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Abstract

by Shaon Ghosh, Ph.D.
Washington State University

December 2013

Chair: Sukanta Bose

With multiple observatories and missions being planned for detecting orphaned afterglows

associated with gamma-ray bursts (GRBs) we emphasize the importance of developing data

analysis strategies for searching their possible counterpart signals in the data of gravitational

wave detectors in the advanced detector era. This is especially attractive since short hard

gamma-ray bursts (SGRBs) may have compact binary coalescences involving neutron stars

(CBCNS) as their progenitors, which emit gravitational waves. Joint electromagnetic and

gravitational wave observations of these objects will enrich our understanding of their beam-

ing, energetics, galactic environment, and shed light on a host of other outstanding questions

related to them. We recognize some of the astrophysical factors that determine what fraction

of these sources can generate orphaned afterglows. We developed a search pipeline by mod-

ifying the existing blind hierarchical coherent search pipeline, targeting their sky-position

and time of occurrence known from EM observations to enable it to search for counterparts

of SGRB and SGRB afterglows in gravitational wave detector data. The modifications allow

it to analyze extended periods of time in the gravitational wave data in the past of the

afterglow detection epoch, while targeting its known sky-position, to search for gravitational
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waves from the common progenitor. We assess the improvement in gravitational wave de-

tectability to be had from utilizing the sky-position information. We also propose a method

for mitigating the effects on the detection efficiency of targeted searches of gravitational wave

signals from the putative CBCNS sources of afterglows and short gamma-ray bursts arising

from the presence of errors in detector calibration or CBCNS waveform models used in the

search.
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Chapter 1

Introduction

Among the four fundamental forces in nature, gravity and electromagnetism are the only

two that operate over long range, and directly manifest their effects in our macroscopic

world. Even though the strength of gravity is thirty six orders of magnitude weaker than

electromagnetism, they exhibit some basic similarities. For instance, both follow the inverse

square law, both are central forces and as a result both are conservative. Maxwell’s theory

of electromagnetism explains the origin of electromagnetic radiation. In gravity too, one can

expect similar long range radiation. Ironically, to understand this, one has to forgo the idea

of gravity being a force.

Einstein’s general relativity, which discards the picture of gravity as an action at a dis-

tance, predicts the existence of gravitational radiation. According to general relativity, mat-

ter curves spacetime around it and a free particle in the presence of this curvature follows

the shortest path in this spacetime called a geodesic. The resulting motion of the particles

in this curved spacetime is what we identify as motion under the force of gravity in the

Newtonian sense. Gravitational radiation is the wave of disturbance of the spacetime that

travels at a speed of light (Hartle (2003)).

Unlike some of the other general relativistic predictions, like the gravitational bending

of light, precession of perihelion of Mercury, etc., gravitational wave is one of the results of
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strong field regime of gravity. Indirect evidence of the existence of gravitational waves was

obtained from the observation of the binary pulsar system PSR B1913 + 16 discovered in

1974, commonly known as the Hulse and Taylor binary pulsar after its discoverers, Russell

A. Hulse and Joseph H. Taylor in 1974. Study of orbital time period decay helped in es-

tablishing the indirect detection of gravitational wave in 1978. However, a direct detection

of gravitational waves have eluded scientists for more than half a century, ever since Joseph

Weber began his observations using bar detectors, which commonly came to be known as

the ‘Weber bars’ (Weber (1969)). Modern era of astronomy witnessed the advent of the

interferometric detectors like Laser Interferometer Gravitational wave Observatory (LIGO)

at Hanford, Washington and Livingston, Louisiana, in the United States and Virgo gravita-

tional wave detector near Pisa, Italy, that are sensitive enough to detect gravitational waves

from extragalactic coalescing binary systems. With more such detectors on the horizon,

like LIGO India and KAGRA in Japan, expectations are high that a direct detection of

gravitational waves by the end of this decade is imminent.

But detection of gravitational waves, though immensely important, is not the ultimate

goal of these detectors. Advanced technology available today has made it possible to envi-

sion a new age of multi-messenger astronomy in the coming decades where electromagnetic,

gravitational wave and neutrino observatories around the world (and beyond) will work as a

network to unravel a plethora of information about the cosmos from black holes to the big

bang. In this changing landscape of astronomy, this thesis aims at providing some insights

about the prospects of gravitational wave astronomy. Here we provide an outline of the

contents of the remaining part of the thesis.

• Chapter 2 gives a brief introduction to the physics of gravitational waves. We discuss

how we arrive at the wave solution of general relativity in linearized gravity. We also

discuss about the sources of gravitational waves. Our main focus among these sources

is the compact binary coalescing (CBC) source. We then proceed to a discussion of

the interferometric detector itself, how it is used to detect gravitational waves, what
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are the sources of noise in such detectors and how we deal with them.

Finally we talk about the basic data analysis techniques incorporated in the search for

gravitational waves from coalescing binaries, known as the coincident search. We end

this chapter with a discussion of detection of gravitational waves from short duration

gamma ray bursts (SGRB). We discuss very briefly the physics of SGRB and introduce

the reader to the standard external trigger pipeline that is used for the detection of

gravitational waves from the progenitors of such events.

• Chapter 3 discusses the development of a detection statistic for a network of inter-

ferometric detectors. We motivate the discussion with the arguments in favor of a

network search. We establish why a network of multiple interferometric detectors is

indispensable for gravitational wave detection and astronomy. At the single detector

level we introduce the reader to the circular polarization basis of gravitational waves

and how it is used in conjunction with the antenna pattern function of the source sky

position to construct the gravitational wave strain at a particular detector. Then we

demonstrate how to extend this formalism to a network of multiple detectors by con-

sidering the data at different detectors as a data vector with dimension of the number

of detectors.

Once the formalism is established, we use it to construct the detection statistic for

the network by maximization of the logarithmic likelihood ratio. From the network

analysis a natural tool for vetoing non-astrophysical signals evolves. This is called the

null stream, which we briefly discuss next.

We have developed a detection pipeline that is called the hierarchical coherent search

pipeline which uses this network search technique. We elaborate upon the details

of this pipeline and finish the chapter with an example run that was conducted on

simulated Gaussian noise, where we established the performance improvement upon

using the hierarchical coherent search over the coincident search. We quantified this
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improvement using receiver operator characteristic curves. This chapter is based in

part from Ref. Bose et al. (2011).

• Chapter 4 addresses the prospects of detection of gravitational waves from progenitors

of short duration GRBs. CBC systems involving at least one of the binary components

as a neutron star are widely considered to be one of the best progenitor models for

short duration GRBs (Nakar (2007)). Currently multiple observatories and missions

are being planned for detecting orphaned afterglows associated with short GRBs. We

motivated a simple calculation using geometry and CBC progenitor model of SGRB to

estimate the improvement in the detection rate of gravitational waves using LIGO (and

other interferometric observatories) if orphaned afterglow triggers are incorporated

as external triggers. We also studied the effect of sky position uncertainty of the

GRB in the detection efficiency of gravitational wave signals from these sources. We

also studied the mass-sky position parameter error covariance and showed that in

presence of accurate sky position information the detection efficiency still remains sub-

optimal for a targeted search compared to a search that does not use any sky position

information and searches for the gravitational wave in the sky, despite the greater false

alarm probability from increased trials factor in the later. We invented a new sky-patch

model for search that allows for some relaxation in the sky position, yet constraining

the search to a patch on the sky, thereby reducing the false alarm probability. We

showed that there are parts of the parameter space where the sky-patch mode of

search performs better than the standard targeted search. We carried out an analysis

on spinning injections where the search was conducted with non-spinning templates.

We found that incorporating multiple sky points tends to increase SNR of some of the

found injection triggers. This hints at the possible presence of parameter covariance

between spin and sky position errors. The discussions in this chapter is based on the

work we presented in Ref. Ghosh and Bose (2013).
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• Chapter 5 focuses on the effect of waveform inaccuracy on parameter estimation and

detection of gravitational wave signals. One way gravitational wave astronomy can

contribute to multi-messenger astronomy is by providing information that is comple-

mentary to the findings of the electromagnetic observatories. This includes the estima-

tion of parameter that can be measured directly using gravitational wave observations,

like component masses in the case of CBC sources and distances. Prompt emissions

from a GRB source, that is not beamed at us, will missed by electromagnetic observa-

tories. However, gravitational waves detected from these sources may help one locate

them in patches on the sky that can be followed up using X-ray and optical telescopes

to search for afterglows. However, all these pursuits understandably requires precision

parameter estimation ability. We study how the waveform inaccuracy in our modeled

searches hurt chirp mass and symmetric mass ratio estimation and how those errors

vary over the mass parameter space.

We then studied the effect of the waveform inaccuracy from the perspective of detection

in an external trigger search. Here we considered the effect of using non-spinning

templates in order to search spinning waveform. We contrasted the results with the case

where we used spin-aligned templates to search for spin-aligned signals and quantified

the performance improvement using receiver operator characteristic curves.

We explored the implementation of the coherent χ2 statistic to construct a detection

statistic that is better suited to deal with non-stationary noise artifacts. Incorporating

this new detections statistic in conjunction with the spinning template bank, we were

able to enhance the detection probability of the pipeline. The studies presented in this

chapter is based on the work we presented in Refs. Bose et al. (2010) and Ghosh et al.

(2013).
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Chapter 2

A brief survey of gravitational wave

physics, experiment and techniques of

data analysis

The endeavor for the detection of gravitational waves presently undertaken by the Laser

Interferometer Gravitational wave Observatory (LIGO) in the United States and its coun-

terparts around the world like Virgo in Italy, etc., will soon reach its climax within the end

of this decade. Among many interesting astrophysical targets, one the most prominent one

is a compact binary coalescing (CBC) system. These are some of the most violent events in

the universe that, unfortunately in most of the cases, go unnoticed since only a tiny frac-

tion of their energy gets emitted in electromagnetic waves. Bulk of the energy radiated by

such systems is in the form of gravitational waves. With the advent of gravitational wave

astronomy our knowledge about such systems will be enriched.

Prediction of gravitational radiation was already made by Einstein in 1916 (Einstein

(1916)). Its existence was verified in 1978 by the observations conducted by Russell Alan

Hulse and Joseph Hooton Taylor when they observed the binary pulsar system PSR B1913+

16 (Weisberg et al. (2010)). The orbital period of the pulsar was found to be decreasing at a
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rate predicted by Einstein’s relativity (see Fig. 2.1). The ratio of the observed decay rate of

Figure 2.1: Figure obtained from Weisberg et al. (2010).

the orbital period to the predicted rate was calculated to be 0.997± 0.002 in Ref. Weisberg

et al. (2010). This discovery helped Hulse and Taylor win the 1993 Nobel prize in Physics.

This however was an indirect verification of the existence of gravitational waves. Detection

of gravitational waves in interferometric detectors may become the first direct detection of

gravitational waves.

However not all sources of gravitational waves are electromagnetically weak. One notable

exception is the short duration gamma ray burst (SGRB). It is conjectured that a short

duration gamma ray burst has a CBC progenitor. However there are other alternative

hypotheses for SGRB progenitors. A direct detection of gravitational waves in coincidence

with a short GRB will prove decisive about the question of the right progenitor model of

SGRB. Presence of a priori knowledge about the sky position and time of occurrence of

these coalescing events from the GRB alerts will allow us to perform a targeted search, thus,
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improving this chances of GW detections. We will discuss more about targeted searching in

chapter 4.

In the rest of this chapter we will first develop the mathematical framework of gravita-

tional radiation and thereafter will discuss briefly about LIGO detectors. We will conclude

this chapter with some discussion about the data analysis techniques that are used in a CBC

search.

2.1 Gravitational waves

In Newtonian theory gravity acts instantaneously. What it means is that if the source of

the gravitational potential were to change, a test particle placed at infinity will immediately

react to that. A crude, but useful example that is often cited supposes that if the sun instan-

taneously disappears from the center of the solar system, should the planets immediately

deviate from their elliptical orbits and start moving tangentially away? If this was to be true

then the planets will come to ‘know’ of the sun’s non-existence much before the light from

the sun ceases to reach the planets. This breaks a fundamental principle of the Special Rel-

ativity by allowing the sun send signal (of its absence) faster than light. General Relativity

(GR) helps us formulate the problem in such a way that the solution naturally shows that

gravity too should conform with the ultimate speed limit of light. In GR gravity is no longer

considered a force in itself. Instead the presence of massive objects curves the spacetime

around them, and, gravity is the spacetime curvature. Here we will simply delineate the

quantities that are essential for us to develop the theory of gravitational waves. For a more

detailed discussion on these quantities the reader can refer to Appendix A. We will follow

the following convention unless otherwise specified. Repeated indices (also called ‘dummy’

indices) are summed over and x0 = ct, x1 = x, x2 = y, x3 = z. The Greek indices like µ, ν

run from (0, 3) and Latin indices like i, j run from (1, 3).

For given spacetime metric gµν , we define a quantity, called the Christoffel symbols, as
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follows

Γδµν =
1

2
gαδ
[
∂gαµ
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

]
. (2.1)

The curvature of the spacetime, characterized by a quantity called the Riemann curvature

tensor, is defined using the derivatives and products of the Christoffel symbols

Rµ
ναδ = ∂αΓµνδ − ∂δΓ

µ
να + ΓµγαΓγνδ − ΓµγδΓ

γ
να , (2.2)

where ∂µ ≡ ∂/∂xµ. A quantity related to the Riemann curvature tensor is the Ricci tensor,

which is obtained by contracting two indices of the Riemann tensor using the metric tensor

as follows

Rνδ = gµαRµναδ . (2.3)

Rνδ is symmetric second rank tensor. Contracting once more gives us a scalar called the

Ricci scalar

R = gνδRνδ . (2.4)

From the Ricci tensor and the Ricci scalar it is possible to construct a tensor that is diver-

genceless,

Gµν = Rµν −
1

2
gµνR , (2.5)

this is called the Einstein tensor. Finally the Einstein field equations that connect the

spacetime curvature to matter is given by

Gµν =
8πG

c4
Tµν , (2.6)

where Tµν in the right hand side is called the stress-energy tensor. The T 00 term in the

stress-energy tensor is the energy density (divided by c2), T 0i is the momentum density,

T ii terms are the pressure along three spatial axes, and other T ij terms corresponds to the

momentum fluxes through planes described by the xi − xj planes.
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Linearized gravity

The theory of linearized gravity lies at the foundation of gravitational wave physics. For

a detailed discussion on this subject the reader can refer to Appendix B. We present the

final results here.

In the weak field limit we can express the curvature as a perturbation on the flat space-

time. This assumption lets us write the metric in weak field regime as

gµν = ηµν + hµν , (2.7)

where |hµν | � 1. Thus from Eq. (2.1) we can write

Γγαβ =
1

2
ηγδ
(
∂hβδ
∂xα

+
∂hαδ
∂xβ

− ∂hαβ
∂xδ

)
. (2.8)

Knowing the form of the Cristoffel symbols, one can now proceed to calculate the components

of the Riemann curvature tensor from Eq. (2.2), the Ricci tensor using Eq. (2.3), the Ricci

scalar using Eq. (2.4) and finally the Einstein tensor for weak field as

Gαβ =
1

2

[
∂2hα

µ

∂xµ∂xβ
− ηµδ ∂

2hαβ
∂xµ∂xδ

− ∂2h

∂xα∂xβ
+

∂2hµ β
∂xα∂xµ

]
−

1

2
ηαβ

[
∂2hµν

∂xµ∂xν
− ηµν ∂2h

∂xµ∂xν

]
.

(2.9)

The trace-reversed metric perturbation can be written as, h̄αβ = hαβ − 1
2
ηαβ h, where h is

the trace of the metric perturbation. Using these expressions and applying the Lorenz gauge

condition (∂h̄µα/∂xµ = 0), one can write

�h̄αβ = −16πG

c4
Tαβ , (2.10)

which is the Einstein’s field equation in the linearized gravity. Thus in free space this becomes
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the wave equation

�h̄αβ = 0 . (2.11)

One of the solutions of the above equation is the plane wave solution.

h̄αβ = Aαβe
ikγxγ , (2.12)

where the quantity Aαβ is the amplitude of the gravitational wave. Note that this is a

second rank symmetric tensor. Thus the number of independent components of Aαβ is 10.

Choosing a gauge conditions where the time components of the amplitude terms are zero and

the perturbation is transverse and traceless helps us to reduce the number of independent

components in the amplitude to 2. Which we write as follows

ATT
αβ =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (2.13)

This is the amplitude of the gravitational wave propagating through free space in the trans-

verse traceless gauge (symbolically represented by the superscript TT). In this gauge the

solution of the linearized Einstein’s equations in Eq. (B.13) is given by

hTT
ab (t) =

2G

c4r
Q̈TT
ab (t− r/c) , (2.14)

where Qab is the mass quadrupole moment tensor defined for a system with density profile

ρ(xµ) as

Qab =

∫
xaxbρ(t− r/c, r)dV . (2.15)

where dV is a volume element, and r2 = xix
i.
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2.2 Gravitational wave sources

In the last section we developed the theory of the gravitational wave, how it can be

characterized using matrix perturbation and how it is generated given a mass distribution.

Note that in Eq. (B.24) the presence of double derivative on the mass quadrupole moment

indicates that finite gravitational wave radiation is only possible from some specific types of

systems. For instance, a stationary system will not generate gravitational waves. Similarly

a system moving with uniform velocity will not generate any gravitational waves. In general

any constant spherically symmetric motion is incapable of generating gravitational waves.

We will here discuss some of the most important sources of gravitational sources in nature.

The gravitational collapse of the core of an evolved massive star emanates an enormous

quantity of energy. A fraction of this energy is emitted in the form of gravitational waves.

There are two mechanism through which the gravitational core collapse of a star can emit

gravitational waves. In one model, when a star collapses under its own gravity, it spins up

(conserving the angular momentum). Eventually this core forms a neutron star, but prior

to the formation of the neutron star, dynamical instabilities of this highly spinning core can

emit gravitational waves.

The other model incorporates r-mode instabilities in neutron stars. However, as we have

discussed, the system cannot be spherically symmetric for gravitational wave emission to be

possible. Thus, it is essential that the collapse is not perfectly spherically symmetric. Since,

at the present, there does not exist any realistic solution of an asymmetric core collapse in

three dimension. Thus the search for gravitational waves from stellar collapses has to be

performed without the aid of any model.

A rapidly rotating imperfectly spherical neutron star is another interesting source for

gravitational waves. such a star will loose energy through gravitational wave radiation

slowly. This is an example of continuous wave emission. Even though the radiated power is

smaller compared to a core collapse, integrated over long duration (months), it can be good

candidate for detection.
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A binary system composed of compact objects like neutron stars and black holes are

arguably the candidates best suited for detection of gravitational waves. These are some

of the strongest emitters known. Additionally, we also know fairly accurately the analyt-

ical expressions of the gravitational waveforms that are emitted from these systems. The

knowledge of the waveform for a compact binary systems allows us to search for these signals

in noisy detector data, giving us an edge in discovery over all other prospective detection

candidates. In a compact binary system the gravitational wave emitted lowers the energy

of the system. This results in shrinking of the distance of separation between the objects.

The resulting motion is called an inspiral, where the two objects comes closer to each other

thereby increasing the mass quadrupole moment and hence the amplitude of the radiation.

In the next section we will derive the expression of these waveforms in the weak field limit.

There are more accurate compact binary coalescence (CBC) waveforms at stronger limits

of gravity that are available in the literature where various degrees of approximations and

numerical methods are used (discussions about these will be presented in later chapters).

But the calculation in the weak field limit is still useful to give us an idea of the fundamental

structure of the CBC waveform.

2.2.1 Gravitational waves from compact binary inspiral - weak

field limit

For the rest of the work we will be concerned with the compact binary coalescing (CBC)

systems. So it is good place to build some insight on it. Here we will derive an expression of

the gravitational waveform using weak field approximation that was developed in Sec. 2.1.

Let us assume that the compact binary components are point objects, each having a

mass denoted by m1 and m2. Let us further assume that the motion is confined to x1 − x2

plane. We depict that in Fig. 2.2. We choose the coordinate system at the center of

mass frame of reference. The line joining the two components makes an angle ϕ with the

x1 axis. The distance between the two masses at any given moment of time is given by
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l = r1 +r2 such that r1 = rm2/(m1 +m2) = lµ/m1 and r2 = rm1/(m1 +m2) = lµ/m2, where

µ = m1m2/(m1 +m2) is the reduced mass of the system. The calculation of the components

of the mass quadrupole moment becomes trivial in this scenario.

Figure 2.2: Compact binary system of masses m1 and m2 in the x1 − x2 plane.

Let the xi component of the position vector of mass m1,2 be given by xi1,2, thus from Fig.

2.2 we note that

x1
1 = r1 cosϕ , x2

1 = r1 sinϕ , x3
1 = 0 ,

x1
2 = −r2 cosϕ , x2

2 = −r2 sinϕ , x3
2 = 0 .

(2.16)

Thus the components of the mass quadrupole moments calculated using Eq. (B.23) are

Q11 = m1(r1 cosϕ)2 +m2(−r2 cosϕ) =

(
m1

l2µ2

m2
1

+m2
l2µ2

m2
2

)
cos2 ϕ =

1

2
µl2(1 + cos 2ϕ) ,

Q12 = I21 = m1r
2
1 sinϕ cosϕ+m2r

2
2 sinϕ cosϕ = l2µ2

(
1

m1

+
1

m2

)
sinϕ cosϕ =

1

2
µl2 sin 2ϕ

Q22 = m1(r1 cosϕ)2 +m2(−r2 sinϕ) =

(
m1

l2µ2

m2
1

+m2
l2µ2

m2
2

)
sin2 ϕ =

1

2
µl2(1− cos 2ϕ) .

(2.17)

If we assume that the angular velocity of the system is ω then ϕ = ωt. Thus double time
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derivatives of the components of the mass quadrupole moment can be written as

Q̈11 =
1

2
µl2

d

dt
(1 + cos 2ωt) = −2µl2ω2 cos 2ϕ ,

Q̈12 =
1

2
µl2

d

dt
sin 2ωt = −2µl2ω2 sin 2ϕ ,

Q̈22 =
1

2
µl2

d

dt
(1− cos 2ωt) = 2µl2ω2 cos 2ϕ .

(2.18)

Note that the trace of the Q̈ij is zero and the matrix is symmetric, which means that in the

chosen geometry the double time derivative of the mass quadrupole moment is already in

the symmetric traceless coordinates. Therefore we can use Eq. (B.24) directly to obtain the

gravitational waveform for a compact binary system.

hTT
ab (t) =

2G

c4r
Q̈TT
ab (t− r/c) = −4Gµl2ω2

c4r


cos 2ϕ(t− r

c
) sin 2ϕ(t− r

c
) 0

sin 2ϕ(t− r
c
) − cos 2ϕ(t− r

c
) 0

0 0 0

 . (2.19)

If the plane of the binary is not perpendicular to the observer’s line of sight, then we need to

use Eulerian rotation matrix to transform the waveform tensor from the frame of the binary

to the frame of the observer. This is depicted in Fig. 2.3.

Transformation from the source frame to the wave frame involves two eulerian rotations.

The first rotation is performed by rotating xs axis about the source frame zs axis to align

itself to the projected x axis of the wave frame (dashed arrow in the source frame in Fig.

2.3) by an angle ψ. The next transformation involves rotation of the zs axis about the new

xs axis by an angle ι. Thus mathematically the two frames are related by a rotation matrix

R(ψ, ι) =


1 0 0

0 cos ι sin ι

0 − sin ι cos ι




cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 , (2.20)

Thus the transformation of the metric perturbation from the source frame to the wave frame
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Figure 2.3: The above figure shows the two frames, source frame shown with red axes and
axes labeled by subscript s, and the wave frame shown with blue axes. The z axis in the wave
frame denotes the direction of propagation of the wave. The inclination angle ι is the angle
between the zs axis of the source frame and the z axis of the wave frame. The polarization
angle ψ is the angle between the xs axis of the source frame and the x axis of the wave frame
projected on to the source frame.

is given by

h′(t) = RhTT(t)RT , (2.21)

where the h′(t) denotes the transformed metric perturbation tensor in matrix notation and

h is the source frame transverse traceless metric perturbation tensor. Note that the trans-

formation to the new coordinate will not preserve the transverse traceless state of the source

metric. Thus we will need to re-convert it to this form after the transformation. Therefore

we get

h′(t) = −4Gµl2ω2

c4r
R


cos 2ϕ sin 2ϕ 0

sin 2ϕ − cos 2ϕ 0

0 0 0

RT . (2.22)
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After calculating the above product of three matrices we get

h′(t) = −4Gµl2ω2

c4r


cos ε sin ε cos ι − sin ε sin ι

sin ε cos ι − cos ε cos2 ι cos ε cos ι sin ι

− sin ε sin ι cos ε cos ι sin ι cos ε sin2 ι

 , (2.23)

where ε = 2ϕ− 2ψ. Clearly this is not transverse traceless anymore. Taking the transverse

projection along the z axis of this matrix is equivalent to substituting all the (i, 3) and (3, i)

elements by zero. Thus we get the transverse component to be

h′(t) = −4Gµl2ω2

c4r


cos ε sin ε cos ι 0

sin ε cos ι − cos ε cos2 ι 0

0 0 0

 . (2.24)

The trace of the above quantity is given by

h′ = −4Gµl2ω2

c4r
(cos ε− cos ε cos2) , (2.25)

from which we find the transverse traceless metric perturbation in the wave frame to be

h′TT(t) =h′(t)− h′


1 0 0

0 1 0

0 0 0

 ,

=
4Gµl2ω2

c4r


−1

2
cos(2ϕ− 2ψ)(1 + cos2 ι) sin(2ϕ− 2ψ) cos ι 0

sin(2ϕ− 2ψ) cos ι 1
2

cos(2ϕ− 2ψ)(1 + cos2 ι) 0

0 0 0

 ,

(2.26)

where we have substituted back ε. Thus the two polarizations of the gravitational waves,

commonly called the cross polarization and the plus polarization in the wave frame are given

17



by

h+(t) = −4Gµl2ω2

c4r

(1 + cos2 ι)

2
cos(2ϕ− 2ψ) ,

h×(t) = −4Gµl2ω2

c4r
cos ι sin(2ϕ− 2ψ) .

(2.27)

Thus we have derived the mathematical expression of the gravitational waveform emitted

from a compact binary system in the weak field limit. Note that the amplitude of both

the plus and the cross polarizations are proportional to the newtonian potential. More

accurate waveform is obtained by using post newtonian approximations, which is essentially

an expansion of the general relativistic equation of motion in orders of v2/c2. We show here

the gravitational waveform in the restricted post newtonian approximation obtained from

Ref. Pai et al. (2001). In chapter 4 we will use this waveform to derive an expression for the

detection statistic in a network of detectors.

h+(t; r, ι, δc, tc, ξ, ) =
2N
r
a−1/4(t; tc, ξ)

1 + cos2 ι

2
cos [ϕ (t; tc, ξ) + δc] ,

h×(t; r, ι, δc, tc, ξ, ) =
2N
r
a−1/4(t, tc, ξ) cos ι sin [ϕ (t; tc, ξ) + δc] ,

(2.28)

where the factor N is given by,

N =
2G5/3M5/3(πfs)

2/3

c4
, (2.29)

and,

a(t; tc, ξ) =
tc − t
ξ

. (2.30)

δc is the coalescence phase of the binary orbit, r is the distance to the source, andM is the

chirp mass defined as,

M =
(m1m2)3/5

(m1 +m2)1/5
, (2.31)

and ξ is the chirp time given by

ξ = 1390

(
M
M�

)−5/3(
fs

10 Hz

)−8/3

sec . (2.32)
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The ψ dependence in Eq. (2.27) is generally separated from the waveform (which is possible

because ψ is introduced in the expression of the waveform at the wave frame through the

operation of a rotation matrices involving ψ. This rotation is performed about the propa-

gation axis of the wave. Thus, it is possible to include it in a function, called the antenna

pattern function that we will discuss in the next chapter.

2.3 Laser interferometric techniques to detect gravita-

tional waves

In this section we will discuss briefly about the technique of detection of gravitational

waves using laser interferometry. The principle of Michelson interferometer is the fundamen-

tal idea behind the construction of the LIGO detectors. The detector consists of two arms

of equal lengths that are perpendicular to each other. The mirrors of the interferometer at

the end of these arms act as the test masses for the incoming gravitational waves. The phase

of the laser beam in the interferometer is modulated in the presence of a gravitational wave.

The optical path lengths of the interferometer arms are set in such a way that in absence of

a gravitational wave the light interferes destructively at the photo diode shown in Fig. 2.4,

where we show a schematic diagram of the basic construction of a LIGO interferometer.

The partially transmitting input mirrors between the highly reflecting end mirrors and

the beam splitter in both the arms reflect the beam of laser multiple times increasing the

power in the cavities. In LIGO this method increases the power up to a factor of 100 at about

100 Hz. The partially reflecting mirror between the beam splitter and the laser recycles the

power building up optical cavity. It uses the phenomenon of optical resonance to amplify

the power that is being lost in the Michelson interferometer.

2.3.1 Basic interferometric principle

We will now consider a very special case, following what was done in Ref. Saulson (1994),
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Figure 2.4: A schematic diagram of a power recycled Fabry-Perot Michelson interferometer.

to show how the interferometer can interact with an incoming gravitational wave. Let us

first align the coordinate system such that the arms of the interferometer form the x and y

axes and the origin is at the point of the beam splitter. Also let us assume that the incoming

gravitational wave is traveling along the negative z axis. Since the light in the arms of the

interferometer is confined to move along either the x or the y axis, an interval between any

two points will depend only on dx or dy depending on which arm we are calculating. Thus

this choice of coordinates helps us in having to deal with only the h11 and the h22 components

of the metric perturbation that we developed in Eq. (2.19). From special relativity we recall

that a beam of light always travels along a null geodesic (ds = 0). Thus, we can write

gµνdx
µdxν = 0 ,

(ηµν + hµν)dx
µdxν = 0 .

(2.33)

Now we are going to assume that the arms of the interferometer are sufficiently small such
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that the light travel time within the interferometer is much smaller than the time period of

oscillation of the gravitational wave. This ensures that while calculating the difference in

time taken by a beam of light, that is split at t = 0 at the beam splitter, we do not have

to worry about time varying h11 and h22. For a beam of light along the x axis, the time t+

taken by it to travel from the beam splitter to the end test mass (distance L) is given by

(ηµν + hµν)dx
µdxν = 0 ,

− c2dt2 + [1 + h11(ωt)]dx2 = 0 ,

t+ =
1

c

∫ L

0

[1 + h11(ωt)]1/2dx ,

(2.34)

The time taken by the returning beam of light after reflecting from the end mirror can be

found similarly and in this approximation where h11(ωt) does not change appreciably during

that time, the amount of time taken by the beam can be calculated to be the same

t− =
1

c

∫ L

0

[1 + h11(ωt)]1/2dx . (2.35)

Since the metric perturbation terms are taken to be very small |h11| � 1 we can approximate

the total time Tx taken for the beam of light in the x arm to return back to the beam splitter

as

Tx =
2

c

∫ L

0

[
1 +

1

2
h11(ωt)

]
dx , (2.36)

and the total time taken for the beam of light in y arm to return is given by

Ty =
2

c

∫ L

0

[
1 +

1

2
h22(ωt)

]
dy , (2.37)

where we know from Eq. (2.19) that h11(ωt) = −h22(ωt) = h. Therefore the difference in

time taken by the beams of light in the x and the y arm, to return to the beam splitter is
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given by

∆T =
2

c

∫ L

0

[
1 +

1

2
h(ωt)

]
dx− 2

c

∫ L

0

[
1 +

1

2
h(ωt)

]
dy ,

∆T =
2

c

∫ L

0

h(ωt)dx = h(ωt)
2L

c
,

(2.38)

from which we get the shift in phase due to the gravitational wave to be

∆φlaser = h(ωt)
2L

c

2πc

λ
, (2.39)

where λ is the wavelength of the laser used. One key thing to note here is that the change in

phase, which is responsible for the shifting of the interference fringes, is directly proportional

to the length of the interferometers and that is why these interferometers are built in such

large scales.

2.3.2 Noises in interferometric gravitational wave detectors

The strains in the interferometer arms due to gravitational wave, from a CBC source,

that is typically coming to us from an extra galactic distance, are smaller than nuclear

dimension. Measuring such weak signals presents serious obstacles due to ambient and

instrumental noises. There are multiple sources of noises that affect the performance of

the interferometer. Significant effort in the LIGO Scientific Collaboration (LSC) is spent to

address this issue. Reduction of noise is key to science outcome of the experiment. Thus a

brief discussion of the different types of noises in interferometers is presented next.

Thermal noise

Detection of gravitational waves in an interferometer involves precise measurement of

motion in the end mirrors. This motion is smaller than the scale of nuclear diameters. The

mean square thermal vibrations in a system is proportional to the temperature. If some sort

of thermal noise reduction is not implemented, this can effectively dominate the motion of

the end mirrors. The energy of the thermal noise tends to be concentrated near the resonance
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frequencies of the mirrors. Thus the most obvious and simplest step one could take would be

to construct mirrors whose resonant frequencies lie away from the frequency band that is of

astrophysical interest. Thermal noise is further reduced by reducing the cross section area of

the pendulum wire as the elastic energy in the flexing regions of the wires is proportional to

the fourth power of the radius of the cross section as given in Ref. Abbott and et. al (2009).

Mechanical damping in the test mass mirrors cause thermal noise through dissipation. This

constitutes the dominant thermal noise through dissipation.

Photon shot noise and radiation pressure noise

As we have discussed before the detection of a gravitational wave requires the ability to

differentiate between a dark and a bright fringe at the photo diode. However the definition

of a ‘dark’ or a ‘bright’ fringe depends on the number of photons present at any given time.

Light that interferes after being reflected from the end mirrors arrives as a stream of photons.

The power P of a laser is related to the average number of photons that it emits per second.

Following Ref. Saulson (1994) we can write, this rate of photons emitted per second, or the

photon flux as

n̄γ =
λ

hpc
P , (2.40)

where hp is the Planck’s constant and λ is the wavelength of the laser. However, for any

given rate, if one estimates the probability distribution of the number of photons that are

actually forming the fringe, which is being observed over a fixed duration of time, then

this turns out to be Poisson distribution. Over a fixed time interval of tobs if one makes a

measurement of the number of photons that are forming the fringe, then over an ensemble

of such intervals the average number of photon count will be n̄γtobs. However for a single

interval the fluctuation is given by

fluctuation =

√
n̄γtobs

n̄γtobs

=
1

√
n̄γtobs

=

√
hpc

λPtobs

, (2.41)
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from which we immediately see that the fluctuation can be reduced by increasing the power

of the laser.

However, increasing the power of the laser indefinitely will not be the solution addressing

the photon shot noise, since that increases the radiation pressure in the mirrors. Every

photon that hits the mirrors imparts a finite amount of momentum and increasing the power

results in the increasing the number of photons hitting per second on the mirrors. This will

result in the increase of the radiation pressure noise.

Seismic noise

Finally the vibration on the surface of the earth contributes to the random motion of

the mirrors. This noise is called the seismic noise. Seismic noise is not characterized by any

fundamental constants like kB in the case of thermal noise or hp in the case of photon shot

noise or radiation pressure noise. The solution to mitigating the seismic noise is vibration

isolators. A simple vibration isolator would be a spring that, for a given value of its stiffness

constant, will resonate when an external periodic force of frequency

fres =
1

2π

√
k

m
, (2.42)

is applied. At very large frequencies (f � fres), the inertia of the mass attached to the spring

will not permit the mass to vibrate. Thus the mass has been isolated with the help of the

spring from any external vibrations that have a high enough frequency. In LIGO advanced

isolation techniques are implemented that essentially use this principle at the fundamental

level to reduce seismic noises.

There are other sources of noises. But in this work we will not go into these details. It

suffices here to outline the noises in the system that fundamentally put constraints on the

operating point of the interferometers. Fig. 2.5 shows a cartoon with all these noises put

together. The region shaded in orange is where we aim to detect signals from coalescing
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binaries. In Fig. 2.6 we present the actual LIGO sensitivity curves.

Figure 2.5: LIGO noise curve depiction from Ref. wikimedia commons. Above Fig. shows
contributions from the different noise elements.

2.4 Basic data analysis techniques

Building of interferometers that are sensitive enough for a science experiment alone does

not ensure a detection. Fundamental physical constraints, discussed in the previous section,

does not allow us to reduce the noise to such an extent the gravitational wave signals are

louder than the noise. As a consequence data analysis techniques are incorporated to search

for these signals. Different types of sources have different genre of techniques. Here we

will discuss the one that is relevant to this work, namely, data analysis techniques used for

compact binary coalescences.
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Figure 2.6: Actual LIGO noise curve (courtesy: LIGO Scientific Collaboration). Figure
shows how the sensitivity of the detector progressively improved over time. By S6, the
sensitivity outperformed the design sensitivity.

2.4.1 Data segmentation

A nice description of data segmentation in LIGO CBC search is given in Refs. Brown,

Duncan (2004) and Allen et al. (2012). Here we briefly summarize the data segmentation

procedure. A continuous stretch of calibrated data obtained from the interferometer that

is more than 2048 seconds long is called a science segment. Each science segment is then

divided into chunks of data that are 2048 seconds long. These chunks are chosen in the

science segment in such a way that they have an overlap of 128 seconds with the previous

chunk. Each chunk is then further divided into analysis segments, each of which 256 seconds

long. Sixty four seconds of data at the start and an equal duration of data at the end of each

analysis segment are discarded. The subsequent analysis segment is chosen in such a way

that there is an overlap with the previous analysis segment by 64 seconds. Continuing this
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process we analyze the entire 2048 seconds chunk except the first and the last 64 seconds.

The noise power spectral density (PSD) of the data is calculated for every analysis segment.

