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ABSTRACT

Incoherent superposition of gravitational waves from a large number of unresolved sources

gives rise to the stochastic gravitational-wave background. This background could be of

cosmological origin, produced by early universe events such as inflation. It could also be

of astrophysical origin, produced by a large number of astrophysical objects such as binary

neutron stars and black holes. Detection of the stochastic gravitational wave background

would therefore provide information both about the state of the universe at its earliest

moments and about its evolution at later times. Long gravitational-wave transients are

gravitational waves whose times scales range from minutes to weeks. Such long gravitational-

wave transients are predicted by a variety of astrophysical models, including stellar core

collapse and accretion onto newly formed proto-neutron stars and black holes. Detection

of long transient gravitational waves would provide clues about various dynamical process

occurring in these astrophysical objects. In this thesis, we describe methods to search

for stochastic and long transient gravitational waves in interferometric gravitational-wave

detector data and present results obtained by using the Laser Interferometer Gravitational-

wave Observatory (LIGO) data acquired during its fifth science run.
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2.12 The above figure shows the ŵ − n̂t plane for r = 0.1. The regions excluded

by the BBN [47], LIGO, and pulsar [126] bounds are above the corresponding

curves (the inset shows a zoom-in on the central part of the figure). The

BBN curve was calculated in [32]. We note that the CMB bound [153] almost

exactly overlaps with the BBN bound. Also shown is the expected reach of

Advanced LIGO [71]. Figure published in [42]. . . . . . . . . . . . . . . . . . . 50

2.13 The above figure shows how different experiments probe the ε−Gµ plane for a

typical value of p = 10−3 [167] (p is expected to be in the range 10−4−1). The

excluded regions (always to the right of the corresponding curves) correspond

to the S4 LIGO result [7], current result, BBN bound [18, 47], CMB bound

[153], and the pulsar limit [126]. In particular, the bound presented here

excludes a new region in this plane (7 × 10−9 < Gµ < 1.5 × 10−7 and ε <

8 × 10−11), which is not accessible to any of the other measurements. The

entire plane shown here will be accessible to Advanced LIGO [71] SGWB

search. Figure published in [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . 51



List of Figures xiii

2.14 The above figure shows the f1− µ plane for a representative value of fs = 30

Hz in Pre-Big-Bang models. Excluded regions corresponding to the S4 result

and to the result presented here are shaded. The regions excluded by the

BBN [18, 47] and the CMB [153] bounds are above the corresponding curves.

The expected reaches of the Advanced LIGO [71] and of the Planck satellite

[153] are also shown. Figure published in [42]. . . . . . . . . . . . . . . . . . . 52

2.15 Coherence Γ12 between H1 and H2 computed in the frequency band 80–160 Hz

using all of the S5 data, for three different frequency resolutions: 1 mHz,

10 mHz, and 100 mHz (top-to-bottom). Plots on the left show Γ12 as a

function of frequency while plots on the right show distribution of Γ12. The

distribution of Γ12 is expected to follow an exponential distribution for Gaus-

sian noise. Here ’accepted’ refers to the frequencies that were used for further

analyses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.16 Left panel: The inverse Fourier transform of Ω̂0(f) for an SNRΩ0 ≈ 15 soft-

ware signal injection in the H1-H2 data with Ω0 = 1.10 × 10−5. Note that

the signal decoheres on a time-scale of order 10 ms, which justifies the ±1 s

time-shifts used to identify noise correlations in the time-shift method. Right

panel: Recovered amplitudes for 10 software injection trials, along with ±σΩ̂0

error bars. The injected signal, denoted by the dashed line, in each case was

Ω0 = 1.10× 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.17 Plots of Ω̂0(f) and Ω̂0,PEM(f) (left), and the inverse Fourier transform of

Ω̂0(f) (right) for the 80–160 Hz band after various stages of noise removal

were applied to the data. The four rows correspond to four different stages

of cleaning defined in Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures xiv

2.18 The above figure shows upper limits from current/past SGWB analyses, as

well as indirect limits from Big Bang Nucleosynthesis (BBN), and projected

limits using Advanced LIGO. Indirect limits from BBN apply to SGWBs

present in the early universe at the time of BBN, but not to SGWBs of

astrophysical origin created more recently. The α = 3 bound on astrophysical

SGWB presented here improves on the previous best limit by a factor of

>350x. It complements the indirect bound from the BBN, which is only

sensitive to cosmological SGWBs from the early universe, as well as direct

α = 0 measurements using lower-frequency observation bands [14]. . . . . . . 63

3.1 An example ft-map of SNR(t; f, Ω̂) using simulated data with with T = 4 sec

and δF = 0.25 Hz resolution (see (3.10)). . . . . . . . . . . . . . . . . . . . . 70

3.2 Distribution of SNR(t; f, Ω̂) for the case of 4 s × 0.25 Hz size pixels with

Monte Carlo data. For this plot we used 2 neighboring segments to calculate

σ̂Y (t; f, Ω̂). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Histogram of SNR(t; f, Ω̂) using 52 s× 0.25 Hz pixels comparing S5 data with

an unphysical time-shift (blue) to Monte Carlo data (red) and a normal dis-

tribution with mean = 0 and σ = 1 (black). Here we used 2 neighboring

segments to calculate σ̂Y (t; f, Ω̂). Figure taken from [159]. . . . . . . . . . . . 80

3.4 GW strain amplitude spectrum due to PNS convection in an axisymmetric

PNS model at a typical galactic distance of 10 kpc [124]. This plot was gen-

erated using the data simulated in [124] available at [123]. Figure published

in [159]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



List of Figures xv

3.5 PNS signal injection and recovery using with the box-search algorithm. Top-
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Chapter 1

Gravitational waves: Sources and
Detectors

In 1905, the year now called Annus Mirabilis, Albert Einstein published four seminal papers

that laid the foundation for a new era in modern physics [61]. In one of the papers on

electrodynamics of moving bodies, widely known as the special theory of relativity, he showed

that space and time are not distinct but are intermingled as spacetime and there is no

universal reference frame in which space and time are absolute. This axiomatic theory of

relativity was based on two assumptions which were that, (i) the speed of light in vacuum is

constant and is the maximum speed limit; and (ii) physical laws are same in every inertial

reference frame. The special theory of relativity made many new predictions and all of

them were confirmed by experiments. Hence it became necessary for other physical theories

to comply with the special theory of relativity. Newton’s law of gravitation, then accepted

theory of gravity, relied on a universal time and required action-at-a-distance (i.e., force with

infinite speed) and hence was in contradiction with the special theory of relativity. Newton’s

theory was not completely wrong, since it was able to make observable predictions, only that

it seemed to be an approximate theory of a more fundamental one.

After eleven years of struggle to generalize special relativity to non-inertial frames in-

volving gravity, in 1916 Einstein formulated a new theory called general relativity which,

under certain conditions, reduced to Newton’s theory of gravity as expected. The new theory

was able to explain various existing observations such as perihelion precession of Mercury

and also made new predictions such as gravitational redshift of light that were confirmed

1
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later [116]. Today, after nearly a century of observations, it still stands unchallenged and is

considered one of the pillars of modern physics.

In general relativity, gravity manifests as curvature of spacetime and gravitational force

is seen as the response of objects to this curvature. This description is well captured by J.

Wheeler’s phrase [116]

“Mass tells spacetime how to curve, and spacetime tells mass how to move.”

Similar to the electromagnetic field, this ‘field’ of curvature could be static or time-varying.

The static curvature is equivalent to the well-known Newtonian gravity while the time-

varying curvature with finite propagation speed, equal to the speed of light, was a new

prediction of general relativity. These perturbations of spacetime can carry energy from one

place to an other and are called gravitational waves (GWs).

Similar to other types of waves, the frequency and amplitude of GWs are highly depen-

dent on their source characteristics. In general, the larger the mass the higher the amplitude

and larger the size the smaller the frequency (see Eqs. (1.18) and (1.19)). More so than other

forms of radiations such as photons or neutrinos, GWs interact very weakly with matter and

hence can travel long distances without scattering. This makes GWs a strong candidate

for studying objects, such as black holes, that are far away and/or difficult to detect with

other radiations. In this chapter, we briefly revisit general relativity as it applies to GWs,

examine GW signals from some of the astrophysical and cosmological sources, and assess

the prospects of their detection using current and future generations of GW detectors.

1.1 Gravitational waves in general relativity

In this section we show how the frame work of general relativity predicts the existence of

GWs. The derivation given here follows a similar line of arguments as most text books on

this subject [116, 143]. The Einstein field equation that connects spacetime geometry to

mass-energy content is

Gµν =
8πG

c4
Tµν , (1.1)
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where Gµν is the Einstein tensor, Tµν is the stress-energy tensor, G is Newton’s constant,

and c is speed of light. Here the Greek indices µ and ν run from 0 to 3, corresponding to

one time index (t) and three spacial indices (x, y, z). We use this convention for all Greek

indices throughout the chapter, unless stated otherwise. The Einstein tensor describes the

curvature of space-time and the stress-energy tensor represents the mass-energy content that

produces the curvature (analogous to the source term in electromagnetism). The constant

prefactor of 8πG
c4

is chosen such that Eq. (1.1) reduces to Newton’s law of gravitation when

the gravitational field is weak and the velocities involved are much less than the speed of

light.

In special relativity, the infinitesimal “distance” dτ , also called proper distance, between

two events separated by dxµ is given by

dτ2 = dxµηµνdx
ν , (1.2)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric tensor. In Eq. (1.2), we sum over

indices µ and ν (any repeated index means summing over it). In general relativity, where

the spacetime metric tensor is represented by gµν which need not be as simple as ηµν , we

replace ηµν in Eq (1.2) with gµν . Einstein tensor Gµν is a function of the metric tensor gµν

and given by,

Gµν = Rµν −
1

2
R gµν , (1.3)

where

R = gµνRµν . (1.4)

Here Rµν is the Ricci tensor and R is the Ricci scalar. Both Rµν and R are functions of gµν

and are used to simplify the complex form of Gµν and Eq. (1.1).

1.1.1 Weak field limit

Since we are interested in the wave behavior of the perturbations, let’s look at the Einstein

equation in a small amplitude regime i.e., in weak field limit. In the weak field limit, the
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metric tensor can be written as

gµν = ηµν + hµν , (1.5)

where ηµν is the flat Minkowski metric and |hµν | � 1. In this limit, to first order in hµν ,

the Ricci tensor Rµν is

Rµν =
1

2

(
hαµ,να + hαν,µα − hµν,α,α − ηαβhαβ,µν

)
. (1.6)

In the above equation [,] represents partial derivative i.e., Aµν,α = ∂αAµν . Using Eqs. (1.3), (1.6)

and a modified hµν (trace-inversed hµν) given by

h̄µν = hµν −
1

2
ηµνh

γ
γ , (1.7)

the Einstein tensor can be written as,

Gµν = −1

2

(
h̄µν,α

,α + ηµν h̄αβ
,αβ − h̄µα,ν ,α − h̄να,µ,α

)
. (1.8)

Applying the Lorentz gauge condition, provided by the invariant requirement on xα →

xα + ξα(xβ),

h̄µα,α = 0, (1.9)

the Einstein tensor becomes

Gµν = −1

2
h̄µν,α

,α. (1.10)

1.1.2 Plane wave solutions

In free space with Tµν = 0 and in the weak field limit, the Einstein field equation Eq. (1.1)

becomes

−1

2
2h̄µν = 0, (1.11)
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where 2 corresponds to the D’Alembert operator ∂αα. Eq. (1.11) is a wave equation for h̄µν

and the simplest plane wave solutions of Eq. (1.11) are

h̄µν = Re
[
Aµνe

ikαxα
]
, (1.12)

where Aµν and kα are the wave amplitude and the wave vector of the plane waves respec-

tively. Any general solution can be written as a linear combination of these plane waves.

Applying the Lorentz gauge condition given by Eq. (1.9) and an additional condition

of trace of h̄µν to be zero (since the Lorentz gauge condition does not uniquely fix the

coordinate transformation), for a wave traveling in the z-direction, we get

h̄(TT )
µν =


0 0 0 0

0 h̄
(TT )
xx h̄

(TT )
xy 0

0 h̄
(TT )
xy −h̄(TT )

xx 0

0 0 0 0

 eiω(t−z/c) , (1.13)

where ω is the angular frequency of the wave. This gauge, combination of Lorentz gauge and

traceless condition, is called Transverse Traceless (TT) gauge. In this gauge h̄(TT )
µν = h

(TT )
µν ,

and so we henceforth drop the bar on h̄µν . We can also redefine h(TT )
µν as,

h(TT )
µν = (e+h+ + e×h×) eiω(t−z/c) (1.14)

where h+ = h
(TT )
xx , h× = h

(TT )
xy and,

e+ =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 , e× =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 . (1.15)

The tensors e+ and e× correspond to two polarization states of a GW traveling in the

z-direction.
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1.1.3 Effect of GWs on the distance between free masses

Let’s look at the effect of these waves on the distance between two free masses. The (proper)

distance between two free masses at x = 0 and x = ε is obtained by integrating Eq (1.2)

(after replacing ηµν by gµν) as below,

∆ε =

∫ ε

0
|dτ |1/2

=

∫ ε

0
|gµνdxµdxν |1/2

=

∫ ε

0
|gxx|1/2dx ' |gxx(x = 0)|1/2ε

'
[
1 +

1

2
h(TT )
xx (x = 0)

]
ε . (1.16)

Here we have used the long wavelength approximation, i.e., the wavelength of the GW is

much larger than the distance ε, in step 3. From Eq. (1.16), we see that the distance between

two free masses changes as GWs pass by. This effect can be used to detect GWs and is the

basis for GW detectors. In Eq. (1.16) the magnitude of h(TT )
xx represents the fractional

change in the distance between free masses, δε
ε , also called strain. This identification of h

with strain is used in the rest of this chapter and other chapters. For a distance change of

10−15 m (∼ size of proton) and an initial separation of 1 km, this corresponds to h = 10−18

while the most optimistic astrophysical sources are expected to produce strain at the level

of 10−21!

1.2 Gravitational wave sources

In the previous section we derived the plane wave solutions Eq. (1.12) by setting the source

term Tµν to zero. This is fine for studying nature of the perturbations and their propagation

properties. However, for generating GWs we need to add the source term. For a source with

a quadrupole moment Iµν , the perturbations hµν are given by [116]

hµν =
2G

c4r
Ïµν . (1.17)
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For a simple system of two masses (each of massM) separated by a distance 2R and rotating

at a frequency f , the strain produced by GWs at a distance r is given by [140]

h(t) ≈ 2G2M2

c4rR
cos(4πft), (1.18)

where

f ∼
(

3GM

4πR3

)1/2

. (1.19)

Applying Eq. (1.18) for a laboratory set up with M = 10 kg, R = 10 m, f = 10 Hz and

r = 10 m, we get h ∼ 10−38 which is too small to measure with current GW detectors. All

terrestrial sources produce h on a similar scale and hence cannot be detected at this time.

However for astrophysical sources, such as binary neutron stars, this number can be as big

as 10−21 (a number that can be feasibly measured with current GW detectors) and hence

can be detected.

There are various astrophysical sources that can produce GWs [44, 159, 37, 130, 162].

These sources can be classified into two broad categories depending on the GW signals they

produce: (i) signals that can be modeled easily and (ii) signals that are hard to model.

This classification is inspired by the data analysis tools that are used to detect GW signals.

In general, if we know the waveform of a signal, we can use optimal matched filtering

techniques [88] to extract it from within the detector noise. However, if we don’t know the

waveform, then there is no unique technique available and we have to use tools that suit

to the specific scenario; for example, in case of strong GW signals, we can look for excess

power above the detector noise level. In most cases, we will have some partial information

about the signal which can be folded into analysis tools to improve the sensitivity [159].

1.2.1 Sources with known signal model

There are only a few sources for which we can construct signal models with relatively good

accuracy. Isolated, spinning neutron stars with spherical asymmetry, binary systems consist-

ing of two compact objects such as two neutron stars (BNS), one black hole and one neutron

star (BH-NS) or two black holes (BBH) are examples of such sources. For a large part of
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their life, these sources are expected to produce slowly varying sinusoidal GW signals [95].

Binary of compact objects

According to Eq. (1.18), a rotating binary system (BNS, BH-NS, BBH) is expected to

emit GWs. Initially when the two objects are far away from each other, the GW signal is

expected to be nearly monochromatic with a frequency twice that of the orbital frequency of

the binary and an amplitude given by Eq. (1.18). Since GWs carry away energy (Eq. (1.18)

gives the instantaneous strain), the orbit of the binary system will shrink which in turn

will increase the frequency as well as the amplitude and eventually leading to the merger

of the two objects. The inspiral phase leading up to the merger can be well modeled using

post-Newtonian (PN) approximations [48]. The corresponding GW signals are known as

compact binary coalescence (CBC) signals. Even though the inspiral phase lasts for most

of the binary’s lifetime (millions of years), the part of inspiral phase that could be detected

with the current generation of GW detectors is just the last few minutes before the merger

(corresponding to ∼ 10 Hz - a few kHz GW signal). The long, low frequency part of the

inspiral phase (< 10 Hz) is undetectable due to the high (seismic) noise level at those

frequencies, at least in the current generation of GW detectors. Using Eq. (1.18) for a BNS

with two 1.4M� neutron stars at 1 Mpc distance and emitting GW signal at 1 kHz we get

strain at the level of 10−21. Figure 1.1 shows an example of CBC waveform. The merger

phase is also expected to emit GWs, but the signal is expected to be messy and hard to

model. After the merger, in the case of BBH, there is also possibility of a ringdown phase in

which the newly formed black hole can undergo quasi-normal mode oscillations producing

GWs, which can be modeled well [53].

Isolated neutron stars

Isolated, rotating neutron stars with spherical asymmetry can also produce monochromatic,

sinusoidal GWs. The asymmetry could arise either during the formation of the neutron

star or later due to accretion of material surrounding the neutron star [28]. Also, in case

of neutrons stars with high magnetic field (i.e., pulsars), a difference in their magnetic and
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Figure 1.1: An example waveform showing the inspiral part of GW signal from a coalescing
binary. The y-axis corresponds to instantaneous strain amplitude of the GW signal. Image
from [109].

rotational axes can build up asymmetry [46]. The deviation from symmetry is measured by

ellipticity ε which is given by

ε =
Ixx − Iyy

Izz
, (1.20)

where Ixx, Iyy and Izz are moments of inertia along the principle axes and z is the axis of

rotation. The amplitude of GWs from such a system will be proportional to ε and given by,

h =
4π2G

c4

Izzf
2ε

r
(1.21)

where r is the distance to the neutron star and f is twice the spin frequency of the neutron

star. For a neutron star of mass 1.4 M�, radius 10 km, ε = 10−6, f = 1 kHz and at a

distance of 1 kpc, we get h ∼ 10−24.

1.2.2 Sources with unknown signal model

In many of the astrophysical systems, either the system itself or its environment is not

well understood. This translates into uncertainty of the signal waveform we are trying to

construct. Even in the case of well understood systems such as binary compact objects, the
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impact of its surroundings (for example presence of a large accretion disc) on the evolution

of the system can be very significant and can change the expected signal waveform. The

GW signals in such cases could be classified into either bursts (short transients) lasting up

to a few minutes or long-lived lasting from a few minutes to forever.

Burst GW sources

As we saw in Section 1.2.1, the merger phase of binary compact objects could produce

GW signals that are hard to model. These signals in general are expected to be short (∼

seconds) and to have large amplitudes (∼ 10−21) [95]. The other possible sources include

asymmetric core collapse of massive stars known as collapsars, various instabilities produced

by the accretion of materials onto a neutron star, pulsar glitches [161, 130, 37, 160], etc..

Since it is hard to model these cases (or requires intensive computer simulations), we can

use energy based arguments to deduce the expected strength of GWs from these sources.

The energy carried by GWs is proportional to 〈ḣ(TT )
µν ḣ(TT )µν〉 and using this one can derive

a strain-energy relation [140] given by,

h ∼ 1

πfr

√
GE

tc3
, (1.22)

where E is the expected energy emitted in GWs, t is the duration of GW signal, f is

the frequency of GW signal, and r is the distance to the source. For optimistic values of

E = 0.01M�, f = 1 kHz, t = 1 sec and r = 1 kpc, we get h ∼ 2× 10−21.

Long-lived GW sources

Under certain conditions, most of the sources listed under burst sources can also produce

long duration GWs. There are also other sources such as gamma-ray bursts (GRBs), black

holes with large accretion discs that could produce long GW transients [124, 45, 130, 162].

The detailed mechanisms for some of these sources are given in Chapter 3, in which we deal

with the detection of such GW signals.

The other prominent source that comes under this category is not a single source, but
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an ensemble of the aforementioned sources. Even if the individual GW signal can be well

modeled, the incoherent combination of signals from a large of number such sources can be

hard to model. Such superposition of many unresolved GW signals is called stochastic GW

background (SGWB). The sources could be from the early universe related to inflation [83,

151], electroweak phase transition [65], cosmic strings [167, 148], or recent astrophysical

sources such as binary neutron stars [35], magnetars [136], rotating neutron stars [135].

More on these sources can be found in Chapter 2.

1.3 Gravitational wave detectors

Since the amplitudes of GWs, even from the most optimistic sources, are expected to be

very small, there has as yet been no direct detection of GWs. There are however indirect

pieces of evidence coming from the observations of orbital decay of several close binary

systems [165, 60]. As pointed out in Section 1.2.1, the emission of GWs decreases the orbit

of a binary and hence by measuring the rate of decay we can estimate the energy emitted in

GWs. The Hulse-Taylor pulsar system (PSR B1913+16) is an example of such close binary

system. The observed orbital decay of the binary system PSR B1913+16, which has been

observed for the past ∼ 35 years, is within 1% of the value predicted by just the emission

of GWs.

In Section 1.1.3 we noted that GWs, characterized by simple plane waves, change the

distance between free masses and it can be used to detect them on Earth. Currently,

there are two kinds of popular detectors in operation: (i) resonant mass detectors and

(ii) interferometric detectors. Most of the resonant mass detectors are made up of a large

metal bar with piezoelectric sensors attached at the ends [17]. Other configurations such as

spheres are also used [69]. When a GW passes through the bar with a frequency equal to

the resonance frequency of the bar, it will excite vibrations in the bar which can be read

out from the piezoelectric sensors. Since resonance mass detectors rely on the resonance

of the bar, which happens only for a narrow frequency range, these types of detectors are

considered narrowband detectors (∼ kHz). In 1962, Joseph Weber built the first resonance
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bar detector, which was also the first GW detector of any kind, starting a new era of GW

detectors [164].

Interferometric detectors are based on large scale Michelson interferometers. Since GWs

produce alternate stretching and shrinking of spatial dimensions perpendicular to the di-

rection of their propagation, and interferometers are sensitive to differential change in their

perpendicular arms, interferometric GW detectors are well suited for this measurement. Be-

cause they measure the actual change in the distance as compared to the resonance nature of

bar detectors, interferometric detectors are broadband and are sensitive to all GW frequen-

cies and only limited by local and instrumental noise sources. However, this is only true for

simple Michelson interferometers. In reality, the interferometric detectors employ various

resonant cavities to improve their efficiency which in turn reduces their bandwitdh [12].

Apart from these two types of detectors, there is also the pulsar timing array approach

that uses variations in light arrival time from a pulsar, which could happen due to passage

of GWs between the pulsar and Earth, to detect GWs [75]. This is also a narrowband GW

detection method (∼ 10−7 Hz). Since all the analyses done in this thesis use data from

interferometric detectors, henceforth we concentrate only on the interferometric detectors.

