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Abstract

Direct detection of gravitational waves will require earth based detectors to measure strains
of the order 10−21, at frequencies of 100 Hz, a sensitivity that has been accomplished with the
initial generation of LIGO interferometric gravitational wave detectors. A new generation
of detectors currently under construction is designed improve on the sensitivity of the initial
detectors by about a factor of 10. The quantum nature of light will limit the sensitivity
of these Advanced LIGO interferometers at most frequencies; new approaches to reducing
the quantum noise will be needed to improve the sensitivity further. This quantum noise
originates from the vacuum fluctuations that enter the unused port of the interferometer
and interfere with the laser light. Vacuum fluctuations have the minimum noise allowed by
Heisenberg’s uncertainty principle, ∆X1∆X2 ≥ 1, where the two quadratures X1 and X2 are
non-commuting observables responsible for the two forms of quantum noise, shot noise and
radiation pressure noise. By replacing the vacuum fluctuations entering the interferometer
with squeezed states, which have lower noise in one quadrature than the vacuum state,
we have reduced the shot noise of a LIGO interferometer. The sensitivity to gravitational
waves measured during this experiment represents the best sensitivity achieved to date at
frequencies above 200 Hz, and possibly the first time that squeezing has been measured in
an interferometer at frequencies below 700 Hz. The possibility that injection of squeezed
states could introduce environmental noise couplings that would degrade the crucial but
fragile low frequency sensitivity of a LIGO interferometer has been a major concern in
planning to implement squeezing as part of baseline interferometer operations. These results
demonstrate that squeezing is compatible with the low frequency sensitivity of a full scale
gravitational wave interferometer. We also investigated the limits to the level of squeezing
observed, including optical losses and fluctuations of the squeezing angle. The lessons learned
should allow for responsible planning to implement squeezing in Advanced LIGO, either as
an alternative to high power operation or an early upgrade to improve the sensitivity. This
thesis is available at DSpace@MIT and has LIGO document number P1300006.

Thesis Supervisor: Nergis Mavalvala
Title: Professor of Physics
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Chapter 1

Introduction

Einstein used his theory of general relativity to predict the existence of gravitational waves

almost a century ago. Direct detection of gravitational waves would provide a new way of

observing the universe. Gravitational waves interact incredibly weakly with matter. This

means that they are unaffected by passing through the dense ionized gases that obscure

violent explosions and the early universe to electromagnetic observations, and could provide

rich new insight into events that are currently difficult to observe. The weakness of the

interaction with matter also means that direct detection is a tremendous challenge. A passing

gravitational wave induces a strain in any object it passes through, alternately stretching

and squeezing the object along orthogonal axes by an amount proportional to the length

of the object: h = ∆L/L. For the events that earth based detectors aim to observe the

expected strains is of the order 10−21. This means that a large part of the effort to detect

gravitational waves is aimed at reducing noise in the detectors to improve their sensitivity.

LIGO is a network of three detectors, one installed in Livingston Louisiana, and two in

Hanford Washington, one of which may move to India. LIGO was planned in phases of

increasing sensitivity, Initial, Enhanced and Advanced LIGO. Initial LIGO began in the

late 1990s, and achieved its design sensitivity in 2005. Enhanced LIGO was an upgrade

of the Initial LIGO interferometers testing some of the technologies planned for Advanced

LIGO, with a year long science run ending in late 2010. While Advanced LIGO construction
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Figure 1-1: Simple Michelson interferometer

began on two interferometers, one at Livingston and one at Hanford, one interferometer

was preserved in the Enhanced LIGO configuration for the experiment described in this

thesis. Squeezed states were injected into the interferometer, and a reduction in the quantum

noise was observed. We investigated technical noise couplings and the limits to the level of

squeezing to allow planning for full time implementation of squeezing in an Advanced LIGO

or third generation detector.

1.1 Interferometer as a gravitational wave detector

The simple Michelson interferometer illustrated in Figure 1-1 can be used to measure the

strain induced by a passing gravitational wave of the correct polarization. Laser light at

the frequency ω enters the interferometer where it is split by a beam splitter and sent down

two orthogonal arms. The beam-splitter is represented by the transformation from its input

fields to its output fields using the convention of [74, p 407]:

out = (BS) in BS =
1√
2

 1 i

i 1

 (1.1)
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In each arm the light acquires a phase shift as it travels to the end mirror and back. We will

call the phase shift φx or φy; they are proportional to the lengths of the two arms, Lx, Ly.

A passing gravitational wave with the optimal polarization changes the phases by [78]:

φx =
2ωLx
c

(
1 +

h+

2

)
φy =

2ωLy
c

(
1− h+

2

)
(1.2)

Writing the arm lengths in terms of common and differential parts, Lx = L+ + L− and

Ly = L+ − L− the phases can also be written in terms of common and differential parts:

φx = Φ + φ Φ =
2ω

c

(
L+ +

L−h+

2

)
φy = Φ− φ φ =

2ω

c

(
L− +

L+h+

2

)
(1.3)

And the propagation down the arms and back toward the beam-splitter is represented by:

A = eiΦ

 eiφ 0

0 e−iφ

 (1.4)

Now the interferometer output in terms of the input field is:

out = (BS)A(BS)in c

d

 = ei(Φ+π/2)

 sinφ cosφ

cosφ − sinφ

 0

b

 (1.5)

The photo-current measured by the detectors at the anti-symmetric port (c) and the reflected

port is:

Pas ∝ |c|2 = |b|2 cos2 φ

Prefl ∝ |d|2 = |b|2 sin2 φ (1.6)
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The differential arm length L− sets the ratio of the power at the antisymmetric port to the

reflected power. The operating point where no light exits the anti-symmetric port is called

the dark fringe. The interferometers are operated near this point, so L− = (π/2 + ∆dc)c/2ω.

Here ∆dc is an small offset known as the DC offset introduced so that the power at the dark

port will have a linear dependence on the gravitational wave strain. Using the small angle

approximation, the power at the antisymmetric port is:

Pas ∝ |b|2
(

∆2
dc +

2∆dcωL+

c
h+

)
(1.7)

At this operating point the power at the dark port has a linear dependence on the gravi-

tational wave strain. The goal of a worldwide network of interferometers is to measure a

time series of the power at the anti-symmetric port, and find evidence of a passing gravi-

tational wave. Because the strains expected are so small, on the order of 10−21, the noise

requirements for gravitational wave interferometers are very stringent. The main limiting

noise sources in current gravitational wave detectors are seismic noise, thermal noise, and

shot noise. Shot noise is one form of quantum noise, caused by the quantum nature of light.

Quantum noise is expected to limit the sensitivity at most frequencies in the next generation

of gravitational wave detectors.

1.2 Quantum Noise

1.2.1 Quantized fields

The quantized electric field in a single mode is written in terms of annihilation and creation

operators [42]:

E(t) = ε0

(
a(t)e−iωt + a†(t)eiωt

)
(1.8)

The factor ε0 is a normalization factor with dimensions of electric field, in SI units it is given

by
√

~ω/ε0V where V is the volume of the mode and ε0 is the permitivity of free space [42].
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This electric field operator is a Heisenberg picture operator which contains the full time

evolution of the system. In free space, or an empty cavity without losses, the annihilation

and creation operators here would be Schrödinger picture operators with no time dependence.

By allowing the annihilation and creation operators to have time dependence we can take

into account interactions, and describe noise on the field. The time dependent annihilation

and creation operators we have used are in the rotating frame at the optical frequency ω.

Inside of optical cavities the field only resonates when the round trip length (perimeter) of

the cavity is an integral number of wavelengths, so the mode frequencies are discreet. The

carrier frequency ω is the cavity resonance frequency:

ω = ωa,n =
2πc

nλ
(1.9)

where n is an integer. The Hamiltonian for this field is H = ~ωaa†(t)a(t). Outside of a cavity,

the mode volume becomes infinite and there are a continuum of modes at every frequency.

1.2.2 Noise in the sideband picture

Both classical and quantum noise on an optical field can be understood in terms of sidebands,

or in terms of noise quadratures. A field with a carrier frequency ω has noise at the frequency

Ω, and can be written as:

E(t) = (Ē + δE(t))eiωt + h.c. (1.10)

If the field is amplitude modulated it becomes:

(1 + Γ cos Ωt)Eeiωt + h.c = Eeiωt +
ΓE

2
ei(ω+Ω)t +

ΓE

2
ei(ω−Ω)t + h.c. (1.11)

A phase modulated field becomes:

Eeiωt+Γ cos Ωt + h.c. = Eeiωt +
iΓE

2
ei(ω+Ω)t +

iΓE

2
ei(ω−Ω)t + h.c. (1.12)
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Figure 1-2: Phasors of amplitude noise (left) and phase noise (right) in the sideband picture.
In the frame rotating at the carrier frequency ω the carrier is still in these diagrams while
the sidebands rotate at Ω, the signal at ω + Ω rotating clockwise while the idler at ω − Ω
rotates counter clockwise. (Sidebands have equal amplitudes)

In both cases the noise can be attributed to symmetric sidebands at the frequencies ω ± Ω

around the carrier. The phase relationship between the sidebands and the carrier determines

whether the noise is amplitude noise or phase noise. Amplitude noise is described by the

real part of δE/Ē, while phase noise is described by the imaginary part.

We can describe any noisy field as the sum of sidebands at different frequencies by writing

the annihilation operator in terms of Fourier components.

a(t) =

∫ ∞
−∞

dΩ√
2π
ã(Ω)eiΩt (1.13)

Using the convention that a†(t) = [a(t)]† we have [a(Ω)]† = a†(−Ω) [17, 40, p 440]. Using

Equation 1.8 the quantized electric field in terms of these Fourier components is:

E(t) =
ε0√
2π

∫ ∞
−∞

dΩ
[
ã(Ω)e−i(ω+Ω)t + ã†(−Ω)ei(ω+Ω)t

]
(1.14)

The operators ã(Ω) and ã†(−Ω) represent positive and negative frequency sidebands around

the carrier frequency. This would be more apparent if we had not separated out the time

dependence at the carrier frequency in Equation 1.8. In that case the translation property
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of Fourier transforms would give us Equation 1.14 as:

E(t) =
ε0√
2π

∫ ∞
−∞

dΩ
[
ã(ω + Ω)e−iΩt + ã†(ω − Ω)eiΩt

]
(1.15)

The limits of the integral sometimes only include positive frequencies, as in the papers

introducing the two photon formalism by Caves and Schumaker [9, 72] where the positive

and negative frequency components are treated as two different modes then combined (see .

In this thesis the transformation to the Fourier domain will be a Fourier transform over all

frequencies, following Collet and Gardiner [17,39].

1.2.3 Quadrature operators and variances

We can also write the field as the sum of two quadratures:

E(t) = ε0 (X1(t) cosωt+X2(t) sinωt) (1.16)

These two quadratures can be written in terms of static and fluctuating parts: X1,2 =

X1,2 + δX1,2(t). The static part describes the carrier while the fluctuating part describes a

modulation. Figures 1-2 and 1-3 show amplitude and phase modulation represented by fre-

quency components and in the plane of the two quadrature operators. Comparing Equations

1.16 and 1.8 the quadrature operators are:

X1(t) =
(
a(t) + a†(t)

)
(1.17)

X2(t) = −i
(
a(t)− a†(t)

)
(1.18)

We can define an arbitrary quadrature operator [7, p 6]:

X(θ) = X1(t) cos θ +X2(t) sin θ (1.19)

= a(t)eiθ + a†(t)e−iθ (1.20)
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Figure 1-3: The same fields as shown in Figure 1-2 one eighth of a cycle later at t = π/4Ω,
plotted in the plane of X1 and X2 . In this plane, the polar coordinate represents the phase
of the field while the radial coordinate is the amplitude. In the rotating frame, the carrier
field has a constant phase while upper and lower sidebands rotate around it at Ω in opposite
directions. Each of the individual frequency components is shown in red while the total field
is shown in black. In the case of amplitude modulation the sidebands add only amplitude
noise to the carrier, while in the case of phase modulation the phases are arranged so that
only phase noise is added.

If we set θ to the phase of the carrier, then δX(θ) is amplitude noise while δX(θ + π/2) is

phase noise. The quadrature operators can be written in the frequency domain by taking a

Fourier transform:

X̃1,2(Ω) =
1√
2π

∫ ∞
−∞

dΩeiΩtX1,2(t) (1.21)

In the frequency domain the transformation from the annihilation operators to the
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quadrature operators is the same as in the time domain: X̃1(Ω)

X̃2(Ω)

 =

 1 1

−i i

 ã(Ω)

ã†(−Ω)


X̃ = Rã (1.22)

The arbitrary quadrature operator in the frequency domain is:

X̃(Ω, θ) = ã(Ω)eiθ + ã†(Ω)e−iθ (1.23)

The quadrature variances are the quantities that we normally measure. Measurements always

have a finite bandwidth, W , which is normalized out of the power spectral density [7, p13]:

S(θ,Ω) =
1

W

∫ w/2

−w/2

∫ ∞
−∞
〈X(θ,Ω)X†(θ,Ω′)〉 dΩ′dΩ

S(θ,Ω) = 〈|X̃(θ,Ω)|2〉 = V (θ,Ω) (1.24)

which is the variance of X̃(Ω). This measurement is made by integrating the noise in a

frequency band called the resolution bandwidth, which is then normalized out. Equation

1.24 only holds if the noise is constant over the resolution bandwidth of the measurement.

1.2.4 Uncertainty relation

There is an uncertainty relation between orthogonal quadratures of the electromagnetic

field. Using the commutation relations for annihilation and creation operators,
[
a, a†

]
= 1,

the commutation relation for the single mode quadrature operators is:

[X1, X2] = 2i (1.25)
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Which means the uncertainties are governed by:

∆X1∆X2 ≥ 1 (1.26)

The variance of these quadrature operators are measured in the frequency domain by a

power spectral density, the uncertainty relation in the frequency domain is:

V (θ,Ω)V (θ + π/2,Ω) ≥ 1 (1.27)

1.2.5 Vacuum and coherent states
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(a) Semiclassical representation of the ground state.
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(b) Semiclassical representation of the coherent state.

Figure 1-4: Vacuum fluctuations at every sideband frequency add quantum noise to the
electromagnetic field. Coherent amplitude given by solid black arrow.
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The ground state and coherent state of the electromagnetic field can be understood as the

sum of uncorrelated sidebands. Due to vacuum fluctuations there is a finite probability of

having a single photon at each sideband frequency with a random phase, as shown in Figure

1-4a. The total field is the sum of all these sidebands. Since the fluctuations are random

and uncorrelated, we would expect a probability distribution for the total field would be

a Gaussian centered at the origin in the plane of X1, X2, with equal variance in the two

quadratures.

The coherent states are eigenstates of the single mode annihilation operator:

a |α〉 = α |α〉 (1.28)

The ground state is also a coherent state, with eigenvalue 0. We can expand the state α in

terms of number states and use the eigenvalue equation to find a recursion relation for the

coefficients:

a
∞∑
n=0

cn |n〉 = α
∞∑
n=0

cn |n〉

cn+1 =
α√
n
cn (1.29)

Using the normalization to find |c0|2 = e−|α|
2

we have found the coherent states in the basis

of number states.

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (1.30)

For a coherent state |α|2 = 〈n〉, so photon number measurements on a coherent state would

give a Poisson distribution [46]:

Pn = |cn|2 = e−〈n〉
〈n〉n

n!
(1.31)
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Using the fact that the number states are generated by: |n〉 = a†n/
√
n! |0〉:

|α〉 = e−|α|
2/2

∞∑
n=0

(αa†)n

n!
|0〉 = e−|α|

2/2eαa
† |0〉 (1.32)

We can write the vacuum state as |0〉 = e−α
∗a |0〉, and then we have [73]:

|α〉 = e−|α|
2/2eαa

†
e−α

∗a |0〉 = D(α) |0〉 (1.33)

The Baker Hausdorff formula can be used to write the displacement operator D(α) in the

more familiar form:

D(α) = e(αa†−α∗a) (1.34)

This operator is the generator of the coherent states, it is a displacement operator in the

sense that D−1(α)aD(α) = a + α. A classical harmonic oscillator starting at rest at the

equilibrium position (its ground state) can be put into a excited state by displacing the mass.

The quantum coherent states are the closest quantum approximation to these classical states

and can also be generated by displacing the ground state, using D(α).

The quadrature variances of a coherent state are:

V1 = 〈α|X2
1 |α〉 − 〈α|X1 |α〉2 = 1

V2 = 〈α|X2
1 |α〉 − 〈α|X1 |α〉2 = 1 (1.35)

These are minimum uncertainty states which satisfy the equality of the uncertainty principle:

V1V2 = 1.

1.2.6 Phase space representation of quantum fields

The plane of X1 and X2 from Figure 1-3 is a phase space for a classical field. We would like

to represent a quantum state as a distribution in phase space, using the plane of X1, X2.
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The expectation values for the quadrature amplitudes for a coherent state are:

X1 = 〈α| a+ a†

2
|α〉 = Re[α] (1.36)

X2 = 〈α| a− a
†

2i
|α〉 = Im[α] (1.37)

To represent a state in the plane of X1, X2 it is natural to use the basis of coherent states.

Coherent states are an over-complete basis, any state can be represented as a linear combi-

nation of coherent states but the coherent states are not orthogonal. This means that in this

phase space the coherent states will not be points, but will have a finite width, representing

the variances of X1,2. One quasi-probability distribution we can use is the Q representation:

Q(α) = 〈α| ρ |α〉 /π (1.38)

where ρ is the density matrix. The Q function is normalized and always positive,
∫
Q(α)d2α =

1, as a classical phase space probability distribution would be. The Q representation of a

coherent state |β〉 is:

Q(α) =
1

π
e−|β−α|

2

(1.39)

These are Gaussian states, with a Gaussian quasi-probability distribution centered around β,

with equal widths in both quadratures. This quasi-probability distribution for the vacuum

or ground state and a coherent state are shown in Figure 1-5. There several similar phase

space representations of quantum states, the most commonly used are the P representation

and the Wigner function.

1.3 Quantum noise in interferometers

There are two dominant types of quantum noise in an interferometer with movable mirrors,

shot noise and quantum radiation pressure noise. Shot noise can be understood by the
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Figure 1-5: Q representation of ground state and coherent state
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Figure 1-6: Input and output fields of a Michelson interferometer
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random arrival times of photons at the photodetector, while radiation pressure noise can be

understood as motion of the mirrors caused by fluctuations in the radiation pressure on the

mirrors due to amplitude fluctuations in the arms. To understand the quantum behavior of

the interferometer, we need to take into account vacuum fields that we ignored in Section 1.1.

Figure 1-6 shows a diagram of a gravitational wave interferometer including the input field

that enters from the anti-symmetric port. Caves pointed out that both kinds of quantum

noise are caused by vacuum fluctuations entering at the dark port [8].

1.3.1 Quantum radiation pressure noise

The fields in the interferometer arms, which cause the radiation pressure on each of the end

mirrors are given by:  gout

fout

 =
1√
2

 1 i

i 1

 a

b

 (1.40)

The difference between the radiation pressure in the two arms can cause a change in l which

can mimic a gravitational wave signal [8]:

P ∝ f †outfout − g
†
outgout

∝ i(b†a− a†b) (1.41)

Since b is the field of the input laser, we can assume that it is in a coherent state with a

large amplitude, and replace b by |β|eiθb . The differential radiation pressure is then:

P ∝ |β|
(
aei(π/2− θb) + a†e−i(π/2− θb)

)
= |β|Xa(π/2− θb) (1.42)

Where Xa(θ) is the arbitrary quadrature operator for a, the quantum fluctuations that enter

at the dark port. The variance of P , which is proportional to the variance of the the quantum

fluctuations entering at the dark port, scaled by the laser power |β|2, causes the radiation
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pressure noise. The radiation pressure noise is filtered by the frequency response of a single

pendulum since the mirrors are harmonic oscillators in the restoring force of the earths

gravitational field. This means that radiation pressure noise is largest at low frequencies,

and falls off at higher frequencies.

1.3.2 Shot noise

Using Equation 1.5 and including the input field a the output fields are given by: c

d

 = ei(Φ + π/2)

 sinφ cosφ

cosφ − sinφ

 a

b

 (1.43)

The signal on the photo-detector is proportional to c†c:

c†c = a†a sin2 φ+ (b†a+ a†b)
sin 2φ

2
+ b†b cos2 φ (1.44)

Using the same operating point as in Section 1.1, φ = π/2 + ∆dc + ωLh+/c, we can make

the small angle approximation for ∆dc. We will also write the operators as the sum of a

constant and fluctuating part: b̄+δb, and a = δa since only quantum fluctuations enter from

the dark port. Assuming again that the laser is in a coherent state we can replace b̄ with

|β|eiθb . Dropping terms that are products of fluctuations we get:

c†c = −
(

∆dc +
ωLh+

c

)
|β|Xa(−θb) +

(
∆dc +

ωLh+

c

)2 (
|β|2 + |β|δXb(−θb)

)
(1.45)

∆dc is small, ωLh+/c is very small, while |β| is large; the average signal is of the order

(∆dc|β|)2. We will keep terms that are smaller by one factor of ∆dc or 1/|β|.

c†c = (∆dc|β|)2 +
2ωLh+

c
∆dc|β|2 −∆dc|β| (Xa(−θb)−∆dcδXb(−θb)) (1.46)

c†c = (∆dc|β|)2 +
2ωLh+

c
∆dc|β|2 −∆dc|β|Xa(−θb) (1.47)
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Since Xa and δXb will be of the same order of magnitude, the ∆dcδXb term will be small

compared to noise due to fluctuations that enter from the dark port. Comparing Equations

1.47 and 1.42 the fluctuations that cause shot noise are in an orthogonal quadrature to those

that cause radiation pressure noise.

To understand how sensor noise limits the sensitivity of a measurement, we need to

calibrate the sensor noise in terms of gravitational wave strain.

shot noise limited sensitivity =
quantum noise of c†c

d(c†c)

dh+

∝ 1

|β|
(1.48)

The sensitivity of a simple Michelson interferometer to gravitational waves scales with the

input power, shown in Equation 1.7, meaning that the shot noise limited sensitivity is in-

versely proportional to the laser amplitude. By increasing the laser power, the shot noise

limited sensitivity can be improved, while increasing the quantum radiation pressure noise.

Advanced LIGO has increased the laser power to lower the shot noise limit, and increased

the mirror masses to counteract the increased level of radiation pressure noise. The laser

power used will test the limits of available technologies, and further increases in laser power

and mirror mass will be difficult and expensive.

To increase the effective arm length the LIGO interferometers have Fabry-Perot arms

which add a frequency dependence to the calibration of the signal in terms of gravitational

wave strain. For an interferometer with Fabry-Perot arms the calibration of power at the

antisymmetric port in gravitational wave strain has a frequency dependence [32]:

quantum noise of c†c

d(c†c)

dh+

∝ 1 + i2Ωτs
|β|

(1.49)

where τs is the storage time of the arm cavities. This means that the spectrum of quantum

noise calibrated in units of gravitational wave strain has a positive slope above the half width

of the arm cavities, as shown for Advanced LIGO in Figure 1-7. Once Caves clarified that the

vacuum fluctuations at the dark port cause the dominant quantum noise in an interferometer,
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Figure 1-7: Quantum noise limited sensitivity of Advanced LIGO, shown by the purple trace.
The shot noise dominates above 100 Hz, calibrated in units of gravitational wave strain the
shot noise limit increases with frequency above the arm cavity pole. The gray trace shows
the design sensitivity, which is limited by quantum noise at most frequencies in the detection
band [53].
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he suggested that the noise could be reduced by replacing the vacuum fluctuations with a

state with a smaller variance in one quadrature.

1.4 Squeezed States

The uncertainty principle places a minimum on the product of the quadrature variances.

For a Gaussian state this is a minimum area in phase space that the state must occupy.

However, the uncertainty principle places no minimum on the variance of either quadrature

alone, so it is possible to have states with smaller variance in one quadrature than a coherent

state, as long as the variance of the orthogonal quadrature is larger. These states are called

quadrature squeezed states, and in phase space they resemble a coherent state which has

been squeezed.

1.4.1 Two photon coherent states

Yuen considered states that are eigenstates of a linear combination of the annihilation and

creation operators [92]:

b |β〉 =
(
µa+ νa†

)
|β〉 = β |β〉 (1.50)

where |µ|2 − |ν|2 = 1 and |ν/µ| < 1. He called these states two-photon coherent states,

the coherent states discussed in Section 1.2.5 are a special case when ν = 0. This operator

has the same commutation relation as the annihilation and creation operators: [b, b†] =

(|µ|2 − |ν|2)[a, a†] = 1. By writing a and a† in terms of b and b† and using the eigenvalue

equation, it is straightforward to find expectation values for the quadrature operators and

their variances on these states. We will use the notation:

tanh |ζ| =
∣∣∣∣νµ
∣∣∣∣ ν

µ
=

∣∣∣∣νµ
∣∣∣∣ eiθ ζ = |ζ|eiθ (1.51)

38



Π

2
Π

3 Π

2
2 Π

0.5

1.5

2

V1 V2

V2

V1

Figure 1-8: Quadrature variances of two photon coherent states with β = 0 and tanh |ζ| = 0.4
as θ varies. When the variance of one quadrature is less than one, showing squeezing, the
other quadrature has increased variance, called anti-squeezing. When θ is an integral multiple
of π, the state is a minimum uncertainty state, and the product of the variances in the two
quadratures is one.

As shown in Figure 1-8 these states can have a variance less than the coherent state, and

can be minimum uncertainty states. When θ = 0 the variances are:

V1 =
1− tanh ζ

1 + tanh |ζ|
= e2|ζ| (1.52)

V2 =
1 + tanh ζ

1− tanh |ζ|
= e−2|ζ| (1.53)

The decreased noise in one quadrature is called squeezing, while the increased noise in the

other we will refer to as anti-squeezing.

1.4.2 Photon statistics

The eigenstates of the generalized number operator b†b = m |m〉 are generated from the

generalized zero state:

|m〉 =
b†m√
m!
|0〉b b |0〉b = 0 (1.54)
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An argument exactly analogous to the one leading to Equations 1.30 and 1.31 shows that

measurements of the generalized number operator b†b on the two photon coherent states will

result in a Poisson distribution, just like measurements of the number operator on a coherent

state [46]. We can write the two photon coherent state in terms of number states following

the same procedure used in section 1.2.5 to find a recursion relation [46]:

cn =
βcn−1 − ν

√
n− 1cn−2

µ
√
n

(1.55)

The normalization
∑
|cn|2 = 1 gives |c0| = 1/

√
cosh |ζ|. The coefficients for the generalized

zero state |0〉b are found by setting β = 0.

c2n+1 = 0

c2n =

(
−ν
µ

)n√
(2n− 1)!!

(2n)!!
c0 =

(
−ν
2µ

)n √
(2n)!

n!
√

cosh |ζ|
(1.56)

This is a state with an even number of photons. The state |1〉b = b† |0〉b, and any odd

generalized number state includes only odd photon number states.

1.4.3 Squeezing operator

To find the generator of these states we can follow a procedure similar to the one used to

show that the displacement operator generates coherent states:

|0〉b =
∞∑
n=0

c0

(
−ν
2µ

)n
a†2n

n!
|0〉 = c0e

(−νa†2/2µ) |0〉 (1.57)

We can re-write the vacuum state as:

|0〉 = (cosh |ζ|)−a
†ae(tanh |ζ|e−iθa2/2) |0〉 (1.58)
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using the fact that a |0〉 = 0. So that our generalized ground state has become:

|0〉b = e(− tanh |ζ|eiθa†2/2)(cosh |ζ|)−(a†a+ 1/2)e(tanh |ζ|e−iθa2/2) |0〉

= S(ζ) |0〉 (1.59)

This operator S(ζ) has been shown [37] to be the same as the unitary squeezing operator:

S(ζ) = exp ((ζ∗a2 − ζa†2)/2) (1.60)

This is an operator that creates or destroys photons two at a time. The squeezed coherent

states are generated by [89]:

|α, ζ〉 = D(α)S(ζ) |0〉 (1.61)

The squeezed state with α = µβ − νβ∗ is equivalent to the two photon coherent state

|β〉 [89, p19].

The Q representation quasi-probability distribution of the pure squeezed stateD(α1)S(ζ) |0〉

is [42]:

Q(α) =
1

π cosh |ζ|
exp

(
−|α|2 − |α1|2 +

α∗1α + α1α
∗

cosh |ζ|

−tanh |ζ|
2

[
eiθ
(
α∗21 − α∗2

)
+ e−iθ

(
α2

1 − α2
)])

(1.62)

Figure 1-9 shows quasi-probability distributions for a few squeezed states. In phase space

these states look similar to the coherent and vacuum states, but they have been squeezed.

1.4.4 Squeezed vacuum state

The term squeezed vacuum state is used to refer to the state S(ζ) |0〉, which has a equivalent

generalized zero state with β = 0. The quadrature operators are proportional to the electric

(X1) and magnetic (X2) field amplitudes, and the expectation values for a two photon
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Figure 1-9: Squeezed states

coherent state are:

〈β|X1 |β〉 = 2 Re[µ∗β − νβ∗] (1.63)

〈β|X2 |β〉 = −2 Im[µ∗β − νβ∗] (1.64)

when β = 0 these are zero just as for the ground state. These states are vacuum states in the

sense that the average amplitude is zero. We cannot identify a quadrature operator as an

amplitude or phase quadrature operator for either the ground state or the squeezed vacuum

states, since we do not have the phase of the coherent amplitude to use as a reference.