2.4.2 Template bank

As we have discussed earlier, in data analysis of CBC signals we take advantage of the

fact that we have good prior understanding of the signal. This knowledge of gravitational

waveforms allows us to construct templates that we can use to match filter the data to search

for signals. A template is essentially a gravitational waveform weighted by the noise power

spectral density (PSD) of the detector. As we have discussed the noise PSD is estimated for

every analysis segment. The noise PSD for a chunk is calculated by taking the average of

the noise PSD for all the analysis segment in the chunk. This ensures that presence of any

anomaly, like some non-stationary artifact or a real gravitational wave only minimally biases

the PSD. Then using a theoretical waveform family, templates are generated for different

values of mass pairs in such way that the maximum loss in signal to noise ratio (SNR) for a

signal that falls in between two templates in the template bank is 3%.

For the search of gravitational waves from progenitors of short GRBs, the templates

typically used are in the mass range [1, 3]M� for a neutron star and [3, 15]M� for a black

hole. One can now generate spin-aligned templates for such externally triggered searches as

well. It was shown in Ref. Brown et al. (2012), that it is possible to reduce the effective

dimensionality of the template bank for an aligned spin system to 2. Results of such a search

will be presented in chapter 5.

2.4.3 Matched filtering and detection statistic

At the heart of the search of gravitational waves in noisy data lies the technique of

matched filtering. Here we will briefly discuss it. Let us define the inner product between
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two time series h and s as

〈s|h〉 = 2<
∫ ∞
−∞

s̃(f)h̃∗(f)

Sn(f)
df , (2.43)

where, Sn(f) is the noise power spectral density. The ratio between the likelihoods of,

obtaining a data when a given signal is present, and, obtaining the same same data in the

absence of the signal, is called the likelihood ratio. This is given by (see for example in Ref.

Capano, Collin D. (2011))

λ =
exp

[
−1

2
〈s− h|s− h〉

]
exp

[
−1

2
〈s|s〉

] = exp

[
〈s|h〉 − 1

2
〈h|h〉

]
, (2.44)

where s represents the data and h represents the gravitational waveform that is used to

construct the template. From this definition of the likelihood ratio and the gravitational

waveform for compact binary coalescence given in Eq. (2.28) it was shown in Ref. Capano,

Collin D. (2011) (and the references therein), that the optimal detection statistic ρ is given

by

ρ2 =
|z|2

σ2
, (2.45)

where σ is the template norm 〈h|h〉, and z is the matched filter output defined as quadrature

sum of the inner products between the data and the two polarization components of the

template waveform.

z2 = x2 + y2 ,

x = 〈s|h+〉 ,

y = 〈s|h×〉 .

(2.46)

Thus for a given time series of strain data and template one can construct the detection

statistic using the matched filter output z. One can then construct a time series of this

detection statistic called the SNR time series using Fourier transform as shown in Ref.

Capano, Collin D. (2011). The maximum value in the time series is stored whenever it

crosses a preset threshold and is called a trigger.
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2.4.4 χ2 test

The detection statistic we discussed in the last section is optimal in Gaussian noise.

Unfortunately, real detector noise can have non-stationary noise components. As a result

there will be triggers with loud SNR values, after filtering the data with the templates,

due to features in the data that look nothing like a gravitational wave signal. In other

words we do not have an optimal detection statistic for non-stationary noise exhibited by

the interferometers. Thus it is necessary to develop statistical tools that can distinguish

between a trigger that is obtained from the matched filter output of a true signal and a

trigger due to non-stationarity in the data. The latter type of triggers are called glitches.

One such test that is used in the CBC pipeline is the χ2 test.

The fundamental idea behind this test is that if we split a template into multiples fre-

quency bins that give equal energy in each bin if filtered with the template waveform, then a

true signal in the data will give equal contribution to the match filter output in each of these

bins. However, for a non-stationary feature in the data the matched filter output might not

necessarily be same across all the bins. Details about this test can be found in Ref. Allen

(2005). Here we summarize the main points.

Suppose we split the template into p bins denoted by ∆fi where i ranges from 1 to p. We

will call each of these a sub-template. Each bin gives equal energy on the average when the

data has a signal corresponding to the same template. We can define a match filter between

these sub-templates as follows

zi = 2<
∫

(−∆fi)∪(∆fi)

s̃(f)h̃∗(f)

Sn(f)
df , (2.47)

where the range of integration is over negative and positive values of frequencies in the bin

defined by ∆fi. It is obvious then that the total match filter output z is simply given by

z =

p∑
i=1

zi . (2.48)
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From this we can define the χ2 statistic as

χ2 = p

p∑
i=1

(
zi −

z

p

)2

, (2.49)

The mean value of χ2 is p−1 if there is no non-stationarity in the data. However for glitches

typically this value will be larger. This gives us a tool to discriminate between glitches and

real signals. One can construct a detection statistic using this χ2 information and the SNR.

One such detection statistic that is commonly used in the LSC for the external trigger search

is called new SNR (Harry and Fairhurst (2011))

ρnew =


ρ[(

1+
(
χ2

p

)4/3
)/

2

]1/4 if χ2 > p ,

ρ if χ2 ≤ p .

(2.50)

The χ2 statistic is however more useful when there is good match between the signal and the

template and its value scales quadratically with the mismatch between signal and template

as was shown in Ref. Allen (2005). We will see the effect of signal mismatch on χ2 in chapter

5.

2.4.5 Coincidence test and background estimation

For claiming detection it is very important that a signal is being detected in coincidence

in multiple detectors. Thus we repeat the matched filtering and χ2 steps discussed above

in all the detectors in a network. A list of triggers is obtained for all the detectors. The

next step in the CBC pipeline is the coincidence stage. The idea behind the coincidence

stage of the pipeline is that any trigger that is of astrophysical origin should be observed in

multiple detectors with time delays consistent with its sky position, provided those detectors

are all favorably oriented to that sky position. Furthermore, the triggers that are obtained

in different detectors should also be of masses that are commensurate with each other. The
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coincidence test is performed by forming error ellipsoids around each trigger that takes

into account the covariances between trigger time and template masses. These ellipsoids

are defined by the covariance matrices in the parameter space. Details of this method are

given in Ref. Robinson et al. (2008). The reason one does not demand exact coincidence

of parameters is because detector noise can cause the measured parameter values to differ

in different detectors. Thus it is very unlikely that real triggers of astrophysical origin in

different detectors will show up with the exact same masses and at time delays exactly

characterized by the light travel time between the two detectors.

Since there is no way to shield the interferometers from incoming gravitational waves,

an estimation of background is obtained by time slides. In a time slide experiment the

trigger list in one detector is slid in time w.r.t the trigger list of another detector by amounts

much larger than light travel time between the detectors (known as unphysical slide time)

and accidental coincidences of such triggers are looked for. A background estimation is

performed with the help of a total of 100 time slides per pair of detectors.

However, this method of finding background is implemented for a blind search, where

the sky location and time of occurrence of coalescence are not known a priori and the search

is conducted over large temporal stretches of the data. In an external trigger search, where

the time of the occurrence of the event is known, a different approach is implemented. This

we will discuss in the next section where we outline the search methodology of the external

trigger search.

2.5 Search for gravitational waves from progenitors of

short GRBs

The search for gravitational waves from a progenitor of a short duration GRB is among

one of the most interesting research investigations conducted by LIGO. It is of special sig-

nificance because it combines information of both electromagnetic and gravitational wave
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astronomy. As a CBC search, it leverages the prior knowledge of gravitational waveforms of

the progenitors. Additionally the knowledge of the time of the event helps in reducing the

amount of data one needs to search. Especially, this helps in reducing the search time for

estimating the background. It also helps us to reduce the threshold of detection, thereby

helping us in improving the probability of detecting weaker signals. We will discuss the

prospects of such a targeted search in chapter 4. In this section we will talk about some

of the technical details about the external trigger search, which we will refer to, whenever

required, in the later chapters. For more details please refer to Refs. Abadie and et. al

(2010) and Abadie and et. al (2012b). Before we discuss the basic features of the targeted

search (also known as the external trigger search), we will invest some time to understand

the basic physics behind the short GRB emission. For details refer to Ref. Piran (1999).

2.5.1 Short duration gamma ray bursts

The process of a short GRB triggering is depicted in Fig. 2.7. The mechanism of short

GRB using a CBC model can be explained as follows (Vedrenne, Gilbert and Atteia, Jean-Luc

(2009)). The primary requirement for this is an accretion disk; therefore, a short duration

GRB progenitor must have a neutron star as one of the binary components (the other one

can be a neutron star or a black hole). The time scales of these events are short. Typically

they must be less than 2 seconds long to be categorized as a short GRB. The following

discussion will give us an idea about the relevance of this time scale.

Let us assume that a neutron star is in a binary system with a black hole, the case of

the binary neutron star can also be explained by the same model, but a neutron star black

hole binary is chosen here for convenience as we know that the accretion disk will be formed

by the neutron star alone. As the neutron star comes closer to the black hole, strong tidal

forces from the black hole disrupt its structural integrity and begin to rip it apart. Matter

that is being ripped out of the neutron star begins to form a disk around the black hole and

accretes into the latter. It is not necessary for the entire neutron star to be disrupted before
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Figure 2.7: Short duration GRB firing from compact binary coalescence.

the GRB is launched.

The catastrophic compressional heating and dissipation in the accretion disk supplies

huge amount of energy to the axial jet emanated out of the accretion disk. If the energy is

higher than the pair production energy then a fireball of e+ − e− and photons is created.

This fireball will stop the photons from escaping due to its high opacity arising from the

presence of the electron-positron pairs, much like what we observe in the the early universe.

The heating from the accretion disk will continue to supply pressure, resulting in a rapid

expansion of the fireball as a jet with a Lorentz factor of ∼ 100. As the fireball jet expands,

it cools down, and when the energy drops below the pair production energy, the electron-

positron pairs begin to recombine and annihilate, thereby creating streams of photons that

are now able to escape to infinity due to reduced opacity of the fireball. These photons

are, however, radiated in the jet’s frame and, therefore, in the observer’s frame they are
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strongly blue shifted due to the large Lorentz factor associated with the jet. This shifts

typical photons into the gamma ray spectrum for these events. Thus it is imperative that

the accretion disk powering the fireball must generate enough heat for the fireball to be

expanding at such ultra-relativistic speed to ensure that the photons that we observe are in

the gamma ray frequency range. This puts a lower bound on the mass accretion rate and as

was shown in Ref. Kiuchi et al. (2010b) an accretion rate of ∼ 0.1M� per second is required

for a GRB to be initiated. Typically this magnitude of accretion rate can be achieved if

∼ 0.01M� of matter is present in the accretion disk. Such an accretion disk will trigger

a fireball lasting for ∼ 0.1 second resulting in a GRB that lasts for ∼ 0.1 second. Higher

accretion rates can be achieved if more mass is present in the disk. This sets the time scale

of a short GRB to be in the range of a few tenths of a second to a few seconds long.

2.5.2 External trigger pipeline

The matter from the neutron star will continue to contribute to the accretion disk for-

mation until the merger of the binary system. Thus, the generation of the GRB coincides

with the merger event within a window of about few seconds. The external trigger pipeline

chooses this window, also known as the onsource window, to be 6 seconds long (Abadie

and et. al (2010)) based on the physical models and tolerances towards the uncertainties in

these models. This window is chosen from one second before the GRB trigger alert time to

5 seconds after the GRB alert time. During the match filtering any trigger that is found

in this onsource window is called an onsource trigger. Measurement of background is done

by analyzing similar 6 second windows away from the GRB onsource window. These are

called offsource windows. A total of 340 such offsource windows are chosen that builds up an

offsource analysis segment. To prevent biasing of the background estimation by any possible

gravitational wave triggers in the onsource window, 48 seconds worth of data on both sides

of the onsource window are discarded from the analysis. The choice of the 48 seconds is

based on the fact that the longest template used in the search is 48 seconds long. From both
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the ends of the offsource analysis region 72 seconds of data are not analyzed that might be

susceptible to presence of filter transients. This is shown schematically in Fig. 2.8.

Figure 2.8: Schematic representation of the external trigger search analysis segment. The
grey region indicates the offsource segments. There are a total of 340 offsource segments.
The red central region is the 6 second onsource segment. The black regions are the discarded
parts of the data for reasons explained in the text.

Less computational power is required in the background estimation of the external trigger

search compared to time slides in the conventional blind search. This allows us to search for

gravitational waves coherently in the sky, which is computationally more expensive than the

conventional coincidence search described in Sec. 2.4. In coincidence search one combines

the contribution from the two gravitational wave polarizations in quadratures as given in

Eq. (2.46). However one must bear in mind that these inner products are actually complex

numbers and when taking their magnitudes, we are discarding the phase information from

the search. In a coherent search one combines the matched filter outputs in a way that helps

us use the phase information. Detailed discussions about constructing a coherent search will
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be presented in the next chapter. The coherent analysis used in external trigger search is

discussed in Ref. Harry and Fairhurst (2011).

As opposed to the triggered search, in the conventional blind search we have developed

a hierarchical coherent search technique where the coherent analysis runs as a follow-up

on the coincidence search. We will describe the complete methodology in the next chapter

and present the results of searches that were done using the that technique. We have also

developed a hierarchical coherent search pipeline for the external trigger search. This is

especially helpful in studying performances of searches of gravitational waves from GRBs

that have large sky position errors. The hierarchical coherent search also has the potential to

be extended to other types of external trigger searches, for instance, a search for gravitational

waves from progenitors of orphaned afterglows. All these we will discuss in chapter 4.

We also studied the effect of parameter covariance between mass and sky position using

hierarchical coherent search. Upon increasing the size of the grid, over which the search

was conducted, from one point (targeted search) to a patch on the sky, a performance

enhancement in terms of detection efficiency was recorded. This seemingly counterintuitive

point can be understood through study of parameter error covariance. We discuss this in

details in chapter 4.
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Chapter 3

Searching for gravitational waves in a

network of detectors

3.1 Introduction

In the previous chapter we discussed the data analysis techniques that are used for

detection of gravitational waves (GW) from compact binary coalescing (CBC) sources. GW

detectors however do not continuously operate. Interferometers can go out of operation

multiple times in a given day. This happens when lock lost in an interferometer, e.g., due to

external disturbances (Saulson (1994)). It takes time and effort to bring them back online.

This means that there are possibilities that one might miss out on potential detections when

the detectors are not in lock. Gravitational wave interferometer sensitivity is not completely

isotropic either, being more sensitive to overhead locations in the sky than at points on the

sky that lie on the plane described by the arms of the detectors. Thus the farthest observable

distance for a given detector varies as a function of the RA and Dec values of the direction

in the sky. Finally, a single gravitational wave detector is incapable of locating a source in

the sky. All one can do with data from one detector is to infer the presence of gravitational

wave at a given time, estimate the mass pair of the source based on the templates that gave
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the maximum signal to noise ratio (SNR) and the sources effective distance based on the

strength of the signal. Not only are we ‘blind’ about the direction of the source we can not

say anything about the intrinsic (pertaining to the binary systems geometry and physical

properties) parameters (other than the component masses of course) of the source like the

polarization angle of the incoming wave and the inclination angle of the binary orbit.

With these in mind, one realizes multiple detector sites will indeed address a number of

these issues. Firstly, with multiple detectors the live time of the network increases. If one of

the detectors of the network goes out of lock, the other detectors might still be actively taking

science data thus improving our chance of catching an astrophysical event. As the number

of detectors in a network increases, the probability of all the detectors simultaneously going

out of lock gets remote.

Secondly, since all the detectors will not be in the same plane and will not have identi-

cal orientations, therefore the network will to be more isotropic in sensitivity. Specifically

the lower sensitivity near the blind spots of detector A can be compensated by the higher

sensitivity to that direction of the sky for detector B if the two detectors A and B are not

oriented identically. This increases the detection volume by increasing the sky coverage.

Thirdly, with detectors at multiple sites, we get multiple baselines. Two detectors give

us one baseline, allowing us to estimate the time delay between the arrival of the signal at

the individual detectors. This allows us to locate the source on a ring in the sky as shown in

Fig. 3.2 where the two detectors, D1 and D2, are located in two different sites. The time of

arrival of a signal at a particular detector can be different from the other detector depending

upon the distance between the two detectors l, also known as the baseline, and the position

of the source in the sky. The source being infinitely far away from the detectors, subtends

the same angle θ w.r.t the baseline at both the sites. Therefore from Fig. 3.2 we note that,

cos θ =
c(t1 − t2)

l
=
c∆t

l
. (3.1)
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Figure 3.1: The knowledge of time delay between signals in two detectors arising from the
same source helps one in locating it in the sky.

Thus, knowing ∆t, one can estimate θ, which confines the location of the source on a ring

in the sky defined by the cone half angle θ. Adding a third detector at a different site in the

network allows us to locate the source at the points of crossing of the two rings corresponding

to the two time delays. Thus we see that with detectors at multiple sites, we are able to

estimate the sky position of a source, this is not possible with a single detector. As we shall

see later in this chapter, three detectors at different sites with different orientations also

allow us to estimate other parameters like the polarization angle of the gravitational wave,

the inclination angle of the binary’s orbit and the luminosity distance of the source. Finally,

it is worth remembering that a trigger in a single interferometer is not enough to claim

detection. To increase our confidence we need detections in coincidence with other detectors,

thus making network of detectors indispensable for claiming the detection of gravitational

waves. So for defining the problem of detection and parameter estimation, it is essential to

understand the geometry and sensitivity of a network of detectors.
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3.2 Signal at a single detector

Let us begin our discussion with the signal at a single detector. We have worked out the

mathematics of the gravitational waves emitted by a compact binary coalescing source in

Chapter 2. There we presented the form of the restricted post-Newtonian approximation,

the two polarizations determining the gravitational waveform, as in Eq. (2.28), that was

obtained from in Ref. Pai et al. (2001) are as follows,

h+(t; r, ι, δc, tc, ξ, ) =
2N
r
a−1/4(t; tc, ξ)

1 + cos2 ι

2
cos [ϕ (t; tc, ξ) + δc] ,

h×(t; r, ι, δc, tc, ξ, ) =
2N
r
a−1/4(t, tc, ξ) cos ι sin [ϕ (t; tc, ξ) + δc] ,

(3.2)

where the factor N is given by

N =
2G5/3M5/3(πfs)

2/3

c4
, (3.3)

and we have defined

a(t; tc, ξ) =
tc − t
ξ

. (3.4)

In the above equations ι is the inclination angle of the binary orbit, r is the distance to the

source, and M is the chirp mass defined as,

M =
(m1m2)3/5

(m1 +m2)1/5
, (3.5)

where m1 and m2 are the individual binary component masses. For a given cut-off frequency

fs in a detector, the length of the chirp is quantified by the chirp time which is given by,

ξ = 1390

(
M
M�

)−5/3(
fs

10 Hz

)−8/3

sec . (3.6)

Thus, at a particular time t, a(t; tc, ξ) denotes the fraction of time left for the coalescence. At

the time of arrival this factor is 1 and at tc it becomes zero. By time of arrival of the signal
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at the detector one means the time at which the instantaneous frequency of the waveform

is given by fs. The phase of the waveform at which the coalescence occurs is called the

coalescence phase δc and the corresponding time is tc. At any given moment of time the

instantaneous frequency is given by

f(t; fs, tc, ξ) = fsa
−3/8(t; tc, ξ) . (3.7)

Figure. 3.4 shows the evolution of the instantaneous frequency with time Note that the in

Figure 3.2: Evolution of chirp frequency with time. The cut-off frequency is taken to be 10
Hz. Note that the x-axis denotes the value of a which at the end of the chirp is zero.

this approximation frequency diverges at coalescence time tc.

3.2.1 Circular polarization basis

Having defined the mathematical structure of the CBC gravitational waveform, let us

now define two mutually orthogonal normalized waveforms s0 and sπ/2, as done in Ref. Pai

et al. (2001), such that, they combine to form the complex waveform at a particular detector,

S(t; tc, ξ) = s0 + i sπ/2 . (3.8)
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Constructing these orthonormal waveforms s0 and sπ/2 as shown in Eq. (3.9), allows us to

encapsulate all the time dependent pieces in the Eq. (3.2) in to the complex signal S(t; tc, ξ)

s0 =
1

g
[(tc − t)ξ]−1/4 cosϕ(t) =

a1/4(t)

g
√
ξ

cosϕ(t) ,

sπ/2 =
1

g
[(tc − t)ξ]−1/4 sinϕ(t) =

a1/4(t)

g
√
ξ

sinϕ(t) ,

(3.9)

such that

S(t; tc, ξ) =
1

g
[(tc − t)ξ]−1/4eiϕ(t) =

a−1/4(t)

g
√
ξ

eiϕ(t) , (3.10)

where g is a normalization factor that is constructed in such a way that the norm of the

complex strain at a given detector is1.

〈S(t; tc, ξ)|S(t; tc, ξ)〉 = 2 . (3.11)

The inner product 〈x|y〉 is defined as

〈x|y〉 =

∫ ∞
∞

x̃∗(f)ỹ(f) + x̃(f)ỹ∗(f)

Sn(|f |)
df . (3.12)

The gravitational wave strain at a particular detector is obtained by projecting the incoming

gravitational wave, expressed in the wave frame (see Fig. 2.3), on the detectors frame, whose

axes are defined as follows. If we choose the detector X arm as the x−axis and upward

directions as the z−axis then the y−axis is constructed in such a way that the detector

frame is a right handed cartesian coordinate system. We extend Fig. 2.3 by bringing in the

detector frame and show this explicitly in Fig. 3.3.

s(t) = h+(t)F+ + h×(t)F× , (3.13)

1Ref. Bose et al. (2011) uses the convention that chooses g such that 〈S(t; tc, ξ)|S(t; tc, ξ)〉 = 1 thus there
will be a difference of a factor of 2 between the results we develop here and the results of the referenced
paper. The choice we are adopting in this chapter is from the Ref. Pai et al. (2001) which is motivated by
the fact that if s0 and sπ/2 are to be normalized to 1 then the value of the inner product of S with itself will
be 2. Keeping it normalized to 2 gives a much symmetric look as we will see in Eq. (3.70).

42



Figure 3.3: The source frame (depicted in green-colored axes) is transformed into the wave
frame in red. The wave frame is then projected on the detector frame labeled with axes
subscript d.

where the antenna pattern functions are given as

F+(θ, φ, ψ) = −1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ ,

F×(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ .

(3.14)

Using the complex notation, F = F+ + iF×, we get

s(t) = h+(t)<(F ) + h×(t)=(F ) . (3.15)
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Thus, we can write, using Eq. (3.2)

s(t) =
2N
r
a−1/4

[
1 + cos2 ι

2
cos(ϕ+ δc)<(F ) + cos ι sin(ϕ+ δc)=(F )

]
=

2N
r
a−1/4<

[(
1 + cos2 ι

2
<(F )− i cos ι=(F )

)
ei(ϕ(t)+δc)

]
.

(3.16)

Let us define an extended antenna pattern function

E(θ, φ, ψ, ι) ≡ g

(
1 + cos2 ι

2
<(F ) + i cos ι=(F )

)
. (3.17)

Using this definition, we get the gravitational wave strain at a given detector to be

s(t) =
2N
r

a−1/4

g
<
(
E∗ei(ϕ(t)+δc)

)
=

2N
√
ξ

r
<
[(
E∗

a−1/4

g
√
ξ
eiϕ(t)

)
eiδc
]
. (3.18)

Using Eq. (3.10) we can write the signal to be

s(t) =
2N
√
ξ

r
<
[
(E∗S)eiδc

]
, (3.19)

from which we immediately evaluate the normalization factor

〈s|s〉 =
4N 2

r2
ξ 〈 (E∗S)eiδc |(E∗S)eiδc 〉 =

4N 2

r2
ξ (E∗E) = σ2

s , (3.20)

where σ2
s is the norm of the strain at a given detector.

Note that the θ, φ, ψ and ι dependence in the strain s(t) comes purely from the extended

antenna pattern function E. From Eq. (3.19) we see that both the phase and the amplitude

part of E contributes to the strain s(t) in such a way that it is not possible to combine

the amplitude part of E with the overall amplitude of the strain and isolate it from the

phase part of E combined with an overall phase part. Thus for a single detector, one is only

able to estimate those parameters that are related to the overall amplitude of the wave, for

example, the effective distance, chirp mass M and mass ratio. This is an important point.
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This degeneracy will be solved using multiple detectors. This brings us to the discussion of

network of detectors.

3.3 A network of detectors

Having constructed the precise structure of the signal at a single detector, we are now in

a position to discuss about the network signal constructed out of it. In order to do so, let

us define the network strain vector s(t) of dimension M constructed out of the individual

detector strains

s(t) = {s1(t), s2(t), ..., sM(t)} = sI(t) , (3.21)

where I is the detector index. From Eq. (3.10) we can construct the Ith detector complex

waveform

SI(t; tc, ξ) =
1

gI
[(tc − tI)ξ]−1/4eiϕ(tI) =

a−1/4(t)

gI
√
ξ
eiϕ(tI) . (3.22)

Similarly, the extended antenna pattern can also be computed at the Ith detector to be,

EI(θ, φ, ψ, ι) = gI

(
1 + cos2 ι

2
<(F I) + i cos ι=(F I)

)
. (3.23)

Using Eqs. (3.20), (3.21), (3.22) and (3.23) we write the network strain vectors as

s(t) =
2N
√
ξ

r

(
<
[
(E∗1S

1)eiδc
]
,<
[
(E∗2S

2)eiδc
]
, ...,<

[
(E∗MS

M)eiδc
])
, (3.24)

and the norm of the network strain vector can be written as

〈s|s〉 =
4N 2

r2
ξ

M∑
I=1

〈 (E∗IS)eiδc |(E∗IS)eiδc 〉 =
4N 2

r2
ξ

M∑
I=1

(E∗E) = σ2
s , (3.25)

where σs is the network strain vector norm. Using the network strain vector norm we can
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define the network strain unit vector

ŝ(t) = s(t)/σs , (3.26)

such that

ŝ(t) =
(
<
[
(Q∗1S

1)eiδc
]
,<
[
(Q∗2S

2)eiδc
]
, ...,<

[
(Q∗MS

M)eiδc
])
, (3.27)

where Q is the network vector, defined as

Q =

(
E1√
E∗1E

1
,

E2√
E∗2E

2
, ...,

EM√
E∗ME

M

)
. (3.28)

3.3.1 Construction of network detection statistic using physical

parameters

Now that we have constructed the network strain, we will embark upon the construction

of a network detection statistic. However, we will first develop the idea for a single detector,

for which we gave the strain in absence of any noise given in Eq. (3.19). In presence

of background noise this strain will be augmented with a random strain n(t). Thus the

resultant effective strain that we will measure in the detector we call data x;

x(t) = n(t) + s(t) , (3.29)

where the s(t) is the strain purely due to the gravitational waveform in absence of any noise.

Note that the strength of the gravitational wave signal arriving at a particular detector is

extremely weak. Typically the noise at the detector tends to be much greater in amplitude

than that. Therefore our best chance of finding the gravitational wave signal is if we know

what we are searching for. Specifically, if we know the waveform that we expect from CBC

systems, we can match filter the strain at a particular detector with a bank of gravitational

wave templates to construct the matched filter outputs. Let us define the probability of
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obtaining a strain of s(t) at a particular detector as

P (x) = P (x|s)P (s) + P (x|0)P (0) , (3.30)

where, P (x|s) denotes the probability that a strain data of x(t) was obtained in the detector

when a real gravitational wave signal is present in the detector data i.e, x(t) = n(t) + s(t),

while P (x|0) denotes the same when no gravitational wave signal is present i.e, x(t) = n(t).

Using the same notation we can denote the probability that for a given strain data s(t)

at our disposal a gravitational signal is present as P (s|x). Bayes theorem states that this

probability is related to the likelihood that a given signal s(t) will generate a strain data

x(t), denoted by P (x|s), as

P (s|x) =
P (s)P (x|s)

P (x)
=

P (s)P (x|s)
P (x|s)P (s) + P (x|0)P (0)

. (3.31)

Dividing the numerator and the denominator by P (s)P (x|0) and defining the ratio of two

likelihoods, P (x|s) and P (x|0) as λ, where P (x|0) is the likelihood that the data with strain

x(t) was obtained from the detector when no gravitational wave signal is present, we get

P (s|x) =
λ

λ+ P (0)/P (s)
; λ =

P (x|s)
P (x|0)

. (3.32)

One can write the likelihood ratio in terms of probability densities as

λ =
p(x|s)
p(x|0)

. (3.33)

From Ref. Finn (1992), we note that if the noise of the detector is assumed to be Gaussian

then, the probability that the measurement of the strain in the detector yields an instance

of noise n(t), is given by

p(n) = Nn exp

[
−1

2
〈n|n〉

]
, (3.34)
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Nn being a normalization factor. In absence of any signal i.e, x = n, the probability that a

strain of x(t) is measured in the detector must be equal to

p(x)|h=0 = Nn exp

[
−1

2
〈n|n〉

]
= Nn exp

[
−1

2
〈x|x〉

]
. (3.35)

Since this measurement was obtained in absence of any signal, thus the conditional proba-

bility

p(x|0) = p(x)|h=0 = Nn exp

[
−1

2
〈x|x〉

]
, (3.36)

in presence of signal the noise can be written as n = x− s therefore

p(x|s) = Nn exp

[
−1

2
〈n|n〉

]
= Nn exp

[
−1

2
〈x− s|x− s〉

]
. (3.37)

From Eqs. (3.33), (3.36) and (3.37) we get

λ =
exp

[
−1

2
〈x− s|x− s〉

]
exp

[
−1

2
〈x|x〉

] = exp

[
〈x|s〉 − 1

2
〈s|s〉

]
. (3.38)

Let us now consider the case of a network of detectors. Recall that in Eq. (3.21) we have

defined as network strain vector which we will be using as the template vector. We can

construct a similar network data vector

x(t) = {x1(t), x2(t), ..., xM(t)} = xI(t) . (3.39)

Thus for every single detector in a network we can define a likelihood ratio of the form given

in Eq. (3.38)

λI = exp

[
〈xI |sI〉 − 1

2
〈sI |sI〉

]
. (3.40)

Since both the numerator and the denominator of the likelihood ratio are probabilities and

if we assume that the noise in the detectors are independent of each other, therefore we can
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construct a network likelihood ratio as follow

λ =
M∏
I=1

λI =
M∏
I=1

exp

[
〈xI |sI〉 − 1

2
〈sI |sI〉

]
. (3.41)

Thus we can define the logarithmic likelihood ratio for a network of detectors as

lnλ =
M∑
I=1

(
〈xI |sI〉 − 1

2
〈sI |sI〉

)
= 〈x|s〉 − 1

2
〈s|s〉 , (3.42)

where we have used definitions of s and x from Eqs. (3.21) and (3.39). Using Eq. (3.20) we

can write the above equation as

lnλ = 〈x|s〉 − 1

2
σ2
s

= σs

M∑
I=1

〈xI |ŝI〉 − 1

2
σ2
s .

(3.43)

It was shown in Ref. Pai et al. (2001) that the log likelihood ratio defined above can

be analytically maximized over four parameters namely, luminosity distance r, coalescence

phase δc, inclination angle ι and polarization angle ψ. Using the values of the above four

parameters at which the log likelihood is maximized, we can create an analytically maximized

log likelihood ratio

Λ = 2 lnλ
∣∣∣
σ̂s,δ̂c,ψ̂,ι̂

= ||CH ||2 = |C+|2 + |C−|2 = (c+
0 )2 + (c+

π/2)2 + (c−0 )2 + (c−π/2)2 , (3.44)

where the quantities C± are defined in Ref. Pai et al. (2001) as

C± = v̂±.C = c±0 + ic±π/2 , (3.45)
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which are the projection of C on v̂±, and

C =
(
〈x1|S1〉, 〈x2|S2〉, ..., 〈xM |SM〉

)
,

CI = cI0 + icIπ/2 ,

(3.46)

v̂± constitutes a real orthonormal basis on the helicity plane defined by the plane formed by

the network vector Q.

We still need to maximize the log likelihood over the M, η, θ, φ and tc, which is done

numerically during the search. Note, now that the parameters (r, δc, ψ, ι) can be maximized

analytically, and upon maximization the log likelihood ratio will look like the sums of quadra-

tures as given in Eq. (3.44). The maximization of C.Q over these variables however required

some geometrical insights. This gives us the hint that there must exist a set of parameters in

which, these quantities over which the maximization was done analytically, can be separated

out from the rest of the parameters. We are now going to transform the strain variables into

a set of new parameters that will make the (r, δc, ψ, ι) dependence of the strain manifestly

evident. Upon doing so the structure of maximized log likelihood ratio in Eq. (3.44) will

emerge naturally. Recognizing these symmetries in the structure of the log likelihood ratio

of a network of detector will aid us in constructing the network detection statistic in a way

that is easy to implement in the search pipeline.

3.3.2 Construction of network detection statistic using symmetrized

parameters

In this section we will work out the details of a new parameter set that will help us

constructing the maximized log likelihood ratio with the symmetric look of Eq. (3.44).

We begin by noting in Eq. (3.44) that, the final detection statistic is the sum of four
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squares which we explicitly write here

Λ = |C+|2 + |C−|2 = (v̂+.c0)2 + (v̂+.cπ/2)2 + (v̂−.c0)2 + (v̂−.cπ/2)2 , (3.47)

where we define c0 and cπ/2 using C = c0+ icπ/2, which is the network version of Eq. (3.46).

Thus the detection statistic can be written as

Λ = (v̂+.〈x|s0〉)2 + (v̂+.〈x|sπ/2〉)2 + (v̂−.〈x|s0〉)2 + (v̂−.〈x|sπ/2〉)2

= (〈x|v̂+.s0〉)2 + (〈x|v̂+.sπ/2〉)2 + (〈x|v̂−.s0〉)2 + (〈x|v̂−.sπ/2〉)2

= (〈x|s+
0 〉)2 + (〈x|s+

π/2〉)
2 + (〈x|s−0 〉)2 + (〈x|s−π/2〉)

2 ,

(3.48)

where S = s0+isπ/2. The 〈x|s±0,π/2〉 term can be interpreted as the inner product between the

data x and the waveform polarization s±0,π/2. Thus the network template can be decomposed

into four polarization basis. Equation (3.9) shows us that the vector s±0 will have a cosϕ(tI)

associated with all its components and the vector s±π/2 will have a sinϕ(tI) associated with

its components. Thus we note that among the four polarization components of the network

template, two will have cosϕ(t) dependence and two will have a sinϕ(t) dependence. These

dependencies are what we will look to isolate so that we can write,

s(t) =
4∑

k=1

a(k)h(k)(t) , (3.49)

where, h(k)(t) is the k−th polarization of the network template and a(k) are the new set of

parameters. The terms h(k)(t) have the following forms

h(1)(t) ∝ u(θ, φ) cos [ϕ (t; tc, ξ) + δc] ,

h(2)(t) ∝ v(θ, φ) cos [ϕ (t; tc, ξ) + δc] ,

h(3)(t) ∝ u(θ, φ) sin [ϕ (t; tc, ξ) + δc] ,

h(4)(t) ∝ u(θ, φ) sin [ϕ (t; tc, ξ) + δc] .

(3.50)
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We start from the expression of gravitational strain at a particular detector. From Eq.

(3.14) we can write

F+(θ, φ, ψ) = u(θ, φ) cos 2ψ + v(θ, φ) sin 2ψ ,

F×(θ, φ, ψ) = −u(θ, φ) sin 2ψ + v(θ, φ) cos 2ψ ,

(3.51)

where the functions u(θ, φ) and v(θ, φ) are given by

u(θ, φ) = −1

2
(1 + cos2 θ) cos 2φ ,

v(θ, φ) = − cos θ sin 2φ .

(3.52)

Thus, using these definition of F+ and F×, we can now write the strain at the detector as

s(t) = [u(θ, φ) cos 2ψ + v(θ, φ) sin 2ψ]h+ + [−u(θ, φ) sin 2ψ + v(θ, φ) cos 2ψ]h× . (3.53)

Substituting the expressions of the h+ and h× from Eq. (3.2) in the above equation, we get

s(t) = [u(θ, φ) cos 2ψ + v(θ, φ) sin 2ψ]
2N
r
a−1/4(t; tc, ξ)

1 + cos2 ι

2
cos [ϕ (t; tc, ξ) + δc] +

[−u(θ, φ) sin 2ψ + v(θ, φ) cos 2ψ]
2N
r
a−1/4(t, tc, ξ) cos ι sin [ϕ (t; tc, ξ) + δc] .

(3.54)

Expanding the cos [ϕ (t; tc, ξ) + δc] and sin [ϕ (t; tc, ξ) + δc] terms we get

s(t) =
2N
r
a−1/4(t; tc, ξ)

(
cos 2ψ cos δc

1 + cos2 ι

2
− sin 2ψ sin δc cos ι

)
cosϕ (t; tc, ξ) +

2N
r
a−1/4(t; tc, ξ)

(
sin 2ψ cos δc

1 + cos2 ι

2
+ cos 2ψ sin δc cos ι

)
cosϕ (t; tc, ξ) +

− 2N
r
a−1/4(t; tc, ξ)

(
cos 2ψ sin δc

1 + cos2 ι

2
+ sin 2ψ cos δc cos ι

)
sinϕ (t; tc, ξ) +

− 2N
r
a−1/4(t; tc, ξ)

(
sin 2ψ sin δc

1 + cos2 ι

2
− cos 2ψ cos δc cos ι

)
sinϕ (t; tc, ξ) .

(3.55)
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Comparing the above equation to the desired form of Eq. (3.50) we find

a(1) =
1

r

(
cos 2ψ cos δc

1 + cos2 ι

2
− sin 2ψ sin δc cos ι

)
,

a(2) =
1

r

(
sin 2ψ cos δc

1 + cos2 ι

2
+ cos 2ψ sin δc cos ι

)
,

a(3) = −1

r

(
cos 2ψ sin δc

1 + cos2 ι

2
+ sin 2ψ cos δc cos ι

)
,

a(4) = −1

r

(
sin 2ψ sin δc

1 + cos2 ι

2
− cos 2ψ cos δc cos ι

)
.

