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ABSTRACT

During LIGO’s fifth science run (S5) and Virgo’s first science run (VSR1), x-ray

and gamma-ray observatories recorded 33 short, hard gamma-ray bursts (short

GRBs), 22 of which had high quality data in two or more detectors. The most

convincing explanation for the majority of short GRBs is that in the final stages of

an inspiral between a neutron star and a companion compact object, the neutron

star is tidally disrupted, providing material to accrete, heat, and eject on sub-second

timescales. I describe a search for the gravitational-wave signatures of compact

binary coalescence in the vicinity of short GRBs that occurred during S5/VSR1.

Jolien Creighton Date

iii



© Copyright 2010

by

Nickolas V Fotopoulos

iv



to

Mom and Bub

v



TABLE OF CONTENTS

Acknowledgments ix

List of Tables xi

List of Figures xiv

1 Introduction 1

2 Short GRBs, CBCs, and gravitational waves 3

2.1 Short gamma-ray burst phenomenology . . . . . . . . . . . . . . . . . 4

2.2 Gamma-ray burst detectors . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Compact binary coalescence progenitor model . . . . . . . . . . . . . 6

2.3.1 GRB-GW time delay . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Gravitational-wave theory . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Gravitational waves from linearized gravity . . . . . . . . . . 11

2.4.2 The transverse-traceless (TT) gauge . . . . . . . . . . . . . . . 13

2.4.3 Gravitational waves from accelerating quadrupoles . . . . . . 15

2.4.4 The energy transported by gravitational waves . . . . . . . . . 16

2.5 Gravitational waves from compact binary inspirals . . . . . . . . . . . 17

2.6 Science enabled by gravitational-wave detection of short GRBs . . . . 19

3 Gravitational-wave detectors 22

3.1 Interferometric gravitational-wave detection: The road to 10−21 . . . 23

3.1.1 The Michelson laser interferometer . . . . . . . . . . . . . . . . 24

3.1.2 Higher laser power . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Fabry–Perot resonant arm cavities . . . . . . . . . . . . . . . . 26

3.1.4 Power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



3.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Initial LIGO and initial Virgo . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 S5/VSR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 S5/VSR1 calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Identifying and ranking search candidates 41

4.1 Deriving information from measurements, Bayesian-style . . . . . . . 42

4.2 Matched filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 The distribution of data with noise . . . . . . . . . . . . . . . . 45

4.2.2 The distribution of data with signal and noise . . . . . . . . . 48

4.2.3 Matched filter signal-to-noise ratio . . . . . . . . . . . . . . . . 49

4.3 Post-matched-filtering likelihood ratios . . . . . . . . . . . . . . . . . 49

4.3.1 Constructing a likelihood ratio . . . . . . . . . . . . . . . . . . 51

4.3.2 The warts of actual implementation . . . . . . . . . . . . . . . 53

5 Statistical interpretations 57

5.1 Detection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Determining the threshold for a single GRB . . . . . . . . . . . 57

5.2 Constraining parameter space . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Exclusions and likelihood ratios for sub-populations . . . . . . 61

5.2.2 Handling multi-modal distributions . . . . . . . . . . . . . . . 62

5.2.3 Handling empty trials . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.4 Handling counting uncertainty . . . . . . . . . . . . . . . . . . 64

5.3 Population statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 A pipeline for externally triggered CBC searches 67

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 The role of H1-H2 in triggered and untriggered CBC searches . . . . 71

6.4 The untriggered S5/VSR1 low-mass candidate-generation pipeline . 72

6.5 Waveform consistency tests . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Trigger consistency cuts in the untriggered search . . . . . . . . . . . 77

6.7 The triggered S5/VSR1 low-mass pipeline . . . . . . . . . . . . . . . . 79

6.7.1 Modifications to untriggered candidate generation . . . . . . . 79

vii



6.7.2 Pipeline superstructure . . . . . . . . . . . . . . . . . . . . . . . 80

7 A worked example: GRB 070201 84

7.1 The significance of GRB 070201 . . . . . . . . . . . . . . . . . . . . . . 84

7.2 Data and data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Diagnostics throughout the pipeline . . . . . . . . . . . . . . . . . . . 87

7.3.1 Template banks . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.2 Single-detector distributions . . . . . . . . . . . . . . . . . . . . 90

7.3.3 Coincidence cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3.4 Waveform consistency cuts . . . . . . . . . . . . . . . . . . . . 96

7.3.5 Effective SNR ranking . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.6 Effective SNR ranking by chirp mass . . . . . . . . . . . . . . . 101

7.3.7 Likelihood-ratio ranking . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Distance exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 The search for CBCs in association with short GRBs in S5/VSR1 129

8.1 Sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.3.1 Individual GRB results . . . . . . . . . . . . . . . . . . . . . . . 134

8.3.2 Distance exclusions . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3.3 Population statement . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 Epilogue 142

Bibliography 144

viii



Acknowledgments

The LIGO Scientific Collaboration has been a safe and nurturing home in which

to mature as a scientist. Its members and the members of the Virgo Collaboration

count among my greatest teachers and friends. The LIGO and Virgo instruments

provided the data that are the basis for this dissertation and the start of my career.

Thank you, National Science Foundation, for funding LIGO and being behind my

funding. Thank you Italian Istituto Nazionale di Fisica Nucleare and the French

Centre National de la Recherche Scientifique for funding Virgo.

Jolien Creighton and Patrick Brady, you taught me how to think, prioritize, and

manage. You gave me every advantage and opportunity a grad student could have

and I appreciate it from the bottom of my heart. Jolien, your gentle kindness, your

ability to derive anything on the board, your C and LATEX mastery, and your ability

to snatch flying, screaming monkeys from the air have been especially inspirational.

Alex Dietz, we have been close partners throughout the work contained in this

thesis. Your enthusiasm and hard work made it possible and fun. Our live box-

openings were a big hit and I think we produced a nice product together. Xavier

Siemens and Warren Anderson, you’ve never led me astray. We work, play, and eat

meat together and you have mentored me well in all of these.

To my dear GRBeings, thank you for taking part in this search. It was a genuine

pleasure to work more closely with you. You gave me great insight and spotted a

great many things that my untrained eyes missed. Thank you, Jordi Burguet-Castell,

Damir Buskulic, James Clark, Steve Fairhurst, Andy Lundgren, Frédérique Marion,

Valeriu Predoi, Alan Weinstein, and Peng Peng Yu.

There are so many others with whom I have fond memories of useful scientific

discussion and mentorship that I cannot possibly hope to name you all. Thank

you Rana Adhikari, Luis Anchordoqui, Stuart Anderson, Dani Atkinson, Stefan

ix



Ballmer, Berit Behnke, Rahul Biswas, Marie-Anne Bizouard, Lindy Blackburn,

Duncan Brown, Kipp Cannon, Sarah Caudill, Nelson Christensen, Jessica Clayton,

Thomas Dent, Anamaria Effler, Missy Frei, Tobin Fricke, John Friedman, Stefanos

Giampanis, Evan Goetz, Lisa Goggin, Romain Gouaty, Chad Hanna, Kari Hodge,

Tomoki Isogai, Gareth Jones, Peter Kalmus, Vicky Kalogera, Shivaraj Kandhasamy,

Jonah Kanner, Erik Katsavounidis, Keita Kawabe, Drew Keppel, Scott Koranda, Ben

Lackey, Mike Landry, Albert Lazzarini, Isabel Leonor, Ilya Mandel, Vuk Mandic,

Szabi Marka, Adam Mercer, Richard O’Shaughnessy, SangHoon Oh, Christian Ott,

Chris Pankow, Pinkesh Patel, Larne Pekowski, Larry Price, Jocelyn Read, Tania

Regimbau, Emma Robinson, Jamie Rollins, Lucı́a Santamaria-Lara, Peter Saulson,

Antony Searle, Abhay Shah, Peter Shawhan, Jake Slutsky, Patrick Sutton, Michele

Vallisneri, Ruslan Vaulin, Cheryl Vorvick, Michal Was, Matt West, John Whelan,

Stan Whitcomb, Darren White, and Alan Wiseman.

Support staff are too often overlooked; you hold up the vast machinery of

the scientific establishment and I am grateful. Thank you Meagan Bell, Mary

Eckert, John Kempken, Steve Kennedy, Adam Miller, Brian Moe, Steve Nelson, Ross

Oldenburg, Greg Skelton, Pamela Urban, Kate Valerius, and Marie Woods

Most of all, I thank my parents. You gave me every advantage and opportunity

a son could be given, as well as a great deal of good food and travel. You granted

me critical thinking, a high esteem for careful work, and some measure of emotional

intelligence. I do my best for you.

x



List of Tables

1 GRB detection capabilities of missions in the IPN . . . . . . . . . . . . 7

2 Priors and ranges on simulation parameters . . . . . . . . . . . . . . . 110

3 On-source CBC candidates associated with GRB 070201 . . . . . . . . 118

4 Parameters of the 22 GRBs selected for the S5/VSR1 search . . . . . . 130

5 Summary of individual GRB search results . . . . . . . . . . . . . . . 135

xi



List of Figures

1 Geometry of the compact binary coalescence model of short GRBs . . 9

2 Sketch of a Michelson interferometer . . . . . . . . . . . . . . . . . . . 24

3 Sketch of a Michelson interferometer with Fabry–Perot cavities . . . . 26

4 Sketch of a Michelson interferometer with Fabry–Perot cavities and

power recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 LIGO strain sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Primary known contributors to the H1 detector noise spectrum . . . 35

7 Histogram of LIGO BNS horizon distance during S5 . . . . . . . . . . 36

8 LIGO’s differential arm length control loop . . . . . . . . . . . . . . . 38

9 Sketch of a frequentist confidence belt construction . . . . . . . . . . . 59

10 Experimental setup: segmentation . . . . . . . . . . . . . . . . . . . . 70

11 Schematic of the untriggered S5/VSR1 CBC search pipeline . . . . . . 76

12 Schematic of the triggered S5/VSR1 CBC search pipeline . . . . . . . 83

13 UV image of the M31 galaxy and the 3σ IPN error box of GRB 070201 86

14 A GRB 070201 template bank for H1 . . . . . . . . . . . . . . . . . . . 88

15 A GRB 070201 template bank for H2 . . . . . . . . . . . . . . . . . . . 89

16 SNR versus time for H1 and H2 around GRB 070201 . . . . . . . . . . 91

17 Histograms of SNR for H1 and H2 around GRB 070201 . . . . . . . . 91

18 SNR versus time for coincident H1–H2 triggers around GRB 070201 . 92

19 Histograms of SNR for H1 and H2 around GRB 070201 . . . . . . . . 93

20 The second-stage GRB 070201 template bank for H1 . . . . . . . . . . 94

21 The second-stage GRB 070201 template bank for H2 . . . . . . . . . . 95

22 Second-stage SNR versus time for H1 and H2 around GRB 070201 . . 97

23 Histograms of second-stage SNR for H1 and H2 around GRB 070201 97

24 H2 SNR versus H1 SNR for second-stage coincident triggers around

GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xii



25 χ2 versus ρ for second-stage coincident triggers around GRB 070201 . 99

26 Zoomed χ2 versus ρ for second-stage coincident triggers around

GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

27 r2 versus ρ for second-stage coincident triggers around GRB 070201 . 101

28 H1 effective SNR versus H1 SNR for second-stage coincident triggers

around GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

29 H2 effective SNR versus H2 SNR for second-stage coincident triggers

around GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

30 H2 effective SNR versus H1 effective SNR for second-stage coincident

triggers around GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . 104

31 Combined effective SNR for off-source coincidences around GRB 070201105

32 Combined effective SNR for clustered off-source coincidences around

GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

33 False-alarm probability versus effective SNR for GRB 070201 . . . . . 108

34 Efficiency versus effective SNR for GRB 070201 . . . . . . . . . . . . . 109

35 Likelihood ratio versus effective SNR for GRB 070201 . . . . . . . . . 112

36 Maximum likelihood ratio versus maximum effective SNR for GRB 070201114

37 ROC curve for maximum likelihood versus maximum effective SNR

for GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

38 Efficiency versus distance for GRB 070201 . . . . . . . . . . . . . . . . 117

39 Maximum likelihood ratio versus maximum effective SNR for GRB 070201

including the loudest event . . . . . . . . . . . . . . . . . . . . . . . . 119

40 Significance of the maximum likelihood ratio for GRB 070201 . . . . . 120

41 Maximum likelihood ratios for sub-populations of GRB 070201 . . . . 121

42 ln p(Λ(mcomp) |D) and confidence belts for mcomp between 19 and

22 M� for GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

43 ln p(Λ(mcomp) |D) and confidence belts for mcomp between 19 and

22 M� for GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

44 ln p(Λ(mcomp) |D) and confidence belts for mcomp between 19 and

22 M� for GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

45 FC confidence intervals for all companion-mass sub-populations for

GRB 070201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

46 Cumulative FAPs for the most significant candidates for each GRB . 136

xiii



47 Lower 90% distance limits to NS–NS and NS–BH systems . . . . . . . 138

xiv



1

Chapter 1

Introduction

Gamma-ray bursts are extremely bright flashes of and gamma-rays that originate

at cosmological distances. The timescales, energetics, and sky locations suggest

that many short-duration gamma-ray bursts arise in the final stages of the inspiral

of a neutron star with another neutron star or black hole. In Newtonian gravity,

two bodies will orbit one another indefinitely, tracing out the same paths every

revolution. In Einstein’s general relativity, some energy is lost every orbit, causing

the orbit to gradually shrink until the bodies collide. The lost energy radiates away

in the form of gravitational radiation or gravitational waves.

The Laser Interferometer Gravitational-Wave Observatory (LIGO), GEO600, and

Virgo are ambitious efforts to detect gravitational waves. They are sensitive to the

alternating squeezings and stretchings of spacetime that are gravitational waves.

Gravitational waves will give us new observational handles on the dynamics of the

mass and energy of violent astrophysical events. Scientific interest in LIGO and
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Virgo continues to grow, with prominent appearances in the Astro2010 Decadal

Survey [1, 2, 3, 4] and with over 665 authors from the LIGO and Virgo collaborations

on the latest observational results [5]. Detecting gravitational waves in association

with the usual electromagnetic signatures will revolutionize astronomy.

This thesis details the why and how of joint electromagnetic and gravitational-

wave observations, particularly as applied to short gamma-ray bursts. Chapter 2

contains a review of the phenomenology of short gamma-ray bursts and the com-

pact binary coalescence progenitor model, plus a derivation of the gravitational-

wave signal of interest. Chapter 3 contains a description of the LIGO and Virgo

detectors, built to detect those gravitational waves. Chapter 4 will build a theoreti-

cal framework for detecting the known signals in noise-dominated data streams.

Chapter 5 will describe techniques for relating detection or non-detection back to

statements about the universe. Chapter 6 will describe a workflow for process-

ing data to generate gravitational-wave signal candidates taking into account the

real-world limitations of data handling. The application of this pipeline to the

event GRB 070201 is presented in Chap. 7 and the results of the search pipeline

as applied to all short GRBs in the LIGO/Virgo S5/VSR1 science run appears in

Chap. 8. Finally, I discuss the significance of the work and what the future holds for

the field in Chap. 9.
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Chapter 2

Short GRBs, CBCs, and gravitational

waves

The past decade has seen dramatic progress in the understanding of gamma-ray

bursts (GRBs), intense flashes of gamma-rays that are observed to be isotropically

distributed over the sky (see, e.g., [6, 7] and references therein). The short-time vari-

ability of the bursts indicates that the sources are very compact. GRBs are directly

observed with gamma-ray and X-ray satellites in the Interplanetary Network [8]

such as HETE, Swift, Konus–Wind, INTEGRAL, and Fermi (see [9, 10, 11, 12, 13] and

references therein).

In Sec. 2.1, I summarize observations of short gamma-ray bursts, followed in

Sec. 2.3 by the community’s current best guess as to the progenitors. Section 2.4

steps through the basics of gravitational-wave theory and Sec. 2.5 derives the

Newtonian-order gravitational-wave signal for the inspiral phase of a compact
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binary coalescence. Finally, Sec. 2.6 will spell out what science we can extract from

observations of compact binary coalescence in association with a short GRB.

2.1 Short gamma-ray burst phenomenology

GRBs are usually divided into two types [14, 15], distinguished primarily by the

duration of the prompt burst. Long-duration bursts with a duration of &2 s are

generally interpreted to be associated with hypernova explosions in star-forming

galaxies. Several nearby long GRBs have been spatially and temporally coincident

with core-collapse supernovae as observed in the optical [16, 17, 18, 19]. Follow-up

observations by X-ray, optical, and radio telescopes of the sky near long GRBs

have yielded detailed measurements of afterglows from more than 500 GRBs to

date; some of these observations resulted in strong host-galaxy candidates, which

allowed redshift determination for more than 200 bursts [20]. Similar followups

of short GRBs seldom find afterglows and the afterglows that are detected are

significantly dimmer than long GRB afterglows. Besides host galaxy identification,

afterglow light-curves provide many clues to the post-burst activity of the central

engine, to the local environment of the progenitor system, and to the beaming angle.

Only 3 short GRBs have measured late-time afterglows at the time of this writing

[21].

The majority of short GRBs, with a duration . 2 s, are thought to arise from

the coalescence of a neutron star (NS) with another compact object (see [21] and
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references therein), such as a NS or black hole (BH). There is growing evidence that

finer distinctions may be drawn between bursts [22, 23]. For example, it is estimated

that up to ∼ 15% of short GRBs could be associated with soft gamma repeaters

[24, 25], which emit bursts of X-rays and gamma rays at irregular intervals with

lower fluence than compact binary coalescence engines [26, 27]. While long GRBs

follow the Amati relation, which relates the isotropic-equivalent energy release to

the redshift-corrected peak spectral energy, short GRBs have been shown to not

follow the relation [28].

Short GRBs are exceedingly bright [21], emitting Eiso
γ ≈ 1049–1051 erg isotropic

equivalent energy in ∼MeV gamma rays per burst, or Liso
γ ≈ 1050–1052 erg/s in

luminosity. Isotropic equivalent energy refers to an extrapolation of a burst’s

apparent brightness assuming that the outflow is isotropic rather than beamed.

For comparison, long GRBs are slightly brighter at Eiso
γ ≈ 1052–1054 erg and Liso

γ ≈

1050–1052 erg/s. A solar mass of energy is M�c2 ≈ 1054 erg and the Milky Way

galaxy outputs LMW ≈ 1044 erg/s. The gravitational binding energy of a binary

neutron star system released in the last few orbits is ∆EGW ≈ 1053 erg, which can

explain the energetics of a short GRB with even a small fraction of the energy being

converted to gamma-rays.