Although the squeezed vacuum states have zero amplitude, they do contain more photons

than the ground state. The average energy of the state is proportional to the photon number
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expectation value:

~ω(
1

2
+ 〈β| a†a |β〉) = ~ω

(
1

2
+ |ν|2 + (|µ|2 + |ν|2)|β|2 − 2 Re[ν∗µ∗β2]

)
(1.65)

For a squeezed vacuum state this is ~ω(|ν|2 + 1/2) = ~ω(sinh2 |ζ|+ 1/2). The ground state

is the minimum energy state where ν = ζ = 0. The energy of a squeezed state must be

larger than that of the ground state, simply because a squeezed state is different from the

ground state. A pure traveling wave squeezed state with 15 dB of squeezing, meaning that

10 log10 V = −15 for one quadrature, has 7.4 photons per second, or 1.4 attoWatts more

power than the vacuum fluctuations. For any practical purpose, we can say that there is no

power in a squeezed beam. Although these states have higher energy than the vacuum state,

we will call them squeezed vacuum states. They are vacuum states in the sense that they

have no coherent amplitude. The variance the of the photon number for a squeezed vacuum

state is:

〈(a†a)2〉 − 〈a〉2 =
(
|µ|2 − |ν|2

)
|ν|2 = |ν|2 (1.66)

This is a distribution where the mean is the same as the variance, although it clearly is not

a Poisson distribution, as shown in Figure 1-10. For a squeezed state with a coherent ampli-

tude the photon number distribution can be narrower or wider than a Poisson distribution,

depending on the squeezing angle.
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Figure 1-10: Photon statistics of squeezed vacuum. Probability distribution for photon
number measurements on a squeezed vacuum state with 15 dB of squeezing. This state has
a photon number expectation value of 7.5. For reference the Poisson distribution with a
photon number expectation value of 7.5 is shown by the red dots.
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Chapter 2

Generation and Detection of Squeezed

States

2.1 Second order optical nonlinearity

There are a few methods for generating squeezed states of light, [19, 76], but to date the

most reliable method with the highest level of demonstrated squeezing uses nonlinear crys-

tals with a second order nonlinearity in parametric down-conversion. In these crystals the

displacement field has a term that is proportional to the square of the electric field [6]:

~D = ε0

(
[1 + χ(1)] ~E + χ(2) ~E2 + ...

)
(2.1)

This results in a displacement field that can include components at different frequencies

than the input fields: a χ(2) nonlinearity can be used to generate sum and difference fre-

quencies. We use the interactions between a fundamental field at the frequency of the main

interferometer laser (ω), with annihilation operator a and a second harmonic field with an

annihilation operator b and frequency (ωp ≈ 2ω). In second harmonic generation the energy

of two photons at the fundamental frequency is combined to make one photon at the second

harmonic frequency. In optical parametric amplification or optical parametric oscillation,
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the energy from one second harmonic (or pump) photon is split into two lower frequency

photons, called the signal and idler. We use degenerate optical parametric oscillation (OPO),

where the energy of the signal and idler are the same.

The Hamiltonian for these fields inside of a lossless cavity is:

Hcav = ~ωaa†a+ ~ωbb†b+
i~
2

(
εa†2b− ε∗a2b†

)
(2.2)

Here ωa is the cavity resonant frequency for the fundamental field, ωb the cavity resonant

frequency for the second harmonic frequency, and ε is the nonlinear coupling parameter,

which is real when the crystal temperature is optimal. This Hamiltonian describes a two

photon processes for the fundamental field, where photons are created or destroyed two at

a time. The interaction has the form of the quadratic Hamiltonians that Yuen recognized

would generate his two photon coherent states [92].

2.1.1 Lossless optical parametric oscillator

The next several sections will contain a calculation of the squeezing that we can expect

under realistic conditions. With a few simplifications we can easily see why the Hamiltonian

of Equation 2.2 will produce squeezed states. An optical parametric oscillator (OPO) is a

cavity with one of these crystals placed inside, and a strong pump field injected at the second

harmonic frequency. In this case we can use the parametric approximation and assume that

the pump is in a coherent state with a large amplitude and is not depleted by its interaction

with the fundamental field, which will be small. Replacing b with βeiωpt, assuming that the

pump frequency is twice the fundamental field frequency, ωp = 2ω and that both fields are

on resonance (ωa = ω, ωb = ωp = 2ω) and that ε is real the Hamiltonian in a lossless cavity

becomes:

Hcav = ~ωa†a+
i~ε
2

(
βei2ωta†2 − β∗e−i2ωta2

)
(2.3)
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Moving into the interaction picture where the operators evolve with the time dependence

of the background Hamiltonian ~ωa†a and the states evolve according to the time evolution

due to the interaction Hamiltonian:

a→ eiωta

a† → e−iωta† (2.4)

i~ε
2

(
βei2ωta†2 − β∗e−i2ωta2

)
→ i~ε

2

(
βa†2 − β∗a2

)
= V (2.5)

The interaction Hamiltonian V is now time independent and so the time evolution of the

state is given by:

Û = e−iV t/~ = exp

(
εβta†2 − εβ∗ta2

2

)
(2.6)

This is just the squeezing operator from Equation 1.60 with ζ = εβt. This cavity squeezes

a state that propagates through it, producing a pure squeezed state. As soon as losses are

introduced, the state produced will be a mixture of squeezed states and vacuum states, or

potentially other fields. Although the lossless cavity provides a simple way to see why second

order nonlinearities will create a squeezed state, it is not realistic. If the cavity were truly

lossless, the dynamics inside the cavity would have no impact on external fields, and would

not be useful in most applications.

2.2 Hamiltonian for field in a cavity with loss

To understand how an OPO creates squeezing of the external field, which can be injected

into an interferometer or measured on a homodyne detector, we need to introduce damping

through cavity loss. Quantum systems with damping will always evolve to a mixed state,

even if they start in a pure state. There are a few approaches to damping in quantum

systems; we will follow Collet and Gardiner [17,39] and use the quantum Langevin approach.

Once we have equations of motion for the cavity operators, we can use them to relate the
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input, output and cavity fields and find the level of squeezing we expect to produce based

on cavity parameters. This calculation can be found in many theses and books on quantum

optics, [7, 56, 64, 89]. We will set up the basic calculation here in a way that will allow

us to take into account experimental realities such as laser noise, cavity length noise, and

temperature fluctuations in Chapter 5.

The total Hamiltonian for a cavity with loss is [39]:

H = Hcav +
∑
j

Hj
bath +Hj

int (2.7)

There will be multiple partially reflective mirrors (couplers) where the cavity field interacts

with external fields, denoted by the index j. All of these operators are Heisenberg picture

operators, that include all of the time evolution information. Once we find equations of

motion for these operators we will move back to the rotating frame and use equations for the

slowly varying operators introduced in Section 1.2. One way to find the bath and interaction

Hamiltonians is to consider the interaction between two coupled cavities and let the length of

one of the cavities go to infinity [79]. As the length of the second cavity increases the mode

spacing decreases until the fields become a continuum of modes at every frequency. As the

length of the cavity goes to infinity the probability of a photon that escapes to the second

cavity returning to the first becomes negligible, and the interaction becomes an irreversible

loss. Hj
bath is the Hamiltonian of all the external modes that couple to the cavity modes

through the coupler j,

Hj
bath =

∫ ∞
−∞

~ωA†j(ω)Aj(ω)dω +

∫ ∞
−∞

~ωB†j (ω)Bj(ω)dω (2.8)

For each coupler j, Aj(ω) and Bj(ω) are bath modes for the fundamental and second har-

monic modes respectively. These are continuum modes, and the annihilation and creation

operators have units of
√

photons/frequency. Hj
int describes the interaction between cavity
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modes and external modes:

Hj
int = i~

∫ ∞
−∞

√
2γja

[
A†j(ω)a− a†Aj(ω)

]
+

√
2γjb

[
B†j (ω)b− b†Bj(ω)

]
dω (2.9)

Terms like aA(ω) and a†A†(ω), as well as all interactions between the pump and fundamental

fields through the cavity couplers are at frequencies that will be far off resonance in the cavity

and have been neglected in the rotating wave approximation. We are considering multiple

modes of the external field, but only one mode cavity mode. External fields which are slightly

off resonance can excite the cavity mode, just as laser light that is slightly off resonance can

excite an atomic transition. γjr,g is a field decay rate associated with the coupler, given by

γ = (1−
√
R)/τ where R is the power reflectivity of the coupler at the appropriate wavelength

and τ = c/p is the cavity round trip time (p is the cavity perimeter) [82]. If the total cavity

losses are low, the decay rates can be approximated as T/2τ where T is the coupler power

transmission.

2.3 Equations of motion for nonlinear cavities

Using the Hamiltonian from Equation 2.7, we can use Heisenberg’s equation of motion to

find equations of motion for the operators. The equations of motion are:

da

dt
=
i

~
[Hcav, a] +

∑
j

i~
√

2γja

∫ ∞
−∞

dωAj(ω) (2.10)

db

dt
=
i

~
[Hcav, b] +

∑
j

i~
√

2γjb

∫ ∞
−∞

dωBj(ω) (2.11)

dA

dt
=
∑
j

−iωAj(ω)−
√

2γjaa (2.12)

dB

dt
=
∑
j

−iωAj(ω)−
√

2γjaa (2.13)
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and similarly for the hermitian conjugates of these operators. Defining input and output

bath fields as [64]:

Aj,in(t) =

∫ ∞
−∞

dωe−iω(t− t0)Aj(ω, t) (2.14)

Aj,out(t) =

∫ ∞
−∞

dωe−iω(t− t1)Aj(ω, t) (2.15)

and similarly for Bj,in, Bj,out and hermitian conjugates, where t0 is an earlier time than t and

t1 is a later time than t. We can integrate Equations 2.12 and 2.13 for A(ω) and B(ω) and

substitute to solutions back into Equations 2.10 and 2.11. Using the definitions of the input

and output baths, we find two equations of motion for each operator a, a†, b, b†:

ȧ = − i
~

[a,Hcav]− γtota a+
∑
j

i~
√

2γiaAj,in (2.16)

ȧ = − i
~

[a,Hcav] + γtota a−
∑
j

i~
√

2γiaAj,out (2.17)

where γtota =
∑

j γ
j
a is the half width at half maximum of the cavity transmission in angular

frequency units in the limit that the cavity losses are low. Subtracting Equation 2.16 from

Equation 2.17 we can find separate boundary conditions for each coupler, known as the

input-output relations:

√
2γjaa = Aj,in + Aj,out (2.18)

The equations similar to Equations 2.16, 2.17, and 2.18 for other operators can be found

by substituting a → (a†, b, b†), Aj,in → (A†j,in, Bj,in, B
†
j,in) and Aj,out → (A†j,out, Bj,out, B

†
j,out).

We have followed the convention used in references [17, 64, 89] while different conventions

used for the Langevin equations in some references [39,40,79] lead to different input-output

relations.
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The equations of motion with our nonlinear cavity Hamiltonian become:

ȧ = −
(
γtotr + iωa

)
a+ εa†b+

∑
i

√
2γirAin,i (2.19)

ȧ† = −
(
γtotr − iωa

)
a† + ε∗ab† +

∑
i

√
2γirA

†
in,i (2.20)

ḃ = −
(
γtotg + iωb

)
b− ε∗

2
a2 +

∑
i

√
2γigBin,i (2.21)

ḃ† = −
(
γtotg − iωb

)
b† − ε

2
a†2 +

∑
i

√
2γigA

†
in,i (2.22)

Making the substitutions a′ = aeiωt, A′ = Aeiωt, b′ = bei2ωt, and B′ = Bei2ωt we find

equations for the slowly varying envelope operators:

ȧ′ = −
(
γtotr − i∆a

)
a′ + εa†′b′ +

∑
i

√
2γirA

′
in,i (2.23)

ȧ†′ = −
(
γtotr + i∆a

)
a†′ + ε∗a′b†′ +

∑
i

√
2γirA

†′
in,i (2.24)

ḃ′ = −
(
γtotg − i∆b

)
b′ − ε∗a′2

2
+
∑
i

√
2γigB

′
in,i (2.25)

ḃ†′ = −
(
γtotg + i∆b

)
b†′ − εa†′2

2
+
∑
i

√
2γigB

†′
in,i (2.26)

where ∆a = ω − ωa and ∆b = 2ω − ωb. These primed operators are the slowly varying

envelope operators introduced in Section 1.2, from now on we will drop the primes. Ignoring

any input fields that include only quantum fluctuations, these are the classical equations of

motion given by Drummond [23], and we will use them to calculate the classical behavior of

our nonlinear cavities in Section 3.2.

2.4 Optical parametric oscillator equations of motion

Now we will specialize the equations of motion for a generic nonlinear cavity to include

only the terms that we need to understand the vacuum squeezing produced by an OPO.
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Figure 2-1: Optical parametric oscillator with input and output fields needed to produce
vacuum squeezing. Green lines represent the second harmonic field, while dashed red lines
represent the vacuum fluctuations or squeezed vacuum fluctuations at the fundamental fre-
quency.

Our OPO uses no coherent input fundamental field and a strong coherent input field at the

harmonic frequency, illustrated in Figure 2-1. The green pump field is coupled into the cavity

through the same coupler that is the output coupler for the squeezed field, which we will

call the front coupler, γfr,g. The cavity losses are represented by another coupler, γlr,g. We

can write each of the slowly varying envelope operators as a sum of constant and fluctuating

parts, a = ā + δa(t). Since the only inputs at the fundamental frequency are the vacuum

fluctuations, the circulating fundamental field has no constant steady state amplitude, only

fluctuations δa(t). Making the approximation that the pump field is large compared to

quantum fluctuations, we can ignore the terms εa2(t)/2 +
√

2γlbδBl,in(t) in Equation 2.25.

This is known as the parametric approximation; using it Equation 2.25 becomes the equation
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for a classical field in a cavity without a nonlinear crystal:

b =

√
2γfgBin,f

γtotg − i∆b

(2.27)

If we set the frequency of the pump field to 2ω then in the rotating frame b is a constant,

β = |β|eiθp . Equations 2.23 and 2.24 are now a pair of coupled linear differential equations:

δȧ = γtotr Mδa +
√

2γlrδAl,in +

√
2γfr δAf ,in (2.28)

where

δa =

 δa

δa†

 (2.29)

and similarly for δAl,in and δAf ,in. The matrix M is:

M =

 −1 + i
∆a

γtotr

εβ

γtotr
ε∗β∗

γtotr
−1− i∆a

γtotr

 (2.30)

The off diagonal elements, due to the nonlinearity, create correlations between the operators

and their hermitian conjugates, and are responsible for the squeezing. The normalized

nonlinear interaction strength is given by:

x =
|ε||β|
γtotr

(2.31)

This is the ratio of the round trip gain to the round trip losses for the fundamental field.

When it is 1 or above the cavity can produce a field with a coherent amplitude at the

fundamental frequency, known as spontaneous subharmonic generation. We always operate

the OPO below this threshold.

The matrix M contains three terms that describe experimental quantities that can vary
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and affect the squeezing produced by the OPO: β, ε, and ∆a. We will write M as the sum of

a constant and fluctuating part: M = M + δM(t). In Chapter 5 we will consider the impact

of the fluctuations on the squeezing produced and measured, but for now we will ignore the

fluctuating part, and assume that the interaction is perfectly phase matched so that ε is real.

Taking a Fourier transform of the time domain slowly varying envelope operators:

ã(Ω) =
1√
2π

∫ ∞
−∞

a(t)eiΩtdΩ (2.32)

Equation 2.28 becomes:

iΩδã = γtotr Mδã +
√

2γlrδÃl,in +

√
2γfr δÃf ,in (2.33)

Using the convention that c†(t) = [c(t)]† the Fourier transform of c†(t) is c†(−Ω) [40, p440].

The Fourier domain vectors of operators is:

δã =

 ã(Ω)

ã†(−Ω)

 (2.34)

and similarly for the operators a†, Al,in, Af,in. Using the translation property of the Fourier

transform to translate these frequency components of the slowly varying envelope opera-

tors back to frequency components of the Heisenberg picture operators with the full time

dependence (moving out of the rotating frame at ω):

 ã(Ω)

ã†(−Ω)

→
 ã(ω + Ω)

ã†(ω − Ω)

 (2.35)

The operators represent two symmetric sidebands around the carrier frequency ω, however

they should not be confused with separate modes of the field. The intra-cavity operators in
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terms of the input operators are:

δã =
(
iΩI− γtotr M

)−1
[√

2γlrδÃl,in +

√
2γfr δÃf ,in

]
(2.36)

Using the input-output relation, the output field from the front coupler, in terms of the input

field, is:

δÃf ,out =

√
2γfr δã− δÃf ,in

=
(

2γfr
(
iΩI− γtotr M

)−1 − I
)
δAf ,in + 2

√
γlrγ

f
r

(
iΩI− γtotr M

)−1
δAl,in (2.37)

2.5 Quadrature variances of intra-cavity and output

fields

The variance of the quadrature operators set the noise level of any measurement we will make

using these states. Using the transformation R from Equation 1.22 we can find Equations

2.38 and 2.37 in terms of quadrature operators:

δX̃c =
(
iΩI− γtotr RMR−1

)−1
[√

2γlrδX̃l,in +

√
2γfr δX̃f ,in

]
(2.38)

δX̃f ,out =
(

2γfr
(
iΩI− γtotr RMR−1

)−1 − I
)
δXf ,in + 2

√
γlrγ

f
r

(
iΩI− γtotr RMR−1

)−1
δXl,in

(2.39)

The variance of these operators, measured by a power spectral density, are given by

V (Ω) = 〈|δX̃(Ω)|2〉 [7, sec 2.4.1]. A vector of variances for the vacuum state is:

Vvac = Vf ,in(Ω) = Vl,in(Ω) =

 〈|δX̃1(Ω)|2〉

〈|δX̃2(Ω)|2〉

 =

 1

1

 (2.40)

Since fluctuations in different fields and different quadratures of the vacuum are uncorrelated,

cross terms between different inputs are zero. The variance of the resulting fields are given
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by

Vout =
(

2γfr
(
iΩI− γtotr RMR−1

)−1 − I
)
◦
(

2γfr
(
iΩI− γtotr RMR−1

)−1 − I
)∗

Vinc

+ 4γlrγ
f
r

(
iΩI− γtotr RMR−1

)−1 ◦
[(
iΩI− γtotr RMR−1

)−1
]∗

Vl (2.41)

Vc = 2γtotr
(
iΩI− γtotr RMR−1

)−1 ◦
[(
iΩI− γtotr RMR−1

)−1
]∗

Vvac (2.42)

where ◦ indicates the element-wise product and ∗ is used here to mean the element wise

complex conjugate.

Assuming that the detunings are zero ∆a = 0, the temperature is set so that ε and

therefore x are real, the variances of the circulating fields are given by:

Vc =
2

γtotr



1 + x2 +

(
Ω

γtotr

)2

+ 2x cos θ(
(1− x)2 +

(
Ω

γtotr

)2
)(

(1 + x)2 +

(
Ω

γtotr

)2
)

1 + x2 +

(
Ω

γtotr

)2

− 2x cos θ(
(1− x)2 +

(
Ω

γtotr

)2
)(

(1 + x)2 +

(
Ω

γtotr

)2
)


(2.43)

To find the level of squeezing of the intra-cavity field we will find the ratio of the intra-cavity

field in the OPO to the variance a field would have if the cavity were empty, meaning that

x→ 0. The highest levels of squeezing will be observed at measurement frequencies that are

small compared to the cavity line-width, so that Ω/γtotr → 0. Then the level of squeezing is

given by:

V2(x, θ = 0)

V2(0, θ = 0)
=

1

(1 + x)2
(2.44)

Even as the normalized nonlinear interaction strength x approaches one, the value at thresh-

old, the maximum amount of squeezing of the intra-cavity field is -3 dB, or 50% reduction

in the variance compared to a vacuum state [73, 89].
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If we again let the detunings ∆a be zero, and x be real, we get values for the output field.

Vout(Ω, θ) =



1 +

4xηesc

(
2x+

(
1 + x2 +

(
Ω

γtotr

)2
)

cos θ

)
(

(1− x)2 +

(
Ω

γtotr

)2
)(

(1 + x)2 +

(
Ω

γtotr

)2
)

1 +

4xηesc

(
2x−

(
1 + x2 +

(
Ω

γtotr

)2
)

cos θ

)
(

(1− x)2 +

(
Ω

γtotr

)2
)(

(1 + x)2 +

(
Ω

γtotr

)2
)


(2.45)

Here ηesc = γfr /γ
tot
r is the escape efficiency, the fraction of the round trip power losses that

are due to the output coupler. If we let θ = 0 we get the usual results for amplitude squeezing

from an OPO [2,66,89]:

Vout(Ω, 0) =

 V+

V−

 =

 1 +
4xηesc

(1− x)2 + (Ω/γtotr )2

1− 4xηesc
(1 + x)2 + (Ω/γtotr )2

 (2.46)

This is a minimum uncertainty state if ηesc = 1, but not otherwise. We can now write

Equation 2.45 in a more compact form:

Vout =

 cos2 θ
2

sin2 θ
2

sin2 θ
2

cos2 θ
2

 V+

V−

 (2.47)

Since θ is the phase that determines which quadrature will be squeezed, we will call it the

squeezing angle, θsqz. In this idealized case the squeezing angle is the same as the phase of

the pump, but in Chapter 5 we will consider situations where they could be different. In

the context of gravitational wave detection, the measurement frequency (10 Hz-10 kHz) will

always be well within the cavity line-width of a few GHz, and Ω/γtotr can be set to zero.

In ideal limit where ηesc → 1 and x → 1 the variance of the output field approaches

zero. The higher level of squeezing on the output field is possible because the output field
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is the sum of the directly reflected field and the leakage field from the cavity. The nonlinear

process creates correlations between the leakage cavity field and the directly reflected field,

so that the noise of the total field can be reduced.

2.6 Propagation of squeezing

Throughout Chapter 1 we considered the field at a reference plane, and defined operators

in that reference plane, where z = 0. As the field propagates through space Equation 1.8

becomes:

E(t) = ε0

(
a(t)e−i(ωt−kz) + a†(t)ei(ωt−kz)

)
(2.48)

Where k is the wavenumber for the field. The equation for the field written in terms of

quadrature operators, Equation 1.16, is unchanged at different positions in space, so the

quadrature operators at a position z in terms of the annihilation and creation operators are:

X1(z) = aeikz + a†e−ikz (2.49)

X2(z) = i
(
aeikz − a†e−ikz

)
(2.50)

The quadrature that is squeezed rotates in the way that a classical phase would rotate as

the beam propagates through space:

X(θ, z) = X(θ + kz, 0) (2.51)

Although the squeezed vacuum does not have an amplitude and therefore ca not have a

phase in the classical sense because it has no amplitude, as it propagates through space the

squeezing angle changes in the same way that the phase of a classical field would.

As the squeezed state propagates it will also experience losses. Any loss can be modeled

as a beamsplitter with power reflectivity ηloss = 1 − L. In the quantum treatment of a

beamsplitter, we need to consider the fields that enter both ports of the beamsplitter, even
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δv

δain δaout

Figure 2-2: Beamsplitter model of loss

when one of the input fields is in the vacuum state. The output field is then:

δaout =
√
ηlossδain + i

√
1− ηlossδv (2.52)

And the variance of the output field is

Vout = ηlossVin + (1− ηloss)Vvac (2.53)

Vout,± = 1± 4ηescηlossx

(1∓ x)2 + (Ω/γtotr )2
(2.54)

There will be several different sources of loss cascaded in the path from the OPO to the

detector, the total propagation loss will be the product of the all of these losses. Even if a

pure squeezed state was incident on the lossy optic, it becomes mixed with the vacuum state,

meaning that it cannot be a minimum uncertainty state after losses are taken into account.

2.7 Homodyne detection

The requirements for reading out the gravitational wave signal are similar to requirements for

detecting squeezing. In both cases we want to measure small audio frequency modulations

on an optical frequency wave. There are two important requirements for accomplishing this:

the detector noise must be smaller than the modulations we are trying to measure, and the

59



signals should be demodulated at the laser frequency so that the signals we are trying to

measure will be at audio frequencies. Keeping the detector noise below the small signal from

a gravitational wave or quantum noise requires both amplifying the signal and keeping other

noise sources small. Both amplification and demodulation can be achieved by interfering the

signal beam with a local oscillator beam at the same frequency, a technique called homodyne

detection. For a thorough discussion of detection techniques see [10]. Figure 2-3 shows a

ae−iωt

be−iωt

de−iωt

ce−iωt

Figure 2-3: Homodyne detector

general schematic of a homodyne detection scheme, with two input fields ae−iωt and be−iωt.

The beamsplitter with power reflectivity R transforms the input fields to the output fields: ce−iωt

de−iωt

 =

 √
R i

√
1−R

i
√

1−R
√
R

 ae−iωt

be−iωt

 (2.55)
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The photocurrent at each detector becomes:

IC = ε2
0ηPD

(
|ce−iωt|2

)
= ε2

0ηPD

(
R|a|2 + i

√
R(1−R)

(
ba† − ab†

)
+ (1−R)|b|2

)
(2.56)

ID = ε2
0ηPD

(
|de−iωt|2

)
= ε2

0ηPD

(
(1−R)|a|2 + i

√
R(1−R)

(
ab† − a†b

)
+R|b|2

)
(2.57)

where ηPD is the quantum efficiency of the photodetector. The optical frequency time

dependence e−ωt has been removed from this measurement, so we can measure operators

that are defined in the rotating frame at the laser frequency. The sum and difference photo-

currents are:

Isum = ε2
0ηPD (Ic + ID) = ε2

0ηPD
(
|a|2 + |b|2

)
(2.58)

Idiff = ε2
0ηPD (Ic + ID) (2.59)

= ε2
0ηPD

(
(2R− 1)|a|2 + 2i

√
R(1−R)(ba† − ab†) + (1− 2R)|b|2

)
(2.60)

Homodyne detection can either be balanced, where R = 1/2 or unbalanced, and can either

use an external local oscillator or use self homodyne in which the same beam has both the

signal and the local oscillator.

2.7.1 Balanced homodyne detection with an external local oscil-

lator

The most commonly used method for measuring squeezing in table top experiments is bal-

anced homodyne detection, with an external local oscillator. If a is the signal field whose

noise we want to measure, then b is a local oscillator field, in a coherent state with an

amplitude much larger than a. In balanced homodyne detection Equation 2.60 becomes:

Idiff = ε2
0ηPDi

(
a†b− ab†

)
(2.61)
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The difference photo-current has no dependence on |a|2 and |b|2, which are proportional

to the intensity of each beam, and include the intensity noise. At the gravitational wave

frequencies where we are interested in measuring squeezing, typical laser beams have intensity

noise orders of magnitude larger that the quantum noise we are trying to measure, but the

common mode noise subtraction of balanced homodyne detection allows us to make quantum

limited noise measurements even when each individual beam has large classical intensity

noise. In practice, any beam-splitter will have a reflectivity slightly different than 50%,

limiting the suppression of intensity noise that can be achieved with balanced homodyne.

For a description of noise reduction in a homodyne detector of this type, see [80].

We can write the local oscillator as a constant and fluctuating part,

beiωt =
(
|β|e−iθb + δb(t)

)
eiωt

. Since our signal field is a vacuum state, there is no constant part and aeiωt = δa(t)eiωt.

After dropping the small terms δa†(t)δa(t) and δb(t)δa†(t) Equation 2.61 becomes:

Idiff = ε2
0ηPD|β|i

(
e−iθbδa†(t)− eiθbδa(t)

)
= ε2

0ηPD|β|δXa(θb − π/2) (2.62)

where δXa(θ) is the arbitrary quadrature operator of a defined by Equation 1.20. So the

balanced homodyne measures the arbitrary quadrature operator defined by Equation 1.20

on the signal beam, where the quadrature angle is determined by the phase of the local

oscillator. The signal is amplified by the amplitude of the local oscillator. The photocurrent

is amplified by a transimpedance gain R, and a power spectral density is measured by a

spectrum analyzer [7]:

Sdiff (Ω) = (ε2
0ηPD|β|R)2 〈|δX̃a(θb − π/2,Ω)|2〉

= (ε2
0ηPD|β|R)2Va(θb − π/2,Ω) (2.63)
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δve−iωt

[b+ δb(t)]e−iωt

de−iωt

ce−iωt

Figure 2-4: Balanced self homodyne

where Va(θ,Ω) is the arbitrary quadrature variance of a defined by Equation 1.24.

2.7.2 Self homodyne detection

Gravitational wave detectors that use a DC readout scheme, like Enhanced and Advanced

LIGO, use self homodyne to detect the gravitational wave signal [34, 78]. In self homodyne

the input field is
[
|β|eiθb + δb(t)

]
e−iωt. The first term is a DC offset due to a small offset of

the differential arm degree of freedom from the dark fringe, and acts as the local oscillator.