(3.56)

Thus we note that the new parameters a(1), a(2), a(3), a(4) exclusively absorbed the informa-

tion of the gravitational waveform parameters that can be analytically maximized, namely

r, δc, ψ, ι. We call them the symmetrized parameters since all of them have the same dimen-

sion of length inverse. This choice of new parameters makes tackling of the problem much

simpler as we will see below. The various polarizations of the network strain s(t) are again

found by comparing Eq. (3.55) with Eq. (3.50) as follows

h(1)(t) = 2Na−1/4(t; tc, ξ)u(θ, φ) cos [ϕ (t; tc, ξ) + δc] ,

h(2)(t) = 2Na−1/4(t; tc, ξ)v(θ, φ) cos [ϕ (t; tc, ξ) + δc] ,

h(3)(t) = 2Na−1/4(t; tc, ξ)u(θ, φ) sin [ϕ (t; tc, ξ) + δc] ,

h(4)(t) = 2Na−1/4(t; tc, ξ)u(θ, φ) sin [ϕ (t; tc, ξ) + δc] .

(3.57)

Using Eq. (3.10), we can write the 4 polarization components of the network strain as

h(1)(t) = N g
√
ξu(θ, φ)(S + S∗) ,

h(2)(t) = N g
√
ξv(θ, φ)(S + S∗) ,

h(3)(t) =
1

i
N g
√
ξu(θ, φ)(S − S∗) ,

h(4)(t) =
1

i
N g
√
ξv(θ, φ)(S − S∗) .

(3.58)
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As we have seen in Eq. (3.42), the log likelihood ratio for the network can be written as

lnλ =
M∑
I=1

(
〈xI |sI〉 − 1

2
〈sI |sI〉

)

=
M∑
I=1

(〈
xI
∣∣∣ 4∑
j=1

a(j)h
(j)
I

〉
− 1

2

〈 4∑
j=1

a(j)h
(j)
I

∣∣∣ 4∑
k=1

a(k)h
(k)
I

〉)

=
M∑
I=1

(
4∑
j=1

a(j)〈xI |h(j)
I 〉 −

1

2

4∑
j=1

4∑
k=1

a(j)a(k)〈h(j)
I |h

(k)
I 〉

)

=
M∑
I=1

(
4∑
j=1

a(j)N j
I −

1

2

4∑
j=1

4∑
k=1

a(j)a(k)M jk
I

)
,

(3.59)

where we have defined

N j
I = 〈xI |h(j)

I 〉 ,

M jk
I = 〈h(j)

I |h
(k)
I 〉 .

(3.60)

The quantity a
(j)
I N j

I can be interpreted as the jth polarization contribution to the inner

product 〈xI |sI〉. Now we calculate N j
I using Eqs. (3.58) (3.60).

N1
I = N gI

√
ξ uI(θ, φ)〈xI |(SI + S∗I )〉 = N gI

√
ξ uI(θ, φ)(CI + C∗I ) = 2N gI

√
ξ uI(θ, φ)cI0 ,

N2
I = N gI

√
ξ vI(θ, φ)〈xI |(SI + S∗I )〉 = N gI

√
ξ vI(θ, φ)(CI + C∗I ) = 2N gI

√
ξ vI(θ, φ)cI0 ,

N3
I =

1

i
N gI

√
ξ uI(θ, φ)〈xI |(SI − S∗I )〉 =

1

i
N gI

√
ξ uI(θ, φ)(CI − C∗I ) = 2N gI

√
ξ uI(θ, φ)cIπ/2 ,

N4
I =

1

i
N gI

√
ξ vI(θ, φ)〈xI |(SI − S∗I )〉 =

1

i
N gI

√
ξ vI(θ, φ)(CI − C∗I ) = 2N gI

√
ξ uI(θ, φ)cIπ/2 ,

(3.61)

which for the network of detectors can be written as

N =



N1

N2

N3

N4


= χ



∑M
I=1 gIuIc

I
0∑M

I=1 gIvIc
I
0∑M

I=1 gIuIc
I
π/2∑M

I=1 gIvIc
I
π/2


= χ



ug · c+

vg · c+

ug · c−

vg · c−


, (3.62)
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where, the quantity χ is given by

χ = 2N
√
ξ , (3.63)

ug and vg are are the network vectors given by

ug = gIu
I(θ, φ) ,

vg = gIv
I(θ, φ) ,

(3.64)

where the repeated indices are not summed over in the above equations. Now we will

construct the matrix represented by M jk
I = 〈h(j)

I |h
(k)
I 〉. Thus

M11
I = 〈h(1)

I |h
(1)
I 〉 = N 2g2

Iξ u
2
I(θ, φ)〈SI + S∗I |SI + S∗I 〉 ,

=N 2g2
Iξ u

2
I(θ, φ)

[
〈SI |SI〉+ 〈SI |S∗I 〉+ 〈S∗I |SI〉+ 〈S∗I |S∗I 〉

]
.

(3.65)

Note that SI = sI0 + isIπ/2, where sI0 and sIπ/2 are orthonormal waveforms. We already know

from Eq. (3.11) that 〈SI |SI〉 = 2, which implies that 〈S∗I |S∗I 〉 = 2 too. The inner product

〈SI |S∗I 〉 can be shown to be 0 as follows

〈SI |S∗I 〉 =〈sI0 + isIπ/2|sI0 − isIπ/2〉 = 〈sI0|sI0〉 − 〈isIπ/2|isIπ/2〉 ,

=〈sI0|sI0〉 − (−i)(i)〈sIπ/2|sIπ/2〉 = 〈sI0|sI0〉 − 〈sIπ/2|sIπ/2〉 = 0 .

(3.66)

Thus we can write

M11
I = 4N 2g2

Iξ u
2
I(θ, φ) . (3.67)
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Similarly we calculate all the other components of M jk
I ,

M12
I = M21

I = 〈h(1)
I |h

(2)
I 〉 = N 2g2

Iξ uI(θ, φ)vI(θ, φ)〈SI + S∗I |SI + S∗I 〉 = 4N 2g2
Iξ uI(θ, φ)v(θ, φ) ,

M13
I = M31

I = 〈h(1)
I |h

(3)
I 〉 =

1

i
N 2g2

Iξ u
2
I(θ, φ)〈SI + S∗I |SI − S∗I 〉 = 0 ,

M14
I = M41

I = 〈h(1)
I |h

(4)
I 〉 =

1

i
N 2g2

Iξ uI(θ, φ)vI(θ, φ)〈SI + S∗I |SI − S∗I 〉 = 0 ,

M22
I = 〈h(2)

I |h
(2)
I 〉 = 4N 2g2

Iξ v
2
I (θ, φ) ,

M23
I = M32

I = 〈h(2)
I |h

(3)
I 〉 =

1

i
N 2g2

Iξ uI(θ, φ)vI(θ, φ)〈SI + S∗I |SI − S∗I 〉 = 0 ,

M24
I = M42

I = 〈h(2)
I |h

(4)
I 〉 =

1

i
N 2g2

Iξ u
2
I(θ, φ)〈SI + S∗I |SI − S∗I 〉 = 0 ,

M33
I = 〈h(3)

I |h
(3)
I 〉 = N 2g2

Iξ u
2
I(θ, φ)

(
1

i

)(
1

−i

)
〈SI − S∗I |SI − S∗I 〉 = 4N 2g2

Iξ u
2
I(θ, φ) ,

M34
I = M43

I = N 2g2
Iξ uI(θ, φ)vI(θ, φ)

(
1

i

)(
1

−i

)
〈SI − S∗I |SI − S∗I 〉 = 4N 2g2

Iξ uI(θ, φ)vI(θ, φ) .

(3.68)

Thus the network M matrix is given by

M =



A B 0 0

B C 0 0

0 0 A B

0 0 B C


. (3.69)

where, the values of A,B and C is given by

A = 4N 2ξ

M∑
I=1

(gIuI(θ, φ))2 = χ2ug · ug ,

B = 4N 2ξ

M∑
I=1

gIuI(θ, φ)gIvI(θ, φ) = χ2ug · vg ,

C = 4N 2ξ

M∑
I=1

(gIvI(θ, φ))2 = χ2vg · vg ,

(3.70)
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where we have used Eq. (3.64) 2 and

M∑
I=1

(gIuI(θ, φ))2 = (g1u1(θ, φ))2 + (g2u2(θ, φ))2 + ...+ (gMuM(θ, φ))2 = ug · ug ,

M∑
I=1

(gIvI(θ, φ))2 = (g1v1(θ, φ))2 + (g2v2(θ, φ))2 + ...+ (gMvM(θ, φ))2 = vg · vg ,

M∑
I=1

(gIuI(θ, φ))(gIvI(θ, φ)) = ug · vg .

(3.71)

Defining a vector a =
(
a(1), a(2), a(3), a(4)

)
, the network log likelihood in Eq. (3.59) can be

written as

lnλ = aT ·N− 1

2
aT ·M · a . (3.72)

This clearly shows the advantage of using the parameters
(
a(1), a(2), a(3), a(4)

)
. All the pa-

rameters that we can analytically maximize are in the vector a and the log likelihood itself

is dependent on this vector through products. In the form we got in Eq. (3.42) the log

likelihood has dependencies on the parameters r, δc, ψ and ι, some of which are in the am-

plitude term of the RHS, some in the phase and some can only be obtained after taking

special transformations into a helical plane defined by complex vectors, and analytic maxi-

mization provided some geometric insights. But, here, we see that the problem of analytic

maximization has been reduced to a straight forward problem of linear algebra. Thus, we

proceed to maximize Eq. (3.72) as follows. Let the parameters a at which the log likelihood

is maximized are given by the maximized vector, â

∂ lnλ

∂a

∣∣∣∣
â

= N− â ·M ,

=⇒ â = N ·M−1 and, âT = M−1 ·NT = NT ·M−1 ,

(3.73)

where we have used the fact that M is an symmetric block diagonal matrix and hence its

2Note that the choice of 〈S|S〉 = 2 has resulted in to making the constant terms in N as χ and that in
M as χ2. If we chose a convention of 〈S|S〉 = 1, then the constant term for M would have become χ2/2,
giving us a factor of 2 in every expression involving components of M and N.
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inverse must be symmetric block diagonal too. Therefore the maximized log likelihood ratio

is given by

lnλ
∣∣
â

= NT ·M−1 ·N − 1

2
NT ·M−1 ·M ·N ·M−1

= NT ·M−1 ·N − 1

2
NT ·M−1 ·N

=
1

2
NT ·M−1 ·N .

(3.74)

From which we construct an expression of the previously defined detection statistic in

Eq. (3.44)

Λ = 2 lnλ
∣∣
â

= NT ·M−1 ·N , (3.75)

writing it out explicitly we get

Λ =
1

∆2

(
N1 N2 N3 N4

)


C −B 0 0

−B A 0 0

0 0 C −B

0 0 −B A





N1

N2

N3

N4


, (3.76)

where ∆ = |M| = AC −B2. To get the sum of squares form of the log likelihood ratio that

was obtained after taking several projections in the helicity plane in Eq. (3.44), all we need

to do here is diagonalize the 4× 4 square matrix in the above equation. Let us call this the

m̄ matrix. let us assume that the orthogonal matrix O diagonalizes the m̄. Therefore we

can write

NT · m̄ ·N = NT ·O ·OT · m̄ ·O ·OT ·N . (3.77)

In order to find this matrix O that diagonalizes m̄, we first calculate the eigenvalues of M.

Since m̄ is block diagonal and the individual blocks are identical, thus the eigenvalues will

be of the form ζ1, ζ2, ζ1, ζ2. We obtain the values of ζ1 and ζ2 from the secular determinant

of the block matrix  C −B

−B A

 (3.78)
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which gives us ∣∣∣∣∣∣∣
C − ζ −B

−B A− ζ

∣∣∣∣∣∣∣ = 0 , (3.79)

which upon solving gives us the eigenvalues as follows

ζ1 =
1

2
(A+ C +D) ,

ζ2 =
1

2
(A+ C −D) ,

(3.80)

where D =
√

(A− C)2 + 4B2. Therefore, the eigenvectors of m̄ can be calculated using the

eigenvalue equations

m̄| e1 〉 = ζ1|e〉 ,

m̄| e2 〉 = ζ2|e〉 ,
(3.81)

where | e1,2 〉 are the eigenvector of m̄. Thus we calculate the eigenvectors from

 C −B

−B A


 e

(1)
1,2

e
(2)
1,2

 = ζ1,2

 e
(1)
1,2

e
(2)
1,2

 . (3.82)

Solving the above equations we get the eigenvectors to be

e1 =

 1
G1

C−A−D
2BG1

 , e2 =

 1
G2

C−A+D
2BG2

 , (3.83)

where G1 and G2 are the eigenvector normalization factors

G1 =

√
(C − A−D)2 + 4B2

2B
,

G2 =

√
(C − A+D)2 + 4B2

2B
.

(3.84)
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Thus we have now constructed the orthogonal diagonalizing matrix O

O =



1/G1 1/G2 0 0

C−A−D
2BG1

C−A+D
2BG2

0 0

0 0 1/G1 1/G2

0 0 C−A−D
2BG1

C−A+D
2BG2


. (3.85)

From Eq. (3.77), we can write

NT · m̄ ·N = NT
O · m̄diag ·NO , (3.86)

where

NO = NT ·O ,

m̄diag = OT · m̄ ·O ,

(3.87)

we now determine these matrices after diagonalization

NO =



1/G1
C−A−D

2BG1
0 0

1/G2
C−A+D

2BG2
0 0

0 0 1/G1
C−A−D

2BG1

0 0 1/G2
C−A+D

2BG2





N1

N2

N3

N4


, (3.88)

from the above equation and Eq. (3.62), we get

NO =



N1

G1
+ C−A−D

2BG1
N2

N1

G2
+ C−A+D

2BG2
N2

N3

G1
+ C−A−D

2BG1
N4

N3

G2
+ C−A+D

2BG2
N4


=



χ
G1

ug · c+ + χC−A−D
2BG1

vg · c+

χ
G2

ug · c+ + χC−A+D
2BG2

vg · c+

χ
G1

ug · c− + χC−A−D
2BG1

vg · c−
χ
G2

ug · c− + χC−A+D
2BG2

vg · c−


. (3.89)

The diagonalized matrix m̄ is of course simply diag(ζ1, ζ2, ζ1, ζ2). Using this and Eqs. (3.76)
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(3.77), (3.80), (3.85) and (3.89), we get

Λ =
1

∆2

[(
χ

G1

ug · c+ + χ
C − A−D

2BG1

vg · c+

)2
1

2
(A+ C +D) +(

χ

G2

ug · c+ + χ
C − A+D

2BG2

vg · c+

)2
1

2
(A+ C −D) +(

χ

G1

ug · c− + χ
C − A−D

2BG1

vg · c−
)2

1

2
(A+ C +D) +(

χ

G2

ug · c− + χ
C − A+D

2BG2

vg · c−
)2

1

2
(A+ C −D)

]
.

(3.90)

Let us now define the following vectors

w+ =
χ

∆2G1

√
A+ C +D

2
ug + χ

C − A−D
2B∆2G1

√
A+ C +D

2
vg ,

w− =
χ

∆2G2

√
A+ C −D

2
ug + χ

C − A+D

2B∆2G2

√
A+ C −D

2
vg ,

(3.91)

using these newly defined basis (w+,w−), we can define the log likelihood ratio as

Λ = 2 lnλ
∣∣
â

= (w+ · c+)2 + (w− · c+)2 + (w+ · c−)2 + (w− · c−)2 . (3.92)

Finally, we have constructed back the maximized log likelihood ratio using the symmetrized

parameters (a(1), a(2), a(3), a(4), ), that we previously obtained using physical parameters (r, δc, ψ, ι)

in Eq. (3.44). Note that in Eq. (3.91), the quantities ∆, G1 and G2 are constructed out

of A,B and C. The quantities A,B and C themselves are constructed from ug,vg and χ

as shown in Eq. (3.70). The values of ug and vg are given in terms of the uI(θ, φ) and

vI(θ, φ) and gI as shown in Eq. (3.64). Finally Eq. (3.52) shows the precise expression of

the dependences of uI(θ, φ) and vI(θ, φ) on the sky coordinates θ and φ. Thus the vectors

w+ and w− are completely specified in terms of the geometry and we have developed the
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explicit expressions of them here. The c+ and c− are expressed below

c+ = (c1
0, c

2
0, ..., c

M
0 ) ,

c− = (c1
π/2, c

2
π/2, ..., c

M
π/2) ,

(3.93)

comes directly from the inner product between the data xI with the template sI0 and sIπ/2,

respectively (as shown in Eq. (3.46)). So the quantity in Eq. (3.92) is fully defined now

and can be computed very easily for given values of sky positions and masses. Thus if we

construct a template bank of mass parameters. Then for every mass pair in the template

bank, it will be possible for us to construct a Λ(θ, φ)
∣∣
m1,m2

. Calculating this quantity over

a grid set on sky we can find the maximum. This lets us maximize the Λ for that mass

pair. Repeating this same analysis for all the pairs of masses in the template bank we will

construct Λ(m1,m2). Maximizing over all the mass pairs will now give us Λ, which we call

the coherent statistic

Λ = max
m1,m2,θ,φ

Λ . (3.94)

3.3.3 Maximization of detection statistic over time of arrival

We have discussed the maximization of the log likelihood ratio for all the 8 parameters

in the previous sections, however we left out one important parameter, the time of arrival

of the signal which we will deal with now. The first thing we note about the time of arrival

of the signal is that this will be different at different sites in a network of detectors. Thus

we need to set a reference detector w.r.t which we can measure the time of arrival at other

detectors through time delays. The second thing we note is that for different values of (θ, φ)

the time delays will be different for the same choice of the network of the detectors. Keeping

these in mind let us write the complex waveform in Eq. (3.10) at detector I as follows

S(I)(t− τ(I); tc, ξ) =
a−1/4(t− τ(I))

g
√
ξ

eiϕ(t−τ(I)) , (3.95)
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where, τ(I) = τ(I)(θ, φ) is the time delay between detector I and some reference detectors.

Two things to note here are, firstly the reference detector does not need to be an actual

detector. It could very well be the center of the earth, and secondly, the time delay τ(I)

could be either positive or negative. If the reference detector in the network is one of

the detectors on the earth, then the maximum time delay one could have for all possible

sky positions of a source is about 40 ms (time taken by light to travel the distance of the

diameter of the earth). In a search one does not know a priori at what time the signal is

arriving at a particular detector. Thus one needs to construct the log likelihood ratio for

all possible values of time of arrivals. This is done by taking cross-correlation between xI(t)

and S(I)(t− τ(I); tc, ξ) whose output will be CI(τ(I)) = cI0(τ(I)) + icIπ/2(τ(I)). This implies we

need to find the time dependent orthonormal components of the complex waveform. This

we do as follows. Let us drop the detector index I in the following calculation for brevity.

The Fourier transform of s0(t− τ) is given by

s̃0,π/2(f) =

∫ ∞
−∞

s0,π/2(t− τ)e−2πiftdt =

∫ ∞
−∞

s0,π/2(t′)e−2πif(t′+τ)dt ,

s̃0,π/2(f) = e−2πifτ s̃0,π/2(f ′) ,

s̃0,π/2(f ′) = e+2πifτ s̃0,π/2(f) ,

(3.96)

where s̃0,π/2(f) is the Fourier transform of the coalescence time independent orthonormal

components of the complex waveform. Recall that the cross-correlation components c0,π/2(τ)

were defined by the definition of the inner products

c0,π/2(τ) =

∫ ∞
∞

x̃∗(f)s̃0,π/2(f ′) + x̃(f)s̃∗0,π/2(f ′)

Sn(|f ′|)
df ′ ,

=

∫ ∞
∞

x̃∗(f)s̃0,π/2(f) + x̃(f)s̃∗0,π/2(f)

Sn(|f ′|)
e+2πifτ df ′ .

(3.97)

Thus computing c0,π/2(τ) for all values of τ we will have a time series of C(τ) at each detector.

However to construct the detection statistic in Eq. (3.92), one needs to compute the c0,π/2(τ)
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for all the M detectors in the network. If the detector are not co-located, then one needs

to take into account for the time delay between them. This is precisely why the τ(I) term is

present in the expression of S(I)(t − τ(I); tc, ξ) in Eq. (3.95). In all the detectors the CI(τ)

values will peak when the values of (m1,m2, θ, φ) matches that of the chirp signal in the data

and when t − τ − τ(I)(θ, φ) = t′c − tc, where tc is the coalescence time of the chirp signal in

the data and t′c is the coalescence time of the chirp signal of the template waveform. Thus

the detection statistic is maximized over the time of arrival.

However, in the search pipeline we employ an alternative strategy to maximize the like-

lihood over arrival time. This is a little easier to implement as an algorithm. Instead of

calculating the values of C of all possible time delays permissible between pairs of detectors

for every single point in the grid laid out on the sky, we compute the CI(τ) for every single

detector in the network with the time of arrival as that of the reference detector. Thus we

will generate M streams of complex time series. Now for a particular time of arrival at the

reference detector ta, and particular choice of sky coordinates θ and φ one can construct back

all the time delays in all the other detectors in the network. Thus the network correlation

vector can be written as

C(τ) =
[
C1(τ + τ(I)(θ

′, φ′)), C2(τ + τ(2)(θ
′, φ′)), ..., CM(τ + τ(M)(θ

′, φ′))
]
. (3.98)

Thus by just shifting the complex time series with appropriate time lags between the individ-

ual detectors we can construct the network correlation vector as a function of the time of ar-

rival. The real and imaginary parts of this vector, (<[C(τ)] = c+(τ) and (=[C(τ)] = c−(τ)),

constructs the maximized log likelihood ratio in Eq. (3.92) as a function of arrival time in

the reference detector. In presence of a chirp this log likelihood ratio will maximize when

the appropriate time of arrival is chosen at the reference detector and when the time delays

owing to the choice of the sky position are commensurate.
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3.3.4 The null stream statistic

The network coherent search also provides another statistic called the null stream statistic

or simply null statistic. This is particular helpful in discerning between actual astrophysical

signals and other non-stationary artifacts of environmental and instrumental origin, mas-

querading as legitimate signals, called glitches. The single detector χ2 test that we discussed

briefly in the previous chapter combined with the null statistic forms a potent signal dis-

criminator in CBC search. In this section we will motivate the basic idea of this statistic 3.

Consider a case of a three detector (Note that this statistic is not useful for network with

less than three detectors) network. The gravitational wave strain in the individual detectors

s1, s2 and s3 in the network in absence of any noise is given by

s1 = F 1
+h+ + F 1

×h× ,

s2 = F 2
+h+ + F 2

×h× ,

s3 = F 3
+h+ + F 3

×h× ,

(3.99)

where F I
+,× denote the antenna pattern functions in the Ith detector. From the last two

equations of Eq. (3.99), we can find the two polarizations of the gravitational waveform as

follows  h+

h×

 =

 F 2
+ F 2

×

F 3
+ F 3

×


−1 s2

s3

 , (3.100)

Thus

h+ =
F 3
×s2 − F 2

×s3

F 2
+F

3
× − F 2

×F
3
+

,

h× =
F 2

+s3 − F 3
+s2

F 2
+F

3
× − F 2

×F
3
+

.

(3.101)

3For details about this statistic one may find Ref. Gürsel and Tinto (1989) useful.
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Substituting the expressions of h+ and h× in Eq. (3.99), we get

s1 =F 1
+

F 3
×s2 − F 2

×s3

F 2
+F

3
× − F 2

×F
3
+

+ F 1
×
F 2

+s3 − F 3
+s2

F 2
+F

3
× − F 2

×F
3
+

,

=

(
F 1

+F
3
× − F 1

×F
3
+

F 2
+F

3
× − F 2

×F
3
+

)
s2 +

(
F 1
×F

2
+ − F 1

+F
2
×

F 2
+F

3
× − F 2

×F
3
+

)
s3 .

(3.102)

Let us now define the quantities

K1 = F 2
+F

3
× − F 2

×F
3
+ ,

K2 = −
(
F 1

+F
3
× − F 1

×F
3
+

)
,

K3 = −
(
F 1
×F

2
+ − F 1

+F
2
×
)
.

(3.103)

Substituing the above expressions of K1, K2 and K3 in Eq. (3.102) we get

s1 = −K2

K1

s2 −
K3

K1

s3 . (3.104)

Thus from the strains in two detectors in a network for an astrophysical signal it is possible

to predict the strain in the third detector by simple geometry. This has two uses. Firstly, in

a search for gravitational waves from a source whose location is unknown to us, this can be

used to locate the object if three detectors have been taking data at that time. Since in a

coherent search one will be searching in the sky over a grid, at every point in the grid we can

perform this test where we predict the strain in one of the detectors using the strains in the

other two detectors and then comparing that with the actual recorded strain in that detector.

Secondly, if we assume that the noise across the detectors in a network is un-correlated, then

the predicted strain in one of the detectors from the other two detectors need not follow Eq.

(3.104) for noise artifacts or glitches. This can be used to discriminate between astrophysical

signals and glitches. From Eq. (3.104) we can form a quantity

κ = K1s1 +K2s2 +K3s3 , (3.105)
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that vanishes when there is no noise in the detector. But as we know

sI(t) =
2N
√
ξ

r
<
[
(E∗IS

I)eiδc
]
, (3.106)

therefore

κ =
2N
√
ξ

r

3∑
I=1

KI<
[
(E∗IS

I)eiδc
]

=
2N
√
ξ

r
<

[
3∑
I=1

KI(E
∗
IS

I)

]
eiδc . (3.107)

In absence of any noise this quantity will be equal to zero. Thus this quantity is identically

canceling the contribution of signal from all the detectors in the network. However it is the

sum over the I that is causing the signal contribution to vanish. Thus we can redefine the

quantity κ as

κ =
3∑
I=1

KIgIS
I , (3.108)

which should also identically cancel the signal contribution from all the detectors. Note that

the factor gI comes from E∗I as given in Eq. (3.23). Fourier transforming the above equation

yields

κ =
3∑
I=1

KIE
∗
I S̃

I(f) , (3.109)

which in absence of any noise should also vanish, satisfying the condition of nullity

3∑
I=1

KIE
∗
I S̃

I(f) =
3∑
I=1

KIgI S̃
I(f) = 0 , (3.110)

where we have used Eq. (3.23) and divided by all terms that are independent of the detector

index I. Recall that C = 〈x|S〉. Thus the correlation time series can be written as

C(τ) = 2

∫ ∞
−∞

x̃∗(f)S̃(f)

Sn(|f |)
e2πifτdf , (3.111)
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whose Fourier transform is given by

C̃(f ′) =

∫ ∞
−∞

[
2

∫ ∞
−∞

x̃∗(f)S̃(f)

Sn(|f |)
e2πifτdf

]
e−2πif ′τdτ

=2

∫ ∞
−∞

x̃∗(f)S̃(f)

Sn(|f |)

[∫ ∞
−∞

e2πi(f−f ′)τdτ

]
df

=2

∫ ∞
−∞

x̃∗(f)S̃(f)

Sn(|f |)
δ(f − f ′)df

=2
x̃∗(f ′)S̃(f ′)

Sn(|f ′|)
,

(3.112)

which gives us

S̃(f) =
Sn(|f |)C̃(f)

2x̃∗(f)
. (3.113)

Substituting this back to Eq. (3.110), we get

3∑
I=1

KI

Sn(I)(|f |)C̃I(f)

x̃∗I(f)/gI
= 0 . (3.114)

From the above equation one can write, generalizing for M detectors

κ =
M∑
I=1

KISn(I)(|f |)C̃I(f) = 0 , (3.115)

which is a vanishing quantity in presence of stationary noise. However if there is non-

stationarity in the data, it will not vanish, which motivates us to construct the statistic

ρnull =
〈|κ|〉√
Var(|κ|)

, (3.116)

which is called the null SNR. The null SNR time series is called the null stream. A larger

value of the null SNR for a particular trigger implies less chance of it to be a signal of

astrophysical origin. This is analogous to single detector χ2 test in the coincidence pipeline.

Note that since the signal contribution is identically cancelled in quantity defined above, the
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null SNR is independent of the signal strength. However, if there is a mismatch between

the template and the signal then the matched filter output CI(t) will scale linearly with the

mismatch. This implies that the null SNR ρnull too will scale linearly with the mismatch

in the signal. since the coherent SNR is related quadratically to the matched filter output

(see for example Eqs. (3.44) and (3.92) ), thus one can conclude that the null stream scales

quadratically with coherent SNR in presence of mismatch. This feature is analogous to single

detector χ2 test in coincident search as well.

3.4 Coherent search pipeline for all-time, all-sky search

Pursuing a complete coherent search requires an enormous amount of computational

power, especially for background construction. Unlike the coincident search where, in the

absence of spin, a two dimensional mass template bank suffices, a coherent search requires

that one uses the same template bank to compute the detection statistic for every point in

a grid on the sky and then maximize it. This is equivalent to searching the data using a

four dimensional template bank, characterized by the two masses and the two sky positions.

Such an endeavor is currently beyond the capabilities of the gravitational waves scientific

community. Thus we are left with the alternative of employing a hierarchical search tech-

nique. We will explain the technical details of this search strategy, called the hierarchical

coherent search pipeline in this section, a schematic diagram of which is presented in Fig.

3.4.

3.4.1 The coherent bank

Recall, from the previous chapter, that the coincident search pipeline outputs gravita-

tional waves triggers at the end of the search that were obtained by matched filtering the

data with a bank of templates. The triggers that were thus obtained at the end of the search

correspond to the mass pairs that were a subset of the original template bank. In a hierar-
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Figure 3.4: A schematic representation of the hierarchical coherent search pipeline.

chical coherent search pipeline, the mass pairs of these triggers are used as template bank

for the coherent stage of the pipeline. This is named the coherent bank, which is the first

step of the hierarchical coherent search pipeline. However, one should note that the final

triggers obtained from the coincidence pipeline are triggers that were found in coincidence

in more than one detectors. Triggers in different detectors that are coincident and arise

from the same GW source can have different mass pairs owing to the possibility that the

noise PSDs of the detectors they arise in are somewhat different and because of the random

nature of noise. For every coincident trigger, we construct a network template with a single

mass pair, namely the one corresponding to the loudest SNR among all the detectors, to

search coherently around the end-time of that putative signal. Thus, for a double coincident

trigger (triggers in two detectors that were found in coincidence in time of coalescence and

masses) if ‘detector A’ had a trigger with an SNR of ρA obtained from a template with mass

pairs (mA
1 ,m

A
2 ) and ‘detector B’ had a trigger with an SNR of ρB from a template of masses

(mB
1 ,m

B
2 ), and if with ρA < ρB then we will store (mB

1 ,m
B
2 ) as component masses for the
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network template bank.

3.4.2 The coherent trigger bank and filtering with it

The second step in the coherent stage is the construction of trigger banks, whereby the

coherent-bank template for every coincident trigger is copied as a single-detector templates

as depicted in Fig. 3.4. These are called the coherent trigbanks. The fundamental structures

of the coherent trigbanks are identical to that of the template banks except that they are a

subset of the template banks. Next, the match filtered output of the data and the coherent

trigbank templates are obtained. Note from Sec. 3.3.3 that for the computation of the C

vector for a network of detector for a particular sky position, the knowledge of the time lag

between pairs of detectors in the network is required, and this was implemented in a nice

way by shifting the complex data time series of one detector w.r.t another in time. However,

the standard match filtering, that is implemented in the coincidence search pipeline, do not

output this complex data time series. It simply outputs the parameters of the trigger that

crosses a preset threshold. This is changed in the coherent stage of the pipeline. Since it

increases the computational burden to output the complex time series of the entire matched

filter, we store 125 msec snippets of it around the coincident trigger times. Additionally,

the coherent matched filtering step computes the template normalization factors gI and χ2

values for the maximum SNR mass pair across all detectors per coincident trigger.

3.4.3 The coherent inspiral analysis - CHIA

The final step of the coherent stage is the coherent-statistic step, which matches the

parameters of each triple-coincident trigger to the complex time series data output by the

matched filtering step and uses them, the corresponding template-norms, and the χ2 values

in the respective detectors to compute the coherent detection statistic and the null stream

statistic as given in Eqs. (3.92) and (3.116). This step maximizes the log likelihood ratio

over all the parameters as explained in Sec. 3.3.2. The triggers that are obtained, which
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we call the coherent triggers, upon maximization over the 4 parameters (r, δc, ψ, ι) in the

form of the symmetrized parameters (a(1), a(2), a(3), a(4)), and time of arrival for every sky

points in the grid are maximized for every mass pair in the template. The maximization

is then done over all the masses and one coherent detection statistic is obtained for that

particular time of arrival. Thus we will obtain multiple triggers characterized by a time

(corresponding to the signal arrival time) called the trigger end time. Not all these triggers

are independent, since a single signal can triggers multiple threshold crossing responses in the

parameter space. To solve for this degeneracy a clustering is done over time in which we keep

one trigger (which has the loudest coherent SNR) per window (which is pre-specified) of end

times. This concludes the hierarchical coherent search analysis, and we are left with a list of

clustered triggers with end times, their coherent SNR, null SNR and recovered gravitational

wave parameters. Based on the coherent SNR and the null stream one can then rank these

triggers according to their significance in a search.

3.5 An example of blind hierarchical coherent search

To study the performance gain arising from using the coherent stage, we ran the CBC

search pipeline, after modifications to run the hierarchical coherent stage at the end of the

coincidence stage, with and without that stage on simulated Gaussian noise, with LIGO-I

noise PSD in the 4 km LIGO detectors in Hanford (H1), Livingston (L1), and in the Virgo

detector (V1), for the duration of approximately a month. Specifically, this search pipeline

was run once with signal injections and again without injections but with time-slid data so

that the background could be estimated. The estimation of background with time slides

in coherent search is done by just following up on the background triggers obtained from

the coincident search stage with the same technique illustrated in the previous section. One

advantage of this study is that we can compare the performance improvement due to the

coherent search directly w.r.t the previous stage of coincident analysis. The disadvantage
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of this study is, as we will see in the results, that it does not reflect the true potential of a

fully coherent search as we are using the result of the coincident stage as the input. This

makes our analysis somewhat constrained by the performance of the coincident pipeline. The

left plot in Fig. 3.5 compares the performance of the coherent statistic and the combined

effective SNR. The right plot in the same plot compares the coherent SNR and null-stream

statistic. For these simulations, 1051 signals were injected in software in all three detectors.

The source distances of all injections were between 100-500 Mpc. The total masses of these

sources were chosen to be in the range 25-100 M�, and component masses between 1-99

M�. A total of 55 of those injections were found, above the single-interferometer detection

thresholds of 5.0 and coherent SNR threshold of 3.75. The latter threshold was intentionally

chosen to be lower since we anticipated that some coincident background triggers will have

negative cross-terms owing to incoherent phases, thereby, yielding lower coherent SNRs.

All injections recovered by the coincident stage were also found by the coherent stage,

and are symbolized by red pluses. The background triggers that are found by the coincident

stage and survive the coherent stage are depicted by the black crosses. The blue circles, on

the other hand, denote background triggers in the coincident stage that got vetoed by the

choice of the threshold on the coherent SNR in the coherent stage. To include them in the

left plot, we arbitrarily assign all of them ρcoh = 3.0. Comparing the sets of black crosses

and blue circles reveals that the coherent stage not only reduces the number of background

triggers but, in this case, also vetoes some of the loudest ones (in combined-effective SNR).

Furthermore, whereas all found injections have coherent SNR greater than that of the loudest

background trigger, 13 of them have combined-effective-SNR weaker than that of the loudest

background trigger (shown in blue circles). When compared to the loudest black cross, that

number drops to 7. It drops further when some of the background triggers with the loudest

null-stream (as shown in the right plot) are vetoed. The resulting performance improvement

is depicted in the blue dash-dotted Receiver-Operating-Characteristic (ROC) curve in Fig.

3.6; its performance is better than that of the coincident stage (shown in red), without the
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null-stream vetoes. The former asymptotes to the ROC curve of the coherent stage (shown

in black dashes) for higher false-alarm probabilities.

Finally, Fig. 3.5 reveals the existence of a gap between the loudest background and the

weakest injection ρcoh values. One might argue that this is owing to the lack of a sufficient

number of weak signal injections made into the data. We have verified that, indeed, one can

get some injection triggers to show up in that gap by making multiple weak injections (say,

with source distances between 500-750 Mpc) in the data. Those studies also reveal that the

detection efficiency in that region is very low (i.e., less than 1 in 250). We believe that this

low efficiency is partly caused by the coincident stage, in the way it has been designed and

tuned, turning it into the chief constraining factor for the performance of the coherent stage.

3.6 Discussion

In this chapter we studied from the basic principles how to construct a detection statistic

for searching gravitational waves in a network of detectors. Use of a network for detection

of gravitational wave is of paramount importance. Searching with a single detector poses

multiple problems. Firstly, interferometers can go out of lock multiple times in a given

day giving rise to the possibility that one might miss out on a potential detection when

the detectors are not operating in science mode. Secondly, gravitational wave detectors are

not completely isotropic, making parts of the sky less sensitive to detection and thereby

reducing the volume of detection than an isotropic detector. Thirdly, a single gravitational

wave detector is incapable of locating a source in the sky and all we can do is infer upon the

time of arrival of a particular signal. Finally a trigger in a single detector is not considered

to be detection as the confidence associated with such an event it not very high. All these

problems are addressed when we use multiple detectors in different sites. Thus devising a

detection strategy for multiple detectors is very pertinent to the cause of gravitational wave

astronomy.
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We first developed the detection statistic for a network of interferometers using the max-

imum log likelihood ratio. The likelihood ratio was expressed in terms of the ratio of prob-

ability that an output was obtained given there was signal present in the data and the

probability that an output was obtained when no signal was present in the data. We then

generalized it for multiple detectors. Finally we analytically maximized this log likelihood

ratio.

We then discussed about another statistic that one can obtain from multiple detectors,

called the null stream. In presence of three detectors the null stream combines the strain

from two detectors to construct the strain in the third and compares it with the actual

observed strain in the third detector. In absence of any noise, strain in the third detector

caused by a real astrophysical signal will be reproduced exactly by the knowledge of the

strain in the two other detectors and thus the difference between the observed strain and the

estimated strain (the null stream) must vanish. In presence of Gaussian noise the mean of

this difference should vanish, however in presence of noise artifacts, known as glitches, this

null stream will contain a remnant from the glitch. Thus the null stream is an excellent tool

to distinguish between a real astrophysical signal and a noise glitch.