Redshift and afterglow light curve measurements exist for only three short GRBs

at present [21]. Of these, only one has a clean light curve in which the jet break is

obvious. From the jet break of GRB 051221, the jet opening angle is 0.16 rad ≈ 9.2°.
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2.2 Gamma-ray burst detectors

Of paramount importance to a search for gravitational waves in association with

short GRBs is a well localized sky position and Earth-crossing time. In the time of

LIGO’s S5 science run, described further in Sec. 3.4, there were 213 reported GRBs.

Of these, 178 had their sky positions localized by Swift, 15 by INTEGRAL, 2 by

HETE, 1 by SuperAGILE, and 17 by the triangulation of multiple instruments in

the Interplanetary Network (IPN). Some capabilities of current IPN missions are

summarized briefly in Table 1. All IPN missions have wide field-of-view gamma-

ray detectors and a few are far enough from planets to have an unoccluded view

of the sky. Of the IPN missions, Swift, Fermi, INTEGRAL, and SuperAGILE have

the capability of following up an initial, poorly localized detection with onboard

imaging telescopes, allowing refined sky localization and a deeper observation of

GRB light curves.

2.3 Compact binary coalescence progenitor model

In the compact binary coalescence model of short GRBs, a NS and compact com-

panion in otherwise stable orbit lose energy to gravitational waves and inspiral.

Disruption of the NS(s) provides matter, which can be ejected in relativistic jets. The

prompt gamma-ray emission is widely thought to be created by internal shocks, the

interaction of outgoing matter shells at different velocities, while the afterglow is
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thought to be created by external shocks—the interaction of the outflowing matter

with the interstellar medium.

2.3.1 GRB-GW time delay

A critical parameter in searching for gravitational-wave counterparts to GRBs is the

difference in their arrival times at the Earth.

Several semianalytical calculations of the final stages of a NS–BH inspiral show

that the majority of matter plunges onto the BH within 1 s [30]. Numerical simula-

tions of the mass transfer suggest a timescale of milliseconds [31] or some seconds

at most [32]. Also, it has been found in simulations that the vast majority of the

NS matter is accreted onto the BH directly and promptly (within hundreds of

milliseconds) without a torus that gets accreted later [33, 34].

In the current GRB fireball model [7, 21], some combination of mass and Poynt-

ing flux carries energy away in jets along the rotational axis of the final BH. The

central engine can be highly variable in power over a timescale shorter than its

total duration. If significant fraction of the ejecta are outflowing at Lorentz factor

Γ � 1, we imagine that the variability will be of order Γ also. A second outflow

with Lorentz factor 2Γ a time δtengine later will impact the first outflow at a distance

rsh from the engine. As measured by an observer at infinity at rest with respect to

the engine, rsh ≈ 8
3 cδtengineΓ2, where v is the velocity corresponding to Γ. Assuming

that gravitational waves propagate at the speed of light, the delay between the

signals will be the path difference, as in Fig. 1. With this naı̈ve picture, the total time
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to Earth

θ
ι

θ

rsh

Γ

Figure 1 : Geometry of the compact binary coalescence model of short GRBs. rsh is the distance
between the central engine and the inner shock. ι is the inclination angle, which is the angle between
the line of sight of Earth and the orbital axis. Although we generally believe that Earth is within the
jet opening angle, we depict the angle θ between our line of sight with the engine and our line of
sight with the nearest outflow direction for generality.

delay observed at Earth will be

δtGW−EM =
rsh

v
− rsh

c
cos θ

=
8
3

δtengineΓ2 (1− cos θ) , (2.1)

where θ is the angle between our line of sight to the central engine and our line of

sight to the internal shock. Note that θ is distinct from the inclination angle ι, which

is the angle between our line of sight and the orbital angular momentum vector.

The central engine’s dynamical timescale is between the light-crossing time of the

final BH and the plunge time of the NS matter, so we take tengine ≈ 10 ms. Short

GRBs have Lorentz factors Γ measured to be in the range 10–50 [21]. To receive a

substantial gamma-ray flux at Earth, it is reasonable to assume that we are within
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the jet opening angle. Setting θ = 0 gives δtGW−EM = 0 ms. At maximum, we must

be within θ ≈ 1/Γ of the shock front, which gives δtGW−EM ≈ 40 ms. We dismiss

the interstellar and intergalactic media as contributing to the time delay, as the

index of refraction at these energies (1 MeV = 2.4× 1020 Hz) is negligible.

Thus, if the speed of gravitational radiation equals the speed of light as we

expect, then for an observer in the cone of the collimated outflow, the gravitational-

wave inspiral signal will arrive within a second before the electromagnetic signal

from internal shocks.

2.4 Gravitational-wave theory

Wheeler captures the essence of General Relativity with the phrase [35]:

Spacetime grips mass, telling it how to move;

And mass grips spacetime, telling it how to curve.

More specifically, Einstein’s equation tells us how spacetime curves in response to

the matter, energy, and motion within it. The motion of a free-falling point-particle

will follow a locally straight path through the curved spacetime, a geodesic of the

curved spacetime. In general, the motion of matter is captured in the equations of

covariant conservation.
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2.4.1 Gravitational waves from linearized gravity

Einstein’s equation is

Gαβ =
8πG

c4 Tαβ , (2.2)

where Gµν is the Einstein curvature tensor, Tµν is the stress-energy tensor, G is

Newton’s gravitational constant, and c is the speed of light. The Einstein tensor is

related to the Ricci curvature by

Gαβ = Rαβ − 1
2

gαβR , (2.3)

where R ≡ gαγRαγ, Rαγ ≡ Rαβγ
β, and Rαβγ

δ is the Riemann curvature tensor. We

see that the left-hand side of Eq. (2.2) is purely curvature and the right-hand side is

purely stress-energy. The matter equations of motion are

∇αTα
β = 0 , (2.4)

where ∇α is the metric-compatible covariant derivative.

We linearize the equations by considering the metric

gµν = ηµν + hµν , (2.5)

where ηµν is the Minkowski spacetime metric and hµν is a small perturbation. I

choose the sign convention that ηµν = diag(−1, 1, 1, 1). In Cartesian coordinates

associated with the flat metric ηµν, the linearized Riemann tensor has the form

Rαβγδ =
1
2
(−∂α∂γhβδ + ∂α∂δhβγ + ∂β∂γhαδ − ∂β∂δhαγ

)
+O(h2) . (2.6)
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If we introduce the trace-reversed perturbation h̄µν = hµν − 1
2 ηµνh, we obtain the

field equations

−�h̄αβ − ηαβ∂γ∂δh̄γδ + ∂γ∂αh̄βγ + ∂γ∂βh̄αγ =
16πG

c4 Tαβ , (2.7)

where � ≡ ∂α∂α is the D’Alembertian operator.

Coordinate transformations or gauge transformations alter metric perturbations

as

hαβ → hαβ + ∂αξβ + ∂βξα . (2.8)

This form of transformation admits the gauge condition

∂αh̄αβ = 0 . (2.9)

With this choice, called the Lorenz gauge, the field equations simplify to

�h̄αβ = −16πG
c4 Tαβ +O(h2) , (2.10)

which in vacuum (Tαβ = 0) are manifestly wave equations.

The vacuum solutions of Eq. (2.10) are

h̄xx = h̄xx(ct− z) , (2.11)

h̄yy = h̄yy(ct− z) , (2.12)

h̄xy = h̄xy(ct− z) = h̄yx , (2.13)

where the other components are zero by the Lorenz gauge condition of Eq. (2.9).

The coordinates are also rotated so that the waves propagate in the z direction.
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Unreversing the trace, we find our metric perturbations

hxx =
1
2
(
h̄xx − h̄yy

)
(2.14)

hyy =
1
2
(
h̄yy − h̄xx

)
(2.15)

hxy = h̄xy = hyx . (2.16)

2.4.2 The transverse-traceless (TT) gauge

It is informative to simplify the gravitational-wave solution further by consider-

ing monochromatic waves. Other waves can be expressed as a superposition of

monochromatic waves. Consider solutions of the form

h̄µν = Aµν cos(kαxα) , (2.17)

where Aµν is a constant, symmetric tensor specifying any polarization and ampli-

tude information and kα is a null vector specifying the direction and frequency. The

Lorenz gauge condition of Eq. (2.9), requires that

kµ Aµν = 0 . (2.18)

That is, if Aµν is spatial, then the wave is transverse. Spatial means that uµ Aµν = 0

for some time-like vector uµ.

Equation (2.18) is 4 constraints on 10 parameters (10 independent matrix com-

ponents; Aµν is symmetric). Further gauge transformations of the form of Eq. (2.8)

can be used to force the wave to be trace-free and purely spatial. We choose the in-

finitesimal gauge transformation with ξµ = Cµ sin(kαxα). Aµν therefore transforms
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as

ATT
µν = Aµν + Cµkν + Cνkµ − ηµνCβkβ . (2.19)

The transverse-traceless requirement on ATT
µν can be restated as constraints on Cβ. In

particular, we’d like to demand that the components of the polarization are spatial

and that the tensor is traceless. That is,

ATT
µν uµ = 0 (2.20)

ηµν ATT
µν = 0 , (2.21)

where uµ is a time-like vector. This is the TT gauge. Note that as there is no trace,

hµν = h̄µν. Although it appears that there are 5 constraints here, there are only 4, as

the Lorenz gauge condition already constrains the kµ direction.

As mentioned above, linearity allows us to determine a TT gauge for the general

solution hµν above. Thus,

hTT
0µ = 0 (2.22)

hTT
ij = hTT

ij (ct− z) (2.23)

∂jhTT
ij = 0⇒ hTT

iz = 0 (2.24)

hTT
xx + hTT

yy = 0 . (2.25)

With the gauge fixed, the perturbed metric is left with two degrees of freedom. We

define hTT
xx = −hTT

yy ≡ h+ and hTT
xy = hTT

yx ≡ h×, the only two independent functions

in the hµν. We can thus express the full gravitational-wave tensor as a sum over

polarizations
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hTT
ij = h+e+

ij + h×e×ij (2.26)

e+
ij =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 (2.27)

e×ij =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (2.28)

2.4.3 Gravitational waves from accelerating quadrupoles

So far, we’ve explored the dynamics of gravitational waves in the radiation zone,

but they were produced somehow. We consult our wave equation, Eq. (2.10), with

the source term intact for guidance. Rewrite the wave equation as

�h̄µν = −16πG
c4 Tµν +O(h2)

≡ −16πG
c4 (Tµν + tµν)

≡ −16πG
c4 τµν , (2.29)

where τµν is the effective stress-energy, containing both real stress-energy, the stress-

energy of gravitational waves, and other nonlinear contributions. The latter are

important in near-zone physics, where perturbations from flatness are extreme. As

an extreme example of where the latter term dominates, consider binary black hole

orbits, for which Tµν = 0. The effective stress-energy satisfies

∂αταβ = 0 (2.30)
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by the gauge condition Eq. (2.9). This condition is sufficient that we may treat ταβ

exactly as a stress-energy and with all the usual properties thereof.

Far away from a compact system, to leading order in the slow-motion limit we

obtain

hTT
ij =

2G
c4r

∂2

∂t2J TT
ij (ct− r) (2.31)

J ij(t) =
∫ (

xixj − r2δij
)

τ00(t,~x) d3x . (2.32)

That is, the gravitational wave amplitude varies inversely with our distance from

the source r and linearly with the second time-derivative of the quadrupole moment

of the effective energy. Note that Jij is measurable within or near the dynamical

system of interest, while J TT
ij involves projections within the observer’s frame.

Note also that the moment of inertia Iij =
∫

xixjτ00(t,~x) d3x is equally as good as

Jij in this calculation, as it differs only in the trace. The full multipole expansion is

worked out in great detail in [36].

2.4.4 The energy transported by gravitational waves

Returning to Eq. (2.29), we can evaluate the leading-order stress-energy of gravita-

tional waves explicitly. It is

TGW
µν =

c4

32πG

〈
∂hTTij

∂xµ

∂hTT
ij

∂xν

〉
. (2.33)

The average 〈·〉 is over a volume, necessary to make the quantity gauge invariant.

The volume should be over several wavelengths so that boundary terms vanish,

but small enough that geodesics do not cross.
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The energy carried away in gravitational waves can also be expressed in terms

of the quadrupole moment. Substituting the stress-energy tensor, Eq. (2.33), into

the quadrupole formula, Eq. (2.32), we obtain the energy flux and luminosity

dE
dt dA

= TGW
0z = −TGW

00

= − c3

32πG

〈
∂hTTij

∂t

∂hTT
ij

∂t

〉

= − G
8πc5r2

〈 ...J TTij ...J TT
ij

〉
(2.34)

L = −
∫ dE

dt dA
dA

=
G

5c5

〈 ...J ij ...J ij

〉
. (2.35)

2.5 Gravitational waves from compact binary inspirals

Imagine two point particles in circular orbit. Let us find the gravitational radiation

from this binary system, using otherwise Newtonian physics to describe the orbit

and the second time-derivative of its quadrupole moment.

In a Cartesian coordinate system with the center of mass at the origin and the

orbital angular momentum axis along the z axis, the moment of inertia tensor is

I =
1
2

µa2


1
2(1 + cos 2φ) sin 2φ 0

sin 2φ 1
2(1 + cos 2φ) 0

0 0 0

 , (2.36)

where a is the orbital separation, µ = m1m2/M is the reduced mass, M = m1 + m2

and φ is the orbital phase. The observer sits at polar angle ι. By straightforward
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application of Eq. (2.32), gives

h+ = −2µa2ω2

D
cos 2φ(1 + cos2 ι) (2.37)

h× = −4µa2ω2

D
sin 2φ cos ι , (2.38)

where D is the distance between the source and the observer and ω = dφ/dt is the

angular velocity of the orbit. Note that the gravitational wave oscillates at twice the

frequency of the orbit: fGW = 2 forb.

The gravitational-wave luminosity saps energy from the system at a rate of

LGW =
32c5

5G
η2
(v

c

)10
, (2.39)

where v = aω = (πGM fGW)1/3 and η = µ/M. By the Virial Theorem, the energy of

the orbit is EN = −1
2 µv2. Equating L = −dEN/dt, we obtain a differential equation

for dv/dt. Substituting this into d f /dt = d f /dv · dv/dt and making judicious use

of Kepler’s second law, we find that

d f
dt

=
96c6

5G2
η

πM2 (πGM f )11/3 . (2.40)

Finally, we introduce a new quantity called the chirp mass, M = η3/5M =

µ3/5M2/5 and its analogue, the chirp time, Mt = GM/c3 and obtain our final

waveform

h+(t) = − cMt

D
1 + cos2 ι

2

(
tc − t
5Mt

)−1/4

cos

[
2φc − 2

(
tc − t
5Mt

)5/8
]

(2.41)

h×(t) = − cMt

D
cos ι

(
tc − t
5Mt

)−1/4

sin

[
2φc − 2

(
tc − t
5Mt

)5/8
]

, (2.42)
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where tc is the coalescence time, i.e. when the frequency diverges to infinity. The be-

havior of such a waveform is to begin monotonically, then rise quickly in frequency

and amplitude near the coalescence time. Waveforms of this form are often called

“chirps”.

Post-Newtonian corrections don’t alter the qualitative form very much. M

remains a crucial parameter, giving us poor insight into the component masses m1

and m2. AsM sets the timescale of the chirp, we measure a redshifted chirp mass

M(1 + z) for sources at cosmological distances. To make cosmological measure-

ments, it is important to note that D is the luminosity distance. (For a review of

cosmological distance measures, see the pedagogical article [37].)

2.6 Science enabled by gravitational-wave detection of short GRBs

Compact binary coalescence is anticipated to generate strong gravitational waves in

the sensitive frequency band of Earth-based gravitational-wave detectors [38]. The

direct detection of gravitational waves associated with a short GRB would provide

the critical evidence that the progenitor is indeed a compact binary. With such

a detection it would be possible to measure component masses [39, 40], measure

component spins [41], constrain NS equations of state [42, 43], and test general

relativity in the strong-field regime [44]. Furthermore, measurement of luminosity

distance [45], which would translate into a measurement of the Hubble expansion

and dark energy that does not rely upon other rungs in the cosmic distance ladder.
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Mass and spin determinations and confirmations of general relativity are long-

understood aspects. The NS equation of state is a highly coveted measurement that

has occupied x-ray astronomy for many years. Understanding what equations of

state are allowed has ramifications for the standard model of particle physics as well

as astronomy. Recent work has found that while there are many physical models

for NS interiors, yielding many different equations of state, one can parametrize the

equations by a small number of parameters with reasonable fidelity, allowing each

observational constraint to rule out large swaths of parameter space and a large

number of models at once [46]. Gravitational-wave measurements of binary NSs

with Advanced LIGO at a distance of 100 Mpc will constrain the radius of a NS to

within ∼ 1 km [43].

The past decade has been widely trumpeted as the era of precision cosmology.

The era began with the COsmic Background Explorer (COBE), which earned its

leaders the 2006 Nobel Prize. COBE was followed by the Wilkinson Microwave

Anisotropy Probe (WMAP) [47], which measured the cosmic microwave back-

ground with greater precision, by the Sloan Digital Sky Survey (SDSS), which

measured the baryon acoustic peak in the large-scale distribution of luminous red

galaxies [48], and the Hubble Key Project that traced out the distance-redshift rela-

tionship of Type Ia supernovae [49]. Type Ia supernovae are found to be “standard

candles”; that is, their absolute luminosity is known, so a measurement of flux

from such an event tells us its distance. Compact binary coalescence detections will

give us luminosity distance but with gravitational-wave measurements alone, we
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cannot disambiguate the chirp mass from the redshift. A coincident electromagnetic

measurement will provide measurements of the sky position and, with some luck,

a galaxy association, which provides the redshift. Unfortunately, the luminosity

distance is somewhat degenerate with the inclination angle, modifying the early

optimistic estimates of the precision with which we can measure the Hubble con-

stant and the dark energy equation of state. Estimates depend on the exact network

of gravitational-wave detectors available in the Advanced detector era, but a 1%

measurement of the Hubble constant is possible [45].
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Chapter 3

Gravitational-wave detectors

LIGO [50], Virgo [51], and GEO600 [52] are the world’s most sensitive gravitational-

wave observatories. Initial LIGO consists of three power-recycled Michelson laser

interferometers: an interferometer with 4 km-long, ultra-high-vacuum, Fabry-Perot

cavities and power recycling at Livingston, LA, USA, named L1, and two located at

Hanford, WA, USA, named H1 and H2, with arm lengths of 4 km and 2 km, respec-

tively. The Virgo detector, named V1, is located at Cascina, Italy and has a similar

configuration to the LIGO instruments, but with arms 3 km in length. These instru-

ments have broadband sensitivity to differential changes in arm lengths around

100 Hz, which is well matched to the strain induced by incident gravitational-waves

from low-mass compact binary coalescences. Construction and commissioning

of LIGO alone took several years with hundreds of scientists and engineers and

roughly $3× 108 in capital investment plus over $3× 107/yr for operations.

