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ABSTRACT

This thesis describes current efforts to search for gravitational waves from com-

pact binary coalescences (CBCs) by the LIGO Scientific Collaboration (LSC) and the

Virgo Collaboration. We briefly review the physics of gravitational-wave emission and

detection, describing how gravitational waves are emitted from “inspiraling” compact

stellar mass objects and how the LSC and Virgo try to detect them using interferom-

eters. Next we review the data-analysis principles used to search for potential signals

in the detectors’ noise. These principles are employed by “ihope,” which is the data-

analysis pipeline used to search for CBCs. We describe each step in this pipeline and

discuss how interferometer data is stored and examined. Next we present the results

from a six-month long search which occurred in early 2007, during LIGO’s fifth sci-

ence run. This is followed by details of tuning studies carried out on LIGO’s sixth-,

and Virgo’s second- and third-, science runs (S6, VSR2, and VSR3), which ran from

July 2009 to October 2010. No gravitational waves were detected in these searches.

A “blind injection” was performed during S6/VSR3 and detected by our pipeline,

however. We detail studies into assigning a statistical significance to this injection.

Next we use these studies to show that we can expect to detect gravitational waves

with high significance using two detectors in the advanced detector era. Finally, we

review some future developments for the CBC pipeline currently being undertaken.
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1

Chapter 1

Introduction

The direct detection of gravitational waves (GWs) promises to usher in a new era of

astronomy. The GW spectrum represents an entirely new window on the universe, in-

dependent of, and complimentary to, electromagnetic (EM) radiation. Gravitational

waves can be used to directly probe objects unobservable by EM telescopes; e.g., the

properties of black holes, the equation of state of neutron stars, and the state of the

universe prior to the emission of the cosmic microwave background. Joint GW and

EM observations offer more possibilities, such as understanding the progenitors of

short-hard gamma-ray bursts (GRBs) and measuring the expansion of the universe.

The GW spectrum would also give us insight into the physics of strong field grav-

ity and numerical solutions of the Einstein equations, as well as provide a test for

alternative theories of gravity [1].

The U.S. Laser Interferometer Gravitational-wave Observatory (LIGO) and the

French-Italian Virgo interferometer are seeking to make the first direct detections of

gravitational waves [2]. To date, LIGO has completed six Science runs. The first five

of these runs were known as initial LIGO. In LIGO’s fifth science run (S5), which

lasted from November 2005 to September 2007, the LIGO detectors reached their

design sensitivity, as they were sensitive to gravitational waves with strain amplitudes

of ∼ 10−21 in the 40− 7000 Hz frequency band [2]. S6, also known as enhanced LIGO

[3], lasted from July 2009 until October 2010. Hardware improvements were make

to the detectors for S6; during this period the LIGO detectors met and exceeded the

sensitivity of S5. Virgo has had three science runs. Virgo’s first science run (VSR1)

overlapped with S5, lasting from May 2007 until Octover 2007 [4]. During this period,
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joint LIGO Virgo searches for GWs were carried out [5, 6, 7]. Virgo’s second science

run (VSR2) and Virgo’s third science run (VSR3) ran from July 2009 until January

2010, and from August 2011 to October 2011, respectively. During these runs the

Virgo detector operated with improved sensitivity over VSR1. LIGO, having just

completed S6, is currently preparing for the Advanced LIGO era, which may begin

as early as 2014 [8]. Virgo will also be upgraded on the same schedule as Advanced

LIGO [4]. For the Advanced era, both the LIGO and Virgo detectors are projected

to have a factor of ten improvement in sensitivity [8, 9], which will allow for GW

detections from multiple astrophysical sources [8, 10].

During these Science runs, the LIGO Scientific Collaboration (LSC) and the Virgo

Collaboration have carried out several searches for GWs from various astrophysical

sources. These searches are broadly grouped into four categories [2]:

• The CBC group: These searches look for GWs from compact stellar mass bi-

naries as they “inspiral” into each other and merge [11]. The waveform from

these searches can be modelled and a matched-filter analysis used [12].

• The Burst group: This consists of un-modelled transient searches that look for

GWs from systems that cannot easily be modelled, such as from core-collapse

supernovae [13].

• The Continuous-wave group: This search looks for GWs from a “continuous”

wave source, such as a pulsar [14].

• The Stochastic group: This consists of searches for a “stochastic background”

of broadband GWs, that, for example, could have been emitted in the early

universe [15].

In this thesis we focus on the search for GWs from CBCs. Within the CBC group

several different searches are performed. Here, we focus on the all-sky “low-mass”

search. This search looks for gravitational waves from coalescing binaries that have

a total mass Mtotal < 35 M� and a component mass ≥ 1M� using LIGO and Virgo

data.1 This search includes binary neutron stars (BNS), binary black holes (BBHs),

and neutron-star black-hole binary (NSBH) systems.

1Throughout the rest of this thesis we will refer to this search as the low-mass CBC search.
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Coalescing compact binaries with a total mass < 35 M� have a number of prop-

erties that make them promising candidates for detection by LIGO and Virgo [16,

17, 18, 19, 20, 21, 22, 6]. As the binaries’ components spiral into each other, they

emit gravitational waves that pass through the sensitive band of the LIGO and Virgo

detectors. These waves can be well-modeled using the post-Newtonian approxima-

tion to General Relativity [23, 24, 25, 26, 27, 28, 29, 30]. Knowing the morphology

of the waveform provides a number of advantages, as it allows us to use match filter-

ing and signal-based vetoes [31, 32]. The detectors have stationary, Gaussian noise

that is intrinsic to the detector, as well as non-Gaussian transients (glitches) which

come from environmental and instrumental sources. Match filtering is the optimal

method to find weak signals in the stationary noise since the signal-to-noise ratio

(SNR) grows with the square root of the number of cycles [1]. For non-Gaussian

glitches, signal-based vetoes provide a powerful way to separate noise from candi-

dates [32, 33]. Additionally, by utilizing all the detectors in the LIGO-Virgo network,

we can perform “coincidence tests” to ensure that triggers from different observatories

are consistent [34].

In this thesis we detail how searches for these “low mass” CBCs are carried out

and we give some recent results from this search. In Chapter 2 we review the theory

behind gravitational waves, showing how they arise in General Relativity, and review

the basics of the LIGO/Virgo interferometers. In Chapter 3 we review some of the

principles of matched filtering, and how various statistical tests are used to search

the data. Next, in Chapter 4, we detail how false alarm rates are calculated for GW

triggers. In Chapter 5 we step through the pipeline used to search for CBCs, which

makes use of the methods presented in Chapters 3 and 4. Chapter 6 presents results

from the low-mass CBC search for GWs in 6 months of S5 data. Next, in Chapter 7,

we give a detailed examination of the low-mass CBC analysis of S6, including tuning

choices made and preliminary results from that search. In Chapter 8 we present an

analysis of the S5 and S6 data that shows that we can detect GWs at expected rates

in Advanced LIGO. Finally, in Chapter 9 we present some future directions for the

low-mass CBC pipeline.
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Chapter 2

Physics of Gravitational Waves and

the LIGO/Virgo Interferometers

In this chapter we briefly review the theory of gravitational waves: how they arise

in General Relativity (GR) and how they can be detected by an interferometer. We

then review the physics behind the LIGO and Virgo interferometers, including their

main sources of noise. Finally, we examine potential sources of GW waves that can

be detected by the LIGO and Virgo interferometers.

2.1 Gravitational Waves in General Relativity

In this section we show how gravitational waves arise in General Relativity. We begin

our discussion with Einstein’s field equations, given by1 [35]:

Gαβ = 8πTαβ (2.1)

where Tαβ is the stress-energy tensor and Gαβ is the Einstein curvature tensor, defined

as:

Gαβ ≡ Rαβ −
1

2
Rgαβ (2.2)

Here, gαβ is the metric on some manifold and R is the Ricci curvature scalar, which is

obtained by contracting Rαβ, which is the Ricci tensor. The Ricci tensor is obtained

1We will work in “natural units” in which G = c = 1, where G is Newton’s gravitational constant

and c is the speed of light.
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by contracting the Riemann curvature tensor, Rα
βµν , on the first and third indices.

Riemann is defined as:

Rα
βµν ≡ Γαβν,µ − Γαβµ,ν + ΓασµΓσβν − ΓασνΓ

σ
βµ (2.3)

where the Γαµν are the Christoffel symbols, given by:

Γαµν =
1

2
gαβ(gβµ,ν + gβν,µ − gµν,β) (2.4)

The “,” indicates the partial derivative of the tensor with respect to the trailing

indices. The Christoffel symbols describe how the components of a basis vector change

when transported on a curved manifold [36]. The Riemann tensor describes how a

vector changes when parallel transported around a closed loop on the manifold. It

thereby describes the curvature of the manifold, in 20 independent components (in a

four-dimensional spacetime). The Ricci tensor reduces the number of components to

10, and the Einstein tensor to 6, leaving 4 components of the metric free [37].2 Thus

the Einstein field equations relate the curvature of spacetime to mass and energy,

which gives rise to the “force” we call gravity.

In order to study GWs we will work in the weak field limit, for which:

gαβ = ηαβ + hαβ (2.5)

Here, ηαβ is the Minkowski metric (we use the (−,+,+,+) convention) and hαβ is a

small perturbation on this metric, i.e., |hαβ| � 1. With this assumption, the Riemann

tensor simplifies to [36]:

Rαβµν =
1

2
(hαν,βµ + hβµ,αν − hαµ,βν − hβν,αµ) (2.6)

If we define h̄αβ to be the “trace reverse”3 of hαβ:

h̄αβ = hαβ −
1

2
ηαβh (2.7)

(here h = hσσ is the trace of h) then, to first order, we can simplify the Einstein

curvature tensor to:

Gαβ = −1

2
(h̄ µ

αβ,µ + ηαβh̄
,µν

µν − h̄ µ
αµ,β − h̄ µ

βµ,α +O(h2
αβ)) (2.8)

2These four free components allow us to choose any coordinate system, or “gauge”, we wish

without changing the underlying physics.
3Note: in this case, the over-bar does not indicate an average.
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We can exploit gauge freedoms in the Einstein equations to simplify this more. If we

chose the Lorenz gauge,

h̄µν,ν = 0 (2.9)

then:

Gαβ = −1

2
h̄ µ
αβ,µ (2.10)

The weak-field Einstein equations are thus:

�h̄αβ = −16πTαβ (2.11)

where � is the four-space d’Almbertian operator. This is the wave equation. Analo-

gous to the wave equation in electromagnetism, equation 2.11 has the solution:

h̄αβ = 4

∫
Tαβ(t− |~x− ~x′|, ~x′)

|~x− ~x′|
dx′3 (2.12)

Equation 2.12 relates the metric perturbation to its source. We will return to this

equation shortly. First, to explore properties of GW propagation, we consider the

field equations at points outside the source, i.e., in vacuum, for which Tαβ = 0. The

wave equation becomes:

�h̄αβ = 0 (2.13)

which has the solution:

h̄αβ = <Aαβeikµx
µ

(2.14)

Each αβ component of h̄ is thus a sinusoidal wave that travels along the vector kµ

with amplitude Aαβ. It can be shown [36] that kµk
µ = 0, i.e., kµ is a null vector.

Identifying k0 as the angular frequency of the wave, ω, this implies that |~k|2 = ω2.

Since, in general, |~k| = ω/v (where v is the phase velocity of the wave), v (as well

as the group velocity) must be 1. The wave therefore travels at the speed of light.

Additionally, in the Lorenz gauge:

Aαβk
β = 0 (2.15)

This means that Aαβ must be orthogonal to ~k; i.e., the wave is a transverse-plane

wave.
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We can exploit additional gauge freedoms to further simplify the wave equations

2.14. It can be shown [36] that we can impose two further conditions:

A α
α = 0 (2.16)

Aαβu
β = 0 (2.17)

while still satisfying the Lorenz gauge condition. The first makes h̄αβ trace free; thus

in this gauge, which we denote by a TT superscript,

h̄TT
αβ = hTT

αβ (2.18)

The second condition sets the α component of A orthogonal to some constant four-

velocity of our choosing. If we orient our background reference frame such that the

four-velocity lies along the time basis vector, uβ = δβ0, and such that the spatial part

of the wave-vector points along the z-axis (i.e., k = (ω, 0, 0, ω)) then this condition

implies that Aα0 and Aαz are 0 for all α. (The second result follows from equation

2.15.) Thus in this gauge, the metric perturbation is both transverse and traceless,

hence the TT label.

By going to the TT gauge we have greatly simplified the solution to the wave

equation. Since the metric perturbation is transverse, the only non-zero elements are

hTT
xx , hTT

yy , and hTT
xy (= hTT

yx ). Since it is traceless, hTT
xx = −hTT

yy . Thus we have reduced

solutions 2.14 to two independent equations:

hTT
xx = <h+e

ikµxµ = h+ cos(ω(t− z) + φ0) (2.19)

hTT
xy = <h×eikµx

µ

= h× cos(ω(t− z) + φ0) (2.20)

where h+ (= Axx = −Ayy) and h× (= Axy = Ayx) are the “plus” and “cross”

polarizations of the gravitational wave. (φ0 is some arbitrary initial phase.)

Since we have used all of our gauge freedoms to obtain these two solutions, the

results are physically observable. We can see this by considering the proper distance

between two freely-falling particles, one located at the origin (xi1 = (0, 0, 0)) and the

other at xi2 = (δx, 0, 0) when a gravitational wave passes by. In Cartesian coordinates

the line element in the TT gauge is:

ds2 = − dt2 + dz2 + (1 + h+ cos(ω[t− z] + φ0)) dx2 (2.21)

+ (1− h+ cos(ω[t− z] + φ0)) dy2 + 2h× cos(ω[t− z] + φ0) dx dy (2.22)
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To get a sense of the effect of the passing wave, consider the case when the wave only

has plus polarization. Additionally, let the initial phase of the gravitational wave be

φ0 = −π/2. The proper distance between the two particles at arbitrary time t is:

∆l =

∫
ds =

∫ δx

0

√
(1 + h+ cos(ωt− π/2)) dx (2.23)

≈
∫ δx

0

(1 +
1

2
h+ cos(ωt− π/2)) dx (2.24)

= δx(1 +
1

2
h+ cos(ωt− π/2)) (2.25)

In the second step we have used the fact that |h+| � 1. At time t = 0, we get

∆l = δx, as expected. At time t = π/2ω, however, we get ∆l = δx(1 + h+/2): the

particle has moved from the origin by an additional h+/2. If we perform the same

analysis for another particle situated at xi3 = (0, δy, 0), we will get ∆l = δy(1−h+/2)

at time t = π/2ω. Likewise, if we consider particles situated at xi = (δx, δy, 0) and

xi = (−δx, δy, 0) we will get similar oscillations when a cross-polarized wave passes

through. Figure 1 shows what this would look like for a ring of particles. Thus,

we can detect a gravitational wave by measuring how the proper distance changes

between two freely-falling masses. How this is done is explained in section 2.2.

Return now to the source-dependent wave solution, equation 2.12. Since the TT

gauge captures all of the physically measurable quantities of the gravitational wave

outside the source, we can simplify the equation to:

hTT
ij = 4

[∫
Tij(t− |~x− ~x′|, ~x′)

|~x− ~x′|
dx′3

]TT

(2.26)

In other words, we can calculate the measurable gravitational wave created by a

source from the ij components of the stress-energy tensor alone. We then throw out

the transverse parts and remove the trace. We will use this result in the next section

to find a solution for the gravitational waveform from a compact binary system.

2.1.1 Gravitational Waves from a Compact Binary Inspiral

We now consider the gravitational radiation emitted from a system consisting of two

compact spherical objects orbiting around each other. Let the mass of the objects

be denoted by m1 and m2, and the total mass by M . Consider their motion when

they are at a distance a � 2M . We will assume their motion is determined entirely
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h×h+

Figure 1 : A diagram showing the effect of a passing gravitational wave on a ring of particles. The

left diagram shows the effect of a + polarized wave and the right shows the effect of × polarized

wave. On the h+ diagram we have attached a mirror to the +x and +y particles. These form the

end-test masses of the interferometer shown. For a discussion of how the interferometer works, see

section 2.2.

by their mutual gravitational attraction and that m1 ∼ m2 ∼ M�. Although we will

find that the orbit of the objects shrinks due to the energy loss from emitted GWs,

with these assumptions, ȧ � v, where v is their relative orbital velocities. Thus

we can assume quasi-stationary circular orbits. Additionally, since we have assumed

a � 2M , v � 1; in this case, relativistic effects become negligible and we can use

Newtonian mechanics and Kepler’s third law — given by:

Ω =

√
M

a3
(2.27)

where Ω is the orbital angular velocity — to analyze the system.

Our assumptions also allow us to simplify equation 2.26. First, from energy and

momentum conservation (T µν,ν = 0) we have:

T 00
,0 = −T 0j

,j

T j0,0 = −T jk,k

Therefore:

2T jk = T 00
,00 x

jxk − (T lmxjxk),ml + 2(T ljxk + T lkxj),l
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When we plug this into equation 2.264 we find that the last two terms are zero due to

Stokes theorem. The T 00 term gives the mass-energy of the source, ρ. We therefore

have:

hTT
ij = 2

[
∂2
t

∫
ρ(t− |~x− ~x′|, ~x′)

|~x− ~x′| d3x′
]TT

(2.28)

Now, because we are far from the source, |~x − ~x′| ∼ r (where r is the distance

to the source), i.e., |~x′|/|~x| � 1. As is done in EM, we can therefore expand the

denominator [37]:

1

|~x− ~x′| =
1

r
+
xjxj

′

r3
+
xjxk(3xj

′
xk

′ − r′2δjk)
2r5

+ . . . (2.29)

Keeping the first term yields:

2

r
∂2
t

∫
ρ(t− r)x′jx

′k d3x′

We recognize the integral as the second-time derivative of the second moment of the

mass distribution, Ïjk.5 Since we eventually remove the trace, we can instead use the

mass quadrupole moment, Ijk, defined as:

Ijk =

∫
ρ(x)

(
xjxk −

1

3
δjkδmnx

mxn
)

d3x (2.30)

Substituting this into equation 2.28 yields:

hTT
jk =

2

r
ÏTT
jk (t− r) (2.31)

This is an important result: we only get gravitational waves if we have a changing

quadrupole (or higher-order) moment. Contrast this with EM, in which we only need

a changing dipole moment to get electromagnetic waves.

Returning to our problem, to evaluate the amplitude of the GW emitted by the

binary we must first evaluate Ijk. Since we only have two masses, we can use the

discrete form of the integral to directly write:

Iij = m1(x1ix1j − δij
1

3
r2

1) +m2(x2ix2j − δij
1

3
r2

2) (2.32)

4We use the background metric ηαβ to lower the ij indices on T.
5In general, we will use over-dots to indicate differentiation with respect to proper time, τ .

However, because we are working in a Minkowski spacetime, τ → t. We can therefore use the dots

here to indicate differentiation with respect to the coordinate time.
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where r2
n = x2

n + y2
n is the radial position of the nth mass. Working in the center-of-

mass frame of the binary, we have:

x1 = r1 cos Ωt

y1 = r1 sin Ωt

x2 = −r2 cos Ωt

y2 = −r2 sin Ωt

where

r1 = a
m2

m1 +m2

(2.33)

r2 = a
m1

m1 +m2

(2.34)

Substituting these values into equation 2.32 we have:

Ixx = m1x
2
1 +m2x

2
2 −

1

3
(m1r

2
1 +m2r

2
2)

= (m1r
2
1 +m2r

2
2)

(
cos2 Ωt− 1

3

)

= a2

(
m1m

2
2 +m2m

2
1

m1 +m2

)(
cos2 Ωt− 1

3

)

= µa2

(
cos2 Ωt− 1

3

)
(2.35)

where:

µ =
m1m2

M
(2.36)

is the reduced mass. By a similar calculation, we get:

Iyy = µa2

(
sin2 Ωt− 1

3

)
(2.37)

= −Ixx (2.38)

Izz = −1

3
µa2 (2.39)

Ixy = µa2 cos Ωt sin Ωt (2.40)

= Iyx (2.41)
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The second time derivative of the quadrupole moment is thus:

Ïxx = −2µa2Ω2 cos(2Ωt) (2.42a)

Ïyy = 2µa2Ω2 cos(2Ωt) (2.42b)

Ïxy = −2µa2Ω2 sin(2Ωt) (2.42c)

= Ïyx (2.42d)

Ïzz = 0 (2.42e)

In order to plug equations 2.42 into equation 2.31 we need the transverse part of

the moments. We know that the gravitational waves will propagate outward from the

binary. Therefore, if we project equations 2.42 into the spherical coordinates {r, ι, φ}
shown in figure 2, then Iιι, Iφφ, and Iιφ (= Iφι) will form the parts of the tensor

transverse to the propagation. Since the z components of the time derivative of the

quadrupole are all zero, the transformation law is simplified to:

Ïi′j′ = Λ i
i′ Λ j

j′ Ïij
= Λ x

i′ Λ x
j′ Ïxx + Λ x

i′ Λ y
j′ Ïxy + Λ y

i′ Λ x
j′ Ïyx + Λ y

i′ Λ y
j′ Ïyy

We can further simplify the problem by setting the initial orbital phase, φ, to 0. Since

we have assumed quasi-stationary circular orbits, we can later account for arbitrary

initial phase by letting Ωt → Ωt + φ. Doing so simplifies the transformation matrix

to:

Λ =




sin ι 0 cos ι

cos ι 0 − sin ι

0 1 0




Resulting in:

Ïιι = Ïxx cos2 ι

Ïφφ = Ïyy
Ïιφ = Ïxy cos ι

= Ïφι

To make the tensor traceless in this coordinate basis, we set:

ÏTT
ιι = −ÏTT

φφ = 1/2(Ïιι − Ïφφ)
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Letting Ωt→ Ωt− φ, we have:

ÏTT
ιι = µa2Ω2 cos(2[Ωt− φ])(1 + cos2 ι) (2.43)

ÏTT
ιφ = −2µa2Ω2 sin(2[Ωt− φ]) cos ι (2.44)

Substituting this into equation 2.31, and using Kepler’s law to put a in terms of M

and Ω (a = (M/Ω2)
1/3

), we have:

hTT
ιι =

2

r
µ(MΩ)2/3 cos(2[Ω(t− r)− φ])(1 + cos2 ι) = h+ (2.45a)

hTT
ιφ = −4

r
µ(MΩ)2/3 sin(2[Ω(t− r)− φ]) cos ι = h× (2.45b)

Here we have identified the ιι and ιφ parts of the GW field as the “plus” and “cross”

polarizations by using the basis vectors [37]:

e+ = (~eι ⊗ ~eι − ~eφ ⊗ ~eφ), e× = (~eι ⊗ ~eφ + ~eφ ⊗ ~eι) (2.46)

In equations 2.45 we can see that the gravitational-wave frequency is twice the orbital

frequency:

fGW = 2forbit =
Ω

π
(2.47)

The inclination angle, ι, and the distance to the center of mass, r, are extrinsic

parameters of the binary: they depends only on the orientation of the binary with

respect to an outside observer. To separate the part of the waveform that depends on

the intrinsic parameters of the binary — i.e., the physical parameters of the binary

that are independent of the location of the observer6 — we define the sine chirp, hs,

and the cosine chirp, hc [31]:

hc ≡ 2µ(MΩ2/3) cos(2[Ωt− φ0]) (2.48a)

hs ≡ 2µ(MΩ2/3) sin(2[Ωt− φ0]) (2.48b)

such that:

h+ =
hc
r

(1 + cos2 ι) (2.49a)

h× =
hs
r

cos ι (2.49b)

(The reason for the name “chirp” will become clear below.) Here, φ0 is the phase of

the binary at some initial point in time.