1.3.1 Interferometric detectors

In 1972, Rainer Weiss at MIT published a detailed report on the possibility of interfero-

metric broadband GW detectors with sensitivities comparable to or exceeding then existing

resonance mass detectors. Based on that and other related studies, during 1980’s and 1990’s

several 1 ∼ 40 m scale interferometric GW detectors were constructed and used for GW de-

tection. These small scale detectors also served as the prototypes for next generation large

scale detectors. With the experience gained from those small scale detectors and with the

use of latest technologies, several kilometer scale ground-based interferometric GW detec-

tors were constructed during last two decades. The Laser Interferometer Gravitational-Wave

Observatory (LIGO), a US collaboration, has built two 4 km and one 2 km interferometric

detectors [12]; two in Hanford, WA and one in Livingston, LA. Similarly other collaborations

around the world such as VIRGO [67] in Italy, GEO [85] in Germany, and TAMA [155] in
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Figure 1.2: An outline of interferometric GW detector. Image from [68].

Japan have built kilometer scale interferometers.

Figure 1.2 shows an outline of a typical interferometric GW detector. The interferometer

relies on a powerful laser beam to measure the differential change in the two arms. The

initial laser beam is split into two halves by a beam splitter. The two new beams then

propagate in the orthogonal arms, reflect off of suspended mirrors (which act as free masses)

at the end of the arms, and are recombined at the beam splitter. The light passing through

the beam splitter exits to what is known as the anti-symmetric port and impinges on a

photodiode. If a GW passes through the detector, it will effectively change the positions

of the end mirrors and hence the distances traveled by the two laser beams. Consequently

it will produce intensity fluctuations in the recombined laser beam, at the photodiode. By

measuring the size of these intensity fluctuations we can determine the amplitude of GWs.

Since GWs only affect free masses, all the mirrors in the interferometer are suspended with

a low resonance frequency so that at high frequencies they can be considered as “free”

masses. Also, to increase the efficiency of the detector various optical cavities are set up
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in the interferometer. A Fabry-Perot cavity is set up between the beam splitter and the

end mirrors to increase the storage time of photons in the arms, effectively increasing the

arm lengths (which correspond to increase in the strain sensitivity). There is also a power

recycling cavity to increase the total power in the interferometric arms (strain sensitivity

around ∼ 100 Hz is proportional to the power in the arms). There are various noise sources

that can limit the sensitivity of an interferometer. The main noise sources are shot noise,

seismic noise and thermal noise which basically limit the sensitivity at high frequencies, low

frequencies and frequencies in the middle, respectively.

Shot noise and radiation pressure noise

The differential distance between two arms of the interferometer is obtained by measuring

the intensity of light at the photodiode. Because of the discrete nature of light, this is

also equivalent to measuring the number of photons arriving at the photodiode. Since the

‘arrival’ of a photon is probabilistic, the measured number of photons N in a time interval

τ follows Poisson statistics and is given by

p(N) =
〈N〉Ne−〈N〉

N !
; 〈N〉 =

λPDτ

hP c
, (1.23)

where 〈N〉 is the mean number of photons arriving during interval τ , hP is Plank’s constant,

λ is the wavelength of the photon and PD is the total power of measured by the photodiode.

Fluctuations in the number of arriving photons translates into fluctuations in the phase

difference between the light beams from the two arms, and the strain due to this noise can

be written as [141]

hshot(f) =
1

L

√
hP cλ

4π2Pin
, (1.24)

where L is length of each arm and Pin is input laser power. For typical values of Pin = 10W,

λ = 1 µm, L = 4 km, we get hshot ∼ 5 × 10−21. Eq. (1.24) tells us that by increasing the

input power Pin we can reduce the shot noise. However as we increase the input power

another noise, called radiation pressure noise, starts to dominate. Photons impinging on the

mirrors will exert a force and will move the mirrors. This force, called radiation pressure, is
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proportional to Pin. According to Poisson statistics Eq. (1.23) this force will fluctuate with

the fluctuations proportional to P 1/2
in . For mirrors of mass M , the strain due to radiation

pressure noise is [141]

hrad(f) =
1

Mf2L

√
hPPin
4π4cλ

. (1.25)

Eq. (1.25) is valid only for frequencies above the resonance frequency of the mirror suspen-

sion. From Eqs. (1.24) and (1.25), a Pin can be chosen to minimize the quadrature sum of

strains due to shot noise and radiation pressure noise. Here we note that the frequency inde-

pendent shot noise expression (Eq. (1.24) only applies to simple Michelson interferometers,

interferometers without any resonant cavities. For interferometers with resonant cavities,

which is case for LIGO interferometers, shot noise linearly increases with frequency.

Seismic Noise

Since the mirrors are suspended in a housing bolted to the ground, any ground motion would

affect the mirrors and will introduce noise. The displacement of the mirrors due to ground

motion above their resonance frequency f0 is

x(f) ≈ f2
0

f2
xg, (1.26)

where xg is the displacement of the housing due to ground motion. In general the mir-

ror suspensions are made up of coupled pendulae with N stages, and hence the resulting

displacement is given by

x(f) ≈
(
f2

0

f2

)N
xg . (1.27)

In initial LIGO, most of the mirror pendula were hanged at the end of a four-stage passive

isolation. The observed quite ground motion spectrum above ∼ 1 Hz, in general, has the

form,

xg(f) ≈ 10−7

f2
m/
√

Hz . (1.28)
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The combination of passive isolation and ground motion spectrum produces,

hseism(f) ≈ 1

f14
1/
√

Hz, for f & 10Hz (1.29)

which at 100 Hz is ∼ 10−28, well below the expected strain from astrophysical sources.

Apart from directly affecting the mirrors, the seismic field fluctuations can also introduce

another noise called Newtonian noise which is further described in Chapter 4.

Thermal noise

There are several sources of thermal noise in an interferometric detector and the dominant

one comes from the damping of the mirror pendulum due to thermal fluctuations in the

suspension wires. At frequencies above the natural frequency f0 of the mirror pendulum,

strain due to suspension thermal noise [82] is given by,

htherm−sus(f) ≈
(

kBTf0

2π4Mτf5

)1/2

, (1.30)

where τ is the free decay time of the natural oscillation at frequency f0, kB is Boltzmann’s

constant, M mass of the mirror, and T is the effective temperature. Apart from suspension

thermal noise, there is also thermal noise due to internal modes of the mirror coatings that

affect the sensitivity of the detector.

Figure 1.3 shows the measured noise levels of LIGO and VIRGO detectors during their

S5 and VSR1 science runs respectively.

1.3.2 Detection prospects

Nearly a century ago Einstein predicted the existence of GWs and it has been more than

four decades since the first use of a GW detector, yet there has been no confirmed direct

detection of GWs. The main reason for that is the very small amplitudes of GWs, even

from most optimistic sources. Only recently, with advancements in technologies such as the

stable high-power lasers, better acoustic and seismic isolation systems, nanometer-smooth
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Figure 1.3: Strain spectra for LIGO detectors (H1, H2, L1) and Virgo detector (V1) during
their S5 and VSR1 science runs respectively. The legend also provides distances up to which
the detectors can detect a CBC signal with sufficient signal-to-noise ratio.

optics, and precise timing systems, detectors with sensitivities comparable to expected GW

strains have been built. The current and next generation of GW detectors have realistic

chance of detecting GWs within a few years of their operation.

Recently concluded science runs of LIGO and Virgo detectors did not observe any GW

signals, but have provided interesting astrophysical and cosmological limits. The CBC

analyses using those science run data resulted in upper limits on various binary mergers [56]

with numbers close to the predictions by various electromagnetic observations. For example,

the 90% upper limit on the rate of binary neutron star mergers is 3.9× 10−2Yr−1L−1
10 where

L10 is 1010 times the blue solar luminosity. The searches for continuous waves from pulsars

set upper limit on the ellipticity of such systems with ε ≤ 10−6 [55]. Burst searches using the

same data set resulted in an upper limit on the energy radiated in GWs within a distance

scale: 5.6 × 10−2M� at 16 Mpc, in the frequency around 150 Hz and GW signal duration

of 1 sec [57]. Searches for SGWB set an upper limit on the strength of such a background,
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below the limit predicted by the big-bang nucleosynthesis (BBN) in the LIGO frequency

band, which is the focus of Chapter 2.

Currently most of the existing GW detectors are being upgraded to the next genera-

tion with increased sensitivities [71]. Also there are possibilities of new ground-based GW

detectors [58] and space-based detectors [25] starting within this decade. Hence it is more

likely that first direct GW detection will happen within this decade, maybe in time for the

centennial of Einstein’s general relativity paper.

1.4 Organization of other chapters

The rest of the thesis is organized as follows. In Chapter 2 we summarize some of the models

of SGWB and describe an analysis pipeline used to search for such signals in LIGO data.

We also present the search results obtained by using data from LIGO S5 science run. In

Chapter 3 we look at some of the models of long duration GW transients and describe a new

analysis pipeline developed to look for such signals. Then we present the results obtained

from running the pipeline on LIGO S5 data searching for long GW transients from GRBs.

In Chapter 4 we discuss the effect of seismic noise on current and future generation of GW

detectors. We then describe an underground seismic array set up at Homestake mine, South

Dakota to study the seismic field underground, which would be useful for next generation

of GW detectors. We also present initial results and discuss some of the algorithms used for

studying seismic field decomposition. In Chapter 5 we provide a summary of earlier chapters

and results.



Chapter 2

Searches for stochastic gravitational
waves in LIGO data

A stochastic background of gravitational waves is expected to arise from a large number of

unresolved and uncorrelated sources. Since GWs can travel long distances without scattering

and the universe is filled with large numbers of GW sources, it is natural to expect a

background formed by the random superposition of GW signals from all these sources.

In such cases, we cannot identify the sources individually (unless they are strong enough

to stand above the rest of the signals) but can only make a statistical statement about

the background as a whole. Stochastic gravitational-wave background can be of either

cosmological origin produced by the events occurred during the early universe and/or of

astrophysical origin produced by collections of astrophysical objects such as binary black

holes, rotating neutron stars etc.

Since the Big Bang, the universe has undergone several transformations and most of

them are believed to have produced GWs. For example, density perturbations created by

the amplifications of vacuum fluctuations during the inflation could produce GWs. Such a

background of GWs from the early universe, called cosmological (or) primordial GW back-

ground, is expected to provide information about the universe mere fractions of a second

after the Big Bang [83, 151, 24, 18]. Here we note that for cosmological GWs, the concept of

‘individual sources’ may not be even meaningful (for example, inflationary density pertur-

bations that produced GWs extended throughout the universe) and hence the ‘background’

description may be the only option.

19



2.1. Sources of stochastic GW background 20

As we discussed in Chapter 1, current universe contains GW sources that can be iden-

tified individually, if the signal is strong enough, and are distributed in large numbers

throughout the universe. These sources could be well known binaries of neutron stars and

black holes [35], rotating neutron stars [135], magnetars [136], galactic white-dwarf binaries

[90, 26, 89, 120] or relatively unknown binary black holes [35]. A GW background from such

recent sources, called astrophysical GW background, could provide information about the

spatial distribution and formation rate of these various source populations.

The detection of a SGWB, of either cosmological or astrophysical origin, is a major

science goal for both current and planned searches for GWs [83, 151, 24, 112]. Given the

random nature of a stochastic background of GW radiation, it is difficult to distinguish

between GW background and local detector noise just using one detector. Hence, searches

for SGWB involve cross-correlating data from two or more detectors [83, 115, 40, 70, 19],

under the assumption that correlated noise between any two detectors is negligible. For

such a case, the contribution to the cross-correlation from the (common) GW signal grows

linearly with the observation time T , while the noise grows like
√
T and so signal-to-noise

ratio SNR ∝
√
T . This allows one to search for stochastic signals buried within the detector

noise by integrating for a sufficiently long interval of time.

In this chapter, we provide a summary of some of the stochastic GW sources and de-

scribe a cross-correlation analysis pipeline that is used to search for SGWB in GW detector

data [19]. We also present results of applying the pipeline on LIGO S5 data, acquired from

November 2005 to October 2007.

2.1 Sources of stochastic GW background

The spectrum of stochastic GW background is usually described by the dimensionless quan-

tity Ωgw(f) given by

Ωgw(f) =
f

ρc

dρgw

df
, (2.1)
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where dρgw is the energy density of GWs contained in the frequency range f to f + df and

ρc is the critical energy density [19],

ρc =
3c2H2

0

8πG
. (2.2)

Here H0 is the present day Hubble parameter. The measured values of H0 are in the range

of 67 − 72 km/(Mpc− sec). Since there are uncertainties in the measurement of Hubble

parameter H0, we write it as H0 = h0 × H100 where H100 = 100 km/(Mpc− sec) and use

h2
0 Ωgw(f) as the reference quantity while comparing different models. Note that h2

0 Ωgw(f)

is independent of actual Hubble expansion rate. While some of the cosmological and astro-

physical models predict complex spectra for Ωgw(f), most of them can be approximated by

a power law given by

Ωgw(f) = Ωα

(
f

fref

)α
, (2.3)

where α is the spectral index and fref is some reference frequency.

2.1.1 Cosmological GW background

In standard cosmology, the universe after the Big Bang underwent several transformations

such as inflation, phase transitions etc., to get to the current state. Most of these transfor-

mations are expected to produce radiations of all kinds, including GWs. Depending on how

and when they were produced, these GWs would have specific frequency spectra. Due to

the expansion of the universe, frequencies of the original GWs appear red-shifted today to

lower frequencies. Using a simple Friedmann-Robertson-Walker (FRW) cosmological model,

we can write an approximate relation between currently observable GW frequency f0 and

temperature of the universe T∗ when they were produced as [112]

f0 '
1.6× 10−7

α

(
T∗

1 GeV

)
Hz, (2.4)

where α is a scale factor ≤ 1, corresponding to the ratio of the wavelength of GW to Hubble

size at that time. From Eq. (2.4), we see that there is a high frequency cutoff of∼ 102 GHz on
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GW frequencies due to the highest possible plank scale temperatures ∼ 1019 GeV, assuming

α is not too small. Also using the relation between time t∗ (when the GWs were produced)

and frequency f0 given by [112]

t∗ '
6.6× 10−21

α2

(
1 Hz

f0

)2

sec , (2.5)

we can approximately determine the time t∗. Using Eqs. (2.4) and (2.5), for the frequencies

at which current ground based interferometers are sensitive (∼ 100Hz), we get T∗ ' 109GeV

and t∗ ' 10−24sec which is mere fractions of second after the Big Bang.

Given below is a summary of some of the models that predict GWs from that epoch.

Inflationary models

In standard cosmology, inflation is a well accepted theory in which, just after the Big Bang,

the universe undergoes rapid expansion within a short period of time. Even though the exact

mechanism of such expansion is not well understood, inflation provides natural solutions to

various cosmological problems such as flatness, horizon and non-existence of monopoles and

hence became an integral part of the standard cosmology. It also agrees well with cosmic

microwave background (CMB) observations.

During the inflation, the zero-point fluctuations of many fields including spacetime per-

turbations were amplified many-folds during a short period of time. Since the expansion was

very fast, the initial zero-point fluctuations before the expansion ended up in the excited

states after the expansion producing a lot of radiation. This is the basis for GW produc-

tion in all inflationary models while the exact form or shape of the spectra depends on the

individual model. For a simple De Sitter inflation, we get [112]

h2
0 Ωgw(f) ' 10−13

(
10−16

f

)2( ~H
10−4MP c2

)2

for 3× 10−18Hz < f < 10−16Hz, (2.6)

and h2
0 Ωgw(f) '

(
~H

10−4MP c2

)2

for 10−16Hz < f < 1010Hz. (2.7)

where MP =
√

~c
G is the Plank mass and H is the Hubble parameter during the De Sitter
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inflation. Here 10−16 Hz corresponds to the scale at which radiation-matter transition

occurred.

There are also other inflationary models that predict GWs from this epoch and in some

cases the predicted spectra are different. For example, in slow-roll inflation the Hubble

parameter is not constant, as in De Sitter inflation, but changes during the inflation and

hence the spectrum in this case is not flat but a little tilted (also an order of magnitude

lower) [112]. The Axion inflation, on the other hand, is expected to produce GWs with higher

amplitude at frequencies relevant to the current and next generation of GW detectors [118].

At the end of inflation, the inflaton field responsible for the inflation is expected to

transfer its potential energy into relativistic particles reproducing similar environment as in

the beginning of the inflation. This process, called reheating, is also expected to produce

GWs [52].

Cosmic strings

Cosmic strings are topological defects that might have formed during phase transitions in

the early universe [98]. They are in general expected to be in the form of loops and to

have high tension equal to their mass-per-length (multiplied by c2). Because of such large

tension, they would oscillate relativistically under their own tension producing GWs. The

strings could also interact with each other and in the process break and reconnect again

into smaller strings. These interactions would produce kinks and cusps that propagate

at the speed of light along the string producing GWs [122]. The wavelength of the GWs

produced in this model is proportional to the length of the loops and spans a wide range

of frequencies (∼ 10−8 − 1010 Hz). More recently, it was realized that fundamental strings,

as in string theory, may also be expanded to cosmological scales during inflation producing

cosmic strings [139]. Hence, searching for cosmic strings may provide a unique and powerful

window into string theory and into particle physics at the highest energy scales.
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Pre-Big-Bang model

In the pre-Big-Bang model [33, 54, 113] the universe starts off large and then undergoes a

period of inflation driven by the kinetic energy of a dilaton field, after which the standard

cosmology follows. Although more speculative than the standard cosmology model, the

pre-Big-Bang model makes testable predictions of the GW spectrum. In the pre-Big-Bang

model, the GWs are produced via the mechanism of amplification of vacuum fluctuations,

analogous to the standard inflationary model. The typical GW spectrum increases as f3

up to a turn-over frequency fs, above which Ωgw(f) ∼ f3−2µ with µ < 1.5. The spectrum

cuts off at a frequency f1, which is theoretically expected to be within a factor of 10 from

4.3× 1010 Hz.

Phase transitions

Standard model of particles physics predict various phase transitions during the evolution

of the universe. According to the standard model, as the universe cools down after the Big

Bang, first it would undergo grand unified theoretical (GUT) phase transition separating

strong interaction from the rest of the forces, then electroweak phase transition separating

weak interaction from electromagnetic interaction and finally QCD phase transition in which

protons and neutrons condense out from the quark soup. If any of these phase transitions

are of first order, then there will be density inhomegeneities which in turn can produce

GWs [112]. There could also be first order phase transitions that are initiated by the

formation of local bubbles of a new vacuum. If these bubbles are of critical size, then

they would grow and collide with other bubbles producing GWs. Spectra of these GWs are

expected to be highly peaked and the peak frequency is given by the Eq. (2.4) [18].

2.1.2 Astrophysical GW background

Unresolved GW signals from a large number of astrophysical sources can also create a

GW background. Unlike cosmological background, astrophysical GW background would

provide information about the recent universe at red-shifts z ∼ 2 − 6. There are various
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sources/mechanism that can produce such backgrounds. These sources could galactic such

as white-dwarf binaries, or extra-galactic such collapsars, BBH etc. The GW background

from galactic sources expected to have strong anisotropies (because of the disc nature of our

galaxy) while ones from extra-galactic sources are expected to be isotropic. Some of these

sources are described in more detail in Chapter 3. Depending on the rate of such sources, the

GW background could be stochastic or not. If the rate of such sources is high i.e., the duty

cycle D > 1, which is the ratio of signal duration to time between successive signals, then

the background will be stochastic otherwise it will be either burstlike (D � 1) or popcorn

signal (D . 1).

In general, the expected GW frequency from an astrophysical source can be estimated

using its dynamical frequency given by Eq. (1.19). By using R ≤ 2GM
c2

(Schwarzschild ra-

dius) in Eq. (1.19) and a typical mass of M = 1.4M�, we get an approximate upper limit

on the expected frequency which is ∼ 20 kHz. Thus we see that, unlike cosmological GW

backgrounds which can extend up to GHz, astrophysical backgrounds are limited in fre-

quency range extending only up to tens of kHz. Hence any observation of GW background

at very high frequencies would clearly correspond to a cosmological origin. At low frequen-

cies, astrophysical GW backgrounds are expected to have higher amplitudes and hence can

potentially mask a cosmological background. Since most of the predicted astrophysical back-

grounds are either low in frequencies or low in amplitudes compared to the sensitivities of

current generation of LIGO detectors we do not discuss them further here. More discussions

on these models can be found in [35, 154, 136, 135].

2.1.3 Observational constraints

There are various observations that constrain Ωgw(f) in all or part of the frequency range.

Below we summarize a few of the important bounds that apply to ground based GW detec-

tors.
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The nucleosynthesis bound

The most constraining bounds on the SGWB comes from the Big-Bang-Nucleosynthesis

(BBN) and from CMB measurements. The BBN bound is derived from the fact that a large

GW energy density at the time of BBN would alter the expansion rate of the universe and

in turn would affect the abundances of the light nuclei produced in the early universe. The

BBN model and observations of abundances of lightest nuclei constrain the total GW energy

density at the time of nucleosynthesis [112, 18] as:

∫
Ωgw(f) d(ln f) < 1.1× 10−5 (Nν − 3), (2.8)

where Nν (the effective number of neutrino species at the time of BBN) captures the uncer-

tainty in the radiation content during BBN. Measurements of the light-element abundances,

combined with the Wilkinson Microwave Anisotropy Probe (WMAP) data give the upper

bound Nν − 3 < 1.4 [47].

Similarly, a large GW background at the time of decoupling of CMB would alter the

observed CMB and matter power spectra. Assuming homogeneous initial conditions, the

total GW energy density at the time of CMB decoupling is constrained to
∫

Ωgw(f) d(ln f) <

1.3 × 10−5 [153]. Both the bounds given above, apply only to GWs (and other unknown

radiation) emitted before the star and galaxy formations.

Anisotropy of cosmic microwave background

The strongest constrain on the low frequency spectrum of Ωgw(f) comes from the large scale

temperature fluctuations observed in the CMB by Cosmic Background Explorer (COBE).

At the time of last scattering, when CMB photons started to free stream, any scalar density

perturbations produced by the inflation would have red-shifted the CMB photons. This effect

is called the Sachs-Wolf effect. As we saw in Section 2.1.1, the inflation that produced these

scalar density perturbations could also produce tensor perturbations, which are GWs. Since

GWs stretch/shrink spatial dimensions, any GWs present at that time would have changed

the frequency of CMB photons and contributed to the observed temperature fluctuations.
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As such effects have not been observed by CMB measurements at low l-values, an upper

limit is placed on h2
0 Ωgw(f) [112],

h2
0 Ωgw(f) < 7×

(
3× 10−18

f

)
for (3× 10−8Hz < f < 3× 10−16Hz), (2.9)

and h2
0 Ωgw(f) < 10−14 for f > 3× 10−16Hz (2.10)

Figure 2.1 shows existing bounds and expected spectra for the cosmological models

described in Section 2.1.1.

Figure 2.1: Existing bounds and expected spectra for some of the cosmological models
(Section 2.1.1, Section 2.1.3). The pulsar limit shown in this plot comes from the long time
observation of timing variations in a set of pulsars as mentioned in Section 1.3.