GEO600 has turned out to be a proving ground for advanced interferometer
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technology, donating components and designs to the other detectors. Its most

sensitive operation is at higher frequencies than LIGO or Virgo, around 350 Hz.

During the S5/VSR1 science run in which LIGO and Virgo ran at design sensitivities,

GEO600 underwent upgrades. GEO600 instead participated in an Astrowatch

science run (A5) in the epoch between S5/VSR1 and S6/VSR2. Astrowatch was a

joint run between H2 and G1 to watch for serendipitous events such as a galactic

supernova or other rare, nearby event. As G1 was not used for any analysis

described in this thesis, I include no further discussion of it.

Section 3.1 contains the principles of gravitational-wave detection and the road

to achieving the desired sensitivity. In Sec. 3.2 I describe detector sensitivity with

respect to the sky position. Section 3.3 contains a summary of the operational

configurations of Initial LIGO and Virgo instruments. In Sec. 3.4 I describe the

S5/VSR1 science run, which contains the data analyzed in this thesis. Section 3.5

describes what goes into the calibration of photodiode counts to strain and gives

the final uncertainties for the S5/VSR1 run.

3.1 Interferometric gravitational-wave detection: The road to 10−21

A gravitational wave has the effect of alternately stretching and squeezing the spatial

separation between two suspended mirrors. The counts at one’s photodetector

must be gauge-invariant. In a gauge where squeezing and stretching is in the time

direction, this will have the effect of modulating the flow of time and alter the laser
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Figure 2 : Sketch of a Michelson interferometer

frequency in an analogous way.

Here I present a simple-minded, classical estimate of interferometer strain re-

sponse, highlighting the basic elements necessary for operation at the astrophysi-

cally interesting strain sensitivity of 10−21.

3.1.1 The Michelson laser interferometer

Figure 2 depicts a simple Michelson interferometer with a laser source. If the arm

lengths are equal (L1 = L2 mod λlaser), the light will recombine at the beam splitter

in such a way that all of the power is reflected to the laser and no light is transmitted

to the photodetector. A differential displacement of the end mirrors induces a differ-

ence in the phase advance of the light in each arm δ(∆φ) = 2π(∆L1 − ∆L2)/λlaser.
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With little effort, we can detect a quarter wavelength shift just by seeing 0 intensity

on our photodiodes go to maximum intensity. Our sensitivity is thus

δLdetectable ≈ 1
4

λlaser (3.1)

hdetectable =
δLdetectable

L

≈ 1 µm
4 · 4 km

≈ 10−10 , (3.2)

where we have used the LIGO values of λlaser = 1064 nm ≈ 1 µm and L1 = L2 =

4 km.

From this baseline of 10−10, let us review what other improvements we must

make to reach our target of 10−21. Each revolves around resolving a smaller and

smaller fraction of a fringe.

3.1.2 Higher laser power

In reality, we can resolve phase differences much smaller than a quarter cycle. The

statistics of Poisson processes sets the uncertainty of a measurement of N photons

at
√

N. Initial LIGO operated with Plaser ≈ 10 W [53]. The rate of photons at the

beam splitter is

Ṅγ =
Plaser

hc/λlaser
(3.3)

≈ 10 W · 10−6 m
(6× 10−34 J · s)(3× 108 m/s)

(3.4)

≈ 1020 γ/s . (3.5)
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Figure 3 : Sketch of a Michelson interferometer with Fabry–Perot cavities

If we collect photons for 1/ f ≈ 10 ms, we can resolve down to
√

f /Ṅγ ≈ 10−9

of a fringe at 100 Hz. This leaves us at a strain sensitivity of

h ≈ 3× 10−19 . (3.6)

3.1.3 Fabry–Perot resonant arm cavities

By inserting input mirrors between the beam splitter and the end mirrors and

adjusting them to resonance, one sets up Fabry–Perot cavities. The effect is to

allow the light to repeatedly traverse the arm length before eventually returning

to the beam splitter. This will magnify the phase shift by a factor equal to the

average number of bounces Garm. For initial LIGO, the reflectivity of the input

mirrors was adjusted to give Garm ≈ 130. Note that this improves sensitivity for
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Figure 4 : Sketch of a Michelson interferometer with Fabry–Perot cavities and power recycling

gravitational-wave frequencies at low frequencies, but for frequencies near or above

farm = c/(2πGarmL) ≈ 91 Hz, the so-called cavity pole, there will be a sensitivity

reduction, as the gravitational-wave amplitude will change sign over the light

storage time τarm = π/ farm and begin to cancel itself.

With Fabry–Perot cavities, the strain sensitivity at 100 Hz is

h ≈ 3× 10−21 . (3.7)

3.1.4 Power recycling

With the insertion of a power recycling mirror between the laser and beam splitter,

as in Fig. 4, and tuning it to resonance, we can increase the power at the beam

splitter, increasing our sensitivity further. By tuning the reflectivity of the power
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recycling mirror, a power gain of Gpr ≈ 402 can be achieved. The strain sensitivity

is then

h ≈ 6× 10−23 (3.8)

at 100 Hz. The power recycling gain is determined by the absorptive losses of the

optics in the interferometer and Garm.

3.2 Geometry

One can find a very careful computation of the electromagnetic wavefront propaga-

tion through an interferometer in the presence of a gravitational wave in [54] and a

vastly simplified derivation based on Killing vectors in [55]. The bottom line is that

interferometer response, the difference in phase between the beams recombining at

the beam splitter, is

h ∝ δ(∆φ) ∝
1
2
(ζ̂ l ζ̂m − ξ̂ l ξ̂m)hlm(k̂) (3.9)

≡ F+h+ + F×h× , (3.10)

where we have taken the long-wavelength limit ( f L/c� 1) so that we are instan-

taneously sampling the gravitational waveform, ζ̂ and ξ̂ are the directions of the

interferometer arms, and k̂ is the gravitational wave’s propagation direction. The

antenna pattern functions F+ and F× encode the projection between the + and ×

polarizations as defined in the radiation basis and their definitions in the detector
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basis. Their explicit forms are

F+(θ, φ, ψ) = −1
2
(1 + cos2 θ) cos 2φ cos 2ψ− cos θ sin 2φ sin 2ψ (3.11)

F×(θ, φ, ψ) =
1
2
(1 + cos2 θ) cos 2φ sin 2ψ− cos θ sin 2φ cos 2ψ , (3.12)

where θ and φ are the spherical polar coordinates of the source in the detector frame

and ψ is the third Euler angle in the Z–X–Z convention of Euler angles, as per Figure

8 in [56], and is frequently called the polarization angle.

Since the polarization angle ψ is unknown a priori, it is often useful to use the

detector response function, also called the beam pattern or the antenna pattern

Fsum(θ, φ) =
√

F2
+(θ, φ, ψ) + F2×(θ, φ, ψ) . (3.13)

The factor is the ratio between the amplitude read by the detector and the ampli-

tude if the source were located directly overhead (θ = φ = 0), holding all other

parameters constant. It is constant with respect to ψ. The detector response function

ranges between 0 and 1. It is plotted in figure 9 of [56]. The most sensitive directions

are along the axis orthogonal to the arms, with Fsum = 1. There are four nulls along

the axes 45° from the arms within the detector plane with Fsum = 0. Along the arms,

Fsum = 0.5.

3.3 Initial LIGO and initial Virgo

Initial LIGO and initial Virgo are power-recycled Michelson interferometers with

Fabry–Perot arm cavities, as outlined in the preceding sections. LIGO has two
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4 km-long interferometers and one 2 km-long interferometer and Virgo has an

interferometer with 3 km-long arms. A great deal more than optical configuration

went into their design, however. Here is a short list of components go into a real

instrument, with all numbers being correct for LIGO and mostly being close for

Virgo. A much more complete description can be found in [50] for LIGO and [51]

for Virgo.

1. RF readout. Initial instruments used an RF oscillator to induce sidebands of

the carrier frequency of the laser. The carrier was held resonant in the entire

instrument, but the sidebands were held resonant only in the power-recycling

cavity and not in the Fabry–Perot cavities. The sidebands leaked out at the

output photodiode providing some light so that phase response was linear

rather than quadratic. The gravitational-wave signal was then extracted from

its beating against the sidebands [57].

2. Laser frequency stabilization. The expressions given for strain sensitivity

were given assuming a constant λlaser. While lasers are highly monochro-

matic, even LIGO’s custom-built, pre-stabilized laser is variable to the level

of 10−7 Hz/
√

Hz [53]. It gains additional stability from feedback from larger

reference cavities. That is, if the laser frequency drifts slightly off resonance,

laser power in the cavity will decrease, with longer cavities giving greater

sensitivity. Detecting a decrease, one can adjust the length of the lasing cavity

to return to resonance. The input mode cleaner provides a 12 m optical cavity
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and the Fabry–Perot arms themselves provide an 8 km reference cavity via

common mode (L1 + L2), which is sufficient for high-sensitivity operation

[58].

3. Seismic isolation. At low frequencies, seismic noise limits the sensitivity.

Multiple-stage stacks of pendulums suspend the major optics (input, output,

and recycling mirrors, plus the beam splitter), isolating them from ground

motion [59]. L1 employed active isolation, where seismic motion was actively

compensated, resulting in a factor of 10 improvement in isolation [60].

4. Acoustic isolation. The optical tables housing the input and output optics

couple to the environment of the corner stations via sound, as they are outside

of vacuum. The tables are kept in isolation rooms with specialized anechoic

foam to damp sound around the tables around 100 Hz, the most sensitive

gravitational-wave frequencies.

5. Optical suspensions. The major optics must be suspended to prevent seismic

coupling, but the suspensions themselves introduce noise. A great deal of

engineering has gone into pushing the suspensions’ violin modes to narrow

frequency bands, far from the sensitive regions and providing low thermal

noise [61].

6. Optical coatings. Thermal noise from the surface of the optics is the dominant

noise source in part of our detectors’ sensitive bands. New coatings have been
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explored to achieve the required low-absorption, low-noise operation [62].

7. Dust removal. A dust particle that wanders into the beam will scatter and

absorb light, causing a dip in photodiode readings, which could potentially

register as a signal. Stringent vacuum protocol, dust counters, and positive

pressure near the in-air optics all contribute to dust mitigation.

8. Scattered light baffles. Stray light can cause photodiodes to make erroneous

measurements. A beam that is partially reflected onto a wall can backscatter

into a photodiode. The situation is worse with H1 and H2, as there are two

interferometers within the same vacuum system. When one instrument loses

lock, the stray light causes very obvious noise in the readout of the other.

Baffles reduce the potential for scattered light [63].

9. Thermal compensation. With the immense laser power built up in the Fabry–

Perot cavities, even an absorption of a few parts per million will cause an

optic to heat significantly and non-uniformly. The heating pattern will cause

thermal expansion, which will warp the mass, changing the optical properties

of the system and introducing undesirable, higher optical modes. The thermal

compensation system shines a second laser on the input mirrors in an annular

pattern to make the heating, and thus the surface deformation, uniform.

10. Tidal compensation. The ocean obviously deforms in response to solar and

lunar tidal fields, but so does the crust of the Earth. Interferometer optical
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suspensions are bolted to the ground, and flow with the very low frequency

ground motion. One must compensate for the slow drift of the arm lengths to

avoid reaching the limits of the finer mirror actuation.

11. Control systems. The instruments are vast and complex. Beyond the obvious

problem of length sensing and control, elaborated upon in Sec. 3.5, the angular

pointing of dozens of optical components must be controlled very precisely in

order for light to bounce hundreds of times between mirrors 4 km apart. The

temperature of many components needs regulation. Thermal compensation

requires feedback to know how strongly to fire the annular laser beam. The

laser intensity and frequency must be continuously adjusted to maintain the

required stability. All of these require a real-time data acquisition and control

system [64].

12. Vacuum system. Air would disperse the laser, causing unacceptable absorp-

tive loss and distortion of the wavefront. A major capital investment was the

multi-kilometer vacuum system to encase the beam and major optics plus a

concrete outer shell for protection. The system maintains 10−9 Torr, which is

ultra-high vacuum.

13. And many more. . .

Seemingly miraculously, LIGO and Virgo have been constructed and have

achieved low-noise operation. LIGO sensitivities during the science run S5/VSR1

are depicted in Fig. 5. Detailed discussion of the noise sources and control systems
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Figure 5 : Strain sensitivities, expressed as amplitude spectral densities of detector noise converted
to equivalent GW strain. The vertical axis denotes the rms strain noise in 1 Hz of bandwidth. Shown
are typical high sensitivity spectra for each of the three interferometers (red: H1; blue: H2; green:
L1), along with the design goal for the 4 km detectors (dashed grey). The figure and caption have
been reproduced from figure 6 of [50].
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Figure 6 : Primary known contributors to the H1 detector noise spectrum. The upper panel shows
the displacement noise components, while the lower panel shows sensing noises (note the different
frequency scales). In both panels, the black curve is the measured strain noise (same spectrum as in
Fig. 5), the dashed gray curve is the design goal, and the cyan curve is the root-square-sum of all
known contributors (both sensing and displacement noises). The labelled component curves are
described in the text. The known noise sources explain the observed noise very well at frequencies
above 150 Hz, and to within a factor of 2 in the 40–100 Hz band. Spectral peaks are identified as
follows: c, calibration line; p, power line harmonic; s, suspension wire vibrational mode; m, mirror
(test mass) vibrational mode. The figure and caption have been reproduced from figure 7 of [50].
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Figure 7 : Histogram of LIGO BNS horizon distance during S5. The horizon distance is the distance
to which each interferometer would detect an optimally oriented binary neutron star inspiral at a
matched-filter SNR of 8.

can be found in [58]. Figure 6 shows many of the known sources of noise for H1 for

illustration.

3.4 S5/VSR1

In this thesis, I report on a search for gravitational-wave inspiral signals associated

with the short GRBs that occurred during the fifth science run (S5) of LIGO, from

2005 November 4 to 2007 September 30, and the first science run (VSR1) of Virgo,

from 2007 May 18 to 2007 September 30. S5 represents the combined operation of
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the three LIGO detectors at the NSF-contracted design sensitivity. Figure 7 shows

the distribution of distances to which we could detect an optimally oriented binary

neutron star system at a matched-filter SNR of 8 over the run. The multi-modal

structure reflects upgrades that occurred during the run.

During the S5/VSR1 joint run, 212 GRBs were discovered by different satellite

missions (39 of them during VSR1 times), 33 of which we classified as search targets

(8 of them in VSR1 times), by the criteria of Sec. 8.1.

In S5/VSR1, LIGO and Virgo operated as a global network. The coincident

detection of a gravitational-wave signal allows triangulation of signals, yielding

sky localization [65]. In the context of searching for GRB counterparts, this acts as

a constraint to reduce background. As an aside, the sky localization can also be

used to trigger electromagnetic followup of gravitational-wave candidates. This

latter mode will become increasingly important, especially for discovering new

astrophysical phenomena.

3.5 S5/VSR1 calibration

I have so far given a simple description of the optical configuration and readout

scheme, omitting detailed discussion of the interlocking control loops necessary for

stable interferometer operation. The differential arm length must be held constant

in order to maintain a dark fringe at the output photodiode. To compensate for drift

and shaking, we alter the differential arm length by electromagnetically actuating
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s̃( f ) +− C( f )

D( f )

A( f )

s̃resid( f )
ẽ( f )

d̃( f )
s̃ctrl( f )

Figure 8 : LIGO’s differential arm length control loop

the end mirrors. This extra motion will appear in the photodiode readout, which

complicates the interpretation of the readout. We must correct for our intervention

in deriving the signal s(t) that contains the gravitational-wave component and

understand what errors enter the measurement.

Figure 8 shows the differential arm length control loop used in LIGO. Therein,

s̃( f ) is the Fourier transform of the gravitational-wave channel s(t) that we wish

to measure. ẽ( f ) is the Fourier transform of LSC-DARM ERR, the primary readout

channel from which s̃( f ) is derived. d̃( f ) is the Fourier transform of LSC-DARM CTRL,

an important control channel that feeds back on the end mirrors. C( f ) is the sensing

function, characterizing the interferometer’s response to strain, D( f ) is a digital,

low-pass filter with unity gain set to 40 Hz, and A( f ) is the actuation function,

characterizing the mirrors’ response to magetic actuation. Of these, D( f ) and A( f )

are found to be quite static, while C( f ) tends to fluctuate in overall amplitude,
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but not in its spectral shape. To this end, γ(t) is used to correct for changes in the

instrument sensitivity from drifting input power, drifting alignment, and other

slowly varying factors.

C(t, f ) = γ(t)C0( f ) (3.14)

With this, it is common to define the open loop gain G(t, f ) and the response

function of the interferometer R(t, f ) as

G(t, f ) = C(t, f )A( f )D( f ) (3.15)

R(t, f ) =
1 + G(t, f )

C(t, f )
. (3.16)

Note that we don’t measure s̃( f ) directly; we must infer it from our actual measured

values in the control loop. Tracing the signals around the loop, we obtain

s̃( f ) =
1 + G(t, f )

C(t, f )
ẽ( f ) . (3.17)

Actually, C( f ) is not directly measurable, so we infer it from G( f ), D( f ), and

A( f ). G( f ) is fit to a model, whose parameters can be measured by adding a

series of loud sinusoids to d̃( f ) and seeing the response in the readout ẽ( f ). D( f )

is known since it is composed of digital filters that we insert manually. A( f ) is

primarily the response of a pendulum to a driving force, but it also contains some

information about the digital electronics that drive the electromagnetic coils that

push the mirrors; this is all captured in a model, with a few parameters set by

fitting. γ(t) is measured 16 times per second by monitoring the amplitude response

to a few sinusoidal excitation signals that actuate an end mirror. These are called

calibration lines and they run persistently.
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The dominant uncertainties in s̃( f ) come from measurement uncertainties of

G( f ) and A( f ). They are quantified by comparing the differences between mea-

surements of these spectra and the analytical models. The overall sign of G( f ) is

a matter of convention, but important and difficult to make consistent. The final

S5/VSR1 calibration is uncertain to 10% for H1 and H2, 13% for L1, and 6% for V1

[66]. The absolute timing accuracy is better than ±10 µs.
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Chapter 4

Identifying and ranking search

candidates

In this chapter, we’ll develop the toolkit necessary for the detection of compact

binary coalescences (CBCs). For greater depth in the mathematics of signal pro-

cessing and the likelihood ratio, I recommend Wainstein and Zubakov’s very clear

textbook treatment [67]. I will not expound upon alternate formulations, but stick

to my favorite route to the results I want to describe.

