates the squeezing ellipse appropriately would be required. This so-called filter cavity

needs to have the same resonator parameters as the signal-recycled interferometer and

a detuning in the opposite direction. While an implementation of frequency-dependent

squeezed light is theoretically possible [Harms+03, Schnabel+04, Chelkowski+05], the

addition of a filter cavity to the optical GEO 600 layout is not feasible in the course

of the GEO - HF upgrade. Therefore, as well as to get rid of other disadvantages, the

squeezed-input GEO - HF is operated with a SRC tuned to resonance. The bandwidth of

the SRC is 220 Hz. A quantitative analysis of the frequency-dependent loss introduced to

the squeezed field by the SRC is provided in Section 5.3. In the course of the GEO - HF

upgrade, a reduction of the MSR reflectivity from 98.1 % down to 90 % is planned. As

discussed in [Lück+10], this will allow to increase the interferometer sensitivity at shot-

noise limited frequencies by up to a factor of 2, while the sensitivity at frequencies below

800 Hz (dominated by thermal noise) will be affected only marginally.

In the initial design, heterodyne readout was used for GEO 600. This means that

RF sidebands modulated onto the input laser beam at 14.9 MHz serve as local oscillator

for the gravitational wave signal at the h(t) photo detector [Schnupp88]. Experimental

experience has, however, shown a series of problems, which are discussed in detail

in [Hild+09], to arise from heterodyne readout. A more convenient alternative is offered

by the so-called DC-readout which is a special case of a homodyne readout scheme. Due

to a slight dark fringe offset, a fraction of the carrier light leaves the interferometer at the

dark port, is transmitted by the MSR and serves as a local oscillator. With regard to the
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5. Squeezing the GEO 600 quantum noise

squeezing, this scheme offers two main advantages. First, for tuned signal-recycling the

overall detected shot noise decreases and therefore the sensitivity at shot-noise-limited

frequencies increases by a factor between
√

1.5 and
√

2 [Hild+09]. Second, the squeezing

has to be generated only in the GW detection frequency band and not also at twice

the RF modulation frequency [Chickarmane+98]. This would be the case for heterodyne

readout in order to avoid an effective loss of 50 %.

In theory, only light in the TEM00 mode should exit the interferometer at the MSR.

However, thermal lensing effects at the beam splitter (resulting from the optical power

absorbed inside the substrate) as well as unequal radii of curvature of the interferometer

mirrors reduce the interferometer contrast below the theoretically achievable value of

unity. Though these effects are addressed and partially compensated for by dedicated

compensation systems, the field exiting the interferometer through the signal port con-

tains mainly higher-order spatial modes (with approximately 6 – 7 mW out of about

40 mW in the TEM00 mode). This light does not contain any signal information accessible

by the readout scheme, but may lead to an increased shot noise contribution. For DC-

readout, where a dominant TEM00 mode content is needed, additional modifications

to the used modulation indices and to the operation point of the interferometer are

required. To fully benefit from the new readout scheme, an output mode-cleaner (OMC)

was included into the optical layout during the GEO - HF upgrade [Degallaix+09]. It

is constructed as a four-mirror cavity with a finesse of about 150 and a FWHM of

ca. 3 MHz. The alignment of the interferometer output beam on the OMC is controlled

by an auto-alignment system. With regard to the squeezing, the OMC introduces the

mode-matching of the squeezed field to it as an additional degree of freedom and as a

possible loss mechanism. Another loss source arises from the intracavity loss in the OMC

as discussed in Section 5.3.

Finally, in the course of the GEO - HF upgrade the circulating light power inside the

interferometer will be increased by a factor of about 10. For this, an E-LIGO 35 W laser

will substitute the current 12 W system. Further modifications to interferometer optics

and the control system will also be necessary. Though an increased light power will not

directly affect the squeezed light input, it will additionally improve the interferometer

sensitivity at shot-noise limited frequencies. All modifications described above shall,

together with the implementation of squeezed light addressed in the following, yield a

sensitivity improvement by about one order of magnitude compared to the sensitivity

achieved during the S5 science run at kHz-frequencies.