2.2 Cross-correlation statistics

In this section, we derive the cross-correlation statistic that was used for SGWB searches

described in Section 2.4 and Section 2.5. For the derivation we follow the conventions of [19]
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and [66]. The metric perturbation due to a GW coming from a source in the direction Ω̂

defined on a two sphere of the equatorial coordinate system (cf. Figure 2.2) and consisting

of both + and × polarizations can be written as (using Eq. (1.14))

hab(t, ~x) =
∑
A

∫ ∞
−∞

dfeAab(Ω̂) hA(f, Ω̂) e2πif(t+Ω̂·~x/c) , (2.11)

where a, b corresponds to spatial indices (x, y, z) and A correspond to different polarizations.

The quantities eAab are the polarization tensors and hA(f) are corresponding amplitudes

expected at the origin of equatorial coordinate system (the center of Earth). In case of a

large number of sources distributed over the sky, we integrate Eq. (2.11) over the two sphere

as given by

hab(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂ eAab(Ω̂) hA(f, Ω̂) e2πif(t+Ω̂·~x/c) . (2.12)

If we assume that the observed GW signal is independent of direction on the sky and also of

polarizations, then we can characterize the expectation value of GW strain power spectrum

as,

〈h̃∗A(f, Ω̂) h̃A′(f ′, Ω̂′)〉 = H(f) δ(f − f ′) δAA′ δ(Ω̂− Ω̂′) , (2.13)

where δ(f−f ′) and δ(Ω̂− Ω̂′) are Dirac delta functions and δAA′ is Kronecker delta function.

Here H(f) represents signal power spectrum.

The energy density in GWs is given by [116]

ρgw =
c2

32πG
〈ḣab(t, ~x) ḣab(t, ~x)〉 , (2.14)

and using Eqs. (2.12), (2.13), we can write it as

ρgw =
4π2c2

G

∫ ∞
0

dff2H(f) . (2.15)
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Using Eqs. (2.1), (2.2) and (2.15), we get

H(f) =
3H2

0

32π3
|f |−3Ωgw(|f |) , (2.16)

which relates the signal power spectrum to the dimensional spectrum Ωgw(f).
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Figure 2.2: The above figure shows different coordinate systems and angles referred in
Section 2.2. For the calculation in Section 2.2, we assume ψ = 0.

In Eq. (1.14), e+,× are defined in the wave frame (X, Y , Z) while in Eqs. (2.11) and

(2.12), they are defined in the Earth frame (cf. Figure 2.2). In spherical coordinates (θ, φ,

Ω) defined in the Earth frame, the rotation matrix R:(X,Y, Z) → (x, y, z) is

R =


− cos θ cosφ − sinφ − cosφ sin θ

− cos θ sinφ cosφ − sin θ sinφ

sin θ 0 − cos θ

 . (2.17)

Here θ, called declination, is measured from the north pole (ẑ) of Earth and φ, called right

ascension, is measured from vernal equinox (x̂). By using a similarity transformation we
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can write the polarizations tensors as

e+(Ω̂) = R ·


1 0 0

0 −1 0

0 0 0

 ·RT , e×(Ω̂) = R ·


0 1 0

1 0 0

0 0 0

 ·RT , (2.18)

where the source direction Ω̂ is given by

Ω̂ = cosφ sin θx̂+ sin θ sinφŷ + cos θẑ, (2.19)

and the wave propagation is in −Ω̂.

The response of a detector I, at ~x, to a GW with metric perturbation hab is

hI(t) = hab(t, ~x) dabI (t), (2.20)

where the detector tensor dI is given by [19]:

dI =
1

2
(x̂′I ⊗ x̂′I − ŷ′I ⊗ ŷ′I) . (2.21)

The tensor dI is defined in the detector frame (x′, y′, z′) and needs to be transformed to

equatorial coordinates system in which, owing to its simplicity, all the calculations are done.

For this we can use a rotation matrix similar to the one given by Eq. (2.17), but using

longitude and latitude of the detector location as the rotation angles. Also due to the

rotation of Earth, there is an additional (time dependent) rotation of dI and ~xI around ẑ

axis. Here after we will assume that the above necessary rotations were done to bring all

the quantities in Earth’s frame.

Using Eqs.(2.12) and (2.20), the GW strain in detector I can be written as,

h̃I(t) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂ FAI (t; Ω̂) hA(f, Ω̂) e2πif(t+Ω̂·~x/c), (2.22)
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where we have used detector response functions FAI (t; Ω̂) defined by:

FAI (t; Ω̂) := eAab(Ω̂) dabI (t) . (2.23)

Since the detectors have intrinsic noise n(t) in addition to any external signal h(t), the

data from each detector can be written as sI(t) := hI(t) + nI(t) detector. We define the

cross-correlation estimator for a time segment M of length T as:

YM :=

∫ t+T/2

t−T/2
dt′
∫ t+T/2

t−T/2
dt′′sI(t

′)sJ(t′′)Q(t′, t′′) , (2.24)

where I, J correspond to two different detectors and Q(t′, t′′) is a filter function which we will

choose to maximize the signal-to-noise ratio of YM . At the end of this section, we will show

that using YM we can get an estimate of Ωgw(f). For simplicity, the rest of the derivation

in this section is done in Fourier domain.

We define short time Fourier transform (SFT) of a time series y(t) of length T and its

inverse transform as,

ỹ(t; f) :=

∫ t+T

t−T
dt′y(t′)e−2πift′ , (2.25)

y(t) :=

∫ ∞
−∞

dfỹ(t; f)e2πift . (2.26)

Unlike normal Fourier transform which is defined on the interval [−∞,∞], here we use finite

amount of data and hence to distinguish it from normal Fourier transform we reference it

using the time segment t used for the Fourier transform. Note that the above two definitions

are compatible with each other.

Using the above definitions of Fourier transform, Eq. (2.24) can be written as

YM :=

∫ ∞
−∞

df

∫ ∞
−∞

df ′δT (f − f ′)s̃∗I(t; f)s̃J(t; f ′)Q̃(f ′) , (2.27)
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where finite-time approximation to Dirac delta function δT (f) is defined as,

δT (f) :=

∫ T/2

−T/2
dt′e−2πift′ =

sin(πfT )

πf
. (2.28)

As the duration of the data segment T → ∞, δT (f) approaches Dirac delta function δ(f).

But for a finite time interval T , this function has the property that δT (0) = T .

The mean value of Y (here after we omit the subscript M) is then given by,

µ = 〈Y 〉 =

∫ ∞
−∞

df

∫ ∞
−∞

df ′δT (f − f ′)〈s̃∗I(t; f) s̃J(t; f ′)〉 Q̃(f ′) . (2.29)

Since s̃I(t; f) = ñI(t; f) + h̃I(t; f), the expectation value of 〈s̃∗I(t; f) s̃J(t; f ′)〉 can be

written in terms of four expectation values involving all combinations of ñI,J(t; f) and

h̃I,J(t; f). If we assume that the noise is uncorrelated between two detectors and also

uncorrelated with the GW signal then only 〈h̃∗I(t; f) h̃J(t; f ′)〉 term survives (i.e., the signal

correlates with itself) and other terms vanish. Then Eq. (2.29) becomes

µ =

∫ ∞
−∞

df

∫ ∞
−∞

df ′δT (f − f ′)〈h̃∗I(t; f) h̃J(t; f)〉 Q̃(f) . (2.30)

Using Eqs. (2.22) and Eq. (2.13) in the above equation, we get,

µ =
∑
A

∑
A′

∫
S2

dΩ̂

∫
S2

dΩ̂′
∫ t+T/2

t−T/2
dt′
∫ t+T/2

t−T/2
dt′′
∫ ∞
−∞

df

∫ ∞
−∞

df ′

〈h∗A(f, Ω̂) hA′(f ′, Ω̂′)〉 e2πi(ft′−f ′t′′) e−2πif(t′+Ω̂·~xI/c)

e2πif ′(t′′+Ω̂′·~xJ/c) FAI (t′; Ω̂) FA
′

J (t′′; Ω̂′) Q̃(f ′) (2.31)

=
∑
A

∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫
S2

dΩ̂H(f ′) δT (f ′ − f) δT (f − f ′)

e−2πif ′(Ω̂·(~xI−~xJ )/c)FAI (t; Ω̂) FAJ (t; Ω̂) Q̃(f ′) (2.32)

By replacing one of the δT (f) by Dirac delta function and evaluating the above expres-
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sion, we get

µ =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂H(f) e−2πifΩ̂·∆~xIJ/c FAI (t; Ω̂)FAJ (t; Ω̂) Q̃(f) (2.33)

=
3H2

0

20π2
T

∫ ∞
−∞
|f |−3Ωgw(|f |) γ(|f |) Q̃(f)df (2.34)

where we have used Eq. (2.16) and the definition ∆~xIJ := ~xI−~xJ . Here we also have defined

γ(f), called the overlap reduction function, as

γ(f) =
5

8π

∑
A

∫
S2

dΩ̂ e−2πifΩ̂·∆~xIJ/c FAI (t; Ω̂)FAJ (t; Ω̂) (2.35)

The overlap reduction function characterizes the sensitivity loss due to the separation and

relative orientation between the detector I, J . The factor 5
8π is chosen such that γ(f) = 1

for a pair of colocated and coaligned detectors. As shown in [19], analytically it can be

written as a sum of three Bessel functions. Figure 2.3 shows the γ(f) for the colocated and

non-colocated pairs of LIGO detectors.

Now we calculate the variance of Y which is defined as σ2
Y := 〈Y 2〉− 〈Y 〉2. If we assume

that the noise intrinsic to the detectors P1(f) and P2(f) are much greater than the signal

H(f), then we can neglect the 〈Y 〉2 term in the definition of σ2
Y . This is called small signal

limit and in this limit:

σ2
Y =

∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫ ∞
−∞

dk

∫ ∞
−∞

dk′δT (f ′ − f)δT (k′ − k)

〈s̃∗1(f ′)s̃2(f)s̃∗1(k′)s̃2(k)〉Q̃(f ′)Q̃(k′) (2.36)

Using the fact that for mean zero, Gaussian random variables (x1, x2, x3, x4),

〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉+ 〈x1x3〉 〈x2x4〉+ 〈x1x4〉 〈x2x3〉, (2.37)
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Figure 2.3: The above figure shows overlap reduction functions for colocated, coaligned
H1-H2 LIGO detector pair as well as non-colocated and differently oriented H1-L1 LIGO
detector pair.

and n1(t), n2(t) are independent of each other and of the signal h(t), we get

σ2
Y =

∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫ ∞
−∞

dk

∫ ∞
−∞

dk′δT (f ′ − f)δT (k′ − k)

〈ñ∗1(f ′)ñ∗1(k′)〉〈ñ2(f)ñ2(k)〉Q̃(f ′)Q̃(k′) (2.38)

We define one sided noise power spectrum as

〈nI(t) nI(t′)〉 :=
1

2

∫ ∞
−∞

dfei2πf(t−t′)PI(|f |) (2.39)

Using the definition of SFT, we can rewrite the above definition in Fourier domain as

〈ñ∗I(t; f) ñI(t; f
′)〉 =

1

2

∫ ∞
−∞

df ′′PI(t; |f |)δT (f ′′ − f ′)δT (f ′′ − f) (2.40)

in the limit of a large observation time, T →∞, the above expression reduces to the familiar
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form

〈ñ∗I(t; f) ñI(t; f
′)〉 =

1

2
δ(f − f ′)PI(t; |f |) (2.41)

while for a finite observation time T , it becomes

〈ñ∗I(t; f) ñI(t; f
′)〉 =

T

2
PI(t; |f |) (2.42)

Using Eq. (2.42) and reality condition of nI(t) i.e, ñ∗I(t; f) = ñI(t;−f), σY in Eq. (2.38)

becomes

σ2
Y ≈

1

4

∫ ∞
−∞

dfP1(|f |)P2(|f |)|Q̃(f)|2 (2.43)

As shown in [19], by maximizing over SNR (:= 〈Y 〉
σY

), we can show that the filter function

Q̃(f) takes the form,

Q̃(f) = N γ(f)Ωgw(f)

f3P1(f)P2(f)
. (2.44)

where N is a normalization constant. Here we see that the optimal filter Q̃(f) depends on

the signal model itself. This is a generalization of the fact that any optimal data analysis

pipeline would require all the information about the signal we are looking for [88]. For our

analyses described in this chapter we use a power-law model given by Eq. (2.3). We also

define the normalization constant N such that 〈Y 〉 = T Ωα. In the next sections, we apply

this statistics to search for SGWB signals using data from LIGO detectors.

2.3 Analysis pipeline

In the previous section we derived a cross-correlation statistics that can be applied to de-

tector data to get a measurement of Ωgw(f). In this section we will look at some practical

issues and considerations in doing the analysis. The real detector data suffers from various

instrumental and environmental correlations that would affect the efficiency of the cross-

correlation statistic. Hence steps need to be taken to mitigate such correlations. Below is

an outline of the analysis pipeline we used that includes such mitigation efforts:

• Initial data selection accounting for known bad periods of data;
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• Data quality cuts (time and frequency domain);

• Applying cross-correlation technique to smaller time segments;

• Combining results from individual segments (and also from different detector pairs, if

required);

• Final result is considered significant if its SNR is high (for example, > 5), otherwise

it is just noise fluctuation and hence set an upper limit.

Apart from the above steps we also perform software and hardware injections to check

for the consistency of the pipeline. Hardware injections are artificial signals injected into

the interferometers via mechanical couplings while software injections are synthetic signals

added to the interferometer data, just before the analysis.

2.3.1 Initial data selection

For our analyses, we used LIGO data acquired during the science run S5, which took place

between November 5, 2005 and September 30, 2007. During this period all three LIGO

detectors (H1, H2 and L1) were operational, albeit with different up-time, and we analyzed

all three possible pairs. Due to the complexity of H1-H2 pair analysis (more on this in

Section 2.5), here we present the analyses and results in two parts: one for two non-colocated

pairs H1-L1 and H2-L1 and another for colocated H1-H2 pair.

For all the three pairs, we rejected time periods when:

• there were problems with the calibration of the data;

• the interferometers were within 30 s of loss of lock;

• there were artificial signals inserted into the data for calibration and characterization

purposes;

• various data acquisition overflows were observed.

With these cuts, we obtained coincident data of ∼ 292 days for H1-L1 pair, ∼ 294 days for

H2-L1 pair and ∼ 357 days for H1-H2 pair.
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2.3.2 Data quality cuts

After the initial data selection, we applied several frequency domain cuts to remove prob-

lematic frequencies from the analyses. There were well known narrow band instrumental

lines (frequencies) that were expected to have significant correlation between the detectors.

For example, the 60 Hz power line and its harmonics were strongly correlated between the

detectors, even for well separated H1-L1 and H2-L1 pairs. To identify these correlated

instrumental lines we used coherence and time-shift methods, which are described below.

Results of applications of these methods to various detector pairs are given in Section 2.4

and Section 2.5.

Coherence analysis

The simplest method for identifying correlated noise between two detectors is to calculate

the magnitude squared coherence, Γ12(f) ≡ |γ12(f)|2, between the detectors where

γ12(f) ≡ 2

T

〈s̃∗1(f)s̃2(f)〉N√
〈P1(f)〉N 〈P2(f)〉N

. (2.45)

Here T denotes the duration of a single segment of data, and angle brackets 〈 〉N denotes

an average over N segments. The quantity (s̃∗1(f)s̃2(f)) is the cross-spectral density (CSD)

between detectors 1,2 and P1(f), P2(f) are the power-spectral densities (PSD) of detectors

1, 2 respectively. For uncorrelated Gaussian data, the expected value of Γ12(f) is equal to

1/N . This method is especially useful at finding narrowband features that stick out above

the expected 1/N level. Since we expect the stochastic GW background to be broadband,

with relatively little variation in the LIGO band (∼40–1000 Hz), most of these narrowband

features can be attributed to instrumental and/or environmental correlations.

Time-shift analysis

A second method for identifying narrowband correlated noise is to time-shift the time-

series output of one detector relative to that of the other detector before doing the cross-

correlation analysis [73]. By introducing a shift of ±1 second, which is significantly larger
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than the correlation time for a broadband GW signal (∼ 10 ms, cf. Figure 2.8) we eliminate

broadband GW correlations while preserving narrowband noise features.

2.3.3 Applying cross-correlation statistic

In the derivation of Y we used Fourier transforms of detector data of duration T . In theory,

there is no restriction on T one could use. But in practice, it is limited by the non-stationarity

(fluctuations in noise levels) of the data. For our analyses we used T = 60 sec which was

within the fluctuation time scales. Apart from choosing the duration of segments, we also had

to remove noisy low frequency contents (due to high seismic noise floor). So we decimated

initial 16,384 Hz data to 512 Hz and high-pass filtered it with a 6th order Butterworth

filter with 32 Hz knee frequency. Also each analysis segment was Hann-windowed before

doing Fourier transform to avoid spectral leakage and ringing effects. To recover the loss

of signal-to-noise due to Hann-windowing, segments were 50% overlapped. At the end,

a weighted average was performed over all segments, with inverse variances as weights,

properly accounting for overlapping effects [107, 86].

If YM and σ2
YM

are the mean and variance of segment M , then the final estimate and its

variance are given by,

Yfinal =

∑
M σ−2

YM
YM∑

M σ−2
YM

(2.46)

σ−2
final =

∑
M

σ−2
YM

(2.47)

A similar weighted average is used to combine data from different pairs of detectors. In our

analyses we calculated σ2
YM

using two adjacent segments (averaged) instead of the segment

from which YM was calculated. This was done to avoid the bias in the estimate of both YM

and σ2
YM

[86].
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Stationarity cut

Apart from the data quality cuts defined in Section 2.3.2, we also applied a stationarity

cut requiring that σ2
YM

be consistent between neighboring segments. In this cut we reject

segments M for which

∆σ =
|σYM − σ∗YM |

σYM
> ε (2.48)

where σYM is calculated using two segments neighboring toM and σ∗YM is calculated using the

segment M itself. The threshold ε was chosen such that it produces a Gaussian distribution

for remaining YM . For our analyses we found that ε = 0.2 was suitable to use.

Effect of windowing and overlapping

When we calculate Fourier transforms as required by the cross-correlation statistic, we first

window the time series with Hann window to avoid spectral leakage from strong low fre-

quencies and other known instrumental lines. With window function included, the Fourier

transform is now defined as,

ỹ(t; f) :=

∫ t+T

t−T
dt′w(t)y(t′)e−2πift′ (2.49)

where w(t) is the window function. With this modification, the new YM and its variance

σ2
YM

become w̄2YM and w̄4σ2
YM

, respectively. For overlapping segments, there is also another

correction that need to be included when combining results from individual overlapping

segments M using Eqs. (2.46) and (2.47) [107].

Apart from the above corrections due to overlapping, there is also a bias factor associated

with σYM . In our analysis, YM is calculated using Fourier transform of whole T sec of data

while σYM is calculated using pwelch method which subdivides T sec into smaller segments

before calculating Fourier transforms. Hence σYM has to be corrected for it; the relation

between true and measured σ2 is given by [86]

σ2
true ≈ σ2

measured

(
1 +

κ

(Navg)1 + (Navg)2

)
, (2.50)
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where κ is 1 for non-overlapping segments and 11/9 for overlapping segments. Here (Navg)1,2

correspond to number of (sub-)segments used to calculate P1,2. For our analysis we used

T = 60 and frequency bin width ∆f = 0.25 (corresponding to 4 sec sub-segments) which

correspond to Navg,(1,2) = 29 50% overlapping sub-segments. This gives a bias factor of

1.021.

Upper limit calculations

In case of non-detection i.e., if the signal-to-noise ratio of the observed Ωα, Yfinal/σfinal, is

small (for example ≤ 5), then we set an upper limit on Ωα using a Bayesian approach. The

upper limit Ωα,UL at a certain confidence level (C.L) is obtained from the likelihood function

p(Ωα|Ωα,obs, σα,obs) by requiring that

∫ Ωα,UL

0
p(Ωα|Ωα,obs, σα,obs)p(Ωα)dΩα = C.L , (2.51)

where the likelihood function

p(Ωα|Ωα,obs, σα,obs) =
1√

2πσα,obs
exp

[
−

(Ωα,obs − Ωα)2

2σ2
α,obs

]
, (2.52)

and p(Ωα) is prior information on the expected Ωα spectrum. Here Ωα,obs (= Yfinal/T ) and

σα,obs (=σfinal/T ) correspond to the observed GW spectrum and its error bar respectively.

In reality, there are also systematic and statistical uncertainties on the measured values of

Ωα,obs and σα,obs which would affect the likelihood function. If the uncertainties can be

characterized by a Gaussian distribution with mean 1 and standard deviation f (which is

the case for calibration uncertainties), then the new marginalized likelihood function can be

written as [62],

p(Ωα|Ωα,obs, σα,obs) =
1√

2πσα,obs
exp

[
−

(Ωα,obs − Ωα)2

2(σ2
α,obs + f2Ω2

α,obs)

]
. (2.53)
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2.4 Results using non-colocated LIGO detectors

In this section we present analysis and results using non-colocated LIGO detector pairs H1-

L1 and H2-L1. We applied all the time and frequency domain cuts described in Section 2.3.

As mentioned in Section 2.3.1 for this analysis we used data acquired during the science run

S5, which took place between November 5, 2005 and September 30, 2007.

2.4.1 Data quality cuts

Figure 2.4 and Figure 2.5 shows coherence calculated between detector pairs H1-L1 and

H2-L1 using Eq. (2.45). For Gaussian noise, the distribution of Γ12 is expected to follow an

exponential distribution. Since we downsample the detector raw time-series from 16 kHz to

512 Hz, which amounts to averaging, the resulting data is expected to be almost Gaussian.

From the coherence plots we see that once we remove the outliers, the remaining frequency

bins indeed follow an exponential distribution. These calculations revealed several instru-

mentally correlated lines between each pair of interferometers: 16 Hz harmonics (associated

with the data acquisition clock), 60 Hz harmonics (AC power line), and injected simulated

pulsar signals (52.75 Hz, 108.75 Hz, 148 Hz, 193.5 Hz, and 265.5 Hz). These lines were

excluded from the final calculations of Yfinal (zero-lag analysis).

Stationarity cut

With a 20% threshold (ε = 0.2), the stationarity cut removed around 3% of total seg-

ments. The YI of remaining segments were in good agreement with Gaussian distribution

as expected (cf. Figure 2.6). The data quality selection was performed blindly, using an

un-physical 0.5-sec time-shift between the two interferometers.