In Sec. 4.1 I introduce the Bayesian framework that will be used to derive the

later results of the chapter. Section 4.2 contains a derivation of matched filtering, a

sensitive technique for searching for signals of a known form. Matched filtering

is optimal for Gaussian noise and is a core part of the LIGO-Virgo CBC search

pipeline. It is useful to present the derivation of matched filtering here to set

notation and to convey that our final likelihood-ratio method is a natural extension.
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Section 6.5 holds discussion of signal consistency tests, a means of combatting the

non-Gaussian component of the noise that characterizes real data, and shows how

to fold these tests along with the matched filtering SNR into a refined detection

statistic. In Sec. 4.3 I develop a post-matched-filtering likelihood-ratio statistic that

handles the variation of background rate across signal parameter space as well as

the relative efficiency of different instrument combinations.

4.1 Deriving information from measurements, Bayesian-style

Bayesian probability theory gives us the framework to quantitatively inform a set

of starting beliefs with measurements. We’d like to know p(H |~s), the conditional

probability density of the model or hypothesisH given data~s. It relies upon what

we believed about the model beforehand, encoded in the prior p(H), and what

the model predicts for the data, encoded in the likelihood p(~s | H). Here is Bayes’

Theorem:

p(H |~s) =
p(~s | H)p(H)

p(~s)
, (4.1)

Bayes’ Theorem relates the posterior probability p(H |~s) on the left-hand side to the

likelihood p(~s | H), prior p(H), and distribution of data p(~s) on the right-hand side.

The prior p(H) reflects one’s knowledge about the model. What percent chance do

you think that the model is true? p(~s) reflects the probability of getting the observed

data, summed over all alternative models. p(~s | H) is the distribution of possible

measurements that one would obtain if the model were true.
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I find that the theory is most understandable in terms of odds ratios. Odds ratios

are exactly the odds you would use for betting. The reason one bets is because

there is some uncertainty in the truth of model H. Additional information, such

as that provided by searching LIGO data for signals, will refine the betting odds.

More precisely, the posterior odds ratio is the product of the prior odds ratio and

the Bayes factor, which depends on a measurement. Symbolically, the informed

odds of modelH1 being true to a second modelH0 being true is

O ≡ p(H1 |~s)
p(H0 |~s) =

p(~s | H1)
p(~s | H0)

p(H1)
p(H0)

, (4.2)

where O is the posterior odds and p(H1)/p(H0) is the prior odds, before data are

taken into account. The fraction p(~s | H1)/p(~s | H0) is the Bayes factor or marginal

likelihood ratio. The right-hand side follows from straightforward application of

Bayes’ Theorem to the numerator and denominator of the left-hand side.

Applying this to the problem of detection,H1 might represent the hypothesis

that there exists a signal andH0 might be the null hypothesis (no signal). A signal

might have a variety of forms. I parameterize the various types of signals with

the parameter vector ~θ; then H1 represents the hypothesis that any signal at all,

integrated (or marginalized) over all possible signal parameters, is present in the
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data. Our posterior odds ratio then becomes

O =
p(~s | H1)p(H1)
p(~s | H0)p(H0)

(4.3)

=

[∫
p(~s |~θ,H1)p(~θ | H1) d~θ

]
p(H1)

p(~s | H0)p(H0)
(4.4)

=
p(H1)
p(H0)

∫ p(~s |~θ,H1)
p(~s | H0)

p(~θ | H1) d~θ (4.5)

≡ p(H1)
p(H0)

∫
Λ(~s,~θ)p(~θ | H1) d~θ (4.6)

≡ p(H1)
p(H0)

Λ(~s) . (4.7)

I defined the likelihood ratio Λ(~s,~θ) = p(~s |~θ,H1)/p(~s | H0) and the marginal

likelihood ratio Λ(~s) =
∫

Λ(~s,~θ)p(~θ | H1) d~θ. All of the dependence on the data is

in these terms.

While Λ(~s) is the correct term for the Bayes factor, if p(~s |~θ,H1) is a sharply

peaked function of ~θ, the integral can be well approximated by the maximum

of Λ(~s,~θ) over θ. Maximum likelihood techniques save the computational cost

of integrating over a potentially large parameter space. Each local maximum of

the likelihood identifies a particular set signal parameters ~θmax. The larger the

likelihood, the higher the odds that a signal with these parameters is present. Each

maximum therefore identifies a candidate signal that can be ranked by the value of

the marginal lilkelihood at ~θmax.
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4.2 Matched filtering

Let’s search Gaussian noise for a particular CBC waveform, i.e., one template. As

all of the information in the data is in the marginal likelihood ratio, let us compute

that. It consists of a model for the measured data given each hypothesis. The

derivation proceeds most simply under the assumption of white noise, and as data

can be whitened by a simple, linear transformation, we will generalize the result

to non-white data at the end. With this in mind, let us begin by defining a linear

signal model,

s(t) = h(t) + n(t) . (4.8)

That is, one’s detector readout s(t) is a linear sum of a true gravitational-wave

signal h(t), if present, and non-gravitational noise n(t). The implementation will

make use of discrete-time sampling, where sample j of the time-series x with a

sampling time of ∆t will be denoted

x[j] = x(j ∆t) . (4.9)

If we observe for some duration T, there will be N = T/∆t discrete samples of the

data. That is,~s = {s[j] = s(j∆t); j = 0 . . . N − 1}.

4.2.1 The distribution of data with noise

To compute the likelihood ratio, we need to know the distribution of measured

data s(t) given noise alone and given signal embedded in the noise. We assume
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a Gaussian noise distribution. As we further assume white noise, the covariance

matrix is proportional to the identity matrix with proportionality factor σ2. The

distribution of noise alone is

pn(~n) = (2πσ2)−N/2 exp

(
− 1

2σ2

N−1

∑
j=0

n2[j]

)
. (4.10)

We will want to use frequency-domain techniques because they have less com-

putational cost than time-domain techniques. The notation is simplest by pass-

ing through the continuous-time domain and expressing our final results in the

continuous-frequency domain. If we can multiply by the sampling time ∆t and

shrink it while holding the total measurement duration T = N∆t constant, we can

identify the Riemann integral,

lim
∆t→0

N∆t=const

N−1

∑
j=0

n2[j]∆t =
∫ T

0
n2(t) dt . (4.11)

If our integration time is sufficiently long, we can approximate this in the frequency

domain with Parseval’s theorem,

∫ ∞

−∞
n2(t) dt =

∫ ∞

−∞
|ñ( f )|2 d f . (4.12)

On the road to the continuous-frequency domain, we introduced a factor of the

sampling time ∆t. We can usefully relate it to the power-spectral density Sn(| f |) of
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the noise n(t) by:

Rn(τ) = 〈n(t)n(t + τ)〉t (4.13)

Sn( f ) = 2
∫ ∞

0
Rn(τ) dτ

≈ 2
N−1

∑
k=0

Rn[k]∆τ

= 2σ2∆t , (4.14)

where Rn(τ) is the autocorrelation function of n(t) and 〈·〉t refers to an average over

t. As white noise is wide-sense stationary, we rendered the autocorrelation as an

even function of just τ, the time-delay. In addition, we used the equality of ∆τ and

∆t and that the autocorrelation function of a discrete, white process is Rn[k] = σ2δk0.

Note that Sn( f ) is a constant for white noise.

Putting everything together, we see that

pn(~n) = (2πσ2)−N/2 exp
(
−1

2
2
∫ ∞

−∞

|ñ( f )|2
Sn(| f |) d f

)
(4.15)

= (2πσ2)−N/2 exp
(
−1

2
4
∫ ∞

0

|ñ( f )|2
Sn( f )

d f
)

, (4.16)

where in the final equality, we used the reality of n(t), which implies that |ñ( f )|2 =

|ñ(− f )|2, to substitute the one-sided power-spectral density. Finally, we expect that

our signals of interest will be weak compared to noise, so we use Sn( f ) = Ss( f ) in

practice.

In fact, though we inserted the power-spectral density into the denominator

rather naı̈vely, it holds in the case of non-white input. Let us create colored noise

out of white noise through some colored, linear process x̃( f ) = K( f )w̃( f ). We then
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get:

pn(~n) = (2π)−N/2|Σ|−1/2 exp

(
−1

2

N−1

∑
j=0

N−1

∑
k=0

n[j]Σ−1
jk n[k]

)
(4.17)

= (2π)−N/2|Σ|−1/2 exp
(
−1

2
4
∫ ∞

0

|x̃( f )|2
K−2( f )Sw( f )

d f
)

, (4.18)

and it turns out that Sx( f ) = |1/K( f )|2Sw( f ). Σ is the covariance matrix between

elements of ~x and |Σ| is its determinant. Equation (4.18) is correct for all Gaussian

noise, white or colored.

Finally, for notational convenience, let us define the operator (·, ·) as

(a, b) = 4<
∫ ∞

0

ã( f )b̃∗( f )
Sn( f )

d f , (4.19)

where < indicates the real part of the integral. This leads us to our final form of the

noise distribution in the case of no signal (s = n),

p(~s | H0) = pn(~s) = (2πσ2)−N/2 exp
[
−1

2
(s, s)

]
. (4.20)

4.2.2 The distribution of data with signal and noise

When considering the expectation value over s(t), recall that h(t) is a deterministic

process (pre-determined time-series), so expectation values apply only to n(t), a

stochastic noise process. Our linear signal model, Eq. (4.8), and the linearity of our

filtering operator, Eq. (4.19), makes it easy to generalize the noise distribution to

signal. Thus, we can use n = s− h to immediately arrive at the distribution of data

given signal and noise.

p(~s | H1) = pn(~s−~h) = (2πσ2)−N/2 exp
[
−1

2
(s− h, s− h)

]
. (4.21)
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4.2.3 Matched filter signal-to-noise ratio

We can now write down the likelihood ratio in Eq. (4.7) as

Λ(~s) =
(2πσ2)−N/2 exp

[
−1

2(s− h, s− h)
]

(2πσ2)−N/2 exp
]
−1

2(s, s)
] (4.22)

= exp
(

(s, h)− 1
2
(h, h)

)
. (4.23)

As h(t) is deterministic, (h, h) is a constant scalar. The likelihood is mono-

tonic with (s, h), so (s, h) can be used as a proxy statistic for detection. As h will

have parameters ~θ, we should marginalize over them, but in practice, a maxi-

mum likelihood approach is employed, yielding discrete events at the maxima

~θmax = argmax~θ(s, h(~θ)). These events are called triggers.

While we can substitute gravitational waveforms for CBCs at this point to derive

the ultimate signal-to-noise ratio (SNR) used in LIGO-Virgo CBC searches, it is

derived fully elsewhere [56]. The key element to take from this section is the

likelihood ratio approach, which we will use again in Sec. 4.3 to compensate for

non-stationary, non-Gaussian noise.

4.3 Post-matched-filtering likelihood ratios

So far, we have only the matched filtering part of the search. Much more goes into

the workflow that takes raw data to a final list of gravitational-wave candidates.

Chapter 6 contains the details of this process, which involves constructing a collec-

tion of template waveforms against which to filter, matched filtering, waveform
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consistency tests, and inter-detector trigger consistency tests (coincidence). We also

assign an improved ranking statistic ρeff, the effective SNR, based on waveform

consistency and matched filter SNR.

At the end of this process, one holds a list of candidates. One generally assigns

significance to candidates by reporting the false-alarm probability, that is, the

probability that noise alone would produce a louder candidate. The interpretation

of this is slightly clouded when one considers the properties of the template bank

used in the search. The false-alarm probability is widely disparate for templates of

different chirp mass in the presence of non-Gaussianity. High chirp-mass signals

are shorter in duration and span less time-frequency volume than low chirp-mass

signals, looking more like a generic “glitch”, a short-duration, non-Gaussian noise

transient in the data. Glitches are the subject of considerable investigation [68], as

they plague all instruments and significantly degrade the performance of transient

searches. High-mass signals spanning less time-frequency volume means that the

waveform consistency tests have less discriminating power, so a greater fraction of

glitches will pass through the pipeline. In short, a simple false-alarm probability

based on ρ or ρeff is suboptimal.

In fact, matters become worse when one considers that candidates can have

passed coincidence and waveform consistency in some subset of the available

detectors. As H1 and L1 are significantly more sensitive than H2 or V1, one would

intuitively consider an H1–L1 candidate as far more significant than an H2–L1

candidate, all else being equal. This is not reflected in a simple ρ or ρeff ranking.
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The element we seek is an efficiency weighting, a factor that favors the regions of

recovered-parameter space that are more sensitive to the signals of interest.

In Sec. 4.3.1 I apply the likelihood ratio language in the context of a CBC search

after matched filtering has been performed. I also step through algorithms for

estimating the likelihood ratio for triggers. Section 4.3.2 presents some real-world

difficulties in implementation and the trade-offs made in the search for gravitational

waves in association with GRBs.

4.3.1 Constructing a likelihood ratio

Our likelihood ratio is defined in Eq. (4.7), but let’s write it specialized for our

post-matched-filtering, non-Gaussian-data circumstance, without any assumptions

as to the nature of the data, as

Λ(~c) =
p(~c | H1)
p(~c | H0)

(4.24)

~c = {ρeff, tc,~θtemplate} . (4.25)

~c here is a collection of data about a candidate. It takes the role of~s earlier. The

numerator can be interpreted as a detection efficiency. It is the probability of getting

a candidate like the one we got if there is a signal. Where we are more sensitive,

the probability increases. The denominator can be interpreted as the false-alarm

probability. It is the probability of getting a candidate like the one we got if there is

no signal. Here is where we incorporate varying background rates.

Associating a trigger with a hypothesis requires additional specification on
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our part. What population of triggers are we characterizing? Do we mean the

distribution of all candidates that come out of the pipeline or do we mean that we

will choose the single loudest candidate from each of a finite number of trials? For

an externally triggered search where we have a naturally defined foreground and

background, we will take the latter approach; the trials are fully defined in Sec. 6.1.

For the untriggered CBC searches, the background duration is not a convenient

multiple of the foreground duration, so a trial is harder to delineate. There, each

candidate is assigned a likelihood ratio separately.

What we haven’t specified is the model parameters, ~θ. A CBC signal can be

completely characterized by several parameters: coalescence time, two mass pa-

rameters, six spin parameters, initial orbital inclination relative to our line of sight,

sky location, polarization angle, phase, distance, and a other orbital parameters.

Short of full numerical relativity calculations, which can take weeks to months for

a single waveform, all current waveform-generation routines that are interfaced

to LIGO/Virgo data analysis pipelines ignore eccentricity, spin-induced orbital

precession, and deviations from the point-particle limit. We must marginalize over

all model parameters with our priors as

Λ(~c) =
∫

p(~c |~θ,H1)p(~θ | H1) d~θ
p(~c | H0)

. (4.26)

Measuring the false-alarm probability that appears in the denominator of Eq. (4.26)

is straightforward. Looping over each background trial:

1. Employ the pipeline to generate candidates for this trial.
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2. If this yields any candidates that are in the neighborhood (not yet defined) of

~c, add 1 to the count.

At the end, normalize by the total number of iterations.

We carry out the integration in Eq. (4.26) by simple Monte–Carlo integration. In

this process, we perform the following loop:

1. Choose a waveform, where each parameter is drawn randomly from its prior.

2. The signal is added to a trial that was previously used for background estima-

tion.

3. Employ the pipeline to generate candidates for this segment of data.

4. If this yields any candidates that are in the neighborhood (not yet defined) of

~c, add 1 to the count.

At the end, normalize by the total number of iterations.

The likelihood ratio incorporates more information about the candidate than

ρeff. It flows naturally from a Bayesian framework and is provably the best one can

do given the information described by the candidates. All deficiencies are in the

vagaries of implementation.

4.3.2 The warts of actual implementation

Implementation is never as clean as the theoretical design. In implementing the

likelihood-ratio ranking for the S5/VSR1 search for CBCs associated with short
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GRBs, we made compromises, all of which contain room for future improvement.

Parameter choice

Although the road is open for throwing all candidate parameters into our bag, we

consider the most important subset, ~c = (ρeff,M, C). ρeff here is the combined

effective SNR, which is the quadrature sum of the single-detector effective SNRs.

M is the mean chirp mass of the templates of the single-detector triggers. C is the

set of detectors that provided coincident triggers to the candidate; C is a mnemonic

for detector Combination. In its full generality, C requires specification both of the

detectors that provided coincident triggers and the detectors that were accepting

triggers at the time; it means something quite different for an H2-L1 candidate if

H1 was available and did not see anything or if H1 was not available and could not

see anything.

CDF instead of PDF

Although the likelihood ratios use probability distribution functions (PDFs), we

chose to use one minus the cumulative distribution function (CDF) in ρeff. The

choice reflects a prejudice that the likelihood ratio should increase monotonically

with ρeff, at least within a given (M, C) bin. Use of the CDF is not rigorously

justified, but for the loud tails of the distribution, the correspondence should be

good. With the small number of bins, probability estimation is weak. Rather than

calculate the right thing poorly, we calculate something not quite right well.
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Binning

Estimating a distribution from a finite number of measurements inevitably requires

binning and/or fitting. Binning provides well-defined boxes in which one can

take simple fractions for PDF/CDF estimation, but it splits the finite number of

trials over them, increasing one’s counting uncertainty. In our case, we binned over

(M, C).

Linear vs cubic distance prior

The exceptional model parameter is the distance D. In our Monte–Carlo integration,

we draw distance from a prior uniform in D rather than a more realistic D3 so that

we can assess efficiency both near and far without significant discretization errors. A

D3 reweighting during the tally can correct for this, but it was deemed unnecessary

due to using a CDF instead of a PDF for ρeff. That is, D should dominantly affect ρeff,

rather than other parameters in our likelihood ratio, and we’re already doing the

wrong thing by using a CDF rather than a PDF, so a correction seemed superfluous.

Background tail extrapolation

With a finite number of trials from which to determine the background distribution

and a signal population that extends to nearby D, it is inevitable that some signals

will be louder in ρeff than all background trials. To avoid division by zero in taking

the likelihood ratio, one must extrapolate. As the point of the post-matched-filtering
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likelihood is to overcome non-Gaussianity, uneven background, and uneven sen-

sitivity, we have no analytical model to use. In our implementation, we used an

ansatz that

p(ρeff ≥ ρ∗eff,M, C | H0) =

 pnaive(ρeff ≥ ρ∗eff,M, C | H0) for ρ∗eff < ρ
extrap
eff

K(M, C) exp(−ρα
eff) for ρ∗eff ≥ ρ

extrap
eff

(4.27)

for fitted spectral parameter α, the fitted extrapolation point ρ
extrap
eff , and the nor-

malization factor K(M, C), which is determined from continuity. For Gaussian

noise and ρeff → ρ, we would set α = 2, but we tune the values based on the noise

properties of S5/VSR1.