The signal, δb(t)e−iωt, consists of sidebands due to a gravitation wave passing through the

detector or due to noise. The sum photo-current, after dropping products of noise terms,

becomes:

Isum = ε2
0ηPD

[
|β|2 + |β|

(
δb(t)eiθb + δb†(t)e−iθb

)]
= ε2

0ηPD
[
|β|2 + |β|δXb(θb)

]
(2.64)

The power spectral density, defined by Equation 1.24 is:

Ssum(Ω) = (ε2
0ηPD|β|R)2Vb(Ω, θb) (2.65)
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This is a measurement of amplitude fluctuations on the signal field, in self homodyne detec-

tion there is no freedom to change the relative phase between the local oscillator and change

the measurement quadrature. The local oscillator beam used in the interferometer has very

low noise, reducing the need for noise rejection.

2.7.3 Balanced self homodyne detection

Enhanced LIGO used balanced self homodyne detection, where the beam-splitter power

reflectivity is 50%. The sum photo-current is the gravitational wave readout channel. Since

the input to the other port of the beamsplitter is the ground state, with a variance of one,

from Equation 2.63 the power spectral density of the difference photo-current in balanced

self homodyne is:

Sdiff (Ω) = (ε2
0ηPD|b̄|R)2 (2.66)

which is the shot noise level of b, with other types of noise suppressed by the common mode

rejection. This channel is known as the nullstream, and can be useful in understanding

the contribution of shot noise to the interferometer noise. When Sdiff (Ω) = Ssum(Ω), the

interferometer is shot noise limited and the coherent state is a good description of b. When

squeezing is injected into the interferometer, Sdiff is unchanged since its noise originates

from the vacuum fluctuations at the detection beam splitter, but Ssum can have lower noise.

A comparison of the two channels gives a real time measurement of the level of squeezing.

2.7.4 Unbalanced homodyne detection with an external local os-

cillator

To measure squeezing in the interferometer we use unbalanced homodyne detection, illus-

trated in Figure 2-5. Here a powerful local oscillator is reflected off of a beamsplitter with

a large reflectivity, a small fraction of it will be transmitted and interfere with the signal

beam which is mostly reflected. A high reflectivity beamsplitter reduces the loss for the
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δae−iωt

be−iωt ce−iωt

Figure 2-5: Unbalanced homodyne detection

ae−iωt

be−iωt

de−iωt

ce−iωt

be−iωt

ce−iωt

de−iωt

ae−iωt

Figure 2-6: Interferometer as a beamsplitter. The main laser input is b, while the dark port
input a is either vacuum or squeezed vacuum. d is the reflected field, and c is the field
detected to read out the gravitational wave signal.

small signal beam. An interferometer can be simplified and thought of as a beamsplitter, as

illustrated in Figure 2-6. Squeezing is injected into the dark port using a Faraday rotator,

replacing the vacuum fluctuations in a. From Equation 1.43 the matrix representing the

interferometer is:

IFO = ei(Φ + π/2)

 sinφ cosφ

cosφ − sinφ

 (2.67)

This matrix is unitary, because of the assumption that there is no loss in the arms. Since

it is also symmetric, it is an acceptable description of a beamsplitter although it is different

from the convention we used in Equation 1.40. The gravitational wave signal will be in
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the amplitude quadrature of c, we will use squeezing to reduce the quantum noise in this

quadrature. The output field c from the anti-symmetric port is the input field b to the

beamsplitter used in the balanced self homodyne detection described in Section 2.7.3. The

sum photo-current is proportional to Equation 1.47:

Ic = ε2
0ηPDc

†c = ε2
0ηPD(∆|β|)2 +

2ωLh+

c
∆|β|2 −∆|β|Xa(−θb) (2.68)

This will give a measurement of the variance of the input field, as long as the intensity

noise of b is lower than the quantum noise. In the interferometer the output field has much

lower intensity noise than a typical laser beam, and so we are able to use that beam as a

local oscillator in unbalanced homodyne detection. We can adjust the phase of the injected

squeezing to make sure that the quantum noise in the gravitational wave readout is reduced.

2.7.5 Detection losses

The detection process also introduces losses, which have the same effect as propagation

losses. Photodiodes are not perfectly efficient; we can think of the photodetector as an ideal

photodetector behind a beamsplitter with transmission ηPD, the quantum efficiency of the

photodiode [7, p 16]. The detector will measure the quantum noise of the field that is in the

same spatial mode as the local oscillator, if there is a misalignment of the squeezed beam the

measured beam will be a mixture of the squeezed beam and vacuum fluctuations that also

interfere with the local oscillator. The misalignment has the same effect as a loss, described

by the homodyne efficiency [7, p 20]:

ηHD = V2 =

(
Pmax − Pmin
Pmax + Pmin

)2

(2.69)

where the fringe visibility V can be measured by matching the power in the signal and local

oscillator beam and measuring the maximum and minimum of the interference fringes.
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2.8 Noise reduction due to squeezing

Combining the results from this chapter, the variance of the interferometer readout with

squeezing injected is the sum of the variance of the technical noise(Vtech(Ω) and the quantum

noise (V (θ,Ω)):

Vtot(Ω) = Stot(Ω) = Vtech(Ω) + V (θ,Ω) (2.70)

= Vtech(Ω) + V+(Ω) sin2 θsqz + V−(Ω) cos2 θsqz (2.71)

V±(Ω) = 1± 4xηtot
(1∓ x)2 + (Ω/γtotr )2

(2.72)

where ηtot = ηescηlossηHDηPD. We normally refer to the level of shot noise reduction using

logarithmic units:

dB(Ω) = 10 log10

S(Ω)|squeezing

S(Ω)|no squeezing

(2.73)

We often measure an amplitude power spectral density, which is just the square root of the

power spectral density, in that case

dB = 20 log10

S1/2(Ω)
∣∣
squeezing

S1/2(Ω)|no squeezing

(2.74)
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Chapter 3

Enhanced LIGO squeezing experiment

The potential for squeezing to improve the sensitivity of gravitational wave detectors pro-

vided an early motivation for both theoretical and experimental investigations of squeezing.

Caves predicted a sensitivity improvement from squeezing in 1981, and Xiao and colleagues

first demonstrated an improvement in the sensitivity of an interferometer at 1.6 MHz in

a proof of principle experiment 25 years ago [91]. In the last decade as full scale gravita-

tional wave detectors like LIGO and VIRGO have reached their design sensitivities, ongoing

work has brought squeezing closer to becoming a feasible technique for gravitational wave

astronomy. Table top experiments have shown noise reduction in interferometer configura-

tions more similar to gravitational wave detectors, at measurement frequencies of 5 MHz

and above [59, 86]. Squeezing down to approximately 30 kHz was demonstrated in a proto-

type LIGO interferometer with suspended mirrors in 2007, [43] and another important step

towards implementation in full scale detectors was achieved in 2011 with implementation of

squeezing down to 1 kHz in the GEO600 detector [15]. GEO has been able to implement

squeezing as part of normal operation, study the stability of the level of squeezing, and non

Gaussian noise introduced to the interferometer by squeezing.

The most promising astrophysical targets for earth-based gravitational wave detectors are

expected to emit at frequencies from 10s of Hz to a few kHz. A variety of noise sources, many

driven by acoustic or seismic noise, make precision measurements at these audio and sub-
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audio frequencies more difficult than higher frequency measurements. A variety of classical

noise couplings had to be overcome to produce squeezing at these low frequencies [58, 80].

Experience has shown that techniques that can successfully improve the performance of a

higher frequency interferometer introduce noise couplings that are not acceptable in a LIGO

interferometer. To confidently plan to implement squeezing in the astrophysical frequency

band below 1 kHz, it was necessary to test squeezing in an interferometer with high sensitivity

in this band.

A short window of opportunity to test squeezing in an Enhanced LIGO interferometer

opened in late 2011 while construction of Advanced LIGO was underway on two of the LIGO

interferometers. One of the interferometers at Hanford, WA was preserved in the Enhanced

LIGO configuration, and we were able to use it when the Advanced LIGO schedule allowed.

This work is complimentary to the work with squeezing done at GEO600 in the last few

years. While we had a shorter window of opportunity, the LIGO interferometers have orders

of magnitude better sensitivity in the crucial region around 100 Hz. We were able to use

squeezing to achieve the best sensitivity above 250 Hz that has been demonstrated in a

gravitational wave detector to date, and understand some of the challenges unique to low

frequency squeezing in a full scale gravitational wave interferometer.

3.1 Enhanced LIGO

To sense the incredibly small strains produced by gravitational waves LIGO interferometers

have some additional features and additional compelxtiy compared to the simple Michelson

interferometer discussed in the introduction. A simplified diagram of the Enhanced LIGO

layout is shown in Figure fig:ELIGOlayout. The light source is a Nd:YAG laser, capable of

producing 35 W of 1064 nm light. The main laser is prestabilized in frequency and intensity,

and filtered by an input mode cleaner to produce a beam with a pure spatial mode for

injection into the interferometer.

Because the expected gravitational wave strains are of the order 10−21, the long arms are

needed to increase the expected displacements. The LIGO interferometers use 4 km arms,
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Output Faraday Rotator

Anti-Symmetric (AS) pick-off

Mirror
Recycling
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Input test mass

Figure 3-1: Basic layout of Enhanced LIGO, not to scale

each of which is a Fabry-Perot cavity. The Fabry-Perot cavity circulates light for an average

of 130 round trips in each arm before leaking out toward the beam-splitter. This means that

the phase shift induced by a low frequency gravitational wave will be enhanced by a factor

of about 130. The cavities also act as a low pass filter for the gravitational wave signal, with

a cavity pole at 85 Hz [32]. The four optics that make up the Fabry-Perot arms are the

test masses used to detect gravitational waves, the mirrors closest to the beam-splitter are

called input test masses while the high reflectors at the ends of the cavities are known as

end test masses. These core interferometer optics are all suspended from vibration isolated

platforms, to reduce the coupling of seismic noise to motion of the optics. An active control
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system maintains the alignment of these suspended optics [22,47].

In addition to the arm cavities, LIGO makes use of a power recycling cavity: a nested

cavity formed by a partially transmissive power recycling mirror and the two arm cavities.

This additional cavity improves the shot noise limited sensitivity by increasing the power

at the beamsplitter by a factor of 40, so that with 20 W injected into the interferometer

there are 800 W at the beamsplitter and 5 kW in each arm. However, this high power

presents several practical challenges [22], including thermal lensing in the input test masses.

Advanced LIGO will be capable of increasing the input power by a factor of five, approaching

the limits of available technology. Squeezing provides an alternative to high power operation;

at some point squeezing will be simpler and lower risk than further increases in input power.

The gravitational wave signal is detected using homodyne detection at the antisymmetric

port. The low power (100s of mWs) beam leaving the AS port first passes through an output

Faraday isolator (OFI), to prevent scatter from any of the sensors or optics in the readout

chain from re-entering the interferometer and creating a parasitic interferometer. After the

output Faraday a small amount of the power at the antisymmetric port exits the vacuum

system onto the AS table which has several sensors used for alignment sensing and control,

and the heterodyne sensing scheme that is used initially to lock the interferometer. This

sensing scheme uses RF modulation sidebands for a locking scheme similar to Pound-Drever-

Hall (PDH), and at the AS port approximately 2/3 of the optical power was actually from the

sidebands at 24.5 MHz. The output mode cleaner(OMC) filters the AS beam to create a quiet

local oscillator, rejecting the RF sidebands and any power which is in in the wrong spatial

mode [34, 36, 78]. The main results from our experiment were obtained with the Enhanced

LIGO interferometer in this configuration, as close as possible to the configuration used

during LIGO’s flagship S6 science run.

Figure 3-2 shows the strain sensitivity of both the Hanford (H1) and Livingston (L1)

Enhanced LIGO detectors. The limiting noise source below 40 Hz is seismic noise. Thermal

noise from the mirror suspensions and the optical coating dominates from 40-100 Hz, and

shot noise dominates above 200 Hz. Quantum radiation pressure noise is buried orders
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Figure 3-2: Strain sensitivity of enhanced LIGO during S6 science run [16]

of magnitudes below the seismic noise in Enhanced LIGO; no quantum radiation pressure

effects were studied during this experiment.

3.2 Squeezed state source

Figure 3-3 shows a simplified layout of the squeezed light source. Both lasers are Nd:YAG

non-planar ring oscillators (NPROs). Two frequency stabilization servos (FSS1 and FSS2)

keep the pump laser locked to the H1 main laser frequency and the control laser locked at a

29.5 MHz offset. The pump laser is used to pump a second harmonic generator (SHG). This

is a standing wave cavity with a periodically poled KTiOPO4 (PPKTP) nonlinear crystal
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Figure 3-3: Simplified layout of squeezed state source. The pump laser is phase locked to a
small amount of light from the main H1 laser. The pump laser is used to pump the second
harmonic generator (SHG) which in turn pumps an OPO. A second laser, called the control
laser, is offset locked to the pump laser and injected into the OPO through a rear coupler.
This field is sensed both in reflection off of the OPO rear coupler and either at the homodyne
detector or at the interferometer AS table.
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that frequency doubles the fundamental field at 1064 nm to create the second harmonic at

532 nm. The length of the SHG is locked to the pump laser frequency using a Pound-Drever-

Hall (PDH) error signal sensed in transmission, and a piezoelectric transducer (PZT) on one

of the cavity mirrors as an actuator. The second harmonic beam produced by the SHG is

then used to pump the traveling wave OPO, which also contains a PPKTP crystal. The

OPO length is locked to the frequency of the second harmonic pump by a PDH signal sensed

in reflection off the cavity. The squeezed beam produced by the OPO is separated from the

reflected green beam by a dichroic mirror and sent either to a diagnostic balanced homodyne

detector or into the interferometer. The homodyne detector was designed and built at the

Max Planck Institute for Gravitational Physics in Hannover, Germany. The control laser,

used to control the squeezing angle, is injected into a rear coupler of the OPO. Inside the

OPO the nonlinear interaction creates a field at the difference frequency between the second

harmonic pump and the injected control field, which is 29.5 MHz below the frequency of the

cavity resonance. The injected and generated control fields are two symmetric sidebands on

the squeezing field, and used to control the squeezing angle. These sidebands are sensed both

in reflection off of the OPO rear coupler and at the antisymmetric port (or the diagnostic

homodyne detector when it is used). The combination of the two error signals are fed back

to the phase of the squeezer lasers to control the squeezing angle, as will be discussed in

Chapter 5.

3.2.1 Second harmonic generation in a cavity

γfr,shg, γ
f
g,shg γlr,shg, γ

l
g,shg

Af,in

Bf,out

Figure 3-4: Second harmonic generation cavity

Our SHG cavity is based on a design from AEI in Hannover Germany, similar to the SHG
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described in [11,85]. It uses a very compact design for mechanical and temperature stability.

We can use the equations of motion Equations 2.23-2.26 with the couplers and input and

output fields shown in Figure 3-4. Since we are not interested in the quantum behavior of

the SHG we ignore the input fields that are quantum fluctuations [7, 44]:

ȧ(t) = −(γtota,shg − i∆a(t))a(t) + εa†(t)b(t) +
√

2γfa,shgAin,f (t) (3.1)

ḃ(t) = −(γtotb,shg − i∆b(t))b(t)−
εa2(t)

2
(3.2)

Our SHG is resonant only for the infrared field, with an input coupler anti-reflection coated

for green so γtotb = γinb = 1/τshg. We can write each of the operators as the sum of a constant

and fluctuating part, ā+δa(t). Since we are interested in the steady state power produced by

the SHG, we take the time independent part of these equations and set the time derivatives

to zero [44, p 84]:

0 = −γtota,shgā+ εā†b̄+
√

2γina Āf,in (3.3)

0 = − 1

τshg
b̄− εā2

2
(3.4)

Using Equation 3.4 and the input-output relations, Equation 2.18, the output second har-

monic field in terms of the circulating fundamental field is:

b̄ =
−εā2τshg

2
(3.5)

B̄out
shg =

√
2/τshg b̄ = −εā2

√
τshg
2

(3.6)

The equation for the circulating field in terms of the incident field at the fundamental

frequency is nonlinear:

ā =

√
(2γinr,shg)Āin(

γtotr,shg +
ε2τshg|ā|2

2

) (3.7)
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The term ε2|ā|2τshg/2 is the rate at which the infrared field is lost to conversion to green

field, so we can write the ratio of loss through conversion to coupler losses:

αshg =
ε2|ā|2τshg

2γtotr,shg
(3.8)

The conversion efficiency of an SHG is the ratio of input power at the fundamental frequency

to output second harmonic power:

ηSHG =
P532

P1064

=
2|B̄out|2

|Āin|2
=

2γinr,shgτshgε
2|ā|2(

γtotr,shg +
ε2|ā|2τshg

2

)2 (3.9)

We can make the approximation that γina ≈ γtota to get an estimate for the value of αshg =

ε2|ā|2τshg/2γtotr,shg for our SHG in the configuration that we used it, where the conversion

efficiency was around 50%.

ηshg =
4αshg

(1 + αshg)2
(3.10)

With the approximation that γina ≈ γtota , the ratio αshg becomes the ratio of the intra-cavity

loss (all of which is due to conversion) to the input coupler transmission, which is 1 for a

critically coupled cavity, which would have 100% conversion efficiency. Our SHG has a value

of αshg less than 1. With our conversion efficiency of 50%, αshg ≈ 0.17. The best SHG

conversion efficiency we measured was 60% [81], 50% was a more typical efficiency.

3.2.2 Phase matching

For the nonlinear processes in SHG and OPO to be efficient, the phase relationship between

the harmonic and fundamental fields needs to stay fixed (or nearly so) as they propagate.

If the index of refraction for the two fields are different, they will acquire different phase

shifts as they propagate through the crystal. If the generated field (the second harmonic

in SHG or the fundamental field in OPO) becomes out of phase with the propagating field

which was generated earlier, they will interfere destructively and energy transfer will not
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Figure 3-5: Conversion efficiency as a function of input fundamental power. Our measure-
ments are plotted against a numerical solution [67] for the conversion efficiency assuming
that the input coupler reflectivity is 90%, the intracavity losses are 2%, and the single pass
nonlinear efficiency (harmonic power over fundamental power squared) is 0.17 (1/W)

be efficient. Since low-loss materials usually have normal dispersion, where the index of

refraction is a monotonically increasing function of frequency, achieving good phase matching

is one of the main challenges of working with nonlinear optics. The condition for a well

phase matched interaction can be formulated as momentum conservation from the input

(annihilated) photons to the output (created) photons:

∑
i

~ki =
∑
j

~kj (3.11)

SHG and degenerate OPO are opposite interactions: the inputs to SHG are the outputs of

degenerate OPO and vice versa. This means that the phase matching condition for SHG and

degenerate OPO are the same. With the fundamental frequency ωa, the second harmonic or
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pump frequency ωb and the index of refraction for the relevant polarization and frequency

given by n(ω) the phase matching condition becomes

∆k =
ωbn(ωb)

c
− 2

(
ωan(ωa)

c

)
= 0 (3.12)

From energy conservation we have ωb = 2ωa so the phase matching condition is:

n(ωa) = n(ωb) (3.13)

When the phase matching is not perfect, the strength of the nonlinear interaction depends

on the mismatch: ∆kLc where the interaction length Lc is the length of the crystal in which

the fields interact. For second harmonic generation without depletion, where the interaction

is weak enough so that the amplitude of the fundamental field is not affected by the nonlinear

interaction, the second harmonic power produced is given by [6, ch 2]:

I(∆kL) = Imax

(
sin ∆kLc/2

∆kLc/2

)2

(3.14)

where Imax is second harmonic power produced with perfect phase matching. There are

different methods for achieving phase matching, most of which make use of a crystal’s bire-

fringence and use combinations of different polarizations that will have the right indices of

refraction for the needed frequencies of light. To generate quadrature squeezing, the cor-

related photons produced by OPO need to interfere with each other, so we need a phase

matching type in our OPO where the two generated fields, called the signal and idler, have

the same polarization. We use a phase matching technique known as quasi-phase match-

ing [6, 44,56].

Figure 3-6 (A) shows a nonlinear interaction with perfect birefringent phase matching,

where the generated second harmonic fields add in phase. As illustrated in Figure 3-6 (B),

when the phase matching is not perfect and there is a small mismatch ∆k, the harmonic field

amplitude begins to decrease after a distance called the coherence length of the interaction [6].
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A) Perfectly phase matched

B) Small phase mismatch ∆k

C) Quasi-phase matched

π/∆k

KTP crystal

KTP crystal

PPKTP crystal

Figure 3-6: A) With perfect phase matching the generated harmonic field (dark green) stays
in phase with the propagating harmonic field (dashed), so they add constructively and the
total field (light green) grows monotonically. B) When there is a small phase mismatch,
the propagating harmonic field acquires a phase shift relative to the fundamental as they
propagate. After a distance of π/∆k the generated harmonic field is out of phase with the
propagating field and the harmonic field decreases until its amplitude is zero again at 2π/∆k.
C) In quasi phase matching, the crystal axis is reversed at π/∆k, or an integer multiple of
that distance. This reverses the sign of the nonlinear coupling coefficient, so that there is
a π phase shift to the generated field, and the interaction continues to add energy to the
generated field. A periodically poled crystal is made up of many of these domains.
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This is because the propagating harmonic field has become out of phase with the har-

monic field that is being generated, and the interaction is transferring energy back to the

fundamental field. In quasi- phase matching the direction of one crystal axis is switched

(poled) periodically throughout the length of the crystal. This introduces a π phase shift to

the generated harmonic beam. If the poling changes after one coherence length, as in Figure

3-6 (C), the interaction will always add energy to the generated field, and the generated

field amplitude grows monotonically as the fields propagate through the crystal. Comparing

Figure 3-6 (A) and (C), it is clear that the effective nonlinearity is smaller for a quasi-phase

matching than it would be if the same crystal used perfect birefringent phase matching. In

practice quasi-phase matching allows for use of large nonlinearities that can not be phase

matched using birefringence, like the d33 nonlinearity in KTiOPO4 (KTP), so periodically

poled crystals make higher effective nonlinearities accessible.

The optimal poling period Λ for quasi-phase matching is:

Λ =
2π

∆k
=

λr
2 (n(ωg)− n(ωr))

(3.15)

where λr is the wavelength in vacuum of the fundamental field. In PPKTP we use the

d33 nonlinearity, so the relevant index of refraction is along the polar (z) axis. The index

of refraction of most materials, including KTP, depends on both the temperature and the

wavelength of light, we would like to know how the phase mismatch depends on the crystal

temperature. Equations for the index of refraction of KTP are given in [28,44,49]. The index

of refraction for 1064 nm is 1.830 and for 532 nm is 1.889, so the poling period required is

approximately 9 µm. If the poling period is slightly different from the optimal period the

phase mismatch is given by:

Lc∆kq = 2πLc

(
2

λr
[n(ωg)− n(ωr)] +

1

Λ

)
(3.16)

The length of the crystal and the poling period both depend on the temperature of the crystal

because of the crystal’s thermal expansion, while the indices of refraction also depend on
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Table 3.1: Properties of KTP [28]

αKTP (6.7± 0.7)× 10−6[1/◦C]
βKTP (11± 2)× 10−9[1/◦C2]

dn

dT

∣∣∣∣
1064 nm,25◦C

1.4774× 10−5[1/◦C]

dn

dT

∣∣∣∣
532 nm,25◦C

2.4188× 10−5[1/◦C]

Table 3.2: Properies of KTP

temperature. To find the first order temperature dependence we take the derivative [30]:

d(Lc∆kq)

dT
= 2π

[
dLc
dT

(
2

λr
[n(ωg)− n(ωr)] +

1

Λ

)
+

2Lc
λr

(
dn(ωg)

dT
− dn(ωr)

dT

)
− Lc

Λ2

dΛ

dT

]
(3.17)

Thermal expansion of any length in KTP is given by:

Lc(T ) = Lc,0
[
1 + αKTP (T − 25◦C) + βKTP (T − 25◦C)2

]
(3.18)

where αKTP and βKTP are given in Table 3.2, and Lc,0 is the length at room temperature [28].

This also describes the temperature dependence of the length of the poling period Λ.

Using the same equation for the thermal expansion of the total length and the poling

period, we get:

d(Lc∆kq)

dT
= 2krLc,0

(
αKTP [n(ωg)− n(ωr)] +

dn(ωg)

dT
− dn(ωr)

dT

)
(3.19)

where kr is the wavenumber of the fundamental field in vacuum. In this first order approx-

imation, the temperature dependence of the phase mismatch is independent of the poling

period. The phase mismatch, expanded around the peak of the phase matching curve is

given by:

Lc∆kq = 2krLc

(
αKTP [n(ωg)− n(ωr)] +

dn(ωg)

dT
− dn(ωr)

dT

)
(T − T0) (3.20)
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Figure 3-7: Phase matching curve measured with single pass second harmonic generation in
PPKTP, with 333mW of incident infrared power. The green curve is a prediction based on
Equation 3.19 used in Equation 3.14 and literature values for index of refraction and thermal
expansion listed in Table 3.2. The peak height is normalized to fit the data, and the location
of the center is set to match the data.

where T0 is the phase matching temperature. Figure 3-7 shows a measurement of the effi-

ciency of second harmonic generation (in single pass) over a range of crystal temperatures.

This measurement was made in single pass to avoid pump depletion and thermal effects

present in SHG inside of a cavity, so the resulting curve is in agreement with Equation 3.14.

3.2.3 OPO: Resonant for second harmonic and fundamental fields

Our OPO is based on a design from the Australian National University [12]. Our OPO

is resonant for both the fundamental and second harmonic field, unlike many OPO’s used

for squeezing which are resonant for the fundamental field only [82]. Using a cavity that is
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resonant for the pump simplifies our experimental set-up, but doesn’t have any significant

performance advantage over an OPO that is resonant for the fundamental field only. We can

use the second harmonic pump field to generate a PDH signal to lock the length of the OPO

and do not need an additional field at the fundamental frequency to sense the cavity length.

The sidebands added to the second harmonic beam for the PDH error signal add phase noise

to the pump, but this is not a significant limit to the squeezing produced. Because our

OPO resonantly enhances the second harmonic field, the incident power needed to reach the

threshold for spontaneous sub-harmonic generation is lower than it would be in were single

pass. A resonant OPO acts as a filter for fluctuations of the second harmonic field above 15

MHz. An external mode cleaner cavity can also accomplish this filtering, with a narrower

linewidth [62]. The resonant cavity also acts as a filter on the spatial mode inside the OPO.

To maximize the nonlinear interaction the crystal is placed at the focus of the cavity mode.

The second harmonic field in a cavity mode with waist w0 interacts with the fundamental

field in the cavity mode with a waist
√

2w0. In an empty cavity or an OPO using birefringent

phase matching, these modes would be exactly the modes that resonate in the cavity. For a

useful discussion of the propagation of Gaussian beams in a nonlinear cavity, see [44, 2.4.8].

Because we use quasi-phase matching, there is a small difference in the waist sizes for the

two fields caused by the difference in the index of refraction for 532 nm and 1064 nm, but

this difference is small compared to the mode matching errors that could be present without

a resonant cavity.

Because we use the second harmonic green pump field to lock the length of the cavity, we

need to ensure that the cavity is resonant for the fundamental infrared field when it is locked

to the green field, Section3.2.4. This places a requirement on the temperature stability of

an OPO that is resonant for the pump, as will be discussed in Chapter 5.

3.2.4 OPO: Dispersion compensation for co-resonance

Because cavity optics have dispersion the phase shift acquired by red and green fields on

reflection or transmission off of an optic can be different. This means that a cavity length
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that the infared field that would resonate in a cavity is not necessarily at half the frequency of

the green field that is resonant in the cavity. We need to make sure that the OPO is resonant

for the interferometer carrier frequency (ω) in order to create squeezing that will interfere

with the interferometer beam, but injecting a field at the the carrier frequency would add

unacceptable low frequency noise couplings [56, 58]. In order to produce squeezing at the

frequencies needed for gravitational wave detectors, the cavity length is sensed by a field in a

different mode, either the second harmonic field or a 1064 nm field that is shifted in frequency

and in a different polarization from the mode that is to be squeezed [51]. In either case, care

must be taken that the cavity length that will resonate the field used for locking will also

resonate the interferometer carrier frequency. This places a more stringent requirement on

the temperature stability of the crystal than the phase matching condition.

For a cavity to be on resonance the phase acquired in one round trip must be an integral

multiple of 2π. For the fundamental and second harmonic fields in the OPO this can be

written:

φr,rt = kr [L+ (n(ωr)− 1)Lc,tot] + φr,m = 2πh1 (3.21)

φg,rt = kg [L+ (n(ωg)− 1)Lc,tot] + φg,m = 2πh2 (3.22)

where L is the round trip cavity length, Lc,tot is the total length of the crystal, φr,m, φg,m

are the totals of the phase shifts from reflection off of each cavity mirror for the red and

green fields respectively, kr and kg are the wavenumbers in vacuum, and h1, h2 are integers.