2.4.2 Software and Hardware injections

The search algorithm used for this analysis was verified using signal simulations. The hard-

ware simulations were performed using short and strong signals (to avoid downtime in ob-

serving for astrophysical signals). The software simulations were performed by adding a
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Figure 2.4: Coherence Γ12 between H1 and L1 computed in the frequency band 40–512 Hz
using all of the S5 data, for three different frequency resolutions: 1 mHz, 10 mHz, and
100 mHz (top-to-bottom). Plots on the left show Γ12 as a function of frequency while plots
on the right show distribution of Γ12. The distribution of Γ12 is expected to follow an
exponential distribution for Gaussian noise. Here ‘accepted’ refers to the frequencies that
were used for calculating Yfinal.
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Figure 2.5: Coherence Γ12 between H2 and L1 computed in the frequency band 40–512 Hz
using all of the S5 data, for three different frequency resolutions: 1 mHz, 10 mHz, and
100 mHz (top-to-bottom). Plots on the left show Γ12 as a function of frequency while plots
on the right show distribution of Γ12. The distribution of Γ12 is expected to follow an
exponential distribution for Gaussian noise. Here ‘accepted’ refers to the frequencies that
were used for calculating Yfinal.
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Figure 2.6: Histogram of the fluctuations of the estimator YI over segments I around the
mean, normalized by the standard deviation σYI is shown in red (for the H1-L1 pair). The
blue curve shows the Gaussian fit to the histogram, which has zero mean and unit variance.
The Kolmogorov-Smirnov test statistic (comparing the histogram and the fit) is 0.2 for H1-
L1 (0.4 for H2-L1), indicating that the data is indeed Gaussian-distributed, and that the
estimate of the theoretical variance σ2

YI
is reliable. Figure published in [42].

long and relatively weak stochastic signal to the interferometer data. Three hardware sim-

ulations were performed, with amplitudes of Ω0 ≈ 2 (20 min long), 2× 10−2 (20 min long),

and 6.5 × 10−3 (∼ 3.8 hours long) and they were successfully recovered (within experi-

mental uncertainties) for both H1-L1 and H2-L1 pairs. A software simulation was per-

formed and successfully recovered using about 1/2 of the H1-L1 data, with the amplitude

of Ω0 = 3.8 × 10−5. Figure 2.7 and Figure 2.8 demonstrate the recovery of both hardware

and software simulations.

2.4.3 Final results and implications

Figure 2.9 shows the final spectra for Y (f) and σ(f) (for a Ωgw(f) spectrum with α = 0

and fref = 100 Hz) after combining the results from H1-L1 and H2-L1 pairs. Integrated
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Figure 2.7: Stochastic signal simulations in hardware for H1-L1 (blue) and H2-L1 (red), and
in software (H1-L1, green) are shown. The error bars denote 2σ ranges. Figure published
in [42].

over the frequency band 41.5-169.25 Hz, which contains 99% of the sensitivity this lead

to the final estimate for the frequency independent GW spectrum: Ω0 = (2.1 ± 2.7) ×

10−6, where the quoted error is statistical. For Hubble parameter, we use the value of

72 km/(Mpc− sec) [27]. We calculate the Bayesian posterior distribution for Ω0 using this

result. For the prior distribution of Ω0 we use our previously published posterior distribution

from the earlier S4 run [7]. As described in Section 2.3.3, we marginalize over the calibration

uncertainty, which was the dominant systematic error in this analysis and was estimated to

be 13.4% for L1 and 10.3% for H1 and H2. With these assumptions, the final 95% confidence

upper limit was Ω0 < 6.9×10−6 [42]. Figure 2.10 shows the 90% confidence upper limit as a

function of the power index α in the range between -3 and 3. These results constitute more

than an order of magnitude improvement over the previous LIGO result in this frequency

region [7]. Figure 2.11 shows this result in comparison with other observational constraints

and some of the cosmological SGWB models.
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Figure 2.8: Signal-to-noise ratio for the recovery of a software simulation with H1-L1 data
with Ωsimulated

0 = 3.8 × 10−5 is shown as a function of the time-lag between the two inter-
ferometers. The inset shows the zoom-in around zero-lag: the signal is recovered well for
zero-lag (SNR ≈ 7.2), but it disappears quickly with time-lag of ±30 ms. Figure published
in [42].

Prior to the result described here, the most constraining bounds on the SGWB in the fre-

quency band around 100 Hz came from the BBN and CMB measurements (cf. Section 2.1.3).

In the LIGO frequency band, 41.5 - 169.25 Hz, and for α = 0, these bounds become:

ΩBBN
0 < 1.1 × 10−5 and ΩCMB

0 < 9.5 × 10−6. Our result presented here surpasses these

bounds and is considered one of the major results from initial LIGO analyses. Moreover,

the BBN and CMB bounds apply only to backgrounds generated prior to the BBN and the

CMB decoupling respectively, while the LIGO bound also probes the SGWB produced later

(this is the case, for example, in cosmic strings models and astrophysical models).

Our result also constrains models of the early universe evolution. While the evolution

of the universe following the BBN is well understood, there is little observational data

probing the evolution prior to BBN, when the universe was less than one minute old. The

GW spectrum Ωgw(f) carries information about this epoch in the evolution. In particular,
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Figure 2.9: Y (f) and σ(f) obtained by combining the H1-L1 and H2-L1 data from the S5
run. The inset shows that the ratio of the two spectra is consistent with a Gaussian of zero
mean and unit variance. Figure published in [42].

measuring Ωgw(f) is the best way to test for existence of presently unknown “stiff” energy

components in the early universe [32], for which a small density variation is associated with

a large pressure change, which could carry information about the physics of the inflationary

era [84]. In the framework of [32], the GW spectrum Ωgw(f) is related to the parameters

that govern the evolution of the universe by the relation:

ΩGW(f) = A f α̂(f) f n̂t(f) r (2.54)

where

α̂(f) = 2
3ŵ(f)− 1

3ŵ(f) + 1
, (2.55)

r is the ratio of tensor and scalar perturbation amplitudes (measured by CMB experi-

ments), n̂t(f) and ŵ(f) are effective (average) tensor tilt and equation of state parameters

respectively, and A is a constant depending on various cosmological parameters. Hence,
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Figure 2.10: 90% confidence upper limit is shown as a function of the power index α for
several LIGO results: based on the previous runs S3 and S4 and the S5 result presented
here. Figure published in [42].

the measurements of Ωgw and r can be used to place constraints in the ŵ − n̂t plane, inde-

pendently of the cosmological model. The Figure 2.12 shows the ŵ − n̂t plane for r = 0.1.

The regions above the curves are excluded. Also shown is the expected reach of Advanced

LIGO [71]. Note that these bounds apply to different frequency bands, so their direct com-

parison is meaningful only if n̂t(f) and ŵ(f) are frequency independent. We note that

for the simplest single-field inflationary model that still agrees with the cosmological data,

V (φ) = m2φ2/2, r = 0.14 and nt(100 Hz) = −0.035 [100], implying a LIGO bound on the

equation-of-state parameter of ŵ(100 Hz) < 0.59. The recent Planck measurements [41]

exclude the V (φ) = m2φ2/2 model with 95% confidence, so this may not be very useful.

Figure 2.13 shows our result, along with other observations, constraining the parameters

in the cosmic string models (cf. Section 2.1.1). The network of cosmic strings is usually

parametrized by the string tension Gµ, and reconnection probability p. If the size of the

cosmic string loops is determined by the gravitational back-reaction [147], the size of the
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Figure 2.11: The result shown here (LIGO S5) applies in the frequency band around 100
Hz, and is compared to the previous LIGO S4 result [7] and to the projected Advanced
LIGO sensitivity [71] in this band. The indirect bounds due to BBN [112, 18] and CMB
and matter power spectra [153] apply to the integral of Ωgw(f) over the frequency bands
denoted by the corresponding dashed curves. Projected sensitivities of the satellite-based
Planck CMB experiment [153] and LISA GW detector [25] are also shown. Figure published
in [42].

loop can be parametrized by a parameter ε [49] which is essentially unconstrained. The

Figure 2.13 shows constraints from different experiments, including our current result. While

our result is currently excluding a fraction of the allowed parameter space, Advanced LIGO

[71] is expected to probe most of the parameter space.

Figure 2.14 shows constraints on the Pre-Big-Bang models (cf. Section 2.1.1) using

our results, along with constraints from BBN and CMB measurements. Currently BBN

and CMB bounds are the most constraining ones, but Advanced LIGO [71] is expected to

surpass them.
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Figure 2.12: The above figure shows the ŵ − n̂t plane for r = 0.1. The regions excluded by
the BBN [47], LIGO, and pulsar [126] bounds are above the corresponding curves (the inset
shows a zoom-in on the central part of the figure). The BBN curve was calculated in [32].
We note that the CMB bound [153] almost exactly overlaps with the BBN bound. Also
shown is the expected reach of Advanced LIGO [71]. Figure published in [42].

2.5 Results using colocated LIGO detectors

At the end of Section 2.2 on cross-correlation statistic, we obtained an optimal filter that

maximizes the signal-to-noise ratio of the final estimate 〈Y 〉(= TΩα). The optimal filter

given by Eq. (2.44) is proportional to the overlap reduction function γ(f) (Eq. (2.35))

which is shown in Figure 2.3. From the Figure 2.3, we see that for non-colocated detector

pairs overlap reduction function is significant only in a small frequency band while for the

colocated detector pair it is maximum and constant over all the frequencies. Hence by using

a colocated detector pair we would be able improve SGWB measurement by at least an

order magnitude, depending the frequency band we analyze. Thus, the colocated H1-H2

pair is not only another pair we can analyze, but is the most sensitive of all the three pairs.

However this comes with a price of high noise correlation between the colocated detectors
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Figure 2.13: The above figure shows how different experiments probe the ε − Gµ plane
for a typical value of p = 10−3 [167] (p is expected to be in the range 10−4 − 1). The
excluded regions (always to the right of the corresponding curves) correspond to the S4
LIGO result [7], current result, BBN bound [18, 47], CMB bound [153], and the pulsar
limit [126]. In particular, the bound presented here excludes a new region in this plane
(7 × 10−9 < Gµ < 1.5 × 10−7 and ε < 8 × 10−11), which is not accessible to any of the
other measurements. The entire plane shown here will be accessible to Advanced LIGO [71]
SGWB search. Figure published in [42].

due to the local environment, which cannot be easily distinguished from a GW signal.

Most of the previous LIGO searches for stochastic GWs, including the one described

in the previous section, had used physically–separated Hanford and Livingston detectors

and assumed that common noise between the non-colocated detectors was inconsequential.

The only exception was the first LIGO analysis (S1) searching for SGWB which studied

the possibility of using colocated H1-H2 detectors and concluded that further investigations

were required before using the colocated H1-H2 pair [6]. This assumption that common (or

correlated) noise between non-colocated detectors is negligible was strongly supported by

observations—i.e., none of the coherence measurements performed to date between these

two detectors revealed the presence of correlations other than those known to be introduced
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Hz in Pre-Big-Bang models. Excluded regions corresponding to the S4 result and to the
result presented here are shaded. The regions excluded by the BBN [18, 47] and the CMB
[153] bounds are above the corresponding curves. The expected reaches of the Advanced
LIGO [71] and of the Planck satellite [153] are also shown. Figure published in [42].

by the instrument itself (for example, harmonics of the 60 Hz power line). But for the

colocated detector pair this is not the case and as concluded in the S1 paper [6], this pair

suffers from excess correlated noise at many frequencies.

Even though non-colocated detector pairs do not suffer from strong correlations, as men-

tioned in Section 2.4.1, 60 Hz harmonics and other instrumental lines do affect the widely

separated LIGO detectors. These lines could be problematic for other GW searches looking

for short and/or narrowband GWs such as CBC signals. In order to discriminate between

such local noise lines and GWs, in addition to the interferometers, each of the LIGO obser-

vatory sites is supplemented with a set of sensors to monitor the local environment [6, 12].

Seismometers and accelerometers measure vibrations of the ground and various interfer-

ometer components; microphones monitor acoustic noise; magnetometers monitor magnetic

fields that could couple to the test masses via the magnets attached to the test masses
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to control their positions; radio receivers monitor radio frequency (RF) power around the

laser modulation frequencies and voltage line monitors record fluctuations in the AC power.

These physical environment monitoring (PEM) channels are used to detect instrumental

and environmental disturbances that can couple to the GW strain channel.

Information provided by the PEM channels is used in many different ways. The most

basic application is the creation of numerous data quality flags identifying stretches of data

that are corrupted by instrumental or environmental noise [29], some of which were used in

the initial selection of data described in Section 2.3.1.

2.5.1 PEM coherence studies

In Section 2.3.2 we described a couple of methods for identifying contaminated frequencies in

the cross-correlated data. Here we describe another method, called PEM-coherence method,

based on the information from PEM channels. This method was applied only to colocated

H1-H2 detector pair (due to expected high correlations).

New definitions of signal estimators

Before describing the method, we first (re-)define the signal estimator and its variance in

each frequency bin to simplify the process of removing noisy frequency bins. The definition

used in Eq. (2.33) is not convenient, because it is defined as an integral and not as a weighed

sum over frequency bins. Using Eqs. (2.16), (2.33) and (2.44), we define the estimator of

Ωα as,

Ω̂α(f) ≡ 2

T

< [s̃∗1(f)s̃2(f)]

γ(f)Sα(f)
, (2.56)

where T is the duration of the data segments used for Fourier transforms, s̃1(f), s̃2(f) are

the Fourier transforms of the strain time-series from the two detectors, Sα(f) is the assumed

spectral shape given by

Sα(f) ≡ 3H2
0

10π2

1

f3

(
f

fref

)α
. (2.57)
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We note that the previous estimator defined by Eq. (2.33) and the new estimator defined

here are the same, except for the factor of T (cf. end of Section 2.2). The variance of Ωα is

given by,

σ2
Ω̂α

(f) ≈ 1

2T∆f

P1(f)P2(f)

γ2(f)S2
α(f)

, (2.58)

where P1(f), P2(f) are the one-sided PSDs of the detector time-series. For a frequency band

consisting of several bins of width ∆f , the optimal estimator and corresponding variance

are given by the weighted sum

Ω̂α ≡

∑
f σ
−2

Ω̂α
(f)Ω̂α(f)∑

f ′ σ
−2

Ω̂α
(f ′)

, σ−2

Ω̂α
≡
∑
f

σ−2

Ω̂α
(f) . (2.59)

This is similar to the weighted sum given by Eq. (2.46), but Eq. (2.46) is defined for com-

bining data from different time segments, while (2.59) is defined for combining estimates

from different frequencies. This definition of signal estimator unifies the way we combine

time and frequency domain data.

PEM-coherence method

In this new method we first try to identify the noise sources that couple into the individual

detector outputs by calculating the coherence of s̃1 and s̃2 with various PEM channels z̃I :

γiI(f) ≡ 2

T

〈s̃∗i (f)z̃I(f)〉N√
〈Pi(f)〉N 〈PI(f)〉N

. (2.60)

Here i = 1, 2 labels the detector outputs and I labels the PEM channels. For our analysis

we used 172 PEM channels located near the two interferometers. The Fourier transforms

are calculated for each minute of data (T = 60 s), and the average CSDs and PSDs are

computed for extended time-periods—weeks, months, or the entire run. We then perform

the following maximization over all PEM channels, for each frequency bin f , defining:

γ12,PEM(f) ≡ max
I
< [γ1I(f)× γI2(f)] . (2.61)
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Note that by construction γ12,PEM(f) is real.

As discussed in [72], γ12,PEM(f) is an estimate of the instrumental or environmental

contribution to the coherence between the GW channels of H1 and H2. This estimate is only

approximate and suffers from systematic errors for a few reasons. First, the PEM coverage

of the observatory may be incomplete—i.e., there may be environmental or instrumental

effects that are not captured by the existing array of PEMs. Second, some of the PEM

channels may be correlated. Hence, a rigorous approach would require calculating a matrix

of elements γIJ(f), and then inverting this matrix. In practice, due to the large number

of channels and the large amount of data, this is a formidable task. Instead, we simply

maximize, frequency-by-frequency, over the contributions from different PEM channels and

use this maximum as an estimate of the overall environmental contribution to γ12(f). Since

the measured signal-to-noise ratio for the estimator Ω̂α(f) can be written as

SNR(f) =
√

2T∆f < [γ12(f)] , (2.62)

we can simply approximate the contribution of the PEM channels to the stochastic GW

signal-to-noise ratio as

SNRPEM(f) ≡
√

2T∆f γ12,PEM(f) , (2.63)

remembering that γ12,PEM(f) is real. The PEM contribution to the estimators Ω̂α(f) is then

given by

Ω̂α,PEM(f) ≡ SNRPEM(f)σΩ̂α
(f) , (2.64)

where σΩ̂α
(f) is the statistical uncertainty defined by Eq. (2.58). We can use the PEM

coherence calculations in two complementary ways. First, we can identify frequency bins

with particularly large instrumental or environmental contributions by placing a threshold

on |SNRPEM(f)| and excluding them from the analysis. Second, the frequency bins that are

not removed by this data-quality cut may still contain some residual environmental contam-

ination. We can estimate at least part of this residual contamination by using Ω̂α,PEM(f)

in these remaining frequency bins.
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As a part of the analysis procedure, we were able to identify the PEM channels that

were responsible for the largest coherent noise between the GW channels in H1 and H2 for

each frequency bin. We found that microphones and accelerometers in the central building

near the beam splitters of each interferometer registered the most significant noise. Within

approximately 1 Hz of the 60-Hz harmonics, magnetometers and voltage line monitors reg-

istered the largest correlated noise, but these frequencies were already removed from the

analysis due to significant coherence levels (cf. Figure 2.15).

We emphasize here that the PEM channels only monitor the instrument and the envi-

ronment, and are not sensitive to GWs. Similarly, the time-shift analysis, with a time-shift

of ±1 sec, is insensitive to broad-band GW signals. Hence, any data-quality cuts based on

the PEM and time-shift studies will not affect the astrophysical signatures in the data—i.e.,

they do not bias our estimates of the amplitude of stochastic GW background.

2.5.2 Data quality cuts

We present here the results from coherence and time-shift studies performed to identify and

remove narrowband correlations similarly to what was done for non-colocated detector pairs.

Coherence studies

Figure 2.15 shows coherence calculations done for the H1-H2 pair. Plots of Γ12(f) for

three different frequency resolutions are shown in Figure 2.15, for the frequency band 80–

160 Hz. In Figure 2.15, note the relatively wide structure around 120 Hz, which is especially

prominent in the bottom panel where the frequency resolution is 100 mHz. This structure

arises from low-frequency noise (dominated by seismic and other mechanical noise) up-

converting to frequencies around the 60 Hz harmonics via a bilinear coupling mechanism.

While these coupling mechanisms were not fully understood, we rejected the band 102–

126 Hz from for our analysis, given the elevated correlated noise seen in this band. A closer

look at the coherence also identified smaller structures at 86–90 Hz, 100 Hz, 140–141 Hz,

and 150 Hz. A followup analysis of PEM channels revealed that the highlighted bands in

Figure 2.15 were highly contaminated with acoustic or seismic (upconverted) noise. So we
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Figure 2.15: Coherence Γ12 between H1 and H2 computed in the frequency band 80–160 Hz
using all of the S5 data, for three different frequency resolutions: 1 mHz, 10 mHz, and
100 mHz (top-to-bottom). Plots on the left show Γ12 as a function of frequency while plots
on the right show distribution of Γ12. The distribution of Γ12 is expected to follow an
exponential distribution for Gaussian noise. Here ’accepted’ refers to the frequencies that
were used for further analyses.
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rejected these frequency bands also from subsequent analysis.

Time-shift

Using segments of duration T = 1 sec and time-shift of ±1 sec, we calculated the time-

shifted estimators Ω̂α,TS(f), variance σ2
Ωα,TS(f), and signal-to-noise ratio SNRΩα,TS(f) ≡

Ω̂α,TS(f)/σΩα,TS(f). The calibration and conditioning of the data was performed in same

way as for the non-colocated detectors. We removed frequency bin with |SNRΩα,TS(f)|

greater than 2 (a threshold based on studies done on a test data set).

2.5.3 Hardware and software injections

We validated our analysis procedure by injecting simulated stochastic GW signals into the

strain data of the two detectors. Both hardware and software injections were performed.

During S5 there was one stochastic signal hardware injection when both H1 and H2 were

operating in coincidence. A stochastic background signal with spectral index α = 0 and

amplitude Ω0 = 6.60 × 10−3 was injected for approximately 3 hours. In performing the

analysis, frequency bins were excluded based on the standard H1-H2 coherence calculations.

No additional frequency bins were removed using SNRPEM. The recovered signal was Ω0 =

(6.49± 0.04)× 10−3, consistent with the injected amplitude within 3σ. We also performed

ten software injection trials with an injection amplitude of Ω0 = 1.10 × 10−5. In each

trial, we time-shifted the output of one interferometer relative to the other before adding

the simulated stochastic signal. The time-shift was different in each trial, allowing for an

independent realization of the noise in each trial. In Figure 2.16 (left panel), the inverse

Fourier transform of Ω̂0(f) is shown for one of the ten trials; the presence of the signal is clear

from the sharp peak at zero-lag. Figure 2.16 (right panel) shows the recovered amplitudes

for the 10 trials.

2.5.4 Final Results

The H1-H2 analysis was done in two parts corresponding to searches for stochastic GW

background with spectral index α = 0 (80–160 Hz) and α = 3 (400 – 1000 Hz). Since the
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Figure 2.16: Left panel: The inverse Fourier transform of Ω̂0(f) for an SNRΩ0 ≈ 15 software
signal injection in the H1-H2 data with Ω0 = 1.10 × 10−5. Note that the signal decoheres
on a time-scale of order 10 ms, which justifies the ±1 s time-shifts used to identify noise
correlations in the time-shift method. Right panel: Recovered amplitudes for 10 software
injection trials, along with ±σΩ̂0

error bars. The injected signal, denoted by the dashed line,
in each case was Ω0 = 1.10× 10−5.

strain power output of an interferometer due to GWs, Sgw(f) ∝ fα−3 (see Eq. (2.57)), α = 0

case is dominated by low frequencies while α = 3 case is independent of frequency. In this

thesis we only report analysis and results of the low frequency region and make occasional

remarks on the high frequency region when necessary.

Below are the five stages of noise removal we performed in this analysis.

• Step 1: Initial data selection as described in Section 2.3.1.

• Step 2: Identification and removal of segments with short noise transients using Kleine

Welle algorithm [39].

• Step 3: Noisy frequency bins removal using coherence and time-shift methods.

• Step 4: Stationarity cut with ε = 0.2 (removed about 22% of the data)

• Step 5: Removal of additional frequency bins using PEM-coherence method. This was

done on weekly, monthly and full run basis.
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To illustrate the effect of the various noise removal methods enumerated above, below

we provide the results as different stages of cuts were applied to the data (see Table 2.1

for the definition of different stages). The cut threshold values used at stage III came

from an initial study performed using playground data to understand the effectiveness of

PEM-coherence and time-shift methods in finding problematic frequency bins. Hence those

results were considered as blind analysis results. But a post-unblinding study showed that

we could lower the SNRPEM threshold to values as low as 0.5 and were used at stage IV.

These results were considered as post-unblinding results and were used in the final estimates.

For threshold values < 0.5, the PEM-coherence contribution, Ω̂α,PEM, varied rapidly as the

threshold was changed indicating the statistical noise limit of the PEM-coherence method.

Stage Steps % of data vetoed
I Step 1 8.51
II Steps 1–4 56.01
III Steps 1–5 with

|SNRPEM| > 2, 72.06
|SNRTS| > 2

IV Steps 1–5, with
|SNRPEM| > 0.5, 76.34
|SNRTS| > 2

Table 2.1: Definition of various stages of noise removal in terms of the analysis steps de-
scribed in Section 2.5.4. Here stage III is corresponds to the blind analysis and stage IV to
post-unblinding analysis.