5.2. Integration of the squeezed-light laser into the GEO 600

detection scheme

After characterization and commissioning in the AEI cleanroom, the squeezed-light laser

was transported to the GEO 600 detector site. One of the initial design criteria was
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BDO 1 - 3
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MCe
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squeezed light input

Figure 5.2.: View into the GEO 600 central building containing the main interferometer optics.
Centered in the front is the detection bench with the squeezed-light laser, shielded
by a double enclosure. The squeezed beam is guided over the detection bench into
the TCO-C vacuum chamber containing the OMC and the h(t) photo detector.

a compact setup. This requirement arose from spatial restrictions at the so-called

detection bench, an optical table located close to the vacuum chamber that contains

the squeezing input PBS, the OMC and the h(t) photo detector (this vacuum chamber

is denominated TCO-C in the following). With 113 cm x 135 cm being vacant, the

detection bench offered the sole space large enough to house the squeezed-light laser

available in the GEO 600 central building. Another requirement resulting from the limited

clearance inside the building was a desired transportability by manpower. Situated on

an aluminium breadboard and having a total weight of about 100 – 120 kg, the GEO 600

squeezed-light laser meets both requirements. The transport in a truck was carried out

in a custom-made flight case to protect the components from contamination. Merely the

control electronics have been disconnected for transport purposes, no optical dis- and

reassembly was performed. This made it possible to reach the same performance as at

the AEI in about 1 – 2 weeks which were required to create the infrastructure for the

control electronics. Figure 5.2 shows a view into the GEO 600 central building with the

squeezed-light laser located at the front on the detection bench.
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PD MM char
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Figure 5.3.: Sketch of the optical layout used to match the mode of the squeezed field to the
eigenmode of the output mode-cleaner (OMC). For clarity reasons, the auxiliary
photo detector PDMM char is drawn inside the vacuum chamber, though in reality it
is situated on the detection bench. Steering mirrors and auxiliary optics are omitted.
Details are provided in the text. The PZT-mounted mirrors as well as the Faraday
rotator are shown for completeness and were not relevant at this stage. The whole
optical layout of the GEO - HF detection stage (between MSR and PD h(t)) is shown
in Fig. 5.4.

To ‘connect’ the squeezed-light laser to GEO 600, the frequency of the main squeezing

laser was locked to the GEO 600 laser using a commercial Innolight PLL, which is

described in more detail in Section 3.2. A weak beam of a few mW was tapped off

from the GEO master laser output and guided through a fiber-coupled AOM and a

polarization-maintaining fiber to the detection bench. It was overlapped with a pickoff

beam from the main squeezing laser outside the breadboard enclosure. The intensity of

the two beams was about 3 mW each. To lock the lasers with a zero frequency offset, the

beam from GEO 600 was frequency-shifted by 80 MHz with the AOM and the PLL was

operated at exactly the same frequency offset.

As discussed in Chapter 1, the final squeezing injection scheme is realized through the

combination of a Faraday rotator (FR) and a polarizing beam splitter: The squeezed

field is reflected at the PBS between the OMC and the MSR, experiences a 45 degree

polarization rotation passing the FR and another 45 degree rotation after having been

reflected at the signal-recycling mirror of the interferometer. The total polarization

rotation of 90 degrees allows the squeezed beam to be transmitted by the PBS together

with the output beam of the interferometer (carrying the GW signal) and to arrive at
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Figure 5.4.: Sketch of the optical layout of the GEO - HF detection stage with squeezing input.
Auxiliary optics are omitted for clarity reasons. Details are provided in the text.

the OMC at what is in the following called the input port. From the output port it is

directly guided to the h(t) photo detector.

The mode-matching of the squeezed field to the eigenmode of the interferometer was

separated into two steps. Before injecting the squeezing into the SRC, a pre-mode-

matching procedure was performed to match the mode of the squeezed field to the OMC,

thereby already choosing the correct lens positions on the detection bench. For this, the

bright alignment beam (BAB), which apart from the power has the same properties as

the squeezed beam, was utilized. On the squeezing breadboard, the diagnostic homodyne

detector was bypassed and the alignment beam was guided onto the detection bench. The

setup employed is sketched in Fig. 5.3. The bright alignment beam was injected into the

OMC from the output port. The OMC length was scanned with the PZT-mounted end

mirror and the mode content monitored with the auxiliary photo detector PDMM char.

The optical path of the alignment beam was ensured to be of exactly the same length

as if the BAB was injected through the correct input port. A mode-matching of 98 % to

the OMC eigenmode was realized adapting the lens positions on the detection bench.

A sketch of the final optical layout of the GEO - HF detection stage with squeezing input is

shown in Fig. 5.4. Because of the high higher-order mode content of the beam exiting the

MSR, a quantification of the mode-matching of the interferometer beam to the OMC is

difficult. Measurements in different configurations (tuned DC and detuned heterodyne)

furthermore yielded different results for the MM quality. Therefore, after optimizing
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Figure 5.5.: Free spectral range of the GEO 600 output mode-cleaner, measuring the bright
alignment beam reflected off the signal-recycling mirror and transmitted through
the OMC. The mode-matching of the squeezed beam to the interferometer and to
the OMC was estimated to a value of 94.5 % from this measurement.

the lens positions inside TCO-C for the detuned heterodyne configuration, the bright

alignment beam was employed to validate the mode-matching of the squeezed beam to

the interferometer and subsequently to the OMC. GEO 600 was unlocked and one of

the arm mirrors deliberately misaligned for this measurement, so that MSR acted as a

normal mirror (R = 98.1 %) without the complication of an intra-cavity interferometer.