Because kg = 2kr, there are twice as many cavity lengths that satisfy Equation 3.22 as satisfy

Equation 3.21. The PDH lock will adjust the total cavity length to ensure that the condition

Equation 3.22 is met, but that does not guarantee that Equation 3.21 will be satisfied. The

PDH lock will hold the cavity length at:

L =
2πh2 − φg,m

2kr
− (n(ωg)− 1)Lc,tot (3.23)

At this cavity length the phase of the fundamental field deviates from the red resonance
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θw

Lc

Lc,tot

Figure 3-8: Wedged periodically poled crystal. The green arrow shows the direction of the
beam propagation; a translation stage allows the crystal position to be adjusted along the
direction of the dashed arrow.

condition by the dispersion mismatch:

∆φrt = φr,m −
φg,m

2
+ [n(ωr)− n(ωg)] krLc,tot (3.24)

if h2 is even, or π + ∆φr,rt if h2 is odd. To compensate for this phase shift we need to

introduce an adjustable phase shift into the cavity, called dispersion compensation.

An adjustable dispersive medium is used to shift the relative phase of the two fields and

ensure that the cavity is co-resonant. This can be accomplished with an anti-reflection coated

flat piece of glass called a dispersion plate, which is rotated to adjust the path length. A

dispersion plate has the disadvantages of adding additional losses and scatter into the cavity.

Instead, we use the crystal as a dispersive medium and adjust the path length of the beam

traveling through the crystal to achieve co-resonance. There are two ways to change the path

length in the crystal: changing its temperature or adjusting the position of a wedged crystal

like the one illustrated in Figure 3-8. In a wedge crystal there is a region of the crystal where

the periodic poling stops, here there is no quasi-phase matching. The non-poled region is

part of the total crystal length, Lc,tot but not part of the interaction length in the crystal,

Lc.
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To find the temperature dependence of ∆φrt we take its derivative with temperature, use

Equation 3.18 for the thermal expansion of lengths and the values from Table 3.2:

d∆φrt
dT

= krLc,tot

(
αKTP [n(ωr)− n(ωg)] +

[
dn(ωr)

dT
− dn(ωg)

dT

])
(3.25)

=
−Lc,tot

2Lc

d(Lc∆kq)

dT
(3.26)

The temperature dependence of the dispersion mismatch is very similar to that of the phase

mismatch, given by Equation 3.19. We can adjust the temperature to optimize only one of

25 30 35 40 45
0

1

Temp [C]

 

 
Phase mismatch parameter
Normalized circulating power
Co-resonance, phase matching

Figure 3-9: Temperature dependence of phase matching and dispersion compensation. The
blue curve is the phase mismatch parameter, sinc2 ∆kqLc for PPKTP phase matched at
35◦C. The red curves are calculated assuming that the cavity is locked using the 532 nm
pump field, and shows the normalized transmission profile of our OPO for 1064 nm as a
function of temperature. The location of the resonance peak relative to the phase matching
peak depends on the dispersion of the cavity optics. The dashed red line represents the ideal
situation, where the red resonance peak is at the phase matching peak.
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these quantities. As shown in Figure 3-9, for a particular crystal position there are a few

temperatures for which the cavity will be co-resonant, which will not necessarily be at the

same temperature as the peak of the phase matching curve. To produce strong squeezing

our OPO needs to be well phase matched and co-resonant. We use the crystal temperature

to set the phase matching, and adjust the crystal length to ensure co-resonance. At any

temperature, co-resonance occurs when the crystal length is:

Lc,tot =
(2πh+ φg,m/2− φr,m)

kr[n(ωr)− n(ωg)]
(3.27)

where h is an integer.

A wedged crystal, like the one shown in Figure 3-8, mounted on a translation stage,

allows us to adjust the crystal length once it is already installed in the cavity [48]. At one

edge of the crystal the poling stops, and the edge is polished with a wedge. The wedge angle

is small (θw = 1.43◦ in our crystal) so the total crystal length is given by:

Lc,tot = Lc + y sin θw (3.28)

where Lc is the poled length of the crystal where the interaction is quasi phase matched,

and y is the crystal displacement measured from the shorter edge. The dependence of the

dispersion mismatch on crystal position is given by:

d∆φrt
dy

= (n(ωr)− n(ωg)) kr sin θw (3.29)

Our crystal is 5 mm wide, so we can adjust the total crystal length by about 125 µ m and

there are approximately 10 locations in the crystal where the cavity could be co-resonant

at any temperature. Since we need to avoid clipping the beams on the edges of the crystal

in practice there are between 2 and 5 usable locations in the crystal where the the cavity is

co-resonant at a certain temperature. There are occasionally defects in the crystal that lead

to higher losses or lower interaction strength at one of these crystal positions. As a function

88



of crystal position and temperature the dispersion mismatch is given by:

∆φrt = φr,m −
φg,m

2
+ kr

[
n(ωr)− n(ωg) +

(
dn(ωr)

dT
− dn(ωg)

dT

)
(T − 25◦C)

]
× (Lc + y sin θw) (1 + αKTP (T − 25◦C)) (3.30)

≈ krLc

(
dn(ωr)

dT
− dn(ωg)

dT
+ αKTP [n(ωr)− n(ωg)]

)
(T − T0)

+kr sin θw[n(ωr)− n(ωg)](y − y0) (3.31)

where in the approximation T0 is the phase matching temperature and y0 is the position

where the cavity is co-resonant at the phase matching temperature. Using Equation 3.20

the dispersion mismatch in terms of the phase mismatch is:

∆φrt = −∆kqLc
2

+ kr[n(ωr)− n(ωg)] sin θw(y − y0) (3.32)

Then the crystal position where the cavity is co-resonant for a particular temperature is

given by:

ycr = − ∆k′Lc
2kr[n(ωg)− n(ωr)] sin θw

+ yo (3.33)

3.2.5 OPO: parametric gain and threshold

The classical dynamics of an OPO, developed in [23], can be used to characterize the strength

of the nonlinear interaction. One advantage of an OPO resonant for the pump field is the

lower second harmonic power needed to reach a particular value of the normalized nonlinear

interaction strength x. The OPO reaches the threshold for spontaneous sub-harmonic gen-

eration when the fundamental power generated by the nonlinear interaction each round trip

is the same as the power lost through cavity losses. The normalized nonlinear interaction

strength, Equation 2.31, is one at threshold:

xth =
ε|b|th
γtotr

= 1 (3.34)
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Figure 3-10: Classical OPO with seed. The rear coupler has decay rates γrr and γrg . In
Section 2.4 these decay rates were included in the intracavity loss decay rates γlr and γlg but
here they will be treated separately.

where Pth is the threshold power of the OPO. Because the circulating pump power is pro-

portional to the incident pump power, we can use Equation 3.34 to write an alternative

expression for the normalized nonlinear interaction strength:

x =
ε|b|th
γtotr

|b|
|b|th

=

√
P

Pth
(3.35)

Although we operate the OPO below threshold, we normally use a significant fraction of the

threshold power to pump the OPO, so we can use the threshold power to estimate the second

harmonic power needed to pump an OPO. As illustrated in Figure 3-10, we characterize the

nonlinear interaction strength of the OPO by injecting a coherent seed field Ar,in through

the rear coupler with decay rate γrr . The classical cavity equations of motion for a degenerate

OPO with a coherent seed at the fundamental frequency can be found from Equations 2.23-
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2.26, ignoring any inputs that are only quantum fluctuations:

ȧ(t) = −(γtotr − i∆a(t))a(t) + εa†(t)b(t) +
√

2γrrAr,in(t) (3.36)

ḃ(t) = −(γtotg − i∆b(t))b(t)−
εa2(t)

2
+

√
2γfgBf,in(t) (3.37)

For now we will assume that the cavity is on resonance for the both the pump and seed fields

such that the detunings ∆a and ∆b vanish. We will also make the parametric approximation

from Section 2.4, so that we can drop the second term from Equation 3.37. In the steady

state where the field amplitudes are constant these equations become:

0 = −γtotr ā+ εā†b̄+
√

2γrr Ār,in (3.38)

b̄ =

√
2γoutg

γtotg
B̄f,in (3.39)

Combining the threshold condition given by Equation 3.34 with Equation 3.39 we can find

a value for the incident pump power needed to reach threshold:

Pth = ~ωg
∣∣B̄in

∣∣2 =
~ωg

(
γtotr γtotg

)2

2ε2γing
(3.40)

≈
~ωg(γtotr )2γtotg

2ε2
(3.41)

where we made the approximation that γfg ≈ γtotg . One simple way to measure the threshold

is to increase the pump power until an infrared beam is produced. A more accurate method

is to measure the nonlinear amplification and de-amplification of the coherent seed, known

as the nonlinear gain, as a function of the pump power. Measurements of the nonlinear gain

are also the best way to estimate the normalized nonlinear interaction strength, x.

To calculate the nonlinear gain we solve Equation 3.38 and its complex conjugate for the
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circulating fundamental field: ā

ā†

 =

√
2γrr
γtotr

 1 xiθb

xeiθb 1

 Ār,in

Ā†r,in

 (3.42)

where b̄ = |b̄|eiθb . Using the input-output relation, Āf,out =

√
2γfr ā, and setting the phase of

the input field so that it is real:

Āf,out =
2
√
γfr γrr

γtotr

1 + xeiθb

1− x2
Ār,in (3.43)

where φ is again the phase of the circulating pump. The parametric gain is the ratio of the

output fundamental power with the pump present to the output fundamental power if there

were no pump and therefore no nonlinear interaction:

G(x, θb) =
1 + 2x cos θb + x2

(1− x2)2
(3.44)

G(x, 0) =
1

(1− x)2
(3.45)

G(x, π) =
1

(1 + x)2
= g (3.46)

where Equation 3.45 describes parametric de-amplification and Equation 3.46 describes am-

plification, which we will call nonlinear gain g. We measure the nonlinear gain by locking

the cavity with the second harmonic field, and sending a small amount of light at the fun-

damental frequency (the seed) into the cavity through the rear coupler. We then scan the

phase of either the seed or the second harmonic field and measure the maximum transmitted

power. This is compared to the power transmitted when scanning the cavity with only the

seed injected. As shown in Figure 3-11 the threshold for our OPO was near 95 mW. This

value increased by about 10% over the course of a year, this may be due to a slow drift in

crystal position.

We measure the parametric gain g, to estimate the normalized nonlinear interaction
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Figure 3-11: Parametric amplification as a function of green power, used to find a value
for the threshold of spontaneous subharmonic generation. Parametric amplification is used
instead of de-amplification because small offsets cause larger errors in measurements of de-
amplification. As the pump power approaches threshold the amplification approaches an
asymptote.

strength:

x = 1− 1/
√
G(x, π) = 1− 1/

√
g (3.47)

Since the parametric gain depends on careful tuning of the crystal temperature, we monitor

the parametric gain to adjust the crystal temperature. One could also estimate the nor-

malized nonlinear interaction strength by measuring the power incident on the OPO, using

Equation 3.35. This has the disadvantage that misalignment or mode mismatch of the pump

beam, errors in the temperature setting, or a drift in the threshold power will all cause errors

in the estimate of the normalized interaction strength.
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3.2.6 Optimizing nonlinear interaction strength: Phase matching

and dispersion compensation in an OPO resonant for the

pump

To get the most squeezing from our OPO we need to operate it at the peak of the phase

matching and on co-resonance. We can achieve this by maximizing the classical nonlinear

gain (and therefore the normalized nonlinear interaction strength) for a fixed pump power.

The effect of a phase mismatch is to change the nonlinear coupling constant ε, which becomes

complex so that the normalized nonlinear interaction strength becomes [45]:

x′ = xei∆kqLc/2 sinc(∆kqLc/2) (3.48)

If the co-resonance condition is not satisfied, a detuning is introduced to the fundamental

field:

∆a =
∆φrt
τ

(3.49)

With a detuning and a complex value of the normalized nonlinear interaction strength in-

cluded, Equation 3.36 and its complex conjugate become: 0

0

 = γtotr

 1− i∆a/γ
tot
r |x′|ei(θb + ∆kqLc/2)

|x′|e−i(θb + ∆kqLc/2) 1− i∆a/γ
tot
r

 ā

ā†

+
√

2γrr

 Ār,in

Ā†r,in


(3.50)

Setting the input seed phase to zero we find the output field:

Āf,out =
2
√
γrrγ

f
r

γtotr

1 + i∆a/γ
tot
r + |x′|ei(θb + ∆kqLc/2)

1 + (∆/γtotr )2 − |x′|2
Ār,in (3.51)
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The ratio of the output power to the output power when there is no pump is:

G =
1 + (∆a/γ

tot
r )

2

(1 + (∆a/γtotr )2 − |x′|2)2

∣∣∣∣1 + i
∆a

γtotr
+ |x′|ei(θb + ∆kqLc/2)

∣∣∣∣2 (3.52)

We scan the phase of either the seed or the second harmonic field and measure the maximum

output power, which is produced when:

θb +
∆kqLc

2
= tan−1 ∆a

γtotr
(3.53)

The maximum nonlinear gain we measure then is given by:

Gmax =

1− |x′|√
1 + (∆a/γtotr )2

−2

(3.54)

Since γtotr is the half width at half maximum of the cavity transmission profile for the infrared

field in angular units, the cavity finesse is Fr = π/(τγtotr ).

Gmax =

1− x sinc(∆kqLc/2)√
1 + (Fr∆φrt/π)2

−2

(3.55)

The dispersion mismatch ∆φrt is scaled by the infrared cavity finesse in Equation 3.55

meaning that the required temperature stability of the OPO also scales with the cavity

finesse. Figure 3-12 shows the nonlinear gain as a function of crystal position and tempera-

ture for the parameters of our OPO. We use the nonlinear gain to find the crystal position

and temperature that maximizes the nonlinear gain. A practical procedure for doing this is

described in Appendix C.

Figure 3-13 shows profiles of the dependence of nonlinear gain on crystal position and

temperature around the point where gain is maximized, with the same parameters as Figure

3-12.
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Figure 3-12: Prediction for nonlinear gain as a function of crystal position and temperature
for our OPO parameters, and a pump power at one quarter of the threshold value. This
pattern is repeated a few times across the width of the crystal, at the same temperatures.
The projection on the position axis shows the maximum gain that can be measured at each
crystal position once the temperature is optimized.
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Figure 3-13: Prediction for gain profiles with crystal position and temperature. The left
panel shows a cross section of the nonlinear gain when the temperature is set to the phase
matching temperature (chosen to be 35◦C for this example) and the position is varied. The
right panel shows a cross section of gain with temperature when the crystal position is set
for co-resonance at the phase matching temperature (chosen to be 3mm).
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3.2.7 OPO: Escape efficiency

When choosing the front coupler reflectivity for an OPO, the most important factor to

consider is the escape efficiency. As was shown in Equation 2.45a lower escape efficiency

directly lowers the amount of squeezing produced. The escape efficiency is given by:

ηesc =
γfr
γtotr
≈ Tf
Tf + Lcav

(3.56)

where the approximation holds for a low loss cavity, Tf is the front coupler infrared power

transmission, and Lcav is the infrared intra-cavity power losses. In order to keep the escape

efficiency of an OPO large, it must be an over-coupled cavity in the infrared, when the front

coupler is viewed as the input coupler. This means that any infrared power (as well as any

quantum fluctuations) in the cavity will leave through the front coupler.

We measured the intra-cavity losses for our OPO by injecting an infrared field into the

front coupler and scanning the cavity through resonance while measuring the reflected power.

The ratio of the reflected power on resonance to off resonance is given by:

Pr,on
Pr,off

=

∣∣∣∣ rout − rl1− routrl

∣∣∣∣2∣∣∣∣ rout + rl
1 + routrl

∣∣∣∣2 (3.57)

where rout =
√

1− Tout and rl =
√

1− Lcav. This measurement showed that we had an

intra-cavity loss of 0.43% without the crystal installed, this includes a loss of 0.18% from the

rear coupler and two high reflectors with 0.05% losses, so the unaccounted for intra cavity

losses are 0.2%. With the super-polished crystal used in the final configuration the crystal

losses were 0.16%, and the total intra-cavity losses were 0.58%. With our front coupler

power transmission of 13.24%, our OPO escape efficiency was 95.9% [27]. Both lowering the

intra-cavity losses and increasing the front coupler transmission would increase the escape

efficiency. In practice it may be easier to increase the transmission of the front coupler and

lower the cavity finesse than to further reduce the intra-cavity losses.
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Front Coupler

Front Coupler Rear Coupler

Figure 3-14: Standing wave (top) and traveling wave (bottom) cavity configurations

3.2.8 OPO: Traveling wave cavity

When implementing squeezing on a full-scale gravitational wave detector we need to avoid

adding technical noise to the interferometer, which is the subject of Chapter 6. In particular,

if stray beam and scattered light from the interferometer are retro-reflected by the squeezed

vacuum source back into the interferometer, the squeezer could degrade the interferometer

sensitivity instead of improving it as explained in Section 6.2.1. Since the OPO needs to be a

highly over-coupled cavity for the infrared field incident on the front coupler, the reflectivity

of the cavity to any infrared light incident on the front coupler is nearly unity. This means

that almost all stray interferometer light incident on the OPO will be reflected off the input

coupler. As shown in Figure 3-14 if the OPO is a standing wave cavity any stray light

incident on it will be directly retro-reflected back towards the interferometer. The power

in the stray beam can be attenuated using a series of Faraday isolators in the path used

to inject squeezing into the interferometer, however the loss introduced by each additional

Faraday isolator degrades the squeezing. Instead, we have used a traveling wave design

where the stray light is reflected off of the OPO at an angle instead of directly back towards

the interferometer. In order to create a parasitic interferometer a second scattering event is

99



needed that will send the light back into the interferometer. When constructing the path

for the green light entering the OPO, it is useful to keep in mind that stray light from the

interferometer will counter-propagate along this path and carefully avoid creating places

where a second scattering event is likely to occur. Even in the traveling wave configuration

a small amount of the circulating power in the OPO is scattered by imperfections of the

cavity optics into the counter-propagating mode, so that it will be scattered back towards

the interferometer. This effect was measured in an OPO very similar to ours in [12], and

will be discussed further in Chapter 6.

The spatial mode of a traveling wave cavity has a small astigmatism, which will cause a

small amount of loss due to imperfect mode matching. In Enhanced LIGO the astigmatism

of the anti-symmetric port beam was much larger, so the cavity astigmatism was completely

negligible.

3.2.9 Complete squeezed vacuum source layout

There are several details of the squeezed vacuum source design that were left out of Figure

3-3 for clarity, but are useful for practical operation. A more complete diagram of the

experiment is shown in Figure 3-15.

To prevent any of light at the fundamental frequency from entering the OPO through the

second harmonic path, we use several dichroic mirrors to remove residual infrared photons

from that beam. A Mach-Zender interferometer in the second harmonic path allows us to

intensity stabilize the pump, this reduces thermal fluctuations in the crystal which will limit

the long term stability of the squeezer but was not needed for our experiment.

There are a few features that are useful for tuning the performance of the diagnostic

balanced homodyne, using the on table local oscillator from the pump laser. The common

mode rejection of the local oscillator port on the balanced homodyne detector can be checked

and adjusted using the EOM in the on table LO path as an amplitude modulator. The

homodyne visibility can be adjusted using the interference of the seed beam with the on

table local oscillator with matched powers. The seed beam enters the OPO through the rear
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Figure 3-15: Layout of squeezed state source. Flipper mirrors, filters and beam blocks are
shown in the positions used for squeezing. To measure parametric gain or the homodyne
visibility, the seed beam is unblocked and enters the OPO through the rear coupler. To
measure the intracavity losses the flipper mirror in the path towards the rear coupler is
inserted, and the seed is sent to the front coupler, shown by the dashed line.
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coupler and is blocked during normal operation. To measure the homodyne fringe visibility

the OPO temperature is moved away from phase matching, and a filter is inserted in the

green path to lower the power so that there will be no nonlinear gain in the OPO and the

transmitted seed power will be stable. The transmitted beam, or the transmitted control

beam, can also be used for aligning the interferometer injection path.

There is also the option of injecting the seed beam into the OPO through the input

coupler, this path is shown by a dashed line in Figure 3-15. This allows us to measure

the intracavity loss, which may change depending on the crystal position. If the threshold

power changes, a measurement of the intra-cavity loss can help diagnose the cause. If the

forward seed is well mode-matched it can also be used as a rough alignment beam which

has higher power than the transmitted alignment beams, useful for finding the beam in the

initial alignment into the interferometer.

3.2.10 Squeezed vacuum source performance

Our squeezed vacuum source met the requirements of this experiment. Figure 3-16 shows

the squeezing measured on the diagnostic homodyne detector, described in Section 2.7.1. In

the kHz range, we measured 6 dB of squeezing, and 5 dB at 100 Hz. The level of squeezing

was shown to be stable for an hour and a half. We did not have the chance to measure long

term performance with the interferometer, so longer term stability was not needed for this

experiment; however stable operation for up to 20 hours has been demonstrated in a similar

system by Khalaidovski et al [51]. Using the propagation losses in our detection path, we

estimate around 10 dB of squeezing produced right outside the input coupler. The squeezer

was connected to a digital system to allow remote control.
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Figure 3-16: Squeezing measured on diagnostic homodyne detector. The red trace shows the
electronics noise of the detector.

3.3 Squeezed state injection into Enhanced LIGO

Figure 3-17 shows a schematic of the squeezing injection into Enhanced LIGO. All the

components described in Section 3.2 were installed on an optical table, called the squeezed

state source or the squeezer. This table was bolted to the ground outside of the vacuum

system. An additional in vacuum Faraday isolator in the squeezing injection path, called

the injection isolator, reduces the amount of stray light from the interferometer that reaches

the squeezer. For this experiment, the output Faraday isolator used in Initial and Enhanced

LIGO was replaced with one of the output Faradays that will be used in Advanced LIGO,

which allows access to the port used for squeezing injection. For the squeezing experiment

the power in the pick-off beam sent to the AS table was reduced to 1% of the power in

the AS beam, to reduce the optical loss in the squeezing detection path. A photo-diode
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added to the AS table senses the phase between the interferometer carrier beams and the

control sidebands on the squeezed beam. The OMC reflects the squeezer control sidebands,

and transmits the interferometer carrier and the squeezing to the gravitational wave readout

photo-detectors where the improvement in sensitivity is measured. The OMC in the H1

interferometer suffered extra losses in the last part of the Enhanced LIGO science run,

which had only a small impact on the sensitivity to gravitational waves, but introduced a

50% loss to the squeezing detection path at the beginning of the squeezing experiment. To

reduce the losses, the output mode cleaner from the H1 interferometer was replaced with the

Livingston OMC in October 2011.
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Figure 3-17: Squeezing injection into Enhanced LIGO. The squeezed beam and coherent
control sidebands leave the OPO and are injected into the vacuum system, passing through
the injection Faraday isolator which mitigates scattered light from the interferometer. The
output Faraday is used as a rotator to send the fields from the OPO towards the interferom-
eter beamsplitter. The squeezed field is reflected off of the interferometer arms and returns
to the AS port, passing through the output Faraday isolator a second time. A small pick-off
sends some of the interferometer light and some of the squeezing control sidebands to a
diode on the AS table, which senses the squeezing angle. The output mode cleaner rejects
the control sidebands, and transmits the interferometer carrier and squeezed beam to the
readout out photo-detectors.
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3.3.1 Sensitivity improvement
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Figure 3-18: Enhanced LIGO sensitivity with squeezing injected. The reference trace shows
the sensitivity of H1 without squeezing at the time of our experiment, with 20 Watts of input
laser power. The blue trace shows the sensitivity with squeezing injected.

Figure 3-18 shows a comparison of the calibrated sensitivity with squeezing injected and

a reference taken just before with the squeezing port blocked. Squeezing reduced the noise

by 2 dB at 2 kHz, and improved the sensitivity down to 140 Hz. There are no frequencies at

which the injection of squeezed light degrades the sensitivity, demonstrating for the first time

that squeezing is compatible with the audio band sensitivity of a full-scale gravitational wave

detector. Figure 3-19 shows the same data zoomed in around 200 Hz where Enhanced LIGO

has the best sensitivity to gravitational waves. This is the first time that squeezing has been
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Figure 3-19: Squeezing enhancement in LIGO’s most sensitive frequency band. To our
knowledge this is the first time squeezing has been shown to improve the sensitivity of an
interferometer at these frequencies, which are the most important for detecting neutron star
inspirals.
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Figure 3-20: Squeezing results compared to Enhanced LIGO’s best sensitivity.

observed in a gravitational wave detector at these astrophysically important frequencies.

This is the region where acoustically driven noise is expected to be largest, and we see

no evidence of added acoustic noise with squeezing. Figure 3-20 shows the data compared

to the best sensitivity measured during the sixth LIGO science run. The squeezing result

represents the best sensitivity in a gravitational wave detector from 250 Hz to several kHz

to-date. The discrepancy below 140 Hz is due to a difference in the seismic environment; the

S6 data was taken at an usually quiet time while squeezing and reference trace were taken

at a particularly seismically loud time.

Figure 3-21a shows the noise reduction due to squeezing when the interferometer input
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power was 16 Watts. This shows that at the best frequencies, we saw 2.25 dB of noise

reduction due to squeezing. Figure 3-21b shows that with lower input power we were able

to see an improvement from squeezing down to nearly 100 Hz.
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(a) More than 2 dB of squeezing observed with 16 W interfer-
ometer input power.
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(b) Squeezing observed down to 100 Hz with 8 W input power.

Figure 3-21: Noise reduction due to squeezing, ratios of interferometer sensitivity with
squeezing to sensitivity without squeezing, plotted on a log scale.
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3.3.2 Astrophysical impact of squeezing enhancement

The true benefit of squeezing will come from improvements in the sensitivity of the detector

to realistic sources of gravitational waves.

A commonly used metric for comparing the sensitivity of gravitational wave detectors is

the horizon or sight distance for neutron star binary inspirals. This is the distance to which

gravitational radiation from a binary of 1.4 M� neutron stars can be detected with a signal

to noise ratio of 8, averaged over sky position and binary orientation. The low frequency

sensitivity of a detector is most important for detection of inspirals, which emit at lower

frequencies for longer times. The horizon distance for an inspiral is proportional to [54]:

dhor = Θ

[∫
df
f−7/3

Sn(f)

]1/2

(3.58)

where Θ is a constant that depends on the mass of the compact objects, and averaging over

the sky positions and binary orientations. The power spectral density Sn(f) is the square

of the amplitude spectral densities plotted for example in Figure 3-18. The improvement in

inspiral range due to squeezing in the data from Figure 3-21a is shown in Figure 3-22. The

nearly 1 Mpc improvement shown is due entirely to squeezing below 1 kHz and represents a

7% increase in the detector’s insprial range and a 24% increase in the volume of the universe

that the detector can observe. Most of the improvement is due to squeezing below 300 Hz,

where the squeezing is demonstrated for the first time in a gravitational wave detector.

Nearby rapidly spinning neutron stars with deformations in their crusts are another

promising source for earth-based gravitational wave detectors. In the intermediate frequen-

cies from 300 to 600 Hz, there are 28 known pulsars within 6 kpc [31]. The neutron star

equation of state is not well understood, but observations of gravitational radiation from one

of these known pulsars would provide new information about the neutron star’s asymmetry,

possibly caused by strong internal magnetic fields or asymmetries of the crust, and provide

insight into this exotic state of matter [31]. At these frequencies the squeezing we observed

would provide a 19% improvement in the SNR of any gravitational waves detected from these
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Figure 3-22: Improvement in inspiral range due to squeezing, when interferometer input
power was 16 Watts. This plot shows the difference in the cumulative insprial range with
and without squeezing, and was calculated based on a script written by Grant Meadors [60].
Most of the nearly 1 Mpc improvement in range came from squeezing below 500 Hz, where
the amount of squeezing was small. The small decrease in range at low frequencies was most
likely due to non stationarity of the spectrum due to changes in the seismic environment.

pulsars, and reduce upper limits from null detection by 16% [24]. Assuming that neutron

stars in this frequency range are isotropically distributed within our galaxy, this represents

a factor of two increase in the number of detectable neutron stars for a detector with the

level of squeezing we observed.

At the highest frequencies in LIGO’s detection band, coalescences and mergers of compact

binary systems are a primary astrophysics target. As neutron star binaries lose energy by

emitting gravitational waves the frequency of their orbits increase as the radius decreases,

until the system reaches the radius of the innermost stable circular orbit, the ISCO. For a

binary system of 1.4 M� neutron stars the orbital frequency at ISCO would be 800 Hz, so
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the frequency of gravitational radiation would be 1.5 kHz [29]. This means that the 26%

increase in the signal to noise ratio due to squeezing at frequencies above 600 Hz can improve

observations of this interesting stage of binary evolution.

Coalescing compact binaries are expected to have electromagnetic counterparts. An ob-

servation of a single event in both electromagnetic and gravitational radiation could offer

more insight than either observation alone would, and increase confidence in an early gravita-

tional wave detection. A real difficulty in triggering searches for electromagnetic counterparts

based on a potential observation of gravitational waves is the large area of the sky that must

be searched. The sky location of a gravitational wave source is estimated based on the

difference in arrival times at different detectors. The timing error for binary coalescence is

inversely proportional to the signal to noise ratio, and the solid angle on the sky that needs

to be searched for counterparts to a signal detected in a network of two detectors is pro-

portional to the timing error (assuming the detectors have the same timing accuracy) [29].

Since the timing accuracy is weighted towardsthe high frequencies, the improvement may be

better than this. This means that the 2 dB noise reduction we saw from squeezing would

reduce the area of the sky to be searched by 20%.