Finally, we outlined the CBC coherent search pipeline that is used in the all-time, all-sky

search (or blind). We then followed up with an example where we searched in one month

long CBC data in simulated Gaussian noise. We noted the performance improvement upon

implementation of the coherent stage through receiver operator characteristic curves. We

observed an improvement of ∼ 22% at the zero false alarm rate region when one switches

from a coincident search to a hierarchical coherent search. Upon using null stream for vetoing

glitches an improvement of up to ∼ 57% was recorded.

The performance improvement that we noted in our study was despite the fact that the

search was constrained by the performance of the coincident stage. A full fledged coherent

study is expected to yield a much better result. The current performance enhancement

occurs primarily because the SNR of the background triggers are significantly lowered by
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the coherent stage and some of the loudest ones are vetoed by the null stream. We will

however recover more injection triggers upon using the full coherent search. With improving

computational powers it is expected that in the near future we will be able to implement a

fully coherent search, at least in some restricted cases.
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Figure 3.5: These are scatter plots of the combined and coherent SNRs of injection triggers,
represented by red plus symbols, and background (or “slide”) triggers, represented by the
black crosses. The coherent SNR was used to cluster the triggers, from both injections and
slides. The coherent SNR performs noticeably better than the combined effective SNR in
discriminating signals from background: In the left plot, at a detection threshold of a little
above 6 in the coherent SNR all the injections found in the coincident stage are recovered
with a vanishing false-alarm probability. For the same false-alarm probability, the combined
effective SNR detects a lesser number of injected signals.
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Figure 3.6: The receiver operating characteristic (ROC) curves of three CBC searches are
compared above. The ROC of the search with the coincident stage alone is plotted in solid
red line, and has the weakest performance owing to the 13 found injections that are weaker
than the loudest background trigger in that search. On the other hand, the ROC curve for
the hierarchical pipeline, with coherent stage included, is shown in black dash-dotted line
and has the best performance. It has a constant detection probability because all found
injections are louder than the loudest background trigger for this pipeline. Finally, the third
ROC curve, shown as a blue dashed line is the coincident stage, with the null-stream veto
applied. This veto improves the performance of the coincident pipeline, so much so that
for low detection-thresholds (or high false-alarm probability) its ROC curve rises to match
that of the pipeline with the coherent stage. The average error in the detection probabilities
plotted here is less than 3× 10−4.
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Chapter 4

Short hard gamma-ray bursts and

orphaned afterglows as external

triggers to gravitational waves

4.1 Introduction

Short duration gamma-ray bursts (SGRBs) are less of an enigma now than when the

extraterrestrial nature of the first gamma-ray bursts (GRBs) was established in the seventies

Klebesadel et al. (1973). Since then we have learned a lot about their characteristics and how

they differ from their long duration counterparts, the long GRBs or LGRBs. This knowledge

includes the nature of their host galaxies, including their redshift, star formation rate, age,

metallicity, distances of separation from the host galaxy, and distinguishing features in their

light-curves compared to those of LGRBs Nysewander et al. (2009); Nakar (2007); Gehrels

et al. (2009); Metzger and Berger (2012). Some critical aspects are still unknown or need

unequivocal observational confirmation. While there is some evidence that the progenitor

of a SGRB might be the compact binary coalescence (CBC) of a black hole (BH) and a

neutron star (NS) or two neutron stars (see, e.g., the review in Ref. Nakar (2007)), the
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observation of gravitational waves (GWs) from them can provide direct confirmation of

that hypothesis Nissanke et al. (2010); Metzger and Berger (2012); Harry and Fairhurst

(2011); Kelley et al. (2012); Dietz et al. (2012); Nissanke et al. (2012); Bartos et al. (2012).

Heretofore, such CBCs, which include at least one neutron star, will be termed as “CBCNS”

sources. Once GW observations are occurring regularly in the advanced detector era (ADE),

GW associations with SGRBs can provide additional astrophysical information about these

objects.

It is well established that gamma-ray bursts are transient events of gamma-ray flashes

occurring at cosmological distances. These events are different from soft gamma repeaters

specifically in being extremely intense, of short duration, and in being non-repeating. On

the basis of spectral hardness, these events broadly divide into two categories, those of a

short duration spanning less than 2 sec and with a harder gamma-ray spectrum and those of

a duration longer than 2 sec and with a softer gamma-ray spectrum. The first one is called

the short duration gamma-ray burst and the second is called the long duration gamma-

ray burst. Because of the dichotomy in the time scales of these events and the fact that

they systematically fall in different regions in spectral hardness, it can be conjectured that

different physics is involved in their occurrence. The most likely progenitor of the long

duration gamma-ray burst is a core collapse supernova of a massive star MacFadyen and

Woosley (1999) and that of a short duration one is the merger of the two objects in a compact

binary system involving at least one neutron star as a component Eichler et al. (1989). The

physical time scales of a collapsar and the coalescence of the remnants of neutron star and

black holes are commensurate with the time scales of the long duration and short duration

gamma-ray bursts, respectively. A gravitational wave (GW) discovery coincident with a

short gamma-ray burst observation will provide the strongest evidence to date of the merger

model. The time delay between the gravitational wave signal and the GRB will provide

clues to the burst mechanism and additional information in the form of GW polarization

will help us determine the source geometry. Coincident GW-GRB discovery will also enable
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us to measure the source distance independently of the cosmological distance ladder and,

therefore, provide a test for it.

Gravitational wave observations can complement electromagnetic (EM) studies to better

understand the SGRB sources and even resolve some anomalies. In fact it is known that

some SGRB light-curves last for quite a bit more than 2 sec and some LGRB light-curves

resemble those of SGRBs. This has led to a recent proposal of categorizing GRBs based

not on their light-curves but on their progenitor type: In this classification scheme, Type I

GRBs are associated with CBCNS and Type II with a collapsar Zhang (2006). It is to be

seen if this scheme will stand the scrutiny of GW observations. Additionally, multi-baseline

network of GW detectors can resolve the inclination of those sources accurately enough to

constrain the beaming angle of the GRBs Nissanke et al. (2010). This is a nice alternative to

the method based on electromagnetic afterglows proposed by Rhoads in 1997 Rhoads (1997).

An accurate determination of the beaming angle will resolve how energetic SGRBs really are

and, thereby, unravel if SGRBs have a narrow or wide range of energy output and what the

possible reasons for it might be. Rhoads’ method depends upon the presence of an afterglow

that presents clear evidence for breaks in the power-law in the emission spectrum of the

putative GRB jet Rhoads (1997). It can work even when the gamma-ray emission from the

GRB itself goes unobserved, such as when the afterglow is an “orphan”. On the other hand,

an afterglow may not reveal the sought spectral breaks because it may not extend over a

wide enough frequency range. (See Refs. Neal Dalal and Kim Griest and Jason Pruet (2002)

for additional problems with this method.) Such afterglows, e.g., in X-ray, optical, or radio,

may still provide spectroscopic redshift Yu et al. (2011); Zafar et al. (2011); Kruhler et al.

(2011), and distance to the source. Joint EM and GW observations can determine both the

distance and the inclination angle of the CBCNS more accurately than either one of them.

It is obvious that this type of joint observation will also aid in improving theoretical

models of SGRB afterglows. If indeed it is established that they are associated with CBCNS,

then a host of outstanding questions can be answered. For example, how much later can
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afterglows in different bands of the EM spectrum occur after the CBCNS merger? How

isotropic are the afterglows? How varied can the afterglow energetics be? How strongly

beamed SGRBs are can be resolved by joint GW-EM observations, which in turn can shed

light on afterglow energetics, as noted above. Is the source model rich enough to explain

that observed variety? What strong gravity physics can be probed with joint GW-EM

observations? On the other hand, if no GW signals are observed from multiple SGRBs

within a distance of about 500Mpc, then it would disprove the hypothesis that CBCNS are

the progenitors of SGRBs.

While most studies in the past have focused on targeted searches of GW counterparts

of SGRBs here we broaden the category of EM triggers by including orphaned afterglows of

SGRBs. By a targeted GW search we mean a search for GWs from a part of the sky where

an EM or a neutrino signal was detected from a source that may also emit GWs. The EM or

neutrino signal is then termed as an external trigger whose sky-position, time, or other char-

acteristics, deemed relevant, are used to define the GW search. In this paper, we highlight

the astrophysical factors that are required to estimate how many GW signals will be detected

from SGRBs and orphaned afterglows in the ADE. The Laser Interferometer Gravitational-

wave Observatory (LIGO) and the Virgo detector, have demonstrated successfully that large

scale interferometers can be used to detect GWs that change their arm-lengths at sub-nuclear

scales. With the advent of the next generation gravitational wave interferometers in the next

few to several years, with roughly ten times increased strain sensitivity, we increase the event

rate thousandfold. These interferometers include the advanced LIGO (aLIGO) AdL and the

advanced Virgo (AdV) detectors, the Japanese detector KAGRA Kuroda and LCGT Collab-

oration (2010) and a LIGO detector in India. Collaboration with the gamma-ray astronomy

community has helped us understand and use GRBs to trigger searches in the data of GW

detectors Abbott et al. (2008). Prior information about the sky position and time of the EM

event improves GW detection confidence and significantly reduces the data analysis compu-

tational cost of the search. It also helps us reduce the threshold for detection of possible
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candidates and false alarm probability, as we discuss here. The sensitivity of such a targeted

GW search depends strongly on the accuracy of the GRB sky position. A substantial fraction

of GRBs detected by some observatories, e.g., Fermi Abdo et al. (2009), can have error radii

in the sky that are several degrees wide. The interplanetary network (IPN) Hurley is a group

of satellites with onboard gamma-ray detectors that are used to locate gamma-ray bursts in

the sky through triangulation. Given the number of satellites detecting a particular GRB

and also the uncertainty in the relative location of the satellites and clock synchronization,

the sky positions of a good fraction of GRBs detected by them can have errors of several

degrees or worse. In this paper we study the effect of the error in the SGRB sky position on

the detectability of GW from its progenitor. In such cases, one needs to search over a wider

patch in the sky for GW signals. Note that when there is ambiguity about the short or long

nature of a GRB from studying its light-curve, it makes sense to allow for the possibility of

it being a SGRB and, therefore, search for a GW counterpart.

On the other hand, when the sky-position of a GRB is accurately known, searching for a

GW counterpart only at that location and close to the GRB time would seem to be the best

strategy to detect GWs. This is true unless there exists a significant mismatch between the

modeled GW waveform and the CBCNS signal or if the detector calibration is erroneous. It

turns out that each of these sources of error can cause a non-negligible drop in the signal-to-

noise ratio (SNR). In such a case of systematic error, searching in a larger patch of the sky

than just a single sky position can reduce the extent of that drop and improve the detection

confidence. More importantly, when the SNR is close to the detection threshold it can make

all the difference between a detection and a non-detection.

The layout of the paper is as follows. In Sec. 4.2 we show how the detectability of a GW

signal from an orphaned afterglow improves owing to the localization of the source in the

sky. Unless noted otherwise, the working assumption in the rest of the paper is that CBCNS

sources are the progenitors of SGRBs. In that vein, we show how the possible beaming of the

SGRB influences the fraction of CBCNS sources that will be detected as orphaned afterglows
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of SGRBs. The framework used for this calculation is broadened to enquire what fraction

of all CBCs in a given volume will be detectable as GW events. For that general case of

CBC sources we reproduce the well known result that GW strain of a detected source, when

averaged over its sky position and orientation, is less than the maximum strain from an

optimally oriented and located source of the same kind, by a factor of 2.26. In Sec. 4.3, we

study the effect of poor sky localization of SGRBs on the detectability of GWs from them.

These results emphasize the importance of performing GW searches over a sky-grid involving

multiple sky-positions covering the error regions of the SGRBs. In Sec. 4.4, we study CBC

triggers from previously analyzed LIGO data to check if any of them was concurrent with a

GRB. In Sec. 4.5, we study other causes of systematic errors, e.g., detector calibration errors

and the mismatch between a GW signal and the waveform model used to search for it. Here

we find that searching in a wider patch of the sky for the GW counterpart of a SGRB or an

orphaned afterglow, even when the sky-position of the latter is known accurately through

EM observations, can improve the detectability of the signal owing to the possible covariance

of the errors in the waveform or calibration with the error in the source sky-position. We end

with a discussion in Sec. 4.6 of some unresolved issues related to GW-EM targeted searches

that should be explored in the near future.

A note on conventions and terminology used in this paper is in order. Unless otherwise

specified, a detector in this paper means a GW detector and should be distinguished from

non-GW detectors, such as gamma-ray detectors. Similarly, a GW search refers to a targeted

GW search unless it is explicitly stated that the search in question is of an un-targeted type

where the sky position or timing information of an EM or neutrino observation is not used to

search in GW detector data. Finally, the LIGO detectors, with 4km arm-lengths, in Hanford

and Livingston (US) are labelled H1 and L1, respectively, while the Virgo detector in Cascina

(Italy) is denoted as V1. These three detectors form three single baseline networks, H1L1,

L1V1, H1V1, and one multi-baseline network H1L1V1. A second LIGO detector in Hanford,

which participated in the first five LIGO science runs, had 2km long arms and is labelled
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H2.

4.2 SGRBs, orphaned afterglows, and their prospects

as GW candidates

In this section, we show how the rate of CBC detections would improve if GW counterparts

of orphaned afterglows are sought in data of ADE detectors. Currently, SGRBs are the only

targeted searches for GWs from CBCs. As we conclude below, the improvement in rates

can be modest enough that orphaned afterglows should be added to the list of targeted GW

searches.

The first afterglow of a SGRB was observed in 2005 Berger et al. (2005). Afterglow

emissions of short GRBs are similar to that of long GRBS, but are less luminous. While it

is not confirmed yet what the progenitor of a SGRB is, it is widely believed that it might

be the merger of a NS with another NS or a stellar mass BH. Alternative sources, e.g.,

long-lived magnetars Bernardini et al. (2012), have been proposed too. It is not clear if in

the alternative model the magnetar is in itself the product of a CBCNS progenitor. GW

observations will provide direct confirmation of the SGRB model or help rule it out. If

the SGRB model is correct, then the GRB is powered by an accretion disk that is formed

after the tidal disruption of a NS by its other compact companion. Matter falling into the

central spinning object from the accretion disk can form bipolar jets via the Blandford-Znajek

mechanism. Numerical relativistic simulations suggest this as a likely scenario, especially,

if the central object is a highly spinning black hole and the NS equation of state (EOS) is

relatively stiff, which allow for large enough accretion disks Foucart et al. (2012). Strong

magnetic fields are also believed to play an important role in powering GRBs. The gamma-

ray burst is generated by the shock-accelerated electrons in the relativistic jet. This is the

so-called fireball model (see, e.g., the review Piran (1999)). A GRB afterglow is produced

when the jet interacts with medium surrounding the burst. In the process it can produce
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radiation over a wide range of frequencies, from X-Rays to radio, as the jet slows while

ploughing through that medium.

A kilonova could be another EM manifestation of a CBCNS progenitor. The ejecta from

NS-NS merger is neutron rich. This results in the formation of heavier elements due to

r-process neutron captures. These heavy elements undergo nuclear fission and beta decays

on time scales of the order of a day. These are also interesting candidates for external trigger

study. The data analysis pipeline that is constructed for detecting GW counterparts to

orphaned afterglows in archived data can also be applied to kilonovae because in both cases

the sky position will be known accurately enough to launch a search in GW archived data

for the time of arrival of the signal.

There are existing missions, like Swift and Fermi, that are expected to overlap with

aLIGO observations from 2015-2018 and, perhaps, even beyond. There are a handful of

planned observatories that will target GRB afterglows and orphaned afterglows in the next

several years with expected concurrent observations with aLIGO and, possibly, AdV de-

tectors. The Australian Square Kilometer Array Pathfinder (ASKAP) is currently under

construction at the Murchison Radio-astronomy Observatory in Western Australia and is

expected to start early operations in 2013 Murphy et al. (2012). Its initial five-years oper-

ation period will overlap with aLIGO science runs. Among proposed observatories, Lobster

is a NASA mission that will have a wide-field X-ray imager, which will be more sensitive

than Swift’s BAT but will have a smaller 0.5sr field of view, and a narrow-field followup IR

telescope and slewing apparatus. The French-Chinese Space-based multi-band astronomical

Variable Objects Monitor (SVOM) and the broad spectral band Indian Astronomy Satel-

lite ASTROSAT ast are a couple of other missions that will have capabilities of detecting

GRB afterglows and will likely overlap with aLIGO observations. Furthermore, the South

Korean-led Ultra-fast Flash Observatory Pathfinder (UFFO-P) mission intends to catch the

rise of GRBs Grossan et al. (2012).
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Figure 4.1: The design noise amplitude spectral densities (ASDs) of LIGO-I, Advanced LIGO
(aLIGO), and Advanced Virgo (AdV) detectors obtained from LIGO Algorithms Library.

4.2.1 Comparing the detectabilities of GW counterparts of SGRBs

and orphaned afterglows

We would like to estimate how much the detection probability improves when the sky-

position of a GW source is accurately known but its time of occurrence has a window of

uncertainty, TOAG. Following Ref. Dietz et al. (2012), let the desired FAP of a GW search

be 10−4. Reference Dietz et al. (2012) estimated that when the time of occurrence is known

accurately, the GW SNR threshold at that FAP is ρGRB
th = 9.0, dropping from ρLM

th = 11.3

at the same FAP for an all-sky, all-time (i.e., a blind) GW search of low-mass (LM) CBC

signals in a period of TLM = 3 months, from sources with total mass of ≤ 25M� and each

component mass between 1M� and 25M�. For an X-ray afterglow the putative CBCNS

coalescence can occur an hour to a day in the past. For TOAG = 105 sec, the FAP at a SNR

threshold ρth obeys

FAPOAG(ρth)

FAPLM(ρth)
=
TOAG

TLM

≈ 105

107
= 10−2 . (4.1)

We would like to find ρth = ρOAG
th such that FAPOAG = 10−4. Equivalently, we ask what

is ρOAG
th for FAROAG = 10−2yr−1? The answer, based on real data from the sixth science
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run (S6) of the LIGO H1 and L1 detectors, can be obtained from the data plotted in Fig.

3 of Ref. Abadie et al. (2012b), namely, ρOAG
th = 10.5. In comparison, at a FAP of 10−4,

the false-alarm rate (FAR) of a year-long low-mass CBC search at threshold ρLM
th = 11.3

is FARLM

(
ρLM

th = 11.3
)

= 10−4yr−1, as shown in Refs. Abadie et al. (2012b); Dietz et al.

(2012). The threshold ρOAG
th is about 17% higher than the threshold for targeted GW searches

of SGRBs with known sky position and time of occurrence but 8% lower than than that of

all-sky, all-time searches.

There is an additional improvement that arises when one considers the fact that accurate

information about the sky-position will further lower the FAR of a targeted GW search.

With that information in hand, one need not search in the sky or the time-delays of the

signals from the same source in different GW detectors. This reduces the FAR by a factor

of a few to hundred depending on how big or small the duration of the noise artifacts are

compared to the time-delays across the detector baselines. For instance, consider the single

baseline H1L1, which has a light-travel time of ±10 msec. Let the FAP in each detector

be Pi, where i = 1, 2 denotes the two detectors. Also, for every trigger in H1 let N2 be

the number of independent experiments of L1 coincidences one can perform in twice the

light-travel time across the baseline. Then the joint FAP of H1L1 is

P = P1 [1− (1− P2)N2 ] . (4.2)

The filter response to noise artifacts in the data that masquerade as signals is similar to

that on real signals, as expected. Studies of software injections of simulated signals in GW

detector data show that the timescale of such a response is about 2 msec, which is roughly

the inverse of the frequency where GW signals from binary neutron stars (BNSs) contribute

maximally to the signal-to-noise ratio. Thus, N2 is 10 for a 20 msec window. This means

that if P1 ≈ P2, then each one of them is about 3.2 × 10−3 when P = 10−4. However,

when the SGRB’s sky position and time of occurrence are known and, therefore, the time-
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delays of its signals in the network detectors are known, the joint FAP is 10−5, which is,

of course, 10 times smaller. With three baselines, a further reduction in FAP is possible.

This will lower the thresholds discussed earlier somewhat. In this paper, we will assume

that the FAP discussed in this section remains valid up to a total mass of about 43M�,

which is the maximum total mass used in targeted GW searches in LIGO-Virgo data. It is

worth emphasizing that P1,2 and, therefore, P depend on the SNR. Results of Monte Carlo

simulations discussed in Sec. 4.3 bear out this property.

4.2.2 The fraction of compact binary coalescences detectable as

GW events

Here we calculate the fraction of all compact binary coalescences occurring in the Universe

that are detectable as GW events in a single detector. For this calculation, we assume the

CBCs to be distributed uniformly in the volume accessible to ADE detectors. Let rH be

the horizon distance or the maximum distance to which an optimally oriented and optimally

located source can be detected, for given component masses and spins. Let these parameters

constitute the components of a vector ϑin. Then the horizon distance rH(ϑin) depends on

the values of these parameters. Directions directly overhead or underneath of the plane

containing the arms of an interferometric detector are optimal source locations. On the

other hand, the optimal orientation of a CBC source is one where its inclination angle ι, i.e.,

the angle between its orbital angular momentum vector and the negative of the line of sight

vector, is zero. If P(θ, φ) is the antenna power pattern of a single interferometer,

P(θ, φ) = F+(θ, φ, ψ)2 + F×(θ, φ, ψ)2 =
1

4
(1 + cos2 θ)2 cos2 2φ+ cos2 θ sin2 2φ , (4.3)

then rH
√
P(θ, φ) is the greatest distance to which a CBC source is detectable in the (θ, φ)

direction, where P(θ, φ) ≤ 1. For the rest of this section, we will take the binary compo-

nent to be non-spinning unless mentioned otherwise. At the greatest detectable distance the

89



binary will have a face-on orientation, i.e., the orbital inclination angle ι will be zero or π

radians. As one decreases the distance, binaries with a wider variety of inclinations become

detectable. So much so that for favorable directions the closest binaries will be detectable

with any value of ι, with the maximum possible value being π/2, namely, the edge-on ori-

entation. By accounting for all allowed inclinations, at every r ≤ rH
√
P(θ, φ), we find the

fraction of CBCs that will be detectable as GW events.

The gravitational wave power received at a detector on earth depends on the sky position

of the source (θ, φ) and the orbital inclination angle ι as follows:

Prad(ι, θ, φ) = P(θ, φ)Prad(ι = 0, θ = 0)
(1 + 6 cos2 ι+ cos4 ι)

8
, (4.4)

where Prad(ι = 0, θ = 0) is the GW power of a source that is optimally oriented and located

in the sky. The GW strain signal strength at a detector is measured in terms of the SNR

Bose et al. (2011). The SNR is inversely proportional to the source distance r. By the

definition of the horizon distance rH an optimally oriented (ι = 0) and located (θ = 0 or

θ = π) source at that distance will be found with a SNR at the threshold of detection, ρth.

Of course, this distance will vary for sources of different mass combinations. Thus we can

write the SNR with above dependencies on distance and power

ρ(r, ι, θ, φ) = ρth

√
P(θ, φ)rH

r

√
1

8
(1 + 6 cos2 ι+ cos4 ι) . (4.5)

Whether a particular source of component masses (m1,m2), at a distance r ≤ rH will be

detectable or not is determined by the inclination angle of the binary.

For every source at a particular distance and sky position there is a limiting inclination

angle, ιmax, beyond which the signal from the source falls below the detection threshold.

Thus, the probability that a source is detectable or not is the probability that the source has

an inclination angle at most equal to ιmax. The probability distribution of the inclination

angle p(ι) = sin ι. Thus, the probability of detecting a source at a distance r and sky position
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(θ, φ) is given by,

P (0 ≤ ι ≤ ιmax(r, θ, φ)) =
2
∫ ιmax(r,θ,φ)

0
p(ι)dι∫ π

0
p(ι)dι

= 1− cos ιmax(r, θ, φ) . (4.6)

Since the SNR at this limiting inclination angle must be at the threshold of detection, one

can use Eq. (4.5) to find it as a function of r, θ and φ:

cos2 ιmax = −3±

√
8 +

8r2

P(θ, φ)r2
H

, (4.7)

which has the following real solution:

cos ιmax(r, θ, φ) =


[√

8 + 8r2

P(θ,φ)r2
H
− 3
]1/2

, if 1
2
√

2
≤ r

rH
√
P(θ,φ)

≤ 1.

0, if r

rH
√
P(θ,φ)

< 1
2
√

2
.

(4.8)

Above we used the fact that since cos2 ιmax(r, θ, φ) must be in the interval [0, 1], the source

distance must obey

r

rH
√
P(θ, φ)

≤ 1 . (4.9)

The detection volume is defined by the bounding surface that satisfies the above inequality.

The bound in Eq. (4.9) is used in Fig. 4.2, to show the percentage of the sky or 4π steradians

that is inaccessible for detection as a function of the distance to the source.

The probability of detecting a CBC source is

P (0 ≤ ι ≤ ιmax(r, θ, φ)) =


1−

[√
8 + 8r2

P(θ,φ)r2
H
− 3
]1/2

, if 1
2
√

2
≤ r

rH
√
P(θ,φ)

≤ 1,

1, if r

rH
√
P(θ,φ)

< 1
2
√

2
,

(4.10)

where Eq. (4.6) was used along with the constraint in Eq. (4.9). At r = rH the only value
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Figure 4.2: The blue (solid) curve shows the percentage of sky inaccessible to interferometric
detectors for the detection of GW signals from CBC sources (with all possible orientations),
plotted as a function of the source distance. For comparison, if all sources were oriented
face-on (i.e., with ι = 0 or π) and if the detector had P(θ, φ) = 1 everywhere on the sky,
then all of those sources would be detectable in that hypothetical detector at all distances
obeying r ≤ rH . On the other hand, if all sources were oriented edge-on (i.e., with ι = π/2),
then Eq. (4.5) shows that, hypothetically, for P(θ, φ) = 1 everywhere on the sky, all of those
sources would be inaccessible for r > rH/2

√
2 but accessible when closer. The red (dashed)

step function represents those sources in that imaginary detector.

of P(θ, φ) possible is 1.0 (see Eq. (4.9)). Thus, the probability of detecting a source at the

horizon distance is vanishingly small. As one reduces the source distance the probability

increases monotonically till it rearches unity at a distance of rH
√
P(θ, φ)/(2

√
2). This is

shown in Fig. 4.3 for five different lines of sight, namely, overhead (i.e, θ = 0), corresponding

to P(θ, φ) = 1.0, and four other directions, corresponding to P(θ, φ) = 0.7, 0.5, 0.2 and 0.01,

respectively.

Suppose all CBC sources are distributed uniformly throughout the Universe. As discussed

in Ref. Abadie et al. (2010a), this is a good approximation to the true distribution for most

of the volume that will be accessible to ADE detectors except for sources within 20Mpc. If

the total number of sources that exist in a spherical volume of radius rH is N , then the total
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Figure 4.3: Probability of detecting a CBC source at a distance r (given in units of the
horizon distance rH) assuming that the sources are distributed uniformly in the volume of
interest. The four different plots are for four different values of P(θ, φ). The blue curve
shows the probability of a system that is overhead. For a given P(θ, φ), the largest distance
at which the probability reaches unity is when a CBC is detectable for all possible values of
its inclination angle. For an overhead source (i.e., with θ = 0) this distance is r = rH/2

√
2.

For other sky positions, it is r = rH
√
P(θ, φ)/2

√
2.

number of sources detectable in a volume element dV = r2 sin θdrdθdφ is

dNdet(r, θ, φ) = D(r, θ, φ)r2 sin θdrdθdφ , (4.11)

where

D(r, θ, φ) ≡


3N

4πr3
H

[
1−

(√
8 + 8r2

P(θ,φ)r2
H
− 3
)1/2

]
, if

rH
√
P(θ,φ)

2
√

2
≤ r ≤ rH

√
P(θ, φ),

3N
4πr3

H
, if r <

rH
√
P(θ,φ)

2
√

2
,

(4.12)

is the density of sources detectable at a particular point (r, θ, φ) in space. For nearby

distances the density of detectable sources is higher than that at greater distances. Let
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us define the mean density of detectable sources at a distance r as

Dmean(r) =
1

4π

∫ 2π

0

dφ

∫ π

0

dθD(r, θ, φ) sin θ . (4.13)

In the left plot of Fig. 4.4 we show how Dmean(r) depends on the distance. Note that at

small distances Dmean(r) approaches the density of all CBC sources. As we go away from

the detector, we begin to lose sources that are sub-optimally oriented and located in the sky.

Eventually Dmean(r) gets vanishingly small at the horizon distance where only those sources

that are located overhead and have a face-on orientation are detectable.

The maximum density of detectable sources at a given distance is always overhead or

underneath the detector. One can also see from the middle plot of Fig. 4.4 that the max-

imum density of detectable sources up to the distance of rH/2
√

2, is equal to the density

of all CBC sources. Beyond r = rH/2
√

2 the signal falls below threshold for sub-optimally

oriented sources and hence the density of detectable sources decreases. Eventually, at r = rH

the density of detectable sources overhead or underneath gets vanishingly small, with only

the face-on sources being detectable. The fraction of CBC sources that are detectable in

gravitational waves is

fCBC =
1

N

∫
VH

D(r, θ, φ) dV , (4.14)

where VH is the volume of a sphere of radius rH . Note that the effect of source redshift on

this fraction is negligible for distances accessible to ADE detectors Abadie et al. (2010a).

Numerically integrating Eq. (4.14) we find fCBC = 0.0865, i.e, 8.65% of CBC sources within

the detection volume are detectable with an SNR louder than the threshold ρth. In the right

plot of Fig. 4.4 we show how the ratio of the number of detectable sources up to a distance

r to the total number of CBC sources within the volume VH varies as a function of r. Since

this fraction scales as the cube of the average GW signal amplitude of a detectable source,

the ratio of the signal amplitude of a CBC source at a distance r < rH , when averaged over
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the location and orientation angles, is (1/0.0865)1/3 = 2.26 times smaller than that from the

same source optimally located and oriented at the same distance. This is the same factor

that is used to compute the rate of CBC sources Abadie et al. (2010a); Finn and Chernoff

(1993). We conducted similar studies for multiple detectors. We combined the antenna

power pattern P(θ, φ) for the individual detectors numerically and solve for the integration

in Eq. (4.14). We get fHL
CBC = 0.0917, fHLV

CBC = 0.1350, fHLI
CBC = 0.1298, fHLVI

CBC = 0.1541 and

fHLVIK
CBC = 0.1811, where ‘HLV’ stands for the usual Hanford-Livingston-Virgo network. ‘I’

stands for LIGO-India and ‘K’ stands for KAGRA.

Figure 4.4: Left: Mean density of detectable sources on the two sphere at a distance r.
Middle: Maximum density of detectable sources on the two sphere at a distance r. Right:
The cumulative fraction of detectable CBC sources in a spherical volume of radius r plot-
ted as a function of r. The sources are distributed uniformly in volume and are oriented
randomly. It attains a maximum value of 8.65% when r reaches the horizon distance. Bot-
tom Comparison between the cumulative fraction of detectable CBC sources in a spherical
volume of radius r for a single detector and for various network of detectors plotted as a
function of r.
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4.2.3 Fraction of SGRBs with orphaned afterglows

In the remainder of this section we will assume that CBCNS sources are the only progenitors

of SGRBs and their afterglows. We first recognize the various factors that determine the

number of SGRBs associated with CBCNS progenitors that are detectable by GW observa-

tions:

Number of SGRBs associated with CBCNS GW detections =

Number of CBCNS sources detectable by us ×

fraction of CBCNS sources that emit gamma rays ×

fraction of CBCNS gamma-ray emitters beamed toward us and detected as SGRBs .

(4.15)

The above equation, factor for factor, can be symbolically expressed as

Nγ,GW = NGW × P (γ|CBCNS)× P (SGRB|γ,CBCNS) . (4.16)

When the CBC population is limited to include only BNS and NSBH sources, the Ndet

derived from Eq. (4.11) reduces to NGW. Also, by a CBCNS gamma-ray emitter we mean

a CBCNS source that would be detectable in gamma-rays by us provided the rays were

beamed at us. Let the gamma-ray emission of SGRBs be strongly beamed, with a beaming

half-angle of βB. Then the fraction of CBCNS gamma-ray emitters that will be observable

to us as SGRBs is

P (SGRB|γ,CBCNS) =
2π
∫ βB

0
sin θdθ

4π
= sin2 βB

2
. (4.17)

If SGRBs were beamed isotropically, βB = π and the above fraction is unity. Therefore, the

fraction of CBCNS gamma-ray emitters that will beam their gamma rays away from us is

1− sin2 βB

2
. (4.18)
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Let fAG be the fraction of CBCNS gamma-ray emitters that produce afterglows that are

bright enough to be detectable by our observatories. Then the fraction of CBCNS gamma-

ray emitters with an orphaned afterglow is

fOAG ≡ fAG

(
1− sin2 βB

2

)
. (4.19)

The fraction fAG depends on the environment of SGRBs, which is not well understood

Metzger and Berger (2012). Note that some afterglows may be beamed (e.g., some X-ray

afterglows), some others may be more isotropic (e.g., radio afterglows), and a fraction of

them may be too weak to detect. On the other hand, the way fOAG is defined, it does

not include CBCNS gamma-ray emitters that beam at us but we fail to detect them as

SGRBs. Moreover, a subset of orphaned afterglows may arise from CBCNS sources that

do not produce a GRB, e.g., due to baryon loading Rhoads (2003). Including these last

two types of systems will only increase the number of orphaned afterglows associated with

CBCNS sources.

4.2.4 Probability of detecting an orphaned afterglow in conjunc-

tion with a gravitational wave signal

Let P (γ|BNS) and P (γ|NSBH) denote the fractions of binary neutron star and neutron star

- black hole binary coalescences, respectively, that emit gamma rays. Thus, the fraction of

CBCNS sources that emit gamma rays can be written as

P (γ|CBCNS) = P (γ|NSBH) + P (γ|BNS) . (4.20)

Below, we first study the factors that influence P (γ|NSBH) followed by those that affect

P (γ|BNS).

The central engine of a SGRB is the accretion disk that is created by the tidal disruption
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of an inspiraling neutron star. Some studies predict that an accretion disk of mass mdisk &

0.01M� can provide sufficient energy to launch a jet for a duration of around 100 msec by

neutrino radiation Kiuchi et al. (2010a). Thus, whether a system emits a gamma-ray burst

or not will depend foremost on whether the neutron star can transfer 0.01M� in to the

accretion disk. A massive NS with low compactness is more likely to transfer the required

mass to an accretion disk massive enough to launch a jet than a low-mass neutron star with

high compactness. Let us assume that the smallest mass of an accretion disk that is required

to fire the GRB engine is m∗. If we further assume that the neutron star mass is distributed

normally from a lower limit mmin to an upper limit mmax, and that the mean neutron star

mass is m̄, then we can write the probability density of neutron star mass as, 1

pNS(m) =


1
I
e−(m−m̄)2/2σ2

, if mmin ≤ m ≤ mmax,

0, otherwise,

(4.21)

where,

I =

∫ mmax

mmin

e−(m−m̄)2/2σ2

dm = σ

√
π

2

[
erfc

(
mmin − m̄
σ
√

2

)
− erfc

(
mmax − m̄
σ
√

2

)]
. (4.22)

We follow Ref. Strobel and Weigel (2001) in setting mmin = 0.88M�. The values of all other

parameters that define the above distribution are obtained from the emipiral study given in

Ref. zel et al. (2012), namely, m̄ = 1.28M�, mmax = 3.2M�, and the standard deviation

σ = 0.24M�. The normalization factor is then deduced to be I = 0.5729M�.

Low-mass neutron stars are less likely to form a massive enough accretion disk that can

launch an ultrarelativistic jet. If m∗ is the lower limit on the mass of a neutron stars forming

1The formalism developed here can be applied to a different set of parameter values, as and when it is
refined with new observations.
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SGRBs, then the fraction of all neutron stars with m > m∗ is:

P (m∗) =

∫ ∞
m∗

pNS(m)dm =
1

I

∫ mmax

m∗

e−(m−m̄)2/2σ2

dm . (4.23)

If one assumes that the neutron stars in binaries are a good representation of all neutron

stars from the same volume of the universe, then P (m∗) is also the fraction of neutron stars

in any CBCNS system in that volume that can form SGRBs. Below, we argue that m∗ must

be related to other CBCNS parameters that are relevant to the formation of a SGRB. These

are the compressibility κ of the neutron star, the spin parameter χ of the companion black

hole and the symmetrized mass-ratio η = m1m2/(m1 +m2)2 of the binary, with component

masses m1 and m2.

Let P (NS|m∗, κmin, κmax) be the fraction of neutron stars that have mass greater than m∗

and compressibility in the range (κmin, κmax). Let p(m,κ) be the joint probability density of

neutron stars in m and κ. Also, let the probability densities of stellar mass black holes in

their spin parameter χ be pχ(χ) and of NSBH binary systems in their symmetrized mass-

ratio η be pη(η). Next let us assume that NSBH binaries are constituted of components

drawn randomly from neutron star and stellar mass black hole populations. 2 If so, the

fraction of NSBH systems that can form an accretion disk capable of generating a GRB is

P (NSBH|m∗, κmin, κmax)

= P (NS|m∗, κmin, κmax)

∫ 0.25

0

dη pη(η)

∫ 1

0

dχ pχ(χ)

=

∫ 0.25

0

dη pη(η)

∫ 1

0

dχ pχ(χ)

∫ κmax

κmin

dκ

∫ mmax

m∗

dmp(κ,m) .

(4.24)

If there is no correlation between neutron star masses and compressibility, and p(m,κ) ≡
2This assumption may not be completely valid and, therefore, the resulting simplified probability expres-

sion is only approximate.
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pκ(κ)pNS(m), then

P (NSBH|m∗, κmin, κmax) =

∫ 0.25

0

dη pη(η)

∫ 1

0

dχ pχ(χ)

∫ κmax

κmin

dκ pκ(κ)

∫ mmax

m∗

dmpNS(m) .