6When we say “independent of the location of the observer” we actually mean “independent of

the location of any observers that are in the same local Lorentz frame (LLF).”
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observer
z

x

y
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m2

φ0

ι

r

a

Figure 2 : The center-of-mass frame of a binary with separation distance a. The coordinates {r, ι, φ}
give, respectively, the distance to an observer, the inclination angle of the observer, and the phase

of the binary. φ0 is the initial phase. Figure originally published in [31].
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2.1.2 Evolution of the Gravitational Waveform in Newtonian Physics

In Chapter 3 we will find that we use the sine and cosine waveforms to match-filter

data from GW detectors. Match filtering offers the optimal way to find a CBC GW

signal that is buried in noise. However, to perform the match filter, we need to

generate a time or frequency series for the waveform. From equations 2.48 we see

that this requires knowledge of how the orbital phase, Ωt, (or, via equation 2.47,

the gravitational-wave phase) evolves with time (or frequency). We can find this by

considering the energy lost by the binary due to gravitational radiation.

Using equation 2.31 it can be shown that the energy loss from GW emission is

given by [37]:
dE

dt
= −1

5

〈...
I jk

...
I jk
〉

(2.50)

where the brackets < · > denote an average over time. Using equations 2.42, we find:

...
I xx = 4µaΩ3 sin(2Ωt) = −...

I yy
...
I xy = −4µa2Ω3 cos(2Ωt) =

...
I yx

This gives:

dE

dt
= −2

5

〈
Ï2
xx + Ï2

xy

〉

= −32

5
µ2a4Ω6

〈
sin2(2Ωt) + cos2(2Ωt)

〉

= −32

5

µ2M3

a5

In the last step we have again used Kepler’s law to put Ω in terms of M and a. We

can use this equation to find how the separation distance changes with time. Using

the chain rule we have:
dE

dt
=
∂E

∂a

da

dt
(2.51)

From Newton’s law of gravity and conservation of energy, the binary’s energy is

related to the separation distance by:

∂E

∂a
=
µM

2a2

Substituting this into equation 2.51 yields:

1

2
a3 da = −32

5
µM2 dt
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Integrating this from some initial separation, a0, at time t0, to the separation, a, at

some arbitrary time t gives:

a = a0

(
1− t− t0

τ0

)1/4

(2.52)

where:

τ0 =
5

256

a4
0

µM2
(2.53)

is the time to coalescence. That is, τ0 is the amount of time it takes for the binary

to go from the initial separation a0 to a = 0. In equation 2.52 we can see that the

orbital separation decreases with time due to the loss in energy. In other words, the

two masses “inspiral” into each other.

We can use equations 2.52 and 2.53, and Kepler’s third law to find how the orbital

angular velocity changes with time. Re-arranging equation 2.27 to a = (M/Ω2)1/3

and manipulating equation 2.53 to get a0 in terms of τ0, we have, from equation 2.52:

M4/3Ω−8/3 =
256

5
µM2(τ0 − t)

Here, we have set the initial time t0 = 0. Rearranging, we have:

Ω =

[
5

256

1

ηM5/3(τ0 − t)

]3/8

(2.54)

where:

η ≡ µ

M
(2.55)

is the symmetric mass-ratio. Using equation 2.47 to relate the gravitational-wave

frequency to Ω, we find:

fGW(t) ∝ (τ0 − t)−3/8 (2.56)

Figure 3(a) shows what the gravitational-wave frequency looks like as a function of

time. We see that the wave sweeps upward in frequency in a “chirp” pattern, and

that it asymptotes at infinity as a→ 0.

We can also use equation 2.54 to find how the amplitude of the waveform changes

over time. In equations 2.48 we see that the amplitude of the waveform is proportional

to MΩ2/3. Thus:

|hc| = |hs| = 2

(
5

256

M
τ0 − t

)1/4

(2.57)
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where we have defined the chirp mass, M, as:

M≡ η3/5M (2.58)

Thus the amplitude also increases with time, and it asymptotes at infinity as a→ 0.

Figure 3(b) shows what the waveform evolution looks like for an equal mass binary

(η = 1/4)).

2.1.3 Orbital Dynamics in a Schwarzschild Spacetime

In the above analysis we assumed the relative velocities of the binary’s component

masses were small compared to the speed of light, and that the spacetime curvature

was relatively flat. This allowed us to use Newtonian and Keplerian dynamics to

analyze the binary. While this worked well when the masses were far apart from each

other, it breaks down as the separation distance gets small. This was evident in the

fact that the orbital angular velocity asymptotes at infinity as a → 0. This means

that the component masses’ relative tangential velocity:

v = (MΩ)1/3 (2.59)

would also approach infinity. Clearly there is a separation distance for which our

assumptions fail, and we must take into account relativistic effects.

To illustrate relativistic effects, we consider a test-particle with mass m orbiting

a massive black hole with mass M , such that m�M . For simplicity we will assume

that both the test mass and the black hole have negligible spin. Thus, we can describe

the spacetime using the Schwarzschild metric [35]:

ds2 = −(1− 2M/r) dt2 +
dr2

1− 2M/r
+ r2 dφ2 + r sin ι dι2 (2.60)

The coordinates are chosen such that r = 0 is at the center-of-mass of the system,

which — since M � m — is roughly at the “center” of the black hole. Without loss

in generality we will assume the inclination angle is equal to π/2, so that the dι part

of the line element is 0.7 In this case the metric only has three elements:

gtt = −(1− 2M/r) (2.61a)

grr = (1− 2M/r)−1 (2.61b)

gφφ = r2 (2.61c)

7For a treatment of this problem with ι 6= π/2 see Box 25.4 of [35].
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(a) f(t)

(b) h(t)

Figure 3 : The frequency evolution and waveform evolution of an equal mass binary using equations

2.56 and 2.57.
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In the last section the equation of motion for the masses was given by Kepler’s

third law, which related the orbital angular velocity to the mass and separation

distance. To analyze the test particle’s orbital evolution we again need an equation

of motion. However, since we are working in a curved spacetime it is not clear that

Kepler’s third law still holds. To find the relativistic equation of motion, we consider

the particle’s geodesic path as it orbits the black hole. Since no external forces act

on the particle, the geodesic equation is [35, 36, 38]:

d2xα

dτ 2
+ Γαµν

dxµ

dτ

dxν

dτ
= 0 (2.62)

where the Christoffel symbol is:

Γαµν = gασΓσµν

=
1

2
gασ(gσµ,ν + gσν,µ − gµν,σ)

=
1

2
gαα(gαµ,ν + gαν,µ − gµν,α) (2.63)

In the last step we have used the fact that there are no mixing terms in the metric.

Before analyzing these equations, we note a few properties of the metric which

greatly simplify the problem. The metric has no t, φ, or (since we set the particle’s

inclination angle to π/2) ι dependence. Thus the t, φ, and ι components of the

particle’s conjugate four-momentum, pα are conserved [35, 36, 38]. The particle’s

four-momentum is given by:

pα = muα = m
dxα

dτ
(2.64)

where uα is the particle’s four-velocity. The four-momentum is related to the conju-

gate momentum by: pα = gαβpα. Since pα has no τ dependence, and since gαβ only

depends on r, ṗα ∼ ṙ. (Dots over the coordinates indicate differentiation with respect

to the proper time.) We shall assume, as we did in the previous section, that ṙ � φ̇,

i.e., that the particle follows quasi-stationary orbits. In this case, ṙ ≈ 0, as well as r̈.

Thus:

ṗt = ẗ/m = ṗφ = φ̈/m = ṗι = ϊ/m = 0 (2.65)

Since we have fixed the inclination angle to π/2, ϊ is also zero. From equation 2.63,

this means that Γιµν is zero, and so the ι equation of motion gives the trivial result
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0 = 0. Thus we only have three equations to consider:

Γαttṫ
2 + 2Γαtφṫφ̇+ Γαφφφ̇

2 = 0 (2.66)

where α = r, t, φ. We further simplify these equations by noting:

Γαtt =
1

2
gαα(2gαt,t − gtt,α) = −1

2
gααgtt,α

Γαφφ =
1

2
gαα(2gαφ,φ − gφφ,α) = −1

2
gααgφφ,α

Γαtφ =
1

2
gαα(gαt,φ + gαφ,t − gtφ,α) = 0

Since gtt,α and gφφ,α are only non-zero if α = r, the only non-zero Christoffel symbols

are Γrtt and Γrφφ. This means the only non-trivial equation of motion is the one for

which α = r. The non-zero Christoffel symbols are:

Γrtt = −1

2
grrgtt,r =

M

r2
(1− 2M/r) (2.67a)

Γrφφ = −1

2
grrgφφ,r = −r(1− 2M/r) (2.67b)

Substituting these into the equation of motion yields:

M

r2
(1− 2M/r)ṫ2 − r(1− 2M/r)φ̇2 = 0

⇒ φ̇2

ṫ2
=
M

r3

Note that:
φ̇

ṫ
=

dφ/ dτ

dt/ dτ
=

dφ

dt
= Ω (2.68)

where Ω is the angular velocity of the test particle as measured by an observer in the

particle’s LLF. Thus we have:

Ω =

√
M

r3
(2.69)

Evidently Kepler’s third law is valid in the Schwarzschild metric for circular orbits.

As noted above, φ̇ = pφ/m and ṫ = pt/m. We can therefore write:

pφ

pt
=

√
M

r3
(2.70)
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Now, since pt and pφ are conserved, we can set them equal to the constants −E and L,

respectively. We can identify these constants as the particle’s energy and momentum

as seen by an observer at r =∞ [36]. Raising the indices, we have:

pt = gttpt =
E

1− 2M/r
(2.71)

pφ = gφφpφ =
L

r2
(2.72)

Equation 2.70 is therefore:

(1− 2M/r)L

r2E
=

√
M

r3
(2.73)

We can put L in terms of E by noting:

pαpβgαβ = pαpα = m2uαuα = −m2

Since pr and pι are both zero,

pαpα = ptpt + pφpφ = − E2

1− 2M/r
+
L2

r2
= −m2

Rearranging this gives:

L = r

√
E2

1− 2M/r
−m2 (2.74)

and using equation 2.73 we obtain:

E = m
1− 2M/r√
1− 3M/r

(2.75)

We have arrived at a solution for the particle’s energy as a function of its orbital

distance. (Note that as r → ∞, E → m, meaning E becomes the rest-mass energy

of the particle, as expected.)

Figure 4 shows a plot of E/m as a function of r/M . From this (or by taking the

derivative of equation 2.75 and setting it equal to zero) we can see that E/m decreases

monotonically from infinity, until it reaches a minimum at r = 6M . Keep in mind

that we obtained this graph by considering quasi-stationary circular orbits. Thus

the plot shows how much energy is needed at each r for the particle to maintain a

circular orbit. This means that at radii ≥ 6M the particle can sustain stable circular

orbits without needing any additional energy. Below r = 6M , however, energy must
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be added to the particle in order for it to sustain its orbit.8 Assuming the system

evolves adiabatically (that is, no external energy is added), after the particle passes

r = 6M it will cease to inspiral and will plunge into the black hole. This part of the

evolution is known as “merger.”

The point r = 6M is known as the inner-most stable circular orbit (ISCO). At

this point our analysis, both in this section and the last, breaks down since we can

no longer assume ṙ � φ̇. The phase and amplitude evolution of the gravitational

wave emitted after this point must therefore be evaluated using more sophisticated

techniques. Although we found this radius by considering a Schwarzschild metric, an

ISCO will exist for equal-mass systems as well (it may not occur at r = 6M , however).

Many of the systems we will consider in this thesis (namely, binary neutron stars;

see the next section) have masses low enough that the frequencies of their emitted

GWs are of order a few kHz when they pass ISCO. Since our gravitational-wave

detectors have low sensitivity at these frequencies (see section 2.2.2) we can simply

terminate the matched filter at fisco, which is the frequency of the gravitational wave

when the source’s component masses pass ISCO. This permits us to use the techniques

outlined in the last section and the next to generate a GW waveform. Higher mass

systems (binary black holes and binaries with a neutron start and a black hole) cross

ISCO in the more sensitive parts of the detectors’ bands. We still search for such

systems with post-Newtonian (pN) templates, however, as we can still recover much

of the signal. For still higher mass systems Mtotal > 25M� we use more sophisticated

techniques to generate the waveform. Searches for such systems, and how templates

are generated for them, are beyond the scope of this thesis, however.

2.1.4 The Post-Newtonian Approximation

Let us recap the steps we took in section 2.1.2 to arrive at a solution for the gravita-

tional waveform:

• First, we performed a multipolar expansion on the right hand side of equation

2.26 to get hTT
ij in terms of increasing moments of the mass-energy density. This

8And below r = 2M an infinite amount of energy would be needed for the particle to sustain a

stable orbit. Thus r = 2M is the event horizon of the black hole, also known as the Schwarzschild

radius.
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E
/m

r/M

Figure 4 : A plot of the energy-per-unit mass of a test particle orbiting a Schwarzschild black hole

as a function of its radial coordinate per the black hole’s mass. The plot was created in Maple using

equation 2.75.
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eventually allowed us to solve the energy-balance equation:

dE

dt
= −F (2.76)

Since we only kept the first (most-dominant) term of the expansion, we had

F =
〈 ...
Ijk

...
Ijk
〉
/5.

• Next, we found an expression for E in terms of the mass and the orbital separa-

tion. In section 2.1.2 we used Newton’s law of gravity to find E. In section 2.1.3

we were a bit more sophisticated, and we obtained E by using the Schwarzschild

metric.

• Using our expression for E in the energy balance equation, we were able to find

how the phase and amplitude of the GW evolved with time.

If we keep higher order terms in the multipolar expression of h, then carried

out the same steps, we would obtain a more accurate expression for the waveform.

However, by performing the multipolar expansion after taking the transverse-traceless

part of h, we have missed some terms. If we had performed the multipolar expansion

and evaluated the integral before taking the transverse-traceless part, we would have

found that the h0j terms yield corrections to the gravitational wave from moments of

the momentum density. In general, we would get [37]:

|h+| ∼ |h×| ∼
Ï2

r
&

...
I3

r
& . . .&

S̈2

r
&

...
S3

r
& . . . (2.77)

Here, & indicates addition with terms, and:

Il ∼MLl, Sl ∼MvLl (2.78)

are the mass and momentum moments, respectively, of order l. L is the size of

the source and v is the relative velocities of the objects. Since the number of time

derivatives grows with each of these terms, we can see that each term grows as

∂
(2−l)
t L ∼ v(2−l). Hence the effects from each term becomes more relevant as the

relative velocity of the objects grows.9

9Since S ∼ Mv, its effect on h is one order lower from the mass-moment. In other words,

|Sl| ∼ |Il−1|. For example, the mass quadrupole (l = 2) goes as v0, where as the momentum

quadrupole goes as v1. Due to conservation of angular momentum, the S1 term, like the I1 term,

has no effect on h. Thus the dominant term is the mass-quadrupole (I2), and so, as we only wanted

leading order, we were correct neglecting the momentum moments in section 2.1.2.
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To find an expression for E in section 2.1.2 we used Newtonian physics and the

Einstein quadrupolar formula. If we consider relativistic effects due to spacetime

curvature, as we did in section 2.1.3, we find that we can also express E in terms of

a power series in v. For example, in the Schwarzschild case above, we can re-work

equation 2.75 by noting that v = rΩ. Using equation 2.69 we get:

v =

√
M

r
(2.79)

Thus we can re-write equation 2.75 as:

E = m
1− 2v2

√
1− 3v2

(2.80)

Since v � 1, we can write expand the denominator in a Maclaurin series, which

results in:
E

m
= 1− 1

2
v2 +

3

8
v4 +O(v6) (2.81)

To relate this to the phase of the gravitational wave, φ, we use the chain rule to write:

dE

dt
=

dE

dv

dv

dφ

dφ

dt
(2.82)

We can get dφ/ dt by noting that:

φ =

∫
2πfGW dt (2.83)

thus:
dφ

dt
= 2πfGW (2.84)

Also note that, from equation 2.69,

v = (πmfGW)1/3 (2.85)

We can therefore write:
dφ

dt
=

2v3

m
(2.86)

Substituting these results into the energy balance equation, rearranging terms, and

integrating yields:

φ(v) = φ0 + 2

∫ v0

v

v3( dE/ dv)

F(v)
dv (2.87)

Here, φ0 is the GW phase of the binary at the initial velocity v0. (If we instead prefer

φ as a function of fGW we can use equation 2.85 to convert.) Thus, by expanding F
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and E to some desired power of v, and performing the integral, we can obtain higher

order corrections to the gravitational wave. This is known as the pN approximation.

How the pN flux and energy is calculated to various orders is beyond the scope

of this thesis. Here, we only note a few properties that are relevant to the low-mass

CBC search that we will describe in later chapters:

• Each successive term in the expansion of F accounts for additional physics of the

binary. For example, the “0pN” order (∼ v0) results in GWs from a changing

mass-quadrupole. We were able to compute the effects of this order above, in

section 2.1.2. The “1pN” order (∼ v2), which takes into account the mass-

octopole and momentum-quadrupole, results in the perihelion shift of orbiting

bodies. The next step is the “1.5pN” term10 (∼ v3), which results in frame

dragging. Thus it takes into account the effects of spin/orbit11 coupling. It also

adds a correction for outgoing waves that scatter off of the binary’s spacetime

curvature, known as the “wave-tail”. At 2pN we get effects from spin/spin

coupling; etc.

• As described in the next chapter, in the low-mass CBC search we look for GWs

by match filtering gravitational-wave detector data. When doing this, it is most

important that we get the phasing of the waveform correct. Any minor errors

in phase will quickly add up over the large number of cycles that the system

spends in band, severely hampering our search. Thus we try to use the highest

pN order to compute the phase evolution of the waveform. Currently, this is

the 3.5pN term [39], which corresponds to seven orders beyond Newtonian.

• As compared to phase, the amplitude evolution is less critical to the search.

Thus, for simplicity, we use the 0pN term, given in equation 2.57, to generate

the amplitude evolution. These are known as “restricted” pN waveforms.

• For lower-mass systems in which spin is not important, we can further simplify

the pN approximates by setting all spin degrees of freedom to zero. This is

done in the current low-mass CBC search so that we can construct a “template

bank” of waveforms; see section 3.2 in Chapter 3 for details.

10The numbering of the pN orders increase by 0.5 because they are based on powers of M/r.
11By “spin” we mean the intrinsic angular momentum of the component objects.
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2.2 Detection of Gravitational Waves using Interferometers

Having established some properties of gravitational waves, we now turn to the ques-

tion of detecting them. In section 2.1 we found that a passing GW will cause a

particle at a distance δx from another particle to be displaced by an extra δxh+/2

when the wave is at maximum amplitude. We can parametrize this as by defining

the strain, h, as:

h ≡ ∆L

2L
(2.88)

GWs are extremely weak: a binary system comprised of two objects each with masses

∼ M� at a distance of ∼ 10 Mpc from Earth will produce a strain of h ∼ 10−21 [40].

In order to detect a passing GW we therefore need an extremely sensitive detector.

A device that lends itself to such minute measurements is an interferometer.

Consider again figure 1. For simplicity, focus on the plus polarization. Now

imagine we stick a mirror on the particles that lie on the +x and +y axes. Put a

beam splitter at the origin, and shine a laser into the splitter, so that the laser beam

gets split: half the light travels down the x-axis (or “arm”) and the other done the

y. After reflecting off the mirrors and travelling back down the arms the light will

be recombined by the beam splitter. A straight forward analysis of the electric field

in each arm [40] reveals that field of the combined light that is reflected back toward

the laser is:

Erefl = −iei(2πf(t−Lx+Ly)E0 sin(2πf(Lx − Ly)) (2.89)

where E0 is the amplitude of the field, f is the frequency of the light, and Lx and Ly

are the lengths of the x- and y-arms as measured in the interferometer’s rest frame,

respectively.12 The rest of the combined light exits down the −y axis, in what we call

the “output” port. The electric field of the output light is:

Eout = −iei(2πf(t−Lx+Ly)E0 cos(2πf(Lx − Ly)) (2.90)

Thus we can see that if the arms are of the same length (or, equivalently, if the light-

travel time down each arm) is the same, the light will destructively interfere at the

input port, resulting in zero reflected light, and constructively interfere at the output,

resulting in maximum transmitted light. If the arms are slightly offset, however, the

12For now we will assume the entire interferometer sits in the same LLF.
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strength of the light in the output will decrease. Thus by measuring the brightness of

the light in the output port we can measure the relative phase difference of the light

in each arm. This apparatus is known as a Michelson interferometer.

Now consider what happens to the light when a gravitational wave passes by. The

line element is given by equation 2.21. For simplicity, consider only the effect on the

light in the x-arm when the gravitational wave causes maximum displacement, i.e.,

when cos(ωGWt − φGW) = 1. Let us assume that the frequency of the gravitational

wave is low enough that we can assume the strain is this constant value for the period

of time that the light is in the arm. Since light travels along a null geodesic, ds2 for

light is zero. Thus we have:

dt2 = (1 + h+) dx2 (2.91)

Consider what happens to the light travel-time on the outgoing path. Integrating,

we get:

τout =

∫ L

0

√
1 + h+ dx ≈ L(1 +

h+

2
) (2.92)

where, as before, we assumed |h+| � 1. On the return trip the light will incur the

same dilation, giving a total round-trip travel time of:

τrt,x = L(2 + h+) (2.93)

If we preform the same analysis on just the y-arm, we obtain τrt,y = L(2−h+). Taking

the difference between the two yields:

∆τrt = L(2 + h+)− L(2− h+) = 2Lh+ (2.94)

We can relate this difference in travel time to a relative phase shift between the two

beams:

∆φ = 2πf∆τrt =
4πL

λ
h+ (2.95)

where λ is the wavelength of the light. Since this phase change will result in a change

in brightness in the output port, we can measure the amplitude of a passing GW by

monitoring the output light.

2.2.1 Antenna Pattern

In the above analysis we only considered the effect of the plus polarization on the

interferometer, with the “plus” being aligned along the arms of the device. Of course,
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gravitational waves from real systems will not always have their plus polarizations

aligned along the arms of interferometer. If the polarization was oriented such that

it displaced both mirrors in the same manner, then the time dilation in each arm

would be the same: τrt,x = τrt,y ∼ h+. Thus there would be no relative phase change

between the two arms, and we could not measure the passing GW. The interferometer

therefore has an antenna pattern.

We can relate the strain induced in the interferometer from any arbitrarily oriented

system by [31]:

h(t) = F+h+(t) + F×h×(t) (2.96)

where:

F+ = −1

2
(1 + cos2 θ) cos 2ϕ cos 2ψ − cos θ sin 2ϕ sin 2ψ (2.97)

F× =
1

2
(1 + cos2 θ) cos 2ϕ sin 2ψ − cos θ sin 2ϕ cos 2ψ (2.98)

The angles θ, ϕ, and ψ are the Euler angles that relate the frame of the binary to the

frame of the detector. Figure 5 shows what the antenna pattern looks like for a binary

with ι = ψ = 0. We see the “dead spots” — the point where the strain induced by the

wave is 0 — are in the middle of the arms, in the plane of the interferometer. The best

sensitivity occurs for systems that located directly above or below the interferometer

(with ι = 0); we therefore refer to such systems as being optimally oriented.