Table 2.2 summarizes the results for the low-frequency analysis after applying several

stages of noise removal as defined in Table 2.1. Figure 2.17 shows the results obtained

by applying the noise removal cuts in four stages. The left column of plots contains the

estimators, Ω̂0(f) and Ω̂0,PEM(f) along with the statistical error bar ±σΩ̂0
(f), and the

right column of plots shows the estimator Ω̂0(f) as a function of time lag between the two

detectors. If there was no correlation between the detectors, we would expect no structure

in those plots. For un-correlated noise there is no preferred time lag while for GW signal as

well as for correlated noise zero-lag corresponds to maximum correlation and the correlation

decreases as we move away from zero-lag. Also for broadband GW signal the correlation
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Stage Ω̂0 Ω̂0,PEM σΩ̂0
std/σΩ0

(×10−6) (×10−6) (×10−6)

I 5.50 −0.41† 0.39 5.82
II −1.53 −0.81 0.56 1.78
III −1.94 −0.70 0.70 1.56
IV −0.99 −0.20 0.75 1.58

Table 2.2: The different rows correspond to results obtained after various stages of noise
removal. † The PEM-coherence estimate on stage I also excludes frequencies (such as 60 Hz
harmonics) and time segments similar to stages II-IV.

decreases much faster than any relatively narrowband noise correlation. Thus the structures

we see in time-lag Vs Ω0 plots correspond to correlated noise. This indicates the presence of

residual correlated noise even after all the time-shift and PEM-coherence noise removal cuts

are applied. In contrast, we observed no such structure in the high-frequency plots after all

the cuts applied.

Since we could not remove all the correlated noise in the 80 − 160 Hz band even after

applying all the noise removal cuts, in this band we place a 95% upper C.L. limit on the

sum of GW energy density and residual correlated noise of Ω0 + η0 < 7.0× 10−6 with α = 0

(preliminary; under internal review). But for the 460−1000 Hz band, we were able mitigate

the effects of correlated noise, and so we place a 95% upper C.L. limit on the GW energy

density alone in this band of Ω3 < 8.4 × 10−4 (preliminary; under internal review). This

limit improves on the previous best limit in the high-frequency band by a factor of > 350 [5].

Figure 2.18 shows the upper-limits from the current analysis and from previous stochastic

analyses, along with the projected limit using advanced LIGO.

2.6 Summary

In this chapter, we described searches for stochastic GWs using data acquired by three LIGO

detectors. The result from non-colocated detector pairs (H1-L1 and H2-L1) set a 95% C.L.

upper limit Ω0 < 6.9 × 10−6 surpassing BBN and CMB limits in LIGO frequency band

(41.5− 169.25 Hz). The colocated detector pair suffered from high correlated noise and we
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Figure 2.17: Plots of Ω̂0(f) and Ω̂0,PEM(f) (left), and the inverse Fourier transform of Ω̂0(f)
(right) for the 80–160 Hz band after various stages of noise removal were applied to the data.
The four rows correspond to four different stages of cleaning defined in Table 2.1.
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Figure 2.18: The above figure shows upper limits from current/past SGWB analyses, as
well as indirect limits from Big Bang Nucleosynthesis (BBN), and projected limits using
Advanced LIGO. Indirect limits from BBN apply to SGWBs present in the early universe
at the time of BBN, but not to SGWBs of astrophysical origin created more recently. The
α = 3 bound on astrophysical SGWB presented here improves on the previous best limit by
a factor of >350x. It complements the indirect bound from the BBN, which is only sensitive
to cosmological SGWBs from the early universe, as well as direct α = 0 measurements using
lower-frequency observation bands [14].

applied, in addition to methods used for non-colocated pairs, a new PEM-coherence method

to identify and remove some of those noise correlations. The methods proved to be useful

in cleaning the high-frequency band, but not sufficient in the low-frequency band. The high

frequency result set a 95% C.L. upper limit Ω3 < 8.4 × 10−4 (preliminary; under internal

review) in the frequency band 400− 1000 Hz which is >350x better than the previous limit

in this band.



Chapter 3

Searches for long GW transients

Gravitational waves with time scales ranging from milliseconds to weeks are called GW

transients. The upper limit of weeks is not a strict one but if they extend far beyond that

then they are considered as continuous or persistent signals. For example, stochastic GW

signals that we discussed in Chapter 2 are examples of persistent signals. As we discussed

in Section 1.2, searches for GW transients can be divided into two categories: searches for

transients whose precise waveforms are hard to model and searches for transients such as

compact binary coalescences whose waveforms can be easily predicted. Historically, searches

for GW transients with unknown waveforms focus on signals with duration . 1 s [2].

In this chapter, we focus on long GW transients whose duration may range from many

seconds to weeks. There exist many compelling models of astrophysical scenarios that predict

emission of long GW transients [124, 45, 130, 162]. There are not many analysis pipelines

that could be used to search for long GW transients (for example see [132, 64, 104]). Here

we introduce a new pipeline based on cross-correlation between two detectors.

In Section 3.1, we survey a range of mechanisms for GW emission that may lead to

long transients. These include long-lived turbulent convection in protoneutron stars (PNSs),

rotational instabilities in rapidly spinning PNSs and in double neutron-star merger remnants,

magnetoturbulence and gravitational instabilities in gamma-ray bursts (GRBs) accretion

torii, r-modes associated with accreting and newborn neutron stars, as well as, perhaps

more speculatively, pulsar glitches and soft-gamma-repeater (SGR) outbursts.

In Section 3.2, we introduce an analysis framework utilizing frequency-time (ft)-maps

64
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of GW strain cross-power created using data from two spatially separated detectors. The

framework is then extended to include multiple detectors, and we show that it is a general-

ization of the GW radiometer algorithm [8]. In Section 3.3, we study pixel distributions of

ft-maps and compare ft-cross-power maps of GW data (time-shifted to remove astrophysical

content) with Monte Carlo simulations of idealized detector noise.

In Section 3.4, we describe methods to search for long GW transients in ft-cross-power

maps using pattern recognition algorithms and illustrate the method using “box search” [20]

as an example algorithm. We also briefly discuss a few other algorithms and use of the new

analysis tool to identify environmental noise artifacts in LIGO data. In Section 3.5 we apply

the transient GW pipeline developed here to search for GWs from gamma-ray bursts and

provide preliminary results. Summary of the chapter is given in Section 3.6.

3.1 Sources of Long GW Transients

In this section, we review a few of the astrophysical sources of long GW transients. For a

comprehensive review please refer to [124, 110, 159] and references therein. The astrophysical

sources of long GW transients, in general, can be associated with one or more of three types

of objects: core-collapse supernovae (CCSNe), compact binary inspirals, or isolated neutron

stars.

3.1.1 Core-collapse supernovae

Massive stars at the end of their life undergo violent explosions releasing copious amount of

energy in the form of electromagnetic radiation, neutrinos and mass ejecta. It is also widely

believed that such violent explosions could be non-spherical in nature producing significant

amount of GW radiation.

Currently there are two plausible scenarios by which massive stars, associated with

strong electromagnetic emission called GRBs, could end their life. In the first scenario

of collapsars [166], a massive star collapses to a black hole without explosion or with a weak

explosion and fallback accretion. In the second scenario of protoneutron star [34, 157], after
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a strong explosion the massive star forms a fast rotating intermediate nascent neutron star

which then subsequently may form a block hole depending on accretion. In both scenarios,

the accretion disk surrounding the black hole or PNS could undergo instabilities leading to

GW emission [130, 162]. In addition to the instabilities in accretion disk, the PNS itself could

undergo various non-axisymmetrical rotational instabilities producing GWs. Most of these

mechanisms are expected to produce narrowband GWs with a slow frequency evolution.

There are also other mechanisms such as PNS convection [124] that could produce GWs

that are expected to be relatively broadband.

Accretion disk instabilities

In the collapsar scenario, the accretion disk surrounding the newly formed black hole un-

dergoes various magneto-hydrodynamic instabilities leading to clumping or disk fragmenta-

tion. These clumps could inspiral towards the central black hole via viscous friction and/or

GW emission. In [130], the authors predict maximum dimensionless strain amplitudes of

|h| ∼ 2× 10−23(fGW/1000 Hz)2/3 for a system with fragment masses of 1M�, central black

hole mass of 8M�, and at a distance of 100 Mpc. In this model, the frequency slowly in-

creases over the emission interval, making the emission quasi-periodic and, thus, increasing

its detectability by increasing its characteristic strain hc up to O(×10−22) at fGW ∼ 100 Hz.

It is also possible to have GW emission via magnetic coupling between accretion disk

and the central black hole. In [161, 162, 163], the author proposes an extreme “suspended–

accretion” scenario in which the central black hole and the accretion torus are dynamically

linked by strong magnetic fields. In this model, the spin-down of central black hole powers

both the GRB and GW emission. The GWs from such system are expected to be narrowband

((1 ∼ 2 kHz)(1+z) at a redshift of z) with a strong frequency evolution [161]. The frequency

is predicted to vary with time such that df/dt = const [161]. The GW emission is expected

to last from a few seconds to minutes with a strain of h ∼ 10−23 at 1 kHz [161].
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PNS convection and other instabilities

PNS convection, in general, is turbulent and expected to occur at moderate to high Reynold

numbers leading to incoherent stochastic broadband GW transients. The typical expected

GW strains are h ∼ 3×10−23 at a galactic distance of 10 kpc [111, 124]. As mentioned before,

the PNS, if born with large rotational speeds (10−100 msec), could also undergo rotational

instabilities. Depending on the ratio of rotational kinetic energy (T ) and gravitational

energy (W ), there are various rotational instabilities that could occur [125, 142, 124]. If

T/|W | & 0.27, nonaxisymmetric deformation will occur dynamically lasting a few dynamical

times of O(ms) (see, e.g., [23, 146]) producing GWs on that timescale. At T/|W | & 0.14,

a secular gravitational-radiation reaction or viscosity-driven instability may set in, leading

to nonaxisymmetric deformation which could last ∼ 10− 100 s [106, 45] producing GWs on

that time scale.

R-modes are another type of instabilities, called quasi-toroidal oscillations, that could

also occur in PNS. These oscillations are unstable to growth by gravitational-radiation re-

action via the secular Chandrasekhar-Friedman-Schutz instability [38, 74] and can produce

GWs of very long duration. The typical expected strain amplitudes are [128],

h ∼ 4.4× 10−24α(ΩNS/
√
πGρ̄)3(20 Mpc/D) ,

where ΩNS is the PNS angular velocity, D is the distance to the source and ρ̄ is the mean

neutron star density. The parameter α ∈ [0, 1] is the dimensionless saturation amplitude of

the r-modes and most recent work [31, 30] suggests that α� 0.1.

3.1.2 Postmerger evolution of compact binaries

In Section 3.1.1, we discussed a variety of scenarios for long GW transients in the context

of single massive star producing PNS and/or black-hole – accretion-disk systems. A similar

situation could also arise in the postmerger stage of compact binaries. Depending on the

masses of binary constituents, the resultant object could be a block hole or PNS [99]. As

in the case of massive stars, the resultant PNS or black-hole – accretion-disk systems in the
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post-merger stage could produce GWs due to various instabilities described in Section 3.1.1.

In some cases, such as highly eccentric black hole binaries (BBH), the pre-merger stage

is hard to model and hence standard matched filtering techniques used for compact binary

mergers could not be used for GW detection. According to some models [121], a significant

fraction of BBH form dynamically with high eccentricities (ε > 0.9) leading to an Advanced

LIGO event rate of ∼ 1− 100 yr−1. Hence we might need new detection algorithms to look

for such GW signals, which is the topic of this chapter.

3.1.3 Isolated neutron stars

Isolated neutron stars are another potential source of long GW transients. There are two

sub-categories that are most promising: pulsar glitches and soft-gamma repeater flares.

Pulsar glitches are sudden speed-ups in the rotation of pulsing neutron stars observed by

radio and X-ray observatories. The fractional change in rotational frequency ranges 10−10 <

∆f/f < 5× 10−6, corresponding to rotational energy changes of . 1043 erg [102, 117]. The

speed-up, which takes place in < 2 min, is followed by a period of relaxation (typically

weeks) during which the pulsar slows to its pre-glitch frequency [114]. The mechanism by

which pulsar glitches occur is not yet understood well, but if we assume that the relaxation

occurs mainly due to the emission of GWs, we expect strains of h ∼ 8×10−24 at 3.8 kHz [21]

from such phenomena. This is six times below the Advanced LIGO noise floor and hence

can be ruled out as a candidate for possible detection, unless there is a radically different

glitch mechanism than the one considered in [21].

Soft-gamma repeaters (SGRs) are caused by seismic events in the crusts of magnetars

and are identified via their electromagnetic signature. These seismic events would also alter

the moment of inertia of the magnetars and hence could produce GWs. Recent searches

by LIGO have set limits on lowest-order quadrupole ringdowns in SGR storms [13] and in

single-SGR events [15]. Current models of GW from SGRs [80, 108, 150, 127, 92, 50, 93] are

very preliminary, but even if we assume that only 0.1% of the 1046 erg of electromagnetic

energy in a nearby SGR flare is converted into GWs, the SGRs could be observable via GWs

in the advanced detector era.
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3.2 An excess cross-power statistic

In Section 2.2 of Chapter 2 we derived a cross-correlation statistic integrating over all sky

directions and frequencies which was then used for SGWB searches. Here we are interested

in astrophysical sources with definite sky position and characteristic frequency evolution.

Hence we want to develop a statistic similar to Section 2.2 but without integrating over sky

directions and frequencies (but only want to integrate over a desired set of frequencies).

We start with the definition of metric perturbation coming from a particular direction

in the sky:

hab(t, ~x) =
∑
A

∫ ∞
−∞

df eAab(Ω̂)h̃A(f) e2πif(t+Ω̂·~x/c). (3.1)

As before A is the polarization state and {eAab} are the GW polarization tensors with Carte-

sian indices ab, (see Appendix A.1.1 for additional details).

Similar to Eq. (2.13), we define GW strain power spectrum in each polarization by

HAA′(t; f) = 2〈h̃∗A(t; f)h̃A′(t; f)〉. (3.2)

The factor of 2 comes from the fact that HAA′(t; f) is one-sided power spectrum. It is

convenient to characterize the source with a single spectrum that includes contributions

from both + and × polarizations. We therefore define

H(t; f) ≡ Tr [HAA′(t; f)] , (3.3)

so as to be invariant under change of polarization bases. This definition is a generalization

of the two-sided power spectrum for unpolarized sources defined in Eq. (2.13).

Here we are interested in defining an estimator ŶΓ(Ω) that can be used to search for

signals that have characteristic shapes (Γ) in the frequency-time (ft)-maps: a two dimen-

sional array of pixels in which each column is obtained by Fourier transform of segment

of length T . Since our data consists of discrete time-series, the frequency column is also
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Figure 3.1: An example ft-map of SNR(t; f, Ω̂) using simulated data with with T = 4 sec
and δF = 0.25 Hz resolution (see (3.10)).

discrete. Figure 3.1 shows an example ft-map. In Section 3.2.3, we describe how ŶΓ can

be constructed by combining clusters of ft-map pixels, corresponding to evolution of GW

signal. It is equivalent to extending the stochastic-search formalism developed in Section 2.2

beyond models of persistent unpolarized sources to include polarized and unpolarized tran-

sient sources. This is meant to bridge the gap between searches for short O(s) signals and

stochastic searches for persistent GWs.

3.2.1 A single ft-map pixel

In Appendix A.1.2, we derive the form of an estimator Ŷ for GW powerH(t; f) in a single ft-

pixel by cross-correlating the strain time series sI(t) and sJ(t) from two spatially separated

detectors, I and J , for a source at a sky position Ω̂ 1. We find that

Ŷ (t; f, Ω̂) ≡ Re
[
Q̃IJ(t; f, Ω̂)CIJ(t; f)

]
, (3.4)

1For the sake of simplicity, the calculations in this section ignore effects from windowing and the use of
overlapping segments.
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where CIJ(t; f) is the one-sided cross-power spectrum

CIJ(t; f) ≡ 2 s̃∗I(t; f)s̃J(t; f). (3.5)

This is similar to Eq. (2.29), but without the integration over Ω̂ and f . Here the filter

function Q̃IJ(t; f, Ω̂) depends on the source direction and polarization (as opposed to Q̃(f)

in Section 2.2 which is independent of Ω̂). For unpolarized sources (see Appendix A.1.2),

Q̃IJ(t; f, Ω̂) =
1

εIJ(t; Ω̂)
e2πifΩ̂·∆~xIJ/c. (3.6)

where εIJ(t; Ω̂) ∈ [0, 1], the “pair efficiency,” is

εIJ(t; Ω̂) ≡ 1

2

∑
A

FAI (t; Ω̂)FAJ (t; Ω̂). (3.7)

Here FAI (t; Ω̂) is the “antenna factor” for detector I and ∆~xIJ ≡ ~xI − ~xJ is the difference in

position vectors of detectors I and J ; (see Appendix A.1.1). Pair efficiency is defined such

that a GW with power H will induce a strain cross-power of εIJH between two detectors

I, J . It is unity only in the case where both interferometers are optimally oriented so

that the change in arm length is equal to the strain amplitude. For additional details see

Appendix A.1.1 and Appendix A.1.2.

The variance of Ŷ is calculated in Appendix A.1.3. Then in Appendix A.1.4, we show

that the following expression for σ̂2
Y (t; f, Ω̂) (motivated by analogy of Eq. (2.43)) is an

estimator for the variance of Ŷ ,

σ̂2
Y (t; f, Ω̂) =

1

2
|Q̃IJ(t; f, Ω̂)|2P adj

I (t; f)P adj
J (t; f), (3.8)

where P adj
I is the average one-sided auto-power spectrum in neighboring pixels,

P adj
I (t; f) ≡ 2 |s̃I(t; f)|2. (3.9)
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The overline denotes an average over neighboring pixels 2.

From Eqs. (3.8) and (3.4), we define the signal to noise ratio SNR(t; f, Ω̂) for a single

ft-map pixel:

SNR(t; f, Ω̂) ≡ Ŷ (t; f, Ω̂)/σ̂Y (t; f, Ω̂)

=Re

 Q̃IJ(t; f, Ω̂)∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣ CIJ(t; f)√

1
2P

adj
I P adj

J

 (3.10)

It depends on the phase of Q̃IJ(t; f, Ω̂), but not on the magnitude. Thus, a single ft-pixel

taken by itself contains no information about the polarization properties of the source, since

the polarization does not affect the phase of Q̃. This degeneracy is broken when we combine

ft-pixels from different times or from different detector pairs. In Appendix A.1.5, we derive

an analytical expression for the distribution of SNR(t; f, Ω̂) for the cases with δF = 1/T ,

where δF is the frequency resolution.

3.2.2 Energy, fluence and power

One of the most interesting intrinsic properties of a transient source of GWs is the total

energy emitted in gravitational radiation, EGW. By measuring EGW (and, when possible,

comparing it to the observed electromagnetic energy, EEM), we can make and test hypotheses

about the total energy associated with the event as well as constrain models of GW produc-

tion. Thus, it is useful to relate Ŷ (t; f, Ω̂) to EGW and the related quantity of fluence. If

the GW energy is emitted isotropically (in general it is not) then [145],

EGW = 4πR2 c3

16πG

∫
dt
(
ḣ2

+(t) + ḣ2
×(t)

)
, (3.11)

2In order to chose a suitable number of neighboring pixels to average over, one must typically take into
account the stationarity of the detector noise.
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where R is the distance to the source. It follows that the equivalent isotropic energy is

related to our cross-power estimator as follows:

ÊGW(t; f, Ω̂) = 4πR2πc
3

4G

(
Tf2

)
Ŷ (t; f, Ω̂), (3.12)

which is same as Eq. (1.22) with h2(f) ' Y (f).

ÊGW(t; f, Ω̂) may contain significant uncertainty about the distance to the source or the

isotropy of the GW emission. It is therefore useful to define a statistic that contains only

uncertainty associated with the strain measurement. The natural solution is to construct a

statistic for GW fluence, F̂GW(t; f, Ω̂), which is given by

F̂GW(t; f, Ω̂) =
ÊGW(t; fΩ̂)

4πR2

=Tf2

(
πc3

4G

)
Ŷ (t; f, Ω̂).

(3.13)

In the subsequent section, we show how multiple pixels can be combined to calculate the

average power inside some set of pixels. The same calculation can be straightforwardly

extended to calculate the total fluence. This is done by reweighting Ŷ (t; f, Ω̂) and σ̂(t; f, Ω̂)

by (πc3/4G)(Tf2). Also Eqs. (3.15) and (3.17) must be scaled by the number of pixels in a

set, N ; (otherwise we obtain average fluence instead of total fluence).

3.2.3 Multi-pixel statistic

We now generalize from our single-pixel statistic to accommodate transients persisting over

N pixels in some set of pixels, Γ. We define HΓ to be the average power inside Γ,

HΓ ≡
1

N

∑
t;f∈Γ

H(t; f). (3.14)
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A minimum-variance estimator for the GW power in Γ can be straightforwardly constructed

from a weighted sum of Ŷ (t; f, Ω̂) for each pixel in Γ,

ŶΓ(Ω̂) =

∑
t;f∈Γ Ŷ (t; f, Ω̂) σ̂Y (t; f, Ω̂)−2∑

t;f∈Γ σ̂Y (t; f, Ω̂)−2
. (3.15)

Here we assume that the power is either evenly or randomly distributed inside Γ, which is

to say 〈H(t; f)〉 = 〈H(t′; f ′)〉 ≡ H0 and so 〈HΓ〉 = H0. Thus,

〈ŶΓ(Ω̂)〉 =

〈∑
t;f∈Γ Ŷ (t; f, Ω̂) σ̂Y (t; f, Ω̂)−2∑

t;f∈Γ σ̂Y (t; f, Ω̂)−2

〉

=

∑
t;f∈Γ〈Ŷ (t; f, Ω̂)〉 σ̂Y (t; f, Ω̂)−2∑

t;f∈Γ σ̂Y (t; f, Ω̂)−2

= H0

(∑
t;f∈Γ σ̂Y (t; f, Ω̂)−2∑
t;f∈Γ σ̂Y (t; f, Ω̂)−2

)
= 〈HΓ〉.

(3.16)

Here we have additionally assumed that there are no correlations between Ŷ (t; f, Ω̂) in

different pixels. If the GW signal in different pixels is correlated, then the {Ŷ (t; f, Ω̂)}

are correlated and Eq. (3.15) should, in theory, be modified to include covariances between

different pixels. In practice, however, the covariance matrix is not known, and so we must

settle for this approximation, which gives the estimator a higher variance than could be

achieved if the covariance matrix was known.

The associated estimator for the uncertainty is

σ̂Γ(Ω̂) =

∑
t;f∈Γ

σ̂Y (t; f, Ω̂)−2

−1/2

. (3.17)

The choice of the set of pixels Γ to include in the sum in Eq. (3.15) is determined by the

signal model. For example, a slowly varying narrowband signal can be modeled as a line of

pixels on the ft-map. We explore this and other choices for Γ in greater detail in Section 3.4.



3.2. An excess cross-power statistic 75

The SNR for given a set of pixels Γ is given by

SNRΓ(Ω̂) =
ŶΓ(Ω̂)

σ̂Γ(Ω̂)
. (3.18)

Since SNRΓ is the weighted sum of many independent measurements, in case of pure noise we

expect, due to the central limit theorem, that the distribution of SNRΓ will be increasingly

well-approximated by a normal distribution as the volume of Γ increases and more pixels

are included in the sum 3.

3.2.4 Multi-detector statistic

It is straightforward to generalize ŶΓ for a detector network N consisting of n ≥ 2 spatially

separated detectors. First, we generate n(n− 1)/2 ft-maps for each pair of interferometers.