(4.25)

A more general formula, which allows m∗ to vary with η, χ and κ of a CBCNS system that

is capable of emitting gamma rays, is:

P (NSBH|m∗, κmin, κmax) =

∫ 0.25

0

dη pη(η)

∫ 1

0

dχ pχ(χ)

∫ κmax

κmin

dκ pκ(κ)

∫ mmax

m∗(κ,χ,η)

dmpNS(m) ,

(4.26)

where the integrals are now coupled due to the dependence of m∗ on η, χ and κ in the lower

limit of the NS mass integral. As argued below, we speculate that the above probability is

more applicable in nature than the one given in Eq. (4.25).

The likelihood of forming a large accretion disk depends on the equation of state (EOS)

of the neutron star, in addition to its mass. For a given mass, a neutron star with a stiffer

EOS is more likely to give a large accretion disk: A neutron star that is more compact is

less likely to get ripped apart by the tidal force of its binary companion before it reaches

the last stable orbit (LSO). If the companion is a black hole, then such a neutron star will

cross the LSO and plunge into the companion without any GRB arising from such a system.

However, if the black hole has a large spin component along the orbital angular momentum

of the binary, then the LSO is smaller. In the test particle limit, the LSO around a non-

spinning black hole of mass MBH is at a distance of R = 6GMBH/c
2, whereas around a

maximally spinning black hole of the same mass it is at the horizon, R = GMBH/c
2, for

prograde orbits. For binary systems of interest, the location of such an orbit is less sharply

defined. In lieu of it one uses the distance at which a slowly inspiraling system makes its

transition into a rapid plunge. In any case, a neutron star is more likely to inspiral closer

to the companion black hole if the latter has a large spin component along the direction of

the orbital angular momentum. This makes it more likely for a neutron star to get tidally
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deformed and ripped apart into an accretion disk and, consequently, trigger the central GRB

engine through accretion of neutron star matter into the companion. Furthermore, a smaller

black hole has a larger tidal radius and is more likely to shred the neutron star before it

reaches the LSO than a larger black hole. This implies that the GRB is more likely to be

triggered from a binary source with a low mass-ratio. Thus, the threshold mass m∗ of the

neutron star that is necessary, but not sufficient, to form a GRB triggering accretion disk is

a function of the compactness of the neutron star, the companion spin and the mass-ratio

of the binary. Hence, Eq. (4.23) can be reexpressed as

P (m∗(κ, χ, η)) =
1

I

∫ mmax

m∗(κ,χ,η)

e−(m−m̄)2/2σ2

dm

=
σ

I

√
π

2

[
erfc

(
m∗(κ, χ, η)− m̄

σ
√

2

)
− erfc

(
mmax − m̄
σ
√

2

)]
.

(4.27)

Eq. (4.26) then gives the fraction of all NSBH sources that can form an accretion disk

capable of generating a GRB to be

P (γ|NSBH) =ε1P (NSBH|m∗, κmin, κmax)

=ε1

∫ 0.25

0

dη pη(η)

∫ 1

0

dχ pχ(χ)

∫ κmax

κmin

dκ pκ(κ)P (m∗(κ, χ, η)) ,
(4.28)

where we included the factor ε1, which is the efficiency of the NSBH systems in Eq. (4.26),

with the values of the parameters (m,κ, χ, η) in their appropriate ranges, in producing a

GRB. That efficiency may depend on the strength of the NS magnetic field, precession of

the system, and other factors that might be unraveled through future numerical simulations.

It is important to clarify that the true dependence of P (γ|NSBH) on NSBH parameters may

be more complex than the one given above, the primary purpose of which is to recognize

those parameters and to explain their physical relevance.

For the special case, where the aforementioned probability density functions are single
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valued, with

pη(η) = δ(η − 0.25), pχ(χ) = δ(χ− 1.0), pκ(κ) = δ(κ− 1.0) , (4.29)

and if one takes ε1 = 1.0, one finds that

P (γ|NSBH) =
σ

I

√
π

2

[
erfc

(
m0 − m̄
σ
√

2

)
− erfc

(
mmax − m̄
σ
√

2

)]
=0.53×

[
erfc

(
m0 − 1.28

0.34

)
− 1.23× 10−15

]
,

(4.30)

where m0 = m∗(κ = 1, χ = 1, η = 0.25). The value of the minimum mass m0 is constrained

to lie between mmin and mmax; its distribution for the densities in Eq. (4.29) is shown in

Fig. 4.5.

Figure 4.5: Fraction of neutron star - black hole binary sources that give rise to a gamma-ray
burst, which may or may not be beamed at us, for the special case of pη(η) = δ(η − 0.25),
pχ(χ) = δ(χ− 1.0), and pκ(κ) = δ(κ− 1.0). The minimum mass of the neutron star required
for the emission, and for these choices of the probability densities, is plotted on the x-axis.

Next consider the fraction P (γ|BNS). For a coalescing binary neutron star system to be
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a progenitor of a gamma-ray burst, it first needs to result in the formation of a black hole

with an accretion disk around it. Some studies indicate that there can be two paths for that

to happen (see, e.g., Ref. Bartos et al. (2012) and the references therein):

• The mass of the binary system (m1 + m2) is greater than 3M� and the individual

neutron star masses are unequal (m1 6= m2). Let the probability of BNS systems that

satisfy these criteria be PA.

• The condition mmax < (m1 + m2) < 3M� is satisfied, but (m1 + m2) is not so large

that the hypermassive neutron star resulting from the merger promptly collapses to a

black hole. Let the probability of these binaries be PB.

Assuming this hypothesis to be true, the joint probability of a binary neutron star system

coalescing to form an accretion disk around a central black hole can be written as,

PBNS, disk = PA + PB (4.31)

Note, however, that merely the creation of an accretion disk is not enough for triggering

the GRB engine. For that to happen one needs an accretion disk that is massive enough to

generate the accretion rate required for triggering a GRB. Whether such an accretion disk

can be formed depends on multiple factors: Nuclear matter from both neutron stars can

contribute to the accretion disk in varying amounts. Low compactness of a neutron star

improves the chances of formation of a massive accretion disk. The component masses, spins

and the orbital eccentricity also play a role. A precise determination of their influence is

beyond the scope of this paper. To make progress we introduce a second efficiency factor, ε2,

that determines how likely it is for a BNS system to form an accretion disk massive enough

to trigger a GRB. Then the fraction of BNS coalescences associated with GRBs is

P (γ|BNS) = ε2 PBNS,disk . (4.32)
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Thus, the probability of observing an orphaned afterglow in conjunction with a gravitational

wave signal from its CBCNS progenitor can be obtained using Eqs. (4.14) and (4.18) to be:

P (OAG, GW) = fCBC fOAG P (γ|CBCNS)

= 0.0865

(
1− sin2 βB

2

)
fAG P (γ|CBCNS) , (4.33)

where P (γ|CBCNS) is obtained by using P (γ|NSBH) from Eq. (4.28) and P (γ|BNS) from

Eq. (4.32) in Eq. (4.20). The first two factors are purely geometric, with one arising from

GW beaming and the other from SGRB beaming. The last two factors are based on the

microphysics of the medium surrounding SGRBs and of neutron star matter. The last three

factors will probably have to wait for joint EM-GW observations before their values are

finally known.

If GRBs are used to trigger GW searches, then the detection threshold is lowered by at

least 11.3/9.0 = 1.25, which increases the GW rate by 1.253 = 1.95. So 50 CBCNS per

year (which is the likely rate of BNS and NSBH detections in aLIGO Abadie et al. (2010a))

increases to 98. However, recall that Nγ,GW/NGW is the fraction of CBCNS GW detections

that are expected to be associated with SGRBs. Thus, if that fraction is 3%, one can expect

3 GW detections due to GRBs in one year.

Afterglows at smaller energies or longer wavelengths than gamma rays will be observable

more isotropically. All detected GWs will have observable afterglows provided they all are

100% efficient in triggering bursts that encounter a dense enough surrounding medium to

produce a strong afterglow. But the efficiency will most likely be far less than 100%. The

detected GWs will give us a sense of the likelihood of afterglows, orphaned or not, occurring

with GWs. Recall that fOAG is the fraction of CBCNS with afterglows that are observed

by us as orphans. An afterglow will improve GW detectability by reducing the detection

threshold by 8% of the all-sky, all-time GW search, as shown below Eq. (4.1). Thus, the

realistic estimate of 50 detected CBCNS per year will increase to about 1.083 × 50 = 63 per
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year, and 63fOAG additional GW events can be expected due to follow-up of EM transients,

some of which will be orphaned afterglows. If fOAG is 3%, then a couple of additional GW

events can be detected every year due to an orphaned afterglow. Note that our choice of a

few percent as example values of fOAG and Nγ,GW/NGW is conservative and is, e.g., smaller

or similar to values obtained in Ref. Kelley et al. (2012), which conducted a comprehensive

study of expected rates of EM emissions observed in coincidence with GW events. While the

absolute number of expected EM-GW associations may be small, the astrophysical insights

these events will provide, as noted in Sec. 4.1, highlights the importance of pursuing their

joint detection.

The above analysis makes the case for pursuing a two-pronged approach to finding

CBCNS GW sources associated with orphaned afterglows. One approach is to use a GW de-

tection to trigger an afterglow search in EM observatories. This requires the computationally

expensive GW detections to be fast so that they can have a shot at detecting even prompt

emissions. This is realizable (see, e.g., Cannon et al. (2012) and the references therein). A

more fundamental challenge in this approach arises from the fact that the sky localization

error of GW searches can be several square-degrees, when at least 3 sites have tracked the

GW event, or worse, with a smaller number of sites tracking the event. Therefore, sky-

localization demands a high duty factor of the GW detectors. The second approach is to use

EM observatories to find afterglow candidates and then search GW data, which may even

be archived, for GW events. This is easier to implement but can be equally rewarding in

terms of accessing new knowledge about these most energetic events in the Universe.

4.3 Externally triggered search for GW signals from

poorly localized CBC sources

A sizable fraction of GRBs do not have accurately known sky positions. A selected list of

such GRBs that occurred during LIGO’s S5 run is presented in tables 4.1 and 4.2. The
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error in the sky position can arise from constraints inherent to the triangulation method,

used by gamma-ray burst detectors. Typically, electromagnetic observatories have good

sky localization. However, for a transient phenomenon like a GRB, the primary objective

is detection rather than source localization, and a large fraction of GRBs are found with

inaccurate sky positions. Detection of an afterglow in conjunction with a GRB can provide

that information with a better accuracy since an afterglow can improve the localization of

the associated GRB Rhoads (2000); Vanden Berk et al. (2002); Neal Dalal and Kim Griest

and Jason Pruet (2002). The observation of a significant fraction of GRBs with error radii

of tens of degrees, however, motivated us to study the effect of poor sky localization on the

detectability of the CBCNS progenitor in GW searches externally triggered by GRBs. For

this analysis, any localization with an error radius of more than a few degrees is termed as

poor.

Currently, externally triggered searches for gravitational waves are conducted exclusively

in archived data, in a 6 sec time-window around the epoch of a short duration GRB Abadie

et al. (2010b, 2012a); Predoi and Hurley (2012). When the sky position of the GRB is

known accurately from EM observations, a GW search is launched for that sky position. If

the CBCNS progenitor model of SGRBs is correct, and if the source is within a detector’s

range, one expects to observe a GW signal from it. The knowledge of the time of the

event helps to reduce the false-alarm probability at a given SNR, as discussed in Sec. 4.2.1.

There we also showed that a further reduction of false-alarm probability, by an order of

magnitude, can be achieved by searching for GWs from a single direction in the sky. This

allows for setting a lower detection threshold, which in turn helps target more distant SGRBs

and increases their GW detection rate. While this process is optimal for a source with an

accurately known sky position, e.g., from EM observations, it is not so when the sky position

is unknown or has a large error radius.

In Fig. 4.6, we show how the detection efficiency suffers when a SGRB’s true location

is 20◦ away from the reported sky position. We selected the time and the sky-position of
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GRB090709B for this study. This GRB occurred on 09 Jul 2009 at 15:07:42 (UTC), i.e., at a

GPS time of 931187277 sec, and at a Right Ascension (RA) of 93.5◦ and a Declination (dec)

of 64.1◦. In a 2190 sec observation window centered at this GRB time, but after dropping

246 sec immediately around that instant, we injected 3000 CBCNS signals. The CBCNS

masses ranged from m1 = 1 − 3M� for the neutron star and m2 = 1 − 40M� for the black

hole. For this study the binary components were taken to be non-spinning. The signals were

injected in Gaussian noise with LIGO-I LIGO Algorithms Library power spectral density

(PSD) (Helstrom (1995)) simulated for the H1L1V1 network. The results are grouped into

three categories based on the chirp-massMc = (m1m2)3/5/(m1+m2)1/5 of the triggers arising

from injections and background. These are the low chirp-mass, with range (0.0, 3.48]M�,

the medium chirp-mass (3.48, 6.0]M� and the high chirp-mass (6.0, 20.0]M� systems. The

reason for using the chirp mass for categorizing triggers is that the duration of the signal in

the detector band is primarily determined by it. The characteristics of the noise artifacts

that trigger the search pipeline also depend on the chirp masses of the search templates used.

4.3.1 Effect of GRB sky-position error on the detection efficiency

of a targeted GW search: Searching at a single inaccurate

position

To quantitatively assess the effect of inaccurate GRB sky position on CBCNS searches, we

study the detection efficiency of the search conducted as a function of the source distance

for two cases, one with 20◦ sky position error and another with no sky position error. The

detection efficiency in a given distance bin and mass bin is the fraction of the injected triggers

in that distance and mass bin found louder than the loudest background trigger in the same

mass bin. Measurement of the distance to a GW source depends on a network’s ability to

resolve the signal’s polarization (Ajith and Bose (2009a)). Such a resolution is not possible

for every network or every sky position. For injections, the distances used to simulate the
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signals are used to bin them. The calculation of the detection efficiency in any distance bin

uses the loudness of the loudest background trigger, in the mass bin of interest, regardless

of whether it was possible to estimate its distance or not.

The results of this simulation study are shown in Fig. 4.6. As expected, the detection

efficiency deteriorates due to the systematic error in the sky position of the GRB used in the

search for its GW signal. Compared to the case of no sky-position error, it drops in the low

chirp-mass bin by 22% and 24% at injected distances of 40 Mpc and 50 Mpc, respectively,

in the medium chirp-mass bin by 12.5% at an injected distance of 50 Mpc, and in the high

chirp-mass bin by 15.7% and 20.5% at injected distances of 40 Mpc and 50 Mpc, respectively.

One way to tackle the problem of loss of GW detection efficiency due to an inaccurately

known sky position from EM observations is to search in a wider region in the sky. This

improves the chances of targeting the true sky position of the source. But it can also reduce

the confidence in a detection candidate. This is because searching in multiple sky positions,

or signal time-delays across the GW detector baselines, makes the noise background worse.

Specifically, it increases the false-alarm probability at a given SNR, thereby reducing the

significance of a signal. To assess what the trade off is between improvement in detectability

and the deterioration in FAP, we performed a search of the same set of simulated injections

as studied above except that (a) their sky position is now erroneous by 20◦, in declination

only, and (b) we use a larger set of sky-position templates. These templates were chosen

to be distributed isotropically in a patch of sky around the reported GRB sky coordinates,

with one template per pixel, which is four square-degrees in size.3

The triggers output by the search were clustered in sky position by maximizing their SNR

over the patch. We named this the sky-patch mode of search, as opposed to the known-sky

mode, where the search was confined to a single point in the sky, as discussed above. For the

limiting case, we also conducted experiments where the sky-patch was extended to cover the

whole sky. Results from the known-sky, sky-patch and all-sky searches are presented in Fig.

3The reason for this choice is explained below.
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4.7. Three sky-patches were used, with 5× 5, 10× 10, and 20× 20 pixels. The improvement

in the detection efficiency is up to about 20% in any of the sky-patch modes or the all-sky

mode compared to the known-sky mode. However, the detection efficiencies of the sky-patch

and all-sky modes are smaller in many distance bins compared to that of the known-sky

mode with no sky-position error (see the top curves in Fig. 4.6). This proves that while a

wide-area sky search performs worse, due to an increased FAP, than the known-sky search

with no sky-position error, nevertheless it performs better than a known-sky search with a

20◦ error in the GRB sky position.

Figure 4.8 shows how the false-alarm probability (FAP) increases as one widens the size of

the sky patch. The first (left-hand side) plot depicts how the FAP at a given SNR increases

with the number of sky points. Note how the FAP climbs sharply in increasing from one

point in the sky to two points in the sky, before asymptotically approaching the all-sky FAP

value at that SNR. On the other hand, as shown in the second (right-hand side) plot in

that figure the FAP has the expected fall-off behavior with increasing SNR for any given

sky-mode search. It also shows that at any given SNR the FAP increases as the sky-patch

area is widened.

4.3.2 Effect of GRB sky-position error on the detection efficiency

of a targeted GW search: Searching at multiple sky positions

Here we enquire how the above results transform as one varies the sky-position of a GRB.

Although a GW detector is much less directional, as shown in Fig. 4.10, than, say, an optical

telescope (Saulson (1994); Creighton and Anderson (2011)), the variation of its response

across the sky cannot be neglected in determining the efficiency of a GW search. While the

integrated response of a network of detectors is smoother across the sky than the response

of any single detector, there are patches in the sky where its minima are nearly zero and
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maxima are nearly unity.4 How sensitive a network is to a sky-position does not depend on

the detector antenna-patterns alone but also on how their noise PSDs compare in the band

where the signal is present. If the latter are identical, the network SNR has the same variation

in the sky as shown in Fig. 4.10, which is computed for a face-on binary. On the other hand,

the fractional drop in SNR of a signal owing to a systematic error in the sky position used

in the search template can have a different variation in the sky than that shown in Fig.

4.10. This is because that drop is determined by how fast the network response and the

time-delays across the baselines in the network change with (θ, φ) at a sky-position, which,

in turn, can be estimated by the network Fisher matrix of the CBC signal as a function

of the two sky-position angles (see Refs. Helstrom (1995); Ajith and Bose (2009a); Keppel

(2012)). That fractional loss in SNR is plotted in Fig. 4.9 as a function of sky for a couple of

cases, namely, when the error in the sky-position of the source is (a) 20◦ in Declination and

(b) 4 square-degrees of solid angle. Inferring the effect of that loss on the detection efficiency

is non-trivial since the latter also depends on the change in FAR due to the error. We next

assess their combined effect through Monte Carlo simulations across a set of different sky

positions.

To check the inferences drawn from the Fisher matrix calculations above on the variation

of detection efficiency across the sky, we conducted a set of Monte Carlo simulations, the

results of which are summarized in Fig. 4.11. In this experiment, we ran a targeted coincident

detection search (Abbott et al. (2008)) with the H1L1V1 network in simulated Gaussian data

with LIGO-I noise PSD. The noise background for each of the ten different sky positions,

depicted in Fig. 4.10 as white stars, was obtained. We also injected in each of those

ten positions a non-spinning CBCNS source, with component masses (2.5M�, 40.0M�) and

optimal oriention at a distance of 17Mpc, and ran the same search pipeline with the correct

sky template and the incorrect one (with 20◦ error) to assess the effect of that systematic

4The response in Eq. (4.3) when summed over the number detectors can attain a maximum value equal
to the number of detectors. However, the network response plotted in Fig. 4.10 is normalized to have a
maximum value of unity.
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error on the recovered SNR. These experiments output the SNRs of the injections at the

different sky positions, with and without the sky-template error.

Ideally, the same number of injections should have been made at each of the ten sky

positions as in the study in Sec. 4.3.1, namely, 3000, but that requires an order of magnitude

more computational resources. Instead, we use the SNR of the single optimally oriented

injection at each sky position to infer the detection efficiency. We do so by noting that the

detection efficiencies presented in the previous section are for injections distributed uniformly

in distance. Thus, the detection efficiency at any sky-position can be approximated by

comparing the SNR of the loudest (optimally oriented) injection with that of the loudest

background trigger at that sky position, as follows: Consider N + 1 injections of GW signals

from the same type of CBCNS source at a single sky position, but uniformly distributed in

distance. Then, the SNRs of these injections will be uniformly distributed such that their

sorted list forms an arithmetic progression {ρ0, ρ1, ρ2, ..., ρN}, where ρi+1 − ρi ≡ ∆ρ is a

constant for 0 ≤ i ≤ N . Let ρB be the loudest background SNR. If ρ0 < ρB < ρN and

∆ρ → 0, one will always find a ρi that is equal to ρB, say, for i = k. Therefore, all the

triggers in the range [ρ0, ρk−1] have SNRs below that of the loudest background trigger. One

can then define the ratio

D =
ρN − ρB
ρN

=
N∆ρ− k∆ρ

N∆ρ
=
N − k
N

, (4.34)

where we took ρ0 = 0. The final expression shows that D is the ratio of the total number

of injections louder than the loudest background to the total number of injections, which is

just the detection efficiency. Thus, D can be approximated by the first expression, i.e., by

comparing the SNRs of the optimally oriented injection and the loudest background trigger.

This is what we have plotted on the vertical axis in Fig. 4.11. There the sky positions are

indexed from one to ten on the horizontal axis.

A comment is in order about the choice of an isotropic grid of sky-position templates
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in the sky-patch search modes: A better method of distributing templates in the sky is to

require that the maximum fractional drop in SNR due to the mismatch in the sky position of

the signal and the template be constant (Ajith and Bose (2009a); Keppel (2012)). However,

as shown in Figs. 4.9 and 4.10 in the neighborhoods of all ten injection sky positions a

template spacing of 4 square-degrees will contribute less than 10% to the overall SNR drop.

which will be dominated by the systematic error in the sky-position of the injections. The

latter causes a drop of about 100% or more across much of the sky. Reducing the pixel size

increases the number of pixels needed to cover the same sky-patch, thereby, increasing the

computational cost (which is the number of floating-point operations required per unit time)

of the search.

To summarize, the above studies show that the effect of a systematic error in sky position

is to reduce the detection efficiency of a known-sky search by a significant amount. The

detection efficiency is less affected when a sky-patch is used to search for the GW counterpart.

4.4 Searching all-sky, all-time CBC triggers in LIGO’s

S5 data for GW candidates concurrent with GRBs

In this section we develop the motivation for conducting a search of coincident all-sky, all-

time (Babak et al. (2012)) CBC triggers in LIGO’s S5 data (Abbott et al. (2009b,a); Abadie

et al. (2010c, 2011)) for GW candidates concurrent with GRBs. No GW detections were

reported in CBC searches of any kind in LIGO’s S5 data because no triggers had a low

enough FAP. However, as explained in Sec. 4.2 the FAP of a blind search is higher than

that of a targeted search, at the same SNR. Thus, an all-sky, all-time CBC trigger that

is concurrent with a GRB can have a lower FAP in a targeted GW search and can lead

to a GW detection. Indeed, a fully coherent targeted search has been performed to look

for GW signals coincident with GRBs (Harry and Fairhurst (2011)). However, that search,

which is computationally more expensive than a coincident search, was limited to GRBs
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with accurate sky-position information as external triggers (Babak et al. (2012)). The other

feature of the all-sky, all-time coincident GW triggers is that their FAP is computed over

a duration of data that spans weeks as opposed to 2190 sec for data sets used in targeted

searches. Therefore, here we focus on GRBs with poor sky-position information that were

not used to trigger GW searches. If a GRB was found to be concurrent with a GW trigger

that was not significant enough in the all-sky, all-time coincident search, it might still be

interesting to invest the computational resources to perform a targeted fully coherent or

hierarchical coherent search (Bose et al. (2011)) around that GRB time. This is because the

concurrent GW trigger can gain in significance in the latter types of search owing to their

lower noise background.

We next show why the choice of SNR thresholds in the coincident search allows for the

possibility of finding interesting GW triggers concurrent with GRBs. We argue that it is

possible for some of these triggers to have a low enough FAP in a targeted search to constitute

a detection. As discussed earlier, the detection threshold in a targeted search in H1L1 is a

network SNR of 9.0, for a FAP of 10−4. If all detectors are equally sensitive to a source, then

the SNR in each detector of a signal at the threshold of detection is 6.4, which is 9.0 divided

by the square root of the number of detectors (see Refs. Helstrom (1995); Pai et al. (2001)).

During the fifth science run in LIGO (S5) three detectors were taking data. These were H1,

H2, and L1. A fourth detector, Virgo (V1), joined them in the last several months of S5,

where it shared its data from the first Virgo Science Run (VSR1) with LIGO. Although the

sensitivities of H2 and V1 were about half or worse than those of H1 and L1, triggers from

all five detectors were analyzed for this GRB coincidence study.

Specifically, an H1L1 coincident candidate with a SNR of 6.4 in each of H1 and L1 will

have a FAP of 10−4 or less in a targeted search. It is therefore important to enquire if any

coincident GW candidates were found in an all-sky, all-time (i.e., un-triggered) search that

were concurrent or near concurrent with a GRB (Predoi and Hurley (2012)). Note that even

if an H1L1 candidate is found with a FAP higher than 10−4 in the all-sly, all-time search,
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it can have a FAP of 10−4 or less in the tergeted search, i.e., when found concurrent with a

GRB. With this in mind we examined H1L1 candidates found by the un-triggered low- and

high-mass searches to check for coincidences with GRBs.

Next consider what the inclusion of H2 does to a search. The weakest signal that can

produce a triggered H1L1 candidate with a FAP of 10−4 (or H1L1 SNR of 9.0) will have a

SNR of 6.4 in each of the two detectors, as mentioned above. As one increases the number

of detectors, N , a network SNR that is lower by a factor of N1/2 would have the same

FAP, assuming that the detectors are similar in their noise and antenna profiles. Thus, a

network SNR of 9.0/
√

(3/2) = 7.3 in H1H2L1 would have a FAP of 10−4 if H2 had the same

sensitivity as H1 and L1. Since H2 actually has a lower sensitivity, the H1H2L1 SNR at the

same FAP is closer to 8.0. So the H2 SNR at which a signal can contribute to a H1H2L1

un-triggered coincident candidate at the same FAP is 2.7. This signal will have a SNR of 5.4

in H1 and L1, which is close to the SNR threshold placed on H1 and L1 in the un-triggered

searches, namely, 5.5. (Note that the orientations of H1 and L1, while not identical, are very

similar, as borne out by their responses displayed in Fig. 4.10. Higher values of the SNR in

H2 reduce the H1H2L1 FAP and lower values increase the FAP. So, between an H1 (and L1)

SNR of 5.5 and 6.4, contribution of H2’s SNR helps keep the network FAP at or below 10−4.

Therefore, it makes sense to examine lists of H1H2L1 triggers from the coincident low-mass

and high-mass searches that have SNRs in H1, L1, and H2, greater than or equal to 5.5, 5.5,

and 2.7, respectively. This was the main motivation behind the experiment reported in this

section. As an aside, note that since the all-sky, all-time searches had a SNR threshold of

5.5 in all detectors, it makes sense to do targeted searches to detect, especially, those signals

in H1H2L1 that would have an H2 SNR in the range (2.7, 5.5). This point is illustrated in

the plots in Fig. 4.12. In the left-hand side plot we show the case where no SNR threshold

is set in any detector. Thus, every trigger from a detector is retained and the thresholding

(which is at a network SNR of 9.0 in this example) is done on the combined SNR, which is

just the square-root of the sum of squares of the individual detector SNRs. The right-hand
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side plot in the same figure depicts the case where triggers from a detector are retained in

the coincident network analysis only when their SNR is above 5.5.

This also provides an important motivation for the hierarchical coherent search (Bose

et al. (2011)). The idea behind the hierarchical coherent search is that for all coincident

candidates in H1 or L1, which have a SNR above 5.5 in each detector, include the data

from H2 in the H1H2L1 analysis, as long as H2 was active, even if H2 did not contribute a

threshold-crossing trigger to a candidate found by the coincident pipeline. In other words,

the hierarchical coherent pipeline is expected to have the most impact on the detectability

of those signals that have a SNR of (5.5, 6.4). While this is a narrow range, note that

the first detections will likely happen at SNRs close to the upper limit of that range. (As

shown in Ref. Schutz (2011), the most likely detected SNR is 1.26 times greater than the

SNR threshold. For a threshold of 5.5, it is 6.9.) This keeps the computational costs at

a minimum, while taking full advantage of the signal’s phase coherence across the network

detectors in improving its detectability. Also when H1 (L1) is not active, H2L1 (H1H2)

triggers can be detections. In practice, the hierarchical coherent pipeline searches with SNR

thresholds of {ρH1
th = 4.0, ρL1

th = 4.0, ρH2
th = 3.0}. Ideally, the H2 threshold should be lower, at

2.7, as discussed above, but it is still in the range of interesting SNR values. Note, however,

that we do not analyze H1H2 triggers because our background estimation of those triggers

is not robust owing to cross-correlated noise at the same site.

GRB alerts issued by gamma-ray observatories can have large sky-position errors. It

is counterproductive to search using the known-sky mode for GWs from such GRBs, as

discussed in Sec. 4.3. Indeed, fully coherent pipelines are in use (Predoi and Hurley (2012)) to

search over sky-patches with multiple sky positions for GWs from these objects. Typically, a

GRB alert provides the source sky-position along with an error box or error radius associated

with it. Those errors for some GRBs are tabulated in tables 4.1 and 4.2.
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List of SGRBs detected with large sky-position errors by the Fermi gamma-ray

satellite

While the gamma-ray burst monitor (GBM) on-board the Fermi satellite has an excellent

sky coverage, its sky resolution can be poor on occasion. In the first two years of Fermi’s

observation time, 491 GRBs were detected by GBM (Paciesas et al. (2012)). Of these, we

found that 40 GRBs with T90 ≤ 2.0 sec have a large sky-position uncertainty (i.e., the error

radius is greater than 10◦). (Here, T90 is the duration over which a burst emits between 5% to

95% of its total measured photon counts after the background has been subtracted.) Given

the large error radii of these GRBs in table 4.1, we expect a significant drop in detection

efficiency of these GRBs if one employs a known-sky targeted search. Therefore, these GRBs

make good candidates for GW searches of the sky-patch or all-sky type.

List of short GRBs, detected with large sky position error, by IPN satellites

IPN is a network of spatially separated gamma-ray burst detectors on several satellites. It

uses delays in the time of arrival of gamma-ray signals at these detectors to triangulate

the GRB sky positions. IPN has been detecting GRBs since the 1970s. At its peak it

involved 10 satellites located at various distances from the Sun, between the orbits of Venus

and Mars. Currently, IPN uses four spacecraft, namely, the NASA/ESA Ulysses mission,

WIND, HETE-II and 2001 Mars Odyssey. The sky position determination by triangulation

across the network can be erroneous when a smaller number of spacecraft detect the signals.

The following factors contribute to IPN sky position errors:

• Inaccuracy in the synchronization of clocks in the gamma-ray detectors and in the

calibration of those clocks contribute to errors in timing the arrival of signals and,

hence, the GRB sky position.

• Uncertainty in the spatial location of the spacecraft leads to errors in the lengths of the

baselines and, therefore, errors in estimating the signal time-delays across the baselines.
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• The number of satellites detecting a particular GRB can be less than 3 in some cases.

Two detectors form a single baseline, which can do no better than localize the GRB

on a ring in the sky. The two types of errors discussed above broaden that ring to an

annulus.

In the conventional targeted GW search, IPN GRBs with error boxes larger than 100

square degrees were dropped from the initial set of GRBs. After all, the computational

requirement posed by a fully coherent GW search in a wide sky region are very high (Pai

et al. (2001); Predoi and Hurley (2012)). A list of a subset of such short GRBs that occurred

during LIGO’s S5 is given in Table 4.2. Triggers from the coincident all-sky, all-time CBC

search pipeline, as studied in Refs. Babak et al. (2012); Abadie et al. (2011); Abbott et al.

(2009b), can be checked for GW candidates concurrent with the GRBs listed in that table.

While such an exercise is not carried out here, the analysis given above can be used by

detector networks to motivate such a search in their data.

4.5 Improving the performance of targeted GW searches

If the sky position of a GW source is accurately known from EM observations, such as of

an associated SGRB or afterglow, then one might naively suspect that the search for its

GW signal should employ only that single position. A search that uses multiple sky-position

“templates” is computationally more expensive. More importantly it will also incur a higher

false-alarm probability, as we estimated below Eq. (4.2). In spite of these drawbacks, a

case can be made to also search away from the true sky-position provided it increases the

detection efficiency, which, at a given FAP, is the number of signals detected louder than a

background trigger at that FAP. Such an anomaly can occur, e.g., when there is a mismatch

between the signal and the template owing to (a) inaccurate modeling of the signal (as

discussed in Ref. Bose et al. (2010)) or (b) detector calibration errors (as discussed in Allen

(1996); Bose (2005)).
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Detectors have calibration errors of about 5-10% in the strain amplitude and up to several

degrees in the strain phase. The error can vary from one detector to another and in time.

While the temporal variation is expected to be slow and minimally affect targeted GW

detectability of transients, the detector dependence can affect the signal’s amplitude and

time-delay differently in the network detectors, thereby, partially mimicking an error in the

sky-position. Note that calibration errors have been shown to affect estimation of signal

parameters, such as CBC masses, strongly (in fact, linearly) Allen (1996); Bose (2005). As

we show below, the covariance of the error in sky-position angles with that in other source

parameters suggests that searching in a wider patch can sometimes mitigate the adverse

effect on signal SNR and detectability.

Furthermore, the BH spin can be very high in SGRB sources that include a black hole.

However, GW template banks for NSBH systems with high BH spin have not been applied

in GW searches yet. Searching those systems with inaccurate templates, either with non-

spinning ones, as is done in Refs. Abadie et al. (2010b, 2012c), or with effective template

families can severely diminish their detectability. These searches can also benefit from a

somewhat expanded search in the sky, again owing to the covariance of the sky position

angles with other source parameters, even if the sky-position is known accurately.

4.5.1 Targeted GW search over a finite sky patch even for accu-

rately known GRB sky position

A mismatch between a signal and a template can lead to a drop in the SNR and, therefore,

affect the detection probability. However, for some types of errors that probability can be

partially salvaged by allowing the template sky-position to be different from the true one.

Essentially, if there exists a non-vanishing covariance between the errors in sky-position and

other CBC parameters, then it can be exploited to mitigate the SNR loss. The nine parame-

ters that characterize the non-spinning CBC signals are the total mass M , the symmetrized

mass-ratio η, the sky-position angles (θ, φ), the polarization angle ψ, the orbital inclination
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angle ι, the luminosity distance dL, the initial (or some reference) phase ϕ0, the time of

arrival (or some reference time) t0, and the overall signal amplitude A. We group these as

components of the parameter vector, ϑ ≡ {A, t0, ϕ0,M, η, θ, φ, ψ, ι}. Owing to noise, their

estimates, ϑ̂, may differ from the true values, i.e., ϑ̂ = ϑ + ∆ϑ, where ∆ϑa is the ran-

dom error in estimating the parameter ϑa. The magnitude of these errors can be estimated

from the elements of the variance-covariance matrix, gµν = ∆ϑµ ∆ϑν Helstrom (1995). The

mismatch between a template and a signal is

M (ϑσ) = gµν∆ϑ
µ∆ϑν , (4.35)

where we have used the Einstein summation convention for the repeated indices µ and ν.

For simplicity, consider a template that matches a signal in all its parameters except M and

the two sky-position angles. Assume that an observer has no control on changing ∆M but

can vary the template sky-position angles. Then the above mismatch M is minimum when

∆θ = ∆θ̃ ≡ CMθ

CMM

∆M ,

(4.36)

∆φ = ∆φ̃ ≡ CMφ

CMM

∆M , (4.37)

where a tilde denotes the parameter value that minimizes the mismatch and Cµν is the

cofactor of the metric gµν . The minimized mismatch is

M (ϑσ)
∣∣∣
∆θ̃,∆φ̃

=
g(ϑσ)

CMM(ϑσ)
∆M2 , (4.38)

where g is the determinant of gµν . The above expression can be vanishingly small, even for a

finite ∆M , if g(ϑσ) is so. The same idea can work over a larger parameter space that includes

η, spin parameters (for spinning waveforms), and calibration errors. Indeed, in Ref. Bose

et al. (2008) it was demonstrated that allowing η to exceed somewhat beyond its physically
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permitted upper limit of 0.25 (which is its value for binaries with mass-ratio of unity) in a

mass template bank can improve the detection efficiency of a CBC search.

In CBC searches, one typically uses a bank of templates, derived from a waveform model,

that are discretely spaced in the template parameters. Searches in LIGO and Virgo data

have used template banks in the component masses that keep the separation of templates

close enough to suffer at most a 3% loss in the SNR in any detector. The simulations studied

in this paper have used the same type of mass template banks. As suggested by Eq. (4.38)

above and proved in signal injection studies below, that SNR drop can be mitigated by using

a sky-patch instead of a single sky position in targeted GW searches.

4.5.2 Targeted search for GW sources using inaccurate templates:

Masses

To test the implications of the analytic calculations of Sec. 4.5.1, we carried out a Monte

Carlo simulation with 3000 non-spinning injections, identical to the ones used for the system-

atic sky-position error study in Sec. 4.3. We conducted four types of sky-position template

searches, namely, one in the known-sky search mode, two with different sky-patch sizes, and

one in the all-sky search mode. The detection efficiencies of these searches are presented

in Fig. 4.13. Note that in the low and medium chirp-mass bins, the known-sky detection

efficiency performs worse than that of other sky modes despite the advantage it has of hav-

ing the lowest FAP of all modes. Parameter error covariance helps the detection efficiency

of the other search modes. On the other hand, in the high chirp-mass bin the detection

efficiency of the known-sky is better than that of the all-sky mode. Here, the higher FAP of

the all-sky mode dominates over any gains arising from Eq. (4.38). Nevertheless, the two

sky-patch modes still outperform the known-sky mode in this mass bin as well, by as much

as 5%. Therefore, we conclude that the best performance can be expected for a search that

employs a sky-patch of the optimal size. More Monte Carlo simulation studies are needed

to determine what that size is in different sections of the space of component masses.
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To isolate the effect of parameter error covariance on improving signal-template match,

we study the combined distribution of the SNRs of the injection triggers in Fig. 4.14 from all

three sky-mode searches, without any reference to the distribution of the SNRs of background

triggers. There, for every injection the mean of its network SNRs found by the known-sky,

sky-patch, and all-sky modes of the search was computed. Next a list of these 3000 mean

SNRs was complied. This is the reference list we compare the SNR distribution of any of

the search modes with in Fig. 4.14. In the first plot we find that 253 of the injections had

all-sky SNRs greater than 90% of the mean SNRs. The corresponding number of injections

(189) was smaller for known-sky SNRs. At the other end of the same plot more known-sky

SNRs are less loud than all-sky SNRs: While 552 injections had known-sky SNRs weaker

than 90% of the mean SNRs, the corresponding number of injections was 171 for all-sky

SNRs. One finds qualitatively similar improvement in the SNR values of the same injections

in the sky-patch mode compared to the known-sky mode of the search.