We have demonstrated for the first time that squeezing is compatible with operation of

a full scale gravitational wave interferometer with good low frequency sensitivity, and shown

an improvement in the sensitivity to realistic sources of gravitational waves. While these

modest improvements would be beneficial to the astrophysical reach of a gravitational wave

detector, the real significance of these results is that they have demonstrated the potential of

squeezing in a full scale interferometer. The lessons learned from this experiment allow us to

form a detailed plan for achieving a more significant noise reduction in the next generation

of interferometric gravitational wave detectors.
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Chapter 4

Limits to squeezing noise reduction

Encouraged by the results in the last chapter, demonstrating that squeezing definitely im-

proved the astrophysical reach of a full scale gravitational wave detector, we would like to

plan for a larger noise reduction in future detectors like Advanced LIGO. The next two chap-

ters will focus on understanding the factors that limit the noise reduction due to squeezing,

and the final chapter will consider the implications of what we have learned for squeezing in

Advanced LIGO. The noise variance on the gravitational wave signal is given by Equation

2.71:

Vtot = Vtech + 1− 4ηtotx

(
cos2 θsqz
(1 + x)2

− sin2 θsqz
(1− x)2

)
(4.1)

Since we will only be considering squeezing at gravitational wave frequencies, the measure-

ment frequencies are all small compared to the line-width of the OPO and we have ignored

the frequency dependence of the level of squeezing produced by the OPO. All of the effects

that limit the squeezing can be described by only four factors, Vtech, ηtot, x and θsqz. If the

detector is dominated by technical noise, squeezing the quantum noise will have no effect

on the total noise. Optical losses limit the degree of squeezing by mixing a squeezed state

with the noisier vacuum state. Fluctuations of the squeezing angle also reduce the broad-

band level of measured squeezing by adding noise from the anti-squeezed quadrature into

the measured quadrature. Since we have enough second harmonic power available in our set
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up to reach threshold, x was not a significant limit in our experiment.

While some of the factors that affect the level of squeezing are fixed, for example the

finite transmission of an optical element, many of them can be adjusted to maximize squeez-

ing, like the crystal temperature and position, the OPO length and input power, and the

alignment of the beam from the squeezer into the interferometer. Ideally the experiment is

operated at the point that maximizes the signal to noise ratio with respect to all of these

adjustable parameters. As with any locally maximized function, fluctuations of the inde-

pendent variables will lead to a degradation of the level of squeezing. If the fluctuations

are slow compared to the measurement time, the level of measured squeezing will fluctuate

over time, causing a non stationary spectrum. Fluctuations of variables which have been

optimized will always degrade the mean level of squeezing, if the fluctuations are faster than

the measurement time the only evidence will be a lower level of squeezing. For this reason

there is a good deal of overlap between the mechanisms that degrade the level of squeezing

and the long term stability of the squeezing; the same fluctuations that limit the stability

when they happen slowly compared to the measurement time limit the level of squeezing

when they happen faster than the measurement time. Although the next two chapters are

focused on the level of squeezing, much of this will be applicable to investigations of the long

term stability.

4.1 Technical noise

Noise sources other than quantum noise add in quadrature with the quantum noise, po-

tentially masking any reduction in quantum noise. In a balanced homodyne detector the

technical noise includes electronics noise, amplitude noise from the local oscillator due to a

small imbalance between the two photo-diodes of the homodyne detector, and any amplitude

noise from a coherent field entering from the squeezing port. For a discussion of the different

sources of phase noise in a homodyne detector see [82].

When the interferometer is used to detect squeezing, seismic and thermal noise are the

main limiting technical noise sources. Understanding and reducing these noise sources will
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Figure 4-1: Squeezing with technical noise. The blue curve shows the reference trace, without
squeezing injected. A model of shot noise for this data, with a zero at 100 Hz and the overall
level set to match this data, is shown by the green line. An estimate of technical noise
can be made by subtracting the shot noise model from the reference trace. The shot noise
model, reduced by 2.1 dB, added in quadrature with the technical noise estimate, was used
to make a prediction of the spectrum with squeezing injected, shown in red. This is an
accurate prediction of the measured squeezing spectrum, shown in black. Technical noise
added to the interferometer by the squeezer would cause the measurement to deviate from
the prediction.
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be important to improve the sensitivity of the interferometer, but to understand how they

limit the squeezing we simply need to know the level of noise. This can be found easily by

comparing the measured spectrum of the interferometer with either a model or a measure-

ment of the shot noise level. The null-stream channel provides a measurement of the shot

noise level even when squeezing is injected into the interferometer, as discussed in Section

2.7.3. By subtracting the shot noise in quadrature from the entire spectrum, we get an

estimate of the total interferometer technical noise, which generally will have a frequency

dependent spectrum. At frequencies where the interferometer technical noise is near the shot

noise level or above it, it will degrade the squeezing. As long as there is some frequency in

the spectrum where the technical noise is well below the shot noise, the maximum squeezing

measured should indicate the level of shot noise reduction due to squeezing. A prediction for

the spectrum with squeezing can be constructed by applying that maximum level of squeez-

ing to the model of shot noise (or measurement), and adding the squeezed shot noise model

in quadrature with the estimated interferometer technical noise. If this prediction matches

well with the measured spectrum with squeezing injected, as in Figure 4-1, the technical

noise is well understood and the squeezer is not adding significant technical noise to the

interferometer. If the squeezer is adding additional technical noise to the interferometer,

the improvement (or degradation) due to squeezing is unlikely to be flat in frequency. The

extra noise added by squeezing will cause a discrepancy between the predicted and measured

spectrum with squeezing.

4.2 Optical Losses

The term ηtot is called the total efficiency, and is often referred to as total losses. Sometimes

the detection efficiency ηdet = ηlossηHDηPD is distinguished from the escape efficiency, so that

the total efficiency becomes ηdetηesc. Figure 4-2a shows how detection efficiency affects the

quantum noise as the squeezing angle changes. Viewed on a log scale, small losses have a

dramatic effect on the squeezing. Figure 4-2b shows the measured squeezing as a function

of injected squeezing for different detection efficiencies. For every detection efficiency the
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Viewport 99.8%
Injection Faraday Isolator 94%

Output Faraday Rotator in output direction 94%
Pick off for AS table 98.8%

total 87%
total assuming output Faraday losses are symmetric 82%

Table 4.1: Measurements of power transmission of individual elements, illustrated in 3-
17. [27]

measured squeezing approaches a limiting value, further increases in the generated squeezing

do not improve the measured squeezing. Gravitational wave detectors are certainly in this

loss limited regime but detection efficiencies have not been reliably above 50%.

4.2.1 Independent measurements of optical losses in H1 experi-

ment

As discussed in Section 3.2.7, our OPO escape efficiency was 96%, with approximately equal

contributions from crystal losses, rear coupler losses, and unidentified losses. Our detection

efficiency varied from 40-46%. Table 4.1 shows measurements of optical losses between

the squeezer and the OMC made before installation, the product of these values was in

agreement with losses measured after installation by injecting a coherent beam. In the final

configuration the transmission of the output mode cleaner for a well mode matched beam

was 82%.

The largest uncertainty in our measurements of the detection efficiency come from un-

certainty in the mode matching and alignment of the squeezed beam to the output mode

cleaner. The mode matching was 80% with the interferometer unlocked, but the AS beam

mode matching to the OMC differed by nearly 30% from an unlocked interferometer to a

locked full power interferometer. The mode matching to the OMC could change due to

thermal lensing on the input test masses. We measured the total transmission from the

squeezer to the OMC photo-diodes to be 52% by locking the OMC length and alignment

to the beam from the squeezer. We were able to see that the throughput was as expected
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with the interferometer locked on RF with low power by injecting a large coherent beam

from the squeezer with a frequency offset from the interferometer beam, aligning the OMC

to the interferometer beam using quadrant photodiodes, and measuring the transmission of

the squeezer beam through the OMC. We were only able to make this measurement with

the original H1 OMC, not the Livingston OMC used for the second half of the squeezing

experiment due to a camera alignment problem. The consistency between the throughput

measurements with an interferometer locked on RF and an unlocked interferometer indicate

that our technique for aligning the squeezed beam to the interferometer beam was adequate.

Combining the 52% propagation efficiency with our 96% escape efficiency and a lower

limit of 95.4% on the quantum efficiency of the photodetectors [35], we predict a total

efficiency of around 47%. During our experimental run the interferometer alignment varied

from day to day, so that the detection efficiency varied as well. The detection efficiency

would also have varied on a time scale of a few Hz, since the squeezer had no auto alignment

system.
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Figure 4-2: Squeezing with losses
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4.3 Squeezing angle fluctuations

While we have locking loops that control the average squeezing angle, there are remaining

fluctuations, sometimes called squeezing angle phase noise. These squeezing angle fluctua-

tions mix some of the quantum noise from the orthogonal quadrature into the measurement.

This degrades the broadband level of squeezing by an amount that depends on the total

rms squeezing angle fluctuations that are faster than the measurement time. If the mean

squeezing angle is θsqz with Gaussian fluctuations with standard deviation of θ̃sqz, then the

measured level of squeezing is:

Vtot(θsqz, θ̃sqz) = Vtech +
1

θ̃sqz
√

2π

∫ ∞
−∞

dxe−x
2/2θ̃2sqz

(
V+ sin2 (θsqz + x) + V− cos2 (θsqz + x)

)
(4.2)

= Vtech +
1

θ̃sqz
√

2π

∫ ∞
−∞

dxe−x
2/2θ̃2sqz

×
(
V (θsqz) cos2 x+ V (θsqz + π/2) sin2 x+

V+ − V−
2

sin 2µ sin 2x

)
(4.3)

= Vtech + e−θ̃
2
sqz

(
V (θsqz) cosh

(
θ̃2
sqz

)
+ V (θsqz + π/2) sinh

(
θ̃2
sqz

))
(4.4)

If we use the small angle approximation we have [2, 33,84]:

Vtot(θsqz, θ̃sqz) = Vtech + V (θsqz) cos2 θ̃sqz + V (θsqz + π/2) sin2 θ̃2
sqz (4.5)

Figure 4-3 shows the effect of squeezing angle fluctuations at frequencies well above the

cavity line-width, which is largest at frequencies well inside the cavity line-width. While there

are noise sources that cause high frequency squeezing angle fluctuations, like the control

sidebands and quantum phase fluctuations at high frequencies, the dominant sources of

squeezing angle fluctuations are driven by seismic, acoustic and thermal fluctuations which

are large at frequencies in LIGO’s measurement band and below. This means that θ̃sqz
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Figure 4-3: Squeezing level predicted for an OPO with a 12 MHz linewidth (HWHM),
operated at half of the threshold power and 75% detection efficiency. The dashed lines
show the level of anti-squeezing, which is nearly identical with and without squeezing angle
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have 100 mradians of RMS squeezing angle fluctuations all at frequencies above 15 MHz.
Squeezing angle fluctuations do not have a large effect on the level of anti-squeezing but
they do degrade the level of squeezing, especially at low measurement frequencies where the
maximum anti-squeezing is produced.
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Figure 4-4: Squeezing with frequency dependent squeezing angle fluctuations, and same
parameters used in Figure 4-3. The blue and green traces are the same as in Figure 4-
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measurement time. The red curves are calculated with squeezing angle fluctuations that
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angle fluctuations above 50 Hz are the same in the low frequency and high frequency case,
so the level of squeezing measured at 50 Hz is the same.

depends on the measurement time:

θ̃sqz(f) =

[∫ ∞
1/tm

Sθ(f) d f

]1/2

(4.6)

where if Sθ(f) is the power spectral density of squeezing angle phase noise, and tm is the

measurement time. Figure 4-4 shows the impact of squeezing angle fluctuations with a spec-

trum that is inversely proportional to frequency. Because spectra are normally taken with

averaging, the inverse of the measurement time is usually lower than the lowest frequency

included in the spectrum. Squeezing angle fluctuations are a more important concern for
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squeezing used in gravitational wave detectors than in other applications of squeezing, both

because of the low measurement frequencies and the long measurement times. As shown

in Figure 4-5b, the effect of phase noise is more important with higher levels of squeezing,

meaning that squeezing angle fluctuations will become a more important concern in future

gravitational wave detectors planning for 6 dB or more of squeezing noise reduction.

4.4 Nonlinear interaction strength

Currently available crystals and laser sources allow us to reach a normalized nonlinear in-

teraction strength of x = 1 easily with planning. This means that in practice the strength

of the nonlinearity does not limit to the level of squeezing. Since the variances V± are odd

functions of the nonlinear interaction strength, so the mean level of squeezing is determined

by the mean value of x, and unaffected by fluctuations. However, if the value of x does

drift over time the level of squeezing will also drift causing a non-stationary spectrum. An

intensity stabilization on the second harmonic pump beam may be needed to stabilize the

level of squeezing in the long term, both to reduce fluctuations of x and to reduce squeezing

angle fluctuations caused by temperature changes as discussed in Section 5.2.2.
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Figure 4-5: Squeezing with phase noise
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4.5 Measurements of total losses and total phase noise

The limits to squeezing can be studied in a bottom up way- considering each mechanism

for degradation separately and calculating or measuring how it affects the squeezing, or by

a top down approach- where the measured noise is used to estimate the factors that limit

squeezing. Ideally the two approaches agree, and the level of squeezing is fully understood,

but discrepancies can help identify unexpected sources of degradation. The technical noise

can be estimated using the method illustrated in Figure 4-1. The classical nonlinear gain

can be measured before squeezing is injected and used to estimate the normalized nonlinear

interaction strength, which should not be an important limit to the squeezing. The remaining

factors that can limit squeezing, ηtot and θ̃sqz can be measured by the method illustrated

in Figure 4-6. A measurement of the squeezing and anti-squeezing at a series of different

nonlinear gains can be used to fit for the total losses and total squeezing angle fluctuations,

as long as the alignment and loop gains are kept the same for all of the measurements. The

results of a measurement using this method with Enhanced LIGO are shown in Figure 4-7.

This is a standard technique for characterizing the performance of a squeezer and detector

[2,55,61,84], here we are using it to characterize the performance of the interferometer as a

squeezing detector.
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Figure 4-6: Method for distinguishing between losses and phase noise. The level of anti-
squeezing is relatively unaffected by phase noise, but does depend on the detection efficiency.
The level of squeezing, especially at high nonlinear gains, depends strongly on the level of
phase noise.
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Chapter 5

Squeezing angle fluctuations

In the last chapter we used Equation 4.1 for the squeezing produced in an idealized situation,

without cavity length noise, laser noise, or temperature fluctuations, to characterize the

squeezing actually measured in the interferometer. We saw that the limits in the idealized

situation explain the limits to the measured squeezing. In this chapter we will consider ways

in which the actual experiment deviates from the assumptions made in Section 2.5 to arrive

at Equation 4.1. In this chapter we will only consider the impact that realistic fluctuations

in our experiment have on the quantum noise reduction that squeezing can achieve. Any

noise couplings that can add classical noise to the interferometer we consider technical noise

which will be addressed in the next chapter. The control of squeezing angle fluctuations in

a gravitational wave detector has some unique requirements. We will describe the control

scheme and an unexpected noise coupling that it introduced. We will see that the dominant

impact of all these experimental realities can be approximated as fluctuations of the squeezing

angle, so that Equation 4.1 remains a good approximation to the measured variance even

with these realities taken into account.
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Figure 5-1: Diagram of the control scheme for H1 squeezing experiment

5.1 Introduction to squeezed vacuum source control

scheme

The squeezer control scheme is designed to control several degrees of freedom, including the

frequency and phase of the two lasers, the lengths of the two cavities, and the phase of the

squeezed state relative to the local oscillator at the detector. Although there are six con-

trol loops, four of them are used in a hierarchical arrangement to control a single degree of
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freedom, the squeezing angle. Figure 5-1 shows a simplified layout of the squeezing experi-

ment in Enhanced LIGO and illustrates the control scheme used to reduce squeezing angle

fluctuations, a variation on the control scheme described in [11]. The pump laser is locked

with a bandwidth of 240 kHz to the interferometer’s carrier frequency through a fiber, while

the control laser is offset locked 29.5 MHz above the pump laser frequency with a 470 kHz

bandwidth. The pump laser pumps a second harmonic generator (SHG) similar to the one

described in [11]; the generated 532 nm field pumps an OPO similar to the one described

in [12]. These cavity lengths are each controlled with bandwidths of 6 and 9 kHz respec-

tively by Pound-Drever-Hall locking actuating on a cavity mirror attached to a piezo-electric

transducer (PZT). The control laser is injected into the OPO where the nonlinear process

generates a second sideband symmetric about the carrier frequency. The phase relationship

between the injected and generated sidebands is the same as the phase relationship between

the correlated audio frequency sidebands generated by the OPO, and is sensed in reflection

off the OPO at the coherent field photo-detector. The phase of the control laser is then

locked to the phase of the squeezed state with a 90 kHz bandwidth servo by actuating on

the lock point of the auxiliary laser phase locked loop and a path length PZT. The phase of

the coherent control sidebands are now a proxy for the squeezed angle. In normal operation,

the squeezed state and coherent sidebands are injected into the interferometer, reflect off

the Fabry- Perot arm cavities and interfere with the anti-symmetric port beam. A pickoff

mirror sends a small amount of power to the squeezing angle photo-detector, which senses

the phase between the coherent sidebands and the interferometer carrier, which is indirectly

a measure of the squeezed quadrature. This signal is fed back to the phase between the main

squeezing laser and the interferometer laser with a bandwidth of 10 kHz, using a voltage

controlled oscillator. The output mode cleaner rejects the coherent sidebands and transmits

the squeezed field and the interferometer carrier to the gravitational wave photo-detector

where the reduction in quantum noise is measured by homodyne detection. Alternatively,

the diagnostic homodyne detector can be used to measure the squeezing and generate the co-

herent squeezing angle control error signal to characterize the squeezer performance without
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the interferometer.

5.2 Factors that can shift squeezing angle

To understand how experimental realities can limit the squeezing produced by an OPO we

will expand the calculation from Section 2.4 to include laser noise, cavity length fluctuations,

and temperature fluctuations. We will follow the general approach used by McKenzie [57],

to show that first order couplings of these noise sources to the field produced by the OPO

(technical noise) can be eliminated when there is no coherent field at the fundamental fre-

quency, [56, Chapter 5]. We will start with the assumption that there is no coherent field at

the fundamental frequency, and so we will not find the first order couplings of these noise

sources to the variance calculated in [56]. When we consider the second order couplings of

these noise sources to the variance we will see that we can approximate them as first order

couplings to the squeezing angle. In Section 2.4 we found the time domain equations for

the cavity fields. In this section we will not assume that the second harmonic field is in a

coherent state and allow it to have noise:

ḃ = −(γtotr − i∆b)b+

√
2γfgBin,f (5.1)

δȧ = γtotr Mδa +
√

2γlrδAl,in +

√
2γfr δAf ,in (5.2)

M =

 −1 + i
∆a

γtotr

εb

γtotr
ε∗b†

γtotr
−1− i∆a

γtotr

 (5.3)

Assuming that the three main noise sources, laser phase noise, laser amplitude noise, and

cavity length noise, are incoherent we will calculate each effect separately and can add them

in quadrature to find the total squeezing angle fluctuations.
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5.2.1 OPO Cavity length noise

The cavity length is locked to the frequency of the second harmonic field, so the average

detuning for that field vanishes. Although the cavity length noise is suppressed by the PDH

lock, residual length noise remains, causing the detuning to have a fluctuating component:

∆b = 2ω
δL(t)

L̄
≡ 2∆(t) (5.4)

where ∆ is the detuning at the fundamental frequency. Since cavity length fluctuations

are driven by acoustic and seismic motion they will be at frequencies far below the cavity

linewidth and we can ignore any frequency dependence in the squeezing spectrum. We can

instead simply calculate the effect of a static length detuning ∆ on the squeezing angle to

understand the impact of fluctuations. From Equation 5.1 the circulating field becomes:

b =

√
2γoutg Bin

γtotb

1

1− i2∆/γtotb
(5.5)

If we keep only terms that are first order in ∆/γtotg the detuning causes only a phase shift

of the circulating field, so we can expect that a detuning will cause a shift of the squeezing

angle. The change in the cavity length also causes a phase shift for the infrared fields, so

we will use the full cavity equations of motion with the static detuning included to find the

effect on the squeezing. Now M from Equation 5.3 becomes:

M = γtotr

 −1 + i ∆
γtotr

xeiθb

1− i2∆/γtotg
xe−iθb

1 + i2∆/γtotg
−1− i ∆

γtotr

 (5.6)

Following the procedure of Section 2.4 using this matrix gives an expression for the variances

of the output fields with a detuning included. A plot of the resulting variances for the

parameters of our OPO is shown in Figure 5-2. At θb = 0 the variance in the squeezed
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Figure 5-2: Quadrature variance of output field as incident pump phase varies for a cavity on
resonance (purple) and slightly detuned (blue). The maximum level of squeezing is almost
unchanged by small detunings, although the squeezing angle is shifted relative to the phase
of the input field. ∆ is the detuning from the OPO resonance for the fundamental field.

quadrature to second order in the detuning is:

Vsqz = V− +
4ηescx

(1− x2)2

[
4(1− x+ 2x2)

(γtotg )2
+

4

γtotg γtotr
+

x+ 3

(1 + x)(γtotr )2

]
∆2 (5.7)

From Figure 5-2 it is clear that the effect of the detuning is a phase shift,and that the

maximum level of squeezing with no detuning can nearly be recovered if the pump phase is

adjusted to compensate for the detuning. To find the first order approximation for the shift

in the squeezing angle due to a cavity detuning we make an expansion at the point where
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the variance is linear with the incident pump phase, θb = π/2. We can find the first order

shift in the squeezing angle by taking derivatives at this point:

dθsqz
d∆

=
1

2

dV
d∆

∣∣
φ=π/2,∆=0

dV
dφ

∣∣∣
φ=π/2,∆=0

=
1

γtotg
+

1

γtotr (1 + x2)
(5.8)

The squeezing angle fluctuations caused by a cavity length change δL(t) are :

δθsqz(t) =

(
1

γtotg
+

1

γtotr (1 + x2)

)
ωδL(t)

L̄
(5.9)

Although the impact of a detuning on the noise level is second order, we can approximate

the effect as a linear coupling to the squeezing angle, which allows us to use linear controls

to mitigate the effect.

5.2.2 Crystal temperature fluctuations

The amplitude fluctuations of the second harmonic field, as well as environmental tempera-

ture changes, can cause temperature fluctuations of the nonlinear crystal. A change in crystal

temperature will cause a change in the nonlinear coupling parameter and the co-resonance

condition, as discussed in Section 3.2.6. The detuning for the fundamental field is given by

the dispersion mismatch (Equation 3.31) over the cavity round trip time:

∆a =
∆φrt
τ

=
1

τ

[
krLc

(
α [n(ωg)− n(ωr)] +

dn(ωg)

dT
− dn(ωr)

dT

)
(T − T0)

+kr(n(ωr)− n(ωg)) sin θw(y − y0)
]

(5.10)

≡ υ(T − T0) + Υ(y − y0)

τ
(5.11)

where τ is again the cavity round trip time, and we approximate the total crystal length by

the length of the poled region in the crystal. Ideally the temperature setting is adjusted for

co-resonance, so the constant part of the detuning is zero. If the crystal position is optimized,
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y = y0, and the average temperature is set for co-resonance then

∆a = −υδT (t)

τ
(5.12)

The nonlinear coupling parameter depends on the phase mismatch [45,57]:

ε = ε0e
−i∆kqLc/2 sinc

(
∆kqLc

2

)
(5.13)

where ε0 is the nonlinear coupling parameter for perfect quasi-phase matching. The argument

of the exponential will have the same impact on the squeezing as a phase shift of the second

harmonic circulating field would have. From Equation 3.20:

Lc∆kq
2

= υ(T − T0) = υδT (t) (5.14)

Temperature fluctuations will all be at low frequencies compared to the cavity linewidth,

so can once again ignore the frequency dependence. Assuming that the crystal position is

optimal a temperature fluctuation δT away from the optimal temperature will change the

matrix M that describes the OPO to:

M =

 −1− i υδT
γtotr τ

x sinc(υδT )ei(θb−υδT )

x sinc(υδT )e−i(θb−υδT ) −1 + i
υδT

γtotr τ

 (5.15)

As shown in Figure 5-3 a temperature shift also causes a shift in the squeezing angle,

and only a small change in the maximum level of squeezing that can be measured. The

squeezing angle fluctuations are the dominant effect, we can calculate the linear coupling of

temperature fluctuations to squeezing angle by taking derivatives around the point θb = π/2

and T = T0, the optimal temperature:

dθsqz
dT

=
1

2

dV
dT

∣∣
φ=π/2,δT=0

dV
dφ

∣∣∣
φ=π/2,δT=0

= −υ
(

1

γtotr τ(1 + x2)
+

1

2

)
(5.16)
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Figure 5-3: Quadrature variance of output field as a function of incident pump phase, with
a temperature offset.

5.2.3 Second harmonic field amplitude fluctuations

Fluctuations in the circulating second harmonic power can directly change the normalized

nonlinear interaction strength, and can also cause fluctuations in the crystal temperature.

Without the temperature effect, the amplitude fluctuations are not an important limit to

the squeezing. Using the equations of motion, a static increase in the circulating amplitude

simply increases the level of squeezing, as shown in Figure 5-4. The mean level of squeezing

is determined by the mean circulating amplitude, so amplitude fluctuations would degrade

the long term stability but not the level of squeezing if there were no temperature effects.

Absorption in the crystal means that the temperature fluctuations are driven by fluctua-

tions in the circulating second harmonic power [51]. The crystal absorbs some of the second

harmonic power, causing localized heating where the beam passes through. The amount of

localized heating is not measured by the temperature sensor, which is on or near the crystal

surface, so our temperature control servo does not correct for the localized heating [57]. The

second harmonic power absorbed by a crystal with a low absorption coefficient αKTP will
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Figure 5-4: Quadrature variance of output field as a function of incident pump phase, with
a change in pump amplitude ignoring temperature effects.

be:

Pabs = Pcirc(1− e−αKTPLc,tot) = PcircαKTPLc,tot (5.17)

Writing the circulating power in terms of the linearized operators:

Pcirc = P̄circ + δPcirc(t) = P̄circ

(
1 +

δPcirc(t)

P̄circ

)
(5.18)

= 2~ω
(
b̄† + δb†(t)

) (
b̄+ δb(t)

)
= 2~ω|b̄|2

(
1 + 2 Re

[
δb(t)

b̄

])
(5.19)

The absorption of the constant part of the power can be compensated for by changing the

setting of the temperature controller, however the fluctuations will not be compensated by
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the temperature controller.

δP̃abs(t) = 4αKTPLc,tot~ω|b̄|2 Re

[
δb̃

b̄

]
(5.20)

In the frequency domain the temperature change due to a change in the circulating power

will be [45]:

δT̃ =
τT
CρV

(
1

1 + sτT

)
δP̃abs (5.21)

where C is the specific heat and ρ is the density of the crystal, V is the mode volume in the

crystal, and τT is the thermal relaxation time of the crystal which is much smaller than the

cavity line-width. The transfer function from incident to circulating amplitude fluctuations

is:

Re

[
δB̃

B̄

]
=

1

1 + s/γtotr
Re

[
δb̃

b̄

]
(5.22)

We can now write the crystal temperature fluctuations in terms of the amplitude fluctuations

of the input field using Equations 5.21 and 5.20:

δT̃ =
τT4αKTPLc,tot~ω|b̄|2

CρV

(
1

1 + sτT

)(
1

1 + s/γtotg

)
Re

[
δB̃

B̄

]
(5.23)

=

(
1

1 + sτT

)(
1

1 + s/γtotg

)
2τTP abs

CρV
Re

[
δB̃

B̄

]
(5.24)

While amplitude fluctuations can be at high frequencies, due to either classical or quantum

noise on the second harmonic field, the thermal relaxation time will be of the order of hundred

of Hertz and so the thermal effect will only be important at low frequencies. Because of the

thermal effect an intensity stabilization of the second harmonic pump beam could be helpful

in a squeezer, [51]. Because of a difference in the control electronics (locking to a zero

crossing rather than using an offset to adjust the locking point) our squeezer is immune to
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the second noise coupling mechanism mentioned in [51]. Another approach to controlling

the temperature would be to sense the co-resonance condition using an addition field in

the OPO, as was demonstrated in [57]. This scheme would have to be modified for use

in a gravitational wave detector to avoid introducing a coherent field at the interferometer

frequency, but could be feasible if the sensing beam were offset in frequency by an FSR from

the interferometer frequency and injected into the OPO in the counter propagating direction.

5.2.4 Phase noise of incident second harmonic field

Motivated by our control scheme we will only consider phase fluctuations of the second har-

monic pump, assuming that frequency fluctuations are small enough to be treated as phase

fluctuations. Pump phase fluctuations have long been understood to limit the squeezing

produced by an OPO [41, 68, 90] and the quantum noise of the pump laser phase has been

considered as an ultimate limit to the squeezing that can be produced by an OPO [21]. The

impact of a static phase shift of the circulating field is simply a shift of the squeezing angle:

M =

 −1 xeiθb(1 + iδθb)

xe−iθb(1− iδθb) −1


=

 −1 xei(θb + δθb)

xei(θb + δθb) −1

+O[(δθb)
2] (5.25)

However, the pump phase noise can be at high frequencies. The phase noise driven by

acoustic or seismic noise should be well within the cavity linewidth, but there can also be

high frequency phase noise due to quantum noise and the control sidebands used to lock the

OPO and SHG lengths. The assumption that the fluctuations will be small compared to

the cavity line-width that simplified the calculations in the previous sections cannot be used

indiscriminately for phase fluctuations.