Returning to our general solutions for h+ and h× — equations 2.48 and 2.49 —

we can account for the antenna pattern by writing [31]:

h(t) =
A(t)

D cos(2φ(t)− θ) (2.99)

where D is the effective distance of the binary from the detector, given by:

D =
r√

F 2
+(1 + cos2 ι)2/4 + F 2

× cos2 ι
(2.100)

The phase angle, θ is given by:

θ = tan−1 F×2 cos ι

F+(1 + cos2 ι)
(2.101)

A(t) and φ(t) are calculated from the post-Newtonian approximation, discussed above.

We will use these results in the next chapter.
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The effective distance gives the distance to the binary as if it were optimally

oriented. Note that a binary that is not optimally oriented is indistinguishable from

a binary that is, but is further away. In order to break the degeneracy we need a

network of detectors to triangulate the source. A brief overview of how this is done

is presented in chapter 8.

2.2.2 The LIGO and Virgo Interferometers

The LSC operates three interferometers, or IFOs : two at the LIGO Hanford Obser-

vatory (LHO) in Hanford, Washington — which we will denote H1 and H2 — and

one at the LIGO Livingston Observatory (LLO) in Livingston, Louisiana, which we

denote L1. The Virgo Collaboration operates one interferometer, which we denote

V1, in Cascina, Italy. These instruments run on the same basic principles as our toy

interferometer described above. In practice, however, they are far more sophisticated,

as they must account for a number of real-world problems. We note here a few of

their basic properties that are relevant to the later chapters of this thesis.

In the above section we found that the phase shift induced in the arms of the

interferometer was proportional to the amplitude of the gravitational-wave, and to

the length of the arm. This would suggest that the longer we make the arms, the

more sensitive our instrument will be. However, if the light remains in the arm for a

full cycle of the gravitational wave, any time dilation gained on the crest of the wave

will be cancelled by the trough. We therefore wish the light to remain in the arms

for 1/2 the period of the GW, as this will result in the maximum phase difference. If

we are searching for waves with a frequency ∼ 100 Hz, this sets an optimal length for

the arms to be:

L =
λ

4
=

c

2fGW

=
c

200
∼ 1000 km (2.102)

This is a hopelessly large distance for a ground-based interferometer. The LIGO and

Virgo IFOs deal with this difficulty by using Fabry-Perot cavities.

Figure 6 shows a schematic of a Fabry-Perot interferometer. By placing a semi-

transparent mirror in the near-end of each arm — referred to as the input test masses

(ITMX and ITMY), to distinguish it from the end test masses (ETMX and ETMY)

— a cavity is created. By keeping the length of the arms close to the resonance of

the light, the light bounces around for 200 more times [31] before exiting the arms.
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Figure 5 : The antenna pattern of an interferometer (IFO). The arms of the IFO are plotted for

reference. Figure originally published in [31].
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Thus the actual length of the arms can be O(1 km) while the effective length will be

O(103 km). This results in the maximum detectable phase shift at 100 Hz. Both the

LIGO and Virgo interferometers are O(km): H1 and L1 are 4 km long, and V1 is

3 km. In initial LIGO H2 was 2 km, but this is planned to be expanded to 4 km for

advanced LIGO.

For the Fabry-Perot cavity to work effectively, we need to keep the interferometer

arms on resonance, or “locked.” This is done by a feedback loop involving a series

of servos. By monitoring motions of the mirrors through the output port (and other

channels), the servos are actuated in order to keep the mirrors in lock. One of these

channels monitors, and adjusts to, the differential arm length, or DARM_ERR. Since a

passing gravitational wave would show up as oscillations in DARM_ERR, we can use this

channel to obtain a measure of the strain. In order to generate the strain time-series,

s(t), calibration studies are carried out [41, 42, 43]. The calibrated time-series, known

in LIGO as LDAS_STRAIN, is the data stream we monitor to search for GWs.

Beam splitter

ETMX

ETMY

Laser

Photodiode

ITMY

ITMX

Figure 6 : Schematic of an interferometer with a Fabry-Perot cavity. Originally published in [31].

Since gravitational waves are so weak, sources of noise are a major concern. We

briefly note a few here:

• Seismic Noise: As the name suggests, this is noise due to ground motion. This

motion can couple into the interferometer through the test masses’ suspension
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system. To counteract it, a number of seismic isolation systems are put in

place between the ground and the wires to which the test masses are attached.

Seismic noise is primarily a problem at low-frequency. In initial and enhanced

LIGO, the seismic “wall” was at ∼ 40 Hz; in advanced LIGO it is projected to

be at ∼ 10 Hz. When analyzing LIGO and Virgo data, we use a lower cut-off

frequency, f0, to remove noise power below these frequencies.

• Thermal Noise: This is due to the thermal vibrations in the mirrors and the

wires from which the mirrors hang. This noise primarily affects frequencies in

the 40 to 200 Hz range.

• Shot Noise: This is the primary noise source at high (∼kHz) frequency. If we

view the light in the interferometer from a quantum perspective, we recognize

that we are limited by Poisson counting statistics of the photons. The error

in the mean number of counts in some given amount of time goes as 1/
√
N .

Thus, the error in our measurement of the phase of the light increases with

higher frequencies. This suggests using a more powerful laser, which was done

for enhanced LIGO, and is planned for advanced LIGO. However, more intense

light will also cause higher radiation pressure on the mirrors — which is a noise

source at lower frequencies — and so these considerations must be balanced.

Additionally, more intense light will heat up the mirrors, which causes greater

thermal noise.

These dominant noise sources, and other sources, add up to give the noise in the

detector. We can visualize this by considering the amplitude spectral density, or

“noise curve” of the detectors. Figure 7 shows what the noise curves looked like for

initial LIGO and Virgo, and what they are expected to be for the advanced detector

era.

All of these sources contribute to the stationary Gaussian noise of the detectors.

In addition, there are a number of environmental and instrumental transient sources,

or “glitches”, for which we have no model. As discussed in the next few chapters, a

major part of the CBC data-analysis pipeline is mitigating the effect of these transient

sources.
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Figure 7 : Amplitude spectral densities of initial LIGO and Virgo detectors. Shown also are the

expected noise curves for advanced LIGO and Virgo. Figure originally published in [10].
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2.3 Astrophysical Sources of Gravitational Waves from Com-

pact Binary Coalescence

Binaries with compact component masses on order of ∼ M� which are orbiting each

other at frequencies of ∼ 102 Hz create GWs that can be measured by the LIGO

and Virgo detectors. It is therefore possible to detects GWs from binary-neutron

star systems, binary black hole systems and neutron-star black-hole binaries as they

inspiral and coalesce.

Table 1 gives estimated rates of BNS, NSBH, and BBH coalescence in the uni-

verse. The component masses used in the estimates are 1.4/1.4M�, 1.4/10.0M�, and

10.0/10.0M�. The uncertainty in these estimates are large, varying by as much as two

orders of magnitude. This is due to the small sample size of observed systems, and

from uncertainties in the population synthesis models on which some rates are based.

Rates of systems involving black holes are perhaps the most uncertain, since no black

hole has (or can) be directly observed by existing telescopes.13 We can be more con-

fident about BNS rates, however, as these have been directly observed. Of note is

the Hulse-Taylor pulsar (PSR B1913+16), which was shown to be losing energy at

the rate expected from GW emission [44, 45]. The separation distance between the

system’s constituent neutron stars is such that they will not coalesce for another 300

million years, however [31].

Using the LIGO and Virgo noise power spectral density (PSD) we can estimate

the expected rate of detections in a year of data at a given detection threshold (how

this is done is detailed in the next Chapter). Table 2 shows the estimated rate in

initial LIGO is and what it is expected to be for advanced LIGO. As we can see,

the rates in initial LIGO are all less than one per year, even on the optimistic end.

For advanced LIGO, however, we see that the expected detection rates are on order

of ∼ 10 per year. These rates are based on the projected sensitivity of the detectors

and on our ability to detect a GW event at a signal-to-noise ratio of 8. (See the next

chapter for a discussion of signal-to-noise ratio.) We expect advanced LIGO to have

a range that is ∼ 10 times that of initial LIGO. Thus we get factor of ∼ 1000 increase

in sensitive volume, which leads to the predicted detection rates.

13Being able to directly detect black holes, and measure properties of their spacetime curvature,

is a major advantage of GW detectors.
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If we do not detect a GW event (to some confidence level) we can use the time

searched and the sensitivity of the instrument to set an upper-limit on the rate of

CBCs in the universe. This is done using the loudest-event statistic method [46,

47, 48]. After performing a search, we calculate the relative probability that the

loudest event was due to a GW as compared to the probability it was due to noise, or

background. We then calculate the efficiency of the IFOs at detecting signals with the

same value of the ranking statistic14 as the loudest event. This is done by injecting

fake signals, or “software injections” into the data then checking how well they are

recovered by our data-analysis pipeline. Performing a Monte Carlo simulation over

the target population gives us an estimate of the detector’s efficiency. Since we know

the effective distance of the injections, we can put the efficiency in terms of distance.

From that, we get the sensitive volume of the universe the search was sensitive to.15

Combining this with the observation time, we get a rate upper limit of:

R90% =
β

V T
(2.103)

where V is the sensitive volume and T is the observation time; the rate is computed

to the 90% confidence level. The factor β depends on the likelihood that the loudest

event was a signal. As the likelihood goes to zero (i.e., the probability is low that the

data contains a GW), then β → 2.303 at the 90% confidence level. As the likelihood

goes to infinity (i.e., the probability is high that the data contains a GW) β → 3.9

[46, 47, 48].

In Chapter 6 we present upper limits calculated from a six-month long search of

S5 data using the loudest-event statistic method. For more details on the loudest-

event statistic method see [46, 47, 48]. For more details on how the rates presented

in Table 1 were calculated, see [10] and the papers cited therein.

14To rank triggers we use the inverse false alarm rate, or IFAR. See chapters 4, 5, and 6 for details.
15When computing the sensitive volume we must take into account the expected astrophysical

distribution of sources. In initial S5 this was done by using a galaxy catalog. In S6, the range of the

detectors is large enough that we can assume the sources are uniformly distributed across the sky,

which allows us to simply use the range.
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Source Rlow ( Mpc−3Myr−1) Rbest ( Mpc−3Myr−1) Rhigh ( Mpc−3Myr−1)

BNS 0.01 1 10

NSBH 6× 10−4 0.03 1

BBH 1× 10−4 0.005 0.3

Table 1 : Estimated rates of BNS, NSBH, and BBH coalescence in the universe. Rbest indicates best

estimate; “low” and “high” indicate pessimistic and optimistic rates, respectively. The component

masses used in the estimates are 1.4/1.4M� for BNS, 1.4/10.0M� for NSBH, and 10.0/10.0M� for

BBH. For details on how these numbers were derived, see [10].

Era Source Ṅlow ( yr−1) Ṅbest ( yr−1) Ṅhigh ( yr−1)

Initial

BNS 2× 10−4 0.02 0.2

NSBH 7× 10−5 0.004 0.1

BBH 2× 10−4 0.007 0.5

Advanced

BNS 0.4 40 400

NSBH 0.2 10 300

BBH 0.4 20 1000

Table 2 : Estimated detection rates in initial and advanced LIGO. The component masses used in

the estimates are 1.4/1.4M� for BNS, 1.4/10.0M� for NSBH, and 10.0/10.0M� for BBH. For details

on how these numbers were derived, see [10].
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Chapter 3

Obtaining Gravitational Wave

Triggers from Interferometer Data

Using General Relativity we were able to write down an expression for the strain

induced in an interferometer from a passing gravitational wave. In this chapter we

provide a survey of how to detect gravitational-wave signals from CBCs in the inter-

ferometer data in the presence of noise. We begin by deriving the matched filter for

a single template, which is the optimal filter if the detector noise is stationary and

Gaussian. Next, we show how matched filtering can be performed for a bank of tem-

plates in order to recover the parameters of a signal. This is followed by a discussion

of the χ2 test, which can be used to suppress triggers from non-Gaussian transients

that are present in real detector data. Finally, we describe how a coincidence test can

be performed across multiple detectors to further decrease the number of false noise

triggers produced by a search.

3.1 Detecting a Gravitational Wave Using a Matched Filter

Equation 2.99 gave the strain, h(t), induced in an interferometer when a gravitational

wave from an inspiraling compact binary with non-spinning component masses passes

through. The strain was a function of chirp mass, M, and symmetric-mass ratio, η.

If we wish to search for a gravitational wave that came from a binary with given

M and η, we can generate a waveform, or template, that characterizes it. We now

address the question: if a gravitational wave that matches our template exists in the
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IFO data, how do we find it?

Let the output of the detector be the time series s(t), which is a measure of the

displacement of the IFO’s mirrors as a function of time. If a gravitational wave with

waveform h(t) exists in the data, then:

s(t) = h(t) + n(t) (3.1)

where n(t) is the strain induced by all other, non gravitational-wave, sources, or

“noise,” as a function of time. If no signal exists in the data, then s(t) = n(t). We

do not know a priori if h exists in the data; further, even if h does exist, we do not

know when it occurs — that is, we do not know its coalescence time, τc.
1 Our goal,

then, is to find a filter that takes s(t) and h(t − τ) as input and returns a number,

ρ(τ), that is proportional to the probability that h is in s with coalescence time τ ,

P (h(t− τ)|s(t)). We additionally require that, if h is in s, this filter is at a maximum

at the point that h occurs. If we have such a filter — known as the optimal filter

— then we can determine that a signal exists in the data if ρ(τ) exceeds some pre-

determined threshold ρ∗. Further, we can determine the coalescence time of h by

simply incrementing τ and evaluating ρ at each increment, selecting points when ρ is

at a maximum. (This is known as the method of maximum likelihood [31].)

We begin by assuming that τ = τc = 0 and looking for the filter that maximizes

P (h|s) (for now, we will drop the “(t)” for clarity). The problem of finding an optimal

filter to extract signals from (Gaussian) noise is well studied, and has been applied to

radar analysis for decades. Here, we follow the method outlined in [49, 50, 31] — all

of which use methods detailed in Wanstein and Zubakov [51] — to derive the filter.

Using Bayes’ theorem [52] we can write P (h|s) as:

P (h|s) =
P (s|h)P (h)

P (s)
(3.2)

1Note that the exact time when h occurs is somewhat arbitrary. We could choose any point in the

evolution of the waveform and label that as the point that h occurs. For CBC templates, we chose

to use the time of coalescence since it is easily identifiable: it is the point that the pN approximation

goes to infinite frequency.
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where:

P (s|h) ≡ the probability of getting s if h exists in it

P (h) ≡ the probability of the signal, h, occurring

P (s) ≡ the probability of getting s

Since the signal either does or does not exist in the data, the probability of getting a

particular instance of s is:

P (s) = P (s|0)P (0) + P (s|h)P (h) (3.3)

where:

P (s|0) ≡ the probability of getting s if no signal exists

P (0) ≡ the probability of getting no signal

Substituting this into 3.2 we have:

P (s|h) =
P (s|h)P (h)

P (s|0)P (0) + P (s|h)P (h)

=
P (s|h)

P (s|0) (P (0)/P (h) + P (s|h)/P (s|0) )

=
Λ

P (0)/P (h) + Λ
(3.4)

where

Λ ≡ P (s|h)

P (s|0)
(3.5)

is the likelihood ratio. P (0) and P (h) are known as priors : they represent our a

priori belief that a signal does or does not exist, irrespective of the detector’s ability

to detect it. We do not need to concern ourselves with assigning values to them,

however. Instead we note that P (s|h) is a monotonically increasing function of Λ.

Therefore, since we are only interested in a filter that maximizes P (s|h) — and not

the exact value of P (s|h) — we can limit our focus to evaluating Λ, and threshold on

the point that it reaches a maximum. We further note that the natural logarithm of

Λ also increases monotonically with P (s|h). Since we will be interested in evaluating

the likelihood in the region that Λ is a maximum, it is common practice to instead

evaluate the log-likelihood, ln Λ, instead, as it varies less rapidly around the region of

interest [52].
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Before calculating the log-likelihood, we note that we do not know a priori the

phase of the binary, θ. Therefore, we treat θ as a nuisance parameter, which we

marginalize over [52]. Thus, we write the likelihood ratio as:

Λ =

∫ 2π

0

p(θ)λ(θ) dθ

=
1

2πP (s|0)

∫ 2π

0

p(s|h(θ)) dθ (3.6)

Here, λ(θ) is the likelihood ratio at a given θ, p(θ) is the prior probability of getting θ,

and we have written P (s|h) as the probability distribution function (PDF) p(s|h(θ));

P (s|0) remains outside of the integral as it has no θ dependence. Assuming any phase

is equally likely, we set p(θ) = 1/2π and pulled it out of the integral, also.

To calculate the likelihood ratio, we need p(s|h(θ)) and P (s|0). We focus first

on P (s|0). If s(t) has no signal in it then it is simply n(t). P (s|0) is therefore the

probability of getting a particular realization of the noise. Let us assume that the

noise is a stationary Gaussian process with zero mean. For our purposes it will be

useful to characterize the noise by its PSD rather than its variance. The PSD is

defined as the Fourier Transform of the autocorrelation of the noise [51]:

Sn(f) ≡
∫ ∞

−∞
R(τ)e−i2πft dt = ñ∗(f)ñ(f) (3.7)

where,

R(τ) = n(t)n(t− τ) (3.8)

is the autocorrelation function. Note that R(0) = n(t)2, which is the variance since

n(t) = 0. We restrict our analysis to positive frequencies; thus we will use the one-

sided PSD Sn(|f |) = Sn(f)/2. It is shown in [49] that with these assumptions, the

probability of getting a given realization of the noise, n = s, is:

P (s|0) = α exp[−1

2
(s|s)] (3.9)

where α is a normalization constant and the inner-product (·|·) is defined as:

(a|b) ≡
∫ ∞

−∞

ã∗(f )̃b(f) + ã(f )̃b∗(f)

Sn(|f |) df (3.10)

= 2

∫ ∞

−∞

ã∗(f )̃b(f)

Sn(|f |) df (3.11)
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In going from 3.10 to 3.11 we have used the fact that for real functions of time (which

both h and s are), g̃∗(f) = g̃(−f).

Using this result we can also find p(s|h(θ)). If h is in the data, then n(t) =

s(t)− h(t, θ). Thus,

p(s|h) = α exp{−1

2
(s− h|s− h)}

= α exp{−1

2
[(s|s)− 2(h|s) + (h|h)]}

= P (s|0) exp{(h|s)− (h|h)/2} (3.12)

Substituting 3.9 and 3.12 into 3.5, the likelihood ratio becomes:

Λ =
1

2π

∫ 2π

0

exp{(h|s)− (h|h)

2
} dθ (3.13)

=
1

2π
e−(h|h)/2

∫ 2π

0

exp{( C(t) cos(2φ(t)− θ) | s )} dθ (3.14)

In going from 3.13 to 3.14 we have used the general form of h(t, θ) given in equation

2.99, with C(t) = A(t)/D. We have also pulled the (h|h) term out of the integral as

it is simply a number — it is the inner product of h with itself — and has no phase

dependence. In order to evaluate the integral, we re-write the inner product of s with

h as follows:

(h|s) = ( C(t) cos(2φ(t)− θ) | s(t) )

= ( C(t) cos(2φ(t)) | s(t) ) cos(θ) + ( C(t) sin(2φ(t)) | s(t) ) sin(θ)

= x cos(θ) + y sin(θ)

= |z| cos(Φ) cos(θ) + |z| sin(Φ) sin(θ)

= |z| cos(Φ− θ) (3.15)

where:

x = ( C(t) cos(2φ(t)) | s(t) ) ≡ (h+|s) (3.16)

y = ( C(t) sin(2φ(t)) | s(t) ) ≡ (h×|s) (3.17)

|z| =
√
x2 + y2 (3.18)

Φ = tan−1
(y
x

)
(3.19)
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Since the GW phase, 2φ(t), is 90◦ out of phase in equations 3.16 and 3.17, we have

identified x and y as the inner products of the plus and cross polarizations, respec-

tively, with the data. Due to their orthogonality, note that:

(h+|h+) = (h×|h×) = (h|h) (3.20)

(h+|h×) = (h×|h+) = 0 (3.21)

Also note that we can let z be complex:

z = x+ iy (3.22)

This will prove useful below.

Substituting equation 3.15 into the likelihood ratio, we have:

Λ =
1

2π
e−(h|h)/2

∫ 2π

0

exp{|z| cos(Φ− θ)} dθ

= e−(h|h)/2I0(|z|)

= e−(h|h)/2

∞∑

k=0

(|z|2/4)k

(k!)2
(3.23)

≤ e−(h|h)/2

( ∞∑

k=0

(|z|2/4)k

k!

)( ∞∑

m=0

1

m!

)
(3.24)

≤ e−(h|h)/2e|z|
2/4−1 (3.25)

where I0(|z|) is the modified Bessel function of the first kind, which is equal to the

sum in equation 3.23 [53]. To go from equation 3.23 to 3.24 we have used the fact

that (|z|2/4)k/k! and 1/k! are positive definite for all k. Thus, the likelihood ratio

is maximized when it is equal to exp{|z|2/4 + 1− (h|h)/2}, and so we can threshold

when the log-likelihood is:

ln Λ =
1

4
|z|2 + 1− 1

2
(h|h) (3.26)

The factor of 1/4 and the +1 term on the right-hand side of the equation only scale

and offset ln Λ by constants. We can therefore threshold on:

4 ln Λ− 4 = |z|2 − 2(h|h) (3.27)

instead, without any loss in ability to detect h. The (h|h) term, however, causes the

log-likelihood to be template dependent. Since we will be filtering multiple templates,
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we prefer to use a quantity that is independent of the template used. Therefore, we

normalize both sides by (h|h). Dropping the remaining −2 offset, we are left with:

|z|2
(h|h)

≡ ρ2 (3.28)

The quantity ρ2 is our detection statistic.

In the absence of a signal, (h|h) is the variance of the filter. To see this, first note

that the mean of (h|n) is zero:

(h|n) = 2

∫ ∞

−∞

h̃∗(f)ñ(f)

Sn(|f |) df

= 2

∫ ∞

−∞

h̃∗(f)ñ(f)

Sn(|f |) df

= 0 (3.29)

since n(t) = ñ(f) = 0. The mean of the square of (h|n) is:

(h|n)2 =

∣∣∣∣∣2
∫ ∞

−∞

h̃∗(f)ñ(f)

Sn(|f |) df

∣∣∣∣∣

2

= 4

∫ ∞

−∞

∫ ∞

−∞

h̃(f ′)h̃∗(f)ñ∗(f ′)ñ(f)

Sn(|f ′|)Sn(|f |) df ′ df

= 4

∫ ∞

−∞

∫ ∞

−∞

h̃(f ′)h̃∗(f)Sn(|f ′|)δ(f ′ − f)

2Sn(|f ′|)Sn(|f |) df ′ df

= 2

∫ ∞

−∞

h̃(f)h̃(f)

Sn(|f |) df

= (h|h) (3.30)

Thus the variance is:

σ2 = (h|n)2 − (h|n)
2

= (h|h) (3.31)

and we can write:

ρ2 =
|z|2
σ2

(3.32)

We therefore identify ρ as the signal-to-noise ratio (SNR) of the template.