4.5.3 Targeted search for GW sources using inaccurate templates:

Spin

The CBCNS progenitor of a SGRB can have rapidly spinning components. If it has a highly

spinning black hole, the companion neutron star can inspiral closer to it before plunging into

it because its LSO is closer than that of a slowly spinning black hole of the same mass. This

increases the probability of the neutron star to be ripped apart by the black hole’s tidal forces

as the two spiral closer to each other. That, in turn, improves the chances of creating an

accretion disk with sufficient mass for the GRB engine to fire (see Sec. 4.2.4). This suggests

that among CBCNS systems associated with SGRBs there will exist an astrophysical bias

toward those with a highly spinning black hole. Current targeted CBC searches do not

use spinning gravitational-wave templates, although significant effort is being invested to

include them. Matched filtering with non-spinning templates on data that have spinning

signals introduces systematic errors due to waveform mismatch. Such a systematic error
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leads to reduced SNRs just like the error in component masses does, as discussed in Sec.

4.5.2. If we enable searching in multiple sky positions around the external trigger’s sky

position even when its position is known accurately, its GW signal can often be found with

a larger SNR from a different sky position. (Note that signal detection rather than accurate

parameter estimation is the primary goal here.)

To verify the above claims, we injected 100 non-spinning BNS and NSBH signals to

simulated LIGO-Virgo data and ran targeted known-sky and sky-patch searches on them.

In these studies the sky-patch used was a set of 21 sky-positions, all with the same RA, and

included the true sky position. The remaining twenty sky positions were distributed such

that their dec changed in steps of 2◦ in both sides of the true dec value. The known-sky

search used only the true sky-position. We repeated this study with a second set of injections

that had the same parameters as the first set but now with a non-zero spin parameter for

the binary components. The black hole and neutron star spin parameters of the injected

CBC signals were in the ranges (0.70, 0.98) and (0.30, 0.75), respectively. Only non-spinning

templates were used in searching both types of injections, which were made quite strong

in order to ensure that most of them are found. However, four of the spinning injections

were missed in the known-sky search. Three of these were recovered when the search was

performed with a sky-patch. Among the remaining injections, which were found in both

types of searches (i.e., known-sky and sky-patch), 46 were found with a SNR louder than the

SNR of the same injection in the known-sky mode. A similar result is also observed for the

same number of non-spinning injections. There, we found that 18 injections in the sky-patch

study were found with a SNR louder than the SNR of the same injection in the known-sky

study. In Fig. 4.16, the red bars show the gain in SNR of the triggers for non-spinning

injections when using the sky-patch instead of the known-sky search. The blue bars show

the same for the spinning injections. More spinning injections than non-spinning injections

are found with a louder SNR in the sky-patch mode than in the known sky mode. This

observation confirms that in the presence of a spin parameter mismatch the parameter error
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covariance contributes significantly enough to reduce the SNR loss (and, concomitantly, alter

the measured sky-position of the source).

It is important to note that since the same mass template-bank is used in studying the

spinning and non-spinning injections, the effect of its discreteness on SNR loss is present

in both. Similarly, the mitigation of that effect in a sky-patch search due to sky-position

error covariance is also present in both studies. However, since more spinning injections

are recovered with a higher SNR in the sky-patch study than the known-sky study, the

impact of the sky-position error covariance is more pronounced when there is mismatch in

an additional parameter, namely, the spin values of the injections and the templates (which

were always non-spinning).

4.6 Discussion

Multiple future electromagnetic observatories are being planned that will target transient

EM phenomena some of which may potentially be orphaned afterglows. A fraction of these

phenomena may be due to compact binary coalescences, involving at least one neutron star.

Some studies have argued that if SGRBs are beamed and if some CBCNS systems that

generate afterglows do not emit gamma-rays, then a lot many more orphaned afterglows,

associated with CBCNS sources, may occur than SGRBs. Coupled GW and EM observations

of SGRBs and afterglows, orphaned or not, will unequivocally confirm if the progenitors

are indeed CBCNS sources or if there is actually a variety of progenitors. They will also

teach us about their galactic or intergalactic environments, the nature of their host galaxies,

stellar population synthesis, etc. This exploration critically depends on the EM observatories

taking data concurrently with the GW observatories, such as aLIGO, AdV, and KAGRA.

Some of the planned EM observatories will have a wide sky coverage and a good cadence to

increase their chances of finding orphaned afterglows, which can be ephemeral, dropping in

their apparent magnitudes quite rapidly. Owing to their transient nature, it will be helpful
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to have GW detectors at multiple sites operate with large duty factors, and GW search

codes running with low latency so that they can find CBCNS sources as they coalesce and

alert the EM observatories in advance of a prompt EM (and even neutrino) emission or

afterglow. However, since GW detectors may not be able to localize every CBCNS or even

unmodelled GW burst signal (Abbott et al. (2010)) they detect, e.g., because not enough

of them are operating to successfully triangulate the sky position, it will be important to

follow-up orphaned afterglows in GW data. We highlight that an orphaned afterglow has

not been found yet, and a search pipeline does not exist yet that can use the sky position

of such an EM source and search at that specific location but in a time window that can

stretch for hours to weeks in the past to detect a GW signal associated with it in archived

data. Such a pipeline needs to be developed.

Contrastingly, coherent CBCNS and burst search pipelines for detecting GW counterparts

to SGRBs exist and have been run on archived GW data (Abadie et al. (2012a)). Also, fast

GW burst searches exist that have been used to alert EM observatories to look for EM

counterparts and afterglows, but without any positive identification so far (Abadie et al.).

This may change in the advanced detector era. Fast CBC searches are under development

that will target detecting their GW signals in advance for the compact binary merger so

that they can alert EM observatories to look for afterglows (Cannon et al. (2012)). This

development notwithstanding, hunting for GW counterparts of SGRBs in archived GW data

will always remain an important exercise. In this regard, in this paper we make the case

that searching with a sky-patch with multiple sky positions can improve the GW detection

efficiency even when the sky position of the SGRB, or an orphaned afterglow, is known

accurately through EM observations.
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Figure 4.6: Comparison of the detection efficiencies of (from left to right) low chirp-mass,
medium chirp-mass and high chirp-mass CBCNS systems with accurately known sky posi-
tions (blue or upper curves) and those with a sky-position error of 20◦ (red or lower curves).
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Figure 4.7: Detection efficiency comparison for injections with a sky-position error of 20◦

(from left to right) in low chirp-mass, medium chirp-mass and high chirp-mass bins.
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Figure 4.8: Left: Plots of the false-alarm probability of a sky-patch search as a function
of the number of the sky position templates or points in the patch, for SNR values 6.0 -
7.5. The x-axis displays the number of sky points in the patch, which includes the true sky-
position. An increase in the number of sky points in a search causes a monotonic increase in
the false-alarm probability, for any given SNR, and it asymptotes to the all-sky FAP value at
that SNR. Right: False-alarm probability plotted as a function of SNR for sky-patches with
a varying number of sky points. Here the false-alarm probability at a given SNR, plotted on
the x-axis, is defined as the number of background triggers that are found louder than that
SNR divided by the total number of background triggers of any SNR found in the search
with that sky-patch.
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Figure 4.9: Left plot: The log10 of the percentage change in the H1L1V1 network SNR
owing to a 20◦ error in the Declination of the source is mapped as a function of the true
source sky position. Right plot: Same as the left plot except that here the error in the
sky position of the source is taken to be 4 square-degrees of solid angle. For both plots the
detector noise PSD is taken to be LIGO-I LIGO Algorithms Library for all three detectors.
The source is a non-spinning CBCNS with component masses 2.5M� and 40M�, optimally
oriented and located at a distance of 17Mpc.
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Figure 4.10: Top left: Network response across the sky; the quantity
√∑

I(F
I 2
+ + F I 2

× ),
normalized to have a maximum value of unity, plotted as a function of the sky for
the H1L1V1 network. The four white asterisks in this plot are located at the two
most sensitive and two least sensitive sky positions. Their RA and dec, in degrees, are
(300.0◦,−40.0◦), (120.0◦, 40.0◦) and (245.0◦, 20.0◦), (65.0◦,−18.0◦), respectively. These loca-
tions were chosen for our study of the variation of detection efficiency across the sky. Top
right: LIGO-Hanford sensitivity; the two white stars give the locations of greatest H1 re-
sponse. At these two spots L1 and V1 have a relatively weak response. Thus, injections in
these locations provide a good measure of how much the detection efficiency suffers when
only one interferometer in the H1L1V1 network hass a good response. Their RA and dec (in
degrees) are (330.0◦,−46.0◦), (145.0◦, 45.0◦). Bottom row: Same as the top right plot but
for L1’s best response (bottom left), at (115.0◦, 30.0◦) and (295.0◦,−32.0◦), and V1’s best
response (bottom right), at (195.0◦,−45.0◦) and (17.0◦, 42.0◦).
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Figure 4.11: The y-axis above denotes the detection efficiency of injections in the ten sky
positions shown in Fig. 4.10. The source is the same as the one used in Fig. 4.9. The ten
different sky positions where injections were made to study the variation of detection effi-
ciency as a function of the source sky position are listed on the x-axis. Their RA and dec (in
degrees) are 1: (245.0◦, 20.0◦), 2: (300.0◦,−40.0◦), 3: (120.0◦, 40.0◦), 4: (65.0◦,−18.0◦), 5:
(330.0◦,−46.0◦), 6: (145.0◦, 45.0◦), 7: (30.0◦, 115.0◦), 8: (295.0◦,−32◦), 9: (195.0◦,−45.0◦),
and 10: (17.0◦, 42.0◦). The color code of the indices is as follows: Red-colored indices are
points where the network response is the highest, as shown in Fig. 4.10. Blue indices are
points of lowest network response, and green indices are points where one of the interferome-
ters in the H1L1V1 network has a high response and the other two have a low response. Note
that for the first sky position the fractional loss in SNR of the loudest injection is negative.
This is because there the SNR of the injection trigger happens to be smaller than that of
the loudest background trigger.

130



Figure 4.12: The above plots of SNRs of triggers in two detectors show the region where a
coincident search with individual detector SNR thresholds of 5.5 will not find any triggers
with a network combined SNR, shown in the colorbar, that is greater than 9 but a search
with no individual detector thresholds will. Thresholding at an individual detector level
rejects all coincidences that have a low SNR in one of the detectors. The three-detector case
is easy to understand from this study: If the SNRs of a signal are less than the threshold
in two of the three detectors but greater than that in the third, the combined SNR can still
have an appreciable value (with a low FAP).
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GRB name GRB time (UTC) RA (◦) Dec (◦) Error radius(◦) T90 sec

GRB080806A 14:01:11.2038 94.6 57.8 13.6 2.304 ± 0.453
GRB080828B 04:32:11.2646 221.3 -12.3 16.9 3.008 ± 3.329
GRB080831A 01:16:14.7521 211.2 -51.7 11.5 0.576 ± 1.168
GRB080919B 18:57:35.1052 219.5 44.4 18.1 0.512 ± 0.405
GRB081105B 14:43:51.2874 215.8 38.7 11.4 1.280 ± 1.368
GRB081113A 05:31:32.8973 170.3 56.3 12.4 0.576 ± 1.350
GRB081115A 21:22:28.1472 190.6 63.3 15.1 0.320 ± 0.653
GRB081119A 04:25:27.0590 346.5 30.0 15.2 0.320 ± 0.680
GRB081122B 14:43:26.2316 151.4 -2.1 11.2 0.192 ± 0.091
GRB081204B 12:24:25.7930 150.8 30.5 10.2 0.192 ± 0.286
GRB081206B 14:29:30.6929 353.3 -31.9 12.6 7.936 ± 4.382
GRB081213A 04:09:41.6360 12.9 -33.9 13.2 0.256 ± 0.286
GRB090120A 15:02:22.7594 38.1 -72.2 11.2 1.856 ± 0.181
GRB090126C 05:52:33.7347 224.9 41.2 11.1 0.960 ± 0.231
GRB090304A 05:10:48.1569 195.9 -73.4 12.3 2.816 ± 0.923
GRB090320C 01:05:10.5272 108.3 -43.3 17.9 2.368 ± 0.272
GRB090405A 15:54:41.3408 221.9 -9.2 10.4 0.448 ± 1.498
GRB090412A 01:28:05.2531 1.3 -51.9 10.6 0.896 ± 0.264
GRB090418C 19:35:24.9183 262.8 -28.2 14.4 0.320 ± 0.405
GRB090427B 15:27:00.8558 210 -45.7 11.8 1.024 ± 0.362
GRB090616A 03:45:42.5323 103.1 -3.7 10.3 1.152 ± 1.168
GRB091006A 08:38:46.9285 243.1 -31 12.8 0.192 ± 0.091
GRB091015B 03:05:42.9372 316.1 -49.5 12.7 3.840 ± 0.590
GRB091018B 22:58:20.6027 321.8 -23.1 13.1 0.192 ± 0.286
GRB091019A 18:00:40.8812 226 80.3 12.8 0.208 ± 0.172
GRB091224A 08:57:36.5574 331.2 18.3 15.6 0.768 ± 0.231
GRB100101A 00:39:49.3358 307.3 -27 17.4 2.816 ± 0.320
GRB100126A 11:03:05.1248 338.4 -18.7 18.3 10.624 ± 12.673
GRB100204C 20:36:03.7668 91.3 -20.9 16.6 1.920 ± 2.375
GRB100208A 09:15:33.9419 260.2 27.5 29.3 0.192 ± 0.264
GRB100326A 07:03:05.5029 131.2 -28.2 12.6 5.632 ± 2.064
GRB100411A 12:22:57.3442 210.6 47.9 31.6 0.512 ± 0.231
GRB100516A 08:50:41.0629 274.4 -8.2 18.4 2.112 ± 1.134
GRB100516B 09:30:38.3170 297.7 18.7 13.7 0.640 ± 0.487
GRB100530A 17:41:51.2263 289.7 31 11.6 3.328 ± 0.810
GRB100616A 18:32:32.8957 342.9 3.1 45.7 0.192 ± 0.143
GRB100621C 12:42:16.4305 160.9 14.7 11.4 1.024 ± 0.202
GRB100706A 16:38:18.9243 255.2 46.9 12.2 0.128 ± 0.143

Table 4.1: Fermi SGRBs with large sky-position uncertainties that were concurrent with
LIGO’s S5 run.
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GRB name GPS time (sec) Error box (square degrees) Duration of GRB (sec)

GRB061001 843772482 ∼2000 1.00
GRB060601B 833183754 ∼600 0.50
GRB070910 873480823 >200 0.38
GRB070413 860531889 350 0.19
GRB070203 854579218 >2000 0.69
GRB061014 844841836 >3000 1.50
GRB060916 842452428 >3000 0.13

Table 4.2: Short IPN GRBs with large sky position errors.
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Figure 4.13: Detection efficiency comparison (from left to right) for the low chirp-mass,
medium chirp-mass and high chirp-mass bins for four sky modes. Unlike in Fig. 4.7 there is
no sky-position error here.
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Figure 4.14: In these plots we study the combined distribution of the SNRs of the 3000
injections from all three sky-mode searches. For every injection we compute the mean of its
network SNRs found by the known-sky, sky-patch, and all-sky modes of the search. We next
compile the list of the 3000 mean SNRs. This is the reference list with which we compare
the SNRs of injections from any of the search modes. Pairwise comparisons of distributions
of injection SNRs from the different sky-mode searches are shown in these plots. In the
first plot we find that 253 of the injections had all-sky SNRs greater than 90% of the mean
SNRs. The corresponding number of injections (189) was smaller for known-sky SNRs. At
the other end, more known-sky SNRs are less loud than all-sky SNRs: While 552 injections
had known-sky SNRs weaker than 90% of the mean SNRs, the corresponding number of
injections was 171 for all-sky SNRs. One finds qualitatively similar improvement in the SNR
values of the same injections in the sky-patch mode compared to the known-sky mode of the
search.
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Figure 4.15: Similar plot as in Fig. 4.14 with only those injections were considered whose
SNR is less than 20. We note that the performance of the all-sky and sky-patch modes are
even better for weaker SNR triggers compared to the known-sky mode in the region where
90% or more triggers were found louder than the mean SNR.
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Figure 4.16: Plot of ratio of SNR of the injection trigger when the search was conducted over
a patch of 21 points to that of the SNR of the same injection found in a search conducted in
one point in the sky. The top plot with red bars is for the case of non-spinning injections,
and the bottom plot is the same for the spinning injections. This study was conducted on
100 injections in the low-mass region of the template bank. For the spinning case, the spin
was chosen to be very high, i.e., with the spin parameter greater than 0.75, so that the effect
of spin is prominent.

137



Chapter 5

Waveform inaccuracy and its effects

on parameter estimation and

detection

5.1 Introduction

In a gamma ray burst (GRB) triggered search of gravitational waves (GW) we have the

advantage of knowing a priori the sky position and time of occurrence of the event from

GRB alerts. But only a fraction of GRBs will be beamed at us and we will miss the prompt

emissions from the majority of the potential gamma ray burst sources. On top of that,

even for the sources beamed at us, a fraction of the prompt electromagnetic emissions will

still be missed because these transient events typically do not last more than 2 seconds.

However, the afterglows from these sources will be visible over a much larger angular spread

since the beaming angle increases with decreasing Lorentz factor of the jet. And the X-ray

afterglows from these sources will be visible up to a day after the prompt emission. Optical

afterglows will be visible up to an order of week or more after the prompt emission and radio

counterparts will be visible for months or even a year. Thus the sources for which we missed
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the prompt emissions, either because they were not beamed at us or because they were too

short lived for our space based observatories to point at and detect, we can still search for

them by targetting their longer lasting afterglows. Such afterglows, whose prompt emissions

went undetected, are called orphaned afterglows. However, afterglows tend to be very weak

and an afterglow whose location is not betrayed by a strong prompt emission, will indeed be

quite hard to detect. Thus, till date no orphaned afterglow has ever been found.

With the advent of second generation gravitational wave detectors, such as advanced

LIGO and Virgo, a new opportunity will now be unleashed into the arena of multi-messenger

astronomy. A compact binary source that emits gravitational waves can also be a prospective

candidate for short duration gamma ray burst. With the information that one receives after

the detection of a gravitational wave signal, X-ray, optical and radio telescopes around the

world and on near-earth orbits can be alerted. Given the time scales of afterglows, these

observatories will have ample time to search for the sources, that were localized in patches of

the sky by gravitational wave detection, in great detail without having to scan through the

full sky. However, this imposes demands on how precisely certain gravitational wave signal

parameters must be measured.

This precision, at the very least, will always be limited by the inherent statistical noise in

the measurement process. However, in this chapter we will concern ourselves with the effect

of the use of incorrect waveforms in the estimation of parameters. This is because in certain

cases this systematic error will dominate over the statistical error. We will also study the

effect of waveform inaccuracy on the detection of gravitational wave signal.

A short GRB source must have atleast one of the binary components as a neutron star.

However, black holes are much ‘cleaner’ systems, and for the present study whether the

system is actually able to emit a jet of gamma ray or not, is irrelevant since the whether

a binary system fires a jet or not will depend upon the size of an accretion disk before the

merger (see Sec. 2.5.1) and the parameter estimation error due to mismatch of waveform

will depend on the mass of the system prior to the formation of the accretion disk. Thus,
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we will present the parameter estimation study for binary black hole (BBH) systems. In

the detection study we will focus on the effect of using non-spinning templates to detect

spin-aligned compact binary sources.

5.2 BBH waveforms used for parameter estimation

Just like any compact binary coalescence (CBC) waveform, a gravitational waveform from

a binary black hole also consists of three major phases. First is the inspiral phase, when the

amplitude and the frequency of the signal increase slowly. This is accurately known through

the post-Newtonian (PN) approximation to general relativity. Next is the merger phase,

when the amplitude rapidly increases. Numerical relativity has made it possible to compute

accurate gravitational waveforms in the merger region. And finally the ringdown phase, when

the amplitude decays rapidly (dropping off along a Lorentzian curve), which is well modeled

using black hole perturbation theory. In spite of this progress, where our knowledge of the

gravitational waveform of compact binary coalescences is not complete. There remain regions

of the parameter space that can be astrophysically significant. For instance, our knowledge

about the CBC waveforms is limited to fairly low mass ratios and for mass ratio greater than

100 numerical merger waveforms from BBH systems are not available yet. Template banks

have been generated for even lower mass ratios (< 10). Absence of knowledge of waveforms

in different parts of the parameter space leaves us with no choice than to search with less

accurate inspiral only waveforms which gives rise to inaccurate modeling of the gravitational

waveforms. Our goal in this section and the next is to study the effect of this inaccurate

modeling in estimation of parameters that can be determined by a single detector.

To quantitatively assess the effects of inaccurate modeling, however one needs the knowl-

edge of the exact waveforms. Since we do not have the exact waveform over the full duration,

we choose as our surrogate waveforms the phenomenological inspiral-merger-ringdown wave-

forms Ref. Ajith and et. al (2008). These are analytic waveforms that are modeled to
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have better than 99% fitting factor with hybrid waveforms constructed from PN and NR

waveforms, with mass ratios from 1 to 4. We choose this phenomenological waveform as

the exact waveform in the mass ratio range of (1, 8), which is not much wider than their

proven range of validity. In order to study the effect of using inaccurate waveforms, we used

a bank of TaylorT1 3.5PN templates Ref. Damour et al. (2001). The inspiral phase of the

phenomenological inspiral-merger-ringdown (IMR) signals is modeled on the same TaylorT1

approximant. Furthermore, in the low-mass limit, where the merger and ringdown phases

are much shorter than the inspiral phase, the errors should tend to vanishingly small values

and, thus, provide an important check on the numerical aspects of our simulations. Finally,

since the binary black hole signals are not yet known for mass ratios above ten and since

signals from CBCs involving neutron stars are affected by uncertainties in the knowledge of

their equation of state, inspiral templates are still in use in searches for those signals that

involve spin. These motivated us in to the choice of the target and search waveforms.

For modeling the signals, we use the analytical Fourier domain IMR waveforms proposed

in Ref. Ajith and et. al (2008).

h̃(f) = Aeff(f)eiψeff(f) , (5.1)

where the effective amplitude and the phase are expressed as,

Aeff(f) ≡ M5/6

deff π2/3

√
5 η

24
f−7/6

merg


(f/fmerg)−7/6 if f < fmerg

(f/fmerg)−2/3 if fmerg ≤ f < fring

wL(f, fring, σ) if fring ≤ f < fcut,

Ψeff(f) ≡ 2πft0 + ϕ0 +
1

η

7∑
k=0

(xk η
2 + yk η + zk) (πMf)(k−5)/3 . (5.2)
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In the above expressions,

L(f, fring, σ) ≡
(

1

2π

)
σ

(f − fring)2 + σ2/4
(5.3)

is a Lorentzian function that has a width σ, and that is centered around the frequency fring.

The normalization constant, w ≡ πσ
2

(
fring

fmerg

)−2/3

, is chosen so as to make Aeff(f) continuous

across the “transition” frequency fring. The parameter fmerg is the frequency at which the

power-law changes from f−7/6 to f−2/3. The effective distance to the binary is denoted by

deff , which is related to the luminosity distance dL by deff = dL/C. The phenomenological

parameters fmerg, fring, σ and fcut are given in terms of the total mass M and symmetric

mass-ratio η of the binary as

πMfmerg = a0 η
2 + b0 η + c0 ,

πMfring = a1 η
2 + b1 η + c1 ,

πMσ = a2 η
2 + b2 η + c2 ,

πMfcut = a3 η
2 + b3 η + c3. (5.4)

The coefficients aj, bj, cj, j = 0...3 and xk, yk, zk, k = 0, 2, 3, 4, 6, 7 are tabulated in Table I

of Ref. Ajith (2008). For component masses m1,2, the total mass is M = m1 + m2 and the

symmetric mass-ratio is η = m1m2/M
2. For the discussion here, it helps to remember that

for a mass-ratio of m1/m2 = 1, 4, and 8, one has η = 0.25, 0.16, and ∼ 0.1, respectively.

5.3 Parameter measurement errors

Let us define a vector space of time series data of gravitational waves from a detector,

which will be the discrete counterpart of the data s(t), where s(t) = n(t) + h(t), n(t) be-

ing the noise and h(t) is the signal. Let us parametrize the gravitational waveforms by a

parameters θj, where j is the parameter index. The time series corresponding to the exact
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signal we denote by hE(θj) and that corresponding to the approximate signal is denoted by

hA(θj). These two waveforms in general will exist in two different manifolds in the same

vector space of the data. This is illustrated in Fig. 5.1.

Figure 5.1: In the vector space defined by the data, the exact and the approximate waveforms
exist in different manifolds. Here we show it with an example where the data has three time
points and hence is three dimensional. These three time points forms the three axes in the
figure. Note that in general the two waveforms will exist in different planes, as shown in this
example. Thus it is not possible to rotate any one of the waveforms in its own manifold and
align it with a waveform in the other manifold.

Note that if the difference between the exact and the approximate waveforms vanishes then

the two waveforms exist in the same manifold and one can always align them to each other

simply by rotating them within the manifold. This act of rotating the vector in the manifold

to match the signal waveform is typically what is done while we maximize the match filter

output w.r.t the signal parameters. However, in presence of difference between the approxi-

mate and the exact waveforms, one can never match the approximate waveform to the exact

one by rotating the former in the manifold of the later. The best one can do is maximize

the inner product between these two vectors that exist in two different manifolds. This

maximized match between the exact waveform and the approximate waveform is called the

best fit and the parameters of the approximate waveform for which the match is maximized

are called the best fit parameters θbf . Thus the waveform that gives the best match for a

given exact signal hE(θjtr) can be written as hA(θjbf). The data vectors will exist in the same
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vector space, albeit in a dimension higher than that of the manifolds of approximate or exact

waveforms.

s = hE(θjtr) + n (in presence of signal) ,

s = n (in absence of signal) .

(5.5)

Instead of defining the best fit parameters by the match, one can also define it, following Ref.

Cutler and Vallisneri (2007), as those parameters that minimize the distance (measured in the

vector space of the data) between the signal (exact waveform) and the template (approximate

waveform), namely,

∂j‖s− hA(θ)‖2
∣∣∣
θbf

= ∂j〈s− hA(θbf)|s− hA(θbf)〉
∣∣∣
θbf

= 〈∂jhA(θbf)|s− hA(θbf)〉 = 0 . (5.6)

where we have dropped the j index from the θ’s for brevity, and ∂j = ∂/∂θj. Let us assume

that the true parameter θjtr and the best fit parameter θjbf are different from each other by

an amount ∆θi,

∆θj = θjbf − θ
j
tr . (5.7)

Thus in the manifold of the approximate waveforms, the waveform with the true parameters

hA(θtr) can be expanded around the waveform with the best fit parameters hA(θbf) using

Taylor expansion. Keeping terms up to first order of ∆θj, we get,

hA(θbf)− hA(θtr) ≈ ∆θj∂jhA(θbf) . (5.8)

In Fig. 5.2 it is shown how the best fit waveform vector is obtained by essentially drop-

ping a normal on to the manifold of the approximate waveforms from the manifold of the

exact waveforms. This by definition would minimize the distance between the signal (exact

waveform) and the template (approximate waveform). In this figure we have not considered

any noise. In the realistic case the noise will take the data vector out of the manifold of

the exact waveforms, but it helps to look at this figure devoid of any noise. In the actual
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Figure 5.2: For the true parameters the approximate waveform will not give the best fit.
This is the systematic error in the parameter that we incur due to the inaccuracy in the
templates.

calculation we will keep the noise term in the expressions. We immediately note that for

the true parameters the approximate waveform (depicted by the red arrow) will not give the

best fit. The loudest signal to noise ratio will be produced by the vector in the approximate

waveform manifold with the parameters θbf (depicted by blue dashed arrow). The difference

(depicted by the green arrow in Fig. 5.2) between the best fit approximate waveform vector

and the true parameter approximate waveform vector is proportional to the systematic error

in the parameter that one incurs due to the inaccuracy in the templates.

The ‘ket’ part of the inner product in Eq. (5.6) can be written after adding and subtracting

hA(θtr) as follows,

s− hA(θbf) = n + hE(θtr)− hA(θtr) + hA(θtr)− hA(θbf) , (5.9)
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Using Eq. 5.8 we get,

s− hA(θbf) ≈ n + hE(θtr)− hA(θtr)−∆θi∂ihA(θbf) . (5.10)

Substituting this back to Eq. (5.6) we get,

〈∂jhA(θbf)|s− hA(θbf)〉 = 〈∂jhA(θbf)|n + hE(θtr)− hA(θtr)−∆θi∂ihA(θbf)〉 = 0 , (5.11)

Let us now define the Fisher information matrix,

Γij(θbf) = 〈∂ihA(θbf)|∂jhA(θbf)〉 , (5.12)

Multiplying Eq. (5.11) on both sides by (Γij(θbf))
−1 and rearranging terms we get,

∆θi =
(

Γ−1(θbf)
)ij{〈

∂jhA(θbf) |n
〉

+
〈
∂jhA(θbf) | [hE(θtr)− hA(θtr)]

〉}
. (5.13)

The first term gives the statistical contribution to the parameter error and the second

term gives the parameter error due to the systematic one Ref. Cutler and Vallisneri (2007).

Note however that we do not know the true parameters of the signal and the best estimates

of the parameters we have are the θbf . Therefore, to the leading order one can write Eq.

(5.13) as,

∆θi ≈
(

Γ−1(θbf)
)ij{〈

∂jhA(θbf) |n
〉

+
〈
∂jhA(θbf) | [hE(θbf)− hA(θbf)]

〉}
. (5.14)

Thus the estimates of the systematic error and the statistical error in the estimation of the

parameters are given by,
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∆sysθ
i =

(
Γ−1(θbf)

)ij 〈
∂jhA(θbf) | [hE(θbf)− hA(θbf)]

〉
,

∆nθ
i =

(
Γ−1(θbf)

)ij 〈
∂jhA(θbf) |n

〉
,

(5.15)

respectively. We note immediately one important difference between the systematic error

and the statistical error in parameter estimation. The magnitude of the waveform vectors

hE(θbf) and hA(θbf) corresponds to the amplitude of the signal. Thus, in Eq. (5.15), the

Γij(θbf) term is quadratic in signal strength. Now, the statistical error in estimation of

parameters has the following term
〈
∂jhA(θbf) |n

〉
, which is linear in signal strength. This

implies that,

∆nθ
i ∝ 1

SNR
, (5.16)

The ∆sysθ
i term however depends on

〈
∂jhA(θbf) | [hE(θbf)− hA(θbf)]

〉
which is quadratic

in signal strength, rendering ∆sysθ
i independent of the signal strength (SNR) to the lowest

order. Thus, for stronger signals it is the systematic error term that is going to dominate.

However, one must keep in mind that in going from Eq. 5.13 to Eq. 5.14 we made the

approximation hE(θtr) − hA(θtr) = hE(θbf) − hA(θbf). Therefore in reality, the error in pa-

rameter estimation will depend on the true values of the parameters themselves.

For a non-spinning BBH system nine parameters characterize the waveform. They are

the total mass M , the symmetric mass-ratio η, the sky-position angles (α, δ), the binary’s

orientation angles (ψ, ι), the luminosity distance dL, the initial (or some reference) phase ϕ0,

and the time of arrival (or some reference time) t0. The systematic errors in M and η, and

the fractional loss of SNR, arising from inaccurate waveform modeling was studied and we

present the results next.

5.3.1 Numerical simulations

For the study that is being presented here, as the exact or target waveform the complete
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Inspiral-merger-ringdown (IMR) waveform was chosen, with m1,2 ∈ [13, 104]M� to model

the exact (or target) waveform. Thus, the mass-ratio of the target signals ranged from 1 to

8. As the (approximate) template bank we chose 3.5PN TaylorT1 approximant waveforms

with mass parameters over-covering the mass-range of the target signals. The choice of the

template waveforms is governed by the fact that the inspiral phase of the Phenomenological

waveforms (Ajith and et. al (2008))is modeled after that PN approximant. The templates

are modeled with M and η such that m1,2 ∈ [5, 121]M�, but always with η ≤ 0.25, which

is the physical upper-bound. For these studies, we used the method and the code described

in Ref. Ajith and Bose (2009b). Only one target signal is present in the data at any given

time.

In the search of gravitational waves from CBC sources, one uses unit norm templates

to find the match with unit norm signals. The choice of unit norm helps us in finding the

match of the signal with the template irrespective of the intrinsic strength of the signal. The

signal amplitude is measured from the value of the signal-to-noise ratio that we construct by

the match between the template and the signal. The measured values of other parameters,

specifically the binary’s component masses, t0 and φ0, are those defining the template that

yields the maximum match with the injected signal. For any given CBC signal and a template

bank the fitting factor is the signals match maximized over that template bank. Thus the

fractional loss of SNR of a target signal with amplitude β (β = 1 for unit norm signals),

when searched with a template bank with amplitude α (α = 1 for unit norm templates) is

given by,

Fractional loss of SNR =
αβ − αβmaxθ〈hA(θ) |hE(θtr)〉

αβ
= 1− FF , (5.17)

where FF is the fitting factor on that template bank obtained by maximizing the match

〈hA(θ)|hE(θtr)〉, which occurs at θ = θbf . Here the fitting factor is independent of the CBC

signal parameters that cannot be measured by a single detector, namely, the distance and
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Figure 5.3: The fitting factor obtained from numerical simulations of matched filtering with
a bank of 3.5PN TaylorT1 templates of (complete) inspiral-merger-ringdown waveforms as
target signals in AdvLIGO PSD. The target waveforms are parameterized by the BBH
component masses m1 and m2, each ranging from 13 - 104 M�.

the polarization, inclination, and sky-position angles.

The fitting factor for the above choice of template bank and target signal family is

presented in Fig. 5.3, where the maximization over the template parameters (t0,M, η) was

carried out numerically and that over φ0 was carried out analytically, as explained above.

Recall, that the template bank we used for this study comprised of inspiral waveforms. Thus

the reason for the mismatch between signal and template is the difference between the signal

and the templates in the merger and the ringdown phase of the coalescence, which for the

later case is absent. It implies that, longer the inspiral stage for a binary, better is the match

and hence the fitting factor. We know that for inspiraling signal the characteristics time

scale for a chirp signal in the detectors sensitivity bucket, also known as the chirp time is

given by,

ξ = 1390

(
M
M�

)−5/3
fs

10 Hz
seconds , (5.18)
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where M is the chirp mass of the system that is defined as,

M =
(m1m1)3/5

(m1 +m2)1/5
, (5.19)

Using these we can write,

ξ ∼ 1

ηM5/3
, (5.20)

Therefore it is obvious that systems with low η and M will tend to have longer inspiral

durations. Now, we see that the fitting factor in Fig. 5.3 decreases with increase in total

mass M . Moreover, for the same total mass, as the mass ratio gets closer to unity the

fitting factor gets worse. This is again because time evolution of an asymmetric mass ratio

system and systems with large total mass tends to be longer, thus the longer inspiral signals

compensate for the power lost due to the absence of the merger and ringdown part of the

signal in the templates.

The implications of these observations are that for a given target signal, the template that

gives the best fit match will tend to have lower total mass than the true value since such

templates will fit the target signal better due to increase in the template duration, compared

to the true total mass templates, i.e,

〈hA(Mbf) |hE(Mtr)〉 > 〈hA(Mtr) |hE(Mtr)〉, for
Mbf −Mtr

Mtr

=
∆M

M
< 0 . (5.21)

This is nicely observed in our results in Fig. 5.4, where the value of ∆M/M is consistently

negative in the entire mass space over which we have conducted our study. It is also evident

in the result that, as we go for higher values of total masses, the error in mass estimation

(expectedly) worsens. A diagonal line on this plot from bottom left to top right represents

symmetric mass ratio systems. Systems with same total mass will fall on lines that are

perpendicular to the diagonal line. As one goes away from the diagonal, along a particular

equal total mass line, systems with higher mass ratio are encountered. The result shows that
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Figure 5.4: The fractional error in total-mass (in %) obtained from numerical simulations
of the same template bank and target signals, in AdvLIGO PSD, as shown in Fig. 5.3.
Target signals with η = 0.25 are represented by points along the equal-mass line (not shown)
extending from the left-bottom corner to the top-right corner of the plot.

for asymmetrical mass systems the error in the estimation of the total mass is less compared

to the symmetrical mass systems, because the asymmetry in masses is improving the match

between the template and the target waveform by increasing the duration of the templates

for the same total mass. However, note that this effect is only seen at large total mass values.

Tentatively, in this case we start to observe this effect above the total mass of 40M�. At

lower total masses the error in total mass estimation seems to be immune to the effect of

mass ratio of the source involved as is evident also from Fig. 5.5 where we show what is

expected analytically. It is only at higher total mass systems that the merger and ringdown

part of the waveforms begin to contain significant amount of power, so that the best match

template is obtained with an increase in the inspiral waveform’s duration by changing both

the total mass and the mass ratio from the true values and this explains the hyperbolic bands

in Fig. 5.4. For lower total mass systems, the deviation of best fit total mass from the true
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Figure 5.5: The fractional error in total-mass (in %) given by the analytic expression Eq.
(5.14) for AdvLIGO PSD. Above, m1 and m2 represent the true parameters.

total mass adequately compensates for the absence of the merger and ringdown part of the

waveform and this explains the cross-diagonal bands in Fig. 5.4 and Fig. 5.5.