With the operators written in terms of constant and fluctuating parts, b(t) = b̄ + δb(t)
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the equation of motion for the circulating pump field Equation 5.1 becomes:

δ̇b(t) = −γtotg (b̄+ δb(t)) +

√
2γfg (B̄f,in + δBf,in(t)) (5.26)

The time independent part of this equation can be solved for the static part of the circulating

field:

b̄ =

√
2γfb

γtotg
B̄f,in (5.27)

The time dependent part is:

δ̇b(t) = −γtotg δb+

√
2γfg δBf,in(t) (5.28)

δ̇b(t)

b̄
= −γtotg

δb(t)

b̄
+ γtotg

δBf,in(t)

B̄f,in

(5.29)

To first order the real part of the relative fluctuations δb/b̄ are relative amplitude fluctuations,

while the imaginary parts are phase fluctuations. We can separate Equation 5.29 into real

and imaginary parts, and label the imaginary parts δθb(t) and similarly for the input field:

δφ̇b(t) = −γtotg δθb(t) + γtotg δθB(t) (5.30)

Moving into the frequency domain we have:

δθ̃b =
1

1 + s/γtotg
δθ̃B (5.31)

Where s is i2πf , and f is the frequency of the fluctuation. This transfer function has a pole

at the green cavity linewidth, γtotg , so high frequency fluctuations of the second harmonic

pump are filtered by the resonant cavity. Increasing the green finesse would lower the pole

frequency and further reduce the high frequency phase fluctuations. When the OPO is not

resonant for the pump field, an additional mode cleaner cavity is sometimes used to reduce

the pump phase fluctuations [88]. The justification given for the use of an external mode
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cleaner is that it reduces phase noise due to the control sidebands, which are normally at

several MHz, often tens of MHz. The evidence cited for the impact of these phase fluctuations

on the squeezing is relevant to phase fluctuations at frequencies much smaller than the cavity

line-widths [33,84] and shouldn’t be directly applied to the MHz control sidebands.

Gea-Banacloche has calculated the impact of white noise phase fluctuations on squeezing

produced in an OPO using the full cavity equations of motion [41]. To find the impact of

an arbitrary spectrum of phase fluctuations on the squeezing we would need to solve the

equations of motion for the cavity field of an OPO with phase noise included Equation 2.28:

δȧ(t) = γtotr [M̄ + iδθb(t)Mφ]δa(t) +
√

2γlrδAl,in(t) +

√
2γfr δAf ,in(t) (5.32)

Where:

M =

 −1 xeiθb

xe−iθb −1

 Mφ =

 0 xeiθb

−xe−iθb 0

 (5.33)

In the frequency domain this becomes:

iΩδã = γtotr Mδã + γtotr Mφδθ̃b ∗ δã +
√

2γlrδÃl,in +

√
2γfr δÃf ,in (5.34)

where ∗ is the convolution. I won’t try to solve this for any spectrum of fluctuations, but

we can get a general idea about the impact of high frequency pump phase fluctuations by

considering the control sidebands. Assuming that spectrum of phase fluctuations is a delta

function at the control sideband frequency s,

δã(Ω) = (iΩI− γtotr M)−1

(
γtotr Mφθ̃rmsδa(s) +

√
2γlrδÃl,in +

√
2γfr δÃf ,in

)
(5.35)

where θ̃rms is the RMS fluctuations due to the control sidebands. The noise of the cavity

field δa is frequency dependent, at high enough measurement frequencies the noise will just

be the same as the noise of a vacuum state, so clearly modulations at frequencies well outside
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the cavity line-width will have a reduced impact on the squeezing produced.

5.2.5 Relative phase of local oscillator

The relative phase between the local oscillator and the squeezed field can also cause fluctua-

tions in the squeezing angle. Since this relative phase sets the homodyne angle, fluctuations

at all frequencies directly cause squeezing angle fluctuations. There is no frequency depen-

dence to the impact of local oscillator phase fluctuations on the measured squeezing, even

phase noise well outside of the measurement bandwidth contribute to the squeezing angle

fluctuations.

5.3 Squeezing angle control

Although the squeezer has control loops that suppress cavity length fluctuations and laser

frequency noise, the squeezing angle at the readout detector needs to be controlled as well to

compensate for changes in path length, crystal temperature fluctuations, and pump phase

noise. To control the squeezing angle, we need a sensor that can sense the squeezing angle

fluctuations that are not compensated by our other locking loops.

We relied on a coherent locking technique, similar to those described in [44] and [11].

This technique uses a second laser, offset in frequency from the interferometer and pump

lasers by Ωc, as a proxy for the squeezing angle. This laser is then injected into the OPO

through a rear coupler, which has a small amount of transmission for 1064 nm, Tr = 0.15%

and decay rate γrr . In earlier parts of this thesis the decay rate of the rear coupler has been

included in γlr. Because this field will experience the same nonlinear gain as the squeezed

field in the OPO and the same path length fluctuations as the squeezed field as they travel

toward the detector we can use it to measure the same disturbances that will cause squeezing

angle fluctuations. The coherent control field must be small enough that that parametric
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approximation holds, so the green field is un-depleted:

εc2
+(t)

2
� γtotg b(t) (5.36)

If this condition is not satisfied the nonlinear interaction could couple noise from the coherent

control beam to the field at the fundamental frequency. Once injected into the OPO, the

coherent control beam is amplified and deamplified by the nonlinear interaction. A second

sideband is generated at the difference frequency between the injected sideband at ω +

Ωc and the second harmonic field, which is at the frequency ω − Ωc. The relative phase

between the injected and generated fields will be the same as the relative phase between the

correlated sidebands that create the quadrature squeezing. The relative phase between these

sidebands will be affected by fluctuations in the cavity length, crystal temperature, or second

harmonic field in the same way as the audio frequency sidebands that create squeezing. These

sidebands will propagate out of the OPO, and travel along the same path as the squeezing

to the detector acquiring the same phase shift as the squeezed field. At the detector, the

phase relationship between these fields and the local oscillator can be used to measure which

quadrature is squeezed, as shown in Figure 5-5. If the injected and generated sidebands had

the same amplitudes, they would add noise only in the anti-squeezed quadrature.

Two degrees of freedom need to be controlled with this control scheme, first the relative

phase of the injected field entering the OPO relative to the phase of the generated field which

we will call ψ = φ+ − φ−, where φ+ and φ− are the phases of the upper and , we sensed

in reflection off the rear coupler, we will call this degree of freedom the coherent locking

field phase. The second degree of freedom is the phase of the injected field relative to the

local oscillator. Ideally the phase relative to the local oscillator φ = φ+ − φifo is sensed

at the readout detector, which we will call the squeezing angle error signal. A balanced

homodyne detector with an external local oscillator can be used to measure this error signal as

demonstrated in [11,87] because the homodyne detector common mode rejection suppresses

the amplitude noise introduced by the coherent fields. In a gravitational wave detector, the

squeezing is detected with unbalanced homodyne detection (Section 2.7.4) which doesn’t have
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Figure 5-5: Phase relationship between the coherent control sidebands (E+ and E−) and the
local oscillator(Eifo), is related to the phase relationship between the noise sidebands (En+

and En−) and the local oscillator. This means that the coherent sidebands can be used to
sense the squeezing angle.

the intrinsic amplitude noise rejection of a balanced homodyne. The output mode cleaner

removes the control sidebands from the interferometer beam before it reaches the readout

detector, removing both the amplitude and phase noise they could add to the readout. This

means that the error signal for squeezing angle control is sensed elsewhere; we have used

the beam on the anti-symmetric port, although other choices like the reflection off of the

output mode cleaner are possible. The output mode cleaner acts as a spatial filter for the

anti-symmetric port beam, removing higher order modes and only transmitting the squeezed

beam which is well aligned to the interferometer beam. Because we sense the error signal
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for the squeezing angle control before the output mode cleaner, the higher order modes will

also contribute to our error signal.

5.4 Squeezing angle control with higher-order modes

The squeezing angle control error signal is generated by the beat between the interferometer

field and the coherent squeezing angle control fields, both of which can have misalignments.

Assuming that at the photo-detector both fields are mostly in the TEM00 mode with a small

component in the TEMij higher-order mode we can write the total field at the photo-detector

as

E(x, y, z, t) = Eifo + E+ + E−

=
∑
ij

{(aifo00 u00(x, y, z) + aifoij uij(x, y, z))eiφifo (5.37)

+ (a+
00u00(x, y, z) + a+

ijuij(x, y, z))ei(Ωct+φ+)

+ (a−00u00(x, y, z) + a−ijuij(x, y, z))ei(−Ωct+φ−)}eiωt + c.c.

Here uij(x, y, z) is the spatial mode function for the mode, and the phases φifo, φ+ and φ−

are chosen so that aifo00 , a
+
00 and a−00 are real. The photocurrent will be

IPD ∝
∞∫

−∞

|E(x, y, zPD, t)|2dxdy (5.38)

Since the mode functions are orthogonal:

∞∫
−∞

uij(x, y)ukl(x, y)dxdy = δikδjl (5.39)

Since this photocurrent will be demodulated at Ωc we can also ignore terms at zero frequency

and terms at 2Ωc. We could also demodulate this signal at 2Ωc to obtain an error signal

for the coherent locking field control loop, instead of using the beam reflected off of the rear
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coupler. Terms that remain at Ωc are

IPD ∝
[
aifo00 a

+∗
00 e

i(φifo − φ+) + aifo∗00 a−00e
i(φ− − φifo)

+aifoij a
+∗
ij e

i(φifo − φ+) + aifo∗ij a−ije
i(φ− − φifo)

]
e−iΩct + c.c. (5.40)

We can assume that the higher-order modes are small compared to TEM00 modes, and write

γifoij =

∣∣∣∣∣a
ifo
ij

aifo00

∣∣∣∣∣ γclfij =

∣∣∣∣∣ a+
ij

a+
00

∣∣∣∣∣ =

∣∣∣∣∣ a−ija−00

∣∣∣∣∣
Because of the Gouy phase shift there is a difference between the phase of the higher order

modes and the 00 modes:

aifoij = γifoij a
ifo
00 e

iφifoij aclfij = γclfij a
clf
00 e

iφclfij (5.41)

A common misalignment will cause the same Gouy phase shift in the two beams, but there

may also be relative misalignments that cause a relative phase shift:

φij = φifoij − φ
clf
ij (5.42)

The ratio of the amplitudes of the two squeezing angle control sidebands is the same in all

spatial modes:

α =

∣∣∣∣a−00

a+
00

∣∣∣∣ =

∣∣∣∣∣a−ija+
ij

∣∣∣∣∣ (5.43)

Now the photocurrent can be written

IPD ∝ cos(φifo − φ+ − Ωct) + α cos(φ− − φifo − Ωct)

+ Σijγ
ifo
ij γ

clf
ij [cos(φifo − φ+ − Ωct+ φij) + α cos(φ− − φifo − Ωct− φij)] (5.44)
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The coherent field locking loop controls the phase between these two fields, ψ ≡ φ+ − φ−.

We will also write φ ≡ φ+ − φifo. The photo-current can now be written

IPD ∝ [cos (−φ− Ωct) + α cos (φ− ψ − Ωct)

+ Σijγ
ifo
ij γ

clf
ij (cos (−φ+ φij − Ωct)− α cos (−Ωct+ φ− ψ − φij))] (5.45)

This photocurrent is demodulated by signals cos (Ωct− θdm)(for the I phase) and sin (Ωct− θdm)

(for the Q phase), and low passed to get rid of the 2ω terms.

Ierr ∝ cos (−φ+ θdm) + α cos (φ− ψ + θdm)

+Σijγ
ifo
ij γ

clf
ij [cos (−φ+ φij + θdm) + α cos (φ− ψ − φij + θdm)] (5.46)

Qerr ∝ sin (−φ+ θdm) + α sin (φ− ψ + θdm)

+Σijγ
ifo
ij γ

clf
ij [sin (−φ+ φij + θdm) + α sin (φ− ψ − φij + θdm)] (5.47)

5.4.1 Error signals without higher order modes
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Figure 5-6: Error signals with I and Q demodulation phases without higher order modes as
the phase φ rotates and ψ is held constant.

The misalignment terms will be small compared to the error signal due to the u00 modes,

so we can calculate them as small perturbations around the error signals without higher
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order modes. Without any misalignments the demodulated signals are simply

Ierr ∝ cos (−φ+ θdm) + α cos (φ− ψ + θdm) (5.48)

Qerr ∝ sin (−φ+ θdm) + α sin (φ− ψ + θdm) (5.49)

If there were no nonlinear gain in the OPO there would be no generated sideband, the error

signal would simply be a beat note, and would map out a circle in I and Q as φ changes.

In the other extreme, if the two sidebands have equal amplitudes (α = 1) the error signal

becomes a line in the I-Q plane similar to a Pound-Drever-Hall error signal which could be

zeroed in either quadrature by adjusting the demodulation phase. Our error signal is an

intermediate case where α ≈ 0.23 [75]. This means that the error signals trace out an ellipse

in the plane of I and Q as φ changes, and the orientation of the ellipse is determined by θdm

and ψ. If the I quadrature is used for locking, then when the squeezing angle control loop is

locked Ierr = 0. To observe amplitude squeezing at the detectors ψ and φ need to be tuned

correctly.

From Figure 5-5 the squeezing angle in terms of the phases of the control sidebands and

local oscillator is:

θsqz =
φ+ − φifo − (φifo − φ−)

2
= φ− ψ

2
(5.50)

The squeezing angle is π
2

for amplitude squeezing and 0 for phase squeezing, which gives us

the relations φ = ψ+π
2

for squeezing measured at the readout detector and φ = ψ
2

for anti

squeezing measured at the readout detectors. If we substitute our relations for ψ into the

expressions for Ierr and Qerr we find
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Squeezing Antisqueezing

θsqz = π
2

θsqz = 0

φ = ψ+π
2

φ = ψ
2

Ierr ∝ (1− α) cos (φ− θdm) I ∝ (1 + α) cos (φ− θdm)

Qerr ∝ (1− α) sin (θdm − φ) Q ∝ (1 + α) sin (θdm − φ)

Squeezing angle locked using Ierr

I = 0 I = 0

φ = π/2 + θdm φ = π/2 + θdm

ψ = 2θdm ψ = 2θdm + π

Q = −(1− α) Q = −(1 + α)

The second panel of Figure 5-6 shows a plot of the error signals with φ rotating for a value

of α similar to the one produced by our squeezed light source. When the ellipse is aligned

with the semi major axis along the axis of the locking quadrature, the demodulation phases

should be set for squeezing. This means that we could hope to tune our squeezing angle by

minimizing the signal in the unlocked quadrature. However, misalignment of the squeezing

beam relative to the interferometer beam can complicate this picture.

5.4.2 Effect of a misalignment on locking point

The coherent locking field control loop will keep ψ constant, and is not affected by rela-

tive misalignments, but misalignments will cause a change in the locking point of the local

oscillator loop, ∆φ. If the demodulation phase is optimized without any misalignments,

(ψ = 2θdm), the demodulated signals including the effects of misalignment are:

I ∝ (1 + α)
[
cos (φ− θdm) + Σijγ

ifo
ij γ

clf
ij cos (φ− θdm − φij)

]
(5.51)

Q ∝ (1− α)
[
sin (θdm − φ) + Σijγ

ifo
ij γ

clf
ij sin (θdm − φ+ φij)

]
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We can assume that γifoij γ
clf
ij � 1 and so when we lock and Ierr = 0, then φ ≈ π/2+θdm+∆φ

where ∆φ is a small angle.

I ∝ −(1 + α)
[
sin ∆φ+ Σijγ

ifo
ij γ

clf
ij sin (∆φ− φij)

]
(5.52)

∝ −(1 + α)
[
sin ∆φ+ Σijγ

ifo
ij γ

clf
ij (sin ∆φ cosφij − cos ∆φ sinφij)

]
Now we can use the locking condition I = 0 and the small angle approximation to first order

in ∆φ to find an equation for the locking point error:

∆φ =

∑
ij γ

ifo
ij γ

clf
ij sinφij

(1 +
∑

ij γ
ifo
ij γ

clf
ij cosφij

) (5.53)

≈
∑
ij

γifoij γ
clf
ij sinφij

This will lead to a change in the squeezing angle equal to the lock point error ∆φ unless one

of the other phases is adjusted to compensate for it.

5.4.3 Squeezing angle fluctuations due to beam jitter lock point

errors

If there were no alignment jitter but only static misalignments, the locking point for the

squeeze angle would no longer be the point that minimizes the signal in the unlocked quadra-

ture, but the maximum level of squeezing could be measured if the demodulation phase was

tuned to compensate for the misalignment (ignoring losses). If there were no static misalign-

ments but only beam jitter the phase noise added by fluctuations of the locking point will

reduce the amount of squeezing observed, but this is a second order effect. If one of the

beams has a static misalignment, the effect will become first order, for example:

∆θsqz(t) = (sin(φ̄ij + δφij(t))δγ
ifo
ij (t)(γ̄clfij + δγclfij (t))

≈ γ̄clfij δγ
ifo
ij (1 + φ̄ij)δφij(t) (5.54)
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Static misalignment of one beam will increase the phase noise added by the fluctuations of

the other beam. If all of the jitter were due to motion of one optic, which should have a fixed

Gouy phase, the phases φij would be static, but it is likely that there are multiple optics at

different Gouy phases that contribute to the beam jitter. Since we do not know which optics

cause the jitter, we do not know what these phases are, and how large their fluctuations are.

5.4.4 Evidence for alignment coupling to squeezing angle

We discovered this alignment coupling to the squeezing angle using the technique described

in Section 4.5. Limits on the total phase noise can be obtained using single measurements at

high gain of both the maximum and minimum quantum noise obtained. The anti-squeezing

value can be used to find a value for total efficiency while the minimum quantum noise

measured can be used to understand the phase noise. We saw that the locking point for

the squeezing angle loop that minimized the quantum noise changed when interferometer

alignment changed, and that the total phase noise also varied with alignment.

We also made an intentional misalignment of one of the mirrors in the squeezing injection

path, and saw that we needed to adjust the locking point after the alignment change to

minimize noise.

5.4.5 Independent measurement of spectrum of squeezing angle

fluctuations

One can also make a measurement of the total spectrum of the squeezing angle fluctuations.

This is possible by band-passing the interferometer spectrum at frequencies where the tech-

nical noise is small, and measuring the RMS noise power in that band. This gives a time

series of the quantum noise variance. By tuning the squeezing angle so that the variance has

a linear dependence on the squeezing angle, we can make a measurement of the squeezing
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Figure 5-7: Changes in interferometer alignment change total squeezing angle phase noise.
The red points and blue fit are the same data as shown in Figure 4-7, the green and magenta
points were measured at a different time. After measuring the phase noise of 109± 9 mrad
represented by the magenta point assuming that the total efficiency was 42% ± 7%, the
interferometer alignment was adjusted slightly. The change in interferometer alignment
meant that the error point for the squeezing angle control loop (demodulation phase) had to
be adjusted to find the minimum quantum noise, represented by the green point with 37± 6
mrad of phase noise.
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angle fluctuations. The derivatives of the variance are:

dV

dθsqz
= (V+ − V−) sin 2θsqz (5.55)

d2V

dθ2
sqz

= 2(V+ − V−)cos2θsqz (5.56)

The variance should be linear in the squeezing angle around θ = π
4
, where the slope is:

dV

dθ
= (V+ − V−) = 8ηtotx

1 + x2

(1− x2)2
(5.57)

This slope increases as x approaches 1, so this measurement will have the best signal to

noise ratio at high nonlinear gains. By taking a spectrum of the variance time series and

calibrating it in terms of squeezing angle fluctuations, we can directly measure a spectrum of

squeezing angle fluctuations. This method provides an out of loop sensor for the squeezing

angle fluctuations, which can be compared to the spectrum of squeezing angle fluctuations

measured by the squeezing angle sensor.

As shown in Figure 5-8 the squeezing angle fluctuations measured in this way are larger

than the fluctuations measured by the coherent locking squeezing angle sensor. An in loop

sensor can measure noise lower than the actual noise if the control loop is imposing the

sensor’s noise on the degree of freedom being controlled. As shown in Figure 5-8 the sensor

noise of the coherent locking squeezing angle sensor is below the error signal at these fre-

quencies, so sensor noise is not causing the discrepancy between the in loop and out of loop

sensors. This means that the sensor we are using to lock is not accurately measuring the

squeezing angle, due to locking point errors. The out of loop sensor in Figure 5-8 shows an

RMS squeezing angle fluctuation below 9 Hz of 39 mrad, while the in loop sensor has 1.6

mrad. These low frequency locking point errors are an important, and possibly dominant,

source of squeezing angle noise in our experiment. The interferometer alignment jitter is

mostly in the range 10-1 Hz [77], so the alignment jitter coupling to squeezing angle is a

plausible explanation for these locking point errors.
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Figure 5-8: Spectrum of squeezing angle fluctuations. The blue trace is a spectrum of the
variance of the interferometer spectrum in a frequency bin that is quantum noise limited,
calibrated in units of squeezing angle fluctuations. This is an out of loop sensor for the
squeezing angle fluctuations, the sensor noise for this out of loop sensor was measured when
no squeezing was injected into the interferometer. The in loop sensor is derived from the
squeezing angle control sidebands, and is not sensor noise limited as shown by the black
trace. This means that the error signal derived from the squeezing angle control sidebands
is not a completely accurate measurement of the squeezing angle fluctuations.
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Figure 5-9: Audio frequency sidebands on squeezing angle control sidebands due to audio
frequency squeezing angle fluctuations

5.5 Squeezing angle control with Fabry Perot Arms

The interferometer’s Fabry-Perot arms limit the bandwidth coherent squeezing angle control.

The 4 km arm cavities have a free spectral range of 37 kHz, and are resonant for the

interferometer carrier frequency, so they will also be resonant for light that is offset in

frequency from the carrier by an integer multiple of 37 kHz. The offset frequency for the

squeezing angle control sidebands should be chosen so that they are anti-resonant and reflect

off the arms. Fluctuations of the squeezing angle will put sidebands at the audio frequency

of the fluctuations, ωa onto the coherent control sidebands, illustrated in Figure 5-9. These

audio frequency sidebands can become resonant in the arm cavities, which causes a phase

shift relative to the coherent sideband at Ωc. This means that the arm cavity resonances add

resonances to the squeezing angle sensor, which can cause instabilities in the control loop.

Figure 5-10 shows the resonances added to the squeezing angle sensor by the arm cavity

resonances. By shifting the offset frequency Ωc, we can shift the location of the resonances

by the same amount. With no filtering these resonances limit the squeezing angle control

bandwidth to 10 kHz, with a notch filter this can be improved slightly. However there will

be a series of these resonances in the response function every 37kHz, meaning that coherent

squeezing angle control will never have a high bandwidth in a km scale interferometer with

Fabry-Perot arms.
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5.6 Squeezing angle fluctuations due to interferometer

control sidebands

Phase fluctuations of the local oscillator beam which are outside the bandwidth of the squeez-

ing angle control will directly add squeezing angle fluctuations. Radio frequency sidebands

on the interferometer are used to sense and control the interferometer length and alignment,

these can add phase noise to the interferometer beam at the readout photo-detectors, which

is the local oscillator for squeezing detection. While these control sidebands should be mostly

amplitude modulation sidebands at the anti-symmetric port, there is a small amount of phase

modulation due to the interferometer contrast defect and due to an imbalance between the

two sidebands.

5.6.1 Contrast Defect

A small mismatch in the reflectivity of the two arms means that there is a small amount of

light, called the contrast defect light, at the interferometer carrier frequency at the dark port

independent of the interferometer offset. The contrast defect field is (for the most part) 90

degrees out of phase with the interferometer leakage field due to the offset. This means that

the amplitude sidebands on the carrier light are phase modulation sidebands on the contrast

defect light; a not to scale illustration is shown in Figure 5-11. The phase noise on the

contrast defect in turn adds phase noise to the total field. From the left side of Figure 5-11

we see that the contrast defect shifts the phase of the entire carrier field by θ1 ≈ Acd/Aleak

where Acd is the amplitude of the contrast defect light and Aleak is the amplitude of the field

due to the DC offset. If x is the component of the control sidebands that adds phase noise

to the total carrier field, θ1 ≈ x/ASB. The maximum phase excursion is

δθ1 ≈ x/Acarr =
ASBAcd
A2
carr

(5.58)
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Figure 5-11: Illustration of RF sidebands and contrast defect adding phase noise to the
carrier, not to scale. Acd is the amplitude of the contrast defect light, Aleak is the amplitude
of the light due to the interferometer DC offset which is the local oscillator for the self-
homodyne used to detect gravitational waves, ASB is the amplitude of both the sidebands
transmitted through the OMC.

The powers in each sideband PSB are measured before the OMC, which has a power trans-

mission of

TSB =

∣∣∣∣∣∣∣∣∣
tintout

1− ρrinroute
i

2πfSB
fFSR



∣∣∣∣∣∣∣∣∣
2

= 2.35× 10−4 (5.59)

for the sidebands, where tin,out and rin,out are the amplitude transmittance and reflectance of

the OMC input and output couplers respectively, fFSR is the free sprectal range, fSB is the

sideband frequency (24.5 MHz) and ρ is the intra-cavity loss. The rms phase noise added is

θ̃CD =

√
2TSBPSBPCD

P 2
carr

(5.60)

161



This gives 3.0 ± 0.2 mrad of phase noise due to the contrast defect rotating the control

sidebands into the phase quadrature.

5.6.2 Sideband Imbalance

If the amplitudes of the two amplitude modulation sidebands are not exactly the same they

will add some phase modulation to the field. The maximum phase excursion is:

θI =
A2 − A1

Aleak
(5.61)

where now we are ignoring the contrast defect field, and A1,2 are the amplitude in the two

sidebands. The RMS phase noise due to sideband imbalance is:

θ̃I =
(
√
P2 −

√
P1)
√
TSB√

8PCR
(5.62)

≈

√
TSBdP 2

SB

8PleakP

where P2,1 are the powers in the 2 sidebands, dP = P2 − P1 and P̄ = (P2 + P1)/2. This

gives 0.96± 0.3 mrad RMS phase noise due to sideband imbalance. The phase noise due to

sideband imbalance and that due to contrast defect add in quadrature to give a total of 2.8

mrad phase noise from the interferometer control sidebands, an insignificant contribution to

our total phase noise.

5.7 Conclusion

Phase noise will not be an important limit to the level of squeezing achieved in a gravtia-

tional wave interferometer until the losses are reduced significantly, and frequency dependent

squeezing is available (see Section 7.4). However, the squeezing angle fluctuations can be

studied, using the error signals, measurements of the total squeezing angle fluctuations made

at high gain, and spectra of the fluctuations made by measuring fluctuations in the noise
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power at a squeezing angle near π/4. This will allow us to find solutions now to reduce the

most important sources of squeezing angle fluctuations, so that squeezing angle fluctuations

do not become an obstacle to achieving a high level of squeezing once the interferometer

losses are low enough.
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Chapter 6

Technical noise added to

interferometer by squeezing

6.1 Introduction

One concern in planning to implement squeezing on a full scale gravitational wave detector

is the possibility that the squeezer could add noise and degrade the interferometer sensitivity

at some frequencies, either due to increased radiation pressure noise, or technical noise that

the squeezer introduces. While squeezing at GEO600 and the 40 meter interferometer at

Caltech have demonstrated squeezing at frequencies above 900 Hz and 4 kHz respectively,

both of these interferometers have orders of magnitude less sensitivity than Enhanced LIGO

at the crucial region around 100 Hz [15, 43]. Past experience has shown that techniques

that work well on interferometers at higher frequencies, such as an out of vacuum output

mode cleaner, can add unacceptable levels of environmental coupling to a full-scale LIGO

interferometer [50]. Testing a squeezer on an Enhanced LIGO interferometer gave us the

opportunity to demonstrate that squeezing is compatible with good low frequency sensitivity,

and to measure the environmental couplings in a regime that is as close as possible to the

Advanced LIGO sensitivity.

The results shown in Section 3.3 show that in the final configuration squeezing did not
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add noise at any frequencies in the Enhanced LIGO spectrum. This is the most convincing

argument we have that squeezing is compatible with an interferometer with good low fre-

quency sensitivity. However, Advanced LIGO will be about a factor of ten more sensitive

once it reaches design sensitivity, so we have characterized three main sources of technical

noise added by the squeezer. Our measurements and estimates show that an out of vacuum

squeezer should not add technical noise to an Advanced LIGO interferometer.

6.2 Noise coupling mechanisms

The noise coupling mechanism of most concern for Advanced LIGO is backscatter, where

light scattered out of the interferometer reflects off of the squeezer and is scattered back into

the interferometer creating a spurious interferometer. Fields at the interferometer carrier

frequency that originate from the squeezer and resonate in the OPO, which we call seed-

ing, can also enter the interferometer and add noise. Lastly any amplitude noise on the

small amount of coherent locking field that passes through the output mode cleaner could

potentially add noise to the detector.