In order to evaluate ρ for arbitrary values of τ 6= τc 6= 0, we note that the Fourier
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Transform of h(t− τ) is:

h̃(f) =

∫ ∞

−∞
h(t− τ)e−i2πft dt

= ei2πfτ
∫ ∞

−∞
h(t′)e−i2πft

′
dt′

= ei2πfτ h̃(f ′) (3.33)

h̃(f ′) is the Fourier Transform of h(t) independent of the coalescence time. We can

thereby account for the unknown coalescence time by filtering:

e−i2πfτ h̃(f)

This introduces a time-dependence to ρ:

ρ(τ)2 =
|z(τ)|2
σ2

=
1

σ2

(
(h+(τ)|s)2 + (h×(τ)|s)2

)

=
1

σ2





(∫ ∞

−∞

h̃∗+(f)s̃(f)

Sn(|f |) ei2πfτ df

)2

+

(∫ ∞

−∞

h̃∗×(f)s̃(f)

Sn(|f |) ei2πfτ df

)2


 (3.34)

To carry out the maximum likelihood operation, we create a SNR time series by

incrementing τ and filtering using equation 3.34 at each step. We then select points

where ρ(t) is a maximum; if the SNR of a maximum point exceeds our pre-determined

threshold we save it. Each of the saved events is a trigger.

Now that we have established the SNR as our detection statistic, let us examine a

few important properties of it. In the absence of a signal (s = n) ρ is χ2 distributed

with two degrees of freedom; the squared mean is:

ρ2 =
1

σ2

(
(h+|n)2 + (h×|n)2

)

=
((h+|h+) + (h×|h×))

(h|h)

= 2 (3.35)

since (h+|h+) = (h×|h×) = (h|h). If we had only filtered one of the phases, ρ2 of

noise alone would be 1. While filtering both h+ and h× allowed us to account for

the unknown phase, it has resulted in a doubling the noise floor. Our threshold for
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keeping triggers must therefore be larger than ρ2 = 2, as it is impossible to distinguish

noise from triggers at or below this value.

As seen in equation 2.99, h is inversely proportional to the effective distance to

the binary, D. We can exploit this to relate D to the SNR. Assume the data only

contains a signal (and no noise), i.e., s = h′+, from a binary that has an effective

distance of D′Mpc. For simplicity we also assume the signal is plus-polarized with

coalescence time τc = 0. The templates we filter with are generated at a canonical

distance of 1 Mpc; therefore h′+ = D′−1h+. The SNR would be:

ρ2 =
1

σ2

(
(h+|h′+)2 + (h×|h′+)2

)

=
1

σ2

(
D′−2(h+|h+)2 +D′−2(h×|h+)2

)

= D′−2σ2

Thus:

D =
σ

ρ
(3.36)

Since σ is inversely proportional to
√
Sn(|f |), we see that it is a measure of the

sensitivity of the detector. The noisier the detector is, the smaller σ is, and so for a

given SNR, the range that we can detect will be smaller.

If the detector output is Gaussian, as we have assumed above, then we could relate

SNR directly to false alarm rate, and we could simply set the SNR threshold based

on some desired false alarm rate. Any trigger with a SNR above that threshold would

be considered a gravitational wave. However, as we will see in section 3.3, the real

detectors have high rates of non-Gaussian transients (“glitches”) for which we have

no model. We therefore have to measure the false alarm rate directly. How this is

done is discussed in chapter 4.

Finally, we will find it useful to define the complex form of the SNR using the

complex form of z given in equation 3.22:

% =
z

σ

=
(h+|s) + i(h×|s)

(h|h)
(3.37)

ρ = |%| (3.38)

We will use this complex form in the χ2 test, discussed below.
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3.2 Filtering with Multiple Templates

In the above section we assumed that the signal we were looking for had the same

parameters as the template we used to search for it. We now address how to search

for signals across a range of chirp masses and symmetric-mass ratios — collectively

known as intrinsic parameters — so that we can search for signals from many types of

systems. Alternatively, if one signal exists in the data, we can think of this question

as addressing how to estimate its parameters. The method presented here was first

described in [54]; additional discussions and improvements can be found in [55, 56,

57, 58].

In order to find the intrinsic parameters we use a dicrete bank of templates. The

templates are laid out in the bank by computing how quickly the inner product

— or overlap, O — between a template with intrinsic parameters θµ and one with

parameters θµ + ∆θµ falls off with increasing ∆θµ. This is done by expanding the

overlap around ∆θµ = 0 [54, 55, 57]:

O ≡ (h(θµ)|h(θµ + ∆θµ)) (3.39)

= 1 +
1

2

∂2O
∂∆θµ∂∆θν

∣∣∣∣
∆θκ=0

∆θµ∆θν + . . .

≈ 1− gµν∆θµ∆θν (3.40)

where

gµν = −1

2

∂2O
∂∆θµ∂∆θν

∣∣∣∣
∆θκ=0

(3.41)

gµν is the metric on the parameter space around the point θµ; it gives the “dis-

tance” between two templates with slightly different parameters in terms of how much

SNR will be lost from their mis-match. Using the metric we can determine how many

templates to place in a region of parameter space for an acceptable loss in SNR due

to the discretization. We quantify this by defining the minimal match (MM) [54],

given by [58]:

min
θµ

max
i

(h(θµi )|h′(θµ)) ≥MM (3.42)

where i ∈ {1, 2, . . . Ntemplates}, µ ∈ {1, 2, . . . Nparameters}, and h′(θµ) is the waveform

of the signal in the data. In other words, the bank should be constructed such that

there exists at least one template for which the match between it and any signal with
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parameters θµ is ≥MM . We can use equation 3.36 to determine an acceptable MM .

For example, if MM = 0.97, then the maximum loss in SNR for a signal that falls

between two templates is 3%. The loss in effective range will be also be 3%, which

translates to a loss in volume of (δD)3 = 9%. Choosing a larger MM may appear to

increase the range. However, a larger MM increases the number of templates needed,

and this must be weighed against computational cost and false alarm rate. The more

templates we filter with, the higher the probability of getting accidental triggers from

noise. This also decreases the sensitive volume as the SNR at which we could claim a

confident detection would have to increase. A MM = 0.97 is the currently used limit

in CBC searches.

If an analytic solution exists for the waveform in terms of the parameters θµ, then

the metric can be evaluated directly to figure out the number of templates needed

and where to place them. Laying the templates so that the overlap remains the same

across the bank is best done in a coordinate system which is largely flat across the

parameter space. Currently, the metric has been computed for 2 pN non-spinning

templates, which are laid out on a hexagonal grid in τ0 and τ3 space. We derived τ0

in Chapter 3; in terms of the total mass (Mtotal), η and the lower cutoff frequency

(f0) it is:

τ0 =
5

256πf0η
(πMtotalf0)−5/3 (3.43)

and τ3 is [57]:

τ3 =
1

8f0η
(πMtotalf0)−2/3 (3.44)

We use τ0 and τ3 because the metric at 2 pN is almost flat in these coordinates [57].

Hexagonal griding — as opposed to square griding — allows the space to be covered

efficiently using a minimal number of templates [58]. Once the templates are laid out

we can convert to Mtotal and η by inverting equations 3.43 and 3.44 to obtain [57]:

Mtotal =
5

32π2f0

τ3

τ0

, η =
1

8πf0τ3

(
32πτ0

5τ3

)2/3

(3.45)

See chapter 5 for a plot of a typical template bank used in S5 and S6.

Limiting the search to non-spinning templates reduces our efficiency of detecting

GWs from binaries with spinning components. In parameter space a spinning binary

will live in a region above the non-spinning plane. This means the SNR we obtain will

be from the projection of the signal onto the non-spinning plane. The resulting loss in
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SNR leads to a decrease in sensitivity to spinning signals. Astrophysical observations

have indicated that spin should not be much of a concern for BNS systems [59, 60], as

the component masses are too small to spin fast enough relative to the total angular

momentum to have an affect on the GW in the LIGO and Virgo bands. However, spin

does have a stronger effect on NSBH and BBH systems. In S5 we estimated the effect

of the spin of these systems on our ability to detect; see Chapter 6 for details. We

have done the same for S6, and these results will be presented in [61]. Investigations

into how to expand the template bank into non-spinning regions without substantially

increasing the false alarm rate are on-going.

3.3 The χ2 Test

Up to this point we have assumed that the detector output in the absence of a signal

is stationary Gaussian noise. Unfortunately, the real detectors have a number of non-

Gaussian glitches due to various instrumental and environmental factors. Although

these glitches do not have the same morphology as a gravitational wave from a CBC,

they do cause the matched-filter to “ring off” high-SNR triggers. Figure 8 shows a

histogram of trigger counts as a function of SNR (ρ) taken from H1 during two weeks

of S6. For reference, a χ2 distribution with two degrees of freedom — expected if the

detector noise is Gaussian — is shown. Clearly, a large non-Gaussian tail is present

in the data.

To better discriminate between potential signals and noise, we employ a χ2 test.

This test is described in detail in [32]. The basic idea of this test is relatively straight-

forward. Although a glitch can cause a trigger with the same (or larger) SNR as a

signal, the manner in which the SNR is accumulated over time and frequency will

most likely differ. For example, a delta function-like glitch will have a burst of power

in a small window in the time domain, and the power will be smeared out across

all frequencies. A CBC GW, on the other hand, will accumulate its power across

the duration of the template, and it will do so in a “chirping” manner. Therefore,

if we break the template into frequency bins of equal power, filter each of these sub-

templates, and compare the SNR in each bin to the expected value, we can better

discriminate glitch from signal.

Define a set of p matched filters such that the ith filter is carried out between the
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frequencies fi and fi+1:

(hi|s) =

∫ fi+1

fi

h̃∗(f)s(f)

Sn(|f |) df, i ∈ {0 . . . p− 1}, f ∈ [f0, fisco] (3.46)

(Note that on the left-hand side of the equation we put the i index on h. This is

because we could equally as well have broken the template up into each frequency bin,

then filter each sub-template across the entire frequency range.) Each frequency bin

is chosen so that the template has equal amounts of power in each bin. The amount

of SNR accumulated in one bin is thus:

ρi =

√
(h+ i|s)2 + (h× i|s)2

(h|h)

=
1

p
ρ (3.47)

where ρ is the total SNR. We can therefore check how well the measured SNR matches

the expected SNR in a single bin by:

∆ρi = ρi −
ρ

p

To check the match across the entire template, we define the χ2 test as [32]:

χ2 = p

p∑

i=1

∣∣∣∣%i −
%

p

∣∣∣∣
2

(3.48)

Note that we have used the complex form of the SNR, defined in equation 3.37, and

we took the modulus after the subtraction. This is done so we can directly compare

each polarization of the phase between the measured and the expected SNRs.

Let us examine what values of χ2 to expect for different situations. First, assume

that the detector noise is Gaussian and that the data has a signal in it from a CBC

at an effective distance D′: s(t) = n(t) + h′(t). For simplicity we will assume the

signal is + polarized. (Even if it was not, we could imagine doing a Gram-Schmidt

orthogonalization of our templates to align one of the polarizations with that of the

signal.) We will also assume, for now, that the signal matches one of our templates

exactly. With these assumptions:

(h+|h′) = D′−1(h+|h+) = σ2D′−1 (3.49)

(h+ i|h′) =
1

pD′ (h+|h+) =
σ2

pD′ (3.50)

(h×|h′) = (h× i|h′) = 0 (3.51)
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Here, h+ i and h× i are the plus and cross polarization templates, respectively, in the

ith bin. We wish to know what the mean χ2 is in this case. In order to compute it,

first note that:

%∗i % =
z∗i z

σ2

=
(h+ i|n+ h′)(h+|n+ h′) + (h× i|n+ h′)(h×|n+ h′)

σ2

=
(h+ i|n)(h+|n) + (h× i|n)(h×|n) + (h+ i|h′)(h+|h′)

σ2

=
2

p
+

1

p
ξ′2 (3.52)

%∗i %i =
z∗i zi
σ2

=
2

p
+

1

p2
ξ′2 (3.53)

%∗% =
z∗z

σ2

= 2 + ξ′2 (3.54)

where:

ξ′2 =
σ2

D′2 (3.55)

The mean χ2 is therefore:

χ2 = p

p∑

i=1

∣∣∣∣%i −
%

p

∣∣∣∣
2

= p

p∑

i=1

(
%∗i %i −

2

p
%∗i %+

1

p2
%∗%

)

= p

p∑

i=1

(
2

p
+
ξ′2

p2
− 4

p2
− 2

ξ′2

p2
+

2

p2
+
ξ′2

p2

)
(3.56)

= 2p− 2 (3.57)

Since n is Gaussian, (h+|n) and (h×|n) will each be Gaussian also; we can therefore

see that the χ2 test in this case forms a classic χ2 distribution (hence the name) with

2p− 2 degrees of freedom.2 We will find it useful to define the reduced χ2:

χ2
r ≡

χ2

2p− 2
(3.58)

2For a proof, see Appendix A of [32].
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so that

χ2
r = 1

in the case of Gaussian noise.

The fact that the mean χ2 is independent of ξ′ is significant. It means that for

a well matched signal, χ2
r will be one regardless of the parameters or distance to

the source that emitted the signal. It also means that if the detector contains only

Gaussian noise, the χ2 test has no effect. That is expected, since in Gaussian noise the

matched filter is the best discriminator, and their is no need for anything but SNR to

separate signal from noise. However, this result was dependent on the signal matching

one of our templates exactly. In practice, that most likely will not be the case. For

one, the dicreteness of the template bank will mean that a signal will most likely

not match a template exactly. Additionally, since the templates are calculated using

truncated post-Newtonian expansions, there will be some difference in the template

and what Nature provides.

To investigate the effect of the mismatch, let us now assume that the signal does

not match our best template perfectly. Without loss in generality, we again assume

the signal has only plus polarization. In this case:

(h+|h̃′) = D′−1(h+|h+) =
σ2

D′ (3.59)

(h+ i|h̃′) = (1− εi)D′−1(h+|h+) = (1− εi)
σ2

pD′ (3.60)

(h×|h̃′) = (h× i|h̃′) = 0 (3.61)

where h̃′ is the true signal (not to be confused with the Fourier Transform), and

(1 − εi) is the mismatch between the signal and the template in the ith bin. We

have not defined an overall mismatch between the template and the signal because

that cannot be distinguished from the effective distance. In other words, any overall

mismatch will simply make the signal appear to be farther away. Note that the εi

are not necessarily equal. For example, if the template models the signal well during

the inspiral phase, but diverges as the binary merges (as is the case with the pN
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approximation), εi will grow with frequency. Equations 3.52 – 3.54 become:

%∗i % =
2

p
+

(1− εi)
p

ξ′2 (3.62)

%∗i %i =
2

p
+

(1− εi)2

p2
ξ′2 (3.63)

%∗% = 2 + ξ′2 (3.64)

χ2 is therefore:

χ2 = 2p− 2 + ξ′2
p∑

i=1

ε2i
p

(3.65)

From equation 3.36 we can see that ξ′ is like a SNR: it is what the SNR of the signal

would be if Gaussian effects are neglected. The
∑p

i=1 ε
2
i /p term therefore couples the

χ2 to the SNR of the signal.

Although we arrived at this solution by considering the mismatch between a signal

and a template, we could equally as well have considered h̃′ to be a glitch. In that case,

εi gives the match between the glitch and the template. Note that the εi ∈ (−∞,∞);

i.e., they can be positive or negative, and they do not have to be less than one. An εi

that is negative or greater than one means that the signal over matches the template

in a given frequency bin. This is what we would expect if the signal was a glitch, for

example: a few of the εi would be large, while all the others would be close to one.

Thus a glitch would lead to a large χ2.

The coupling between χ2 and SNR means that both signals and glitches will have

larger χ2 with larger SNR. However, as we have set the minimal match to be > 0.97,

εi < 0.3 ∀i due to the dicreteness of the bank. Monte carlo simulations of non-spinning

signals have shown that mismatches due to differences in post-Newtonian orders are

also relatively small. Thus, for (non-spinning) signals, χ2 is weakly coupled to the

SNR. Glitches, on the other hand, are expected to have large mismatches, resulting in

a strong coupling between χ2 and SNR. The overall effect is that signals and glitches

get increasingly separated with increasing SNR. Indeed, this is borne out in the data.

Figure 9(a) shows the H1 triggers shown in Figure 8 plotted in χ2 versus ρ. The

black crosses are “background” triggers — they are what survived slide coincidence

(see Chapter 4 for details); the red crosses are “injections”, i.e., simulated signals (see

Chapter 5 for details). The separation at high SNR is clear; at low SNR it becomes

difficult to distinguish the two.
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Since spinning signals do not match the template bank as well as non-spinning,

they tend to couple more strongly to their SNR. This can be seen in Figure 9(b),

in which all the injections are spinning. Although many of them still separate from

the background, the separation is not as clear. Note that the range of SNRs of the

spinning signals is as large as the non-spinning; i.e., spinning signals, though they do

not match the templates as well, can still ring off large SNRs. Yet due to the strong

coupling between SNR and χ2, they are “punished” by χ2.

3.3.1 Applying χ2

χ2 is clearly a good discriminator between non-Gaussian noise and signal for known

waveforms. We now turn to the question of how to apply this test. Three methods are

used in CBC searches: a χ2 threshold is applied [31], along with the r2 veto [33, 62],

and triggers’ SNRs are re-weighted based on their χ2 value via New SNR [61].

The most straight-forward use of χ2 is to veto triggers that have a χ2 value ex-

ceeding a given value. Due to the coupling between χ2 and SNR for a mismatched

signal, the threshold SNR dependent. Specifically, we threshold on [31]:

χ2 < χ2
∗
(
p+ ρ2δ2

)
(3.66)

where χ2
∗ and δ2 are both tunable parameters. Since the noise distribution is unknown

these parameters can only be determined using Monte Carlo techniques. Values are

chosen conservatively so as to minimize the chance of vetoing GWs. The effect of the

χ2 threshold can be seen in 9.

We also make use of the r2 veto, defined as [33, 62]:

r2 =
χ2

p
(3.67)

This is checked over a period of time: if r2 is above a threshold value for a duration

±T of the trigger time, the trigger is vetoed. Both the threshold r2
∗ and the time

checked, T , are tunable parameters that are determined from Monte Carlo studies

[33]. The r2 veto can target triggers that have a statistical downward fluctuation in

χ2 at the time of the veto. For this reason it can veto triggers that have lower χ2

values then the threshold; this effect can also be seen in Figure 9.

Perhaps the most effective use of χ2 has been the implementation of effective and

New SNR. Instead of using χ2 to veto triggers, we instead aim to re-weight their
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SNRs based on their respective χ2 values. Effective SNR is defined as [21]:

ρeff =
ρ2

√
χ2
r

(
1 + ρ2

m

) (3.68)

where χ2
r is the reduced χ2, defined above, and m is a tunable parameter which is

typically set to 250. Effective SNR was used as the detection statistic for S5. However,

it was found that some noise triggers were artificially promoted if they had statistical

downward fluctuations in χ2
r. For this reason, New SNR was developed for S6, defined

as [61]:

ρ2
n =




ρ2, χ2

r ≤ 1,

ρ2

[(1+(χ2
r)

3)/2]1/6
, χ2

r > 1,
(3.69)

Lines of constant ρn are shown on Figure 9. As can be seen, they are particularity

effective at separating noise triggers from injections. Figure 10 shows a histogram of

the same triggers shown in Figure 8, this time plotted against New SNR. Most of the

non-Gaussian tail has been down-weighted, and moved below the SNR threshold (in

this case, 5.5). For reference, a χ2 distribution with two degrees of freedom is plotted.

There is still some excess however; for this, we apply a coincidence test, described in

the next section, and data-quality vetoes, discussed in chapter 5.

3.4 Coincidence Testing

To further reduce the number of non-GW triggers we employ a coincidence test across

detectors [31, 63]. We expect gravitational waves to be the only correlated trigger

source across detectors that are not co-located. Therefore, if we get a trigger in one

detector, we can check the other detectors to see if a trigger exists. If none does, we

can be confident the trigger was from a noise source, and so we can discard it.3

Since the detectors are not co-located, we must allow for a discrepancy in the time-

of-arrival of signals that is on order of the light-travel time between the detectors.

Additionally, since the template bank is constructed separately for each detector, the

trigger is likely to be found with slightly different parameters in each detector. We

3Due to the antenna pattern of the detectors, and due to varying sensitivities, it is possible to

have a GW in one detector and none in another. The chance of this happening decreases with the

number of detectors in the network, however.
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account for these differences by constructing an error, or e-thinca, ellipsoid around

each trigger [34]. Recall equation 3.41, which related how quickly the overlap falls

off around a point in parameter space to the metric on the signal manifold. We can

use the metric to calculate the “volume”, E(θµ), of parameter space within which a

signal with parameters θµ could be expected to fall to some probability.4 The surface

of this volume is defined by [34]:

gµν dθµ dθν =

(
R

ρ

)2

(3.70)

where R is determined by the target probability and ρ is the SNR of the signal. That

the size of the volume depends inversely on SNR gels with expectation: the higher the

SNR of the signal, the more confident we are in its recovered parameters; therefore,

the smaller the size of the ambiguity ellipse.

By constructing error ellipses around the triggers in each detector we can look for

coincidence. If the ellipsoid of a trigger in one IFO overlaps with the ellipsoid in the

other, they are considered to be coincident. We parameterize the size of the ellipsoids

to construct by an e-thinca parameter, which is related to the parameter R in the

above equation.5 However, the e-thinca parameter currently in use in CBC searches

is not SNR dependent [34]. The size of the e-thinca parameter was chosen based on

tuning studies. It was found [62] that an e-thinca parameter of 0.5 maximized the

number of injections recovered while minimizing the number of noise coincidences, or

false alarms. This value for e-thinca was used throughout S5 and S6.