Just as during squeezed-input operations, the alignment beam was reflected by the MSR

and sent back to the OMC, where a length scan was used to evaluate the mode spectrum

employing directly the h(t) photo detector. While a coarse alignment was performed by

conventional steering mirrors, the fine-tuning was done with the two mirrors mounted

on three-axis PZT actuators as illustrated in Fig. 5.4. These mirrors are also used to

stabilize the phase of the squeezed field with respect to the interferometer as discussed

later. Figure 5.5 shows the mode content of the bright alignment beam power reflected

by MSR and transmitted by the OMC. The scanning frequency was 1 Hz. From this

measurement, the TEM00 mode content was calculated to about 94.5 %. Please note

that this value also includes the mode-matching from the squeezed-light source to the

OMC, so that the mode-matching from the interferometer to the OMC alone will be even

slightly better.

For the operation of a squeezed-input GEO 600, the bright alignment beam needs to be

blocked so as to not to introduce excess noise at the frequencies of interest. Furthermore,
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Figure 5.6.: Estimation of the losses experienced by the squeezed field, including the squeezed-
light laser itself as well as the contributions from the GEO - HF detection stage.

another control loop is required to stabilize the phase of the squeezed field with respect

to the field exiting the interferometer. For this purpose, the coherent control field is

employed again. The signal transmitted at BDO1, being the beat of the GEO 600 carrier

field with the CCF, is demodulated at the CCF offset frequency of 15.2168 MHz. In this

way, an error signal for the longitudinal phase lock is generated. It is processed digitally

by the CDS system and fed back to the 3-axis PZTs as well as to the suspended BDO2

steering mirror. Thus, the slow drifts are compensated by the suspended optic (having

a cut-off frequency of 1 Hz) allowing a high actuation range, while the control at higher

frequencies is done with the PZTs. The unity-gain frequency of the longitudinal phase

control loop was a few hundred Hz.

5.3. Loss estimation

From the measurements of squeezing and anti-squeezing levels discussed in Section 4.2, a

total optical loss on the squeezing breadboard of approximately 10.5% was calculated. In

this value, a loss at the homodyne detector (due to a non-perfect fringe visibility and due

to photo detector losses) of ca. 3.5% is already included. This loss can be subtracted if the

squeezed beam is directly guided into the GEO 600 signal port. Thus, a residual optical

loss value of 7 % is obtained, which means that up to 11.3 dB of squeezing is available at

the output of the squeezing breadboard for injection into GEO 600. Due to the residual
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5. Squeezing the GEO 600 quantum noise

optical loss this value is, however, connected to a much higher anti-squeezing of about

22 dB. Therefore, the squeezed-light source is operated at 35 mW pump power, which only

insignificantly reduces the squeezing output to about 10.6 dB, while the anti-squeezing

value is, with about 17 dB, much lower (Traces (a – b) in Fig. 5.8). In the following, the

optical losses experienced by the squeezed field are summarized:

• The total loss on the squeezer breadboard is, as stated above, about 7 %, taking

into account an estimated escape efficiency of 95 % and a propagation loss of 2 %.

The latter arises mainly from a Faraday isolator necessary to suppress light back-

reflected from the interferometer into the squeezed-light source. This light would

interfere with the squeezed field and mask squeezing at audio frequencies.

• During the implementation of squeezing, it was discovered that an additional

Faraday isolator was required to protect the interferometer from back-scattering as

well as the squeezed-light source from an interferometer bright beam. Without this

isolation, about 0.5µW of light are injected into the squeezing resonator (estimating

50 mW incident from MSR at the squeezing input PBS, a PBS extinction ratio of

1/100 and an isolation of 30 dB by the Faraday isolator on the squeezing bread-

board). The additional Faraday isolator adds 44 dB of isolation but contributes

4 % to the propagation loss. The total propagation loss on the detection bench is

therefore about 5 %. A discussion of how this and other losses will be reduced in

the future is presented in Section 5.5.

• The expected single-path propagation loss inside TCO-C, due to imperfect AR-

coatings and absorption, can be estimated to be about 3 %. The individual

contributions are illustrated in Fig. 5.6.