Trials without candidates

The volume of data demands that we set thresholds in ρ, χ2, and r2 and apply

clustering to reduce the rate of triggers, preferentially omitting candidates that

are unlikely to be real signals. These efforts pay great dividends. However, this

truncation means that not all trials will yield candidates. Trials without candidates

have formally undefined ρ, so have undefined likelihood ratios. In the implementa-

tion of the likelihod ratio techniques of this chapter, trials without candidates are

given maximum likelihood ratios of 0. Our probability distributions are thus made

discontinuous.
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Chapter 5

Statistical interpretations

With a ranking statistic in hand from Chap. 4, we must determine if our on-source

candidates are indeed gravitational-wave detections; the techniques we use are

described in Sec. 5.1. We can also constrain the space of possible signals based on

what we observed using a Feldman–Cousins approach [69], as described in Sec. 5.2.

Finally, with many null results, we can make another attempt at detection—the

detection of a population of events that are individually sub-threshold—with the

Wilcoxon–Mann–Whitney U-test, which is discussed in Sec. 5.3.

5.1 Detection criteria

5.1.1 Determining the threshold for a single GRB

We would like our results rendered amenable to simple, human interpretation,

arranged so that we can set the threshold according to sociologically required
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criteria for claiming a detection, e.g., “We require a one-in-a-million false-alarm

probability to accept the detection of such a hotly contested object with a history

of false alarms.”1 With a proper likelihood ratio, one can compare likelihood

ratios of candidates and set the detection threshold based on the posterior odds

ratio. However, the various implementation details described in Sec. 4.3.2 alter the

distribution of likelihood ratios relative to the theoretical distribution. Instead of

comparing our on-source observation to a theoretical distribution, we can compare

it to a measured distribution from the off-source trials.

To that end: for each off-source trial, we find the likelihood ratio of the loudest

candidate. Then the false-alarm probability (F.A.P.) is the fraction of background

(off-source) trials that yield a likelihood ratio greater than the on-source likelihood

ratio. That is,

F.A.P. = p(Λ > Λobs | 0) . (5.1)

This is the final quantity we report for each GRB.

5.2 Constraining parameter space

In adjusting our beliefs of the universe based on our observations, one should

employ the well developed Bayesian framework defined in Chap. 4. However,

for the S5/VSR1 search we instead used frequentist techniques, constructing our

1Here, I refer to repeated claims of gravitional-wave detection by Joseph Weber throughout the

1960s, 70s, and 80s [70].
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Figure 9 : Sketch of a frequentist confidence belt construction. Each horizontal line is a confidence
belt I(~θ) at some confidence level. The vertical dashed line is the observed significance xobs. The
intersection of the observation with the confidence belts is the confidence interval.

confidence belts in the manner dictated by Feldman and Cousins [69]. This was

done because the formalism for correctly constructing a prior distribution on signal

strength for each GRB was very rudimentary, and the Bayesian results depend

sensitively on how this prior distribution is constructed. I give a walk-through of

the frequentist implementation in Sec. 7.5; here I describe the formalism in general

terms.

Frequentist techniques for determining what range of physical parameters are

compatible with an observation involve constructing confidence belts. We say that

the intervals I(~θ) = {x |~θ} in detection statistic x for signals of parameters ~θ form

a confidence belt at confidence level C if

∫
I(~θ)

p(x |~θ) dx = C . (5.2)
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When we make our observation, we obtain our detection statistic xobs. Our con-

fidence interval is the region of ~θ in which xobs ∈ I(~θ). The interpretation is that

the true parameters ~θtrue lie in the interval 100× C% of the time. We can also say

that we exclude everything outside of this region with C confidence. See Fig. 9 for a

sketch of these definitions.

The definition of a confidence belt in Eq. (5.2) leaves considerable ambiguity. For

a continuous probability distribution, there may be infinitely many intervals that

satisfy the definition. For a complete prescription, we must provide a well-defined

means for choosing which x go into I(~θ). One intuitive approach is that of Crow

and Gardner [71], in which we choose the set of points with the constraint that the

extent of the acceptance region, |I(~θ)|, is minimized and in the event that there

are ties, we take the pair with the smallest value of upper bound that satisfies this

constraint. Put another way, I(~θ) is the locus of {x : p(x |~θ) > p∗}, where we

gradually lower p∗ until I(~θ) satisfies the criterion of Eq. (5.2). Another obvious

approach is to decide that you only want an upper limit, setting the lower end of

the interval at −∞ or the lower edge of a compact domain. This has its problems in

that you can construct intervals of zero measure or if you have a detection, then you

may have lost interest in an upper limit and would rather constrain the parameters

of your detection. It’s important to note that “flip-flopping”, deciding whether or

not to set an upper limit based on what you observe, is incorrect and invalidates

the statement that the true parameters lie in the interval 100× C% of the time.

Feldman and Cousins present a different ordering scheme [69], in which we add
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points to our interval ranked by the quantity

R(x |~θ) =
p(x |~θ)

p(x |~θbest)
. (5.3)

Here, p(x |~θbest) is the probability density of obtaining x using the the best-fitting,

physically allowed ~θ. I(~θ) is the locus of {x : R(x |~θ) > R∗}, where we gradually

decrease R∗ until I(~θ) satisfies the criterion of Eq. (5.2). That is, one continues

adding x values to I(~θ) in order of decreasing R(x |~θ) until the probability C is

covered.

The Feldman–Cousins (FC) method focuses on the most physically interesting

region of ~θ space by construction, as R(x |~θ) = 1 at the best-fit values of ~θ and

R(x |~θ) < 1 everywhere else. Thus, the best-fit value is always in I(~θ) and always

within the final confidence intervals. The FC method solves the problems of the

pure upper-limit approach, namely that one generally wishes to provide two-sided

bounds on detections and upper limits on non-detections. FC can smoothly transi-

tion from upper limit to double-sided constraint with varying x. Zero-measure belts

from discontinuities are only problematic if they are in the physically interesting

region, which would cause problems for any method of physical interpretation.

5.2.1 Exclusions and likelihood ratios for sub-populations

In Sec. 4.3.1, we learned how to concretely construct a likelihood ratio for a given

signal population. In the detection search, we choose to include a wide range of

masses, as we are interested in the existence of any signal. In making distance
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exclusions, we wish to make a more fine-grained astrophysical statement as a

function of the NS’s companion’s mass, so we break up the companion mass mcomp

into multiple bins, forming the likelihood ratio for each and making separate

exclusions for each. In the remainder of this section, we will use Λ(mcomp) to

represent the likelihood ratio of the loudest candidate in a trial being caused by a

signal from the mass bin of mcomp. The procedure to form this likelihood ratio is

identical to that of the whole search, but uses only a subset of the injected signals.

Equation (5.3) is thus given by

R(Λ(mcomp) |D) =
p
(
Λ(mcomp) |D)

p
(
Λ(mcomp) |Dbest

) (5.4)

for each mcomp bin.

5.2.2 Handling multi-modal distributions

If R(x |~θ) is multi-modal in x, then applying the FC construction naı̈vely will yield

broken I(~θ), i.e., I(~θ) have an x gap for fixed ~θ. This is theoretically perfectly valid.

However, in our implementation wherein we are bounding regions of D space,

we chose to enforce our a priori belief that Λ(mcomp) will be distributed with a

single mode for fixed D and that any apparent extra modes are due to statistical

fluctuations in our measurement of R(Λ(mcomp) |D). To this end, we add x values

to I(~θ) according to the R(x |~θ) ranking, but fill in any gaps that form by having

I(~θ) extend from the minimum to the maximum of {x : R(x |~θ) > R∗}, gradually

decreasing R∗ until I(~θ) satisfies the criterion of Eq. (5.2). Belts are thereby forced
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to be simply connected.

The FC paper explicitly addresses gaps in the confidence interval for a mea-

surement xobs, i.e., when the intersected belts are not contiguous. In this case, the

minimum and maximum ~θ are taken to form the reported confidence interval. The

physical measurement is thus always simply connected.

5.2.3 Handling empty trials

The fact that we set thresholds in our analysis pipeline introduces discreteness

into our distributions, as described in Sec. 4.3.2. The distribution p(Λ(mcomp) |D)

will have a gap in it at low values of Λ(mcomp) where no trial produced a de-

tectable event, then there will be a pile-up of trials at Λ(mcomp) = 0, the value

we assign to trials with no candidates. The distribution is discontinuous. In the

sparsely populated region between Λ(mcomp) = 0 and the bulk, our estimation

of the ranking R(Λ(mcomp) |D) is poor or nonexistent. To this end, we artificially

truncate the lower end of the Λ(mcomp) distribution such that the Λ(mcomp) = 0

bin sweeps up candidates up to a truncation point, Λthresh. In this way, we smooth

R(Λ(mcomp) |D) to suppress artifacts at the low Λ(mcomp) end. As Λthresh exists to

prevent a low Λ(mcomp) gap, we set it by eye to the value below which threshold

effects were apparent at high distances (the noise limit).
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5.2.4 Handling counting uncertainty

When we count trials to determine the probability
∫
I(~θ)p(Λ(mcomp) |D) dΛ(mcomp),

we are making a measurement with some uncertainty. With N Monte–Carlo simula-

tions in a given (mcomp, D) bin, trying to accumulate up to a true probability of C,

standard deviation of the measured value Ĉ = M/N is

δMC =

√
C(1− C)

N
. (5.5)

That is, to guarantee coverage of probability C in 90% of measurements assuming

that the central limit theorem holds, we should continue adding to I(~θ) until we

cover C + 1.28× δMC, where 1.28 standard deviations above the mean is the point

at which we accumulate 90% cumulative probability on a Gaussian distribution.

Note that this procedure sets a scale for the number of simulations Nuseful per

bin to make a useful measurement, as

1
Nuseful

≤ 1− (C + 1.28× δMC) . (5.6)

For C = 90%, this sets the minimum number to 32. For fewer simulations, the belt

will cover the entire ~θ space spanned by the simulations, which gives no robustness

to outliers and has a large measurement uncertainty.

5.3 Population statement

If we have no detections in a search for a number of GRBs NGRB, we can still

imagine that there is a population of real signals in our data set that are individually
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sub-threshold for detection claims, but collectively stand out in some way. There

are several tests that might apply here, but we chose the Wilcoxon–Mann–Whitney

U test [72]. The U test answers the question “Is population A drawn from the

same parent distribution as population B?” The U test is non-parametric, that is, it

doesn’t require a model for the parent distribution, and it is exceedingly simple to

implement. It works on rank alone, so ignores the magnitude of difference between

adjacently ranked trials.

Let population A refer to a set of likelihood ratios LA containing NA elements

and population B refer to a set of likelihood ratios LB containing NB elements. Then:

1. Combine the two sets to form L and sort them in descending order. Number

the elements of L by their new orders, starting with 1; each number is a

statistic’s rank, comprising RA for elements of A and RB for elements of B,

where the ith element corresponds to the ith position in L. Ties should be

resolved assigning each identical likelihood ratio a rank equal to the average

of the contested ranks to keep the sum invariant. E.g., if two likelihood ratios

are tied for second and third place, they should each be given a rank of 2.5.

2. Let

RA =
NA

∑
i=1
RA,i (5.7)

RB =
NB

∑
i=1
RB,i . (5.8)

Note that RA + RB = (NA + NB)(NA + NB + 1)/2, as this is a sum of all
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integers from 1 to NA + NB.

3. The U statistic between population A and population B is given by

UA = RA − NA(NA + 1)
2

(5.9)

UB = RB − NB(NB + 1)
2

. (5.10)

Note that with some algebra, we find that

UA = NANB −UB . (5.11)

To characterize population A as being statistically greater than population B,

we would look for large UB and vice versa. From now on, we will use U = UB as

our statistic. Now we have U statistic, but need a means to interpret it. As the U

statistic is formed from the sum of a stochastic process, we can invoke the Central

Limit Theorem and make the usual probabilistic interpretations associated with

Gaussianity. The mean and standard deviation of the distribution of U under the

null hypothesis that populations A and B are indeed drawn from the same parent

distribution are

µU =
NANB

2
(5.12)

σ2
U =

NANB(N + 1)
12

. (5.13)

In the case that we only are searching for GRB on-source likelihood ratios being

stochastically larger than off-source likelihood ratios, we would use a one-tailed

probability, where P(U > µU) = 0.5, P(U > µU + σU) = 0.16, P(U > µU + 2σU) =

0.023, and P(U > µU + 3σU) = 0.001.
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Chapter 6

A pipeline for externally triggered

CBC searches

With matched filtering, coincidence, candidate ranking, and interpretation elements

in hand from the efforts of Chapters 4 and 5, we must connect these elements

together. A data analysis pipeline is a connected set of components that perform

various transformations on the data, such as cataloguing it, moving the data to

computing resources, parcelling it into chunks that are digestible, analyzing it to

produce triggers, and performing post-analysis operations on triggers to produce

a scientific result. The CBC externally triggered pipeline is built out of the same

pipeline used for the other, untriggered CBC analyses with a few additions, as

we shall see. We will walk through most aspects of trigger production and post-

processing in Chap. 7, using GRB 070201 as a case study.
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6.1 Experimental setup

The binary coalescence model of short GRB formation predicts that the time delay

between the arrival of a gravitational wave and the arrival of the subsequent

electromagnetic burst is a few seconds. The arrival time of the electromagnetic

component is called the trigger time and it is provided by gamma-ray detectors

in orbit or in the interplanetary network, as described in Sec. 2.1. We search for

gravitational-wave signals within an on-source segment of [−5, +1) s around each

trigger time for each GRB of interest, feeling that this window captures the physical

model with some tolerance for its uncertainties. We assessed uncertainties in

reported trigger times and quantization in our own analysis along integer second

boundaries, finding that these each contribute less than 1 s. For example, when the

Swift BAT instrument determines that the count rate has risen above a threshold,

it waits for the maximum to pass, checking with a 320 ms cadence (N. Gehrels

& D. Palmer 2008, private communication); it reports the start time of the block

containing the maximum, rather than making any attempt to identify the start

of the burst, and does so with a 320 ms granularity. As another example, there

have been reports of sub-threshold precursors to many GRBs [73]. For each GRB

in our sample, we checked tens of seconds of light curve by eye to look for both

excessive difference between the trigger time and the apparent rise time, and also

for precursors, but found nothing to suggest that we should correct the published

trigger times. The largest timing uncertainty we identified is the delay between the



69

compact merger and the prompt emission of the internal shocks.

Because we believe that a gravitational wave associated with a GRB only occurs

in the on-source segment, we use off-source trials, up to 324 6 s-long times that do

not intersect the on-source segment, to estimate the distribution of background

due to the accidental coincidences of noise triggers. We also re-analyze the off-

source trials with simulated signals added to the data to test the response of our

search to signals; these we call injection trials. The actual number of off-source trials

included in the analysis varied by GRB, as the trials that overlapped with data-

quality vetoes were discarded [74]. To prevent biasing our background estimation

due to a potential loud signal in the on-source trial, the off-source segments do

not use data within 48 s of the on-source segment, reflecting the longest duration

of templates in our bank; these are the buffer segments. Finally, we discard 72 s of

data subject to filter transients on both ends of the off-source region. Taking all

of these requirements into account, the minimum analyzable time is 2190 s. We

require that all of this time be flagged as contiguous science mode. Science mode is

our designation for the detector operating in its nominal configuration. We require

contiguous science mode, as the character of the background can change between

science mode stretches. (See the schematic representation in Fig. 10.)

Though the details of candidate generation will be described in Sec. 6.4, we

should note here that we require that candidates be found with compatible parame-

ters in multiple detectors for the massive background reduction that coincidence
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Figure 10 : Experimental setup: segmentation. A schematic representation of how we divided the
data near a short GRB into on-source, buffer, off-source, and padding segments.

brings (see Sec. 6.6). As the detectors are not always online and producing science-

mode data, it is sometimes impossible to find 2190 s of multiply coincident time

arranged symmetrically about the on-source segment. Our implementation of

the segmentation described above does not demand symmetry and will choose

the minimally asymmetric arrangement of 6 s trials. This means that the actual

arrangement of segments may vary from what is shown in Fig. 10.
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6.2 Data quality

Some periods are found to have data of degraded quality due to instrumental

and environmental disturbances such as photodiode saturation, analog to digital

converter saturation, uncontrolled laser light from H1 spraying into H2 or vice

versa, calibration signals missing, etc. Most of these problems are discovered in real

time as the data are taken, but some are noted after the fact. A database holds the

data quality segments, which we can query for our periods of interest. Although

many conditions are marked with data quality flags, we take only a subset that are

known to indicate physically meaningless measurements. We mark each trial that

overlaps such a data quality flag and omit them from the analysis entirely.

6.3 The role of H1-H2 in triggered and untriggered CBC searches

There is a noteworthy difference with respect to untriggered inspiral searches.

For background estimation, untriggered searches use coincidences found between

triggers from different detectors, to which they apply unphysical time-shifts greater

than the light-travel time between detector sites. Unfortunately, H1 and H2, being

co-located, share a common environmental noise that is absent from the time-shift

background measurement. Being unable to estimate the significance of H1–H2

candidates reliably, the untriggered search examines them with significantly greater

reservation and does not consider them at all in upper-limit statements on rates.
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The present search performs its background estimation with unshifted coincidences

under the assumption that any gravitational-wave signal will appear only in the

on-source trial. Thus, we regain the unconditional use of H1–H2 candidates.

6.4 The untriggered S5/VSR1 low-mass candidate-generation pipeline

The S5/VSR1 untriggered low-mass search pipeline uses matched filtering over

a bank of waveform templates to determine single-instrument triggers. These

triggers then go through a multi-detector coincidence test. After coincidence, the

pipeline executes the matched-filtering-coincidence cycle again, hierarchically. The

second stage adds computationally expensive signal-based vetoes. Besides the same

workflow and code, most of the analysis parameters of the externally triggered

search have been tuned to identical or nearby values as the S5/VSR1 low-mass

untriggered search. The implementation of this pipeline that we use described

in Duncan Brown’s 2004 University of Wisconsin–Milwaukee thesis [56] and in

Collaboration papers [75]. Although they are major pieces of infrastructure, we

omit discussion of data-taking, data-discovery, data-quality queries, and data-

conditioning.