Once coincidence has been drawn between one or more single-detector triggers,

we can define a coincident trigger with combined parameters and statistics.6 The

combined values are calculated from the single-detector triggers. Parameters of the

template from which the trigger came — e.g., chirp mass and total mass — are

combined by taking the average of all the single-detector parameters in the coincident

triggers. Combined statistics, such as combined New SNR, are calculated by taking

4There is one minor difference in the metric used to construct the e-thinca ellipsoid and that used

to construct the template bank. The e-thinca ellipsoid adds a time dimension to the metric so that

differences in the time-of-arrival of signals can be accounted for [34].
5How the overlap between two ellipsoids is determined and how exactly R relates to a desired

probability is beyond the scope of this thesis. For more details, see [34].
6Note that here, and in the rest of this thesis, we will differentiate coincident triggers from

single-detector triggers.
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the quadrature sum of the single-detector statistics. For example, if a H1 single-

detector trigger had a New SNR of 7.2 and a L1 single-detector trigger had a New

SNR of 8.3, then — if the two triggers were coincident — their coincident trigger

would have a combined New SNR of:

ρnc =
√
ρ2

n,H1 + ρ2
n,L1 =

√
(7.2)2 + (8.3)2 = 11.0

How other coincident parameters are calculated — such as the time of coincident

trigger — are discussed in section 5.5.1 of Chapter 5.
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Figure 8 : Histogram of triggers as a function of SNR. Data is taken from two weeks of H1 data

taken during S6. The mass range used for this plot is Mtotal ∈ [2, 25)M�; see chapter 5 for details

on the templates used. This plot was created using a single-stage pipeline, as discussed in 9, rather

than the two-stage pipeline discussed in 5. This was done so as to remove complications from the

intermediate coincidence stage. A χ2 distribution with two degrees of freedom, expected if the

detector output were Gaussian, is also plotted. Due to the SNR cutoff, it is difficult to determine

the proper normalization. Here, we have normalized the data so that the bin with the largest count

was made to lay on the χ2 distribution. In this case, the data was multiplied by ∼ 10−14. The bin

boundaries used are given by the x-error bars.
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(a) Non-spinning injections

(b) Spinning injections

Figure 9 : χ2 versus SNR of H1 triggers taken from two weeks of S6. Black crosses indicate

“background” triggers, which are triggers that survived coincidence in time slides (see section 3.4

and Chapter 4 for details). Red crosses indicate “software injections” (see Chapter 5 for details).

Colored lines indicate points of constant New SNR. The effect of the r2 veto and χ2 threshold are

marked.
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Figure 10 : Histogram of triggers as a function of New SNR. Data is the same as in 8. A χ2

distribution with two degrees of freedom is plotted. As in Figure 10, the normalization is chosen

that the bin with the largest count lies along the distribution. In this case, the data was multiplied

by 10−13.
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Chapter 4

Ranking Triggers by False Alarm

Rate

Once triggers have been obtained from the matched filter, re-weighted using the

χ2 statistic, and vetted via coincidence test, they need to be evaluated for their

statistical significance. In the low-mass CBC search we do this by computing a FAR

for each coincident trigger we obtain. This chapter details how that is done. We

begin by reviewing properties of a Poisson distribution. Next, in section 4.2, we

model the expected number of coincident triggers from a single template using the

single-detector distribution of triggers. In section 4.3 we show how time sliding data

between detectors allows us to estimate a background in order to measure a FAR.

Section 4.4 describes how to extend the time-slide method across the template bank

to compute a combined FAR for all triggers in a search. In section 4.5 we describe an

alternate method to compute the combined FAR. Finally, in section 4.6 we summarize

the time-slide method in an algorithm that can be used for computing FARs for a

CBC search.

4.1 Poisson Process

Imagine that we have a detector with which we can measure triggers emitted from

an arbitrary source. Let us assume that the triggers that the source emits occur at

random intervals, and that the time at which a trigger is emitted is independent of

the last event.
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Now imagine that we perform an experiment of duration τ , during which we use

our detector to monitor and count the cumulative number of events produced by the

source as a function of time, Λ(t). Let us repeat the experiment several times, taking

the average Λ(t) at set time intervals. If the source was stationary, we would find

that Λ(t) is a linear function of time. In other words, the mean number of events a

stationary source produces in several (hypothetical) iterations over the same period of

time, τ , is the same as the mean number produced in several iterations over any other

period of equal duration. If the source is non-stationary, the time dependence will be

non-linear; i.e., two independent periods of time of equal duration would produce a

different mean number of events.

To get a duration-independent quantity, we define the source’s rate density, R(t),

which is the derivative of Λ(t) with respect to time:

R(t) ≡ dΛ

dt
(4.1)

For stationary sources, R will be constant; for non-stationary sources, it will have

a time dependence. The rate density is an intrinsic parameter of the source: it

depends on the source’s physical characteristics and is independent of the duration of

time it is observed for. (Contrast this with Λ, which mixes the intrinsic parameters

with the period of time that the source is observed, which is an extrinsic parameter).

Whether or not a source produces a trigger in a given period of time is random; thus

any measurement of the rate density is subject to uncertainty. We therefore define

the “true” rate density as the value obtained if an infinite number of independent

measurements with identical initial conditions were carried out over the same duration

of time:

R̃(t) ≡ lim
Nm→∞

∑Nm
k=1 R̂(t)k
Nm

(4.2)

In this analysis we will denote “true” rate densities by a tilde (e.g., R̃), measured

values by a hat (e.g., R̂), and average values by a bar (e.g., R).

If the source is stationary, then R̃ exists (at least theoretically; in practice, of

course, we cannot perform an infinite number of measurements) and can be approxi-

mated by measuring R in a series of experiments. If we observe a source for a period

of time t, then, from 4.1, the mean number of events produced during the experiment

is:



63

Λ =

∫ Λ

0

dΛ′

=

∫ t

0

R̃(t′) dt′ (4.3)

=

R̃(t′)→R̃ R̃t (4.4)

Furthermore, if the source is stationary, then the probability distribution of getting

k events from this system in the same period of time t is given by the well-known

Poisson distribution [64]:

P (k|Λ) =
Λke−Λ

k!
(4.5)

From this, we find that R̃t is also the expectation value of the number of events [64]:

E(N) =
∞∑

k=1

kP (k|Λ)

=
∞∑

k=1

k
(R̃t)ke−R̃t

k!

= R̃te−R̃t
∞∑

k=1

(R̃t)k−1

(k − 1)!

= R̃te−R̃teR̃t

= R̃t (4.6)

Thus, in a single experiment, we can get a measurement of R̃ by simply dividing the

number of events produced by the period. Averaging these measured values over Nt

experiments yields:

R =

∑Nt
k=1 tkR̂k∑Nt
k=1 tk

=

∑Nt
k=1 tk

(
N̂k/tk

)

∑Nt
k=1 tk

=
1

T

Nt∑

k=1

N̂k (4.7)
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where tk and N̂k are the duration and number of triggers produced in the kth experi-

ment, and T =
∑Nt

k=1 tk. If the duration of each trial has roughly the same duration,

τ , then:

R =

∑Nt
k=1 N̂k

τNt

(4.8)

=
N

τ
(4.9)

Since N is the mean number of events produced by a Poisson process, the variance

is simply N [64]. Thus, the error in R is:

δR =
1

τ

√
N

Nt

(4.10)

Once we have a measured value for R we can estimate the probability of getting

k events from the source in any period t (assuming the source is stationary); it is:

P (k|R, t) =
(Rt)ke−Rt

k!
(4.11)

with error:

δP =

∣∣∣∣
dP

dR

∣∣∣∣ δR

=
t

τ

√
N

Nt

e−Nt/τ

∣∣∣∣∣

(
Nt/τ

)k−1

(k − 1)!
−
(
Nt/τ

)k

k!

∣∣∣∣∣ (4.12)

In particular, we will be interested in the probability of getting one or more events.

This is:

P (k ≥ 1|R, t) = 1− P (0|R, t)
= 1− e−Rt (4.13)

If the source is non-stationary, then an exact value of R̃(t) does not exist. This is

due to the fact that it is impossible to distinguish between fluctuations in the number

of triggers produced by a random process from statistical variation and fluctuations
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due to a changing rate density. In order to get a better measurement of R̃, we must

observe it for a longer period of time. However, since we can only observe the source

for a finite period of time, this results in a worse measurement of the time dependence

of R̃, since any fluctuations that occur on a time scale smaller than the period of time

we observe for will be indiscernible.

In this analysis, we will assume that the sources we observe are roughly stationary

over the periods we observe them for. Although the interferometers do change over

time, we leave it to other indicators, such as environmental and instrumental monitors,

to inform us when these changes happen so that we can adjust our observation time

accordingly.

4.2 Modelling the Expected Number of Coincident Triggers

Consider a coincident trigger produced by a network of GW detectors with combined

New SNR ρ†.1 We wish to know the significance of the event; that is, we want to

know the probability that the event was created by a specific source. To determine

that probability we have two choices: we can compare the event to the distribution of

the desired source’s triggers or we can compare the event to a distribution of triggers

from all other, background, sources, which gives the false alarm probability. Since we

do not know a priori the distribution of gravitational-wave triggers in the detectors

(IFOs), in CBC searches we aim to compute false alarm probabilities. We define the

false alarm probability, PF , as being the probability of getting one or more triggers

with a combined New SNR ≥ ρ† from a background distribution of triggers in the

time searched, Tf (where “f” is used for foreground). From equation 4.13 this is:

PF (k ≥ 1|F(ρ†),Tf) = 1− e−F(ρ†)Tf (4.14)

F(ρ†) is the false alarm rate of a trigger with combined New SNR ρ†. It is the rate

density of all background coincident triggers; i.e., it is the rate density of all coincident

triggers occurring from every source except gravitational waves. Since we do not

1Elsewhere in this thesis we denote combined New SNR by ρnc, reserving ρ for single-detector

SNR. We will be making use of a number of subscripts in this chapter, however. For notational

simplicity, we drop the subscript on combined New SNRs here, and denote them by ρ. We will not

discuss SNR in this chapter, only New SNR.
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have an analytic model for the interferometers’ noise sources we must measure F(ρ†)

directly. To see how this is done, we first consider the true rate density of coincident

triggers from all sources in the IFOs (gravitational waves included), R̃all(ρ
†). We

then model the coincidence algorithm to derive an equation for this parameter. For

simplicity, we only consider a single template; multiple templates are discussed in

section 4.4.

Assuming stationary sources, in a single experiment of duration Tf , R̃all(ρ
†) is

given by:

R̃all(ρ
†) =

E
(
Nuncorr(ρ

†2 ≤∑i ρ
2
i ),Tf

)
+ E

(
Ncorr(ρ

†2 ≤∑i ρ
2
i ),Tf

)

Tf

(4.15)

Here, E
(
Nuncorr(ρ

†2 ≤∑i ρ
2
i ,Tf)

)
is the expected number of triggers from all un-

correlated sources that give a combined ρ2 greater than or equal to ρ†2 in time Tf .

Uncorrelated means that a source that causes a trigger in one detector has no effect

on the others. Conversely, E
(
Ncorr(ρ

†2 ≤∑i ρ
2
i ,Tf)

)
is the expected number of cor-

related coincident triggers, which means they come from a source that causes triggers

in all of the detectors.

If we have Nd detectors and Ns independent trigger sources in each detector, then

the expected number of uncorrelated sources is given by:

E

(
Nuncorr

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))

=

∞∫

ρ†2≤∑i ρ
2
i ,

ρi≥a ∀i

Tf∫

|ti−tl|≤Ti,l
∀l 6=i

Nd∏

i

Ns∑

j

E (ni,j(ρi, ti)) dti dρi (4.16)

=

∫

S(ρ†)

∫

T (Tf)

Nd∏

i

Ns∑

j

∞∑

k=1

k Pi,j(k|ρi, ti) dti dρi (4.17)

Here, the ni,j is the “number density” of triggers in the ith detector from the jth source

per unit ρi per unit time. The Pi,j(k|ρi, ti) is the probability of getting k triggers from

the jth source in the ith detector per unit ρi per unit time. (In going from equation

4.16 to equation 4.17 we have used the fact that the expected number of triggers

produced by a source with PDF P (k) is
∑∞

k=1 k P (k).) The regions of integration

over ρ and t (S and T , respectively) for a two-detector network are shown in Figure
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11. The SNR integral is carried out such that the quadrature sum of the single-IFO

New SNRs are ≥ ρ†, with a lower-cutoff at a. This lower cut-off is the SNR cut

that we impose in the matched-filter search; typically a = 5.5.2 The time integral is

carried out such that for each point in time in a given detector, ti, we only integrate

between ti±Ti,l in every other detector. Ti,l is the duration of the coincidence window

between the ith and the lth detector for the template we are considering. As discussed

in chapter 3 it is an SNR-dependent quantity. However, since it is mostly dominated

by the light-travel time between the ith and lth IFO, here we approximate it to be a

constant for each (i, l) pair of detectors.

Pi,j(k|ρi, ti) is a two-dimensional PDF: it has some distribution in time and some

distribution in ρ. If we assume the sources’ time and ρ dependence are independent

of each other, then PDF is:

Pi,j(k|ρi, ti) = P (k|r̃ i,j, ti)Pi,j(ρi) (4.18)

In words: the probability of getting k triggers from the jth source in the ith detector

with New SNR ρi in time ti is the probability of getting k triggers from a source with

rate-density r̃ i,j in time ti times the probability of getting a trigger with New SNR

ρi from the source. If we again assume that all of the sources are stationary Poisson

processes in the time domain, then:

∞∑

k=1

kP (k|r̃ i,j, ti) dti = r̃ i,j dti (4.19)

With this assumption, the time integral can be carried out independent of the integral

over ρi; it gives the volume bounded by a hyper-surface, which we designate V :

V(Tf) ≡
Tf∫

|ti−tl|≤Ti,l
∀l 6=i

Nd∏

i

dti (4.20)

V has units of [time]Nd . In the two detector case shown in Figure 11 V(Tf) =

TH,L(2Tf − TH,L). Plugging V into equation 4.16 we have:

2Although we do not apply a New SNR cut in the current search, for simplicity, we will assume

that we do, and that it is the same as the SNR cut.
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E

(
Nuncorr

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))
= V(Tf)

∫

S

Nd∏

i

Ns∑

j

r̃ i,jPi,j(ρi) dρi (4.21)

To estimate the expected number of coincident triggers with combined New SNR

≥ ρ† from correlated sources, we assume that the sources create a trigger at the same

time (modulo the light-travel time) in all detectors. Since we compute combined New

SNR by taking the quadrature sum of the single-detector New SNRs, the expected

number is the quadrature sum over the individual probabilities:

E

(
Ncorr

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))

=
Ns∑

j=1

√√√√
Nd∑

i=1

(∫

S(ρ†)

∫ Tf

0

E (ni,j(ρi, ti)) dti dρi

)2

(4.22)

= Tf

Ns∑

j=1

√√√√
Nd∑

i=1

(
r̃ i,j

∫

S(ρ†)

Pi,j(ρi) dρi

)2

(4.23)

In going from 4.22 to 4.23 we have used equation 4.18 and have assumed the correlated

sources are stationary. Since all triggers will occur in each detector within the light-

travel time between them the constraints are removed from the time integral, making

it simply Tf . If we further assume that the correlated sources create the same single-

detector New SNR in the all detectors, then we can simply the expression to:

E

(
Ncorr

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))

= Tf

Ns∑

j=1

√
Ndr̃ j

∫ ∞

ρ†/
√
Nd

Pj(ρi) dρi (4.24)

Here, we have removed the i subscript since the rate parameter and New SNR distri-

bution will be the same in all detectors.

Now let us assume that the only source that can create correlated triggers across

detectors is a gravitational wave. In this case, the sum over the number of sources

in equation 4.24 becomes a single term, with j = GW. Assuming a GW creates

perfectly correlated triggers in all detectors is a bit of an oversimplification: due to

the antenna patterns of the detectors and their varying sensitivities, a gravitational
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wave will only generate a trigger in all detectors with the same SNR for certain sky

locations and orientations. However, since we are ultimately interested in computing

background rates in this analysis, and not GW rates, we will assume that the detectors

are roughly co-located with the same sensitivity. Under this assumption, we can use

equation 4.24 to write:

E

(
NGW

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))
= r̃ GW(~θ)Tf

√
Nd

∫ ∞

ρ†/
√
Nd

PGW(ρ) dρ (4.25)

Note that r̃ j has been replaced by r̃ GW (~θ). This is the rate of CBCs in the uni-

verse; as it depends on the parameters of the source, ~θ, we have made the parameter

dependence explicit, even though we are still only considering a single template.

The integral in equation 4.25 gives the sensitivity of the detectors to GW sources.

To compute it, we need the dependence of the sensitivity as a function of ρ. This can

be obtained as follows: we wish to know the number of sources the detector is sensitive

to from here to some distance D†. If we assume that binary sources are distributed

uniformly throughout the universe (which is a valid assumption for distances greater

than ∼ 10 Mpc and less than ∼ 1 Gpc [10]), then this is:

(2.26)−3

∫ D†

0

D2 dD

∫
dΩ (4.26)

where dΩ is the solid angle. The factor (2.26)−3 comes from approximating the

volume enclosed by the detector’s antenna pattern (which is peanut shaped; see Figure

5) by a sphere with a radius equal to the detector’s “horizon distance”. The “horizon

distance” is the distance to a binary with optimal orientation and location (i.e., it

is the length of the longest part of the peanut) [50]. As discussed in chapter 3, the

sensitive distance is related to New SNR by:

D =
σGW

ρ
(4.27)

Substituting this into the above, and setting ρ†/
√
Nd = σGW/D

† we have:

(2.26)−3

∫ D

0

D′2 dD′
∫
dΩ =

4π

(2.26)3

∫ ∞

ρ†/
√
Nd

σ3
GW dρ

ρ4
(4.28)
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Thus:

PGW(ρ) =
4πσ3

GW

(2.26)3
ρ−4 (4.29)

which gives:

E

(
NGW

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))
=

4π

3

√
Nd σ

3
GW

(2.26)3(ρ†/
√
Nd)3

r̃ GW(θ)Tf (4.30)

(Note that we only have one σ3
GW in the equation. This is because we assumed that

all the detectors had the same sensitivity. If we had not made this assumption, the
√
Nd σ

3
GW term would instead be

√∑Nd
i σ6

i,GW.) Adding this term to equation 4.21

and dividing by Tf gives the overall rate-density R̃all(ρ
†).

As an example, consider two arbitrary detectors, H and L, that are roughly co-

located and have similar sensitivities. Let us assume that each IFO has only one

non-gravitational wave source, which we call “noise;” let the PDF of the noise in each

detector be given by:

Pi,j(k|ρi, ti) = r̃ i,noiseΦ(ρ2
i , σi,noise) (4.31)

where σ2
i,noise is the variance of the noise and Φ is some distribution in ρ2

i . With these

assumptions in mind, the rate density of coincident triggers from all sources would

be:

R̃all

(
ρ† ≤

√
ρ2

H + ρ2
L

)

=
THL(2Tf − THL)

Tf

r̃ H,noiser̃ L,noise

∫

S
Φ(ρ2

H, σH,noise)Φ(ρ2
L, σL,noise) dρH dρL

+
4

3
π

√
2σ3

GW

(2.26)3(ρ†/
√

2)3
r̃ GW(~θ) (4.32)

4.3 Computing Background Using Time Slides

The first term in equation 4.32 is the false alarm rate-density that we seek; thus, we

could re-write the equation:

R̃all

(
ρ† ≤

√
ρ2

H + ρ2
L

)
= F̃(ρ†) + R̃GW

(
ρ† ≤

√
ρ2

H + ρ2
L

)
(4.33)
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ρH

ρL

ρ†

a

a

S

THL

THL

T

tH

tL

Tf

Tf

Figure 11 : The regions of integration in ρ, and time for a network of two detectors, H and L.
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When we do an experiment and perform the coincidence test, we get a measure of

R̃all. To get F̃ we must separate out the GW terms. Unfortunately, we cannot tell

the difference between a coincident trigger that came from noise and one that came

from a gravitational wave. (If we could, we would not have to do any of this.) Thus,

we must find other ways to separate the two. One way to do so is to perform a time

slide.

Consider what happens if we add a relative time offset to each detector’s data-

stream that is larger than the coincidence window between them. Doing so causes

the gravitational wave triggers to become uncorrelated across the detectors. The

rate of coincident noise triggers, however, is unaffected, since they were uncorrelated

anyway. Thus, if we perform the same coincidence test on this slid data as we did

for the zero-lag data, the expected number of coincidences is (assuming each detector

only has one noise source):

E

(
Nall

(
ρ†2 ≤

Nd∑

i=1

,Tf , ~O
))

= V(Tf)

∫

S

Nd∏

i=1

(r̃ i,noisePi,noise(ρi) + r̃ GWPi,GW(ρi)) dρi

(4.34)

Here we have made the dependence on the time offset explicit by defining an offset-

vector :

~O = [0 ∆t2 . . . ∆tNd ] (4.35)

(The offset for one of the detectors is always zero, since we are sliding the detectors

with respect to each other.)

For example, in our two-detector case, the expected number of coincidences be-

comes:

E
(
Nall

(
ρ†2 ≤ ρ2

H + ρ2
L,Tf , ~O

))

= V(Tf)

∫

S
dρH dρL ×

(r̃ H,noisePH,noise(ρH) + r̃ GWPH,GW(ρH)) (r̃ L,noisePL,noise(ρL) + r̃ GWPL,GW(ρL))

= THL(2Tf − THL)(r̃ H,noiser̃ L,noise IH,noise;L,noise + r̃ H,noiser̃ GW IH,noise;L,GW

+ r̃ GWr̃ L,noise IH,GW;L,noise + r̃ 2
GW IH,GW;L,GW) (4.36)
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where:

IH,noise;L,noise =

∫

S
Φ(ρ2

H, σH,noise)Φ(ρ2
L, σL,noise) dρH dρL (4.37)

IH,noise;L,GW =
4πσ3

GW

(2.26)3

∫

S
ρ−4

L Φ(ρ2
H, σH,noise) dρH dρL (4.38)

IH,GW;L,noise =
4πσ3

GW

(2.26)3

∫

S
ρ−4

H Φ(ρ2
L, σL,noise) dρH dρL (4.39)

IH,GW;L,GW =

(
4πσ3

GW

(2.26)3

)2 ∫

S
ρ−4

H ρ−4
L dρH dρL (4.40)

We can solve the GW/GW integral3, getting:

IH,GW;L,GW =
(

4πσ3
GW

(2.26)3

)2
(

ρ†2 − 2a2

18ρ†6a
√
ρ†2 − a2

(
1 +

ρ†4

8a2 (ρ†2 − a2)

)

+
1

9a3 (ρ†2 − a2)3/2

)
(4.41)

if ρ† ≥
√

2a;

IH,GW;L,GW =

(
4πσ3

GW

(2.26)3

)2
1

9a6
(4.42)

otherwise. The other three integrals can be solved numerically, however; see Chapter

9 for details.)

3Note that if we did not impose the New SNR cut-off at a then the GW/GW integral would

give infinity; i.e., we would expect an infinite number of events in the detector from gravitational

waves! This is a result of the model we have chosen for GWs. If the limits of integration were

ρ = 0,∞, then, from equation 4.27, we would be considering every source from here to infinity.