• 1 % is transmitted at BDO1 for error signal generation (This loss also contributes

twice due to the double-path of the squeezed beam).

• A frequency-dependent loss is introduced by the signal-recycling cavity. While

at frequencies outside the SRC linewidth it acts as a mirror, at low frequencies

the squeezed field is coupled into the interferometer and experiences the intra-

cavity loss. Figure 5.7 shows the expected power reflectivity of the SRC for the

squeezed field obtained from a finesse simulation [finesse]. For this, the finesse

file of GEO 600 published in [Hild-PhD] was used. Trace (b) additionally shows

the expected effect for a decreased MSR reflectivity, leading to an increased SRC

bandwidth of about 1.1 kHz and therefore to a higher loss at kHz-frequencies.

Selected interferometer parameters used in the simulation are given in Table 5.1.

• The best mode-matching to the signal-recycling cavity and to the output mode-

cleaner measured was about 94 %.

• From the design parameters, the optical loss for a single transmission through the

OMC was estimated to be below 1 %. During characterization, however, a much

higher value of about 10 % was measured. This loss could not be reduced further
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Figure 5.7.: finesse simulation of the signal-recycling cavity’s frequency-dependent power reflec-
tivity with the old (blue trace) and new (red trace) MSR. The parameters used for
the simulation are provided in Table 5.1.

parameter value

length north arm 1196.72 m

length east arm 1196.80 m

power at BS 2.7 kW

loss at BS AR-coating 60 ppm

scattering loss per optical surface 100 ppm

reflectivity of MPR 0.9991

reflectivity of old MSR 0.9805

reflectivity of new MSR 0.90

beam waist at MPR and MSR 8.764 x 10−3 m

SRC BW with old MSR ca. 220 Hz

SRC BW with new MSR ca. 1100 Hz

Table 5.1.: Parameters of the GEO 600 optics and layout employed for the finesse simulation of
the frequency-dependent loss introduced to the squeezed field by the signal-recycling
cavity, as well as selected interferometer parameters.
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Figure 5.8.: Simulated squeezing and anti-squeezing values prior to and after the injection in
GEO 600. A value of 35 mW was assumed for the 532 nm pump power. Traces
(a – b): measuring at the diagnostic homodyne detector. Traces (c – d): squeezing
and anti-squeezing available at the output of the squeezer breadboard, corrected for
the homodyne detector losses. Traces (e – f): frequency-dependent squeezing and
anti-squeezing values at the h(t) photo detector with the old MSR. Traces (g – h):
same with the new MSR.

by cleaning and probably arises from a combination of imperfect optical surfaces

and dielectric coatings deviating from the design specifications.

• Before the GEO - HF upgrade, a Perkin Elmer C30642 photo diode was used for

h(t) signal detection. It was substituted by a custom-made high-efficiency photo

diode, as already used in the diagnostic homodyne detector. The diameter of the

active area is 3 mm. The quantum efficiency was measured to be 8 % higher than

for the Perkin Elmer PD and is expected to be similar to the 500µm diodes used

in previous experiments, namely about 99 %.

• The dark noise clearance at shot-noise-limited frequencies is approximately a factor

of 5 – 6.

The total loss for the squeezing, being a product of all contributions mentioned above, is

therefore estimated to a value of 32 % at kHz-frequencies and up to 50 % at frequencies

much lower than the SRC linewidth. With 220 Hz the latter is, however, already in

the frequency range where the interferometer sensitivity is no longer limited by quantum
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noise. Figure 5.8 shows the expected squeezing and anti-squeezing values for the squeezed-

light laser operated with a pump power of 35 mW. Traces (a – b) refer to the squeezing

and anti-squeezing measured at the diagnostic homodyne detector. Traces (c – d) correct

those values for the homodyne detector loss and therefore show the squeezing or anti-

squeezing available for injection at the squeezing breadboard output. Traces (e – f) finally

give an estimation of the amount of squeezing or anti-squeezing present at the h(t) photo

detector. Trace (g) illustrates the effect of the MSR exchange, leading to an increased

SRC linewidth (see discussion in Section 5.5).