The core of the inspiral search involves correlating the measured data against

the theoretical waveforms expected from compact binary coalescence, a technique

called matched filtering (see Sec. 4.2 for a derivation). The gravitational waves from

the inspiral phase, when the binary orbit decays under gravitational-wave emission
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prior to merger, are accurately modeled by post-Newtonian approximants in the

band of the detector’s sensitivity for a wide range of binary masses where the merger

and ringdown occur outside of the detector band [76]. The expected gravitational-

wave signal, as measured by LIGO and Virgo, depends on the masses (mNS, mcomp)

and spins (~sNS,~scomp) of a neutron star and its more massive companion (either

another NS or a BH), as well as the spatial location (α, δ), inclination angle ι, and

polarization angle ψ of the orbital axis, among other parameters. In general, the

power of matched filtering depends most sensitively on accurately tracking the

phase evolution of the signal. The phasing of compact binary inspiral signals

depends on the masses and spins, the time of merger, and an overall phase. Spin

introduces additional angles, but we omit more explicit discussion.

We adopt a discrete bank of template waveforms that span a two-dimensional

parameter space (one for each component mass) such that the maximum loss in

signal to noise ratio (SNR) for a binary with negligible spins would be 3% [77]. While

the spin is ignored in the template waveforms, we verify that the search can still

detect binaries with most physically reasonable spin orientations and magnitudes

with only moderate loss in sensitivity. The number of template waveforms required

to achieve this coverage depends on the detector noise spectrum.

The templates in the bank are deliberately simple inspiral waveforms, as we

are describing a low-mass (≤ 40 M�) search and neither the merger nor ringdown

phases contribute much to the SNR. The templates are computed to second post-

Newtonian order and are simply computed in terms of elementary functions in the
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frequency domain, as they are computed with the stationary phase approximation

(SPA).

We filter the data from each of the detectors through each template in the bank.

If the matched filter SNR exceeds a threshold, the template masses and the time

of the maximum SNR are recorded. For a given template, threshold crossings

are clustered in time; that is, only the loudest-SNR candidates are kept in each

cluster, where a cluster is defined by a sliding time window equal in duration to the

duration of the template [78].

Triggers identified in each detector are further required to be found in at least

one other detector with consistent time and mass parameters, up to the uncertainty

of time and mass estimation measurements. Our algorithm takes into account

the covariance between these parameters [79]. Triggers found to be compatible in

this way are called coincident triggers. This consistency requirement significantly

reduces the number of background triggers that arise from matched filtering in

each detector independently and reduce the number of times one must calculate

the computationally costly waveform consistency tests, performed in a second

hierarchical stage. The coincidence test is described in greater detail in Sec. 6.6.

To prepare for the second stage, we create a reduced template bank for each

detector in which templates that did not contribute to coincidences are culled.

These reduced banks are then match-filtered once again, but with the χ2 and r2

statistics computed. These statistics are described in slightly greater detail in Sec. 6.5.

Candidates with high χ2 or r2 are cut and the χ2 is folded into the candidate ranking
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as described in Sec. 6.5). The surviving single-detector triggers are subjected to

coincidence testing once again and the list of coincident triggers at this stage are

then called candidate events.

An optional feature in the candidate-generation portion of the pipeline is that

of software injections. Software injections, often just called injections, involve

simulating waveforms and adding them to the data to test the efficiency of the

search in detecting a population of signals. Injections are also effective diagnostic

tools to test the proper functioning of the pipeline at various intermediate stages in

the presence of something loud. Despite attempts at mitigation (e.g. employing a

median in PSD estimation), too many loud signals in the same analysis chunk can

corrupt the PSD estimate, so we inject signals no closer than 800 s apart. We can

make many injections by injecting widely spaced injections into the same data again

and again. The matched-filtering code is smart enough to filter only a subset of

data around each injection rather than an entire stretch of data to save computation.

More details on the signals we inject can be found in Sec. 6.7.2.

The full untriggered pipeline is summarized in the workflow of Fig. 11.

6.5 Waveform consistency tests

The matched filter is optimal for Gaussian noise in the sense that it is monotonic

with the likelihood ratio, which tells us how much to update our beliefs about the

existence of a signal. When applied to noise with non-Gaussian tails, it produces
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Figure 11 : Schematic of the untriggered S5/VSR1 CBC search pipeline up through candidate
generation.
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many spurious candidates, which weakens the ability of a search to identify real

signals. Waveform consistency tests, also called signal-based vetoes, are techniques

to discard or deweight triggers based on the consistency of the data near a trigger

with what we expect from the signal in question. As of the S5/VSR1 science run, the

CBC search applies two signal-based tests to reduce and refine its trigger sets. First,

we compute a χ2 statistic [80] to measure how different a trigger’s SNR integrand

looks from that of a real signal in several frequency bands; we discard triggers with

large χ2. Second, we apply the r2 veto [81], which measures the duration that the

χ2 statistic stays above a threshold.

The SNR and χ2 from a single detector combine into an effective SNR [82], as

ρ2
eff =

ρ2√(
χ2

2p−2

) (
1 + ρ2

250

) , (6.1)

where p = 16 is the number of degrees of freedom in the χ2 statistic in this search.

ρeff provides better separation between triggers due to real signals and spurious

noise triggers than ρ alone.

6.6 Trigger consistency cuts in the untriggered search

For a two detectors whose readouts are uncorrelated and for a simple time-window

coincidence scheme, we can express the rate of coincident triggers in an untriggered

search as:

R12 = R1R2 ∆t (6.2)
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That is, the coincident rate of triggers is the product of the single-detector trigger

rates times the duration of the coincidence window. The coincidence window is

set by the inter-detector light-travel time plus some stretch to account for error in

a trigger’s end time to that of a real signal. The scale for the coincidence window

is set by the separation between observatory corner stations. The LIGO Hanford

and LIGO Livingston corner stations are separated by 3002 km (Euclidean distance,

not surface distance), corresponding to a 10 ms light-travel time. Thus, for our

simple time-window coincidence test, we would see single-detector trigger rates

of 1 Hz reduced by a factor of O(100). The background reduction increases our

detection confidence enough that only multiply-coincident triggers are considered

gravitational-wave candidates.

For the S5/VSR1 low-mass search, the consistency test utilizes a geometrical

technique that compares the time and mass parameters of two triggers, taking into

account the correlations between these quantities [79]. This coincidence technique

has become known as ellipsoidal thinca or ethinca, as it is a refinement of an older

coincidence method called thinca. It offers significant background rejection relative

to simple time coincidence, a factor of O(10) in practice at binary black hole masses

and slightly less at lower masses.

The technique works by using the Fisher information matrix of the template

waveform normalized by a factor of ρ−2 as a metric in template space. The metric

distance is called the mismatch and its complement is the overlap. The Fisher matrix

is the inverse of the covariance matrix. It uses variables that are simply related to
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the chirp mass, the normalized reduced mass, and the coalescence time. One can

set a single threshold on the metric distance between two single-detector triggers.

One subtlety is that the detectors are separated by the inter-site light-travel time,

tLT and we should not penalize two triggers separated by less than this time. To

this end, the ethinca implementation minimizes the metric distance while varying

the time-delay between triggers over the range [−tLT, tLT].

6.7 The triggered S5/VSR1 low-mass pipeline

The triggered pipeline slightly modifies the trigger-generation of the CBC search

pipeline and adds some superstructure to generate candidates for foreground, back-

ground, and simulated signals injected into background, plus the implementation

of likelihood-ratio ranking and Feldman–Cousins distance exclusions.

6.7.1 Modifications to untriggered candidate generation

Inside the candidate generation of Sec. 6.4, we modify the simulation machinery

and the coincidence test.

The simulations are injected into off-source data, which span 2190 s or 36.5

minutes. In this time, the Earth spins about its axis, moving the GRB’s sky location

with respect to the detectors’ antenna patterns and altering detector’s sensitivity

to a gravitational-wave source at the GRB’s equatorial coordinates. We added the

ability to make simulations at fixed Earth-fixed coordinates (fixed antenna pattern)
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by shifting the right ascension of the simulation with its sidereal time relative to the

GRB time. In this way, our simulations allow us to accurately measure our search

efficiency to a CBC associated with a particular GRB.

The key to the ethinca consistency test, described in Sec. 6.6, is determining the

metric distance between two triggers in mismatch space. There is no penalization

for the inter-site light-travel time. In a search for a GRB counterpart, the time-delay

is known since we know the sky location of the GRB and locations of the detectors

with time. Thus, optimizing over time delay is inappropriate. We enabled the

trigger-consistency code to fix the time delay based on the Earth-fixed coordinate

of the GRB and thus narrow the coincidence window down to the coalescence

time measurement uncertainty alone (≈ (10/ρ) ms) and lower the background rate

further.

6.7.2 Pipeline superstructure

Using our modified untriggered pipeline, described in Sec. 6.7.1, as a building block,

we can construct the triggered search pipeline. That is, we can run the candidate

generation separately on the off-source trial, on the off-source trials, and also on the

injection trials and run them as logical units from a master controlling workflow.

Finally, the resulting candidates are collected and put through the likelihood and

interpretation calculations, described in Chapters 4 and 5, respectively.

Before candidate generation can begin, the work must be planned. We begin

by determining detector availability and data quality in the 2190 s around a given
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external trigger. If two or more instruments have science-quality data available,

the analysis proceeds. We then divvy up the available multiply-coincident time

into trials as described in Sec. 6.1. With the list of available detectors and trial

segments in hand, we can write the instructions for the batch scheduler to execute

the analysis.

The injection workflow is actually split into several nearly identical workflows,

distinguished by waveform family and distinct parameter choices. When we inject

simulated signals, we rely on a faithful reproduction of realistic waveforms. Numer-

ical relativity can produce extremely faithful simulations, but they are tremendously

computationally expensive. Instead, we use approximations to the true waveforms

at some fixed post-Newtonian order and including some subset of realistic physics.

Sometimes-supported physics includes deviations from point-particle solutions,

spin, spin-induced orbital precession, merger dynamics, and post-merger ringdown.

We run parallel injection workflows with different waveform families to ensure the

robustness of our candidate generation pipeline against perturbations in the wave-

forms, especially since our waveform templates are very simple, containing none

of the optional physics listed above. Additionally, supporting multiple injection

workflows proves useful if we decide at a later stage to do additional simulations

for improved statistical uncertainty or to target a particular region of parameter

space.

Finally, we arrange that the candidates should pass through the likelihood-ratio

ranking and Feldman–Cousins exclusion codes. A technical detail is that between
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the candidate generation and the likelihood-ratio ranking, we cluster the candidates

into (trial,M, C) bins, with trial referring to the 6 s trial of the candidate andM

and C as defined in Sec. 4.3.2, keeping on-source, off-source, and injection trials

separate, and bin the (mcompanion, D) values of the injections. By clustering, I mean

that in each of the (trial,M, C) bins, we remove all but the loudest candidate as

ranked by ρeff. This is reasonable due to our using the CDF instead of the PDF on

ρeff (see Sec. 4.3.2), which is effectively a statement that we expect the likelihood

ratio to be monotonic in ρeff. The clustering provides us with a vastly reduced

list of candidates that are guaranteed to be the loudest within their own trials.

This diminution enables us to run and rerun the likelihood-ratio ranking and

Feldman–Cousins codes much more quickly and modularly, which was important

in commissioning new features.

The full triggered pipeline is summarized in the workflow of Fig. 12.
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Figure 12 : Schematic of the triggered S5/VSR1 CBC search pipeline. It makes repeated use of the
candidate-generation pipeline (shown larger in Fig. 11) used in the untriggered search with minor
differences in the injection and coincidence machinery related to the fixed sky location of the search
targets.
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Chapter 7

A worked example: GRB 070201

In this chapter, we apply the pipeline of Chap. 6 to a single short GRB, GRB 070201,

tracing in some detail through each stage of the analysis. Chapter 8 defines the full

set of GRBs and summarizes the results more briefly, also pulling them together to

make a population statement.

7.1 The significance of GRB 070201

GRB 070201 was an intense, short duration, hard spectrum GRB, which was detected

and localized by three IPN spacecraft (Konus–Wind, INTEGRAL, and MESSEN-

GER); it was also observed by Swift (BAT) but with a high-intensity background as

the satellite was entering the South Atlantic Anomaly [83]. The burst light-curve

exhibited a multi-peaked pulse with duration ∼ 0.15 s, followed by a much weaker,

softer pulse that lasted ∼ 0.08 s. Using early reports, Perley and Bloom [84] pointed



85

out that the initial IPN location annulus of the event intersected the outer spiral arms

of the Andromeda galaxy (M31). The refined error box, centered≈ 1 degree from the

center of M31, was later reported [85, 86], and it still overlaps with the spiral arms

of M31 [see Fig. 13 and [87, 88]]. Based on the Konus–Wind observations [87, 89],

the burst had a fluence of 1.57+0.06
−0.21 × 10−5 erg cm−2 in the 20 keV–1 MeV range.

It was also pointed out [89] that if the burst source were actually located in

M31 (at a distance of ' 770 kpc) the isotropic energy release would be ∼ 1045 erg,

comparable to the energy release in giant flares of soft gamma repeaters: e.g., the

5th March 1979 event from SGR 0526−66 (∼ 2× 1044 erg in the initial pulse) and

the 27th December 2004 event from SGR 1806−20 (∼ 2× 1046 erg). Conversely if

the event had an isotropic energy release more typical of short hard GRBs, e.g.,

∼ 1048–1052 erg [91], then it would have to be located at least ∼ 30 times further

than M31 (i.e., further than ∼ 23 Mpc).

7.2 Data and data quality

At the time of GRB 070201, the LIGO Hanford detectors were stable and recording

science-quality data, while the LIGO Livingston, GEO600, and Virgo detectors were

not taking data. A standard measure of the sensitivity of a detector to gravitational

waves is the distance to which an optimally oriented and located double NS binary

would produce a response in the datastream that, when optimally filtered for the

inspiral waves, peaks at an SNR of 8 (see, e.g. [92] and references therein). At the
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Figure 13 : UV image of the M31 galaxy and the 3σ IPN error box of GRB 070201, reproduced directly
from [90].
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time of GRB 070201, this distance was 35.7 Mpc and 15.3 Mpc for the H1 and H2,

respectively. However, the sensitivity of a detector to a gravitational wave from

a non-optimally oriented source depends on the location of the source on the sky

and on the polarization angle ι of the waves. In the case of compact binaries, it also

depends on the inclination angle of the orbital plane relative to the line of sight. At

the time of GRB 070201, the binary inspiral reach in the direction of M31 was only

about 43% of this maximum, assuming a face-on ι = 0 inclination. More details of

the instrumental sensitivity in S5/VSR1 can be found in Sec. 3.4.

We applied a suite of data-quality tests to the data, but found no anomalous

behavior in either instrument at the time of GRB 070201 nor in the 2190 s off-source

segment for the current CBC GRB search.

7.3 Diagnostics throughout the pipeline

7.3.1 Template banks

Because the full analysis time of 2190 s is longer than the default matched filtering

time of 2048 s, the analysis is done in two parts, with a separate median PSD

for each and therefore separate template banks. Nonetheless, the data are fairly

stationary on these timescales and the template banks do not vary significantly.

We construct template banks such that there is a maximum of 3% mismatch at any

point in the designated region. We define the boundaries of the bank by requiring

mcomponent > 1 M� and mtotal < 40 M�.
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Figure 14 : This GRB 070201 template bank for H1 includes 6993 templates.
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Figure 15 : This GRB 070201 template bank for H2 includes 5328 templates.



90

Figures 14 and 15 show template banks for the first half of the GRB 070201 data

for H1 and H2, respectively. The pairs (m1, m2), (M, η), and (τ0, τ3) can be con-

verted into one another. Note the diagonal boundaries in (m1, m2) corresponding to

the minimum component mass and maximum total mass. Note also that the bank

was constructed with uniform density in (τ0, τ3), with a few extra templates along

the boundaries to ensure coverage of the entire region. H1 has more templates than

H2 because its spectrum is flatter; inspiral signals will spend more time in band and

accumulate more cycles for H1, allowing it to discern a smaller difference between

two signals.

7.3.2 Single-detector distributions

After the first stage of matched filtering, we have triggers and their raw SNR

values, from which we can characterize the behavior of each instrument. Indeed,

it is statistical information about triggers at this stage that feeds into data quality

studies. For H1–H2 GRBs, we chose SNR thresholds of 5.5 and 3.5, respectively, as

H2 limits our sensitivity be approximately a factor of two. We omit triggers from

the buffer region (see Sec. 6.1 for a reminder about the segmentation), as they are

not used in the analysis at any point.

Figure 16 shows the SNR versus time of triggers in both H1 and H2 in the

off-source region of GRB 070201 and Fig. 17 shows the histogram of SNRs. We see

that H2 has a loud trigger with an SNR near 9.5, but otherwise the stretch is not

significantly elevated relative to H1. Anecdotally, the level of non-Gaussianity and
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Figure 16 : Matched-filter SNR versus time for H1 (top) and H2 (bottom) around GRB 070201. The
central gap arises from the omission of the on-source and buffer segments.

Figure 17 : Histograms of SNR for H1 and H2 around GRB 070201. The histograms are cumulative
from the right.
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Figure 18 : Matched-filter SNR versus time for coincident H1 (top) and H2 (bottom) triggers around
GRB 070201. The central gap arises from the omission of the on-source and buffer segments.

short-timescale non-stationarity we see in these plots is average to good relative to

similar stretches of time in all instruments. The significantly lowered threshold of

H2 leads to a vastly elevated trigger rate; while H1 yielded 5099 triggers in this time

or 2.6 triggers per second, H2 yielded 181026 triggers or 93 triggers per second.

7.3.3 Coincidence cuts

The first-stage match-filter triggers are passed through the ethinca coincidence test,

described in Sec. 6.6. We used a ellipsoid scaling parameter threshold of 0.8 for all

S5 GRBs.

Figure 18 shows the SNR versus time of coincident triggers in both H1 and

H2 in the off-source region of GRB 070201 and Fig. 19 shows the histogram of
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Figure 19 : Histograms of SNR for H1 and H2 around GRB. The histograms are cumulative from the
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SNRs. Immediately we see the orders of magnitude reduction in trigger rate that

motivated coincidence techniques, with 182 surviving coincidences. For H1, which

had the lower trigger rate previously, we see improvement by a factor of 28. Note

also how ρ axes are significantly rescaled relative to Figs. 16 and 17; sensitivity

distance scales inversely proportionally to SNR and detection rate scales cubically

with distance.