By assuming that the distribution of sources is uniform throughout the universe (which we did by

setting r̃ GW(~θ) to a constant), this means that if we look for an infinite distance, we will get an

infinite number of sources — a GW version of Olbers’ paradox [65]. Of course, the real universe

is not infinitely old; beyond ∼ 1 Gpc the number of CBCs begins to fall off [10]. Further, we have

assumed that the GW/GW term is independent of the noise. In practice, however, we do clustering,

which couples these terms. Even if we had an ideal detector with stationary Gaussian noise in SNR,

below some SNR the noise triggers would effectively cluster away all GW events, even if the universe

was infinitely old. We get around both of these difficulties by assuming that the SNR cutoff is high

enough that these effects do not affect our model (which, with a = 5.5, is valid for both enhanced

and Advanced LIGO.
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By de-coupling the gravitational waves in each detector, the GW/GW term is now

much smaller than in the zero-lag case. For example, we can calculate the expected

number of GW/GW coincidences for a 1.4/1.4 M� binary neutron star system in

each case. From table 1, the rate of BNS coalescences in the universe is r̃ GW =

1 × 10−6 Mpc−3 yr−1. During enhanced LIGO, the 4 km LIGO interferometers had

a peak horizon distance to BNS systems of ∼ 40 Mpc, which gives a sensitivity of

σGW = ρDhorizon = 8 × 40 Mpc = 320 Mpc. Thus, if our two hypothetical detectors

had the same sensitivity, then in one year we would expect:

E
(
NGW

(
ρ† = 11.3,Tf = 1 yr

))
=

4

3
π

√
2(320 Mpc)3

(2.26)3(11.3/
√

2)3
(1× 10−6 Mpc−3 yr−1)(1 yr)

= 0.03

gravitational-wave events in zero-lag at a New SNR of 8 in each detector (which

corresponds to a combined New SNR of ρ† =
√

2×8 = 11.3). In contrast, the expected

number of coincident gravitational-waves in a one year-long time slide would be:

E
(
NGW

(
ρ† = 11.3,Tf = 1 yr,O

))

= (3.2× 10−10 yr)(2 yr− 3.2× 10−10 yr)(1× 10−6 Mpc−3 yr−1)2

× IH,GW;L,GW(ρ† = 11.3, a = 5.5)

= 6× 10−13

Here, we have a coincidence window of THL = 10 ms ≈ 3.2× 10−10 yr. This is about

the light-travel time between Hanford and Livingston.

As can be seen in equation 4.36, doing the time slide has introduced mixing

terms between GWs and noise. However, evaluating the integrals 4.37–4.39 requires

knowledge of Φ, and a fit to the data in order to determine σi,noise and r̃ i,noise. Here

we will assume the noise/GW terms are small relative to the noise/noise term, using

the fact that number of expected gravitational waves in enhanced LIGO is less than

one as our reasoning.

Since the noise/noise term is the dominate source in a time-slide, we have:

R̃all

(
ρ†2 ≤

Nd∑

i=1

ρ2
i ,O

)
≈ F̃(ρ†) (4.43)
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Thus, we can measure the false alarm rate of a trigger with combined New SNR ρ†

by simply performing a time slide, counting the number of coincidences that have a

combined New SNR ≥ ρ†, and dividing by the slide duration. This method has the

further advantage that we can perform multiple slides with the same data to improve

our measurement of F̃ . If we change the offset of each detector by enough to consider

every slide to be independent — i.e., we slide the data enough so that no two events

can be coincident in more than one slide — then, from equation 4.7, in Nt slides:

F(ρ†) =

∑Nt
k=1 N̂k

(
ρ†2 ≤∑Nd

i=1 ρ
2
i

)

Tb

(4.44)

where N̂k

(
ρ†2 ≤∑Nd

i=1 ρ
2
i

)
is the measured number of coincidences with a combined

New SNR ≥ ρ† in the kth slide, and Tb is the total background time. The background

time is the sum of the length of each slide; the length of each slide is the intersection

of every detector’s foreground analysis time after they have been slid. Therefore:

Tb =
Nt∑

k=1

∣∣∣
(
TA +Ok[A]

)⋂(
TB +Ok[B]

)⋂
. . .
⋂(

TNd +Ok[Nd]
)∣∣∣ (4.45)

(Here, Ti is the analysis segment of the ith detector; |Ti| = Tf
i.) With a finite data

set, a single linear slide will not have the same duration as the foreground time since

the overlap between detectors will decrease with increasing offsets. If the slide is

done on a ring, so that data that is slid past the end of the segment is put at the

beginning, than a slide will have the same duration as the zero-lag. However, if there

are gaps in the data, then even sliding on a ring will result in different durations from

slide-to-slide, since the gaps will align differently in each slide. We therefore define

the effective number of slides, Ñt, as the ratio of the total background time to the

foreground time:

Ñt ≡
Tb

Tf

(4.46)

so that equation 4.44 can be written:

F(ρ†) =
N̂total

(
ρ†2 ≤∑i ρ

2
i

)

TfÑt

=
N
(
ρ†2 ≤∑i ρ

2
i

)

Tf

(4.47)

Since the sum over the number of slides in the numerator of equation 4.44 is simply

a sum of counts, here we have written it as N̂total

(
ρ†2 ≤∑i ρ

2
i

)
, which is the total
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number of triggers with combined New SNR ≥ ρ† (false alarms) in all the slides.

Thus, N
(
ρ†2 ≤∑i ρ

2
i

)
is the average number of false alarms in a single experiment

with a duration equal to Tf . Since this is the mean of a stationary Poisson process,

from equation 4.10, the error in F is:

δF(ρ†) =
1

Tf

√
N (ρ†2 ≤∑i ρ

2
i )

Ñt

=
1

Tf

√
N̂total (ρ†2 ≤∑i ρ

2
i )

Ñ2
t

=

√
N̂total (ρ†2 ≤∑i ρ

2
i )

Tb

(4.48)

We have arrived at a way to calculate false alarm rates for a single template:

perform the coincidence test in several times slides; compute the duration of each

time slide; count the number of slide coincidences in all slides that have a combined

New SNR greater-than-or-equal to a given foreground New SNR; divide by the total

background time.

4.4 Computing FARs with Multiple Templates

To compute a false alarm rate across a bank of templates, we would replace the

time integral in equation 4.17 with an integral over the template parameters, {ϑm},
bounded by the e-thinca ellipsoid at ρ, E(ρ):

E

(
Nuncorr

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))
=

∫

S(ρ†)

∫

E(ρ)

Nd∏

i

Ns∑

j

np∏

m

r̃ i,jPi,j(ρi, {ϑm}) dϑm dti dρi

(4.49)

where np is the number of parameters used. For example, in a non-spinning search

in which the templates are laid out in τ0 and τ3 space, this would be:

E

(
Nuncorr

(
ρ†2 ≤

∑

i

ρ2
i ,Tf

))
=

∫

S(ρ†)

∫

E(ρ)

Nd∏

i

Ns∑

j

r̃ i,jPi,j(ρi, τ0, τ3) dτ0 dτ3 dti dρi

(4.50)

Ideally, the probability of getting a trigger would be independent of the template

parameters. In that case, the integral over E(ρ) could be carried out independent
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of the source PDFs, as was done with the time integral in section 4.2. This would

mean that the number of coincident triggers with a combined New SNR ≥ to any

given value would only be dependent on ρ. This is ideal, since the false alarm rate

is meant to be a measure of how likely a trigger is a gravitational wave, independent

of parameters. It would also mean that we could simply count the number of slide

coincidences to get the false alarm rate, as described above, without needing any

correction for the parameters of the templates.

In practice, however, the false alarm rate of a template is dependent on its pa-

rameters. Figure 12 shows the dependence of the cumulative rate of coincident slide

triggers on chirp mass (M) when the rates are based on New SNR. These triggers

were taken from 100 slides in six weeks (about 0.03 yr of analysis time) of enhanced

LIGO data in which the 4 km Hanford (H1) and Livingston (L1) detectors were an-

alyzed (“S6”; see Chapter 7 for details). As can be seen in Figure 12(a), the overall

rate of triggers decreases with increasing chirp mass. This is due to the fact that the

template bank is more sparsely populated at higher masses. Conversely, the variance

of the rate of triggers roughly increases with increasing mass, leading to a higher rate

of high New SNR triggers at high mass. This occurs because the inspiral phase of

a higher-mass template spends less time in band compared to lower masses. As a

result, χ2 does a poorer job distinguishing high mass CBCs from glitches, which also

tend to ring off the higher masses with larger SNR.

The joint effect of the lower overall rate and higher variance of high-mass templates

can be seen in Figure 12(b), which plots the combined New SNR of the triggers versus

chirp mass. (To go from 12(a) to 12(b), think of the color bar as the z-axis, and

imagine rotating the axes so that x → y, y → z, and z → x.) Due to the decrease

in the overall rate, the cumulative rate drops off with increasing chirp mass at low

combined New SNR (orange – yellow lines in the figure). However, due to the higher

variance, the rate increases with increasing chirp mass (up to the middle of the chirp-

mass space, anyhow) at large combined New SNR (the red line in the figure). This

latter effect can be particularly problematic since we are most interested in triggers

with higher New SNR. For example, consider what were to happen if a binary neutron

star template withM = 2 M� rang off with a New SNR of 10.5. If our template bank

was restricted to binary neutron stars (M ≈ 1–3 M�), the trigger would stick well

above background, as can be seen in Figure 12(b). However, if we include the entire
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bank in the false alarm calculation, then the event would be out-ranked by the two

events between M = 7–9 M�, leading to a F ≈ 50 yr−1. This high FAR would have

more to do with our ranking statistic’s inability to take into account the parameters of

the template than with our degree of belief in how likely the trigger is a gravitational

wave.

One way to fix this is to break up the chirp-mass space when computing FARs. If

we bin the space such that the cumulative rate is roughly constant for a given New

SNR across the bin, then we can use our naive approach of counting slide triggers to

get F . The F computed in each bin, however, is not the true FAR for the search,

since we sliced up the parameter space in order to arrive at it. To understand why

the slicing needs to be accounted for, consider the number of bins. Our initial choice

of bins was arbitrary: we could choose to slice the parameter space up even more;

in so doing, we would get a smaller F . Yet this plummeting FAR would have little

to do with the likelihood that the triggers are gravitational waves and everything to

do with our choice of bins. Thus, to fix this, we must compute a combined FAR, Fc,

across all of the bins.

In order to compute a combined FAR, we use the uncombined FAR — i.e., the

FARs computed using the bins — as our ranking statistic. This means we must

compute an uncombined FAR for the slide triggers. We do this in the same manner

that we compute uncombined FARs for zero-lag triggers: we count the number of

slide triggers that have a combined New SNR ≥ the ρ of a given trigger. By doing so

we treat a given slide as if it were zero-lag. Thus, we do not include the slide in which

we are computing uncombined FARs in the background estimate for that slide. Since

we use one-less slide for measurement of the background triggers’ FARs, the error

in our measurement of the slide triggers FARs will be larger than that of zero-lag

triggers. Assuming each slide has roughly the same duration then, from equation

4.48, the error is increased to:

δF slide ≈

√
N̂total(1− Ñ−1

t )

Tb(1− Ñ−1
t )

(4.51)

For large Nt, however, the discrepancy between the zero-lag and time-slide δF is

small.

Once we have uncombined FARs for both foreground and background triggers,
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we compute the combined FARs by counting the total number of triggers with a F
less-than the given trigger’s FAR, F †:

Fc(F †) =
N̂total

(
F < F †

)

Tb

(4.52)

The reason we count the number of triggers that have a FAR less-than and not less-

than or equal-to F † can be understood by considering what happens to a trigger that

has a ρ larger than all the background in its bin. If a trigger is louder than all the

background, it will have a measured FAR of 0. This does not mean we are absolutely

certain the trigger is a gravitational wave. A FAR of 0 means that we have set an

upper-limit on the true FAR to be less-than 1/Tb, within the error bars; i.e.:

F(ρ†) = 0⇒ F̃(ρ†) <
1

Tb

± 1

Tb

(4.53)

Since we have only placed an upper limit on the uncombined FAR, we should also only

be able to place a limit on the combined FAR; thus, if we got zero for F † we should

also get zero for F †c . (The combined FAR limit will be higher however; specifically, it

will be Nbins/Tb, where Nbins is the number of bins.) Yet if we have, say, N0 triggers

in the background with F = 0 and we were to count the number of triggers ≤ F †,
we would get a combined FAR equal to N0/Tb, not less-than. Thus, we would have

extracted a measured value for the combined FAR from a limit, without having had

any new information about the trigger.

Breaking up the parameter space into bins and computing combined FARs from

uncombined allows us to map the triggers onto a space where the parameter depen-

dence has been removed. Note, however, that since a slide is not counted against

itself, in each bin we will have at least one trigger with F = 0. This is the trigger

that has the largest value of ρ; i.e., it is the loudest background trigger. (We could

have more than one slide trigger in a bin with F = 0 if a single slide contained mul-

tiple triggers that were louder than the triggers in all other slides.) Thus, if we have

Nbins bins, we will have at least Nbins background triggers with F = 0. This means

that if a foreground trigger has F = 1/Tb in its bin, it will have Fc = Nbins/Tb. In

other words, even if a foreground trigger has a ρ that is far larger than all but one

slide trigger, and that slide trigger is in the same bin, its combined FAR will increase

by at least a factor of Nbins. If a trigger has a zero uncombined FAR (and therefore



80

a zero combined FAR), the smallest upper limit that can be placed on its true false

alarm rate will also increase according to the number of bins, or trials factors. The

number of bins should therefore be kept to a minimum.

Figure 13 shows the background distribution in uncombined FAR of the same set

of triggers used in Figure 12. The bins used are clearly visible via the “steps” in

Figure 13(b). These bins — which are M/M� ∈ {[0.0, 3.48); [3.48, 7.4); [7.4, 15.8)}
— are the same that were used in the analysis of LIGO’s fifth and sixth science runs

(S5 and S6, respectively). As can be seen by the lines of constant high cumulative

rate in Figure 13(b) (orange – yellow lines), the bins are not sufficient to make the

rate completely independent of the mass. Indeed, this is impossible with any choice

of bins, since there are simply not enough triggers at high mass to extend the high

cumulative rate lines into that region. However, for low cumulative rates, the space

has been sufficiently “flattened.” Note, in particular, the red line, which shows a

cumulative rate of 1/Tb in each bin. In Figure 12(b), this line dropped off at low

chirp mass, which would cause low-mass systems to get higher-than-expected false

alarm rates, as in the case of the BNS system above. Now, low-mass systems with

high ρ are ranked on par with the medium mass systems. Since these are the triggers

we are most interested in, this choice of bins is sufficient for our purposes, and we

have only incurred a trials factor of 3.

There is one last parameter that we need to be aware of when choosing the number

of bins: the number of detectors contributing to the coincidence. Since combined

New SNR is computed by taking the quadrature sum of the single-IFO New SNRs,

coincidences that have a larger number of contributing detectors will have a larger

combined ρ. For example, if we analyze three detectors — call them H, L, and V

— then we can have four types of coincidences: HL, HV, LV, and HLV. A trigger

with New SNR = 8 in each detector will have a combined New SNR =
√

2 × 8 if

it is a HL, HV, or LV coincidence, and a combined New SNR =
√

3 × 8 if it is a

triple coincidence. That may seem appropriate: after all, the more detectors that

observe the event, the more likely we are to believe it to be a GW. However, due to

the antenna pattern of the detectors, and the fact that they are not co-located nor

have the same sensitivity, a GW will not be seen in all detectors if it came from a

source in certain sky locations and orientations. If we were to compute FARs without

first binning the triggers by the number of coincident triggers, or coincidence type, we
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would subtly introduce a location and orientation bias into the FAR. To avoid this,

we also bin triggers by their coincidence type.4

Across the course of an analysis period varying combinations of detectors will be

available to analyze. (An IFO is not analyzable if it is not in Science mode; see

Chapter 5 for details.) For example, in the three detector case given above, we can

have four different instrument times : periods when HLV were on, and periods when

HL, HV, or LV were on. Obviously, only certain coincident types can occur in a

given period. Therefore, when computing a FAR for a trigger, we should not include

analysis times in which it was impossible for the coincidence type of the trigger to

occur. If we did, we would artificially decrease the false alarm rate of the trigger. As

a result, each of the various instrument times are treated as independent experiments:

both uncombined and combined FARs are computed within the instrument time, and

FARs are never calculated across instrument times. This also means that coincidences

of the same type cannot be combined across instrument times. For example, in the

three detector case, we can get HL, HV, and LV coincident triggers in both HLV

time and each of the respective double-coincident times. However, there is a slight

difference between the doubles in triple time and the doubles in double time. The

double-coincident triggers in HLV time are triggers that were coincident with one

other detector and not coincident with the third detector. The doubles in double

time, however, consist of triggers that would not have been coincident with the third

detector and triggers that would have been coincident, had the third detector been on.

This latter set is clearly a larger population. Thus, if coincidence types were grouped

across instrument times (using the sum of the instrument times for the analysis time),

4Admittedly, simply binning the triggers by coincidence type then using the uncombined FARs

to get the combined FAR is not the perfect solution to remove biases either. Doing so treats all

the coincidence types with equal weight. However, if the detectors have varying sensitivities, it is

more likely to get a gravitational wave from coincidences of the most sensitive detectors. A better

approach would be to add some weight to each coincidence type that is proportional to the sensitivity

of the constituent detectors before combining the FARs. The same argument applies to mass-bins:

if the detectors are more sensitive to certain parameter ranges, we should weight accordingly. A

likelihood-based weighting that attempted to remedy these concerns was used in the joint LIGO-

Virgo search in the last few months of S5; see [6] for details. For the rest of S5 and S6, the detectors’

sensitivities were roughly on-par with each other, so the simpler equal-weight method described here

was used.
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we would underestimate the FARs of the triggers from double-time and overestimate

the FARs from triple-time.5

Summarizing, the number of bins, or trials factors, that we use depends on how

strongly the ranking statistic couples to a parameter and on the number of coincident

types possible in the instrument time being analyzed. In the low-mass CBC search we

use three mass bins based on chirp mass. This means that we have a trials factor equal

to 3 during double-coincident instrument times. During triple-coincident instrument

times in which all coincident types are used, this factor increases to 12 (3 mass-bins

times 4 possible coincidence types).

4.5 Alternate Method to Compute Combined FARs

There is an alternate, but equivalent, method to computing combined FARs that

does not require computing uncombined FARs for all of the background triggers. We

describe it here as it was used in the S5 search.

We begin by re-writing equation 4.52 as an explicit sum over the number of triggers

in each bin:

Fc(F †) =
1

Tb

Nbins∑

p=1

∫ F†Tb

0

n̂p(F ′) dF ′ (4.54)

Here, n̂p(F ′) is the measured number of triggers in pth bin with an uncombined FAR

equal to F ′. We expect to get roughly one trigger in each bin with a given F . For

example, we expect to get one trigger in each bin with a FAR of 0, one with a FAR

of 1/Tb, etc. There can be some excursions from this rule; for instance, as described

above, it is possible to get more than one trigger with a 0 FAR in a single bin if one

slide has more than one trigger that is louder than all triggers is all of the slides.

However, if all of the slides are of roughly equal duration, then the distribution of

triggers in each slide will be about the same. Thus, n̂p(F ′) ≈ 1 for all bins and all

FARs, and equation 4.54 becomes:

5We can, however, group coincidence-types together across instrument times if we reanalyze the

data with the other detector removed, or vetoed. For example, we can group HL triggers in HL time

with HL triggers in HLV time if we re-analyzed the HLV data with V removed. This has been done

occasionally in order to get a better estimate of double-coincident triggers with low or zero FARs.
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(a) Cumulative Rate v. Combined New SNR. Each line represents the cumulative rate in one chirp-mass

bin as a function of Combined New SNR, the boundaries of which are shown in (b).

(b) New SNR v. Chirp Mass. Colored lines show lines of constant cumulative rates across the chirp-mass

bins. Dashed lines show the bin boundaries used.

Figure 12 : The rates of slide coincidences in equally-spaced chirp-mass bins as a function of Com-

bined New SNR. Black crosses are coincident triggers taken from 100 slides in six weeks of enhanced

LIGO data. The cumulative rates (the y-axis in (a) and the color axis in (b)) are computed by

counting the number of triggers with a Combined New SNR ≥ each trigger within each bin. Only

the 4 km Hanford (H1) and Livingston (L1) triggers were analyzed during this time; as such, all

coincidences are H1L1 triggers.
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(a) Cumulative Rate v. Uncombined FAR. Each line represents the cumulative rate in one chirp-mass bin

as a function of Uncombined FAR, the boundaries of which are shown in (b).

(b) Uncombined FAR v. Chirp Mass. Colored lines show lines of constant cumulative rates across the

chirp-mass bins. Dashed lines show the bin boundaries used.

Figure 13 : The rates of slide coincidences in various chirp-mass bins as a function of Uncombined

FAR. The data used is the same as that in Figure 12. The bin boundaries used to compute the

Uncombined FAR are visible in the steps seen in (b). The Uncombined FAR were computed using

ligolw cbc cfar using the same bins as used in the S5 and S6 searches (see Chapter 5 for details).

The cumulative rates are computed by counting the number of triggers with an Uncombined FAR

< each trigger within each bin. As a result the Uncombined FAR axes are inverted. Also note that

the Uncombined FAR axes are plotted on a log scale.
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Fc(F †) ≈
1

Tb

Nbins∑

p=1

∫ F†Tb

0

dF ′

= NbinsF † (4.55)

Again, for this to be true, the number of triggers in each bin must be about the

same. As can be seen in Figure 13(b) this is a valid assumption for low FARs (the

top part of the graph). However, at high FARs (the low part of the graph), we run

out of triggers in the higher mass bins. For example, consider what the combined

FAR of a trigger with F † = 104 yr−1 would be. We can imagine drawing a horizontal

line on Figure 13 at 10−4 yr−1 and adding up all the triggers that lie above that line.

The contribution from the first two bins would be 2F †. However, in the third bin,

the background has “run out” at this point, so that:

n̂3(F ′) =

{
0 if F ′ > max(F̂3)

1 otherwise
(4.56)

max(F̂3) is the largest measurable FAR in the third bin; it is simply all the background

triggers in the third bin divided by Tb. Thus equation 4.54 becomes:

Fc(F † ≈ 104 yr−1) ≈ 1

Tb

(
2

∫ F†Tb

0

dF ′ +
∫ max(F̂3)Tb

0

dF ′
)

= 2F † + max(N̂3)/Tb (4.57)

where max(N̂3) is the number of background triggers in the third bin. Likewise, if

we were to measure a combined FAR for an uncombined FAR at F † = 3 × 104, the

second bin will have run out; giving:

Fc(F † = 3× 104 yr−1) ≈ F † + max(N̂2)/Tb + max(N̂3)/Tb (4.58)

Generalizing, we have:

Fc(F †) ≈ N ′binsF † +
1

Tb

N ′′
bins∑

p=1

max(N̂p) (4.59)

where N ′bins is the number of active bins at F †, N ′′bins is the number of bins that have

run out, and max(N̂p) is the total number of triggers in the pth bin.
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4.6 Algorithm for Computing False Alarm Rates

We have arrived at an algorithm to compute false alarm rates for coincident triggers

produced in a CBC search. It is:

1. Perform several time slides by adding offsets to each detector and look for

coincidences across the slid detectors. The offsets should be large enough to

ensure that each slide is roughly independent (i.e., at least as large as twice the

time-axis of the coincidence window; larger if a single event can cause multiple

triggers across several seconds).

2. Bin the triggers by their coincidence type and time, and, if necessary, by tem-

plate parameters.

3. Compute an uncombined FAR (F) for every zero-lag trigger in each bin by

counting the number of slide, or background, triggers with a combined New

SNR (ρ) greater-than-or-equal-to the combined New SNR of the given trigger.

4. Compute a final, combined FAR (Fc) across all of the bins by either of the

following methods:

• Measure an uncombined FAR for every background trigger by counting the

number of triggers in every other slide that have a combined New SNR that

is greater-than-or-equal-to the combined New SNR of the given trigger.

Next compute a combined FAR for the zero-lag triggers by counting the

number of background triggers across all bins that have an uncombined

FAR that is less-than the given trigger.

• Use equation 4.59 to compute the combined FAR directly, without com-

puting the uncombined FARs of the background triggers.