Then we extend the sum over pixels in Eq. (3.15) to include a sum over unique detector

pairs p(I, J):

ŶNΓ (Ω̂) =

∑
p(I,J)

∑
t;f∈Γ ŶIJ(t; f, Ω̂)σ̂IJ(t; f, Ω̂)−2∑

p(I,J)

∑
t;f∈Γ σ̂IJ(t; f, Ω̂)−2

. (3.19)

By construction, the expectation value is

〈ŶNΓ 〉 = HΓ. (3.20)

The associated uncertainty is

σ̂NY (Ω̂) =

∑
p(I,J)

∑
ft

σ̂IJ(t; f, Ω̂)−2

−1/2

. (3.21)

Adding new detectors to the network improves the statistic by mitigating degeneracies

in sky direction and polarization parameters and also by improving sensitivity to HΓ by

increasing the number of pixels contributing to ŶNΓ .
3Here we also assume that the probability density function for each pixel is the same, which is to say

that the noise and signal are approximately stationary.
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3.2.5 Relationship to the GW radiometer

The multi-pixel statistic ŶΓ is straightforwardly related to the GW radiometer technique,

which has been used to look for GWs from neutron stars in low-mass X-ray binaries [8]. By

constructing a rectangular set of pixels consisting of one or more frequency bins and lasting

the entire duration of a science run, we recover the radiometer statistic as a special case.

It is instructive to compare the unpolarized radiometer statistic [8] with our ŶΓ:

Ŷ rad(t; f, Ω̂) ≡
∫ ∞
−∞

dfQ̃rad
IJ (t; f, Ω̂)s̃?I(t; f)s̃J(t; f) (3.22)

Q̃rad
IJ (t; f, Ω̂) ≡ λt

γIJ(t; f, Ω̂)H̄(f)

PI(f)PJ(f)
(3.23)

γIJ(t; f, Ω̂) ≡ εIJ(t; Ω̂) e2πifΩ̂·∆~xIJ/c. (3.24)

Here γIJ(t; f, Ω̂) is the so-called overlap reduction factor, λt is a normalization factor and

εIJ(t; Ω̂) is the pair efficiency, which we define in Eq. (A.18) and Eq. (3.7).

There are two things worth noting here. First, the extra factor of H(f)/PI(f)PJ(f) in

the expression for Q̃rad
IJ does not appear in our expression for Q̃IJ (see Eq. (A.17)). The

factor of 1/PI(f)PJ(f) is proportional to σ(f)−2, and so it is analogous to the weighting

factors in Eq. (3.15). The difference is that Ŷ rad builds this weighting into the filter function

whereas we opt to carry out the weighting when combining pixels. We used similar formalism

in searches for SGWB using colocated detectors (see Section 2.5.1). The factor of H̄(f) in

Q̃rad
IJ is the expected source power spectrum. When we choose a set of pixels Γ, we effectively

define H(f) such that H(f) = const inside Γ and H(f) = 0 outside Γ.

Second, we note that apparently Q̃rad
IJ ∝ ε whereas our filter scales like Q̃IJ ∝ 1/ε. It

turns out that both filters scale like 1/ε because the radiometer normalization factor λ ∝ ε−2.

The historical reason for this is that the radiometer analysis was developed by analogy with

isotropic analyses [19], which includes an integral over all sky directions. The inclusion

of γ(t; f, Ω̂) in the expression for Q̃rad
IJ serves to weight different directions as more or less
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important just like the factor of 1/PI(f)PJ(f) weights different frequencies.

3.2.6 Relation to other search frameworks

This is not the first time that ft-maps of data have been proposed to search for GWs.

The literature on this subject is extensive and diverse. We concentrate on comparison with

“excess power” methods, (see e.g., [20, 152, 96]). The key difference between our frame-

work and others is that we cross-correlate data from two interferometers before they are

rendered as ft-maps. Previous implementations such as [152] and [96] instead form ft-maps

by auto-correlating data from each interferometer individually and then correlating regions

of significance in these maps. For Gaussian noise, neither of these ways of combining data

from different detectors is optimal. Instead, the optimal multi-detector method incorpo-

rates both autocorrelated and cross-correlated components [20] (however if we just compare

auto-power and cross-power methods, in [20] for CBC signals it is shown that cross-power

analyses perform better than coherent auto-power analyses). Real interferometric GW data,

however, is not Gaussian. Rather, there is an underlying Gaussian component with frequent

non-Gaussian bursts called “glitches.” For situations of this type, our approach has two

advantages.

First, noise bursts in both detectors that coincide in time and frequency increase the

false-alarm rate for statistics with auto-correlated components, but are suppressed in our

cross-correlation analysis unless the waveforms of the burst themselves are correlated in

phase like a true GW. Second, even when noise bursts are present, the pixel values in an

ft-map of cross-correlated data are well approximated by a simple model. This is unlike

ft-maps with auto-correlated components, for which there is a no simple description. Thus,

while our statistic is sub-optimal for Gaussian data, we expect it to perform well for real

interferometer data. Moreover, even in the case of Gaussian noise, we do not sacrifice much

sensitivity compared to the optimal excess-power statistic, or even to matched filtering, as

demonstrated in [159].
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3.3 Distribution of signal and background

In order to determine if a candidate event warrants further examination, it is necessary to

determine the threshold above which an event is elevated to a GW candidate. This thresh-

old is usually phrased in terms of a false-alarm rate (FAR). In Section 3.2, we argued that

ft-maps of cross-power provide a convenient starting point for searches for long transients

because cross-correlation yields a reasonably well-behaved SNR(t; f, Ω̂) statistic whose prob-

ability density function (PDF) we can model semi-analytically or numerically, thus allowing

straightforward calculation of a nominal detection threshold in the presence of Gaussian

noise. We now assess this claim quantitatively.

There are two limits in which we can semi-analytically derive the expected distribution

of pixel SNR(t; f, Ω̂), assuming Gaussian noise for initial time-series. First limit is when the

frequency resolution of ft-map is inversely proportional to the length of each segment i.e.,

δF = 1
T . In this case the distribution can be derived easily (see Appendix A.1.5 for the

derivation) and Figure 3.2 shows the distribution of 4 s × 0.25 Hz size pixels. The other

limit is when we average over a large number of frequency bins i.e., δF � 1
T . Since we

are averaging over a large number of frequency bins, according to central limit theorem

the distribution will converge to a Gaussian distribution. Figure 3.3 shows distribution of

SNR(t; f, Ω̂) for 52 s× 0.25 Hz size pixels.

3.4 Pattern recognition

In this section we apply the cross-power statistic developed in Section 3.2 for a set of rect-

angular manifolds (called ‘boxes’) in a given ft-map in order to search for broadband astro-

physical GW signals (PNS convection type signals). In Section 3.5, we introduce another

type of algorithm, called burst cluster, to look for narrowband signals.

3.4.1 Broadband box search

We demonstrate how a box-shaped set of pixels can be used to search for a broadband GW

transient source. For illustrative purposes, we consider a simple model based on protoneutron
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Figure 3.2: Distribution of SNR(t; f, Ω̂) for the case of 4 s× 0.25 Hz size pixels with Monte
Carlo data. For this plot we used 2 neighboring segments to calculate σ̂Y (t; f, Ω̂). .

star (PNS) convection with a spectrum produced in an axisymmetric PNS model assuming

a non-rotating, 15 M� progenitor [124] (see Figure 3.4). We simulate a d = 4.5 kpc source

in the direction of ra = 17 hrs, decl = 30◦ at 00:00 GMST on top of simulated detector

noise comparable to the design sensitivity for initial LIGO. We calculate the cross-power

statistic ŶΓ utilizing a 200 Hz × 16 s box constructed with the H1L1 detector network. We

use 4 s×0.25 Hz pixels, and for each pixel we use 20 adjacent segments to calculate σ̂(t; f, Ω̂),

(10 on each side). We tile the ft-map and record the ŶΓ within each box. We find that the

signal can be recovered with SNR(t; f, Ω̂) = 8. The results are summarized in Figure 3.5.

3.4.2 Other algorithms

In Section 3.4.1 we have, for illustrative purposes, presented one of the many pattern recog-

nition algorithms that may be applied to the problem of looking for features in ft-maps

of cross-power. There is a diverse and extensive literature devoted to the study of cluster

identification, (see, e.g., [91, 97]). There are typically both advantages and disadvantages
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Figure 3.3: Histogram of SNR(t; f, Ω̂) using 52 s × 0.25 Hz pixels comparing S5 data with
an unphysical time-shift (blue) to Monte Carlo data (red) and a normal distribution with
mean = 0 and σ = 1 (black). Here we used 2 neighboring segments to calculate σ̂Y (t; f, Ω̂).
Figure taken from [159].

associated with each algorithm, which means that each one lends itself to different applica-

tions.

There are other algorithms that are currently being used for GW signal identification

in LIGO data such as Radon algorithm [76], locust and Hough algorithms [133], burst

cluster [97], burstegard [131] etc. The Radon algorithm uses Radon transform [51] to convert

line-like structures in a 2D map into points in Radon space. A bright point in Radon space

corresponds to a strong line in the original 2D ft-map. An example plot can be seen in

reference [159]. The Hough algorithm is similar to the Radon algorithm, except that it can

be extended to fit tracks described by arbitrarily high-order polynomials. By introducing

additional fit parameters, the tracks tend to be reconstructed more accurately. However, by

adding more parameters, the significance of a line-like event with little or no curvature can

be less than the value obtained by the Radon algorithm.



3.4. Pattern recognition 81

10
2

10
3

10
−4

10
−3

10
−2

10
−1

f (Hz)

|h
(f

)|
 (

10
−

22
)

Figure 3.4: GW strain amplitude spectrum due to PNS convection in an axisymmetric PNS
model at a typical galactic distance of 10 kpc [124]. This plot was generated using the data
simulated in [124] available at [123]. Figure published in [159].

The locust algorithm is a local wandering algorithm, which integrates the ft-map along

a chain of local maxima. This algorithm has the advantage that it can reconstruct arbitrary-

shaped tracks without large numbers of free parameters. Since it relies on local maxima,

however, the Radon and Hough algorithms are more robust if the GW power is spread

diffusely over many pixels.

Burst cluster is a density based clustering algorithm that connects different regions of

ft-map based on the number of pixels exceeding a threshold. It can be used to search for

both narrowband and broadband signals. Burstegard is a derivative of burst cluster and

uses ‘closeness’ of pixels exceeding a threshold to cluster them. Similar to burst cluster,

burstegard can also be used to search for narrowband and broadband signals. Compared to

burst cluster, burstegard is better in identifying very narrow, single pixel, tracks in ft-maps

while burst cluster is better at identifying weak broadband signals.
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Figure 3.5: PNS signal injection and recovery using with the box-search algorithm. Top-left:
an ft-map of Ŷ (t; f, Ω̂). The injected signal (not visible by eye) is indicated with a green
arrow. Top-right: an ft-map of SNR(t; f, Ω̂). The injected signal (not visible by eye) is
indicated with a black arrow. Bottom-left: a histogram of SNRΓ for a 200 Hz × 12 s box.
The blue dashed line corresponds to the injection. Though the signal is weak in each pixel,
the signal obtained by combining every pixel in Γ is large. Bottom-right: ŶΓ as a function
of time. Figure published in [159].
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3.4.3 Application to environmental noise identification

While our discussion until now has been focused on the detection of GW transients, the

same formalism can be applied to look for structure in ft-maps of cross-power between any

two data channels. In particular, it is illuminating to study the cross-power between an

interferometer’s GW-strain channel, (which we denote sGW) and a physical environmental

monitoring (PEM) channel such as a seismometer or a magnetometer channel located near

the interferometer. Since PEM channels are not sensitive to GWs, statistically significant

features in an ft-map of PEM-sGW cross-power are likely due to environmentally-induced

noise artifacts.

Transient artifacts are called “glitches” whereas persistent narrowband features are often

called “lines” or “wandering lines” when the frequency slowly changes over time. Glitches and

wandering lines can be problematic for searches for bursts / compact binary coalescences

and for pulsars respectively, see, e.g., [149, 11, 10]. (They also produce non-Gaussian noise

for our cross-power statistic.) It is thus desirable to identify and when possible mitigate

these noise features.

For illustrative purposes, we considered a special class of noise artifacts induced by

passing airplanes. These “airplane events,” are relatively well understood. The existing

LIGO airplane veto system (called planemon) has been shown to flag airplanes observed in

microphone channels, and these flags have been shown to agree with airplane flight data [81],

though the existing planemon algorithm does not determine if the passing airplane affects

sGW(t). Since we already understand a lot about airplane events, it is straightforward to

assess if our algorithms are consistent with what we already know.

Since these airplane artifacts look more like straight lines, we used Radon transform to

identify these events in ft-maps created by correlating GW channel and acoustic channels

(these PEM channels are sensitive to the sound produced by the passing by airplanes). By

using a large set of ft-maps (∼ 600), we found that Radon transform was able to recover

most of the airplane like events and in some cases even performed better than planemon.

Figure 3.6 shows an example ft-map with an airplane event and its identification using

Radon algorithm. With this study we were able to show the usefulness of current pipeline
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not only in searching for GW transients, but also in identifying noise transients in detector

data.
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Figure 3.6: Top-left: a 400 s-duration map of SNR(t; f) (see Eq. (3.10)) created with 4 s ×
0.25 Hz pixels and using sGW cross-correlated with a microphone. The slightly curved track
on the right side of the plot is caused by the Doppler-shifted acoustic signal from a passing
airplane. Top-right: the associated Radon map. Note the bright spot on the mid-right
corresponding to the airplane track. Bottom-left: ft-map of the reconstructed track using
the maximum SNR(t; f) pixel in Radon space. Bottom-right: ft-map of the magnitude of
SNR(t; f) including a black line corresponding to the veto window. These data are from the
beginning of LIGO’s S5 science run. . Figure taken from [159].
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3.5 Searches for long GW transients from GRBs

In the previous section we derived a detection statistic and developed an analysis pipeline

to look for long GW transients by cross-correlating data from two or more detectors. In

this section we describe a method that could be used to look for long GW transients from

Gamma-ray bursts.

3.5.1 Gamma-ray bursts

Gamma-ray bursts are intense flashes of high energy electromagnetic radiation from distant

astrophysical sources. They are considered as the brightest of electromagnetic events known

to occur in our observable universe. GRBs are most commonly detected at distances corre-

sponding to z ≈ 1−2 [79], though, nearby GRBs have been detected as close as 37 Mpc [77].

The GRBs are generally divided into two classes [101, 78] depending on their (t90) duration:

short gamma-ray bursts and long gamma-ray bursts. Short gamma-ray bursts, lasting upto

∼ 2 secs and characterized by hard gamma-ray spectra (higher end of gamma-ray spectrum),

are expected to arise from the merger of compact binaries while long gamma-ray bursts, last-

ing more than ∼ 2 secs and characterized by soft gamma-ray spectra, are expected to be

produced by the collapsars (collapse of massive stars). In Section 3.1, we described these two

scenarios, protoneutron star and collapsar, as plausible sources of GWs. In this section we

mainly focus on the detection of GWs from such sources using electromagnetic observations

as triggers.

3.5.2 Methodology and preliminary results

Here we are interested in the detection of GWs from GRBs using electromagnetic obser-

vations as triggers, particularly in the detection of narrowband long duration (∼ 100 secs)

GW signals. The motivation behind the search for such narrowband signals is that some

models predict GWs with considerably higher strain (∼ 1023) upto source distances of

∼ 100 Mpc [161, 130] which are potentially observable with initial and advanced LIGO.

Other models of broadband GW transients, such as PNS convection, predict either smaller
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strain or require closer sources. We note here that there were previous LIGO GRB anal-

yses [16, 3, 4, 9, 156] that searched for GWs in coincident with GRBs, but they mainly

focused on sub-second burst signals. Here, however, we are interested in signals that last

upto ∼ 100 seconds.

First we produce ft-maps centered around GRB triggers using data from H1 and L1 LIGO

detectors obtained during their fifth science run. The GRB triggers consisting of GPS start

time, right ascension (RA), and declination (dec) are obtained from the swift satellite [119].

We then search for largest cluster in SNR ft-maps for every GRB trigger, using clustering

algorithms described in Section 3.4.2. We compare the SNRs of the largest clusters found

in ft-maps around each GRB trigger with SNRs obtained from similar clustering done on

ft-maps obtained by time-shifting one of the detector’s data. This process of time-shifting

detector data is expected to decohere the GW signal between the two detectors producing

ft-maps that consist of only noise. If the SNR of the largest cluster found in the ft-map

around a GRB trigger is significantly greater than any of the SNRs observed from various

time-shifted ft-maps then it will be considered as significant (and detection with further

validation). In case of non-detection, we set upper limits using accretion disk instability

(ADI) waveforms [138] produced based on [161, 163]. These waveforms are also used to test

and optimize the parameters of clustering algorithms.

Figure 3.7 shows the recovery of an ADI injection using burst cluster algorithm with

ft-maps of 40 sec duration, and 150 Hz band (100 - 250 Hz). The ADI signal used here

corresponds to GW signals from a system consisting of an accretion disk fragmented into a

pair of blobs of mass mb = 0.15M� and a central black hole with mass mBH = 10M� and

dimensionless spin parameter a∗ = 0.95 (a∗ = 1 corresponds to maximally spinning black

hole).

Figure 3.8 shows the distribution of largest cluster SNRs (on left) for simulated as well as

time-shifted data and sensitivity curve (on right) for the ADI model described above using

burst cluster algorithm with an optimal set of search parameters. The sensitivity curve was

produced by injecting ADI signal with different strength (corresponding to varying source

distance) in a time-shifted H1-L1 detector data and recording the SNRs of largest clusters.
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Figure 3.7: Injection and recovery of ADI signals using burst cluster algorithm. The plot on
the left shows an ADI injection in timeshifted H1-L1 data and the plot on the right shows
the recovery of largest cluster using burst cluster algorithm.

This was repeated 50 times and we used median of those SNRs to account for performance

fluctuations in burst cluster algorithm. From the sensitivity curve plot, we can approximate

that the distance upper limit (90%) for this particular ADI model in an optimal direction

(used for making this plot) would be ∼ 30 Mpc, which is the point at which the recovered

cluster SNRs start to fluctuate (width of the blue line starts to increase). This is because,

in the case of strong signal, the recovered cluster SNRs will be dominated by the ‘signal’

pixels, whereas in the case of weak signals (or distant sources) the ‘noise’ pixels that satisfy

clustering parameter will also start to contribute. The above upper limit could also be

estimated from comparing background distribution plot with the sensitivity plot. If do not

detect a significant cluster in the direction of a GRB, then the SNR of largest cluster in

that direction could be as large as ∼ 30 (from the background distribution plot) and that

corresponds to a source distance upper limit of ∼ 33 Mpc. Any source closer than that

would produce a cluster SNR larger than the largest background cluster SNR and hence

can be identified as a significant cluster. With the same clustering parameters, we looked

at the ft-map around the GRB 060110 and found the largest cluster SNR to be 12.9. This

corresponded to a P-value of 0.3 (not a significant cluster) and 90% distance upper limit of

46 Mpc.
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Figure 3.8: Left panel: Distribution of largest cluster SNRs using both simulated and time-
shifted H1-L1 data. Right panel: Recovered largest cluster (median) SNR as a function of
distance to an ADI signal (injected in timeshifted H1-L1 data).

In reference [43], a similar analysis was carried out, but with 1500 sec maps around 50

GRB triggers and using 1100 Hz frequency band (100 - 1200 Hz). The analysis also used a

different clustering algorithm (burstegard). The analysis did not find any significant cluster

and set 90% distance upper limits of ∼ 3−33 Mpc, depending on the GRB trigger and ADI

model used.

3.6 Summary

In this chapter, we reviewed a few scenarios of long-GW transients including protoneutron

star convection, accretion disk fragmentation, rotational instabilities in neutron stars, r-

modes, pulsar glitches and soft gamma repeater flares. Many of the models we considered

predict strain amplitudes detectable in the advanced-detector era.

Next, inspired by stochastic analyses, we introduced a new framework, which can be

used to look for GW transients on timescales of seconds to weeks. This framework, which is

a generalization of the GW radiometer [8], utilizes ft-maps of GW-strain cross-power using

two or more spatially separated interferometers in order to look for statistically significant

clustering. A comparison of simulated detector noise with time-shifted data revealed that

ft-cross-power-maps made with real interferometer data are well-behaved suggesting that
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the threshold for candidate events can be determined analytically.

We illustrated how different pattern-recognition techniques can be used to identify GW

signatures in ft-maps. We also pointed out that some of these techniques using ft-maps

generated using a GW-strain channel cross-correlated with a LIGO PEM channel can be

used to identify environmental noise transients in GW interferometers.

We used the new pipeline to search for long GW transients from GRBs and found no

significant signals. For models with energy emission of EGW = 0.1M� and in LIGO’s

sensitive frequency band 100 − 200 Hz, we were able set distance upper limits as large as

D ≈ 30 Mpc [43].



Chapter 4

Seismic waves and gravitational wave
detectors

Seismic waves are elastic waves that propagate along Earth’s surface or in its interior. They

are produced by natural processes such as volcanoes, earthquakes, wind etc., and anthro-

pogenic processes such as mining work, vehicular movement, explosions etc. Seismic waves

couple to GW detectors via mechanical couplings through support structures of detectors as

well as via direct Newtonian interactions (see in Section 4.1). They are one of the dominant

noise sources at low frequencies (< 10 Hz) along with thermal noise and quantum noise (see

Section 1.3.1 and Figure 4.3). Current generation of ground based GW detectors are already

reaching down to 10 Hz, while next generation of detectors are expected (or desired) to have

better sensitivities close to 1 Hz.

There are various reasons for trying to achieve better sensitivities at low frequencies: (i)

the rotational frequencies of majority of observed pulsars are around 1Hz [22]; (ii) sensitivity

to SGWB with α = 0 (corresponding to most cosmological models) increases with decrease

in detector frequency (see Eq. (2.16)); and (iii) CBC signals could be observed over longer

periods. With the developments in squeezed light techniques, now the quantum noise can

be pushed down [1] while the improved quality of suspension wire material and cryogenic

setup can be used to reduce suspension and other sources of thermal noise. Thus we are

left with seismic and Newtonian noise. Seismic noise can also be reduced to some extent

with new active and passive isolation systems, but currently there are no ways to shield GW

detectors from Newtonian noise. A careful study of seismic fields around the detectors is

90



4.1. Seismic waves and Newtonian noise 91

necessary to develop and implement Newtonian noise subtraction schemes [63, 94].

In Section 4.1, we discuss properties and classification of seismic waves and a simple de-

scription of Newtonian noise. Then in Section 4.2 we describe a 3D array of seismometers set

up at Homestake Mine, South Dakota to study seismic wave propagation deep underground

and present initial results obtained from analyzing the array data. In Section 4.3 we intro-

duce some of the existing seismic wave analysis algorithms and also a new algorithm based

on GW data analysis methods. We also provide some recent simulation results. Concluding

remarks and summary are given in Section 4.5.

4.1 Seismic waves and Newtonian noise

Seismic waves span a wide range of frequencies and amplitudes. The lowest observable fre-

quency is that of the free oscillations of the Earth (∼ 54 mins) induced by large earthquakes

while the highest frequency is ∼ 20 Hz, which is a limit imposed by the attenuation of seismic

waves in rocks. The amplitudes of seismic waves (maximum displacement of the ground)

ranges from 10−10 to 10−1 meter. Seismic waves are classified into two broad categories:

body waves and surface waves. Body wave are elastic waves that propagate in the interior

of the Earth while surface waves, as the name suggest, are waves that propagate along the

Earth’s surface.