Finally, let’s look at the down-selected template banks in Figs. 20 and 21 for H1

and H2, respectively. We see vast reductions in the sizes of the banks, factors of 75

and 46, respectively. Note that while matched filtering proceeds in blocks of 2048 s,

the coincidence testing proceeds in blocks of 3600 s, which mixes adjacent banks

together before the down-selection of templates for the second stage. This often
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Figure 20 : This GRB 070201 second-stage template bank for H1 includes 93 templates.
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Figure 21 : This GRB 070201 second-stage template bank for H2 includes 116 templates.
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leads to double coverage of the relevant template space and inflates the number

of templates at this stage, which while suboptimal, will not compromise detection.

Finally, comparing the number of templates to the number of coincidences, 182, we

see that each template that gave a trigger tended to give multiple triggers.

7.3.4 Waveform consistency cuts

Our waveform consistency tests χ2 and r2 are somewhat computationally expensive,

so are only computed for the reduced template bank discussed in Sec. 7.3.3. We

make cuts based on the χ2 and r2 values, reducing the trigger rate before a second

round of coincidence and thereby allowing us to move from ρ to ρeff as a ranking

statistic, which provides superior discrimination between signal and noise. The

coincidences at this stage are our final candidates.

Figures 22 and 23 show our now-familiar SNR versus time and SNR histograms

after the second hierarchical step of template bank reduction, second matched-

filtering with waveform consistency cuts, and a second round of coincidence.

The number of coincidences is 190, slightly larger than after first coincidence.

The increase stems from the suboptimality in the template-bank reduction dis-

cussed in Sec. 7.3.3 which wastes computation, but should not significantly af-

fect results. Figure 24 shows the H2 SNR versus H1 SNR for both off-source

and injection triggers. Asymptotically, the injection triggers follow the line of

ρH1 = (Dhorizon
H1 /Dhorizon

H2 )× ρH2 ≈ (7/3)× ρH2 line down to where the background

lies.
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Figure 22 : Second-stage matched-filter SNR versus time for coincident H1 (top) and H2 (bottom)
triggers around GRB 070201.
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Figure 23 : Histograms of second-stage SNR for coincident H1 and H2 triggers around GRB 070201.
The histograms are cumulative from the right.
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light gray dashed lines indicate the SNR thresholds.
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Figure 25 : χ2 versus ρ for second-stage coincident triggers around GRB 070201. H1 is the top panel
and H2 is the bottom panel. The dashed lines represent contours of constant effective SNR; from left
to right, they are ρeff = (4, 5, 6, 7). The dotted line represents the χ2 veto threshold.

Figures 25 and 26 show the distribution of χ2 versus ρ for second-stage coin-

cident triggers with the veto regions demarcated. It is difficult to tell the efficacy

of the veto without a before-and-after comparison, but we can at least see that the

thresholds do not cut into the injection population. We see an uninspiring lack of

separation between foreground and background. Indeed, the data are well behaved

and fairly Gaussian in the bulk. For Gaussian noise, matched-filtering SNR is the

optimal ranking statistic, so there can be little improvement. We’ll compare the

various candidate rankings in Sec. 7.3.7 below.

The r2 versus ρ distributions appears in Fig. 27 with the veto regions demar-

cated. Again, it is difficult to tell the efficacy of the veto without a before-and-after
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Figure 26 : Zoomed χ2 versus ρ for second-stage coincident triggers around GRB 070201. H1 is the
top panel and H2 is the bottom panel. The dashed lines represent contours of constant effective
SNR; from left to right, they are ρeff = (4, 5, 6, 7). The dotted line represents the χ2 veto threshold.

comparison, but we can at least see that the thresholds do not cut into the injection

population.

7.3.5 Effective SNR ranking

Applying the effective SNR ranking of Eq. (6.1) we obtain Figs. 28 and 29, which

shows a plot of ρeff versus ρ for H1 and H2, respectively. Figure 30 shows H1

effective SNR versus H2 effective SNR. In data with a prominent tail of loud back-

ground glitches, the effective SNR ranking will vastly downgrade the significance of

glitches. Here, with no background outliers, we do not witness much improvement.
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Figure 27 : r2 versus ρ for second-stage coincident triggers around GRB 070201. H1 is the top panel
and H2 is the bottom panel. The dashed lines represent the veto thresholds. We discarded triggers
to the upper left.

7.3.6 Effective SNR ranking by chirp mass

The likelihood-ratio ranking, described in Sec. 4.3, is intended to take into account

the variation in trigger rate across the template bank and the differences in sensitiv-

ity of different detector combinations, plus the difference in sensitivity of certain

templates to certain masses of signals.

Let us observe the distribution of combined effective SNR across three chirp-

mass bins in Fig. 31. The same plot, but with the only the loudest events in each

off-source (trial,M) bin kept is Fig. 32. TheM bin definitions were chosen in the

S5 untriggered search and we chose not to modify them. They cover every template

in our bank. If we retained combined effective SNR as our detection statistic, we
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Figure 28 : H1 effective SNR versus H1 SNR for second-stage coincident triggers around GRB 070201.
The black + markers represent background triggers and the red × markers represent injection
triggers.
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Figure 29 : H2 effective SNR versus H2 SNR for second-stage coincident triggers around GRB 070201.
The black + markers represent background triggers and the red × markers represent injection
triggers.
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Figure 30 : H2 effective SNR versus H1 effective SNR for second-stage coincident triggers around
GRB 070201.
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Figure 31 : Combined effective SNR for off-source coincidences around GRB 070201. The distribu-
tions are split by the mean chirp mass of the contributing triggers.



106

5.5 6.0 6.5 7.0 7.5 8.0 8.5
ρeff,comb

100

101

102

#
tr

ia
ls

lo
ud

er

M ∈ [0.86, 3.48) M�
M ∈ [3.48, 7.40) M�
M ∈ [7.40, 17.50) M�

Figure 32 : Combined effective SNR for clustered off-source coincidences around GRB 070201. The
distributions are split by the mean chirp mass of the contributing triggers. Clustering means that
only the loudest candidate in each (trial,M) bin are retained.
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can see that at a fixed false-alarm probability, the tail would be dominated by the

low-mass candidates. Separately determining false-alarm probability in each chirp

mass bin increases our sensitivity to higher mass triggers.

7.3.7 Likelihood-ratio ranking

The efficiencies and false-alarm probabilities (numerators and denominators) of the

likelihood ratios are measured. However, the false-alarm probabilities are extrapo-

lated in the tail to provide finite estimates for triggers louder than all background.

The extrapolation follows the form of Eq. (4.27). We chose to extrapolate from the

70th percentile candidate as sorted by effective SNR, where trials without candi-

dates are omitted from this determination. We adopted the spectral index α = −1.4

to provide the best fit for a particular GRB and to maximize receiver operating

characteristic (ROC) curves, discussed later. The ROC curves are not very sensitive

to the tunings of these parameters.

Figure 33 shows the clustered off-source coincidences, as in Fig. 32, but now

normalized to be a false-alarm probability and now demonstrating extrapolation

in the tail, exactly as used in the denominator of the likelihood ratio. We judge

the extrapolation to be adequate, remembering that this false-alarm probability

is not the false-alarm probability reported at the end of the search, but merely an

ingredient in the likelihood-ratio ranking.

An efficiency requires a simulation population. We drew the simulations from a

distribution in which our marginalized parameters roughly reflect our priors on
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Figure 33 : False-alarm probability versus effective SNR for GRB 070201. The distributions are split
by the mean chirp mass of the contributing triggers. The dashed lines indicate the true false-alarm
probabilities and the solid lines indicate the used (extrapolated) values.



109

0 10 20 30 40 50
ρeff,comb

10−4

10−3

10−2

10−1

100

fr
ac

.i
nj

ec
ti

on
tr

ia
ls

lo
ud

er

M ∈ [0.86, 3.48) M�
M ∈ [3.48, 7.40) M�
M ∈ [7.40, 17.50) M�

Figure 34 : Efficiency versus effective SNR for GRB 070201. The distributions are split by the mean
chirp mass of the contributing triggers.
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Parameter name Symbol Prior Unit

NS mass mNS U[1, 3] M�
Inclination angle cos ι U[−1, 1] . . .

Polarization angle ψ U[0, 2π] rad

Coalescence time tc U
[
toff
start, toff

end

]a s

NS spin magnitude |~sNS| U[0, 0.75]b . . .

Companion spin mag. |~scomp| U[0, 0.98]b . . .

Spin orientations ~s/|~s| U
[
S2]b . . .

Companion mass mcomp U[1, 40] M�
Distance D U[0.5, 50]c Mpc

Right ascension α αGRB + GMST(tc)−GMST(tGRB)d rad

Declination δ δGRB rad

a Coalescence time is uniformly distributed over the off-source segment of each GRB.

b We injected three waveform families. Two each comprise a quarter of the injections while

SpinTaylorthreePointFivePN comprises half. The spin distributions are for the latter

family, so half of injections are spinless.

c The injected waveform amplitudes reflected V3 calibration. Astrophysical statements

involving distance incorporate a correction between the V3 and V4 (final) calibration.

d Right ascension is varied to keep the simulation at the same antenna factor as the GRB.

Table 2 : Priors and ranges on simulation parameters. The distributions above the line are priors.
mcomp and D are ranges over which we make astrophysical exclusions, but they are treated as
priors in the efficiency assessment of the likelihood ratio statistic. α and δ are completely set by
tc and the GRB parameters.
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these astrophysical compact binary systems. In our models, a signal is completely

specified by (mNS, mcomp,~sNS,~scomp, ι, ψ, tc, D, α, δ). Of these, we wish to constrain

mcomp and D, and to over everything else. We drew the NS mass mNS uniformly

from [1, 3) M�; the magnitudes of the NS spins |~sNS| were half 0 and half uniform

in [0, 0.75) [93]; the magnitudes of the companion spins |~scomp| were half 0 and half

uniform in [0, 0.98) [94]; the orientations of the spins were uniform in solid angle;

the inclination ι of the normal to the binary’s orbital plane relative to our line of sight

was conservatively chosen to be uniform in cos ι instead of making an assumption

about the GRB beaming angle; the polarization angle φ was uniform in [0, 2π); the

coalescence time t0 was uniform over the off-source region; the declination δ was

set to that of the GRB; the right ascension α was also set to that of the GRB, but was

adjusted based on t0 to keep each simulation at the same location relative to the

detector as the GRB. These parameters are summarized in Table 2.

Marginalizing over these priors, we determine the efficiency, which is shown

in Fig. 34. Note that the simulations are distributed uniformly in D rather than D3.

This is given short discussion in Sec. 4.3.2. The plot demonstrates that different

regions of template space do not detect signals with uniform efficiency. Unfortu-

nately, GRB 070201 does not demonstrate the difference in the efficiency of different

detector combinations, as only two detectors are used.

Putting the efficiency and false-alarm probability together, we get the likelihood

ratio, which is plotted in Fig. 35. There are several noteworthy features:
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Figure 35 : Likelihood ratio versus effective SNR for GRB 070201. The distributions are split by the
mean chirp mass of the contributing triggers.
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1. The low-mass region of the template bank yields a likelihood ratio that is

non-monotonic with effective SNR. This counterintuitive result means that

between ρeff,combined = 6 and 7, the efficiency dropped faster than the false-

alarm probability. We can see the precipitous drop in Fig. 34. It’s possible that

D3 reweighting (see Sec. 4.3.2) would have changed this behavior.

2. In the limit of weak signals, the likelihood ratio does not go to 1. The limit of

signal strength approaching zero is background. With PDFs, this would be

the ratio of background to background, so should be 1. However, we use the

CDF, so the probabilities are cumulative from the right (see Sec. 4.3.2), so this

limit is not expected to hold.

3. Proceeding to the right, the likelihood will jump up, then slowly slide down,

then jump up, then slowly slide down. This originates in the discreteness

of the false-alarm probability estimate. The effect becomes worse at higher

ρeff,combined and this drove the choice that the extrapolation point should be

set at the 70th percentile of ρeff,combined.

4. Again, we only have one detector combination for GRB 070201 (H1–H2), so we

cannot see the important reweighting that the likelihood ratio does between

different detector combinations.

Applying our likelihood-ratio ranking to all candidates, then maximizing over

each trial, we obtain Fig. 36. We again see the same three chirp-mass tracks as in
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Figure 36 : Maximum likelihood ratio versus maximum effective SNR for GRB 070201. The maximum
is over the candidates in a given trial.
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Fig. 35, but there are points that do not lie along the tracks. The non-conforming

trials are those that yielded a different loudest event when ranked by likelihood

ratio versus by effective SNR. These maxima are the quantities that appear in the

comparisons below.

The correct apples-to-apples comparison of the efficacy of detection statistics is

the receiver operating characteristic (ROC) curve. In an ROC curve, the abscissa

specifies a false-alarm probability, which corresponds to a threshold in the ranking

statistic. The ordinate specifies the efficiency, the fraction of foreground events

with statistic louder than the threshold set by the false-alarm probability. These

quantities give a useful measure of effectiveness versus significance, independent

of the normalizations of statistics. The only knob to twist is the signal population

against which we measure the efficiency, i.e., the parameter space covered by the

simulated foreground. The likelihood ratio is the statistic that, by construction, will

maximize the ROC curve if it is implemented correctly; our implementation details,

described in Sec. 4.3.2, degrade its performance.

Figure 37 contains the ROC curve comparing the likelihood-ratio technique and

the simple effective SNR for GRB 070201. Here, we performed the Monte–Carlo

integration for efficiency with a D2 weighting to reflect a prior on D that is uniform

in volume rather than uniform in D, as we actually drew them. Thus, the ratio of

efficiencies is the true ratio of detection rates of these methods. The figure shows

some advantage for the likelihood-ratio ranking over the effective SNR at low

false-alarm probability (high significance), better by a few percent in absolute terms,
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Figure 37 : ROC curve for maximum likelihood versus maximum effective SNR for GRB 070201.
The bottom panel shows a zoom of the top panel. The Monte–Carlo integration has been reweighted
to reflect a population uniform in volume.
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Figure 38 : Efficiency versus distance for GRB 070201. At each distance, efficiency was measured
using injections within ±2 Mpc, reweighted to be uniform in volume. The threshold was set at
1% false-alarm probability for each ranking statistic. The distances were adjusted for a change in
calibration as well as calibration uncertainty as per Sec. 3.5.
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M bin (M�) ρeff,H1 ρeff,H2 ρeff,comb M (M�) Likelihood ratio

[0.86, 3.48) 5.7 3.9 6.9 1.3 3.0

[3.48, 7.40) 5.7 4.3 7.2 4.7 11.7

[7.40, 17.50) . . . . . . . . . . . . . . .

Table 3 : On-source CBC candidates associated with GRB 070201

but better by tens of percent in relative terms. We can see the effect on sensitivity

to systems at various distances in Fig. 38. The likelihood ratio does better near

threshold. We might also give the techniques a characteristic sensitivity distance,

for example, distance at which we achieve 50% efficiency with a threshold set by 1%

false-alarm probability; the distances are 14.5 Mpc for effective SNR and 14.8 Mpc

for the likelihood ratio, an improvement of 2% by distance and 6% by volume. The

advantage is larger for some data than others. Again, where the data are almost

Gaussian, it is difficult to improve upon a simple matched filter.

7.4 Significance

Until now, we have examined only off-source and injection trials in tuning the

analysis in order to keep the analysis blind. Here we examine the unblinded result.

That is, we obtain candidates in the on-source trial, assign the likelihood-ratio

ranking to those candidates, and interpret the significance of the loudest event.

Table 3 lists the basic parameters of the loudest on-source candidates in each

M bin. As one can see from Fig. 39, the loudest event is insignificant by both

likelihood ratio and by effective SNR. Comparing the maximum likelihood ratio
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Figure 39 : Maximum likelihood ratio versus maximum effective SNR for GRB 070201 including the
on-source trial’s loudest event.
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Figure 40 : Significance of the maximum likelihood ratio for GRB 070201. The blue trace is the locus
of off-source trials’ maximum likelihood ratios and the vertical dashed line represents the on-source
trial.
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Figure 41 : Maximum likelihood ratios for sub-populations, separated by companion mass, for
GRB 070201. Each thin, gray line represents an off-source trial. The thick, black line represents the
on-source trial.

more rigorously to off-source values, as shown in Fig. 40, we find a false-alarm

probability of 6.8%. This is not a detection.

7.5 Distance exclusion

I described the theoretical underpinnings and left some implementation notes for

the distance exclusions in Sec. 5.2. In short, we form likelihood ratios for candidates

against several distinct subsets of our simulations, separated by the companion

mass. For each of these mcomp bins, we find the loudest candidate and use the

Feldman–Cousins (FC) confidence belts to form a confidence interval in D. The
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maximum likelihood ratios in each mcomp bin for on-source and off-source trials

appears in Fig. 41.

For one of these mcomp bins, let us look closely at the construction of the con-

fidence belts in the FC style. We include a calibration correction factor of 0.273,

as per the considerations of Sec. 3.5 and the belts are stretched to cover 1.28 times

the Monte–Carlo uncertainty, as explained in Sec. 5.2.4. Figure 42 shows the raw

p(Λ(mcomp) |D) distribution and the resulting belts. Each row of pixels sums to 1.

Empty trials are put in the lowest Λ bin, which is set by the quietest of the trials’

loudest candidate events in this mcomp slice. The FC 90% confidence interval is

6.23–39.3 Mpc, where 50/1.273 = 39.3 Mpc is the outer edge of the simulated D

range after calibration correction.

We note that the distribution is quite rough and the belts are absurdly wide, as

we have approximately 19000 injection trials, split among 13 mcomp bins, 40 D bins

for an average of 36 injections per row. We established in Sec. 5.2.4 that with 32

simulations or less per row, we must take the whole row as our confidence belt,

leaving no robustness against outliers. Spreading the injections so thinly across

parameter space greatly weakens our ability to make astrophysical statements. We

cannot increase the number of injections due to computational constraints, but we

can employ importance sampling, wherein we put injections where we most believe

there to be interesting physics — there is no need to waste injections very far away if

our sensitivity for a GRB is low and there is little need to inject higher-mass signals

if we do not consider these systems as plausible progenitors. This approach will be
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Figure 42 : ln p(Λ(mcomp) |D) and confidence belts for mcomp between 19 and 22 M� for GRB 070201.
This is the raw probability measurement without smoothing or thresholding. The vertical dashed
line is the likelihood ratio of our on-source trial’s loudest candidate. The shaded regions are, from
lightest to darkest, 0.5, 0.75, and 0.9.
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used in future analyses.