This method is valid as long as the number of GW/GW and GW/noise coincidences

in the slides are small compared to the number of noise/noise coincidences, so that

equation 4.43 is valid.
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Chapter 5

The IHOPE Pipeline

In this chapter we describe in detail the ihope pipeline, which is the pipeline used in

the all-sky search for gravitational waves from CBCs. This pipeline has been devel-

oped by a number of people over the past several years. The inspiral and tmpltbank

programs (discussed in sections 5.3.4, 5.3.6, and 5.3.9) were developed during LIGO’s

first Science run, and refined for LIGO’s second Science run [12, 63]. By S5, these

programs had become a part of the Hierarchical Inspiral Pipeline Executable (HIPE)

[21, 62], which is discussed in section 5.2.2 and 5.3. During S5 the pipeline was

automated, and it became known as ihope [22]. Finally, during S6, Pipedown was

developed and added to ihope. Pipedown is detailed in sections 5.2.3 and 5.5. The

current version of ihope, discussed here, is currently being used to analyze data from

S6 and VSR2 and VSR3 [61].

Ihope can by modeled by a directed acyclic graph (DAG). A DAG is a workflow in

which the output of one program, or node, is the input of another node or nodes, such

that the flow never loops back onto itself [63]. It is represented by a diagram in which

the vertices are the programs and the edges show the interdependencies. ihope is

a DAG of DAGs: its nodes are workflows that launch sub-workflows, which in-turn

launch the programs that carry out the analysis. These DAGs are managed by the

Condor High Throughput Computing system, which distributes the jobs across the

computer cluster and manages the dependencies [66]. Figure 14 shows an overview

of the ihope workflow. Data from each detector is retrieved, analyzed in parallel

workflows, combined, and then output to a webpage. Each of these steps involves one

or more DAGs.
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In this chapter we discuss each of these steps in detail. Section 5.1 reviews the

requirements of a CBC GW search pipeline; section 5.2 explains how the DAG is

created at run-time; section 5.3 describes the in detail; 5.4 describes the tables used

to store data; 5.5 describes Pipedown in detail and how the results are presented.

Throughout this chapter we will make extensive use of the methods and concepts

established in Chatpers 3 and 4. We refer the reader to those chpaters and the

sources cited therein for more information.
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Figure 14 : An overview of the ihope pipeline. The HIPE and Pipedown nodes are themselves

workflows, and are detailed in sections 5.3 and 5.5, respectively.

5.1 Pipeline Requirements

Here we briefly review the key requirements of a pipeline used to search for GWs.

Our goal is to search for GWs from coalescing binaries in a range of masses. Since

gravitational waves couple very weakly to matter we must be able to detect strains

of ∼ 10−21 in noise that has an RMS amplitude of O(10−22) at 100 Hz. Our target

sensitivity is to detect signals with a SNR of 8 in each detector.

When averaged over time the detectors’ have a colored Gaussian noise distribution;
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as shown in Chapter 3, the optimal tool to search for signals is therefore a matched

filter [31]. Match filtering requires knowing the morphology of the waveform. Binaries

with total masses (Mtotal) less than 25M� emit most of their power in the LIGO and

Virgo bands during their inspiral phases. This means that the waveform from these

systems can be well modelled by the post-Newtonian approximation. Thus, to cover

the desired range, we can fill a bank of templates using the methods described in

section 3.2 of Chapter 3.

Environmental and instrumental factors can cause non-Gaussian transient noise

(glitches) in the data. To deal with this our pipeline must be able to distinguish be-

tween triggers resulting from glitches and triggers resulting from gravitational waves.

Since the morphologies of signals is known, and since the signals have a number of cy-

cles in the frequency range (band) we are sensitive to, the χ2 test discussed in section

3.3 is a powerful tool for discrimination [32]. Demanding that triggers be coincident

in multiple detectors using the e-thinca ellipsoids discussed in section 3.4 will also

filter out spurious triggers, since we do not expect environmental correlations across

great distances [34]. After all filtering and tests have been applied, the statistical

significance of a set of triggers has to be evaluated to determine the probability that

a gravitational wave exists in the data. We can do this by calculating the triggers’

false alarm rates (FARs) using the time-slide method discussed in Chapter 4. Since

they only consist of noise triggers (assuming equation 4.43 holds), the coincident

triggers resulting from time-slides are referred to as background, to distinguish them

from coincident triggers in which no offset has been applied between detectors, or

foreground.

Even though we apply χ2 and coincidence tests, environmental factors can cause

periods of elevated glitch rate in the detectors. If these periods are analyzed with

periods of relatively clean data, they will pollute the background estimation, thereby

decreasing statistical confidence in candidates. We therefore seek to remove such

periods from the analysis. This is accomplished using vetoes [67, 68]. A veto is a

half-open time-interval, or segment in which all the triggers are discarded. Vetoed

time is not counted in the analyzed, or live, time when false alarm rates are calculated.

We define veto times by using data quality (DQ) flags. The detectors are equipped

with environmental and instrumental monitors that are auxiliary to the GW channel.

If these channels detect periods of heightened activity in the environment, such as
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elevated seismic noise, an automated monitor will mark the period of time with a DQ

flag [69]. Additional DQ flags can be added by hand; e.g., if a truck drives onto the

site while GW data is being recorded, a person in the control room may add a flag for

that period of time. The periods of time that these various flags are on are stored in a

segment database, which is a central database that contains lists of segments detailing

the times that the detectors were in various states [70]. If a DQ flag can be found to

be strongly correlated with elevated glitch rates in the GW channel, and if it is found

that the flag is safe — i.e., it will not be triggered by a GW wave1 — then it is used

as a veto.

Vetoes are categorized according to how well we can couple them to known envi-

ronmental sources [67, 68]. Table 5.1 lists the various categories and their defining

characteristics. These categories are applied cumulatively. We refer to category 1

vetoes as CAT1. Category 1 and 2 vetoes are referred to as CAT2 ; category 3 vetoes

are referred to as CAT3. For CBC searches, we do not analyze anything prior to

category 1; i.e., all matched filtering is carried out after category 1 vetoes are applied.

CAT2 and CAT3 vetoes are applied when second stage coincidence is carried out (see

section 5.3.10, below). We quote false alarm rates and base upper limits on data in

which category 1-3 vetoes have been applied. We additionally check the data after

category 1 and 2 vetoes have been applied for any loud triggers that may have been

removed by category 3 vetoes. We do not use category 4 for the analysis. However,

we do use category 4 vetoes in follow-up studies of loud candidates to provide insight

into the cause of triggers. Hardware injections are left in the data after category 1

and 2, and are removed as a special veto prior to category 3 vetoes being applied.

The use of vetoes is key to our ability to detect gravitational waves. Without

them, we could not detect signals at a SNR of 8 in each detector (see Chapter 8). To

determine what DQ flags are most effective at removing triggers caused by environ-

mental factors we perform glitch studies. This allows us to tune vetoes such that we

maximize the probability of detecting a signal.

In addition to vetoes, each of the analysis methods described above have various

parameters that can be tuned. This includes the number of χ2 bins to use [31], the

χ2 threshold to apply [62], the duration of the r2 veto [33], how finely to grid the

parameter space and what coordinates to use [55, 56, 57, 58], what pN order to use

1This can be checked using hardware and software injections.
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to generate templates [21, 22, 61], the size of the e-thinca parameter [34, 62], the

number and placement of the chirp-mass bins for calculating FARs [62], and many

other parameters not discussed here. Like vetoes, we wish to tune these parameters

such that we maximize the probability of detecting a signal. However, we must do this

in a blind fashion. That is, we must be able to tune parameters without knowledge

of what is in the data, else the results will sway in favor of the analysts’ bias.

To satisfy these conflicting requirements, we have designated a subset of data as

playground. Playground is defined as data that occurs during the first 600 seconds

of every 6370 seconds, starting from February 14, 2003 at 16:00:00 UTC (GPS time

729273613). It therefore consists of ∼ 10% of the full data. The results of tuning

studies are evaluated by considering the results of analyzing playground data. In

addition to playground data, we permit ourselves to look at the most significant

(loudest) coincidence triggers from slide data when ranked by FAR. If an auxiliary

environmental or instrumental channel can be correlated with a loudest slide trigger,

we can veto it. (For more on these loudest slide studies see chapter 7.) Only after

all of the vetoes and parameters have been tuned do we look at, or un-blind, the full

data results to see if a GW candidate exists.2

Finally, the pipeline must be able to evaluate its sensitivity and efficiency to

sources in the universe. Doing so allows tuning studies to be carried out prior to

doing the full analysis, and for the astrophysical rate of CBCs to be bounded after

the analysis has completed. This can be done by performing injections of signals

with known parameters into the detectors. Both hardware and software injections

may be performed. Hardware injections involve actuating the mirrors to physically

simulate a passing gravitational wave. This is the most robust test as it checks

the ability of the detectors’ response loop to measure GW strains and the ability of

the pipeline to detect them. However, hardware injections prevent real GWs from

being detected while they are occurring, limiting the number that can be preformed.

Software injections involve adding a gravitational wave signal to the data stream on

disk just prior to analyzing it. While this method does not test the hardware control

systems, it has the advantage that it can be performed many times in parallel, without

corrupting the original data. Thus, our pipeline must be able to perform software

2Full data results include data from playground time. Although playground is included in the

final unblinded results, we exclude it for computing upper-limits [21, 22, 61].
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Category Description Procedure

1 Data seriously compromised

or missing.

Data never analyzed.

2 Instrumental problems with

known coupling to h(t).

Vetoed triggers discarded after second coin-

cidence. Surviving triggers checked for can-

didates, but not used for upper limits.

3 Instrumental problems

likely, casting doubt on

triggers found during these

times.

Vetoed triggers discarded after second coinci-

dence. False alarm rates of surviving triggers

are used in publications; upper limits are cal-

culated using these vetoes.

4 Positive, but weak, corre-

lations with false alarms.

Large dead times.

Not used in the analysis, but used as a guide

in detailed follow-ups of loud triggers.

Table 3 : The various veto categories used by the CBC group. Vetoes are applied cumulatively;

statistical significance of candidates and upper limits are calculated after category 1, 2, and 3 vetoes

are applied.

injections, and have a method for associating triggers with the injections that went

into the data.

In summary, a pipeline used to search for gravitational waves from CBCs must:

• construct a bank of templates with which to filter [55, 56, 57, 58];

• identify triggers by filtering templates through the detector data [31];

• distinguish noise triggers from gravitational wave triggers [32];

• veto periods with elevated glitch rate due to environmental factors [67, 68]

• quantify statistical significance of triggers and rank them in a blind manner;

• evaluate the sensitivity and efficiency of the search to CBCs in the universe

[21, 22, 61].

In the following sections we will see how ihope meets these requirements.
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5.2 ihope at Runtime

The ihope pipeline is created by running lalapps ihope. This sets up the workflow

by doing the following at run time:

• set-up the directory structure to save all data to;

• copy all needed programs from their installed location to a local directory;

• retrieve analysis start and stop times;

• download a veto-definer file and find the start and stop times of all veto seg-

ments;

• run lalapps inspiral hipe multiple times;

• run lalapps cbc pipedown;

• create a cache file of the names and locations of all files that will be created;

• write a DAG that can be used to start and run the workflow.

These steps require the start and stop time (in GPS seconds) of the period to be

analyzed — which we shall refer to as the analysis period3 — as well as a configuration

file. The configuration file is a text file containing all the information needed to setup

and run the analysis. This includes: the names and locations of all the executables

that will be run; variable arguments that these programs will need; the name and

number of interferometers to analyze; the version of data files to retrieve and what

channels to analyze; how many and what type of software injection runs to do; any

other information needed by the DAGs to run. The configuration file provides a

convenient way to manipulate the pipeline. Changing tuning parameters is largely

accomplished by editing this file. Likewise, the difference between running a low-

mass search (2 < Mtotal/M� < 25) and a high-mass search (25 < Mtotal/M� < 100)

is determined entirely by the configuration file.

A directory named by the GPS start/stop times of the analysis period is created

at runtime. All work is done in this directory. In it, a segments, executables,

3We typically analyze periods that are on order of a week to a month. For analysis periods used

in S5 and S6 see chapters 6 and 7, respectively.
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datafind, full data, and pipedown directory are created, along with a directory for

each injection run that will be carried out. With the exception of the executables

and segments directory, each of the sub directories store a sub-DAG that will be run

during the analysis (and will be explained below). The master DAG is saved in the

GPS-times directory along with a master cache file of all the files that will be created.

All programs that will be run are copied to the executables directory.

5.2.1 Science and Veto Segments Retrieval

During a Science run the LIGO and Virgo detectors can be in one of several different

states at any given time, which we categorize into five different operating modes. We

are only interested in analyzing times in which the detectors are in Science mode.

This means they are “locked,”4 no other experimental work is being done on them,

and their state has been verified by a human. The interferometers can come out of

Science mode many times across an analysis period; thus ihope must retrieve the

start and stop times of Science segments that occurred in the analysis period. Ihope

does this by running ligolw segment query [70] at run time. This program queries

the segment database (described above) to retrieve the list of Science times during

the desired analysis period. These results are saved to files in the segments directory.

These files do not contain strain data; they only list the times that data can be

retrieved. The results are later used to retrieve files containing strain data.

The Science segments, as well as most of the results of each step in the pipeline, are

saved in XML files. An XML file stores data in a hierarchical structure of “elements,”

where each element may contain other elements [71]. In our case, the elements of the

document are data tables; in turn, the data tables have columns, which are the

elements of the table. The XML files used by ihope conform to the LIGO_LW data

format, which specifies how tables and columns are named, and how they are stored

to XML files. For more details on XML and the LIGO_LW format see [71].

As discussed in section 5.1, all of the DQ flags that may be used for vetoes are

stored in the segment database [70]. What flags to use for vetoes, at what cate-

gory, and for how long, are stored in a veto-definer file. This XML file contains a

veto definer table that lists each flag that should be used, what category the flag

4Recall from Chapter 2 that the interferometer light must be resonant in the Fabry-Perot cavities

for the interferometer to operate. We refer to this as the interferometer being “in lock.”
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should be used at, the dates the flag is valid, and any padding (in seconds) to add to

the flag. The table is veto-definer file is created by analysts who carry out studies to

determine what DQ flags to use for a specific search. These studies draw on a number

of different resources, including: data-monitoring tools that run at the observatories,

an online log, or e-log that scientists use document events and studies carried out

at the observatories,5 as well as results ihope produces from playground data and

injection studies. Entries are added to this table by hand after extensive data-quality

investigations and safety checks.6 Vetoes are fine tuned for specific searches and

Science runs; each searches’ set is saved in a different veto-definer file in a central

repository. What veto definer file to use is specified in the ihope configuration file.

At run-time, ihope downloads the desired file to the segments directory. It then runs

ligolw segments from cats [70] to query the segment database for flags specified

in the veto-definer file. The vetoed segments for all of the instruments are added

together and saved in XML files in the segments directory.

5.2.2 HIPE

Once the analyzable Science segments and the veto segments that will be applied

are obtained, ihope runs lalapps inspiral hipe. This sets up the HIPE DAGs,

which are the pipelines that carry out the search. Figure 15 shows a HIPE DAG for

a single 2048s block of time. As can be seen in the diagram, HIPE is a two-stage

pipeline. Data is matched-filtered [31], coincidence tests [34] are applied, then the

process is repeated. The reason for using two-stages is the χ2 test is computationally

expensive [12]. To reduce the number of triggers for which we need to compute χ2,

an initial coincidence test is applied to single-detector triggers for which only SNR

is calculated.7 Recall from Chapter 3 that a coincidence test reduces the number

5See section 5.6.8 for more details on the e-log.
6For more details on how these studies were carried out for the low-mass CBC search in S6, see

chapter 7.
7Using two stages complicates the pipeline, however, and makes it difficult to trace an event’s

progression through the various steps. It also hampers efforts to estimate FARs from single-detector

triggers. For this reason, a single-stage pipeline is being developed which takes advantage of advances

in computational power. See Chapter 9 for more details.
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of triggers in the detectors since noise sources are uncorrelated between the sites.8

After applying this first coincidence test, we calculate χ2 for the surviving triggers

and apply the χ2 threshold and r2 veto. We then perform a second coincidence test

to check for coincidence among triggers that survived the χ2 cuts [12].

HIPE can be run either with or without software injections. If injections are

desired, lalapps inspinj is run to create a list of injections to perform,9 which are

created and inserted into the data just prior to match filtering by lalapps inspiral

[63] when the DAG is run. At run-time ihope runs HIPE several times: once for

each desired injection DAG10 and once each for zero-lag and time-slid data. Zero-

lag data is data for which the coincidence test is applied without adding a time

offset to each detector. This is the data that could potentially contain coincident

triggers from GWs. “Time-slid” data is data for which the coincidence test is applied

after adding a time offset to each detector. Since the data is slid such that the

offset is larger than the light-travel time between the detectors, time-slid contains

“accidental” coincidences, i.e., we do not expect single-detector triggers from a single

GW to be coincident with each other in time-slid data. This is the data we use for

our background when calculating false alarm rates. (For details, see Chapter 4.) Each

of these HIPE DAGs are distinguished from each other by a user-tag. Zero-lag data is

labelled FULL_DATA, while time-slid data is labelled FULL_DATA_SLIDE. The user tag

to use for each injection DAG is set in the configuration file by the analyst.

A description of what each program does when the HIPE DAGs are launched are

discussed in section 5.3.

5.2.3 Pipedown

After all the instances of lalapps inspiral hipe have run, ihope runs

lalapps cbc pipedown which sets up the Pipedown DAG. Pipedown takes the results

of all the different HIPE DAGs, combines them into SQLite databases, computes and

ranks triggers by FAR, and creates plots and tables of the results. Figure 16 details

8There are correlated noise sources between the two Hanford interferometers, H1 and H2, so this

test is less effective for those two interferometers.
9See section 5.3.5 for details on how this is done.

10The number of injection runs to carry out and the types of injections to perform in those runs

are specified in the configuration file. See section 5.3.5 for more details.
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the steps Pipedown takes to carry out these goals. Shown are the steps taken for a

single veto-category; this diagram is repeated for each veto-category (by Pipedown,

not by ihope). In-depth details of Pipedown are discussed in Section 5.5.

5.2.4 DAX

After Pipedown has completed, ihope writes a DAX that can be used to launch the

pipeline. A DAX is an abstract workflow in which elements such as file locations are

variables. The DAX is turned into a DAG by the Pegasus Workflow Management

Service [72]. The HIPE DAGs are then distributed across a compute cluster; after

they finish, the Pipedown DAG is launched.

5.2.5 The Pipeline in Detail

Now that we have established an overview of ihope, we will step through it in detail,

using a toy analysis period of 10 240s as an example. In this analysis we will use three

interferometers: the 4-kilometer Hanford detector (H1), the 4-kilometer Livingston

detector (L1), and the 3-kilometer Virgo detector (V1), and we will add one injection

run, which we label BNSINJ. In section 5.3 we step through each of the programs that

HIPE launches to carry out the analysis. Next, in section 5.5 we detail the programs

launched by Pipedown in order to combine results from the HIPE DAGs.

The programs run in the HIPE DAG have been presented in prior publications; cf.

[63, 12, 34, 62]. Here, we provide a review of how each of these programs are run in

ihope. Pipedown is a new addition to the ihope pipeline, and is presented here for

the first time. The routines the Pipedown programs carry out to compute false alarm

rates are based on earlier programs described in [62], however.

5.3 HIPE in Detail

Figure 18 shows the segments that are available to analyze during our toy analysis

period. The selected segments are Science segments minus CAT1 veto segments; they

are what ihope passes to HIPE to analyze. Figure 19 shows all of the XML files that

the FULL_DATA HIPE DAG creates in our toy analysis. We will use this figure and

Figure 15 as guides as we step through each stage of HIPE.
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100

5.3.1 Data Find

As can be seen in Figure 15, the first step in HIPEis to run ligo data find. Data

from all of the interferometers are stored in frame files in central locations at every

computer cluster. Frame files can contain multiple channels recorded from the inter-

ferometers. For analysis purposes, we are only interested in files containing the strain

data channel, which is called LDAS-STRAIN in the LIGO detectors and h 16384Hz in

Virgo. ligo data find locates where the frame files covering the selected segments

are in the file system on the cluster. It then creates a cache files listing the loca-

tion of each these files in the datafind directory. These cache files are passed to

lalapps tmpltbank and lalapps inspiral, which use them to locate and open the

frame files for analysis.

5.3.2 From Continuous to Discrete Data

All of the equations we used Chapter 3 involving Fourier Transforms and the inner

product have assumed continuous time- and frequency-domain data series. Likewise,

the integrals over frequency space were from −∞ to +∞. In practice, of course, the

data is discretely sampled and is neither continuous nor infinite in extent. Both the

LIGO and Virgo strain data are sampled at 16384 Hz. Since even the lowest mass

templates (i.e., waveforms with the highest frequency components) used in current

CBC searches terminate at frequencies ∼ 1.5 kHz, this sampling rate is much higher

than is needed for our purposes. To ease computational requirements the time series

is therefore downsampled to 4096 Hz prior to analysis [63]. This sampling rate sets

the Nyquist frequency, fNyquist, at 2048 Hz. To prevent aliasing, a low-pass time-

domain digital filter with a cutoff at fNyquist is implemented to pre-condition the data

[63]. On the low-frequency end, seismic noise dominates the interferometers’ power

spectrum. We therefore also impose a high-pass digital filter in the time domain.

The cutoff frequency of the high-pass filter, fc, is set to be a several Hz lower than a

low-frequency cutoff, f0, that is determined by the characteristics of each detector’s

power spectrum. These values are set in the configuration file.11 Both the low- and

11In both S5 and S6, f0 was set to 40 Hz for the LIGO interferometers due to the rising seismic

noise at that frequency (see Figure 7). For Virgo’s first science run, f0 was set to 60 Hz [6]; for VSR2

and 3 this was reduced to 50 Hz (see Chapter 7). For all interferometers, fc was set to 30 Hz in S6.
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high-pass filters will ring at the start and end of a time series, corrupting the data.

Thus we must remove the first and last tpad of data after applying the filters and prior

to analyzing. The duration of tpad is also set in the configuration file; for both S5 and

S6 we used 8 s.

To Fourier Transform the data, we use the Fast-Fourier Transform (FFT) algo-

rithm [12]. The FFT imposes two constraints on the data. First, the number of

points in the data series must be a power of two. Second, the FFT associates the last

point of the data series with the first point; i.e., it wraps the data around on a loop.

This means that as a template is filtered toward the end of the time series, any points

extending beyond the end of the series will be placed at the beginning, corrupting the

data. Thus the first tchirp points of the SNR time series are corrupted, where tchirp is

the chirp length of the template, and must be thrown out [31].

The chirp length is defined as the length of time it takes for the binary to go

from f0 to the frequency at which the binary passes ISCO, fisco. As discussed in

Chapter 2, the pN approximation breaks down at fisco; therefore we must terminate

all integrals at this point. Combining this with the limits of Nyquist and seismic

noise, all frequency domain integrals are limited to the region f ∈ [f0, fmax) where

fmax = min(fNyquist, fisco) [31].