Body waves

Body waves are further classified into two: longitudinal and transverse waves. Similar to

sound waves, longitudinal waves produce a series of compression and rarefaction along their

direction of travel i.e, particle motion is along the direction of the wave. In seismology, they

are also called P-waves (primary waves), because they represent the first set of waves that

arrive from a distant earthquake. Transverse waves, also called shear or rotational waves,

produce shear and rotation in the material they pass through (but no volume change). In

this case the particle motion is perpendicular to the direction in which the wave is traveling.

In seismology, they are also called S-waves (secondary waves), because they are the second
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set of waves to be recorded from an earthquake.

The velocities of longitudinal waves, vl, and of transverse waves, vt, in a homogeneous

and isotropic medium are given by the formulae

vl =

√
λ+ 2µ

ρ
and vt =

√
µ

ρ
, (4.1)

where λ and µ are the Lamé coefficients, and ρ is the density of the medium. For many

elastic materials λ = µ and hence vl =
√

3vt (thus P-waves travel faster than S-waves). This

relation is widely used in seismology to triangulate the location of earthquakes. Typical

speeds of body waves are 2-8 km/s. Similar to other elastic waves, body waves at a boundary,

separating two layers of materials, are reflected, transmitted and are also changed from one

type of wave to another.

Surface waves

Surface waves are the strongest waves from an earthquake and are responsible for most of

the devastation. These waves are further classified into two types : Rayleigh waves (R-wave)

and Love waves (L-wave). Rayleigh waves are elliptically polarized in the plane determined

by the normal to the surface and the direction of propagation. Near the surface, for Rayleigh

waves, the particle motion is a retrograde vertical ellipse (anticlockwise for a wave traveling

to the right). Love waves are transverse waves with particle motion parallel to the surface

(and perpendicular to the direction of travel). In the simplest case of isotropic half-space

(at Earth-air interface with isotropic medium), the velocity of Rayleigh waves is slightly less

than the transverse wave velocity, vR ≈ 0.85vt and is independent of frequency [134].

Surface waves, in general, are not new types of waves, but only interference phenomena

of body waves. Therefore, in principle, we could construct the surface waves by summing

body waves. However, this approach would be inconvenient if a large number of waves is to

be taken into account (many additional waves are produced by the reflection and refraction

at boundaries of different layers). Therefore, they are mostly dealt with as separate waves.

Figure 4.1 shows an example of S, P and surface waves from a distance earthquake recorded
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Figure 4.1: An earthquake data showing the arrival of P, S and surface waves. The above plot
was made using data from the 2000ft-A station. This event corresponds to a 5.6 earthquake
occurred in N. California on February 13, 2012 at a depth of 33 km.

by one of the seismometers set up at Homestake mine.

4.1.1 Newtonian noise

The surface variations produced by the seismic waves gravitationally couple to the suspended

mirrors of interferometric GW detectors. Since the presence of a GW signal is measured

by the movement of the mirrors along the interferometric arms, this coupling induces an

unwanted error in the measurement and is called Newtonian noise. Figure 4.2 is a pictorial

depiction of Newtonian noise. A similar coupling would also occur due to movements of other

terrestrial masses such clouds, vehicles etc. Since this is a direct gravitational coupling, there

are no known ways to screen the mirrors from such coupling. One possible solution is to

reduce/control such density variations by building underground GW detectors (Newtonian

noise due to seismic waves is dominant at the surface due to surface seismic waves). The

other possible solution is to characterize the seismic wave fields and use it to subtract out

the Newtonian noise effects. For the later, it is useful to study and characterize different

seismic wave-fields which is the main topic of this chapter. Figure 4.3 shows the expected
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Figure 4.2: The above figure is a pictorial depiction of Newtonian noise. At low frequencies,
the variations in the heights of Earth’s surface produces a considerable gravitational pull on
the suspended mirrors of GW detectors mimicking the effect of GWs.

strain sensitivity curve advanced LIGO detectors. From the plot, we see that once we push

down the quantum and thermal noise, Newtonian and seismic noise become the limiting

noise at ∼ 1 Hz.

4.2 Homestake seismic array

To study seismic wave fields and the possibility of reducing Newtonian noise in the next

generation of GW detectors we have set up an array of broad-band seismometers in Homes-

take mine, a former gold mine in South Dakota [36]. This setup provides an opportunity to

study the properties of seismic fields underground and understand the possible advantages

of building underground GW detectors. The Homestake array initially included nine envi-

ronmentally shielded and isolated seismic stations, three of which have been disassembled

due to poor operating conditions. The remaining include one at 300 ft, one at 800 ft, two

at 2000 ft and two at 4100 ft depth. Each station operated either a Trillium T240 or a

Streckeisen STS-2 high-sensitivity broadband seismometer (one station operated relatively

low-sensitive Guralp) [59]. During the initial setup all the stations were found to be in a

plane configuration (see Figure 4.4), while in the current set up a new station at 4100-ft

level was constructed to be away from the plane of the other stations and provide a 3D

configuration.

Various measures were taken to optimize the response of seismometers to seismic waves.

The seismometers were placed on granite tiles that were installed either on existing con-
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Figure 4.3: Expected strain sensitivity for advanced LIGO GW detectors. This plot was
produced by Gravitational Wave Interferometer Noise Calculator (GWINC) using advanced
LIGO configuration [87].

Figure 4.4: The above figure is a cross-sectional (top) view of the mine showing the locations
of the seismic stations. The blue circles and blue star correspond to currently operating
stations. The station at 4100-ft level marked by a star is the new station built to be away
from the plane of the other stations. The map is aligned with cardinal directions (top is
North).
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Figure 4.5: Above photo, taken during the construction of 4100ft-D station, shows the two
hut setup used for isolating seismometers and data acquisition systems.

Station Seismometer Position (E,N) [m]
300 ft CMG-40T (71,21)
800 ft T240 (-88,124)

2000 ft A T240 (-378,598)
2000 ft B T240 (-234,380)
4100 ft A STS-2 (347,-155)
4100 ft D T-240 (187,-104)

Table 4.1: A table providing the location and type of seismometer used at each station. The
location coordinates are measured with respect to the (Yates) mine-shaft elevator.

crete platforms or on new concrete platforms solidly connected to the underlying bed-rock.

A multi-layer isolation made up of rigid thermal and acoustic insulation panels was built

around each seismometer to further stabilize the thermal environment and to achieve sup-

pression of acoustical signals and air currents. The data acquisition systems were setup in

a separate chamber at least five feet away from the seismometer chambers to avoid electric

and magnetic couplings (see Figure 4.5). Table 4.1 lists the locations (relative to surface,

Yates office building) and types of seismometers used at each station. Seismometer positions

were determined from mine maps and are expect to have errors . 2 m.
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FPGATiming board

ADC

Figure 4.6: Internal view of the data read-out system. The boards that are not labeled are
used for providing DC power.

Data read-out system

At each station, to read out data we are using a 24-bit data acquisition system (DAQ)

designed by Vladimir Dergachev, at Caltech. It uses a 24-bit ADC (ADS1278, ±2 V range,

Texas instruments) and a FPGA (Spartan 1600, Digilent) to collect data samples from the

seismometer (after amplified by an external amplifier) and pass it on to a computer via 100

Mbit ethernet cable. It uses an eight input ADC that can be triggered by the internal clock

of the FPGA or with an external clock. For our setup we used an external trigger from

a high precision timing board designed for advanced LIGO systems. Figure 4.6 shows an

inside view of the DAQ system.

This is a low cost system, compared to standard data acquisition systems used in seis-

mology, but with better precision and sampling rate. One issue with this system was that

sometimes the board freezes (and no longer acquires data) and needs to be restarted (no

plausible reason identified). At each station, we have installed a network power switch (re-

motely accessible) that can be used to restart different parts of the setup including the above

data acquisition system to eliminate down-time.
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User interface and data storage

The data from each seismometer is read out locally by the DAQ acquisition box. The data

is then downsampled from 32 KHz to 512 by a small linux box, called Dreamplug, installed

at each seismic station and then sent to a linux workstation at the surface via optical fibers.

The surface machine collects data from all the working stations and combines them into a

single file, producing 128 sec long data files in the LIGO data (frame) format. These LIGO

data (frame) format files are used for further analyses.

Synchronization of data

One of the main problems in combining data from different stations is the uncertainty in

the absolute and relative timing of individual stations. In the initial setup [59], we used

Network Time Protocol (NTP) to synchronize different stations using an external time

source providing an accuracy of ∼ msec. In the new setup we use Precision Time Protocol

daemon (PTPD) with an internal (to the LAN network) time source to get ∼ 0.1 msec

accuracy (timings are very important for determining wave velocities as well as for source

localization). To further improve the timing accuracy we linear fit times of a large number

of 128 sec data files. Figure 4.7 shows an example timing plot for the 4100ft-D station.

Figure 4.8 shows a complete data acquisition setup at one of the 4100-ft level stations.

4.2.1 Initial results

Our initial results show that the average seismic-noise spectra approach the global low-noise

model [129] over a considerable fraction of the observation time. Apart from the local short

seismic events, seismic spectral densities slowly vary over the course of weeks. Even the

short event rates at Homestake mine are small compared to other sites and majority of

them occurs during the daytime working hours. The secondary microseismic peak (one of

the strong low frequency peaks at 0.3 Hz) is found to be correlated with the buoy data

from the northern Pacific coast, with the exact buoy location varying over time [59]. This

is the first time such correlation analysis was done. Figure 4.9 shows the suppression of
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Figure 4.7: Timing plot of ∼ 100 data files from 4100D-ft station. The blue curve is the
time assigned to each of those files (adjusted for expected increase) by the Dreamplug and
red curve is the linear fit. We see that the variation of the blue curve is of the order of 0.1
msec.

Figure 4.8: A photo of the 4100ft-A station showing the complete data acquisition setup. It
is the only station where the data acquisition is set up in a natural cave like chamber. The
seismometer is behind the the wall shown here.
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Figure 4.9: Seismic spectrum showing the reduction in high frequency noise (1 − 10 Hz)
with depth. At 1 Hz we observe almost 10× reduction at 4100 ft as compared to the 300
ft depth, which is consistent with theoretical expectations for suppression of surface seismic
waves with depth.

high frequency noise (1−10 Hz), which seems to stem from surface wind and anthropogenic

sources, by an order of magnitude at 4100-ft level compared to near-surface station (300-ft).

The next step is to understand the different seismic noise fields and their propagation

properties that would help us construct better Newtonian noise subtraction filters. These

filters would need to provide another 100× suppression at 1 Hz in order to reduce the noise

levels needed by the next generation GW detectors.

4.3 Seismic field decomposition

One of the important factors in implementing on optimal Newtonian noise filter is the under-

standing of short term and long term stability of different wave fields (for example, surface

and body waves). The calculation of filter coefficients heavily depends on the temporal

stability of the wave fields. Using a shorter data segment might prove to be too noisy and

using a longer segment might average out the effects. Hence it is desirable to first understand
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different wave fields and their structure, and then construct the filter coefficients.

To understand field composition and determine source locations there are various algo-

rithms currently used in seismology. They are collectively known as beamforming methods

and are common in many other branches of science involving signal extraction and source

localization. All beamforming methods use the fact that signals with finite propagation

velocity will reach different recording stations at different times and will affect the stations

differently depending on how they are polarized.

Under the assumption of uniform propagation media, a set of time shifts that maximize

the cross-correlation of data between all pairs of stations would uniquely identify the source

location, provided there are at least three seismometers. The precision of identified locations

would depend on local noise, timing accuracy and the number of seismometers used. Since

a priori the signal source location is not known, a scan of all sets of possible time-shifts

are performed and the one(s) that maximize cross-correlation between different pairs of

seismometers are considered to correspond to source locations. Apart from the time shifts,

the response functions of the seismometers can be used to extract additional details about

the signals, such as its polarization. In general, time-shifts and response functions are used

together to decipher signal properties.

There exist a variety of beam forming methods and in this section we look at some of

them. For a comprehensive list, please refer to [137, 103]. We also discuss a maximum

likelihood method generally used for GW analyses.

4.4 Beamforming methods

Let us assume a two-dimensional array with M seismometers with positions denoted by

(xm, ym) (it is easy to extend this analysis to three dimensions). Also for simplicity let us

assume a single point source emitting signal at a particular frequency f . In such a case the

array propagation vector (also called array response function, which is a vector constructed
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from individual seismometer response functions) a(f, ~k, θ) can be written as,

a(f, ~k, θ) =


e−i(kxx1+kyy1)

...

e−i(kxxm+kyym)

 , (4.2)

where (kx, ky) are components of wave vector ~k of the signal (k = 2πf
v , v is speed of the

signal) and θ is a set of signal parameters of interest (for example, amplitudes of different

wave components). The recorded data X(f) at each seismometer is then given by

X(f) = a(f, ~k, θ)s(f) + N(f) , (4.3)

where, s(f) is signal at source location and N(f) is local noise at each seismometer. The

goal of various beamforming techniques is to recover the signal properties (location, speed

etc.) from the observations X(f).

The beamforming methods can be broadly classified into two categories: spectral based

methods (non-parametric methods) and parametric methods.

4.4.1 Spectral based methods

Spectral based methods, also called non-parametric methods, make minimum assumptions

about the signal and try to recover signal parameters based on spectrum (Fourier transform)

of observed data. Below we describe some of the most common non-parametric methods.

Conventional (Bartlett) beamformer

This is the simplest of all beamforming methods. In this method we maximize the sum of

covariances between all pairs of seismometers using a set of (~k, θ). In the presence of signal,

a maximum would occur corresponding to signal parameters (~ks, θs). The quantity that is

maximized in this method is given by [103]

PBF(~k, θ) =
aHR̂a

aHa
, (4.4)
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where R̂ is the measured covariance matrix
[
X(f)XH(f)

]
. This method is robust and

simple, but lacks in accuracy (see Figure 4.12). Also suffers from strong aliasing effect (see

Figure 4.11).

Capon Beamformer (MVDR)

This method is also known as minimum variance distortionless response (MVDR) beam-

former. This comes under the class adaptive beamformers that are capable of steering the

array in the direction of interest while suppressing the signals from other directions. The

quantity used for maximization in this method is given by [103]

PCapon(~k, θ) =
1

aHR̂−1a
. (4.5)

There are many variants of Capon beamformer and each of them use a slightly different

quantity for maximization. The one that uses (4.5) is called standard Capon method. Com-

pared to Bartlett beamformer, Capon beamformers have better accuracy (see Figure 4.12)

and suffer less from aliasing (see Figure 4.11).

Subspace based methods

In the previous methods we used the covariance matrix R̂ obtained from cross-correlating

data from different pairs of seismometers without any modifications. But in reality not

all components of R̂ are useful, some of them may not carry any information about the

signal. In such cases we could condition the matrix R̂, for example using singular value

decomposition. The singular value decomposition of R is written as

R = UsΛsU
H
s + UnΛnUn

H , (4.6)

where (Λs,Λn) and (Us,Un) are eigenvalues and eigenvectors of R. Subscripts s and n

correspond to signal and noise respectively. The eigenvalues corresponding to the signal

would be in general larger than the eigenvalues corresponding to noise. Since a priori we

do not know about the signal, we order the eigenvalues and select the ones with largest
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standard deviation (outliers) as corresponding to signal. Then the projection operators to

signal and noise space can then be written as

Πs = UsU
H
s and Πn = UnU

H
n . (4.7)

Instead of R we can use these projection operators for optimization to find (~ks, θs). Such

methods of using projection operators to find signals are called sub-space based methods.

One of those methods, called MUltiple SIgnal Classification (MUSIC), uses [103]

PMUSIC =
aHa

aHΠ̂nWΠ̂na
(4.8)

for maximization. For standard MUSIC method, W = I (note Π2 = Π). There are other

MUSIC methods that use different W.

4.4.2 Parametric methods

Unlike spectral based methods, parametric methods utilize a data model to look for signals.

Assuming a data model has both advantages and disadvantages. If the model used is close

to the actual one, we can recover the signal and determine signal properties with very high

accuracy. But if the assumed model is not correct then this method would yield inconsistent

results.

Maximum Likelihood

One of the prominent such methods is the maximum likelihood method. Assuming noise is

stationary Gaussian white random process with variance σ2, a likelihood function for X(f)

can be written as

L(θ, s(t), σ2) =
1

σ2M
e−|X(f)−a(θ)s(f)|2/σ2

, (4.9)
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where M corresponds to the number of seismometers. By minimizing the negative log-

likelihood of the above function, we get

θ̂ML = min
θ

Tr
(

Πn
aR̂
)

(4.10)

where Πn
a = I− a(aHa)−1aH. The set of parameters that minimize the above function will

correspond to the signal.

There are also other methods that combine both maximum likelihood and sub-space

methods and are generally called subspace fitting. We do not discuss them here.

Stochastic radiometer method

The cross-correlation method derived in Chapter 2 can also be used for seismic signal iden-

tifications and parametrization. Following the derivation in Section 2.2, we can write the

average cross-power measured by a pair of seismometer channels α and β in a single fre-

quency bin of width ∆f as (see Eq. (2.33))

〈Yiα,jβ (f)〉 = 2 T ∆f
∑
A

∫
S2

dΩ̂HA(f, Ω̂)QA,iα(f, Ω̂)QA,jβ(f, Ω̂) e−2πifΩ̂·∆~xij/vA , (4.11)

where HA is the power spectra of wave component A and QA,iα is the response of α channel

of seismometers i to the wave component A. There are a couple of key differences between

Eq. (2.33) and Eq. (4.11). In Eq (2.33), we combined the cross-power from different po-

larization (here we call them as wave components) assuming they contribute equally and

defined a polarization independent H(f) (see Eq. (2.13)). Since here we want to decompose

the signal into its wave components, we do not combine the power spectra (and also note

that here they need not be equal). The second difference comes from the velocity term used

in those equations. In Eq. (2.33), both + and × polarization travel at the same speed, speed

of light, while here different wave components will travel at different speeds. Also note that

here we have folded the antenna responses FA, explicitly written in Eq. (2.33), into QA,iα.

We can parametrize the amplitude spectra HA(Ω̂) in terms of a basis BA(Ω̂) to study
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the spatial distribution of seismic wave component A:

HA(Ω̂) =
∑
n

SA,nBA,n(Ω̂) , (4.12)

where SA,n corresponds to ‘A’ component cross-power in basis element n.

There are two useful bases one can use: spherical harmonics basis, B(Ω̂) = Ylm(Ω̂) and

pixels basis, BΩ̂0
(Ω̂) = δ(Ω̂− Ω̂0). In either case, we can define

γA,iα,jβ(f) =

∫
S2

dΩ̂BA(Ω̂)QA,iα(f, Ω̂)QA,jβ(f, Ω̂) e−2πifΩ̂·∆~xij/vA , (4.13)

so that Eq. (4.11) can be simplified as

〈Yiα,jβ (f)〉 = 2 T ∆f
∑
A

γA,n,iα,jβ SA,n , (4.14)

where repeated indices n are summed over. Since we are interested in estimating the coeffi-

cients SA,n, we define the likelihood function,

L ∝ exp
(
− [Y ∗i − γ∗idSd]N−1 [Yi − γidSd]

)
(4.15)

where i runs over all seismometer/channel pairs and d runs over all basis elements. If

we assume that all seismometers and channels have similar noise floor, constant in time, N

becomes proportional to identity matrix and we can ignore it in the likelihood maximization.

The likelihood maximization of Eq. (4.15) then gives

Srad = (γ†γ)−1γ†Ŷ , (4.16)

where † corresponds to conjugate-transpose and Ŷ is the covariance (or) cross-correlation

matrix R̂. The vector Srad is of length A×n and contains the cross-power due to each wave

components A in every basis element n.
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(a) Square array
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(b) Spiral array

Figure 4.10: Plots of square (left) and spiral array (right), each consisting of 25 seismometers,
used for 2D simulations.

4.4.3 Simulation results

To compare different beamforming methods we performed 2D and 3D simulations. For 2D

simulations we used square and spiral arrays made up of 25 stations on the surface as shown

in Figure 4.10.

Figure 4.11 and Figure 4.12 show simulations and recovery of single Rayleigh wave

source (affecting only z-channels of seismometers) using four different methods described

in Section 4.4 for square and spiral array set-ups. The frequency and the speed of seismic

waves were 1 Hz and 2400 m/sec respectively. From Figure 4.11 and Figure 4.12, we find

that a square array produces strong aliasing (multiple source location identification) in all

four beamforming methods, while spiral array do not. Hence for later simulations we only

used spiral or random arrays. Also from Figure 4.12, we note that signal recovery using

Bartlett beamformer has larger spread than other three beamfomers.

Figure 4.13 shows the simulation and recovery of four sources using spiral array of 25

seismometers placed on the surface. All the sources were placed far away from the array,

so that we can use plane wave approximation. The frequencies of the simulated seismic

waves were all 1 Hz, but had different velocities. From the simulations with four Rayleigh

wave sources, we find that while Bartlett, MUSIC and GW radiometer methods perform
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(a) Bartlett
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(b) Capon
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(c) MUSIC
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(d) GW Radiometer

Figure 4.11: Simulation and recovery of single Rayleigh wave source using four different
beamforming methods. For this simulation, we used a square array of 25 stations on the
surface. The black marker shows the intended simulation location and the color indicates
the likelihood of recovery (‘red’ corresponds to highly likely). We find that there is strong
aliasing in all the four cases.
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(a) Bartlett
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(b) Capon
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(c) MUSIC
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(d) GW Radiometer

Figure 4.12: Simulation and recovery of single Rayleigh wave source using four different
beamforming methods. For this simulation, we used a spiral array of 25 stations on the
surface. The black marker shows the intended simulation location and the color indicates
the likelihood of recovery (‘red’ corresponds to highly likely).
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(b) Capon
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(c) MUSIC
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(d) GW Radiometer

Figure 4.13: Simulation and recovery of four Rayleigh wave sources using four different
beamforming methods. For this simulation, we used a spiral array of 25 stations on the
surface. The black markers show the intended simulation locations and the color indicates
the likelihood of recovery (‘red’ corresponds to highly likely).
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well, capon method suffers from signal cancellation and hence does not recover the signals.

This problem of signal cancellation in standard capon method for coherent signals is already

discussed in literature [144] and hence not surprising. Both MUSIC and GW radiometer

methods recover signals with high signal-to-noise ratio compared to Bartlett beamformer.

We also performed 3D simulations, which are rare in seismological literature due to

almost non-existence of 3D seismic arrays. Figure 4.14 shows simulation of and recovery of

two P-wave sources in a 3D set-up consisting of 49 seismometers randomly placed (to avoid

aliasing effects) in a 16 km3 volume.