6.2.1 Backscatter

Due to imperfections in the Faraday isolator, a small amount of light from the anti-symmetric

port of the interferometer is sent towards the squeezing table. A second Faraday isolator was

installed in the squeezing path to isolate the squeezer from this light, but a small amount of

light is transmitted through the Faraday towards the squeezer. The OPO is in a traveling

wave configuration, as discussed in 3.2.8, so the direct reflection of the scattered light will not

return to the interferometer [12]. However, imperfections in optics in the squeezing injection

path, and especially inside the OPO, can cause a small amount of light to be scattered back

towards the interferometer, where it interferes with the signal field and adds noise. The two

fields at the photo-detectors are Esige
iφsig and Esce

i(φsig+φsc), where φsc is the phase due to
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Esig

Figure 6-1: Squeezing injected into Enhanced LIGO interferometer. Black arrows represent
scattered light, Esc and Esig are the amplitudes of the fields due to scattering and the signal
field at the gravitational wave readout photo-detector. Path length changes in the scattering
path (xsc) will add noise to the interferometer’s signal.

the scattering path. The intensity at the photo-detector (for Esc, Esig both real) is given by

IPD =
c

4π
|Esigeiφsig + Esce

iφsc|2 (6.1)

≈ c

4π

(
|Esig|2 + 2EsigEsc cosφsc

)

dropping higher order terms in Esc because Esc � Esig. Integrating over the photo-detector

area the relative intensity noise due to scattering is:

RINsc(t) = 2

√
Psc
Psig

cosφsc(t)
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Fluctuations in the phase of the scattered light φsc are either due to path length changes as

the squeezer table and optics move relative to the suspended interferometer φsc(t) = 4π xsc(t)
λ

,

or due to changes in the length of the OPO. The ground motion can have amplitudes larger

than a wavelength at low frequencies, so path length changes cause a large slowly varying

term φ
sc

= 2kxsc(t) [65]. At higher frequencies, in the gravitational wave detection band,

the phase fluctuations are small, and we can use the small angle approximation:

RINsc(t) = 2

√
Psc
Psig

cos (2kxsc(t) + δφsc(t)) (6.2)

= 2

√
Psc
Psig

(cos 2kxsc(t) cos δφsc(t)− sin 2kxsc(t) sin δφsc(t))

' 2

√
Psc
Psig

(cos 2kxsc(t)− δφsc(t) sin 2kxsc(t))

A worst case expression for the noise fluctuating with δφsc(f) comes from setting sin 2kxsc(t) =

1, in the frequency domain this gives:

RINsc(f) = 2

√
Psc
Psig

δφsc(f) (6.3)

We could also use an average over many cycles of x̃(t) to get an amplitude spectral density:

RINsc(f) =

√
2Psc
Psig

δφsc(f) (6.4)

When the motion is not small compared to the wavelength, the coupling becomes nonlinear

and up-conversion of low frequency motion can cause noise in the gravitational wave band.

When the amplitude of the motion is larger than one wavelength, xsc(t) = Γ cosωlt the

coupling is nonlinear, and causes fringe wrapping:

RINsc(t) = 2

√
Psc
Psig

cos

(
4π

λ
Γ cosωlt

)
(6.5)
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6.2.2 Seeding of the OPO

In addition to light scattered out of the interferometer any other light at the interferometer

carrier frequency that originates from the squeezer will add technical noise to the gravita-

tional wave readout. The main laser on the squeezer table is tuned to the interferometer

frequency, and care must be taken in constructing a squeezer to avoid scattering this light

into the OPO or towards the interferometer. For this reason the squeezer was built using as

many super-polished optics as possible, in a clean-room to avoid contamination from dust,

and multiple dichroic beam splitters were used to remove the field at the fundamental fre-

quency from the second harmonic pump. Any light that does enter the OPO will be on

resonance in the cavity, and will either be parametrically amplified or de-amplified depend-

ing on its phase. Similar to backscattering the relative intensity noise due to seeding is given

by:

RINsd(t) = 2

√
Psd
Psig

cosφsd(t)

where Psd is the power due to unwanted light and φsd(t) is the phase difference of this light

from the interferometer signal. The seeding could have multiple paths so the total phase

might be complicated, but it will propagate through the OPO and through the squeezing

injection path. Backscattered light double passes the squeezing injection path, while seeding

of the OPO single passes that path, so some motion is common to both kinds of spurious

interferometers.

6.2.3 Backscatter and seeding from a nonlinear cavity

The backscatter and seed fields both resonate in the OPO, and will experience parametric

amplification and de-amplification. In units of
√
photons/second, the amplitude of the seed
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traveling wave field leaving the OPO, Āsd,out is given by [44, p 86]:

Āsd,out(θ) =
1 + xeiθsd

1− x2

2
√
γfr γsdr

γtotr
Āsd,inc (6.6)

Psd,out(θ) =
1 + 2x cos θsd + x2

(1− x2)2

4γfr γ
sd
r

(γtotr )2
Psd,inc (6.7)

where θsd is the phase between the seed field and the pump field, Psd,inc is the power in the

cavity mode incident on the OPO from the noise field and γsd,in is the decay rate of the

coupler through which seeding enters the cavity. The relative phase between the seed light

and the pump in the OPO depends on the path through which the seeding couples into the

OPO, and is not controlled. Assuming that over long enough times the phase will drift over

multiple fringes we can average over θsd to approximate the noise field exiting the cavity:

Pout =
1 + x2

(1− x2)2

4γoutr γsdr
(γtotr )2

Pin (6.8)

A more realistic assumption may be that the relative phase has a Gaussian distribution with

a mean θ̄sd and standard deviation θ̃sd, then the power in the beam due to seeding will be:

Pout(φ) =
4γoutr γsdr Pin

(γtotr )2(1− x2)2

1 + 2x

∫
1√

2πθ̃sd
e

−

(θ − θ̄sd)2

2θ̃2
sd


cos θdθ + x2

 (6.9)

In the case of backscatter the scattered field from the interferometer first couples into

the reverse propagating cavity mode through the output coupler, where it is resonantly

enhanced. The amplitude of the counter-propagating field (in units of
√
photons) is:

ācp =

√
2γfr

γtotr
Āsc,inc

The nonlinear crystal in the OPO is the most likely scattering source, the 0.16% loss it

introduces into the cavity is a combination of scattering and absorption losses. The scatter
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from a transmissive optic is characterized by the bidirectional scatter distribution function

(BSDF), which includes scatter from both surfaces and the bulk [83, p 21]. The power

transmittance of scattering a normally incident beam into the counter-propagating mode is

Tbs = BSDF (θs = 0)Ω1/e

where Ω1/e = λ2/πω2
0 is the solid angle of the beam with waist ω0 at the optic. Tbs is the

product of two transmissions, the fraction of the power in the counter-propagating mode

that is scattered out of that mode, and the fraction of that scattered power that enters the

co-propagating mode. The product of the two rates is given by γ2
bs = Tbs/τ

2. The circulating

backscattered field in the cavity mode co-propagating with the squeezed field experiences

the nonlinear gain and is given by:

ābs =
1 + xeiθsc

1− x2

2γbs
γtotr

ācp =
1 + xeiθsc

1− x2

2γbs

√
2γfr

(γtotr )2
Āsc,inc

where θsc is the phase between the circulating backscattered field and the pump field. Since

the output fields are related to the circulating fields by Ābs,out =

√
2γfr ābs the backscattered

field and powers are given by:

Ābs,out =
1 + xeiθsc

1− x2

4γbsγ
out
r

(γtotr )2
Āsc,inc (6.10)

Pbs,out(φ) =

(
1 + 2x cos θsc + x2

(1− x2)2

)
16(γfr )2γ2

bs

(γtotr )4
Psc,inc (6.11)

This reduces to the usual result for backscatter in a mode cleaner cavity [38, 69] if there is

no nonlinear gain (x = 0), and we assume that the finesse is high and the cavity is critically

coupled so that (γtotr = 2γfr = 2π/(Frτ)):∣∣∣∣Pbs,outPsc,inc

∣∣∣∣
MC

=
γ2
bs

γ2
out

(6.12)∣∣∣∣Pbs,outPsc,inc

∣∣∣∣
MC

= BRDF (θi)Ω1/e

(
Fr
π

)2

(6.13)
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where BRDF (θi) is the bidirectional reflectance distribution function and is similar to BSDF

for a reflective optic with angle of incidence θi. For our OPO the output coupler is the

dominant loss, so γtot ≈ γout, and the ratio of backscattered power to power incident on the

OPO is given by:

ROPO =
Pbs,out(φ)

Psc,inc
=

16γ2
bs

(γtotr )2

(
1 + 2x cos θsc + x2

(1− x2)2

)
(6.14)

= 16
Tbs
T 2
f

(
1 + 2x cos θsc + x2

(1− x2)2

)
(6.15)

where Tf is the power transmission of the front coupler.

6.2.4 Phase of the scattered light

There are two relative phases that determine the level of backscatter noise in the interfer-

ometer, φsc is the phase between the interferometer signal field and the backscattered field

at the readout photo-detectors, while θsc is the relative phase between the pump and the

scattered field inside the OPO, which determines the level of parametric amplification or

de-amplification. The path length between the OPO and the point where light leaves the

interferometer arms, φpl, as well as the OPO length Lopo contribute to both of these phases

as well as the squeezing angle θsqz.

The length noises are dominated by low and audio frequency fluctuations, while the

cavity poles are at 10s of MHz, so we find expression for the phases ignoring the frequency

dependence of the cavity transfer functions. The squeezing angle is given by:

θsqz = θb +

(
2

γtotg
+

2

γtotr (1 + x2)

)
ωδLOPO

L
+ φpl (6.16)

The control system adjusts θb to maintain θsqz as φifo + π/2 so that the light at the dark

port will be amplitude squeezed. The phase that determines whether the scattered light is
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amplified or de-amplified is:

θsc = θb − 2

(
φifo + φpl +

ωδL

γtotr L

)
(6.17)

One of the three phases can be set to zero, if we set φifo = 0, then θsc = π. The fluctuations

in θsc should be of the same order as the fluctuations of the squeezing angle. We can

use Equation 6.15 and replace θsc with a Gaussian distribution with mean of π and a small

standard deviation θ̃sc to find an expression for the reflectivity of our OPO for light scattered

out of the interferometer:

ROPO =
16Tbs
T 2
out

(
1− 2xe−θ̃

2
sc/2 + x2

(1− x2)2

)
(6.18)

The amount of backscattered power from a nonlinear cavity, normalized to the amount of

backscatter from the same cavity without nonlinear gain, plotted in Figure 6-2, is simply the

parametric amplification and de-amplification of the nonlinear cavity. This is to be expected

since backscatter is simply another mechanism for coupling a classical seed field into the

cavity.

6.2.5 Amplitude noise of coherent locking field

Amplitude fluctuations of the coherent locking field may add intensity noise to the squeezing

readout, either on a balanced homodyne detector or on the interferometer readout. Because

the coherent field is detuned in the OPO, length fluctuations of the OPO and phase noise of

the coherent field both impose amplitude noise on the coherent field. The ratio of the field

incident on a cavity to the transmitted field is given by:

Etrans
Einc

=
tintout

1− grte2πφrt(t)

where tin,out, rin,out are the amplitude transmittances of the input and output couplers, grt

is the round trip cavity gain, and φrt(t) is the phase acquired in one round trip. Since
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Figure 6-2: Backscatter expected from a nonlinear cavity, normalized to the amount of
backscatter expected from the same cavity when there is no nonlinear interaction. The blue
and green curves show the backscatter expected for anti squeezing and squeezing respectively,
while the red curve shows the backscatter expected from squeezing with 100 mrad phase noise
included.

the OPO is a nonlinear cavity, grt includes the nonlinear gain. For the nonlinear gain and

offset frequency used in our experiment, the generated coherent sideband had 5% of the

power that the injected sideband had, so we will only calculate the amplitude noise from

the dominant, injected sideband. Since the length of the cavity is locked to the phase of the

green pump, and the phase of the coherent field is also locked to the phase of the green pump,

φrt, should be fixed by the ratio of the offset frequency foffs to the free spectral range fFSR

with small fluctuations due to the residual laser phase and the cavity length fluctuations,
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∆φaux(t),∆L(t),

φrt(t) = 2π

(
foffs
fFSR

+
∆L(t)

λ

)
+ ∆φaux(t)

= φ̄rt + ∆φrt(t)

This means that the power transmission is given by:

T (t) =

∣∣∣∣EtransEinc

∣∣∣∣2 (6.19)

=
t2int

2
out

1− g2
rt − 2grt

(
cos φ̄rt cos ∆φrt(t)− sin φ̄rt sin ∆φrt(t)

) (6.20)

Making the small angle approximation for ∆φrt(t).

T (t) =
t2int

2
out

1− g2
rt − 2grt cos φ̄rt

 1

1 +
2grt∆φrt(t) sin φ̄rt

1− g2
rt − 2grt cos φ̄rt

 (6.21)

≈ t2int
2
out

1− g2
rt − 2grt cos φ̄rt

(
1− 2grt∆φrt(t) sin φ̄rt

1− g2
rt − 2grt cos φ̄rt

)
(6.22)

Based on the ratio of transmitted coherent field to the incident field on the OPO, and the

ratio of the generated to injected sideband power, we can infer that grt for the coherent

control laser is 0.4. The phase φ̄rt is small, as is ∆φrt(t), so we can make the approximation

6.22. Fluctuations in the round trip phase ∆φrt cause power fluctuations on the transmitted

beam given by:

δPtrans(f)

P̄trans
=

2grt sin φ̄rt
1− g2

rt − 2grt cos φ̄rt
∆φrt(f) (6.23)

The diagnostic homodyne detector must be carefully aligned to have good common mode

rejection for both the coherent locking field and the local oscillator, a description of alignment

methods is given in [80]. In the gravitational wave detector, the coherent field is rejected by

the output mode cleaner(OMC), and only a small fraction of it actually reaches the detector,
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so the amplitude noise is largely suppressed. The relative intensity noise at the gravitational

wave readout photo-detector is given by:

RINoutput(f) =
δPtrans(f)ηpropTOMC(Ωc)

Psig
(6.24)

=
RINtrans(f)PtransηpropTOMC(Ωc)

Psig
(6.25)

=
PincηpropTOMC(Ωc)

Psig

2t2int
2
outgrt sin φ̄rt

(1− g2
rt − 2grt cos φ̄rt)2

∆φrt(f) (6.26)

where Pinc is the power incident on the rear coupler of the OPO, ηloss is the propagation

efficiency, and TOMC(Ωc) is the transmission of the control sidebands at the offset frequency

Ωc through the OMC given by Equation 5.59. Fluctuations due to OPO length noise, control

laser phase noise, as well as the amplitude noise of the control laser before it enters the OPO

need to be summed in quadrature, so the relative intensity noise at the output PD from

intensity noise on the coherent control field is:

RINoutput(f) =
PincηpropTOMC(Ω)t2int

2
out

Psig(1− g2
rt − 2grt cos φ̄rt)

×[(
2grt sin φ̄rt

(1− g2
rt − 2grt cos φ̄rt)

)2
[

∆L(f)

λ

2

+ ∆φ2
aux(f)

]
+ δRIN2

inc

]1/2

(6.27)

6.3 Measurements and estimates of technical noise in-

troduced to Enhanced LIGO by squeezing injection

6.3.1 Amplitude noise from coherent locking field

In our experiment the amplitude noise introduce by the coherent control field was too small

to measure. Using Equation 5.59 for TOMC(Ωc), and 6.25, and the values in Table 6.1 we

predict that the relative intensity noise due to amplitude noise from the coherent control

field will be 4 × 10−12, almost 4 orders of magnitude below shot noise. This should only

become a concern if the squeezing angle error signal is derived after the OMC, in which case
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RINtrans in transmission of the OPO 3× 10−5 (peak)
Ptrans coherent control field leaving OPO 56 µW
Detection efficiency ηdet 0.45
OMC finesse 360
coherent control offset frequency Ω 29.5 MHz
TOMC(Ω) power transmission of OMC 1.6× 10−4

Psig power in signal field 30mW

Table 6.1: Values used to estimate level of noise due to coherent control field amplitude
fluctuations.

more of the coherent field will need to be transmitted.

6.3.2 Linear couplings of environmental noise

Spurious interferometers due to backscatter or seeding could linearly couple environmental

noise from motion on the squeezer table into the interferometer spectrum. Although the

change in path length between the squeezer and the interferometer is often several microns

at low frequencies (0.1 to 0.4 Hz), the motion in LIGO’s sensitive frequency band from 50 Hz-

8 kHz is much smaller than one wavelength [65]. No matter which noise coupling mechanism

is responsible, we can use the same techniques to characterize the linear coupling, identify

contributions from individual optics, damp their motion, and reduce the noise.

Coherences between appropriate environmental sensors and the gravitational wave read

out channel (DARM) characterize the coupling of noise from the sensor location into the in-

terferometer. An accelerometer mounted on the squeezing table initially revealed coherences

from 200-300 Hz, which were later eliminated, as shown in Figure 6-3.

By increasing the level of motion, and monitoring the noise power spectrum, we can char-

acterize both incoherent and coherent couplings. By closely watching a spectrum of DARM

while bowing individual optics gently enough that neighboring optics were not also moved,

we were able to identify particular features in the spectrum with single optics and damp

their motion. After damping identified resonances, the spectrum with squeezing injected

appears identical to the spectrum without squeezing, and the noise at specific frequencies

was reduced by at least a factor of ten, as shown in Figure 6-4.
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Figure 6-3: Coherence between accelerometers mounted on the squeezer table and the differ-
ential arm degree of freedom. The two measurements were made with similar environmental
conditions, as measured by the accelerometers. The upper panel shows coherence between
150-300 Hz which was not present when the squeezer was blocked with a black glass beam
dump, indicating that the coupling mechanism involved the squeezer [70]. Damping the
resonances of individual optics identified as responsible for adding noise, as well as other
improvements, reduced the coherence as shown in the lower panel.
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Figure 6-4: Noise in interferometer readout (differential arm degree of freedom DARM) with-
out squeezing injected, and with unoptimized squeezing injected with and without damping
material, showing that with mechanical resonances damped squeezing adds no extra noise
at these frequencies.

The level of technical noise introduced by the squeezer in the final configuration for the

H1 experiment was below the normal level of interferometer noise. In order to estimate the

level of noise added, we increased the table motion at specific frequencies until we added

measurable noise, and extrapolated to the level of noise for normal table motion. This

technique measures noise that is small compared to the interferometer noise, but does not

measure at every frequency and could miss noise in a narrow frequency band caused by a

mechanical resonance.

Different optic mounts have slightly different resonant frequencies, and all of these optics

can contribute to the total motion δxsc(f). Using accelerometers we measured the increase
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Figure 6-5: Method of estimating level of backscatter noise. The blue and red traces show the
relative intensity noise (RIN) at the gravitational wave readout detector under normal con-
ditions and with the squeezer table motion increased at a single frequency. The green trace
is the difference photo-current between the two OMC photo-detectors, which is a measure
of shot noise at high frequencies. The light blue circles and black stars are inferred by mea-
suring the noise with injection and comparing table motion as measured by accelerometers
with and without an injection.

in table motion with injections from the shaker, and assumed that the transfer function from

the table motion to δxsc(f) is linear. Multiple excitation amplitudes at the same frequency

were used to confirm that the coupling from table motion to noise on the interferometer

output was linear. Assuming only that the accelerometer signal at a particular frequency is

proportional to the motion at that frequency we can compare measurement taken with the

injection off and on:
RINoff

RINon

=
δxsc,off (f)

δxsc,on(f)
=
δxaccel,off (f)

δxaccel,on(f)

Spectra were also recorded with the shaker on and a black glass beam dump on blocking
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the squeezer port, to check that the squeezer was the dominant mechanism for adding noise

from the shaker, rather than electromagnetic couplings or other motion in the corner station.

The resulting estimate of the level of noise is shown in Figure 6-5.

Frequency (Hz) RINifo/RINsc RINshot/RINsc
75 143 (lower limit) NA
130 24.5 12.5
155 15.9 7.89
213 14.0 1.97
270 11.0 4.43

Table 6.2: Level of noise added to interferometer by squeezing injection at several frequencies.

6.3.3 Frequency offset measurement of power from spurious in-

terferometers

To more fully understand the level of noise we added to the interferometer, we would like

to know how much backscattered and seed power reached the gravitational wave photo-

detectors. One easy way to measure the power due to backscatter inside the OPO and

seeding of the OPO is to introduce a frequency offset between the squeezer pump laser and

the interferometer carrier and lock the OPO to the pump frequency. Light at the squeezer

pump frequency that seeds the OPO enters the interferometer and creates a beat note at

the offset frequency, where it can be easily distinguished from other noise sources. Light

scattered from the interferometer into the OPO and backscattered will interact with the

second harmonic beam through the nonlinear gain and some photons will be generated

with twice the frequency offset of the squeezing pump laser. Figure 6-6 shows the resulting

spectrum. When the offset frequency is Ω the total field at the detector is a sum of the signal

field Ecarr and the noise field En, and the photo current is

IPD ∝ |Ecarr|2 + 2EcarrE
∗
n cos Ωt+ ... (6.28)
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Figure 6-6: Method of distinguishing backscatter inside OPO from other spurious interfer-
ometers. The blue trace is a reference spectrum with squeezing injected and the squeezing
angle controlled, while the other traces have a 2 kHz offset between the interferometer car-
rier frequency and the squeezing pump laser. Since the squeezing angle is rotating at 2
kHz, the added anti-squeezing raises the noise floor at all frequencies. The beat between the
interferometer carrier and light at the squeezer main laser frequency is shifted up to 2 kHz,
while some of the light scattered into the OPO from the interferometer is unconverted by
the nonlinear process to 4 kHz. The red trace shows the result with seeding blocked.

when the noise field is small. We can measure the ratio of the area of the peak due to

interference (In) to the average DC photo-current (Ic):

In
Ic

=
2
∫
EcE

∗
ndA∫

|Ec|2dA
= 2

√
Pn
Pc

(6.29)

By monitoring this spectrum while blocking different paths on the table and locking and
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Nonlinear gain
√

Psd

Psig
Psd(pW)

1.1 3.8× 10−6 0.34
3.5 1.5× 10−6 0.051
9.47 1.9× 10−5 0.080

Table 6.3: Inferred powers at OMC PDs due to seeding at the main laser frequency, before
addition of notch.

unlocking control loops, we were able to identify and eliminate our seeding. The cable driving

the electro-optics modulator in the phase lock loop for the control laser had a small amount

of RF pick-up at the offset frequency of 29.5 MHz. This small signal added sidebands to

the control field, one of which is at the pump laser frequency. As shown in Table 6.3 with

this method we were easily able to identify less than a picoWatt of seed power reaching the

interferometer readout photo-detectors. In the initial configuration, this seeding added some

noise to the interferometer spectrum, limiting the amount of power we were able to use in the

coherent control field without introducing noise, and therefore limiting the signal to noise of

our squeezing angle control scheme [13,26]. Once a notch was added to eliminate the pickup,

we were able to turn the power up and get a better signal to noise for the squeezing angle

control loops without introducing noise [25].

We can use the peak at twice the offset frequency, to calculate the amount of backscat-

tered power from the OPO. We use the steady state cavity equations of motion, with the

assumption that the detuning is small compared to cavity decay rates1, [44, p 66], where as

is the amplitude of the signal field circulating in the cavity, in this case the back scattered

field from the interferometer, and ai is the idler generated light at twice the frequency offset.as
ai

 =
1

(γtotr )2 − ε2|b|2

γtotr εb̄

εb̄∗ γtotr

2γbsācp

0

 (6.30)

ε is the nonlinear coupling constant, and b̄ is the pump amplitude. Solving this for the ratio

1The factor of 2 difference in the off diagonal terms from the reference is intentional. When using the
approximation that these are two different modes, it is necessary to use two mode Hamiltonian given in [42,89]
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of the circulating idler and signal amplitudes we get the simple result:∣∣∣∣aias
∣∣∣∣ =

ε|b̄|
γtot

= x

This is just the normalized nonlinear interaction strength, related to the parametric ampli-

fication g by x = 1− 1/
√
g [2]. We can also find expressions for the amplitudes and powers

of the output field scattered back towards the interferometer:

Ās,out =

√
2γfr as =

1

1− x2

4γfr γbs
(γtotr )2

Āsc,inc (6.31)

Āi,out =

√
2γfr ai =

xe−iθ

1− x2

4γfr γbs
(γtotr )2

Āsc,inc (6.32)

Pout,s =

(
1

1− x2

)2
16(γfr )2γ2

bs

(γtotr )4
Psc,inc (6.33)

Pout,i =

(
x

1− x2

)2
16(γfr )2γ2

bs

(γtotr )4
Psc,inc (6.34)

Comparing this to Equation 6.18 and gives the ratio of the idler backscattered power mea-

sured during the frequency offset measurement to the backscattered power during normal

operation:

Pout,i
Pout,bs

=
x2

1− 2xe−θ̃2/2 + x2
(6.35)

Pout,i
Pout,bs

(θ̃ = 0) =

(
x

1− x

)2

(6.36)

Table 6.4 summarizes the results of frequency offset measurements at different nonlinear

gains, the amount of backscattered power inferred from each if there were no nonlinear gain

in the cavity, and the amount of backscatter we would expect assuming that the phase

noise is around 100 mrad. This measurement may be the easiest and most reliable way to

characterize scatter from inside the OPO, which was the dominant backscatter mechanism

in our experiment. However, this method does not measure backscatter off of optics outside

the OPO, and it does not give us information about the phase θsc that determines if the
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Nonlinear gain Pout,i(fW ) Pbs(x = 0) Pout,bs(fW)
9.47 170 110 42
3.5 47 130 63
3.5 46 130 61
1.1 0.13 60 55
1.1 0.07 32 30

Table 6.4: Power at OMC PDs due to backscatter. Pout,i is the power at twice the offset
frequency measured in the offset test, Pbs(x = 0) is the inferred level of backscatter from
the cavity if there were no nonlinear gain, Pout,bs is the predicted level with locked squeezing
injected into the interferometer and 100 mrad phase noise in θsc. The measurements taken
at low nonlinear gains are less accurate because of the very small amount of measured power.

backscattered field will be amplified or de-amplified in the OPO.

6.3.4 Fringe wrapping measurement of backscattered power

Fringe wrapping provides a more direct way to measure the total backscattered power under

normal operating conditions, both from the OPO and from other optics. We used a longitu-

dinal piezoelectric in the injection path to modulate the path length by many wavelengths

while keeping the squeezing angle locked. This method has the disadvantage (compared to

the offset measurement) that an extra PZT has to be installed in the injection path which can

cause misalignments when an excitation is applied. The backscattered light double passes

the modulated mirror, while seeding that originates on the squeezer table reflects off the

mirror once. This means we are modulating the phase of backscattered light with twice the

modulation depth as on table seed light:

RIN(t) = 2

√
Psc
Psig

cos

(
4πΓ

λ
cosωlt

)
+ 2

√
Psd
Psig

cos

(
2πΓ

λ
cosωlt

)

In the frequency domain this will produce a distinct shelf in the spectrum, as shown in Figure

6-7, which can be fit to find the amount of backscattered power. Figure 6-7 shows the noise

contribution that one would expect from fringe wrapping with both seeding and backscatter

present. When the seed power is equal to or less than the backscattered power, the fringe
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Figure 6-7: In the frequency domain, the fringe wrapping feature is dominated by backscat-
tered light, unless the power due to direct seeding from the squeezer table is much larger.

wrapping measurement is only sensitive to backscattered power. If seeding was dominant,

two shelves would appear, the one from seeding adding a second lower frequency shelf.

In the final configuration of the squeezing experiment a fringe wrapping measurement

indicates that the power due to backscatter at the output mode cleaner photo-detectors is 260

fW in the normal operating condition with a parametric amplification of 6.2 and squeezing

injected. The results for both squeezing and anti-squeezing at different nonlinear gains are

presented in 6.5. The backscatter for anti-squeezing is always larger than the result for

squeezing, more evidence that the dominant scatter source is inside the OPO. We saw that

the squeezing angle phase noise could change dramatically with small changes in alignment,

so some of the variation in these measurements could be due to changes in the phase noise.

In the final columns of 6.5 the estimate for incident power on the OPO found in the next

section is used, along with the detection efficiency, to find an estimate for the reflectivity of

the OPO in each of these measurements.
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Figure 6-8: Fringe wrapping result with squeezing in final configuration. The blue trace is
a fit to the part of the spectrum which is dominated by fringe wrapping only. The green
trace is the relative intensity noise measured while the injection path length was modulated
by many wavelengths and the squeezing angle kept locked, and the red trace is a reference.
The suppression of the differential arm control loop is removed from the data.
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Nonlinear gain Pout,bs(fW) Pout,bs (fW) ROPO(dB) ROPO(dB) ηdet
Squeezing Anti-squeezing Squeezing Anti Squeezing

6.2 260 2000 -47 -38 35 %
10.8 620 5100 -43 -34 28%
16.7 34 NA -56 NA 35%
22.5 52 500 -54 -44 14%
28.8 240 4500 -48 -35 31 %

Table 6.5: Power at OMC PDs due to backscatter, in femtoWatts. Since exciting the PZT
caused misalignment, the detection efficiency was measured after each pair of measurements,
and the scattered powers listed are all rescaled for a detection efficiency of 35%.