5.4. Non-classically improved GEO 600 sensitivity

The main result, a non-classical improvement of the GEO 600 sensitivity with squeezed

light injection, is presented in Fig. 5.9. Therein, the left y-axis shows the observatory

noise given in units of the GW amplitude, while on the right y-axis the noise is calibrated

to the test mass displacement. Trace (a) shows the ‘classical’ observatory noise, recorded

with 2.7 kW optical power at the BS and with the old signal-recycling mirror. In trace

(b), about 10.5 dB of squeezing is injected into the signal port of GEO 600 (this value

refers to the output of the squeezed-light laser inferred from the calculations given above

in Section 5.3). The squeezed-light laser was operated at 35 mW pump power. In the

frequency range where the observatory sensitivity is limited by shot noise (above 700 Hz),

a broadband noise reduction by up to 3.5 dB was achieved. At 3 kHz (being a frequency

arbitrarily chosen from a range where shot noise is the dominant limiting contribution

and no calibration lines are present), the quantum noise was reduced from 1.0 × 10−21

Hz−1/2 down to 6.7× 10−22 Hz−1/2. This corresponds to a factor 1.53 ≈ 3.4 increase in

detection rate for isotropically distributed GW sources in that frequency band. Due to

the application of squeezed light, GEO 600 has achieved its best ever sensitivity since the

implementation of the DC readout scheme. As expected, at Fourier frequencies below

700 Hz, squeezed light does neither reduce nor increase the current displacement noise

level.

The calculated loss value of 32 % derived above does not include the dark noise

contribution from the h(t) photo detector electronics. Subtracting this contribution

from the measured data shown in Fig. 5.9 leads to an inferred squeezed light sensitivity

enhancement by about 3.7 dB. This value is about 1 dB lower than the maximal squeezing

contribution expected from the known loss parameters. Such a deviation would corre-

spond to additional 10 % loss not considered in Section 5.3. The discussion therein does,

however, neither account for phase noise nor for a misalignment of the squeezed beam

with respect to the interferometer. At the current implementation stage, both effects are,

however, expected to be present. An auto-alignment procedure of the squeezed field to

the interferometer is yet to be implemented. Without this control loop, the suspended

interferometer optics, though locked with respect to each other, are free swinging with
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Figure 5.9.: Non-classical reduction of the GEO 600 instrumental noise using squeezed vacuum
states of light, calibrated to GW amplitude (left y-axis) and to differential mirror
displacement (right y-axis). Trace (a) shows the observatory noise spectral density
without the injection of squeezed light. At frequencies above 700 Hz, the noise is
dominated by quantum shot-noise. An injection of squeezed vacuum states into
the interferometer leads to a broadband noise reduction of up to 3.5 dB in the
shot-noise limited frequency band, as shown in trace (b). The spectral features
are caused by excited violin modes of the suspensions (600 – 700Hz and harmonics,
blue triangles) as well as by calibration (160 Hz – 2.5 kHz, yellow circles) and OMC
alignment control (250 – 550 Hz, green squares) lines. Both traces were averaged over
4 minutes. The resolution bandwidth is 1 Hz for frequencies below 1 kHz, and 2 Hz
at higher frequencies. Published in [Abadie+11].

respect to the squeezed beam injection path. This introduces a time-dependent, unknown

effective loss for the squeezing injection. Additionally, phase jitter, leading to a degrading

squeezing level as illustrated in Fig. 4.6, may arise from the longitudinal phase lock of the

squeezed field to the interferometer output as well as from the PLL to the GEO 600 laser.

Furthermore, regarding the optical loss contributions, the mode-matching quality of the

squeezed field to the interferometer and to the OMC remains the most speculative factor,

known at best with a certainty of several percent. It is therefore probably a contribution

from all the discussed effects that impedes the observation of a higher squeezing value
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that could be expected from a consideration basing merely on the sum of all known

optical losses.

Up to now, the squeezing enhancement has been successfully operated for several

consecutive hours. The long-term behaviour of the squeezed-light source has been

addressed in detail in Section 4.5. In a first characterization, up to 9.3 dB were observed

at the homodyne detector for up to 20 hours, corresponding to an injection value of about

10.5 dB. During this measurement, the longest lock lasted for 8.5 hours, the duty cycle

was higher than 99.9 %. Subsequent observations during the 2011 joint GEO 600 – Virgo

science run, which are to be published elsewhere, included much longer lock durations of

several tens of hours. Therefore, the 8.5 hours reported above may in good conscience

be addressed rather as a typical behaviour than as an exception. When GEO 600 is

operated in science mode, its duty cycle is in the order of 90 % [Grote+10] with typical

lock durations extending from several hours up to 40 – 60 hours, being larger than for

the squeezed-light laser. This difference should, however, not significantly affect the duty

cycle of a squeezed-input GEO 600. In case of a lock-loss of the squeezed-light laser, a

shutter automatically blocks the squeezing beam input path, thereby ensuring that the

detector sensitivity is not degraded due to anti-squeezing input. Hence, the detection

sensitivity will be improved by squeezing most of the time and be equal to the classical

sensitivity when the squeezed-light laser is unlocked. A lock-loss of GEO 600, on the

other hand, may also lead to a lock-loss of the squeezed-light source. Because the lock

acqusition time of the latter is with max. 15 seconds much shorter than the approximately

10 minutes of GEO 600, no additional performance degradation is expected.