Now suppose the true waveform did not have a merger and ringdown part. In that case

any effect of lowering of total mass of the template can be compensated by an increase in

the value of η, the symmetric mass ratio. Thus an error in the recovery of the total mass will

be correlated to an error in the recovery of η. This correlation can be quantified as follows.

From Eq. 5.15 we get,

∆sysθ
i =

(
Γ−1(θbf)

)ij 〈
∂jhA(θbf) | [hE(θbf)− hA(θbf)]

〉
, (5.22)

For the simplicity of the discussion, if we assume that the correlation of error in the estimation
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of η is only non-vanishing with the error in estimation of total mass then,

∆sysθ
η =
(

Γ−1(θbf)
)ηη 〈

∂ηhA(θbf) | [hE(θbf)− hA(θbf)]
〉

+
(

Γ−1(θbf)
)ηM 〈

∂MhA(θbf) | [hE(θbf)− hA(θbf)]
〉
,

(5.23)

where
(

Γ−1(θbf)
)ηM

= 〈∂ηhA(θbf)|∂MhA(θbf)〉. Thus we note from the second term in the

RHS of Eq. 5.23 that any error in estimation of the total mass will affect the error in

estimation of the symmetric mass ratio. This result, which we obtained for the above cases,

when there is no waveform inaccuracy, must still hold when there is discrepancy between the

exact and the approximate waveforms. This is what we observed in our study of the error

in symmetric mass ratio in Fig. 5.6. For a target signal that has fairly equal component

masses, the inspiral waveform duration of the best fit template increases due to an under

estimation of the total mass. This increase in duration is compensating for the absence of

the merger and ringdown part in the target waveform. The recovered values of η are fairly

accurate as a result of the dominance of the total mass error since the best fit is acquired

without any need for altering the η values from the true ones. However, for an asymmetric

mass system (for example the lower right hand corner of the plot) the target waveform has

most of the power from the inspiral phase, and the power in the merger and ringdown phase

is negligible. As a result these waveforms tend to be very similar to the approximate inspiral

waveforms. Here, we begin to observe the effect of correlation between the estimation of

error of the total mass and the symmetric mass ratio. Due to this correlation, the error in

the symmetric mass ratio will be positive or negative depending upon the magnitude of the

total mass error. A very large negative total mass error can increase the template duration

beyond the optimum match. The best fit η will then deviate towards a higher η value to

reduce the template duration, restoring it down to the optimum match. Conversely, if the

template size is still smaller than the target waveform for an optimum match for a given

negative total mass error, the best fit η value will decrease to maximize the match. This
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Figure 5.6: The fractional error in the symmetric mass-ratio (in %) obtained from numerical
simulations for the same template bank and target signals, in AdvLIGO PSD, as shown in
Fig. 5.3.

is being observed in the left plot of Fig. 5.7. Patches of yellow and orange signifies the a

positive error in η while patches of dark red signifies a negative error in η in this plot.

5.3.2 Analytic results using leading order approximation of the

waveform discrepancies

In Eq. (5.14) we found out how the error in estimation of CBC source parameters will

depend upon waveform inaccuracies and detector noise. One must keep in mind that in

deriving that expression, we dropped higher order terms of ∆θi, thus, it should not be

expected to be valid at large discrepancies in the waveform model. From the numerical
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Figure 5.7: The fractional error in the symmetric mass-ratio in AdvLIGO PSD (in %). The
figure on the left is obtained from numerical simulations, and that on the right is computed
from the analytic expression in Eq. (5.13).

simulations we have observed that the discrepancies between the signal waveform and the

template decreases for smaller values of M . We, therefore, use the analytic approximation

in Eq. (5.14) to compute the systematic errors in the parameters in that region, i.e., for

m1,2 ∈ [5−20]M�. The results for ∆M/M are given in Fig. 5.5 and for ∆η/η in Fig. 5.7 (in

the right plot). The result of η is especially interesting. As we have discussed in the previous

section, the error in η was least in and around the equal mass region for the numerical

simulations we performed. Same feature was not obtained in the analytic calculation, as is

evident from the Fig. 5.7 (in the right plot). This apparent disagreement can be explained

by the fact that in our numerical simulations the templates in the template bank were limited

to have η ≤ 0.25, since physically a template can not have η greater than that value; no

such restriction however is assumed in the derivation of Eq. (5.14). This is why the best fit

value of η in the right plot in Fig. 5.7 is larger than 0.25 as one approaches the top-right

corner, i.e., where m1 ' m2 and the target and template waveforms start departing from

each other. This also suggests that allowing for templates with unphysical values of η might

help mitigate some of the loss in SNR arising from inaccurate waveform modeling (Bose

et al. (2008)).
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5.4 Waveform inaccuracy and its effect on detection

of gravitational waves from progenitors of short

GRBs

Our focus in the previous sections was on the effect of waveform inaccuracy on parameter

estimation, caused by the use of templates that do not have the merger and the ringdown

parts. Now we will discuss the other aspect of waveform inaccuracy, namely, detection. For

this study we are going to concern ourselves with the use of non-spinning templates for

searching of signals from spinning compact binary systems.

In a compact binary system, at least an accretion rate of 0.1M� per second is required

for a GRB to be triggered (Kiuchi et al. (2010b)). It was mentioned in the same reference

that in order to get that kind of an accretion rate, at least a mass of 0.01M� is required

in the accretion disk. For a neutron star - black hole (NSBH) system all of this mass will

be obtained from the neutron star (NS) through its tidal disruption by the black hole. How

much mass will be available, will depend strongly on the stiffness of the NS equation of state

(EOS) and also the amount of tidal force exerted by the black hole (BH). These two factors

will determine the extent of tidal disruption of the neutron star. It is the second factor

that gets boosted in presence of strong BH spin because the innermost stable circular orbit

(ISCO) of a spinning system (especially when the BH spin is aligned to the orbital spin)

will be smaller than a non-spinning one (about six times smaller for a maximally spinning

BH). This gives the NS an opportunity to sample the space closer to the black-hole before

plunging into it. Thus the chance for the formation for an accretion disk capable of creating a

fireball energetic enough to launch a GRB increases, making a CBC systems that are highly

spinning more likely to be a candidate for a GRB.

However, current search pipelines do not implement spinning template banks for the

search of gravitational waves from progenitors of GRBs. This is primarily because spinning

searches require a lot of computational power. This prompted us to assess the effects of us-
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ing non-spinning templates on spinning signals. It is expected that the use of non-spinning

templates in the conventional searches should result in reduced SNR, and consequently de-

tection efficiency due to signal-template mismatch. But the study gets an added dimension

when we consider the fact that in a real search the noise is non-stationary. A subset of the

non-stationary features in the data that are transients are called glitches. They often trig-

ger the templates in the search pipeline and create false alarm. To deal with these glitches

several signal discriminant techniques have been developed. One of the most powerful one

being the χ2-test, detail of which is given in Ref. Allen (2005). The performance of the χ2-

test depends on the mismatch between the signal and the waveform. The expectation value

of χ2 is independent of the signal strength when the signal and template do not have any

mismatch. However, when the template is inaccurate, then the expected value of χ2 depends

quadratically on the expected SNR of the signal. Thus, not only the search suffers due to

lowering of the signal to noise ratio, but also the performance of the signal discriminants are

compromised due to waveform inaccuracies.

To observe this effect happening in an actual search, we injected 3000 spin Taylor 3.5

approximant waveforms as target signals of various spin values and searched for them using

TaylorT1 3.5PN templates. We did the same with 3000 weakly spinning injections ( a ≤ 0.01

) where a is the Kerr parameter 1. For each signal that was recovered we computed the

coherent χ2 (Harry and Fairhurst (2011)) and the coherent SNR values (Bose et al. (2000);

Pai et al. (2001); Bose et al. (2011); Harry and Fairhurst (2011)). A plot of the coherent χ2 vs

coherent SNR values of the found signals reveals the performance of the χ2-test for different

kinds of spinning signals. Since the templates are non-spinning, therefore the weakly spinning

signals (in the red pluses) in Fig. 5.8 have better match with the templates and hence, fares

better as far as coherent χ2 values are concerned than the higher spinning signals.

In order to study the effect of spin on χ2 values, we injected a thousand spin aligned

binary neutron star (BNS) and NSBH sources each in real S6 LIGO noise and searched for

1a = 0 denotes non-spinning black hole or neutron star and a = 1 for a black hole denotes a maximally
spinning black hole. The maximum value of a for a neutron star in our simulation is chosen to be 0.4.
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Figure 5.8: Coherent χ2 values for weakly spinning sources that were found by searching
with non-spinning templates tend to be lower than those for strongly spinning sources. The
red pluses are spinning sources that have a ≤ 0.01. The blue pluses have larger spin values.
When searched with non-spinning templates, the signal mismatch is increasing the coherent
χ2 values. The extent of the deterioration is less when the mismatch is lower in the case of
low spin system.

them using spin aligned templates 2. These injections were fairly strong as they were all

injected at a distance of (2, 10) megaparsecs. For BNS systems the spins of the neutron

stars were in the range a ∈ (0.0, 0.4) and for the NSBH systems they were in the range

a ∈ (0.0, 0.98) for the black hole and neutron star systems were chosen to have spin values

in the range a ∈ (0, 0.05) 3. The BNS mass range was (1.0, 3.0)M� and the mass range for

NSBH was (3.0, 15.0)M�. We further injected 1000 more signals each of BNS and NSBH

types that were weaker (injected at a distance of 20 to 40 megaparsecs), and highly spinning

(NS Kerr parameter ranging from 0.3 to 0.4 and BH Kerr parameter ranging from 0.9 to

2Currently only spin aligned template bank is available (Brown et al. (2012))
3Ref. Brown et al. (2012) explains the rationale behind choosing this range of spin for the neutron stars.
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0.98). Fig. 5.9 shows that the coherent χ2 values becomes smaller upon using the spin

aligned template banks. The black crosses in Fig. 5.9 are the background triggers, and the

red pluses are the found injections. For a given coherent SNR, we see more injection triggers

are to be found with higher (i.e., worse) coherent χ2 values when the search is conducted

with the inaccurate non-spinning templates.

However, note that the background information available in the Fig. 5.9 which is shown

by the black crosses in Fig. 5.9 does not help us to draw much inference about the search.

The χ2 distribution for the background in the above cases does not look very different than

what we expect in a Gaussian noise. To help our understanding about the performance of

the χ2 test we increased the background information by incorporating additional off-source

time in our analysis. To understand how we did that, it will be helpful if we understand

how the background estimation is done for a gravitational wave search from progenitors

of short GRBs. Conventional search pipeline performing blind search uses time slides to

estimate the background. However, the GRB triggered search uses the GRB trigger time as

a prior information for gravitational wave search from the GRB progenitors. As a result the

background is estimated by looking away from the 6 seconds onsource window around the

GRB trigger time Ref. Abadie and et. al (2012a). These are called offsource times, which

are also 6 seconds long. A total of 340 such offsource times are analyzed. Admittedly, this

is a relatively small duration to correctly estimate the background and is reflected in the χ2

plots in Fig. 5.9. To address this issue, we looked at times that are a sidereal day away from

the GRB time and conducted a similar offsource study there. We call these additional search

times. By choosing the time a sidereal day away from the actual GRB time we make sure

that in our search we are keeping the RA and dec values same. This method is illustrated

in the flowchart in Fig. 5.10.

The result of incorporating the additional time in our analysis can be seen in Fig. 5.11.

The non Gaussian tail is evident in the plots. The green contours are the contours of constant

values of the statistic, called the new-SNR, which is formed by combining the coherent SNR
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and the coherent χ2 values. The blue curve is the new-SNR contour for detection at zero

false alarm probability. The new-SNR is defined in Ref. Harry and Fairhurst (2011) as

follows,

ρnew =


ρ[(

1+

(
χ2

χ2
dof

)4/3
)/

2

]1/4 , if χ2 > χ2
dof ,

ρ , if χ2 ≤ χ2
dof ,

(5.24)

where ρ is the coherent SNR, and χ2
dof is the χ2 degrees of freedom. The coherent χ2 is

defined also in Ref. Harry and Fairhurst (2011) as follows,

χ2 = N
N∑
i=1

4∑
µ=1

(
ρiµ −

ρµ
N

)2

, (5.25)

where N is the total number of frequency bins, ρµ is obtained by filtering the data with the

µth polarization component of the complex waveform given in Eq. 3.50 and ρiµ is the same

evaluated in the ith bin.

We did the same study for NSBH systems, as shown in Fig. 5.12. Here we note that the

background is slightly worse than in the BNS case. The performance of the χ2-test here is

lower than the performance in BNS systems most likely because NSBH systems are more

massive than BNS systems. Eq. (5.20) shows that the chirp time of a signal decreases with

increasing total mass, all else being unchanged. Thus the waveforms of a typical NSBH

system has less number of cycle than a BNS system. The χ2-test is performed by dividing

the template into χ2
dof equal power bins of frequency and comparing the template power in

each bin for a particular signal Ref. Allen (2005). Because of the reduction of the number

of cycle in the waveforms, the bin boundaries are smaller for NSBH systems, thus we are

unable to reproduce the right expected power in each bin for a given signal as reliably as in

the BNS case. This reduces the discriminant power of the test somewhat and that is being

reflected in the plots of NSBH system throughout this study.

One thing we note from these two sets of studies is that the green contours of new-NR in

160



both the cases are not excluding the background triggers efficiently. As a result one needs

to define a zero false alarm probability (FAP) blue contour (remember the blue contours are

just one of the green contours, whose value of new-SNR, when chosen as threshold, gives

detection at zero FAP) that rejects some of the signals. This is more evident when we did

this study for the set of weaker injections, the results of which we present in Fig. 5.14.

This choice of statistic is not allowing us to detect many triggers at zero FAP. In the

absence of the additional background information it was not possible to recover this, since

the choice of new-SNR was primarily based on the limited background information. One

should keep in mind though, that the new-SNR is not used as the detection statistic for the

GRB trigger search. The detection statistic is obtained after employing cuts, based on null

stream (Bose et al. (2011); Harry and Fairhurst (2011)) and single detector SNR values, on

the new-SNR. However, in this study we wanted to see the performance of the new SNR that

depends only on the coherent χ2 and coherent SNR. Here we observed that there is room

for improvement in the new-SNR itself and those cuts can be further made to improve the

final detection statistics. We tested with a modified statistics which we call here test-stat,

ρnew =


ρ[(

1+

(
χ2

χ2
dof

)15/8
)/

2

]1/4 if χ2 > χ2
dof

ρ if χ2 ≤ χ2
dof

(5.26)

Using this statistic we observe an improvement in performance as shown in Fig. 5.16.

Note, however that there is nothing sacrosanct about this choice of the statistics, except

that it is based on emperical search. All we did was to look for constant statistic contours

that maximize the number of injections that we recover at zero FAP. In a different data set

or for other regions of the signal parameter space, some other statistic might perform better

than test-stat. However, this study does give us the clue that there is room for improvement

in the choice of the statistics that are presently being used for GRB triggered search.
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5.4.1 Detection efficiency

To study the effect of signal - template mismatch on detection we compared the detection

efficiency between the searches using spin-aligned and non-spinning template banks. Firstly,

a total of 1000 spin-aligned waveforms were injected in initial LIGO noise psd and then

searched for using spin-aligned template bank. The result of this study constituted the case

where there is no mismatch between signal and template and thus the exact waveform vector,

hE(θtr) is in the same manifold as the approximate waveform vector hA(θbf). Note that the

best fit parameters would, in general still turn out to be different from the true parameters

due to the statistical contribution to the parameter estimation error given in Eq. (5.15).

Next we searched for the same target waveforms using a non-spinning template bank. This

time the exact waveform vector, hE(θtr), is not in the same manifold as the approximate

waveform vector hA(θbf). And thus the parameter estimation error will have both statistical

and systematic contribution. We show the error in measuring the component masses of these

injections in Fig. 5.17.

To study the effect further, we did the same analysis for 1000 weaker injections too.

While only 847 out of those injections with non-spinning templates, and 937 were found

with the spin-aligned templates.

From the results in Fig. 5.18, we note that the spin-aligned search is able to detect more

sources than the search conducted using non-spinning templates. This brings us to detection

efficiency, which is defined as follows,

Detection efficiency at a given source distance r =

No. of sources found at distance rwith a detection statistic > loudest background

Total number of sources injected at the distance r
,

(5.27)

where the loudness of the trigger is defined as the value of the search statistic for that

trigger. We present the detection efficiency of these injections in Fig. 5.19. Note that in

the BNS case the search based on non-spinning template bank performs consistently worse
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than the search conducted with the spin-aligned templates. This is the direct consequence

of waveform inaccuracy hampering detection. In the NSBH case the improvement is not

that remarkable because the detection statistic used for the detection efficiency study was

new-SNR which caused non detection of a lot of sources at zero FAP, as shown in Fig. 5.14.

For the weak injections too we studied the detection efficiency as a function of distance.

In the BNS case not a single injection trigger was found with a new-SNR louder than the

loudest background. Thus, the detection efficiency in every distance bin became trivially

zero. The detection efficiency of NSBH injections is shown in Fig. 5.20.

In order to explore the effect of our detection statistic and χ2 statistic for the NSBH

search, where the detection efficiency proved inconclusive, we studied the receiver operator

characteristic (ROC) plots for the old and the new statistics for searches conducted by

both spin-aligned and non-spinning templates. The study of weaker injections is the more

interesting one, as we see a marked improvement on switching from new-SNR to test-stat for

this case; (see the lower panel in Fig. 5.16 where we see that the test-stat is able to recover

more injections than the new-SNR). This is presented in Fig. 5.21 using the ROC curves.

Note that the detection probability at the low false alarm probability region is of scientific

interest here. At the low FAP region, we see a slight improvement in performance when

the accurate templates (red curves) are used instead of the inaccurate non-spinning ones

(blue curves). This is reassuring and the effect of signal - template mismatch is manifestly

expressed through this plot. However, further improvement is obtained by using the tes-

stat (solid curves) in the detection probability. Both the spin-aligned and the non-spinning

searches is benefited from the use of this modified statistics. As we have discussed before,

this modified statistics is not something sacrosanct. This just goes to show that there can be

improvements made by incorporating the power of χ2 values properly. It is evident that we

are not currently making optimum use of the χ2 values in constructing the GRB triggered

search detection statistics.
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5.5 Discussion

In the era of multi-messenger astronomy parameter estimation of gravtiational waves

will be extremely important. Gravitational wave parameters such as masses will determine

the length of the chirps. Using detectors at multiple sites, one can construct time delays

and with detectors at three or more sites it will be possible to locate the sources in the sky.

Since matched filtering requires knowing the family of waveforms a priori, a lot of premium is

placed on the knowledge of accurate waveforms. Already enormous strides have been made to

that end and now, thanks to numerical relativity and analytical work in post-newtonian the-

ory and blackhole perturbation, we have full inspiral-merger-ringdown waveforms. However,

these templates are available only for mass ratio less than 10. Thus we still lack a complete

CBC template bank with IMR signals. Moreover we also lack a full fledged spinning search,

which is essential for detecting gravitational wave counterpart of GRBs. Thus waveforms

used in search so far are still succeptible to maladies of waveform inaccuracies.We studied

the effect of waveform inaccuracy in parameter estimation and detection. Our numerical

results show that the fitting factor can be as low as 60% even for a BBH with m1 = 13M�

and m2 = 20M�. Also, the estimated total-mass for the same pair can be off by as much

as 20%. Both of these estimates get worse for some higher-mass combinations. Even the

estimation of η suffers a nearly 20% error for this example, and can be worse than 50% for

the mass ranges studied here.

We also studied the effect of waveform inaccuracy in detection of signal. We presented the

study conducted in analyzing the performance of spin aligned template banks in detecting

these signals. As templates we used the non-spinning templates, thus making the search

templates inaccurate to the signals that we are searching for. Upon using spin aligned

templates to search for spin aligned injections, we observed considerable improvement in

detection efficiency. This improvement is owing to the fact that SNR of found injections were

reduced due to use of non-spinning templates and also due to the fact that χ2 values worsened

with signal-template mismatch. Incorporating additional time for more accurate estimation
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of the background helped in testing with modified statistics. In our studies we observed the

existence of modifications to the “cuts” which tend to remove most of the loudest background

triggers. There is room for improvement and tuning of the currently used new-SNR statistics

that can help us detect more injections. Receiver operating characteristic curves aided us in

comparing performance between use of spinning and non spinning template banks. It also

helped us in comparing the performance between existing and modified statistics. In BNS

search we observed improvement upon using spinning templates. In NSBH systems detection

probability was improved when we employed modified statistics in conjunction with spinning

template banks.

Both the sets of studies confirms that accurate waveform modelling is extremely im-

portant for both parameter estimation and detection. Fisher information matrix study has

revealed that the error in one parameter can affect the error in some of other parame-

ters, specifically there exists error covariance between total mass and symmetric mass ratio,

which might be tolerable as far as gravitational wave detection is concerned. However, for

electromagnetic follow-up studies, such as the hunt for orphaned afterglows, which will use

gravitational wave parameter estimates as priors, such errors can have adverse impact. Grav-

itational wave detection itself may also be jeopardised if there is too much mismatch between

signal and template, an example of which we saw in our study of spin-aligned signal search.

Understandably huge emphasis is thus given to waveform modelling and numerical solutions.

As faster algorithms of numerical relativity are being developed and as computational power

increases, one expects to have better prospects in multi-messenger astronomy in the near

future.
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Figure 5.9: Coherent χ2 vs coherent SNR plots comparing the spinning and the non-spinning
template searches. The black crosses are the background triggers, and the red pluses are the
found injection triggers. Both the studies were done on the same set of spin aligned BNS
sources. Performance of the non-spinning templates suffers due to the waveform mismatch
between them and the injection.
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Figure 5.10: Flowchart depicting the method of increasing analysis time for better estimate
of the background. Above, n is an integer.
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Figure 5.11: Coherent χ2 vs coherent SNR plots for spinning BNS injections that were
searched with non-spinning templates(left plot) and spinning templates (right plot). The
background was estimated using the additional time technique illustrated in Fig. 5.10.
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Figure 5.12: Coherent χ2 vs coherent SNR plots for spinning NSBH injections that were
searched with non-spinning templates(Left) and spinning templates (Right). Background
was estimated using the additional time technique illustrated in Fig. 5.10.
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Figure 5.13: Coherent χ2 vs coherent SNR plots for weak spinning BNS (top panel) injections
that were searched with non-spinning templates(Left) and spinning templates (Right). Note
the blue contours of zero-FAP new SNR contour in all the four cases misses out majority of
the injections.
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Figure 5.14: Coherent χ2 vs coherent SNR plots for weak spinning NSBH (bottom panel)
injections that were searched with non-spinning templates(Left) and spinning templates
(Right). Note the blue contours of zero-FAP new SNR contour in all the four cases misses
out majority of the injections.
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Figure 5.15: Comparison of test stat (green contour) with new SNR (blue dashed contour)
for BNS injections. We note that the test stat in these cases are performing better in finding
signals with zero FAP.
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Figure 5.16: Comparison of test-stat (green contour) with new-NR (blue dashed contour)
for NSBH injections. We note that the test stat in these cases performing better in finding
signals with zero FAP.
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Figure 5.17: The fractional error in estimation of total mass is plotted in the top panel. The
one on the top left was obtained when the templates used were spin-aligned and hence the
search is devoid of systematic error, the one on the top right was obtained in a search where
non-spinning templates were used and therefore, suffers from systematic effect of waveform
inaccuracies. The differences are so minute that they are not reflected in the plot colors, so
in the lower panel we show the differential of these two sets of errors (error for spin-aligned
templates - error for non-spinning templates).
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Figure 5.18: The fractional error in estimation of total mass is plotted for weaker BNS
injections. The one on the top left was obtained when the templates used were spin-aligned,
the one on the right was obtained in a search where non-spinning templates were used. Note
that in the later search there was substantial loss of detection. The title of the plots define
the color bars.
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Figure 5.19: Detection efficiency curves for BNS and NSBH sources. Note that in the BNS
case the search based on non-spinning template bank performed consistently worse than the
search with spin-aligned templates. This is the direct consequence of waveform inaccuracy
hurt detectability. In the NSBH case the imporvement is not that remarkable because the
detection statistics used here is new-SNR which was losing a lot sources as shown in Fig.
5.14.
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Figure 5.20: Detection efficiency curves for NSBH sources. Here we show the detection
efficiency plots for the weaker NSBH sources. Same study for weaker BNS sources gave
detection efficiency at all distance bins to be zero as no found injections were louder than
the loudest background from that study

Figure 5.21: ROC curves for weak NSBH systems with high spin, searched with spinning
templates (red curves) and non-spinning templates (blue curves). Dashed curves indicate
ROC curves with plotted with new-SNR as detection statistic, while solid curves indicate
the ROC curves plotted with test-stat as detection statistic.
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Chapter 6

Conclusion

Compact binary coalescences are among the best suited candidates for the first detection

of gravitational waves. Theoretical knowledge of their waveform aids us in the detection

of GW from these sources using matched filtering algorithms. Progenitors of short gamma

ray bursts are widely considered to be CBC sources with at least one neutron star as a

binary component (CBCNS). However there are other competing models for these events.

This makes the detection of gravitational waves from such systems an extremely interesting

astrophysical problem. A direct detection of gravitational waves in coincidence with electro-

magnetic detection of a GRB will give the strongest evidence of CBCNS progenitor model

for a short GRB. In this thesis we discussed the various avenues of improving detectability

of gravitational waves from such systems.

We proposed a new strategy for searching of SGRB progenitors in the sky by construct-

ing patches around the GRB-alert sky positions. We demonstrated that this can improve

detection efficiency of the search. We also showed this method is especially useful

• When dealing with sources that are poorly localized (by the GRB observatories) in the

sky. For example, GW search from GRBs discovered by the IPN.

• Template waveforms that we use are not accurate. For example, if we are using non-

spinning templates to search for spinning astrophysical signals.
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We also performed a spin-aligned template search for short GRB progenitors. This is the

first time such kind of study is performed in the collaboration and the results we obtained

showed as much as ∼40% improvement in detection efficiency.

However, there is scope for a lot of future work to be done. We have established a

correlation between error of chirp mass estimation and sky position estimation. This led

us into the construction of the sky-patch mode that mitigates the loss of the detection

efficiency arising from this error covariance. However, we also observed from our study that

there exist correlations between the systematic error in spin and sky position, which we have

not explored in much great details. We have studied how much of improvement one obtains

when one uses a patch in the sky while using non-spinning templates to search for spinning

signal. However, a rigorous study of this effect may allow us to put some bounds on the

size of the sky-patch, such that a patch bigger than the sky-patch upper bound will hurt

us from increased false alarm probability, and smaller than the sky-patch lower bound will

underperform due to parameter error covariance.

Furthermore, we have only explored the search of spin-aligned sources using spin-aligned

templates. There is also the scope of studying the effect of using spin-aligned templates

to search for gravitational waves from arbitrarily spinning sources. We would like to study

the effect of introducing a systematic error in the spin alignment between the injections

and the templates. We can analyze the effect of this systematic error on the detection

efficiency and chirp mass determination for different values of the offset between the spin

axes. Then perform the same study with varying sky patch sizes to empirically understand

any relationship that exists between the size of the patch and the systematic error of the spin

axis alignment between the templates and the injections. This will enrich our understanding

of the parameter error covariance between the systematic error of spin and sky position.

Other than SGRB, we have also discussed about the prospects of using orphaned SGRB

afterglows as external triggers. We have only laid down the mathematical foundation of

this work in this thesis. We still do not have a pipeline to actually do such a study. In an
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orphaned afterglow the time of the prompt emission is not known accurately. For an X-ray

afterglow the prompt emission could be hours before the observation of the afterglow. This

uncertainty in time could be from days to even of the order of a week for optical afterglows.

Thus we need to develop a pipeline that will search at a particular point on the sky (or a

sky-patch), but will look back from the afterglow trigger time by about a day (for an X-ray

afterglow) to about a week (for an optical afterglow). This will require some modification

in the present external trigger pipeline. However some of these new features that we would

require have already been developed in our blind hierarchical search pipeline.
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Appendix A

A brief discussion of Einstein’s General relativity

The contents in this appendix are prerequisites for understanding the physics of grav-

itational waves that a general reader might find useful. While there are numerous books

on general relativity (GR) but for the purpose of understanding the origins of gravitational

waves (GW) it is possible to avoid a detailed understanding of GR. That is why it might be

a good idea to give a brief summary of GR here so that a new reader can understand how the

various quantities that we presented ad hoc in chapter 2, like the metric, Cristoffel symbols

and various curvature tensors, come into existence. Large portion of the general relativistic

treatments presented here are heavily influenced from books like Spacetime and Geometry by

Sean M. Carroll and Gravitation - Foundation and Frontiers by T. Padmanabhan. Readers

interested in the details of the theory of general relativity can refer to these books.

Some knowledge of special relativity has been assumed in the following discussions.

A.1 Introduction

Our quantitative understanding of dynamics is pertinent upon the ability to describe a

system by four numbers. These four numbers uniquely specifies an ordered set which we call

the spacetime coordinates. However, the specification of these four numbers is a necessary but
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not a sufficient condition for describing dynamics. There are two more imortant requirements

for that. Firstly, and arguably the most fundamental of all, is the geometry of the spacetime.

The second requirement is the analytical form of external force. Given that one have all

the above requirements satisfied, it is possible to predict the time evolution of the system.

However, In this discussion we will confine to dynamics of free particles only. Therefore,

we will not discuss the second requirement mentioned above. We begin the discussion with

measurement of distance between two points.

A.2 Distance formula in flat space

From Pythagoras theorem we learn how to calculate the distance between two points. If

one lays down a coordinate system, this allows us to label each point in the three dimensional

space with an ordered set of three numbers. The values of these numbers depend upon the

choice of the origin which is labeled as (0, 0, 0). Thus one can label two points P1 and P2 as

(x1
P1
, x2

P1
, x3

P1
) and (x1

P2
, x2

P2
, x3

P2
) using this coordinate system. If we define xiP2

− xiP1
= dxi

where, (i = 1, 2, 3) then one can express the distance ds between the two points P1 and P2

as

ds2 = (dx1)2 + (dx2)2 + (dx3)2 =
3∑
i=1

(dxi)2 = dxidx
i . (A.1)

In Eq. (A.1) we have introduced the Einstein summation convention where repeating

indices are summed over. Thus we can define a quantity Eij such that

ds2 = Eijdxidxj . (A.2)

The quantity Eij we will call the Eucliean metric (in 3D), is defined as

E =


1 0 0

0 1 0

0 0 1

 . (A.3)
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Figure A.1: Distance between two points in three dimensional cartesian coordinate system.

One can transform the coordinate system above to a spherical polar coordinate system

using the following transformation equations

xr = (x1)2 + (x2)2 + (x3)2 ,

xθ = cos−1

(
x3

r

)
,

xφ = tan−1

(
x2

x1

)
.

(A.4)

For the spherical polar coordinate system one write the Euclidean metric as

E =


1 0 0

0 (xr)2 0

0 0 (xr)2 sin2(xθ)

 . (A.5)

One can note that there is coordinate dependence in the metric components. However, we
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should keep in mind that we have not changed the geometry of the space itself. We have

merely transformed our coordinates and it is this transformation of coordinates that led to

this coordinate dependence in the components of the metric.

A.3 Distance formula in flat spacetime

In special theory of relativity we learned that spacetime interval between two events is

an invariant quantity. This quantity is analogous to the distance in the galilean coordinates.

We will use the same symbol ds to denote the spacetime interval

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 , (A.6)

where x0 = ct. Thus we can write the distance formula again in the condensed form using a

metric.

η =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (A.7)

The quantity η, whose components we will denote as ηµν , is called the Minkowskian metric.

Using the Minkowskian metric we can write the distance formula as

ds2 = ηµνdx
µdxν . (A.8)

Since ds is an invariant quantity, this implies that the proper time τ , which is the time

elapsed in the frame of the clock, must be given by the following equation

dτ 2 = − 1

c2
ds2 = − 1

c2
ηµνdx

µdxν . (A.9)

It would be interesting to see what path a free particle follows in a flat geometry. let us
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consider a particle moving from event A to event B as shown in the Fig, A.2. The trajectory

Figure A.2: Path followed by a free particle is given by the path for which the action is an
extremum.

the particle follows xµ(λ) parametrized by some quantity λ will be given by the path along

which a quantity called action will be an extremum. One way to define the action SAB

between paths taken by a particle in going from event A to event B is as follows

SAB =

∫ B

A

dτ =
1

c

∫ B

A

√
−ηµν

dxµ

dλ

dxν

dλ
dλ . (A.10)

Comparing the action above with the definition of action in classical mechanics

S =

∫
L(q, q̇, t) dt , (A.11)

one can write the Lagrangian of a free particle in flat spacetime as

L = L(xµ, ẋµ, λ) =
1

c

√
−ηµν

dxµ

dλ

dxν

dλ
. (A.12)
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One can vary the action in Eq. (A.10) to get the trajectory of the free particle in flat

spacetime which is given by the Lagrange’s equation of motion

d

dλ

(
∂L(xα, ẋα, λ)

∂ẋα

)
− ∂L(xα, ẋα, λ)

∂xα
= 0 . (A.13)

Let us first evaluate the second term in the Lagrange’s equation

∂L(xα, ẋα, λ)

∂xα
=

∂

∂xα

[
1

c

(
−ηµν

dxµ

dλ

dxν

dλ

)1/2
]
. (A.14)

Note that xµ and dxµ/dλ are independent coordinates in the Lagrangian formalism and

hence

∂L(xα, ẋα, λ)

∂xα
=

1

2c

(
−ηµν

dxµ

dλ

dxν

dλ

)−1/2(
−∂ηµν
∂xα

)
dxµ

dλ

dxν

dλ
= 0 . (A.15)

Similarly we calculate the first term in the Lagrange’s equation of motion

(
∂L(xα, ẋα, λ)

∂ẋα

)
= − 1

2c

(
−ηµν

dxµ

dλ

dxν

dλ

)−1/2(
ηµνδ

µ
α

dxν

dλ
+ ηµν

dxµ

dλ
δνα

)
= − 1

c2

dλ

dτ
ηαµ

dxµ

dλ
,

(A.16)

where we have used Eq. (A.10) to substitute
(
−ηµν dx

µ

dλ
dxν

dλ

)−1/2
. Thus we obtain that

d

dλ

(
∂L(xα, ẋα, λ)

∂ẋα

)
=

d

dλ

(
ηαµ

dxµ

dτ

)
. (A.17)

Substituting this back in the Lagrange’s equation of motion and multiplying boths sides by

dλ/dτ we obtain

d

dτ

(
ηαµ

dxµ

dτ

)
=
d2xµ

dτ 2
= 0 , (A.18)

whose solution is given by

xµ = Aτ +B . (A.19)

Thus the trajectory of a free particle in flat spacetime is a straight line. This is also by defi-

nition the shortest distance between any two points in the flat spacetime since we extremized
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the action to reach to this solution.

A.4 Distance formula in curved space

We have seen in Eq. A.5 that transformation of coordinates from a cartesian system

to a spherical polar system introduces coordinate dependence in the metric components.

However, this also implies that one can use a simple transformation to get back the metric

in cartesian coordinates. However if the geometry is genuinely curved, then one can not

use a transformation of coordinate to convert the metric to a cartesian system. Let us

compare the simple cases of the two dimensional polar coordinate and the geometry on the

two dimensional surface of a sphere of unit radius.

In the polar coordinate system one can write the distance between two points as

ds2 = dr2 + r2dθ2 (A.20)

Which explicitly shows coordinate dependence in the metric. However, we can make a

coordinate transformation as follows,

r =
√
x2 + y2 =⇒ dr =

xdx+ ydy√
x2 + y2

,

θ = tan−1 y

x
=⇒ dθ =

xdy − ydx
x2 + y2

,

(A.21)

Substituting the expressions for r, dr and dθ in Eq. A.20 we get back the cartesian distance

formula.

ds2 = dx2 + dy2 (A.22)

Now let us examine the metric on the surface of a sphere. Let us denote a point in this

coordinate system by (xθ, xφ). And distance between two points in this coordinate system

is given by,
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Figure A.3: Distance between two points on the surface of a sphere.

ds2 = (dxθ)2 + sin2 xθ(dxφ)2 (A.23)

Thus the metric C on the surface of the sphere can be written as,

C =

1 0

0 sin2 xθ

 . (A.24)

There is no transformation equation, using coordinates alone, that one may use to convert

the expression of distance in Eq. A.23 to the one corresponding to a cartesian coordinate

system and the coordinate dependence of the metric on the surface of the sphere remains.