6.3.5 Factors that influence the amount of back scattered power

To interpret our measurements of the backscattered power at the photo-detectors, we would

like to know the amount of scattered power incident on the OPO, Psc,inc which is in the

correct frequency, polarization and spatial modes to couple into the OPO and interfere

with the carrier light after backscattering. Figure 6-9 illustrates several of the factors that

contribute to the power incident on the OPO and to Pbs, the power on the readout detectors.

Psc,inc = Pas

∣∣∣∣PcarrPtot

∣∣∣∣
as

ROFTSFMOPO (6.37)

The scattered power is proportional to the power in the anti-symmetric port beam, the

fraction of that power that is at the carrier frequency will be the same in the anti-symmetric

beam as in the scattered beam. The next terms describe the fraction of the anti-symmetric

beam carrier that will reach the squeezer table. The fraction of the anti-asymmetric beam

that is reflected towards the squeezing injection path , ROF , was measured before installation

to be -23 dB [3], and the isolation of the Faraday in the squeezing injection path TSF was

measured to be -37.6 dB. Once these two Faradays were installed in vacuum we measured 3.6

uW of light incident on the squeezer table when the anti-symmetric port beam had 300mW,

so the total isolation was 11.4 dB less than expected [14]. Of the carrier power incident on the

squeezer table, the fraction MOPO is in the correct polarization and spatial mode to couple

into the OPO and be transmitted back into the interferometer. In our test the scattered
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Figure 6-9: Factors that contribute to amount of scattered power: Pas is the amount of
power heading towards the anti-symmetric port from the interferometer, ROF is the power
reflectivity of the output Faraday towards the squeezing injection path, TSF is the trans-
mission in reverse of the squeezing injection Faraday, MOPO is the fraction of power in the
AS beam that is in the right polarization and spatial mode to cause backscatter, ROPO

is the fraction of the power that enters the OPO that will be scattered into the direction
propagating towards the interferometer.

light was almost all in the correct polarization [14]. A photo-detector was installed on the

scattered beam reflecting off of the OPO, in an effort to measure the fraction of the scattered

beam in the 00 spatial mode. The resulting scan is shown in Figure 6-10. Although it is

not clear which peak is the correct spatial mode, the two most likely peaks contain 14% and

7.8% of the power, so we can assume that MOPO is roughly 11± 3%. This gives us a value

of 79± 21nW for the incident power on the OPO which could potentially cause backscatter.

The amount of backscattered power that reaches the output photo-detectors will be:

Pbs = Psc,incROPOηloss (6.38)
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Pas 300mW∣∣∣Pcarr

Ptot

∣∣∣
as

1
5

[5]

ROF 23 dB [4] measured in lab
TSF 37.6 dB [4] measured in lab
ROFTSF 49.2 dB installed
MOPO 10%
ηloss 38%

Table 6.6: Factors that contribute to Psc.

Using this estimate of Psc,inc, the inferred value of the backscattered power incident on the

readout detectors without nonlinear gain in the OPO from the frequency offset measurements

in Table 6.4, the estimated reflectivity of the OPO without nonlinear gain is −50.6± 1 dB.

Using Equation 6.15, Tbs is 9.5± 3× 10−9. Using our waist size of 34 um in the crystal, the

BSDF is 6.5±3.5×10−5. The large uncertainty is due to the uncertainty in the match of the

spatial mode of the scattered beam into the OPO. We can compare this to the measurement

of the backscattered light suppression of 41 dB for a traveling wave cavity OPO measured

in [12]. This OPO had a finesse of 35.3 and a waist size in the crystal of 34µm, using 6.15

and 6.2.3 we have Tbs = 1.3 × 10−7 and a BSDF of 4.2 × 10−4 attributing all of the scatter

to the crystal. The OPO used in [12] used off the shelf optics without super-polishing and a

non super-polished crystal, we would expect our OPO, which has both super-polished optics

and a super-polished crystal to have lower scatter.

6.4 Summary

Of the three technical noise coupling mechanisms we have investigated, backscatter is of most

concern, but we have seen that the level of backscatter noise does not degrade the interfer-

ometer sensitivity at any frequency. We estimated that the level of backscatter noise in the

critical region between 100-300 Hz is at least a factor of 10 below the limiting noise. Fringe

wrapping measurements and frequency offset measurements are useful for characterizing the

amount of backscattered power. Spurious interferometers created by light at the carrier

frequency that originates from the squeezer table could also add noise, but the frequency
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Figure 6-10: The blue trace shows a mode scan of the scattered beam in reflection off of the
OPO, while the red trace is the transmitted second harmonic pump power [14]. The infrared
cavity line-width is 12.7 MHz, and the interferometer control sidebands are 24.5 MHz away
from the carrier. With the squeezing angle unlocked, the pump laser is a few kHz away from
the interferometer carrier frequency. By integrating the total area of the reflection dips, and
comparing to the area of the two dips most nearly coinciding with peaks in the transmitted
green power the estimated mode matching is 14% and 7.8%

offset measurement provides a useful tool to identify seeding at the level of femtoWatts,

which can then be eliminated. Lastly, amplitude noise from the coherent squeezing angle

locking sidebands is not a concern with the currently used scheme of sensing the squeezing

angle before the OMC, but could become important if the transmission of these sidebands

is increased so that the error signal can be sensed in transmission from the OMC.
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Chapter 7

Implications for Advanced LIGO

One important goal of this experiment was to learn enough about squeezing with a full

scale interferometer to plan for implementation of squeezing in Advanced LIGO. We have

shown that squeezing could improve the sensitivity of Enhanced LIGO, without adding excess

noise anywhere in the spectrum. The better sensitivity of Advanced LIGO will change the

requirements for squeezing in two important ways: the backscatter requirements will be more

stringent and quantum radiation pressure noise will limit the sensitivity at low frequencies.

The goal of characterizing the technical noise that we added to Enhanced LIGO, which

was all below the interferometer sensitivity, was to allow us to plan confidently for installing

a squeezer on Advanced LIGO without adding technical noise. The amplitude noise from

the coherent locking field will only become a concern for Advanced LIGO if the squeezing

angle error signal is derived in transmission of the OMC. If the amount of coherent power

in transmission is increased by a factor of a thousand and the OPO is out of vacuum, an

intensity stabilization may be needed on the coherent field. Noise added by light originating

from the squeezer can be reduced to levels too small to measure by carefully eliminating any

seeding paths on the squeezer table. The remaining noise mechanism of most concern for

Advanced LIGO is backscatter.
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7.1 Backscatter requirements for Advanced LIGO

We would like the noise introduced by backscatter from the squeezer to be a factor of ten

below the interferometer sensitivity at all frequencies. Shot noise will be the dominant noise

in Advanced LIGO down to 100 Hz, so we will compare the backscattering noise to the shot

noise level. The amplitude spectral density of RIN due to shot noise will be:

RINshot(f) = 10S/20

√
2hc

ηPDPsigλ
(7.1)

where S is the level of noise reduction due to squeezing in decibels, and ηPD is the photo-

detector quantum efficiency. Using Equations 6.4 and 7.1 the requirement for backscattering

noise a factor of ten below the shot noise becomes:

RINsc

RINshot

=

√
ηPDPsc
λhc

4πδxsc(f)

10S/20
≤ 1

10

Since the level of noise reduction will be frequency dependent, this is a frequency dependent

requirement. From 100 to 50 Hz, Advanced LIGO will be limited by a combination of coating

thermal noise and quantum noise, so squeezing injection will reduce the interferometer noise

by a smaller factor than at frequencies above 100 Hz. Although Pleak, the power in the DC

offset field used as a local oscillator, cancels out of this equation, the amount of scattered

power Psc will depend on the amount of power at the AS port, so the increased power in

Advanced LIGO could increase the level of backscatter noise.

Our measurements in Figure 6-5 showed that the scatter noise was a factor between 2

and 12 below the non squeezed shot noise level in the final configuration of our experiment

at the specific frequencies where we measured. Our results from Chapter 3 show that there

are no frequencies where the scattering noise was larger than the interferometer noise. For

Advanced LIGO, we should plan to reduce the noise by a factor of at least a factor of 5,

preferably a factor of 10, above 100 Hz to have a safety factor of 10.

Assuming that Advanced LIGO will want 6 dB of noise reduction above 100Hz, the
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requirement 7.1 can be written as:

√
Pscδxsc(f)aLIGO√
Pscδxsc(f)eLIGO

≤

 1
10

f > 100 Hz

1
5

f=50 Hz

There are two approaches to reducing backscatter noise, the first is to reduce the motion of

the scattering source and the second is to reduce the amount of backscattered power.

7.1.1 Reduction of motion

Depending on the level of ambient noise, seismic noise transmitted through the table legs

dominates optic motion at frequencies below 100 Hz, while acoustic noise drives motion at

higher frequencies. Our squeezed vacuum source was on an in air table with no acoustic

enclosure, and our measurements were taken at a time when the ambient acoustic noise was

above the normal science running level. The Advanced LIGO pre-stabilized laser is housed

in an acoustic enclosure that has been shown to reduce acoustic noise above 100 Hz by a

factor of 10 or more [71]. Adding an enclosure of this type should satisfy the requirement

above 100 Hz. Carefully designed tables can also reduce the motion at lower frequencies,

although by a smaller factor. Figure 7-1 shows the table motion measured by accelerometers

on the squeezer table during our measurement compared to the Initial and Advanced LIGO

pre-stabilized laser table during quiet times. The table leg resonances have been moved to

a higher frequency for Advanced LIGO, reducing the total RMS table motion, but slightly

increasing the motion compared to the Inital LIGO table at the frequencies relevant to

backscatter. Assuming that we use an Inital LIGO table the table motion is reduced by

about a factor of 2 from 25-200 Hz. Further reduction in the motion might also be achieved

through careful mechanical design of the OPO and mounting of optics in the injection path.

If the OPO were moved inside a vacuum chamber, we could expect a much greater

reduction in the noise, about a factor of 100 reduction for an OPO resting on a seismic

isolation table and a factor of 10,000 reduction for a suspended OPO, even down to 10

Hz. It is possible that by suspending the OPO inside of a vacuum chamber the injection
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Figure 7-1: Measurements of table motion from accelerometers on our table during our
measurement, and the Initial and Advanced LIGO pre- stabilized laser (PSL) tables during
quiet time similar to normal interferometer operating conditions. Data for PSL tables from
Robert Schofield.

path Faraday could be eliminated, reducing the losses. This may be a solution for a third

generation interferometer with either more stringent loss requirements or more stringent

backscatter requirements.

Another approach to reducing the motion would be to use active feedback to keep the

length constant. If the path length fluctuations between the OPO and the interferometer

were the dominant source of noise in the squeezing angle control loop, then a length actuator

in the injection path would reduce the relative motion. In our experiment the dominant noise

for the squeezing angle control loop was length fluctuations inside the OPO, so feeding back

to a path length actuator would actually increase the relative motion.

7.1.2 Predicted scattered power for Advanced LIGO

We also need an estimate of how the amount of backscattered power will change in Advanced

LIGO. We can expect the amount of carrier power in the anti-symmetric port beam to
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Parameter Shaker Test Advanced LIGO prediction
Pas 300mW -∣∣∣Pcarr

Ptot

∣∣∣
as

1
5

[5] -

Pas

∣∣∣Pcarr

Ptot

∣∣∣
as

60 mW 100 mW upper limit [1]

ROF -23 dB [4] measured in lab -23 dB
TSF -37.6 dB [4] measured in lab -37.6 dB
ROFTSF -49.2 dB installed -60.6 dB
MOPO 10% 10− 40%
ROPO(x = 0) -50.6 dB -57 dB
ηdet 38% 80%
Psc(x = 0) 120fW 7− 29 fW

Table 7.1: Factors that contribute to Psc for Advanced LIGO.

increase to a maximum carrier power at the AS port of 100mW [1]. The isolation achieved

by the combination of the two Faradays installed during our experiment was 11.4 dB worse

than the expected performance based on measurements in the lab, we can assume that

Advanced LIGO will achieve the performance measured in the lab. The crystal scatter

will remain approximately the same, but the OPO output coupler will need to have higher

transmission in order to reach 98% escape efficiency and 6dB of measured squeezing. With

the current cavity losses, the input coupler transmission will need to double, meaning that

the reflectivity of the OPO will be reduced by a factor of 4. These predicted changes are

summarized in Table 7.1. If instead we had assumed that the matching of the scattered

light into the OPO will stay the same in Advanced LIGO, the backscattered power would

be reduced by a factor of 16.

7.1.3 Conclusion for Advanced LIGO backscatter noise

An acoustic enclosure alone would probably reduce the backscatter noise to a level acceptable

to Advanced LIGO. If we also include improved Faraday isolation, reduced OPO finesse,

reduced seismic motion of the table, and allow for increased power at the AS port, better

detection efficiency and better modematching of the scattered beam into the OPO, we can

expect a reduction in backscatter noise by factor of 20-40 above 100 Hz, and a factor of 4-8
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at lower frequencies. Backscatter alone does not require the OPO to move in vacuum for

Advanced LIGO, although it may well become necessary in a third generation detector.

7.2 Squeezing as an alternative to high power opera-

tion

Injection of squeezing with a frequency independent squeezing angle, as was done in this

experiment, has a similar impact on the interferometer’s quantum noise as a change in the

laser power. The Advanced LIGO design includes a factor of four increase in the laser power

used, which may prove difficult to implement. In the early days of Advanced LIGO science

running, the interferometer will operate at less than full power, a configuration in which the

squeezing demonstrated in this experiment could significantly improve the range, as shown

in Figure 7-2. In this section the range for binary neutron stars is calculated using the same

assumptions that were used in 3.3.2 while the black hole inspiral range assumes 30 M� black

holes.

Loss η
OPO escape efficiency 0.98

Injection optics 0.997
Vacuum window 0.998

Squeezing injection Faraday 0.97
Output Faraday in reverse 0.97

Injection Losses 0.918
Interferometer losses Frequency dependent

Output Faraday 0.97
AS table pick off 0.99

OMC transmission 0.97
OMC mode matching 0.96
PD quantum efficiency 0.99

Injection and detection losses 0.81

Table 7.2: Losses assumed for Advanced LIGO, excluding interferometer losses

Because the quantum radiation pressure noise will limit the sensitivity of Advanced LIGO,

frequency independent squeezing will degrade the low frequency sensitivity somewhat. The
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Advanced LIGO 31 Watts,143Mpc
Advanced LIGO 31 Watts with squeezing,171Mpc

Figure 7-2: Squeezing as an alternative to high power in Advanced LIGO. Dashed lines show
quantum noise only, while solid lines show the total noise. Advanced LIGO operated with
one fourth of the ultimately planned laser power would have a neutron star inspiral range of
143 Mpc, but with modest squeezing the range could be increased to 171 Mpc, approaching
the range at the design sensitivity, and increasing the volume of the universe surveyed by
70%.
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differential amplitude noise in the arm cavities determines the radiation pressure noise,

so only losses between the OPO and the arm cavities effect the radiation pressure noise.

The frequency independent losses assumed in this calculation are summarized in Table 7.2;

the frequency dependent losses of the nested interferometer cavities are also included using

the simulation program GWINC [53]. When both radiation pressure noise and shot noise

limit the interferometer sensitivity, the benefit of squeezing at one frequency needs to be

balanced against the degradation at another frequency. The level of squeezing injected and

the squeezing angle could be chosen to optimize sensitivity to different sources, or after a

first detection to improve measurements of certain parameters. Binary neutron star inspirals

are a leading candidate for a first detection of gravitational waves, so optimization of the

binary neutron star inspiral range is commonly used as a figure of merit for the sensitivity

of a gravitational wave detector. The example shown in Figure 7-3 shows how the range for

binary neutron star inspirals varies with the squeezing level and squeezing angle.

The level of measured squeezing required to improve the volume of the universe surveyed

for binary neutron star inspirals by 70% is modest, as shown in Figure 7-4. Although the level

of squeezing is similar to that observed during the Enhanced LIGO squeezing experiment,

the assumed losses are significantly lower which will be necessary to avoid degrading the low

frequency sensitivity.
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Figure 7-3: Range of Advanced LIGO with 31 Watts input power as a function of level of
injected squeezing and squeezing angle, assuming losses from Table 7.2.
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Figure 7-4: Ratio (in dB) of interferometer noise with squeezing to noise without squeezing,
both with with 31 Watts input power. The level of squeezing needed to improve the range
from 139 Mpc to 163 Mpc is similar to the level of squeezing observed during the Enhanced
LIGO squeezing experiment, although the assumed losses are significantly lower.
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7.3 Frequency independent squeezing in Advanced LIGO

at full power

101 102 103
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Advanced LIGO 125 Watts,183Mpc
Advanced LIGO 125 Watts with squeezing,199Mpc

Figure 7-5: Frequency independent squeezing in Advanced LIGO at full power, optimized
for binary neutron star inspirals assuming losses from Table 7.2.

Figures 7-5 and 7-6 show the benefits possible from frequency independent squeezing in

Advanced LIGO once it is operating at full power. Squeezing could extend the volume of the

universe that is surveyed for binary neutron star inspirals by 28%. The black hole binary

range can be increased from 1 Gpc to 1.5 Gpc, with squeezing, increasing the volume of the

universe surveyed by nearly a factor of 3. Frequency dependent squeezing will be needed to

realize the full potential of squeezing in a gravitational wave interferometer.
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Figure 7-6: Range of Advanced LIGO with 125 Watts input power as a function of level of
injected squeezing and squeezing angle, assuming 8.25% injection losses and 11.5% detection
losses.
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7.4 Frequency Dependent Squeezing

Once advanced gravitational wave interferometers are operating at their full sensitivity, and

both shot noise and radiation pressure noise are dominant noise sources, frequency indepen-

dent squeezing will be of limited use. However, it is possible to inject frequency dependent

squeezing, in which the squeezing angle or level of squeezing varies with the sideband fre-

quency [52]. Currently the most feasible way to achieve frequency dependent squeezing

is with the use of filter cavities, although other options like electromagnetically or opto-

mechanically induced transparency have been considered [63]. The original proposals for

frequency dependent squeezing aimed to achieve an improvement at all frequencies, but

required long filter cavities the same lengths as arm cavities with very low losses. More

recently filter cavity designs have been proposed that use higher loss cavities which transmit

low frequency squeezing, and reflect high frequency squeezing [18, 20]. This would preserve

the benefits of squeezing in the shot noise limited region but reduce the anti-squeezing of

radiation pressure noise at low frequencies. Research programs at MIT and Caltech are in-

vestigating squeezing filter cavities as an early upgrade to Advanced LIGO. With the use of

a filter cavity that attenuates the low frequency squeezing, higher levels of squeezing become

useful at the high frequencies.

7.5 Higher levels of squeezing in Advanced LIGO and

beyond

The maximum level of squeezing that can be measured in an interferometer is determined

by the losses and squeezing angle noise. The nonlinear gain can be optimized for the level of

squeezing angle noise, as shown in Figure 4-6b. At frequencies were the sensitivity is limited
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Figure 7-7: Shot noise reduction, with nonlinear gain optimized for the RMS squeezing angle
fluctuations. The nonlinear gain is capped so that the OPO pump power is always 80% or
less of the threshold power, which does not change the result significantly.

by shot noise, the variance and its derivatives are given by:

V = 1− 4ηtotx

(
cos2 θ̃sqz
(1 + x)2

− sin2 θ̃sqz
(1− x)2

)
(7.2)

dV

dx
=

4ηtot
(1− x2)3

(
(1 + 6x2 + x4) cos 2θ̃sqz − 4x(1 + x2)

)
(7.3)

To second order in the RMS squeezing angle fluctuations θ̃sqz, the best shot noise limited

sensitivity will be measured when:

x = 1− 2

√
θ̃sqz + 2θ̃sqz − 2θ̃3/2

sqz + 2θ̃sqz (7.4)

Figure 7-7 shows the reduction in shot noise possible for a given level of losses and
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squeezing angle noise. Reduction of losses is clearly the most important task to improve the

level of squeezing. The most important ways to reduce losses are to improve the transmission

of Faraday isolators and the OMC, and to improve the mode matching of the squeezed beam

to the OMC. Once total losses are reduced to levels around 20%, phase noise also becomes

an important limit. To reach 6 dB of squeezing in Advanced LIGO a reduction of the total

phase noise from 37 mrad to 10 mrad would increase the allowable loss from 19% to 24.6%,

more comfortably within the expected range of 28-20% losses based on the losses in 7.2 and

the interferometer losses at 100 Hz. To realize the full potential of squeezing in a third

generation detector with total losses below 10%, phase noise should be kept below 5 mrad,

and in the rather optimistic scenario of a detector with total losses of 3% a total phase noise

of 1 mrad would allow for 15 dB of shot noise reduction.

7.6 Summary

The Enhanced LIGO squeezing experiment has demonstrated that squeezing is compatible

with the low frequency sensitivity of a full scale gravitational wave detector, and character-

ized the limits to the level of squeezing observed. The results indicate that backscatter from

an out of vacuum squeezer is compatible with Advanced LIGO’s sensitivity, although in a

third generation detector the OPO will probably need to move inside the vacuum system

to reduce the backscatter noise. Frequency independent squeezing is a viable alternative to

high power operation for Advanced LIGO, and frequency dependent squeezing provides a

promising early upgrade path to improve the sensitivity beyond the Advanced LIGO design.

Optical losses are the most important limit to the level of squeezing, and reducing losses will

be one of the main challenges of any implementation of squeezing in a gravitational wave

detector. We have also understood that higher order modes couple alignment changes to

squeezing angle fluctuations, which was the dominant source of squeezing angle fluctuations

in our experiment. Although this would not limit the use of squeezing as an alternative to

high power operation, reducing the squeezing angle fluctuations will be helpful in any effort

to observe 6 dB or more of squeezing.
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Appendix A

List of LIGO documents relevant to

this thesis

This thesis has the LIGO document number LIGO-P1300006. More information, including

specifications for optics, electronics board layouts and assemblies, and documentation of the

table layout can be found at maz.mit.edu/sqwiki/H1Squeezer

These documents are available in the LIGO document control center (dcc.ligo.org):

Proposal T070265-D
Noise Model T0900325-v2

Summary of loss measurements T1200023-v1
Electronics

Delay line phase shifter D050339-A
IQ demodulator D1000181-v2

Common mode board D040180
Table Top Frequency Stabilization Servo (TTFSS) D040105-C

TTFSS Interface D0902048-C
PZT Driver D1001203-v2
Cable plan 1000737-v2

209



210



Appendix B

Acronyms, symbols and terminology

B.1 Acronyms

CLF coherent locking field

DARM differential arm degree of freedom

EOM electro optic modulator

KTP potassium titanyl phosphate

LO- local oscillator

OMC output mode cleaner

OPO optical parametric oscillator

PDH Pound Drever Hall

PPTKTP periodical poled KTP

PSL prestabilized laser

PZT piezo electric transducer

SHG second harmonic generator

B.2 Symbols used in this thesis
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Latin Symbols
a(t), ã(Ω) annihilation operator for fundamental field in cavity
Ain,j(ω) annihilation operator for bath modes incident

on coupler j at the fundamental frequency
Aout,j(ω) annihilation operator for bath modes incident

on coupler j at the fundamental frequency
b annihilation operator for second harmonic field in cavity

(except in Chapter 1)
|bth| amplitude of circulating second harmonic field at threshold
Bj(ω) annihilation operator for bath modes incident

on coupler j at the second harmonic frequency
c speed of light

D(α) displacement operator that generates a coherent state |α〉
Fr,g cavity finesse in infrared (r) or green (g)

G(x, θ) parametric amplification or amplification
g nonlinear gain (maximum parametric amplification)
h gravitational wave strain
Lc length of nonlinear interaction in crystal

(poled length of crystal)
Lc,0 poled length of crystal at 25◦C
Lc,tot total crystal length
Lx,y Length of x and y arms of interferometer

L+ = (Lx + Ly)/2 common arm degree of freedom
L− = (Lx − Ly)/2 differential arm degree of freedom

M matrix describing OPO given by Equation 2.30
Pth power in incident second harmonic field at threshold
R transformation from annihilation and creation operators

to quadrature operators
R transimpedance gain of photodetector

S(θ,Ω) Power spectral density at frequency Ω
measured in quadrature θ

Sn(f) power spectral density of total interferometer noise
T0 phase matching temperature

V (θ,Ω) variance of arbitrary quadrature operator at frequency Ω
V+ variance in anti-squeezed quadrature
V− variance in squeezed quadrature

Vvac,Vc,Vout vector of quadrature variances for vacuum fluctuations,
circulating cavity field, and

field leaving front coupler respectively
X1,2 Quadrature operators for electric field
X(θ) arbitrary quadrature operator

x = |ε||β|/γtotr normalized nonlinear interaction strength
ycr optimal crystal position
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Greek Symbols
|α〉 , α coherent state and its eigenvalue
αshg ratio of SHG conversion to loss, defined by Equation 3.8
αKTP thermal expansion coefficient for KTP
β eigenvalue of second harmonic field coherent state

(except in Chapter 1)
βKTP second order thermal expansion coefficient for KTP

Γ modulation depth
γjr,g field decay rate for fundamental (r) or second harmonic (g)

field at coupler j
γtotr,g total cavity field decay rate for fundamental (r)

or second harmonic (g) field
∆a = ∆ cavity detuning at fundamental frequency
∆b = 2∆ cavity detuning at fundamental frequency

∆dc interferometer DC offset
∆kq effective difference in refractive indexes in quasi-phase matching

∆X1,2 uncertainty in X1,2

∆φrt dispersion mismatch
δa vector of time dependent parts of annihilation and creation operators

for field circulating in cavity
δAl,in vector of time dependent parts of annihilation and creation operators

for vacuum fluctuations incident on lossy coupler
δAf ,in vector of time dependent parts of annihilation and creation operators

for vacuum fluctuations incident on front coupler
δAf ,out vector of time dependent parts of annihilation and creation operators

for vacuum fluctuations leaving front coupler
δXl,in vector of time dependent parts of quadrature operators

for vacuum fluctuations incident on lossy coupler
δXf ,in vector of time dependent parts of quadrature operators

for vacuum fluctuations incident on front coupler
δXf ,out vector of time dependent parts of quadrature operators

for vacuum fluctuations leaving on front coupler
ε nonlinear coupling parameter
ε0 normalization factor relating electric field to

quadrature operators and annihilation and creation operators
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ηesc = γfr /γ
tot
r OPO escape efficiency

ηloss power transmission of a series of lossy optical elements
ηPD photodetector quantum efficiency
ηSHG SHG conversion efficiency
θb phase of circulating second harmonic field
θsqz squeezing angle

θ̃sqz RMS squeezing angle fluctuations
θw crystal wedge angle
Λ poling period for quasi-phase matching
λr,g wavelength of fundamental infrared field (r)

and green second harmonic field (g) in a vacuum
τ OPO round trip time
τshg SHG round trip time

φg,m, φr,m phase acquired by green and infrared fields respectively
from dispersive elements in the cavity, other than the crystal

ω laser carrier frequency
Ω measurement frequency, audio sideband frequency

B.3 Terminology

Optical parametric amplifier/ optical parametric oscillator:

Some texts use OPO to refer to above threshold operation, and OPA when the crystal

is single passed and not in a cavity or when the cavity is below threshold [6, 40, p486].

Sometimes OPA is used to refer to operation of a parametric down-converter in a cavity,

below threshold when a seed beam is injected [56].

Degenerate OPO- An OPO in which the signal and idler frequencies are the same or

nearly the same. (as in OPO’s used for quadrature squeezing)

Doubly resonant OPO- In nonlinear optics literature this normally refers to an OPO

which is resonant for both the signal and ilder fields [6]. It has also sometimes been used to

refer to a degenerate OPO which is resonant for the fundamental and harmonic fields [82].
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Appendix C

Procedure for optimizing crystal

position

This is a procedure taught to me by Michael Stefszky, for optimizing the crystal position.

This should allow you to acheive dispersion compensation at the phase matching tempera-

ture, as described in 3.2.6.

Set the crystal temperature to a temperature approximately near the phase matching

temperature, and scan the cavity with both green and seed field injected.

1) Adjust the crystal position so that the green and red cavity resonances occur at the

same cavity length. This temperature is used as a reference for the crystal position. Try to

make sure that the cavity stays well aligned as the crystal is moved. The crystal position

needs to be accurately adjusted to the position where the two fields are co-resonant so that

the measurement will be repeatable.

2)Lock the cavity with the green field, check the level of transmitted green power to make

sure that it stays the same for each cavity lock. This will cause localized heating in the crystal

so that the two fields are no longer co-resonant. Scan a longitudinal PZT in the seed path and

measure the nonlinear gain, adjust the crystal temperature to maximize the nonlinear gain.

Write down the scanning temperature, the nonlinear gain, locked temperature, transmitted

green power and an approximate position of the translation stage if possible.

215



3) Scan the cavity again, and set the temperature setting to a new scanning temperature,

and go back to step 1.

Eventually this will trace out the curve shown in 3-12 as the projection of the nonlinear

gain along the position axis. The crystal position (for which a scanning temperature is used

as a reference) that maximizes the nonlinear gain is the one to use.
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