Figures 43 and 44 show our in-production attempts at mitigating the problems

of poor rank estimation in the low Λ gap and the issue of high discreteness from

only 36 injections per row on average. Poor rank estimation is overcome slightly

in Fig. 43 by the technique of Sec. 5.2.3, removing the gap; that is, putting every

trial with non-existent or lower Λ into the ln Λ = 1 (Λ = e) bin. This essentially

makes R(Λ(mcomp) |D) constant across the gap. The FC 90% confidence interval is

6.23–39.3 Mpc. Additionally, Fig. 44 shows the effects of smoothing. The smoothing

is a a Gaussian kernel in (input) D that gets wider with increasing (output) D. The

kernel is explicitly

K(Di, Dj) = exp

(
− (Di − Dj)2

2αD2
j

)
(7.1)

psmoothed(Λ(mcomp) |Dj) = ∑
i

p(Λ(mcomp) |Di)K(Di, Dj) , (7.2)

where we have set α = 0.025, indicating a Gaussian whose standard deviation is

growing as
√

αD ≈ 16%× D. Indeed, we observe many fewer outliers among the

confidence belts.

With the full thresholding and smoothing apparatus, in our example 19–22 M�

sub-population, we obtain an FC 90% confidence interval of 5.25–39.3 Mpc. Fig-

ure 45 shows the confidence intervals for all sub-populations for GRB 070201. At

the end of the search, we report only the lower distances for the two most astro-

physically plausible sub-populations, 1–4 M� and 7–10 M�, roughly corresponding
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Figure 43 : ln p(Λ(mcomp) |D) and confidence belts for mcomp between 19 and 22 M� for GRB 070201.
These plots introduce thresholding at ln Λ = 1. The vertical dashed line is the likelihood ratio of our
on-source trial’s loudest candidate. The shaded regions are, from lightest to darkest, 0.5, 0.75, and
0.9.
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Figure 44 : ln p(Λ(mcomp) |D) and confidence belts for mcomp between 19 and 22 M� for GRB 070201.
These plots introduce thresholding at ln Λ = 1 and additionally Gaussian smoothing that varies
with D. The vertical dashed line is the likelihood ratio of our on-source trial’s loudest candidate.
The shaded regions are, from lightest to darkest, 0.5, 0.75, and 0.9.
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Figure 45 : Feldman–Cousins confidence intervals for all companion-mass sub-populations for
GRB 070201
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to NS–NS and NS-BH populations, respectively, as in Table 5 and Fig. 46.
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Chapter 8

The search for CBCs in association

with short GRBs in S5/VSR1

In this chapter, I report on a search for gravitational-wave inspiral signals associated

with the short GRBs that occurred during S5/VSR1. Details of the science run can

be found in Sec. 3.4. The findings of this search were first published in [5], but are

reported here again in the context of the detailed explanations of the past chapters.

Chapter 6 described the high-level design of the analysis pipeline and Chap. 7

walked through one GRB in great detail; this chapter provides a summary of all

GRBs in S5/VSR1.
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GRB Redshift Duration (s) References

051114 . . . 2.2 G4272, G4275

051210 . . . 1.2 G4315, G4321

051211 . . . 4.8 G4324, G4359

060121 . . . 2.0 G4550

060313 < 1.7 0.7 G4867, G4873, G4877

060427B . . . 2.0 G5030

060429 . . . 0.25 G5039

061006 . . . 0.50 G5699, G5704

061201 . . . 0.80 G5881, G5882

061217 0.827 0.30 G5926, G5930, G5965

070201 . . . 0.15 G6088, G6103

070209 . . . 0.10 G6086

070429B . . . 0.50 G6358, G6365

070512 . . . 2.0 G6408

070707 . . . 1.1 G6605, G6607

070714 . . . 2.0 G6622

070714B 0.92 64.0 G6620, G6623, G6836

070724 0.46 0.40 G6654, G6656, G6665

070729 . . . 0.90 G6678, G6681

070809 . . . 1.3 G6728, G6732

070810B . . . 0.08 G6742, G6753

070923 . . . 0.05 G6818, G6821

Table 4 : Parameters of the 22 GRBs selected for this search. The values in the references column
give the number of the GRB Coordinates Network (GCN) notice from which we took the preceding
information [95].
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8.1 Sample selection

X-ray and gamma-ray instruments identified a total of 212 GRBs during the S5

run: 211 have measured durations; 30 of them have a T90 duration smaller than

2 seconds, where T90 is the time interval over which 90% of all counts from a GRB

are recorded. While the T90 classifies a burst as long or short, it is not a definitive

discriminator of progenitor systems. In addition to the short GRBs, GRB 051211

[96] and GRB 070714B [97] are formally long GRBs, but they have spectral features

hinting at an underlying coalescence progenitor. GRB 061210 is another long-

duration burst, but it exhibits the typical short spikes of a short GRB [98]. This

gives a list of 33 interesting GRBs with which to search for an association with

gravitational waves from compact binary coalescence.

Around the trigger time of each interesting GRB, we required 2190 s of multiply-

coincident data. The detectors operated with individual duty cycles of 67–81%

over the span of the S5 and VSR1 runs. Where more than two detectors had

sufficient data, we selected the most sensitive pair based on the average inspiral

range, because including a third, less sensitive detector does not usually enhance

the sensitivity greatly. The one exception was GRB 070923, described below. In

descending order of sensitivity, the detectors are H1, L1, H2, and V1. This procedure

yielded 11 GRBs searched for in H1–L1 coincident data, 9 GRBs in H1–H2, and 1 in

H2–L1.

In addition to these 21, we analyze GRB 070923 with V1 because its sky location
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relative to the detectors’ response functions favors Virgo. The antenna pattern

changes with the location of a source relative to a detector and can be expressed by

the response (see Eq. (3.13) and Table 4), assuming optimal orientation (ι = 0). A

value of 1 corresponds to an optimal location of the putative gravitational-wave

source relative to the observatory, while a value of 0 corresponds to a source location

that will not induce any strain in the detector. For this particular GRB, the optimal

antenna response for Virgo is around 0.7, while those for the two LIGO sites are

about half of that (see Table 5), yielding a comparable sensitivity in the direction of

GRB 070923 for all three of them. Data from H1, L1, and V1 were analyzed, making

this the only GRB involving triple coincidences.

Table 4 lists all 22 target GRBs after applying the selection criteria described

in this section. Plausible redshifts have been published for only three of these

GRBs, placing them well outside of our detectors’ range, but short GRB redshift

determinations are in general sufficiently tentative to warrant searching for all of

these GRBs.

GRB 070201 is also worth special mention. It was previously analyzed in a

high-priority search because of the striking spatial coincidence of this GRB with

M31, a galaxy only ∼780 kpc from Earth (see [99] and Fig. 13). No gravitational-

wave signal was found and a coalescence scenario could be ruled out with >99%

confidence at that distance, lending additional support for a soft gamma repeater

hypothesis [100]. However, because of improvements in the analysis pipeline, we

re-analyzed this GRB and reported the results in [5] and here. See Chap. 7 for a
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complete walkthrough of the new analysis.

8.2 Tuning

We generated candidates using the standard, untriggered compact binary coales-

cence search pipeline described in detail in [75] and summarized in Sec. 6.4. For

simplicity, we choose a template bank symmetric in component masses, spanning

the range [2, 40) M� in total mass. For the data analyzed in this chapter, the number

of templates was around 7000 for each detector.

The SNR threshold for the matched filtering step was chosen differently depend-

ing on which detectors’ data are available for a given GRB. If data from H1 and

L1 were analyzed, the threshold for each detector was set to 4.25, reflecting their

comparable sensitivity. If data from H1 and H2 were analyzed, the threshold of the

latter detector — the less sensitive of the two — was set to 3.5 to gain maximum

network sensitivity, while the threshold of the more sensitive detector, H1, was

set to 5.5 since any signal seen in H2 would be twice as loud in H1, with some

uncertainty. In the single case of analyzing only H2–L1 data (GRB 070707) the

threshold was 4.25 for L1 and 3.5 for H2, and for the single case of analyzing data

with Virgo (GRB 070923), the threshold was set to 4.25 for all involved detectors

(H1, L1, and V1). For comparison, a uniform SNR threshold of 5.5 was used in the

untriggered S5 search (J. Abadie et al., in preparation).
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8.3 Results

8.3.1 Individual GRB results

We found no evidence for a gravitational-wave signal in coincidence with any GRB

in our sample. We ran the search as described in the previous section and found that

the loudest observed candidates in each GRB’s on-source segment is consistent with

the expectation from its off-source trials. The results are summarized in Table 5, with

brief highlights in the following subsections. A graphical comparison of on-source

to off-source false-alarm probability is shown in Fig. 46.

GRB 070201

The reanalysis of GRB 070201 yielded candidates in the on-source segment, despite

having no coincident candidate at all in the previous analysis [99]. This is consistent

because the threshold for H2 has been lowered from 4.0 to 3.5 and the coincident

trigger found in this reanalysis happened to lie very close to the larger threshold

in the previous search. The reanalysis yields a false-alarm probability of 6.8%,

the smallest in the set of analyzed GRBs∗. This value is completely within our

expectations when we consider that we examined 22 GRBs.

∗In public presentations of preliminary results, GRB 061006 was erroneously highlighted as

having the loudest candidate due to a 22.8 s offset in the GRB time. Swift’s initial GCN alert [101]

was later corrected [102], but we initially overlooked this correction.
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Antenna response Excluded distance (Mpc)

GRB H1 H2 L1 V1 F.A.P. NS–NS NS–BH

051114 0.56 0.56 . . . . . . 1 2.3 6.2

051210 0.61 0.61 . . . . . . 0.10 3.3 4.3

051211 0.53 . . . 0.62 . . . 0.66 2.3 8.9

060121 0.11 . . . 0.09 . . . 0.58 0.4 1.3

060313 0.59 0.59 . . . . . . 0.16 1.4 4.3

060427B 0.91 . . . 0.92 . . . 1 7.0 12.7

060429 0.92 0.92 . . . . . . 0.21 4.3 6.2

061006 0.61 0.61 . . . . . . 1 2.3 8.2

061201 0.85 0.85 . . . . . . 1 4.3 10.1

061217 0.77 . . . 0.52 . . . 0.23 3.2 11.8

070201 0.43 0.43 . . . . . . 0.07 3.3 5.3

070209 0.19 . . . 0.12 . . . 0.76 2.3 4.2

070429B 0.99 . . . 0.93 . . . 0.31 8.9 14.6

070512 0.38 . . . 0.51 . . . 0.97 6.1 8.9

070707 . . . 0.87 0.79 . . . 0.87 4.2 7.1

070714 0.28 . . . 0.40 . . . 0.72 4.2 2.3

070714B 0.25 . . . 0.38 . . . 0.54 3.2 5.1

070724 0.53 . . . 0.70 . . . 0.84 5.1 11.8

070729 0.85 0.85 . . . . . . 0.40 7.0 10.8

070809 0.30 0.30 . . . . . . 1 2.3 4.3

070810B 0.55 . . . 0.34 . . . 0.50 2.3 6.1

070923 0.32 . . . 0.40 0.69 0.74 5.1 7.9

Table 5 : Summary of the results for the search for gravitational waves from each GRB. The Antenna
Response column contains the response for each detector as explained in Sec. 8.1; an ellipsis (. . . )
denotes that a detector’s data were not used. F.A.P. is the false-alarm probability of the most
significant on-source candidate for a GRB as measured against its off-source trials, as explained in
Sec. 5.1.1. On-source trials with no candidates above threshold are assigned a F.A.P. of 1. The last
two columns show the lower limits at 90% CL on distances, explained in Sec. 8.3.2.



136

0.03 0.1 0.3 1
false-alarm probability

1

3

10

cu
m

ul
at

iv
e

nu
m

be
r

off-source (normalized)
on-source

Figure 46 : Cumulative false-alarm probabilities for the most significant candidate in each on- and
off-source trial, as described in Sec. 5.1.1.
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GRB 070923

GRB 070923 was the GRB for which H1, L1, and V1 had comparable sensitivity and

we accepted triggers from all three detectors. There were no triply-coincident candi-

dates in the on-source trial, but there were surviving doubly-coincident candidates,

the loudest of which had a false-alarm probability of 74.5%.

8.3.2 Distance exclusions

With our null observations and a large number of simulations, drawn from the

distributions of Table 2, we can constrain the distance to each GRB assuming it

was caused by a compact binary coalescence with a neutron star (with a mass

in the range [1, 3) M�) and a companion of mass mcomp. Section 5.2 contains the

details. In summary, for a given mcomp range, we used the approach of Feldman and

Cousins [69] to compute regions in distance where gravitational-wave events would,

with a given confidence, have produced results inconsistent with our observations.

Figure 47 shows the lower Feldman–Cousins distances for the 22 analyzed GRBs

at 90% confidence for two illustrative choices for the companion mass range. The

values are also listed in Table 5. Because the companion mass range has been

divided into equally spaced bins, we report on a ‘NS–NS’ system in which the

companion mass is in the range [1, 4) M� and a ‘NS–BH’ system in which the BH

has a mass in the range [7, 10) M�. The median exclusion distance for a NS–BH

system is 6.7 Mpc and for a NS–NS system is 3.3 Mpc. Note that these distances
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Figure 47 : Lower limits on distances at 90% CL to putative NS–NS and NS–BH progenitor systems,
as listed in Table 5 and explained in Sec. 8.3.2.
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were derived assuming no beaming (uniform prior on cos ι). NS–BH distances are

typically higher than NS–NS because more massive systems radiate more total

gravitational-wave energy. The excluded distance depends on various parameters:

the location of the GRB on the sky, the detectors used for the GRB, the noise floor of

the data itself, and the likelihood ratio of the loudest on-source candidate event for

the GRB.

A number of systematic uncertainties enter into this analysis, but amplitude

calibration error and Monte–Carlo counting statistics from the injection trials

have the largest effects. We multiplied exclusion distances by 1.28 × (1 + δcal),

where δcal is the fractional uncertainty. See Sec. 3.5 for discussion of the cali-

bration uncertainty for S5/VSR1. The factor of 1.28 corresponds to a 90% pes-

simistic fluctuation, assuming Gaussianity. To take the counting statistics into

account, we stretched the Feldman–Cousins confidence belts to cover the proba-

bility CL + 1.28
√

CL(1−CL)/n, where CL is the desired confidence limit and n

is the number of simulations contained in the (mcomp, D) bin for which we are

constructing the belt.

8.3.3 Population statement

In addition to the individual detection searches above, we would like to assess the

presence of gravitational-wave signals that are too weak to stand out above back-

ground separately, but that are significant when the entire population of analyzed

GRBs is taken together We compare the cumulative distribution of the false-alarm
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probabilities of the on-source sample with the off-source sample. The on-source

sample consist of the results of all 22 individual searches, including those for GRBs

with known redshifts, and the off-source sample consists of 6801 results from the

off-source trials. This number is lower than 22× 324, where 324 is the nominal

number of off-source trials for each GRB, because for some GRBs, some off-source

trials were discarded due to known data quality issues.

These two distributions are compared in Fig. 46. To determine if they are

consistent with being drawn from the same parent distribution, we employ the

non-parametric Wilcoxon–Mann–Whitney U statistic, which is a measure of how

different two populations are (see Sec. 5.3 for details). With this size sample,

we can assume Gaussianity of the U statistic to a good approximation; in this

approximation, µU = 74811 and σU = 9224. Applying the U test, we find that

U = 75128.5 = µU − 0.07σ, suggesting that the two distributions are consistent with

each other; if the on-source and off-source significances were drawn from the same

distribution, they would yield a U statistic greater than what we observed 53% of

the time. Therefore, we find no evidence for an excess of weak gravitational-wave

signals associated with GRBs.

8.3.4 Discussion

We searched data taken with the three LIGO detectors and the Virgo detector for

gravitational-wave signatures of compact binary coalescences associated with 22

GRBs but found none. We were sensitive to systems with total masses 2 M� < M <
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40 M�. We also searched for a population of signals too weak to be individually

detected, but again found no evidence. While there are few redshift determinations

for short GRBs, it appears that the distribution is peaked around 〈z〉 ∼ 0.25 [21], far

outside of initial detector sensitivity, so it is not surprising that the S5/VSR1 run

yielded no detections associated with short GRBs.

A related search in the same LIGO/Virgo data set was performed in [103],

looking for short-duration gravitational-wave bursts in association with 137 GRBs

recorded during S5/VSR1, both long and short. The analysis reported upper

limits on the strain of a generic burst of circularly polarized gravitational radiation,

predominantly at the detectors’ most sensitive frequencies. These were translated

into lower limits in distance by assuming that 0.01 M� is converted into isotropically

emitted gravitational waves. In contrast, the search described here does not make

any assumption on the polarization of the gravitational waves and searches for the

specific signals expected from binary coalescenses. Importantly, the present search

can distinguish a coalescence signal from other models and estimate the progenitor

parameters.
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Chapter 9

Epilogue

Looking back, this thesis has provided a concrete workflow for searching for com-

pact binary coalescence counterparts to short gamma-ray bursts. We executed the

pipeline on S5/VSR1 LIGO/Virgo data, finding no serious candidates. We used the

null results to constrain the distance to the progenitors, assuming that they were

each compact binaries.

Astronomers have acknowledged LIGO’s first, small contributions to the GRB

mystery, providing additional evidence that GRB 070201 was a soft gamma repeater

[100]. In the Astro2010 decadal survey, in which the astronomical community

decides the priorities of the coming decade, ground-based gravitational-wave de-

tectors figured prominently [1, 2, 3, 4]. The Enhanced and Advanced configurations

of LIGO and Virgo hold great promise for detection [104]. The science run S6/VSR2

is currently underway with improved sensitivity over S5/VSR1. In 2014, Advanced

LIGO should operate with 10 times the initial sensitivity, or 1000 times the event
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rate. We will have the sensitivity to realize our science goals.

The LIGO Scientific Collaboration and the Virgo Collaboration are now wrestling

with the data analysis requirements in the Advanced detector era; our current

searches are clumsy, first prototypes. Our analysis strategy will need to shift from

analyzing a large block of data at a time to a streaming mode, where data are incor-

porated incrementally. We will need to integrate the current LIGO/Virgo transient

searches more tightly with other electromagnetic transient searches including the

Palomar Transient Factory and ROTSE. There are collaborations forming to search

for non-electromagnetic triggers such as ultra-high energy cosmic rays from Auger

or neutrinos from IceCube. We have begun to send triggers the opposite direction,

as well, launching rapid, automated, wide-field followup with robotic telescopes

with fast pointing capabilities such as Swift, ROTSE, and QUEST, with other optical

and radio telescopes under consideration. The likelihood ratio methods of Chap. 4

show the greatest promise of integrating evidence from all sides into coherent

statements about the universe. There is a lot of work ahead, but the payoff will be

great.
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