Thus from the above two example we can conclude that coordinate dependence of the metric

component is a necessary but not a sufficient condition for curved geometry.
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A.5 Observer in uniformly accelerated frame moving

in flat spacetime

Let us now study the geometry for an observer moving in an accelerated frame (denoted

by (x, t) also known as the Rindler frame) through a flat spacetime (denoted by (X,T )). For

an observer uniformly accelerating along the x−axis the equation of motion is given by,

d

dT

 v√
1− v2

c2

 = g , (A.25)

If we assume that at T = 0, v = 0, we can find v from there to be,

v =
gT√

1 + g2T 2

c2

, (A.26)

Integrating the above equation and choosing a suitable constant of integration we get,

X2 − c2T 2 =
c4

g2
, (A.27)

Which is an equation of hyperbola. Now the proper time measure in the frame of the observer

is given by,

τ =

∫ T

0

√
1− v2

c2
dT ′ , (A.28)

Substituting the expression of v from Eq. A.26, we get,

τ =
c

g

∫ T

0

d(gT/c)√
1 + (gT/c)2

, (A.29)

Thus, one gets to the result using the result from the above equation and that from Eq.
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A.26 we get the following equations of trajectory under accelerated motion.

cT =
c2

g
sinh

(gτ
c

)
,

X =
c2

g
cosh

(gτ
c

)
,

(A.30)

We know from special relativity that if an observer is traveling along the x−axis along

a trajectory defined by X = f(τ), T = h(τ) then the Lorentz transformation equation

connecting the (X,T ) and the (x, t) frame is of the form,

X − cT = f(t− x/c)− ch(t− x/c) ,

X + cT = f(t+ x/c) + ch(t+ x/c) ,

(A.31)

Here, f(τ) and h(τ) are given by A.30. Thus we obtain,

X − cT =
c2

g
cosh

(g
c

(t− x/c)
)
− c2

g
sinh

(g
c

(t− x/c)
)

=
c2

g
exp

(
−g
c

(t− x/c)
)
,

X + cT =
c2

g
cosh

(g
c

(t+ x/c)
)

+
c2

g
sinh

(g
c

(t+ x/c)
)

=
c2

g
exp

(g
c

(t+ x/c)
)
,

(A.32)

Thus we obtain the transformation equations between the inertial and the accelerated frame

as below,

X =
c2

g
egx/c

2

cosh(gt/c) ,

cT =
c2

g
egx/c

2

sinh(gt/c) ,

(A.33)

From the above transformation equations one obtains,

d(cT −X) = e(gx/c2)e(−gt/c)(cdt− dx) ,

d(cT +X) = e(gx/c2)e(gt/c)(cdt+ dx)

(A.34)

Thus,

c2dT 2 − dX2 = d(cT −X)d(cT +X) = e2gx/c2(c2dt2 − dx2) , (A.35)
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From this one can construct the line element as,

ds2 = −c2dT 2 + dX2 + dY 2 + dZ2 = −e2gx/c2dt2 + e2gx/c2dx2 + dy2 + dz2 , (A.36)

With the metric in the accelerated frame as,

g =



−e2gx/c2 0 0 0

0 e2gx/c2 0 0

0 0 1 0

0 0 0 1


, (A.37)

One can note the coordinate dependence of the metric in the above equation. It is not

possible to get rid of this coordinate dependence with a transformation of coordinates. Thus

for an accelerated observer the geometry is curved.

A.6 Principle of equivalence

The general Lagrangian of a particle under an external potential V (q, q̇, t) can be written

as,

L(q, q̇, t) =
1

2
mq̇2 − eV (q, q̇, t) (A.38)

Where m is the inertial mass of the particle and e is a generic charge that interacts with

the potential V (q, q̇, t). For example in electrostatics this e would be the electrical charge

and the potential V (q, q̇, t) would be the coulombic potential V (q). When we construct the

Lagrangian of a particle falling freely under uniform gravity we note one interesting property,

L(q, q̇) =
1

2
mq̇2 −mgq , (A.39)

The charge for gravitational potential V (q) = gh is identical to the inertial mass m. Thus
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both the kinetic and potential energy terms contain the same mass m. No other forces that

we know of exhibit this feature and it is unique to gravity. The result is that the Lagrange’s

equation of motion is free of any mass term and thus devoid of any property of the particle.

Thus motion under gravity alone is independent of the particle and depends only on the

gravitational potential. This has some far reaching consequences.

Figure A.4: An accelerated frame in a gravity-less environment is indistinguishable from an
inertial frame under gravity.

Imagine two observers in Fig. A.4, one on earth another in space, infinitely away from

earth and all other gravitating objects. Both these observers are placed in identical cubicals

with opaque walls, ceilings and floors with floor to ceiling height of H. Both the cubicals

have a massless spring of stiffness constant κ attached to the ceiling and a mass m hanging

at the bottom of the spring at a height h above the floor.

Now for the observer on earth the the Lagrangian is given by,

Learth =
1

2
mḣ2 −mgh , (A.40)

Since H = x+ h, we can write after solving for the Lagrange’s equation of motion,

mẍ = mg , (A.41)
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If the elongation in the spring due to this force is given by ∆x, then

∆x =
mẍ

κ
=
mg

κ
, (A.42)

For the observer in space, the Lagrangian is given by,

Lspace =
1

2
mḣ2 , (A.43)

However, if this observer is accelerating in the direction shown in Fig A.4, then the following

coordinate transformation gives the position of the mass m measured in that frame,

h′ = h− vt− 1

2
gt2 , (A.44)

Using this transformation in the expression of the Lspace, we get,

Lspace =
1

2
m(ḣ′ + v + gt)2 , (A.45)

Using this Lagrangian in the Lagrange’s equation and the fact that H = x′ + h′ and solving

for it we get,

mẍ′ = mg , (A.46)

If the elongation in the spring due to the acceleration of the cubical is given by ∆x′, then

∆x′ =
mẍ′

κ
=
mg

κ
= ∆x , (A.47)

Thus an observer inside either of the two cubicals can not conclude by measuring the elon-

gation of the spring whether the observer’s cubical is at rest on earth or moving with ac-

celeration g in a gravity-free environment. One can devise any dynamical experiment inside

the cubical and none will be able to provide the information to the observer whether the
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cubical in which the observer is present is accelerating, or is under gravity. But this principle

is not confined to dynamical experiments only, the observer can devise any experiment that

is confined within the walls of the cubical and that experiment will not be able to help the

observer tell apart the two frames.

This is known as the principle of equivalence. It tells us that it is possible to ‘mimic’

gravity locally using acceleration. Conversely, it also means that one can locally ‘cancel’

gravity using an accelerated frame. Imagine an observer inside the same cubical over earth

surface, only this time the observer is under free fall. The Lagrangian of the mass inside the

cubical for an inertial observer is,

Linertial =
1

2
mḣ2 −mgh , (A.48)

Solving for the Lagrange’s equation of motion using this Lagrangian and using the relation

H = x+ h, will get back Eq. A.41. However if we look at the mass from the perspective of

an observer in the freely falling frame, the distance of the mass from the floor will be given

by,

h′ = h+ vt+
1

2
gt2 , (A.49)

Using this transformation equation, the Lagrangian in the frame of the freely falling observer

becomes,

Lfreefall =
1

2
m(ḣ′ − v − gt)2 −mg

(
h′ − vt− 1

2
gt2
)
, (A.50)

Solving for the Lagrange’s equation of motion with this Lagrangian and using the relation

H = x′ + h′, we get,

mẍ′ = 0 , (A.51)

Thus, in the frame of the cubical, the observer and the mass will not feel any force as if

gravity inside the cubical has been turned off. This feature of gravity is a direct consequence

of the fact that gravitational charge that couples with the gravitational potential is identical
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to the inertial mass.

Now, As we have found out in Sec. A.5, that to an accelerated observer the geometry

is curved, and principle of equivalence stating that gravity can be replaced locally by an

accelerated observer, one can make this statement that gravity can be replaced by curvature

in geometry. This is a very profound statement since principle of equivalence states that

gravity can locally be replaced by an accelerated frame. What this implies in terms of

geometry is that a curved spacetime in presence of gravity can always be locally replaced by

a Minkowskian spacetime.

A.7 Metric in curved spacetime, vectors and geodesics

As we have seen in the previous section that the dynamics of a particle in gravitational

field can be replaced by motion in curved spacetime, it is worthwhile to spend some time in

discussing curved geometry. It was discussed in Sec. A.4 that coordinate dependence in the

metric components can imply curvature in space. The same is true for spacetime, where a

coordinate dependence in the metric components can imply curvature in spacetime. Thus

we can write the spacetime interval in a general spacetime which could be curved as,

ds2 = gµνdx
µdxν , (A.52)

One thing we notice immediately in the above equation is that if we interchange the indices

µ↔ ν, the commutative property of the product between dxµ and dxν implies that gµν = gνµ.

Thus the metric can be chosen to be symmetric. Next we note that if we perform a coordinate

transformation xµ → x′µ, ds2 being a scalar should remain independent. Thus, we can write,

ds2 = gµν
∂xµ

∂x′α
dx′α

∂xν

∂x′β
dx′β =

(
gµν

∂xµ

∂x′α
∂xν

∂x′β

)
dx′αdx′β , (A.53)
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Thus, the metric transforms under coordinate transformation as,

g′αβ(x′) = gµν(x)
∂xµ

∂x′α
∂xν

∂x′β
, (A.54)

Therefore, the metric is a symmetric tensor of second rank under Lorentz transformation

that maps two vectors (dxµ, dxν) to a scaler (ds2). This gives a nice segway to the discussion

on vectors. From basic mathematics we know that vectors are defined as quantities that

have a magnitude and a direction. Let us define a set of vectors V that exhibit the following

properties,

• Associativity of vector addition : a + (b + c) = (a + b) + c.

• Commutativity of vector addition : a + b = b + a.

• Identity : There exists a vector 0 ∈ V such that 0 + a = a.

• Inverse : For every a ∈ V there exists a vector −a ∈ V such that a + (−a) = 0.

• Distributivity w.r.t scalar multiplication: p(a + b) = pa + pb and, (p+ q)a = pa + qa.

• Associativity of scalar multiplication : p(qa) = (pq)a.

• Identity element of scalar multiplication: 1v = v, where 1 denotes the multiplicative

identity.

This set V which satisfies the above requirements is called a vector space. Now imagine a

point in the manifold of a vector space. The set of all vectors at that point on this manifold

forms what is known as the tangent space. At each tangent space in this vector space we

can define a set of linearly independent vectors. The set of all such vectors in that tangent

space constructs what is known as maximally linearly independent vectors. This constructs

what is known as the basis vectors eµ at that tangent space. For example if we define the

tangent space at a point on a two dimensional manifold, then we will be able to construct a
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maximally linearly independent set of vectors with two elements (ex, ey). This allows us to

define an arbitrary vector on the tangent space using the basis vectors as,

A = Axex + Ayey , (A.55)

Note that the vector is a physical quantity and it exists irrespective of the existance of any

coordinate systems. Defining the basis vector on the tangent space simply lets us label the

vector at that point. We illustrate this in the Fig. A.5.

Figure A.5: Definition of basis vectors at the tangent space of a manifold.

The basis vectors ex and ey will be constants if the manifold is flat and the tangent space

is identical at every point. The basis vectors in a general spacetime however will change from

one tangent space to another which is evident from Fig. A.5. This is a very important point

which we will revisit in our discussions of covariant derivatives. In a general n−dimensional

spacetime, a vector can be written as,

A = Aµeµ , (A.56)

where, A ∈ V . The quantities Aµ are the components of vector A in the eµ basis.
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Note that eµ is only defined at the tangent space of a point and it will change from point to

point. Now let us define a set of real numbers denoted by R. A linear function f is defined

as,

f(pa + qb) = pf(a) + qf(b) , (A.57)

where, p, q ∈ R and a,b ∈ V .

Let us now define a linear function α from V to R such that, α : V 7→ R. Such a linear

function acts on a vector a and gives a real number α(a). This linear function is called a one

form. For any real function we know that (α+ β)a = α(a) + β(a) and because α is a linear

function we also have, α(a + b) = α(a) + α(b). Using these, we get the following properties

of a one form,

• Associativity of addition for one forms: If a + (b + c) = (a + b) + c,

then, α(a) + [α(b) + α(c)] = α[a + (b + c)] = α[(a + b) + c]

=⇒ α(a) + [α(b) + α(c)] = [α(a) + α(b)] + α(c).

• Commutativity of addition for one forms: If a + b = b + a,

then, α(a) + α(b) = α(a + b) = α(b + a) = α(b) + α(a).

• Identity for one forms: if 0 + a = a,

then, α(0 + a) = α(a)

=⇒ α(0) + α(a) = α(a), α(0) being the identity.

• Inverse for one forms: if a + (−a) = 0,

then, α(a + (−a)) = α(0) =⇒ α(a) + α(−a) = α(0), thus there exists an inverse for

every one form.

Thus we see that a set of one forms that takes all the vectors in V to a number in R, satisfies

the first four properties of a vector space. The next three properties are automatically

satisfied due to the fact that α is a linear function. This space of one forms is called the dual
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vector space V ∗. To write a one form in the component notation like we did for a vector, we

need to define a dual basis vector ωµ which is defined using the basis vector as follows,

ωµeν = δµ ν , (A.58)

Using linear combination of dual basis vectors we write the one form as,

α = αµω
µ , (A.59)

where, α ∈ V ∗. The quantities αµ are the components of one form α in the ωµ dual basis.

Now let us assume a vector A whose magnitude is A. We can construct a one form α

corresponding to this vector in the dual space such that this one form takes the A from the

vector space V to a number A2 ∈ R.

A2 = αA = Aµανeµω
ν = Aµαµ , (A.60)

Since,

A2 = gµνA
µAν , (A.61)

Thus comparing these two equations we get,

αµ = gµνA
ν , (A.62)

Which gives the map between the components of the vectors in the vector space V and the

dual space V ∗ using the metric. αµ is also called the covariant component of the vector

A. The metric gµν can be thus used to lower indices of vectors and higher order tensors to

convert them to covariant components.

Finally we can define an analog of a metric in the dual space that takes a one form from the
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dual space to a vector in the vector space.

Aµ = gµναν , (A.63)

Thus we can write,

gµσ(gµναν) = ασ = ανδ
ν
σ , (A.64)

Which gives us,

gµνgµσ = δν σ , (A.65)

gµν is sometimes called the contravariant metric tensor and is used for raising of indices in

tensors.

Now let us derive an expression for the path a free particle follows in a spacetime whose

geometry is given by the metric tensor gµν . The action for a particle going from an event A

to B parametrized by a parameter λ is given by,

SAB =

∫ B

A

dτ =
1

c

∫ B

A

√
−gµν

dxµ

dλ

dxν

dλ
dλ , (A.66)

Comparing the action above with the definition of action in classical mechanics,

S =

∫
L(q, q̇, t) dt , (A.67)

One can write the Lagrangian of a free particle in the geometry defined by the metric gµν

as,

L = L(xµ, ẋµ, λ) =
1

c

√
−gµν

dxµ

dλ

dxν

dλ
, (A.68)

After varying the action we get the Lagrange’s equation of motion,

d

dλ

(
∂L(xα, ẋα, λ)

∂ẋα

)
− ∂L(xα, ẋα, λ)

∂xα
= 0 , (A.69)
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The second term can be calculated from A.15 by simply replacing ηµν with gµν .

∂L(xα, ẋα, λ)

∂xα
=

1

2c

(
−gµν

dxµ

dλ

dxν

dλ

)−1/2(
−∂gµν
∂xα

)
dxµ

dλ

dxν

dλ
. (A.70)

Since

dτ =
1

c

√
−gµνdxµdxν . (A.71)

Thus we can write (
−gµν

dxµ

dλ

dxν

dλ

)−1/2

=
1

c

dλ

dτ
. (A.72)

Substituting Eq. A.72 in Eq. A.70, we get

∂L(xα, ẋα, λ)

∂xα
= − 1

2c2

dλ

dτ

∂gµν
∂xα

dxµ

dλ

dxν

dλ
, (A.73)

The first term in the Lagrange’s equation of motion can be obtained by simply replacing ηµν

with gµν in Eq. A.16. (
∂L(xα, ẋα, λ)

∂ẋα

)
= − 1

c2
gαµ

dxµ

dτ
. (A.74)

Thus the lagrange’s equation of motion gives us,

1

2

dλ

dτ

∂gµν
∂xα

dxµ

dλ

dxν

dλ
=

d

dλ

(
gαµ

dxµ

dτ

)
. (A.75)

Multiplying by dλ/dτ on both sides of the above equation we get,

1

2

∂gµν
∂xα

dxµ

dτ

dxν

dτ
=

d

dτ

(
gαµ

dxµ

dτ

)
. (A.76)

Note that

d

dτ
gαµ =

∂gαµ
∂xν

dxν

dτ
, (A.77)
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Using this in Eq. A.76 we get

1

2

∂gµν
∂xα

dxµ

dτ

dxν

dτ
= gαµ

d2xµ

dτ 2
+
∂gαµ
∂xν

dxν

dτ

dxµ

dτ
. (A.78)

Now we can write

∂gαµ
∂xν

dxν

dτ

dxµ

dτ
=

1

2

[
∂gαµ
∂xν

dxν

dτ

dxµ

dτ
+
∂gαµ
∂xν

dxµ

dτ

dxν

dτ

]
. (A.79)

Since both µ and ν are repeatative indices, therefore they can be interchanged (µ ↔ ν) in

the second term

∂gαµ
∂xν

dxν

dτ

dxµ

dτ
=

1

2

[
∂gαµ
∂xν

dxµ

dτ

dxν

dτ
+
∂gαν
∂xµ

dxµ

dτ

dxν

dτ

]
. (A.80)

Substituting this result in the second term of right hand side of Eq. A.78 we get

1

2

∂gµν
∂xα

dxµ

dτ

dxν

dτ
= gαµ

d2xµ

dτ 2
+

1

2

[
∂gαµ
∂xν

dxµ

dτ

dxν

dτ
+
∂gαν
∂xµ

dxµ

dτ

dxν

dτ

]
. (A.81)

Multiplying both sides by gαδ and rearranging terms we get

d2xδ

dτ 2
+

1

2
gαδ
[
∂gαµ
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

]
dxµ

dτ

dxν

dτ
. (A.82)

Defining

Γδµν =
1

2
gαδ
[
∂gαµ
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

]
, (A.83)

we get

d2xδ

dτ 2
+ Γδµν

dxµ

dτ

dxν

dτ
, (A.84)

which is the equation of the path taken by a free particle in a geometry defined by the

metric gµν . This is called the Geodesic equation and the path taken by the particle is called

the geodesic. The quantities Γδµν are called the Christoffel symbols. Since the Christoffel
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symbols depend on the derivatives of the metric, they vanish when the metric is Minkowskian

reducing the geodesic equation to A.18. One important point to note here is that though

the Christoffel symbols are written in index notation, they do not form a tensor, and hence

they should not be called components.

A.8 Covariant derivatives, parallel transport and cur-

vature tensors

In the previous section we have described the metric of a curved spacetime and the

trajectory taken by free particles on it. Next, we would like to quantify curvature itself. But

before we do that, it will be a good idea to develop some tools. First of all we will define a

modification of the flat space derivative function of a vector. The need for the modification

of the derivative of a vector in curved space arises from the fact that the ordinary derivative

function of a vector which transforms like a second rank tensor in flat spacetime, does not do

so in a curved spacetime. Another way of saying this is to say that the ordinary derivative

is not generally covariant. This can be explicitly seen by transforming a vector ordinary

derivative from one coordinate system to another. Let us consider a vector uµ and its

transformation in another coordinate system u′µ. Therefore one can write

∂u′µ

∂x′ν
=
∂xα

∂x′ν
∂

∂xα

(
∂x′µ

∂xβ
uβ
)
,

=

(
∂xα

∂x′ν
∂x′µ

∂xβ

)
∂uβ

∂xα
+

[(
∂xα

∂x′ν

)
∂2x′µ

∂xα∂xβ

]
uβ .

(A.85)

If the quantity ∂u′µ/∂x′ν has to transform like a second rank tensor then the second term

in the above equation has to vanish. In flat spacetime the double partial derivative this

term will vanish owing to the fact that the Lorentz transformations are linear in nature

between coordinates. However in a general curved spacetime the second term will generally

not be equal to zero. Thus we see that in the curved spacetime the ordinary derivative is
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not covariant. This leads one to define a derivative that will transform like a tensor. Let us

write the geodesic equation in the following way

duδ

dτ
+ Γδµνu

µuν = 0 , (A.86)

where, uµ = ∂xµ/∂τ is the four-velocity vector. Applying chain rule of partial differentiation

we get

duδ

dτ
=
∂uδ

∂xν
uν , (A.87)

which aid us in writing the geodesic equation as follows

uν
[
∂uδ

∂xν
+ Γδµνu

µ

]
= 0 ,

uν∇νu
δ = 0 .

(A.88)

The quantity ∇νu
δ transforms like a second rank tensor which can verified in the same way

we verified that the ordinary derivative of a vector in general do not transform like a second

rank tensor. This newly defined derivative of a vector is called the covariant derivative.

As we have discussed before (see, discusion above Eq. (A.56) ). The basis vectors in a

general spacetime will change from one tangent space to another. An act of evaluating

derivative involves finding the difference between the values of a function at two different

points. However, since the basis vectors themselves change from one point to another in a

generic curved spacetime, upon using the same basis vector for evaluating the value of the

function at different locations in the manifold, we incur an error. That is why the ordinary

derivative do not transform as a tensor. For the covariant derivative, one makes corrections

by introducing the Γδµνu
µ terms. The derivatives of the metric in the Cristoffel symbols keep

the measure of how the basis vectors are changing from one tangent space to another, thus

correcting for the error incurred upon using a single basis for the calculation of the derivative.

Now let us assume a parametrized curve, xµ(λ). Where λ is an arbitrary parameter that
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characterizes the curve. In a flat spacetime if we take a vector in a vector field, vν(x) and

translate it parallely to itself on the curve, then the directional derivative of the vector field

at a particular point on that curve vanishes

∂vµ

∂xν
dxν

dλ
= 0 . (A.89)

Generalizing this to curved spacetime, we simply replace the ordinary derivative with a

covariant derivative.

∇νv
µdx

ν

dλ
=
dxν

dλ

∂vµ

∂xν
+
dxν

dλ
Γµδνv

δ =
dvµ

dλ
+
dxν

dλ
Γµδνv

δ = 0 . (A.90)

This equation is called the equation of parallel transport in a curved spacetime. Now imagine

transporting a vector parallely to itself from a point (event) P1 to a point P2 and then back

to P1 along a closed contour C parametrized by λ. In a flat spacetime the vector will

preserve its orientation all the way and return to the point P1 without any change. If we use

coordinate system that is curvilinear instead of a cartesian one, we can stil define a global

cartesian coordinate system and find the basis of the curvilinear coordinate system in terms

of the basis of the cartesian coordinates at every point on the curve and define the parallel

transport along the closed contour C. Changing the coordinate systems at every point of the

curve, does not change the orientation of the vector which is a true physical quantity. Thus

upon returning to point P1 the vector will be preserved to its original form. However, if the

spacetime is curved, then one can not define a global cartesian coordinate on it. Therefore

it is not possible to construct a closed path on the curved spacetimes along which the vector

can be parallely tranported and brought back preserving its form. Thus parallel transport

gives us an ability to differentiate between a genuinely curved spacetime from a flat spacetime

with curvilinear coordinate syetem, something that we found before that the metric does not

provide. In the metric, coordinate dependence was a necessary condition for a spacetime for

be curved but was not a sufficient condition. A curvilinear coordinate system can give rise to
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a metric that has coordinate dependent terms in its components. The metric of the spherical

polar coordinate being a common example. However, using parallel transport over a closed

loop if one gets back a vector that is different from the original vector then that definitively

indicates that the spacetime is curved. Thus, we can quantify curvature analytically.

Consider the closed contour C infinitely small. We would like to calculate the change in

a vector vµ after it is tranported parallely around C and brought back to point P1. Using

Eq. (A.90), we can write for the conour C

vµ(λ) = vµP1
−
∫ λ

0

Γµνδv
ν dx

δ

dλ
dλ . (A.91)

Since C is infinitesimal, thus we can expand both Γµνδ and vν around the point P1 using

Taylor expansions

Γµνδ(λ) = (Γµνδ)P1
+ (∂αΓµνδ)P1

[
xα(λ)− xαP1

]
+ ... ,

vν(λ) = vνP1
+
dvν

dxα
[
xα(λ)− xαP1

]
+ ... ,

(A.92)

where we have used the notation ∂α = ∂/∂xα. Using Eq. (A.90) we can write

dvν

dxα
=
dvν

dλ

dλ

dxα
= −Γνγαv

γ . (A.93)

Thus we can write the Taylor expansions as

Γµνδ(λ) ≈ (Γµνδ)P1
+ (∂αΓµνδ)P1

[
xα(λ)− xαP1

]
,

vν(λ) ≈ vνP1
−
(
Γνγα
)
P1
vγP1

[
xα(λ)− xαP1

]
,

(A.94)
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which, if we insert in Eq. (A.91), gives us

vµ(λ) =vµP1
−
∫ λ

0

[
(Γµνδ)P1

+ (∂αΓµνδ)P1

(
xα(λ)− xαP1

)] [
vνP1
−
(
Γνγα
)
P1
vγP1

(
xα(λ)− xαP1

)] dxδ
dλ

,

=vµP1
− (Γµνδ)P1

vνP1

∫ λ

0

dxδ

dλ
dλ −[

(∂αΓµνδ)P1
vνP1
− (Γµνδ)P1

(
Γνγα
)
P1
vγP1

] ∫ λ

0

(
xα(λ)− xαP1

) dxδ
dλ

dλ .

(A.95)

Note that the second term vanishes when the integral is evaluated over a closed contour, so

does the term involving xαP1
in the last term. Thus, defining ∆vµ = vµ(λ)−vµP1

, we can write

the change in the vector upon parallel transport over a closed loop

∆vµ = −
[
(∂αΓµνδ)P1

vνP1
− (Γµνδ)P1

(
Γνγα
)
P1
vγP1

] ∫ λ

0

xαdxδ . (A.96)

Note that the indices γ and ν of the second term in the square bracket are repeated and

hence are dummy. Thus they can be interchanged γ ↔ ν, which gives us

∆vµ = −
[
(∂αΓµνδ)P1

−
(
Γµγδ
)
P1

(Γγνα)P1

]
vνP1

∫ λ

0

xαdxδ . (A.97)

Now, note that the indices α and δ are dummy indices as well, However if we interchange

these two indices α ↔ δ, we note that xαdxδ + xδdxα = d(xαxδ) which vanishes upon

integrating over a close loop ∫ λ

0

xαdxδ = −
∫ λ

0

xδdxα , (A.98)

from which we can write

2∆vµ = −
{ [
∂αΓµνδ − ΓµγδΓ

γ
να

]
−
[
∂δΓ

µ
να − ΓµγαΓγνδ

] }
P1

vνP1

∫ λ

0

xαdxδ . (A.99)

Thus we can write the change in the vector upon transporting it parallely along a closed
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loop as

∆vµ = −1

2

(
∂αΓµνδ − ∂δΓ

µ
να + ΓµγαΓγνδ − ΓµγδΓ

γ
να

)
P1
vνP1

∫ λ

0

xαdxδ (A.100)

Let us define the quantity

Rµ
ναδ = ∂αΓµνδ − ∂δΓ

µ
να + ΓµγαΓγνδ − ΓµγδΓ

γ
να , (A.101)

using which we can write

∆vµ = −1

2
(Rµ

ναδ)P1
vνP1

∫ λ

0

xαdxδ . (A.102)

If all the components of Rµ
ναδ are zero then the change in the vector upon a parallel transport

around a closed loop zero and a finite value of it results in to a change in the vector when

it returns back to the original point. Thus Rµ
ναδ quantifies the curvature of the spacetime.

This is called the Riemann curvature tensor.

A.9 Einstein tensor and Einstein field equations

In the last section we quantified the curvature of spacetime. But from Sec. A.6 we

have seen that the dynamics of a particle in gravitational field can be replaced by motion in

curved spacetime. Therefore we should be able to relate the curvature defined in the previous

section with matter. However matter, represented by the energy momentum stress tensor is

a second rank tensor, but the Riemann curvature tensor is a fourth rank tensor. So we must

find a second counterpart of the curvature tensor first. This is obtained by contracting the

Riemann Curvature tensor using gµν . The quantity we get upon contraction is called the

Ricci tensor.

Rνδ = gµαRµναδ , (A.103)
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which is symmetric second rank tensor. Contracting once more gives us a scalar called the

Ricci scalar

R = gνδRνδ , (A.104)

Finally from these two new quantities we are in a position to construct the Einstein tensor

Gµν = Rµν −
1

2
gµνR . (A.105)

It is this quantity that we will relate to the Energy momentum stress tensor Tµν using the

following equation

Gµν =
8πG

c4
Tµν , (A.106)

which is popularly known as the Einstein’s field equations.
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Appendix B

Linearized gravity and gravitational waves

In this appendix we will discuss in details the theory of linearized gravity and how the

gravitational wave solutions emerges from it. Before we begin the discussion of gravitational

waves we need to understand GR in the weak field limit. Therefore we will begin our

discussion with the understanding of gravity in that regime. Much of the work presented

here is heavily influenced by Ref. Creighton and Anderson (2011).

B.1 Linearized gravity

The spacetime curvature in the presence of the massive objects is represented by the

metric tensor gµν . In the weak field limit we can express the curvature as a mere perturbation

on the flat spacetime. This assumption lets us write the metric in weak field regime as

gµν = ηµν + hµν , (B.1)

where hµν is a small quantity such that we will ignore all terms that are second order and

higher in hµν . This also implies that lowering and raising of any indices involving terms

containing hµν will be done by ηµν and not the full metric gµν . Thus from Eq. (2.1) we can
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write

Γγαβ =
1

2
ηγδ
(
∂hβδ
∂xα

+
∂hαδ
∂xβ

− ∂hαβ
∂xδ

)
. (B.2)

Knowing the form of the Cristoffel symbols, one can now proceed to calculate the components

of the Riemann curvature tensor from Eq. (2.2). Note that the Riemann curvature tensor

has four terms two of which are the products of the Cristoffel symbols. These terms we will

ignore because they are second order in perturbation. Thus we get

Rαβγδ =∂Γδαγ − ∂Γδβγ ,

=∂β
[
ηλδΓ

λ
αγ

]
− ∂α

[
ηλδΓ

λ
βγ

]
,

=∂β

[
ηλδ

1

2
ηλδ
(
∂hαδ
∂xγ

+
∂hγδ
∂xα

− ∂hαγ
∂xδ

)]
−

∂α

[
ηλδ

1

2
ηλδ
(
∂hβδ
∂xγ

+
∂hγδ
∂xβ

− ∂hβγ
∂xδ

)]
.

(B.3)

From this we get the Riemann curvature tensor in the weak field limit

Rαβγδ =
1

2

[
∂2hαδ
∂xβ∂xγ

+
∂2hγδ
∂xβ∂xα

− ∂2hαγ
∂xβ∂xδ

− ∂2hβδ
∂xα∂xγ

− ∂2hγδ
∂xα∂xβ

+
∂2hβγ
∂xα∂xδ

]
,

Rαβγδ =
1

2

[
∂2hαδ
∂xβ∂xγ

− ∂2hαγ
∂xβ∂xδ

− ∂2hβδ
∂xα∂xγ

+
∂2hβγ
∂xα∂xδ

]
.

(B.4)

The Ricci tensor in the weak field limit is calculated by contracting the above Riemann

tensor as follows

Rαβ = Rαµβ
µ . (B.5)

In Eq. (B.4) we transform the following indices β → µ and γ → β. This gives us

Rαβ = Rαµβδη
µδ =

1

2

[
∂2hαδ
∂xµ∂xβ

− ∂2hαβ
∂xµ∂xδ

− ∂2hµδ
∂xα∂xβ

+
∂2hµβ
∂xα∂xδ

]
ηµδ ,

=
1

2

[
∂2hα

µ

∂xµ∂xβ
− ηµδ ∂

2hαβ
∂xµ∂xδ

− ∂2h

∂xα∂xβ
+

∂2hµ β
∂xα∂xµ

]
,

(B.6)

where h = hµµ is the trace of the metric perturbation. From this we can define the Ricci
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scalar, R = gαβRαβ = ηαβRαβ.

R =
1

2
ηαβ

[
∂2hα

µ

∂xµ∂xβ
− ηµδ ∂

2hαβ
∂xµ∂xδ

− ∂2h

∂xα∂xβ
+

∂2hµ β
∂xα∂xµ

]
,

=
1

2

[
∂2hβµ

∂xµ∂xβ
− ηµδ ∂2h

∂xµ∂xδ
− ηαβ ∂2h

∂xα∂xβ
+

∂2hµα

∂xα∂xµ

]
.

(B.7)

Now let us make the following transformation of indices.

• In the first term β → µ and µ→ ν.

• In the second term δ → ν.

• In the third term α→ µ and β → ν.

• In the fourth term α→ ν.

Using this transformation we see that the Ricci scalar simplifies to

R =
∂2hµν

∂xµ∂xν
− ηµν ∂2h

∂xµ∂xν
, (B.8)

and hence the Einstein tensor for weak field can be written as

Gαβ =Rαβ −
1

2
ηαβR ,

=
1

2

[
∂2hα

µ

∂xµ∂xβ
− ηµδ ∂

2hαβ
∂xµ∂xδ

− ∂2h

∂xα∂xβ
+

∂2hµ β
∂xα∂xµ

]
−

1

2
ηαβ

[
∂2hµν

∂xµ∂xν
− ηµν ∂2h

∂xµ∂xν

]
.

(B.9)

The above form of the Einstein tensor can be expressed in a more convenient and simplified

form using come choices of gauges. This is what we will explore next.

B.2 Transverse traceless gauge

The analytical form of the Einstein tensor that we found in Eq. (B.9) can be simplified

after we employ a series of gauge transformations. But before we do that, let us first
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introduced the trace-reversed perturbation, h̄αβ = hαβ − 1
2
ηαβ h, where h is the trace of

the metric perturbation. We note that this implies that

∂2hµ β
∂xα∂xµ

− 1

2

∂2h

∂xα∂xβ
=

∂2h̄µ β
∂xα∂xµ

,

∂2hα
µ

∂xµ∂xβ
− 1

2

∂2h

∂xα∂xβ
=

∂2h̄α
µ

∂xµ∂xβ
,

∂2hµν

∂xµ∂xν
− 1

2
ηµν

∂2h

∂xµ∂xν
=

∂2h̄µν

∂xµ∂xν
,

ηµδ
∂2hαβ
∂xµ∂xδ

− 1

2
ηαβη

µδ ∂2h

∂xµ∂xδ
= ηµδ

∂2h̄αβ
∂xµ∂xδ

.

(B.10)

Using these expressions in Eq. (B.9), we get

Gαβ =
1

2

[
∂2h̄µα
∂xµ∂xβ

+
∂2h̄µβ
∂xµ∂xα

− ηαβ
∂2h̄µν

∂xµ∂xν
− ηµν ∂

2h̄αβ
∂xµ∂xν

]
, (B.11)

which we substitute in the Einstein’s equations to get

∂2h̄µα
∂xµ∂xβ

+
∂2h̄µβ
∂xµ∂xα

− ηαβ
∂2h̄µν

∂xµ∂xν
− ηµν ∂

2h̄αβ
∂xµ∂xν

=
16πG

c4
Tαβ . (B.12)

The last term in the left hand side of the above equation can be written as the box operator

of h̄αβ, and applying Lorenz gauge condition (∂h̄µα/∂xµ = 0) all the other terms vanishes,

thus the Einstein’s equations in the weak field regime reduces to

�h̄αβ = −16πG

c4
Tαβ , (B.13)

which is the Einstein’s field equation in the linearized gravity.

Now we will solve this above equation in free space. The right hand side of the above

equation in free space vanishes, thus we are left with

�h̄αβ = 0 . (B.14)
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One of the solutions of the above equation is the plane wave solution.

h̄αβ = Aαβe
ikγxγ , (B.15)

where we are assuming that the direction of propagation of the wave is given by the vector

kγ, and Aαβ is the amplitude tensor. Putting this back in the wave equation yields kγkγ = 0,

which means that the propagation occurs along the null geodesics. Thus the gravitational

wave propagates at the speed of light. Using the Lorenz gauge we can also write

Aαβkγδ
γ
α = Aαβkα = 0 , (B.16)

which implies that the amplitude tensor is orthogonal to the direction of propagation. Thus

choosing the Lorenz gauge has enabled us to write the wave equation in such a way that its

solutions become transverse. Since the metric for any geometry must be symmetric and the

minkowskian metric ηµν too is symmetric, this implies that the metric perturbation too must

be a symmetric tensor. Reversing the trace in order to form the trace reversed perturbation,

h̄µν , preserves the symmetry of the perturbation metric. The 10 independent components

are further reduced by the 4 constraints from the above equation. Thus in the current form

the h̄αβ has 6 independent components. Furthermore choosing the gauge conditions that

the time components of the amplitude terms are zero and that the perturbation is traceless

finally helps us to reduce the number of independent components in the amplitude to 2.

Which we write as follows

ATT
αβ =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (B.17)

This is the amplitude of the gravitational wave propagating through free space in the trans-

verse traceless gauge (symbolically represented by the superscript TT).
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B.3 Gravitational wave emitted from a source

Now we will find the solution of the linearized Einstein’s field equations, given in Eq.

(B.13), in the transverse traceless gauge discussed above in presence of the source. This is

a second order inhomogeneous differential equation whose solution is given by the Green’s

function

G(r, t) = −δ(t− r/c)
4πr

. (B.18)

Using the Green’s function, the solution of Eq. (B.13) can be obtained to be,

h̄αβ =
4G

c4

∫
Tαβ(t− r/c, r′)

r
dV ′ , (B.19)

where primed variables are that coordinates measured in the reference frame of the source,

dV ′ is a volume element in the source, and r is defined by r2 =
∑3

a=1(xa − x′a)2 . In

gravitational wave astronomy we are primarily interested in sources that are located far

from the observer. In this far field approximation r2 ≈
∑3

a=1(xa)2, thus we can write

h̄αβ =
4G

c4r

∫
Tαβ(t− r/c, r′)dV ′ . (B.20)

In the transverse traceless gauge, we are only interested in the spatial part of the stress

energy tensor. The spatial part of Tαβ can be written as

T ab =
1

2

∂2

∂t2
[
x′ax′bρ′(t− r/c, r′)

]
. (B.21)

Where ρ′(t− r/c, r′) is the density function of the source measured in the coordinate system

of the source. Let us now define a density function ρ globally as ρ(t− r/c, r) such that the

function will be zero outside the source. Then we can write the stress energy tensor as

T ab =
1

2

∂2

∂t2
[
xaxbρ(t− r/c, r)

]
. (B.22)

215



We can now define a mass quadrupole moment tensor, Qab

Qab =

∫
xaxbρ(t− r/c, r)dV . (B.23)

Using Eqs. (B.20), (B.22) and (B.23) the gravitational waveform can then be written as

hTT
ab (t) =

2G

c4r
Q̈TT
ab (t− r/c) , (B.24)

where we have projected the components of the mass quadrupole moment in the TT gauge.
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