5.5. Future work

The long-term goal to be achieved with squeezed light injection is a desired reduction of

the observatory noise by 6 dB at quantum-noise limited frequencies and a permanent

squeezing contribution during the operation of GEO - HF. After the first successful

enhancement of the observatory sensitivity by squeezed light, the achievement of both

intents seems to be feasible in the near future. Regarding the squeezing factor, the

following loss sources can be addressed:

• The optical loss during beam propagation on the detection bench is mainly due to

the currently used Faraday isolator with a suboptimal performance in this respect

as well as to polarization optics. The use of a high-throughput Faraday rotator

identical to the one already used in the squeezed-light laser setup in combination

with hand-picked polarizing beam splitters will allow a reduction of the propagation

loss. Apart from the Faraday isolator, merely super-polished optics with a high-

performance AR-coating (as used on the squeezer breadboard) will be used, thereby

reducing loss due to surface scattering and to residual AR-coating reflection. An

overall loss value of 2 % seems feasible for the detection bench propagation loss.
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Figure 5.10.: Simulated squeezing and anti-squeezing values prior to and after the injection in
GEO 600. A value of 35 mW was assumed for the 532 nm pump power. Traces
(a – b): squeezing and anti-squeezing available at the output of the squeezing
breadboard, corrected for the homodyne detector losses. Traces (c – d): frequency-
dependent squeezing and anti-squeezing values at the h(t) photo detector with the
old MSR and the current optical losses as discussed in Section 5.3. Traces (e – f):
same, taking into account the new MSR and the optical loss reduction feasible in
the near future.

• Lenses with a super-polished surface and a low residual reflection at the AR-coating

(as already used in the squeezed-light laser setup) will be used inside TCO-C.

Furthermore, the residual transmission at BDO1 can be reduced to a value of 0.5 %,

thereby lowering the effective loss for the squeezed field reflected twice at this optics

to 1 %.

• Up to now, the largest single loss contribution arises from the transmission through

the output mode-cleaner. In the future, the OMC optics will be exchanged. From

the specifications of the single optics, the total transmission loss (mainly due to

coating and surface imperfections and to a 100 ppm residual transmission of one of

the mirrors for monitoring purposes) was estimated to be below 1 %. This value is

therefore assumed as an upper limit in this paragraph.

• The exchange of the signal-recycling mirror will slightly increase the loss at kHz-

frequencies as can be seen from Fig. 5.7 (g). While at frequencies below 500 Hz the

effective SRC loss decreases and the squeezing value hence increases, at frequencies

between 500 Hz and 7 kHz the expected squeezing value slightly degrades by up to
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0.2 dB. This effect is not significant compared with the sensitivity improvement

of GEO 600 expected to arise from the exchange of the signal-recycling mirror

discussed above.

• Finally, the mode-matching of the squeezed field to the interferometer and to the

output mode-cleaner can be improved further. At this point, a precise estimation of

the achievable value seems, however, rather difficult. While no theoretical reason

that would impede a perfect mode-matching exists, the experimental realization

may require several iterations, so that at a certain point a trade-off between the

work load and the achievable effect will have to be made. Nevertheless, a value of

98 % seems quite realistic and an even better value might be achievable.

Modifying the loss discussion from Section 5.3 for these considerations yields a total

residual loss of about 19 % at kHz-frequencies. Therewith, the possible squeezing en-

hancement of the observatory noise is almost 7 dB at shot-noise limited frequencies as

illustrated in Fig. 5.10. As far as the optical loss is concerned, an observatory noise

reduction by 6 dB therefore seems a realistic goal for a squeezing-enhanced GEO - HF.

An important issue to be addressed is the automatic alignment of the squeezed beam

to the interferometer. To generate error signals, the beam transmitted through BDO1

can be employed. The error signal will be processed digitally by the CDS system

with an appropriate weighting matrix and fed back to the three-axis PZT-actuators,

thereby allowing an alignment of the spatial x and y (tip/tilt) degrees of freedom. The

z component will still be used for the fast part of the longitudinal phase lock. The

generation of auto-alignment error signals is currently under investigation.

Due to the GEO - HF upgrade program and to the works conducted at the detector site,

no undisturbed extended long-term characterization of the system could be performed.