We also performed simulations of wave component identification using GW radiometer

method. The γ in Eq. (4.16) is defined as

γiα,jβ,Ω̂ = Qiα,Ω̂ Qjβ,Ω̂ e
−2πifΩ̂·∆~xij/v (4.17)

where Q’s are responses of seismometer channels to a seismic wave coming from direction

Ω̂ and v is the speed of the seismic wave. Here i, j run over all seismometers and α, β

run over different channels of seismometer (x, y, z). By constructing proper filters Qiα,Ω̂ we

can identify and separate out different wave components. Figure 4.15 shows simulation and

recovery of one P-wave (underground source) and one simple R-wave (surface source). The

P-wave filter is defined by the response function

Qiα = Ω̂ · ~α = cos θα . (4.18)

Here we use the approximation Qiα = Qα, which is true for sources that are far away (plane

wave approximation). The R-wave filter is defined by the response function,

Qlα = e−kZi δz,α. (4.19)

Here Zi is the ‘Z’ location of ith seismometer, k is a constant defined by the equation

e−4000 k = 0.1 (to provide expected order of magnitude suppression of R-wave at a depth of

4000 meters) and δ is the Kronecker delta function. Using these two filters, we were able
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(a) Bartlett (b) Capon

(c) MUSIC (d) GW Radiometer

Figure 4.14: 3D simulation and recovery of two P-wave wave sources using four different
beamforming methods. For this simulation, we used 49 stations randomly distributed in a
16km3 volume. The boxes show the intended simulation locations and the color indicates the
likelihood of recovery (‘red’ corresponds to highly likely). Due to computational (memory)
problem, GW radiometer method was performed using coarser resolution.
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Figure 4.15: Recovery of simulated P and R-waves using corresponding filters. The P-wave
was placed underground and R-wave on the surface (θ = 0). The top plot uses P-wave filter
and the bottom plot uses R-wave filter.
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to differentiate between two wave components to a good extent. However there is a little

bit of overlap between the two filters, because of the non-orthogonality (the filters are not

completely orthogonal). We are currently developing filters that would be orthogonal and

that would include more complex wave compositions.

4.5 Summary

In this chapter, we discussed seismic and Newtonian noise and their impact on current and

future generation of GW detectors. We showed they would be significant noise sources at

∼ 1 Hz in the future generation of ground based GW detectors. We discussed the possibility

of Newtonian noise subtraction and the necessity for understanding different seismic wave

fields. We described the seismic array constructed in Homestake mine, South Dakota to

study seismic waves underground and its benefit for the design of future underground GW

detectors. At the end we discussed different beamforming techniques to identify seismic

wave source locations and also use of GW analysis based beamforming technique to identify

different seismic wave components. We then showed results for 2D and 3D simulations,

using different beamforming techniques. We also showed, for the first time, that using GW

radiometer method we can recover seismic signals in a 3D set-up.



Chapter 5

Conclusion and Discussion

Nearly a century after the conception of general relativity, the direct detection of gravita-

tional waves, one of the main predictions of general relativity, is within our grasp. The

coming decade of advanced gravitational-wave detectors [71, 67, 85, 105] offers promising

opportunities for such a detection. Similar to the detection of cosmic microwave background,

it will open up a new era in the field of observational cosmology.

In this thesis, we studied two kinds of gravitational waves: stochastic gravitational waves

and long gravitational-wave transients. Stochastic gravitational waves are expected to arise

from the events that took place during the early universe or from a collection of recent

astrophysical objects such as binary neutron stars. In Chapter 2 we looked at some of

the models stochastic gravitational waves and an analysis pipeline to look for such signals

in LIGO S5 data. In Section 2.4 and Section 2.5, we presented the results using non-

colocated and colocated LIGO detectors, neither of which resulted in detection of SGWB.

However, these results provided useful upper limits that were used to constrain some of

the cosmological models of stochastic gravitational-wave background. They were also the

first set of results from direct (non)observation of gravitational waves that were on par with

the indirect bounds obtained from cosmological models such as Big-Bang-Nucleosynthesis.

The next generation of gravitational-wave detectors are likely to observe or set significant

constraints on many of those models.

In Chapter 3 we studied transient gravitational waves with time scales ranging from

minutes to weeks. We looked at some of the models in detail and developed a new analysis
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pipeline to look for such gravitational wave signals. We applied the pipeline to look for

gravitational wave signals from Gamma-ray bursts and did not find any signals. We placed

distance upper limits on some of the models [161] to be as far as 33 Mpc. Many of the sources

we considered in that chapter (see Section 3.1) are plausible targets for the advanced detector

era. Any detection of such gravitational waves will provide invaluable information about

the relevant objects and processes, for which we currently possess only preliminary models,

e.g., long gamma-ray bursts. If, on the other hand, no long gravitational wave transients

are detected, we can rule out or constrain some of the models that predict relatively large

strain amplitudes (e.g., [162]).

In Chapter 4 we studied the effect of seismic and Newtonian noise on current and fu-

ture generation of gravitational wave detectors. We demonstrated that they would be the

dominant noise sources at frequencies ∼ 1 Hz around which there are many interesting

astrophysical and cosmological sources. We discussed the possibility of noise subtraction

methods and the necessity for understanding seismic field composition. We showed that at

∼ 4000 ft below the surface, the seismic noise levels are an order magnitude smaller (see

Figure 4.9) lending support to the idea of building the next generation of gravitational wave

detectors underground. Finally, we also looked at some of the algorithms for decomposing

seismic wave fields. In the future, such algorithms will not only be useful in the field of

gravitational wave detection, but will also play an important role in geophysics as a tool for

understanding seismic wave fields in general.
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Appendix A

Statistics of long GW transient
analysis pipeline

A.1 Derivations

We describe how a GW source can be characterized by its power spectrum H(t; f), we con-

struct an estimator Ŷ (t; f) for H(t; f) and calculate the associated variance. We construct

an estimator for the variance.

A.1.1 Introduction and notation

Working in the transverse-traceless gauge we write down the general form of a GW field,

which can depend on direction Ω̂, polarization state A and frequency f (see, Section 2.2):

hab(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
S2

dΩ̂ eAab(Ω̂)h̃A(f, Ω̂)e2πif(t+Ω̂·~x/c). (A.1)

Here ~x and Ω̂ are defined in equatorial coordinate systems defined in Figure A.1. The

polarization tensors e+,×
ab can be obtained by the similarity transformation using the rotation

matrix R:(X,Y, Z) → (x, y, z),

R =


− cos θ cosφ − sinφ − cosφ sin θ

− cos θ sinφ cosφ − sin θ sinφ

sin θ 0 − cos θ

 . (A.2)
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Figure A.1: The above figure shows different coordinate systems and angles involved in the
calculation of strain induced in GW detectors. For unpolarized signals, we assume ψ = 0.

where the source direction Ω̂ is given by

Ω̂ = cosφ sin θx̂+ sin θ sinφŷ + cos θẑ, (A.3)

and wave propagation is in −Ω̂. In calculating R above we assumed that ψ, called polariza-

tion angle, is zero (see Figure A.1). In general, it need not be the case. Also the XY plane

of wave frame could make a non-zero angle ι, called inclination angle, with respect to Ω̂. If

we include those angles, then R:(X,Y, Z) → (x, y, z) becomes,

R =


−(cθcφcψ + sφsψ)cι+ cφsθsι −cψsφ+ cθcφsψ −cιcφsθ − (cθcφcψ + sφsψ)sι

−(cθcψsφ− cφsψ)cι+ sθsφsι cφcψ + cθsφsψ −cιsθsφ− (cθcψsφ− cφsψ)sι

cιcψsθ + cθsι −sθsψ cψsθsι− cθcι


(A.4)
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Since we are interested in unpolarized sources, here after we would assume ψ = 0 and ι = 0.

Since we are looking for GW transients, we restrict our attention to point sources for

which hA(f, Ω̂) = hA(f)δ(Ω̂− Ω̂0). We perform the integral over Ω̂ and obtain:

hab(t, ~x) =
∑
A

∫ ∞
−∞

df eAab(Ω̂0)h̃A(f) e2πif(t+Ω̂0·~x/c). (A.5)

For simplicity, we henceforth replace Ω̂0 with Ω̂. It follows that the GW strain in detector

I is given by

hI(t) =
∑
A

∫ ∞
−∞

df h̃A(f, Ω̂) e2πif(t+Ω̂·~xI/c) eAab(Ω̂) dabI (t) (A.6)

where dabI (t) is the detector response tensor at time t:

dI =
1

2
(x̂′I ⊗ x̂′I − ŷ′I ⊗ ŷ′I) . (A.7)

Here, the two detector arms lie along the x̂′(t) and ŷ′(t) axes, which are time-dependent due

to the rotation of the Earth.

We now consider a finite stretch of hI(t) and take the discrete Fourier transform of

Eq.(A.6) to obtain:

h̃I(t; f) =
∑
A

h̃A(t; f, Ω̂) e2πifΩ̂·~xI/c FAI (t; Ω̂). (A.8)

where we define the “antenna factors” (see e.g., [19]) to be

FAI (t; Ω̂) ≡ eAab(Ω̂) dabI (t). (A.9)

We define the GW strain power spectrum to be

〈h̃∗A(t; f)h̃A′(t; f)〉 =
1

2
HAA′(t; f), (A.10)

where the factor 1/2 comes from the fact that HAA′(t; f) is the one-sided power spectrum.

It is convenient to characterize the source with a single spectrum that includes contri-
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butions from both + and × polarization. We therefore define

H(t; f) ≡ Tr [HAA′(t; f)] , (A.11)

so as to be invariant under change of polarization bases. This definition is a generalization

of the one-sided power spectrum for unpolarized sources found in [19, 8, 158]. Our goal

now is to derive an estimator for H(t; f) in a data segment over which it is presumed to be

constant.

A.1.2 Derivation of Ŷ

Let sI(t) = hI(t) + nI(t) be the strain time series from detector I, where hI(t) is the GW

strain and nI(t) is the detector noise. Following [19, 8, 158], we combine the strain time series

from two spatially separated detectors, sI(t), sJ(t), to construct an estimator for GW-power

H(t; f) for a point source at a sky position Ω̂,

Ŷ (t; f, Ω̂) ≡ 2Re
[
Q̃IJ(t; f, Ω̂)s̃∗I(t; f)s̃J(t; f)

]
(A.12)

where Q̃IJ(t; f, Ω̂) is some filter function to be determined below. We take the real part to

ensure physicality of the estimator. The expectation value of Ŷ (t; f, Ω̂) is given by

〈Ŷ (t; f, Ω̃)〉 = 2Re
[
Q̃IJ(t; f, Ω̂)〈h̃∗I(t; f) h̃J(t; f)〉

]
, (A.13)

since, by assumption, there is no correlation between signal and noise and also no correlation

between noise in two spatially separated detectors, the other terms vanish.

Combining Eqs. (A.8), (A.13) and (A.10) we get

〈Ŷ (t; f, Ω̂)〉 =2Re
[
Q̃IJ(t; f, Ω̂)

∑
AA′

1

2
HAA′(t; f)

e−2πif(Ω̂·(~xI−~xJ )/c) FAI (t; Ω̂)FA
′

J (t; Ω̂)
] (A.14)
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In order to simplify the form of HAA′(t; f) we now consider unpolarized sources, for which

HAA′(t; f) =
1

2
H(t; f)δAA′ . (A.15)

For unpolarized sources,

〈Ŷ (t; f, Ω̂)〉 =
1

2
Re
[
Q̃IJ(t; f, Ω̂)H(t; f) e−2πifΩ̂·∆~xIJ/c∑

A

FAI (t; Ω̂)FAJ (t; Ω̂)
]
,

(A.16)

where we have defined ∆~xIJ ≡ ~xI − ~xJ .

We desire that 〈Ŷ 〉 = H(t; f), which implies:

Q̃IJ(t; f, Ω̂) =
2 e2πifΩ̂·∆~xIJ/c∑

A F
A
I (t; Ω̂)FAJ (t; Ω̂)

. (A.17)

By setting QIJ(t; f, Ω̂) thusly, we account for the phase difference between detectors I and J

ensuring that the bracketed quantity in Eq. (A.16) is real. We also account for the detector

pair efficiency. Finally, we define (unpolarized) pair efficiency as

εIJ(t; Ω̂) ≡ 1

2

∑
A

FAI (t; Ω̂)FAJ (t; Ω̂), (A.18)

which enables us to rewrite the filter function as

Q̃IJ(t; f, Ω̂) =
1

εIJ(t; Ω̂)
e2πifΩ̂·∆~xIJ/c. (A.19)

Since Ŷ (t; f, Ω̂) ∝ Q̃(t; f, Ω̂) and Q̃ ∝ 1/εIJ(t; f, Ω̂), it follows that Ŷ (t; f, Ω̂) ∝ 1/εIJ(t; Ω̂).

This can be understood as follows. If we observe a modest value of strain power from a di-

rection associated with low efficiency, we may infer (if the signal is statistically significant)

that the true source power is much higher because the network only “sees” some fraction of

the true GW power.
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A.1.3 Variance of the estimator

We derive an expression for the variance of Ŷ (t; f, Ω̂), σY (t; f, Ω̂)2 ≡ 〈Ŷ (t; f, Ω̂)2〉−〈Ŷ (t; f, Ω̂)〉2.

In searches for persistent stochastic GWs, the second term is usually omitted and the first

term is simplified by assuming that signal in each pixel is small compared to the noise.

Such small signals are extracted by averaging over a very large number of segments (see,

e.g., [19]). Since we are dealing with transients, however, the signal may be comparable to

the noise and so we can not neglect any terms in our calculation of σ2
Y .

To begin we define a new (complex-valued) estimator that will be handy in our derivation

of σ2
Y :

Ŵ (t; f, Ω̂) ≡ 2 Q̃IJ(t; f, Ω̂)s̃?I(t; f)s̃J(t; f). (A.20)

Our GW power estimator Ŷ (t; f, Ω̂) is simply the real part of Ŵ (t; f, Ω̂):

Ŷ (t; f, Ω̂) =
1

2

(
Ŵ (t; f, Ω̂) + Ŵ (t; f, Ω̂)?

)
. (A.21)

For notational compactness, we shall omit the arguments of Ŵ (t; f, Ω̂) in the remainder of

this derivation. It follows that the variance of Ŷ (t; f, Ω̂) can be written as

σ2
Y =

1

4

[ (
〈Ŵ 2〉 − 〈Ŵ 〉2

)
+
(
〈Ŵ ?2〉 − 〈Ŵ ?〉2

)
+

2σ2
W

]
,

(A.22)

where

σ2
W ≡ 〈|Ŵ |2〉 − |〈Ŵ 〉|2. (A.23)

Now we evaluate the three terms in Eq. (A.22) beginning with σ2
W . We obtain

σ2
W (t; f, Ω̂) = 4

[
〈s̃∗I(t; f) s̃J(t; f) s̃I(t; f) s̃∗J(t; f)〉

− 〈s̃∗I(t; f) s̃J(t; f)〉〈s̃I(t; f) s̃∗J(t; f)〉
]

∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣2 .

(A.24)

For mean-zero Gaussian random variables, we can expand the four-point correlation into a
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sum of products of two-point correlations. We substitute s = h + n and set signal-noise

cross terms to zero along with noise-noise cross terms from different detectors. The variance

becomes

σ2
W (t; f, Ω̂) =4

[
〈h̃∗I(t; f)h̃I(t; f)〉 〈h̃J(t; f)h̃∗J(t; f)〉+

〈h̃∗I(t; f)h̃I(t; f)〉 〈ñJ(t; f)ñ∗J(t; f)〉+

〈h̃J(t; f)h̃∗J(t; f)〉 〈ñ∗I(t; f)ñI(t; f)〉+

〈ñ∗I(t; f)ñI(t; f)〉 〈ñJ(t; f)ñ∗J(t; f)〉
]

∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣2 ,

(A.25)

Evaluating the four terms in Eq. (A.25), we obtain

σ2
W (t; f, Ω̂) =

[
εII(t; Ω̂)εJJ(t; Ω̂)H(t; f)2+

H(t; f)
(
εII(t; Ω̂)NJ(t; f) + εJJ(t; Ω̂)NI(t; f)

)
+NI(t; f, )NJ(t; f)

] ∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣2 ,

(A.26)

where ε is defined in Eq. (A.18) and where NI(t; f) is the one-sided noise-power spectra:

NI(t; f) ≡ 2 |ñI(t; f)|2 . (A.27)

Using the same line of reasoning, we calculate the remaining terms in Eq. (A.22):

〈Ŵ 2〉 − 〈Ŵ 〉2 = 〈Ŵ ?2〉 − 〈Ŵ ?〉2 = H(t; f)2. (A.28)

Combining Eqs. (A.22) and (A.28), we conclude that

σ2
Y =

1

2

[
σ2
W +H(t; f)2

]
. (A.29)

The factor of 1/2 comes about from the fact that Ŷ (t; f, Ω̂) is real whereas Ŵ (t; f, Ω̂) is

complex. We note that in the small-signal limit H(f)→ 0 and the variance reduces to the
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canonical stochastic result [19]:

σ2
Y →

1

2

(
NI(t; f)NJ(t; f)

∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣2) , (A.30)

A.1.4 Expectation value of σ̂2
Y

Our estimator for the variance of Ŷ is given by

σ̂2
Y (t; f, Ω̂) =

1

2

∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣2 P adj

I (f)P adj
J (f), (A.31)

where PI is the average auto-power in neighboring pixels:

P adj
I (f) ≡ 2 |s̃I(f)|2. (A.32)

The overline denotes an average over neighboring pixels. By averaging over neighboring

pixels, we assume that the detector noise in any given pixel can be characterized by looking

at its neighbors. This assumption is discussed below. Now we calculate the expectation

value of our estimator for variance σ̂2
Y given in Eq. (A.31) in order to compare it to the

theoretical variance given in Eqs. (A.29) and (A.26). Eqs. (3.8) and (3.9) together imply

〈σ̂2
Y (t; f, Ω̂)〉 =2

∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣2

〈s∗adj
I (f)sadj

I (f)s∗adj
J (f)sadj

J (f)〉.
(A.33)

Using Equation (A.24) to write the expectation value of σ̂2
Y in terms of the theoretical value

of σ2
W , we find

〈σ̂2
Y (t; f, Ω̂)〉 =

1

2

[
σ2
W (t; f, Ω̂) + 4

∣∣∣Q̃IJ(t; f, Ω̂)
∣∣∣2

〈s̃adj*
I (t; f)s̃adj

J (t; f)〉〈s̃adj
I (t; f)s̃adj*

J (t; f)〉
]

=
1

2

[
σ2
W (t; f, Ω̂) +

∣∣∣〈Ŵ 〉∣∣∣2]
=

1

2

[
σ2
W (t; f, Ω̂) +H(t; f)2

]
(A.34)
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Since this is the theoretical variance from (A.29), we conclude that
〈
σ̂2
Y

〉
= σ2

Y . Thus,

Eq. (3.8) provides an unbiased estimator for σ2
Y . Here we have assumed that the noise

and signal are comparable in neighboring segments. This assumption can fail for rapidly

changing, high-SNR signals and also for highly non-stationary noise, and so additional work

may be required to estimate σ in these situations.

A.1.5 Distribution of SNR(t; f, Ω̂)

For the case of δF = 1/T , we can the derive the distribution of SNR(t; f, Ω̂) as follows. The

SNR(t; f, Ω̂) is defined as,

SNR(t; f, Ω̂) =
Re[s1(f ; t) ∗ s2(f ; t)]√

P1,adjP2,adj

, (A.35)

where s1(f ; t) and s2(f ; t) are Fourier transforms of time series from two detectors (hence

complex numbers) and, P1,adj and P2,adj are (averaged) power spectrum calculated from

adjacent N of segments.

In general, if x and y are Gaussian distributed variables with mean 0 and variance σ2

i.e,

f(x) =
1√

2πσ2
e−

x2

2σ2 and (A.36)

f(y) =
1√

2πσ2
e−

y2

2σ2 (A.37)

then the distribution of a new variable z defined as z = xy will be given by the expression,

f(z) =
1

πσ2
K0

(
|z|
σ2

)
(A.38)

where K0(x) is the modified Bessel function of second kind.

In our transient pipeline, s1(f) and s2(f) (in frequency domain) are complex numbers

and hence Re(s1(f) ∗ s2(f)), also known as Y, is actually sum of two such ‘z’ distribu-

tions. Assuming s1(f) and s2(f) are Gaussian variables, using convolution theorem we can
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calculate the distribution of Y and it is given by

fY (y) =
1

2σ2
e−

|y|
σ2 . (A.39)

In literature the above distribution is known as double exponential or Laplace distribution.

This would be the distribution of numerator of our SNR(t; f, Ω̂). Figure A.2 shows the

fit of Eq. (A.39) to simulated data with Gaussian distribution with constant σ(f) (for real

detector data σ(f) is not constant).
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Figure A.2: Distribution of Y (Eq. (A.39)) for Gaussian data.

Now we calculate the distribution of the denominator of SNR(t; f, Ω̂). Each of Padj in

the denominator is calculated by averaging over P ’s obtained from N number of neighboring

segments i.e.,

P1adj =
1

N

N∑
j=1

P1j (A.40)

P2adj =
1

N

N∑
j=1

P2j (A.41)

The distributions of P themselves are well known in the literature (it is the sum of squares
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of two Gaussian variables) and are described by exponential distributions. But here we

are interested in the average of N such distributions and using the convolution theorem we

obtain the distribution of Padj averaged over N segments as

fP (z) =
NN

2Nσ2NΓ (N)
e−

Nz
2σ2 zN−1 (z ≥ 0) (A.42)

In Figure A.3, we compare the above analytical expression with simulated data.
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Figure A.3: Distribution of Padj (Eq. (A.42)) using simulated data.

Using the distributions for P1adj and P2adj we can now calculate the distribution of

denominator of SNR(t; f, Ω̂), which is given by

fσY (z) =
N2N

22N−2σ4N (Γ (N))2K0

(
Nz

σ2

)
z2N−1 (A.43)

Figure A.4 shows the comparison between analytical expression for σY and simulated data.

From distribution of Y and σY we can calculate the distribution of SNR(t; f, Ω̂) which
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Figure A.4: Distribution of σY (Eq. (A.43) using simulated data).

is given by

fSNR(z) =
N2N

22N−1σ4N+2 (Γ (N))2

∫ ∞
0
|x|e−

|xz|
σ2 K0

(
Nx

σ2

)
x2N−1dx (A.44)

The above integral has different convergence properties depending on the values z, which in

our case can be any real number, and hence writing down a simple final expression is difficult.

A naive run on MATHEMATICA yields answers in terms of hypergeometric functions for

different ranges of z. But for fixed values of N and z, we can solve the above integral

numerically. Figure A.5 shows fSNR(z) for N=2 which also agrees with the MC simulations.

Even though the above integral is difficult solve analytically, because of the z term, it

can be analytically evaluated for the moments of the distribution. In such case, instead of

doing the x integral first, for the required moment we do the z integral first and then the do

x integral later (this takes care of z term). In this way we get the variance of SNR(t; f, Ω̂) as
N2

2(N−1)2
(valid for N > 1). We see that the distribution of SNR is a function of the number

of segments N used to calculate Padj and is similar to the bias factor we used in SGWB

searches (see Section 2.3.3).



A.1. Derivations 145

−15 −10 −5 0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR
Y

N
o.

 o
f b

in
s

 

 

data
analytical

Figure A.5: Distribution of SNR(t; f, Ω̂) using simulated data (for N =2).



Appendix B

Flowcharts of analysis pipelines

In the next four pages, we have provided the flowcharts of stochastic and long GW transient

pipelines. The first two pages of flowchart correspond to stochastic GW pipeline while the

next two pages correspond to long GW transient pipeline. Both the analysis pipelines are

written in Matlab.

The stochastic analysis pipeline is made up of a master code called ‘stochastic.m’ while

the long GW transient pipeline, also called STAMP, has two main codes: ‘preproc.m’ and

‘stochmap.m’ (in a recent revision ‘stochmap.m’ was renamed as ‘clustermap.m’). In STAMP

pipeline, ‘preproc.m’ produces ft-maps and other intermediate data while ‘stochmap.m’ com-

putes calibrated ft-maps and applies pattern recognition algorithms (which is not shown in

the flowchart). The colored variables in the flowcharts represent variables defined and/or

calculated in sub-functions while other variables are defined in the main functions them-

selves.
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