A permanent observatory operation with squeezing input after the end of the GEO - HF

upgrade will allow deducing the stability of the generated squeezing on a timescale of

weeks or months.
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CHAPTER 6
Summary and outlook

The measurement sensitivity of the first generation of gravitational wave observatories

is limited by quantum shot noise at frequencies above several hundred Hertz. In future

observatory generations, quantum noise may even become the limiting factor over the

entire frequency band observed. Since the signal-to-noise ratio of the observatories

depends on the optical powers employed in the interferometers, a power increase is a

possible solution to improve the SNR. This will, however, also increase the thermal load

to the interferometer optics, so that finally an upper limit for the optical light power

employable in future GW observatory generations will be reached [ET].

In the last decade, a vast amount of proof-of-principle experiments has been performed

to demonstrate that squeezed light constitutes an appropriate alternative method to

improve the SNR of GW observatories. The purpose of this thesis was, basing on those

insights, to construct a squeezed-light laser for the GW observatory GEO 600.

The optical layout of the device was discussed in Chapter 3 along with the implemented

control schemes. The designated permanent emloyment in GEO 600 imposed on the

squeezed-light laser the demand of long-term stability: the generated degree of squeezing

had to remain stable on timescales of hours to days in order to ensure a non-varying

observatory sensitivity. During the characterization of the long-term performance of the

system, the stability of the squeezing degree was found to depend on the power stability

of the 532 nm pump beam for the coherent control scheme employed. A description of the

coupling mechanism was derived. Finally, the extension of the coherent control scheme

by a pump power stabilization was discussed.

In Chapter 4, a characterization of the squeezed-light laser was presented. The generated

squeezing spectrum was flat (white) over the entire frequency band of Earth-bound GW

observatories extending from 10 Hz to 10 kHz. With a noise reduction of up to 9.6 dB

below the vacuum noise level, a new benchmark was set. Corrected for detection losses,

this value corresponds to more than 11 dB of squeezing available for injection into the
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dark port of GEO 600. The longest characterization measurements lasted for 20 h with

an overall duty cycle of more than 99 %.

The first operation of a GW observatory ‘beyond the quantum limit’ was finally presented

in Chapter 5. In the frequency range where the GEO 600 observatory sensitivity is limited

by shot noise (above 700 Hz), a broadband noise reduction of up to 3.5 dB, corresponding

to a factor of about 1.5, was achieved. At 3 kHz, the quantum noise was reduced from

1.0×10−21 Hz−1/2 to 6.7×10−22 Hz−1/2. This corresponds to a factor 1.53 ≈ 3.4 increase

in detection rate for isotropically distributed GW sources in that frequency band. Due to

the application of squeezed light, GEO 600 has achieved its best ever sensitivity since the

implementation of the DC readout scheme. As expected, at Fourier frequencies below

700 Hz, squeezed light did neither reduce nor increase the current displacement noise level.

Finally, the present sources of optical loss – which impedes an even stronger sensitivity

improvement by squeezed light – were discussed. An analysis of possible loss reduction

shows that an improvement of the GEO 600 sensitivity by a factor of two seems feasible in

the near future. This effect is equivalent to an increase of the circulating optical power by

a factor of four. Since squeezed light injection is completely independent from the optical

power employed in the interferometer, it constitutes a valuable alternative or additional

technique to enhance the observatory sensitivity at detection frequencies where quantum

noise is the limiting factor.

6.1. A glimpse into the future

The aim of the first and second generation of Earth-bound GW interferometers was and

still remains a first direct observation of gravitational waves. Based on the current models

of GW sources along with the design sensitivities of Advanced LIGO and Advanced

Virgo, a first observation can be considered to be likely in the course of the next five to

ten years [ET]. For most of the events, the expected signal-to-noise ratios are, however,

too low for precise astrophysical studies. A sensitivity improvement of about one order

of magnitude over the entire GW detection band will be required to detect events on a

daily basis with a SNR sufficiently high to extract astrophysical information and hence to

usher in the era of routine gravitational wave astronomy. On (or much more below) the

ground, this goal is aimed at by the Einstein Telescope (ET), a European project for a

3rd generation GW observatory. The (recently completed) ET design study among other

topics investigated the question how a sensitivity improvement by a factor of ten with

respect to the 2nd detector generation may be realized. One of the techniques included

in the final design proposal as necessary to achieve this ambitious goal is squeezed light;

a reduction of the observatory quantum noise by 10 dB is envisioned. Thereby, an upper

limit of 10 % is set for the total optical loss which may be experienced by the squeezed

field.
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Such a restriction constitutes a challenge for the design of the GW observatory as

well as for the squeezed-light laser to be employed. On the observatory side, additional

optical loss will be introduced by the filter cavities required for a broadband sensitivity

improvement by squeezed light. The resulting restrictions have been addressed in detail

in Ref. [ET]. The calculations presented therein used conservative parameters for the

filter-cavity specifications and found the science goal to be feasible in case of a total

optical loss (besides the contribution by the filter cavities) of 9 %. This value, which

accounts for loss inside the squeezed-light laser as well as for injection loss, is more than

a factor of two below the value predicted for the near future in GEO - HF in Section 5.5.

Though being ambitious, the ET requirements seem feasible considering the present

state of research in the field of non-classical light. Currently, the highest squeezing

degree reported is 12.7 dB at a wavelength of 1064 nm [Eberle+10] and 12.3 dB at the

wavelength of 1550 nm [Mehmet+11] that is proposed as operation wavelength for the

Einstein Telescope.

Another factor that should not be neglected is the additional loss introduced by the

Faraday rotator(s) in the squeezing injection path. This optical isolation is necessary to

protect the squeezed-light source from light coming out of the interferometer as well as to

protect the interferometer from the same light back-scattered by the squeezing resonator.

The required degree of isolation depends on the observatory sensitivity as well as on

the microscopic movement of the back-scattering surface, namely the coupling mirror

of the squeezing resonator. Since every additional Faraday isolator employed currently

adds 1 – 2 % of optical loss, an alternative approach may be given by suspending the

squeezing resonator in one of the interferometer’s vacuum chambers. This would lead to

a reduction of the acoustic and to some extent also of the seismic excitations and thereby

possibly reduce the amount of back-scattered light.

Summing up, the results reported in this thesis confirmed the feasibility of a GW

observatory with a non-classically enhanced sensitivity. Considering current results in the

field of non-classical light, squeezing seems to be well on its way to become a ‘standard’

technique for the 3rd and possibly even already for the 2nd generation of gravitational

wave observatories.
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APPENDIX A
Second-harmonic generation using

PPKTP

Up to this work, MgO:LiNbO3 was usually employed as nonlinear medium for second-

harmonic-generation in the experiments conducted at the AEI. A crystal with a higher

second-order nonlinear susceptibility is potassium tytanyl phosphate (KTP) [Goda-PhD].

Therefore, initially a periodically poled KTP (PPKTP) crystal was used in the GEO 600

squeezed-light laser for second-harmonic generation. The very promising results shown

in Fig. A.1 have demonstrated that an SHG conversion efficiency of greater than 90 %

is generally feasible with PPKTP crystals. The measurement was done with an Ophir

NOVA II with a 3A thermal power sensor, a maximal deviation of ± 3% was specified

by the manufacturer. Please note that the results shown in Fig. A.1 are corrected for a

non-perfect mode-matching of the 1064 nm beam to the SHG cavity, the mode-matching

quality was measured to 95 % . The highest directly measured conversion efficiency was

88± 6%, corresponding to a corrected value of 92.5± 6% .

While of no primary interest for the current setup, this result is very interesting

for future low-frequency squeezed-light lasers: Since the squeezed-light source (likewise

employing PPKTP, see Section 3.5) required only 45 mW of 532 nm pump power to

generate 9.5 dB of squeezing, a 2 W Mephisto laser is no longer required in future setups.

The 200 mW output power of an auxiliary laser are completely sufficient to generate

a sufficiently high second-harmonic power, to drive the PLLs and to provide a local

oscillator beam for homodyne detection. This, again, results in a significant cost reduction

for future low-frequency squeezed-light lasers for GW detectors.

Unfortunately, the PPKTP crystal employed in the SHG showed an intrinsic defect that

grew larger with time and finally required a replacement of the crystal. The precise nature

of the defect is currently unknown. A visual inspection has shown a milky structure

inside the crystal that does not seem to coincide with grey tracking effects to which
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Figure A.1.: Conversion efficiency of the PPKTP-SHG as a function of 1064 nm pump power.
The results shown are corrected for a mode-mismatch of the 1064 nm beam.

PPKTP is known to be sensitive (see [Meier-PhD]). Nevertheless, a long-term analysis

in a separate experiment is required to prove that PPKTP crystals are suitable for the

use in SHG at 1064 nm before this material can be considered in the planning of future

long-term experiments. For the work presented here, the defect crystal was replaced by

a ‘conventional’ MgO:LiNbO3 crystal, as described in Section 3.3.
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APPENDIX B
Optical layout of the squeezed-light laser

Figure B.1 shows the complete optical layout of the squeezed-light laser, including

auxiliary optics. A detailed discussion of the setup is provided in Chapter 3, the phase-

locked loop to the main GEO 600 laser is discussed in Section 5.2. For an explanation of

the pictograms used in Fig. B.1, please see the Glossary. The size of the pictograms is

not scaled to the physical size of the components used.
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