The PSD is estimated using a variation of Welch’s method [31]. This involves

breaking a data segment up into several bins of equal duration. Within each bin, the

data is transformed to the frequency domain via the FFT. Thus the number of points

in each bin must be a power of two, and the bins must be overlapping to account

for corruption at the beginning and end of each segment. Since the data is discrete,

this results in a discrete number of frequency bins. The median value within each

frequency bin is then chosen across all the data segments to construct Sn(|f |). We

use the median — as opposed to the mean — to buffer the PSD from over-estimation

in the presence of a signal or glitches [31].

The computation of Sn(|f |) is also affected by the discontinuity between the first

and last point of the data time-series. Additionally, recall from Chapter 3 that to

match filter the data, we filter s̃(f) with:

h̃∗(f)

Sn(|f |)
This is known as the kernel of the filter. Since Sn(|f |) is a part of the kernel, the



102

impulse response of the kernel is such that the entire data series would be corrupted if

a delta function existed in the data. To limit the corruption due to the wrap-around

and the “ringing” of the kernel, we truncate the PSD [31]. This is done by estimating

PSD using Welch’s method, inverse transforming
√
S−1
n (|f |) to the time domain,

zeroing out the first and last tinvspectrunc seconds of the time series, then transforming

back to the frequency domain. This limits the corruption due to the wraparound to

the first and last tinvspectrunc seconds of the time series. The truncation does cause

some smoothing out of high Q features, such as power-line harmonics; however, since

we search for relatively broad band signals this smoothing has little effect on the

search. The value of tinvspectrunc was set to 8 s for both S5 and S6.

For more details on how the PSD is estimated and the matched filter is imple-

mented in CBCs searches, see [31] and [12].

5.3.3 Data Segmentation

lalapps inspiral is the program that constructs the SNR time series for templates

laid out in a bank by the program lalapps tmpltbank [63]. The SNR time series

is constructed according to equation 3.34 and the templates are laid out using the

metric defined in equation 3.41. Since both of these equations involve the inner

product defined in equation 3.11, both programs must compute the PSD, Sn(|f |), as

well as the Fourier Transform of the data, s̃(f).12

The wrap around of the FFT and the Welch median PSD estimation method put

limitations on how much data can be analyzed at once; they also require data to be

overlapped due to corruption at the start and end of segments. These considerations

require us to carefully segment the data for analysis. The things we must consider

are [31]:

• The low-pass and high-pass digital filters corrupt the first 8 s of an analysis

segment, or block.

• In order to estimate the PSD using the Welch median method, we must break

the block up into several segments; data in each segment is transformed via the

12We do not Fourier Transform the templates as this would be computationally expensive [31].

Instead, we use the stationary-phase approximation, which is an analytical method that allows us

to express the templates in the frequency domain directly [73, 74]. For a derivation, see [31].
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FFT independently.

• The FFT requires the number of points in each segment to be a power of two.

• The wrap around of the FFT causes the first tchirp seconds of each segment to

be corrupted due to the template, and the first and last 8 s of the segment to

be corrupted due to the inverse PSD.

• Each segment must therefore overlap so as not to lose data from the corrupted

parts of the FFT.

In initial and enhanced LIGO the low-frequency cutoff f0 was set to 40 Hz (see Figure

7. In the low-mass CBC search, the longest template is therefore ∼ 33 s in duration.

The smallest power of two larger than 33 is 64; thus the first 64 s of each segment

must be overlapped by a previous segment. The end of each segment only needs to

be overlapped by 8 s to account for the PSD corruption. However, for book-keeping

simplicity, the last 64 s of each segment is also discarded. Thus, all the segments must

overlap each other by 128 s. Since the segments must be a power of two, this means

each segment must be 256 s in duration [31].

In deciding upon the number of segments to use in the median PSD estimate we

must consider a few factors. The more segments we have, the more accurate the

PSD estimation will be. However, more segments also means that more time will

be grouped together. If the PSD changes over this period, our estimate will be off.

Furthermore, the number of segments used sets a minimum period of time that we

must have continuous data. If a selected segment is shorter than that period, we

cannot analyze it.

In initial and enhanced LIGO we have chosen to use 15 overlapping segments for

each PSD estimation. Since each segment is 256 s long, with overlaps of 128 s, this

means that each block must be 2048 s long. Add to this the needed 8 s pad at the

start and end of the block to account for the corruption of the filters, and we find

that we need a continuous 2064 s of data in order to do the analysis. If a selected

segment is longer than 2064 s, then it will be broken up into several blocks. Each

block is overlapped by 72 s to account for the time thrown out at the beginning/end

of the first/last segment in each block and the 8 s pad. If the selected segment is not

a multiple of 2048 (as it most likely will not be), then the last block in the segment is
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overlapped more so as to analyze the entire period. The segments in this last block

that overlap with non-corrupted time in the previous block are simply not match

filtered, although they are used for the PSD estimation of the last block.

The effects of this data segmentation on our toy analysis can be seen in Figure

19. The top three lines show the selected segments. Each TMPLTBANK and INSPIRAL

jobs corresponds to a single chunk in a single detector. As can be seen, every chunk

overlaps by 72 s, except for the last one in each segment. Also note the first selected

segment in V1. As seen in Figure 18, a CAT 1 veto broke the V1 Science segment

into two selected segments. Since the first selected segment is only ∼ 900 s long, it

cannot be analyzed. This can be seen in the TMPLTBANK and INSPIRAL lines: there

are no V1 jobs covering this period. This is part of the reason why CAT 1 vetoes

are only used for seriously compromised data. Overuse of CAT 1 vetoes could lead

to large amounts of unanalyzed time if they broke the data up into selected segments

that were shorter than 2064 s.

5.3.4 Template Bank

The first step in the HIPE pipeline after data_find is to create a template bank.13 As

stated above, lalapps tmpltbank is the program that constructs the bank. HIPE cre-

ates one tmpltbank job for each detector and for each chunk. Since the PSD is re-

estimated for each chunk the metric on the parameter space (given in equation 3.41)

will change from job-to-job, resulting in a different template bank for each analysis

block and for each detector. However, the changes in the PSD are usually small, and

so the bank stays roughly the same across an analysis period. In order to calculate

the PSD lalapps tmpltbank reads in the frame cache, loads the data, applies the

low- and high-pass filters, down samples to 4096 Hz, then computes the PSD using

the Welch median method [12].

Variables such as what pN order to use to lay out templates, what space to

lay them out in, and what minimal match to use are command-line arguments to

lalapps tmpltbank and can therefore be set in the configuration file. As stated in

Chapter 3, for S5 the bank was laid out in τ0 and τ3 space using 2.0 restricted pN

13Recall from section 3.2 that a template bank is a collection — or bank — of waveforms – or

templates — that cover a parameter space. How they are laid out is determined by computing a

metric on the parameter space [54, 55, 56, 57, 58].
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templates to calculate the metric, such that the maximum loss in SNR due to the

discreteness of the bank is ∼ 3% [21, 22, 61]. By S6, it was possible to generate

restricted 3.5pN templates. However, the bank metric and best coordinates to use to

lay out templates is unknown at 3.5pN order. While the pN order of the templates

should be the same as the pN order used to calculate the bank metric, it was found

that using 3.5 pN waveform with a 2pN metric did not significantly hurt the efficiency

of the pipeline to recover software injections. As a result, restricted 3.5 pN templates

were used in S6 and they were laid out using the 2 pN metric.

Figure 17 shows a typical template bank in both τ0, τ3 space and in m1, m2 space

for the low-mass CBC search.14 The parameters of each of these templates are stored

in a sngl inspiral table (the “sngl” stands for “single”; see section 5.4 for more

details), which is saved in an XML file. Also stored in the sngl inspiral table are

the metric components around each template. Each tmpltbank job outputs one XML

file, with naming convention:

{IFO}-TMPLTBANK-{GPS-START}-{DURATION}.xml

All of the tmpltbank files created in our toy 10 240 s analysis can be seen in Figure

19.

5.3.5 Injections

Software injections are the CBC group’s way to check that our pipeline is working.15

Since the number we can perform is only limited by computational power, we can do

a large number across a broad range of parameters and sky positions. Being able to

perform such Monte Carlo simulations allows us to test the efficiency of our pipeline,

tune parameters, and calculate rate limits to compare to astrophysical expected rates.

Injections are only performed in injection HIPE DAGs; these are later combined

with non-injection results by Pipedown. For example, in our toy analysis, we have

chosen to do one injection DAG, which we labeled BNSINJ. If we are performing an

14Note that the maximum total mass in these plots extends to 35 M�. This was reduced to 25 M�

for the last part of S6. See Chapter 7 for details.
15As mentioned in section 5.1 hardware injections exist too. These are also used to check that the

pipeline is working. However, because we cannot perform the large number of hardware injections

needed for Monte Carlo simulations — as we can with software injections — they are of limited use

for tuning and efficiency studies.
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(a) τ3 vs. τ0 (b) In component mass.

Figure 17 : A typical template bank in τ0, τ3 space and in m1, m2 space (where m1 is the mass

of the larger component mass). This plot generated from a H1 template bank file in the 10 240 toy

analysis. Note that the templates are more evenly distributed in τ0, τ3 space. As discussed in section

5.3.4, this is because the parameter space is approximately flat in τ0 and τ3 [54, 55, 56, 57, 58].

injection run then, prior to launching first inspiral jobs, HIPE runs lalappps inspinj.

Inspinj generates a list of injections to perform based on the input arguments. It

does not create the waveforms themselves; that is left to lalapps inspiral (see

below).

The configuration file determines how the injections are distributed in mass, mass-

ratio, sky-location, orientation, and time. For a given injection DAG, a minimum and

maximum component mass are specified, along with a maximum total mass. Addi-

tionally, what mass parameter to distribute the injections in must be specified. For

S5 and S6 injections were chosen to be distributed uniformly in component mass.

How to distribute the location of injections is also required. In S5 a galaxy cata-

logue was used for the location distribution [21, 22]; random galaxies were chosen

for an injection to occur in. For S6, the range of the detectors was large enough to

ignore inhomogeneities in the universe [10]; thus in S6 the location distribution was

changed to be randomly distributed across the sky. The orientation of injections was

distributed uniformly across inclination angles for both S5 and S6.

Injections are distributed randomly in time. However, to prevent too many in-

jections from occurring in the same period, a time-step and time-interval argument

are added. The time-step argument sets the average period of time between each

injection, and the time-interval sets the interval around that time-step in which an
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injection is randomly placed. For example, in S6 the time-step was set to 837 s and

the time-interval was set to 300 s. This means that if an injection occurs at time t0,

the next injection will be chosen to randomly occur in the interval (t0 + 837)± 300 s.

We distribute injections in distance based on the range of the detectors. We are

most interested in the region around the network’s horizon distance,16 we as this is

where the efficiency quickly drops from ∼ 1 to 0 (for a given false alarm rate). Since

the detectors’ sensitivity is mass dependent, we adjust the domain of distances in

which to distribute injections according to the mass-range and type of injections being

performed. Injections may be distributed uniformly in distance or in log distance.

When we distribute uniformly in distance, we tend to over populate the outer regions

of the range, since volume grows as r3. If we distribute uniformly in log distance, we

tend to over populate the inner regions of the range. For this reason, two injection sets

are typically done for a single mass-range and injection type: one that is distributed

linearly in distance and one distributed uniformly in log distance. Prior to analysis,

the choice of injection ranges is based on a best-guess of what the range will be from

PSD estimations at a single-detector SNR of 8. Since we cannot know the exact range

of the network of detectors until after the analysis is complete, extra injection runs

are done after the analysis. These runs are set up to better target the range around

the horizon distance so as to have good statistics for upper-limit calculations.

The waveform generator used by lalapps inspiral has the ability to create wave-

forms from several different template families, not just restricted non-spinning pN

templates. Thus we check how well spinning waveforms are recovered using our non-

spinning template bank. This was done for both S5 and S6 searches, as separate

upper-limits were produced for spinning NSBH and BBH systems. Additionally, we

can check how well various waveform families overlap with the pN approximation we

use for the templates in the template bank. For example, in the S6 low-mass CBC

search, NSBH injections were generated using the EOBNR psuedo-4pN model [75].

Each injection HIPE DAG will only draw from a single waveform family, with

a give range of parameters, and with a given random-number-generator seed. To

create a large number of injections, multiple injection runs are done; some of these

16Horizon distance is the furthest point the detectors can detect. From the antenna pattern

shown in Figure 5, we see that this point corresponds to a binary situated directly above or below

the detector, with an inclination angle of zero.
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will have the same range of parameter, with only the random seed changing. When

lalapps inspinj runs in a given injection run, it saves the list of injections to perform

to a sim inspiral table that lists the times, parameters, and waveform family of the

injections to create. (See section 5.4.2 for more details about the sim inspiral table.)

This table is saved to an XML file with naming convention:

HL-INJECTIONS {SEED} {USER-TAG}-{GPS-START}-{DURATION}.xml 17

SEED is number given as a seed to the random-number generator in inspinj in

the given DAG. USER-TAG is the user-tag given to each HIPE DAG by ihope. As

discussed in section 5.2.2, the non-injection DAG will be named FULL DATA whereas

each injection run will have a unique name to distinguish it from the other injection

runs. Unlike the FULL DATA tag, the injections’ USER-TAGs are set in the configuration

file. For example, since we have done one injection run in our toy analysis, we have

two unique user-tags: FULL DATA and BNSINJ. One INJECTIONS file exists for each

injection run; this file is loaded by lalapps inspiral to insert the injections into the

data.

5.3.6 First Inspiral

With the template bank and (for injection runs) list of injections generated, HIPE next

runs lalapps inspiral to match filter the data [63]. One inspiral job exists for each

tmpltbank job; i.e., there is an inspiral job for each detector and for each analysis

block. Inspiral loads the frame cache and the template bank corresponding to its

block. Additionally, if inspiral is being run in an injection DAG, it will read in an

INJECTIONS file.

Inspiral carries out the same data conditioning as tmpltbank (in fact, they call

the same code): data is read in, low- and high-pass filtered, and re-sampled [63, 12].

If inspiral is given an injections file it will create the waveforms that overlap its

analysis time prior to data conditioning. Waveforms are generated in the time-domain

using the parameters stored in the sim inspiral table and added directly to the data

stream in memory. The data is then low- and high-pass filtered and re-sampled. Note

17The HL prefix on the INJECTIONS file is an anachronism from when searches were only done

between the two LIGO sites. The sim inspiral table actually contains injection information for all

the detectors in the search.
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that tmpltbank does not load injections. Instead, the same bank is used for both

non-injection and injection runs. While this introduces a subtle difference from the

real situation, the effect on the template bank is negligible, since the median estimator

is used, and since the number of injections in a block is limited by the time-step and

time-interval arguments given to lalapps inspinj.

After the data is conditioned and the PSD estimated, inspiral reads in a tem-

plate from the TMPLTBANK file, generates it (in the frequency domain), then match

filters it with the data to create the (complex) SNR time series for the given tem-

plate [63, 12]. This is repeated for each template in the bank file. For injection runs,

an optional argument enable-inj-filter-only can be turned out that causes the

inspiral to only filter segments containing an injection. This cuts down on compu-

tational time and has no effect on the analysis, since we are only interested in times

around an injection (all other times are assumed to return the same result as the

non-injection run).

As discussed in Chapter 3 we identify triggers by finding points where the SNR

(ρ) is at a maximum. Due to noise, however, there will be multiple local maxima

across the duration of a template. We must therefore employ time-domain clustering

on the SNR so as to associate a single trigger with an event. This is done by using

the max over chirp length algorithm [31]. Max over chirp length uses a sliding time

window to select triggers: for every point in time, a point is only kept if there is no

other point with a ρ greater than it within the chirp length of the template. Once

a trigger is identified, the time at which it occurs is associated with the coalescence,

or end-time, tc, of the binary. If the SNR of the trigger exceeds our desired SNR

threshold, it is kept. The SNR threshold is set in the configuration file; for both S5

and S6 it was set to 5.5.

Due to the high overlap between templates in the bank, a single event can cre-

ate triggers across multiple templates. In order to associate a single trigger with a

single event, we also need to cluster across the bank. lalapps inspiral offers two

options: time-window clustering, and TrigScan [76]. The time-window clustering is

the simplest of the two: the time series is split up into windows with a set dura-

tion (determined in the configuration file). Within each window, the trigger with the

largest SNR is kept while all others are discarded. This method has the advantage

of being simple, and it guarantees that the trigger rate in a single detector will not
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exceed one per the window duration. However, choosing the size of the window is

difficult and somewhat arbitrary. Different templates have varying impulse responses

and will “ring” for varying amounts of time depending on the strength of a signal or

glitch. Thus the window is unlikely to cause only one trigger to be associated with

one event. Additionally, a glitch that creates triggers at in the high-mass region of

the template bank can cluster away a true signal candidate that created triggers at

the low-mass region of the bank,18 even though the glitch and the signal candidate

look nothing like each other.

A more sophisticated approach is to use TrigScan clustering [76, 62]. Rather than

simply use the time-dimension, TrigScan also pulls in information about the parame-

ters of the templates to cluster. The method is similar to that of coincidence testing,

discussed in section 3.4: for a given trigger, TrigScan constructs an e-thinca ellipsoid19

with size εts around the trigger using the bank metric computed by tmpltbank. (The

value of εts is determined from tuning studies and is set in the configuration file).)

It then collects all triggers that fall within that ellipse. Ellipses are then constructed

around each new trigger found, and more triggers are collected around them. This

continues until no more triggers can be found within any ellipse. The trigger with

the largest SNR amongst the collected triggers is kept and the others are discarded

[76, 62]. By involving parameter information this method has the advantage that it

can cluster on a good candidate on in one region of the template bank without being

affected by a glitch in another region of the template bank. Also, since time is in-

corporated in the metric used to construct the e-thinca ellipse, the size of the cluster

window in the time dimension will adjust for each template.20 The disadvantage to

this method is that it does not guarantee a maximum trigger rate. (This proved to

be a problem for S6; see Chapter 7 for details.)

All surviving triggers are saved to the sngl inspiral table with their template

parameters, SNR, and end time. The “end time” is the point when the frequency in

pN approximation goes to infinity [31]; it is how we identify when a trigger occurs.

This table is stored in a XML file; the naming convention used is:

18Refer to figure 17.
19Recall from section 3.4 that an e-thinca ellipse defines the volume of parameter space around a

template for which a signal with the template’s parameters will fall to some probability [34].
20Basically, shorter-duration templates will have larger time windows since we cannot localize

their parameters with as high confidence as we can longer-duration templates [76].
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{IFO}-INSPIRAL FIRST {USER-TAG}-{GPS-START}-{DURATION}.xml

All of the FULL DATA INSPIRAL FIRST files that are created in our analysis are shown

in Figure 19. There will be an equal number of BNSINJ files, the only difference in

the names being the USER-TAG.

lalapps inspiral is also used to calculate χ2 values for triggers. However, since

this is not used until the second stage of the pipeline, we withhold discussion of this

until section 5.3.9.

5.3.7 First Coincidence

Now that we have lists of single-detector triggers we can perform the coincidence

test across detectors. This is done by lalapps thinca [62]. Each thinca job reads

in multiple inspiral files. The number and duration of thinca jobs is determined

by coincidence times. A coincident segment of time is determined by the number

of detectors that are operational — i.e., in Science mode and not vetoed — during

that segment. For example, if H1 and L1 are operating for the same period of time,

we refer to this as H1L1-coincident time. One thinca job will be created for every

contiguous coincidence time. This is illustrated in Figure 19. Only H1 and L1 were

analyzed for the first ∼ 1700 s of the analysis. Thus, one instance of thinca, or job,

is run for this period. At GPS time 967230087 Virgo turns on, and for the next 2176 s

all three detectors are analyzed. This results in another thinca job being created for

this H1L1V1-coincidence time. Afterward, L1 turns off, and so an H1V1 thinca job

is created for the next 1755 s. This is again followed by a period of H1L1V1-coincident

time.

Unlike tmpltbank and inspiral jobs, there is no minimum required duration of

contiguous analysis time for thinca; in principle, a thinca job could be as short as

one second. A maximum duration of 3600 s is imposed to protect against memory

errors. If a period of coincidence time is greater than 3600 s and less than 7200 s,

however, the time will be evenly split between two thinca jobs. This can be seen in

the last H1L1V1-coincident segment in Figure 19. Note that no overlap is applied

between thinca jobs.

Thinca performs the coincidence test using the method outlined in section 3.4: it

constructs an e-thinca ellipsoid around each trigger with size εthinca using the metric
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components computed by tmpltbank [34]. The size of εthinca is a tunable parameter

and is set in the configuration file [62]. Single-detector triggers are considered coin-

cident if their e-thinca ellipsoids overlap. A single trigger can take part in multiple

coincidences if it overlaps with multiple triggers. A triple (or higher) coincidence can

only occur if all three triggers in each detector overlap with each other. If one trigger

overlaps with the other two, but those two do not overlap with each other, two double

coincidences will be created.

Any single-detector triggers found to be in coincidence with a trigger with at least

one other detector are saved to the sngl inspiral table in the output XML file.

One XML file is created for each thinca job. Note that this means a single thinca

XML file will contain triggers from multiple detectors; how these are stored in the

sngl inspiral table is discussed in section 5.4. The naming convention for first

coincidence files is:

{IFOS}-THINCA FIRST {USER-TAG}-{GPS-START}-{DURATION}.xml

IFOS is the coincidence time the thinca file covered; it is not necessarily the coin-

cidence types stored in the file.21 Any single-detector trigger that is not coincident

with any other detector is discarded.

Thinca also has the ability to apply higher-category vetoes and do time slides. As

this is not done until the second stage, we withhold discussion of this until section

5.3.10.

5.3.8 Trigbank

The completion of first coincidence concludes the first stage of the HIPE pipeline.

To carry out the second stage of the pipeline, we must first gather all surviving

triggers in preparation for the second run of lalapps inspiral. This is done by

lalapps trigbank [63]. The number of trigbank jobs is determined by the number

of single-detector analysis blocks and the number of coincidence times. Within each

analysis block, a separate trigbank job is created for each coincidence time that ex-

ists in that block and for each detector. For example, in our toy analysis, the first H1

21For example, an H1L1V1-coincident time file will have prefix H1L1V1, yet can contain up to four

coincidence types: H1L1, H1V1, L1V1, and H1L1V1.
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analysis block overlaps H1L1-coincident time and H1L1V1-coincident time. There-

fore, two trigbank jobs are created for H1 during this time, one for each coincidence

time.

Each trigbank job loads all first thinca files of a given coincidence time that

overlap its analysis block. All triggers from a single detector are picked out of the

thinca files and redundancies are removed. We do this because the same template

will have multiple entries in the sngl inspiral table if it generated multiple single-

detector triggers across the analysis block. As these files will eventually be loaded

by inspiral to perform match filtering (see section 5.3.9, below), we only wish to

keep one entry for the template, else inspiral will filter the same template multiple

times. The results are then saved to a sngl inspiral table in a TRIGBANK file; the

naming convention is:

{IFO}-TRIGBANK_SECOND_{COINCIDENT-TIME}_{USER-TAG}

-{GPS-START}-{DURATION}.xml

COINCIDENT-TIME is the coincident time from which the triggers in the file came. By

adding this tag we ensure that a different file exists for each coincidence time. Figure

19 shows all of the FULL DATA TRIGBANK files created in our toy analysis.

5.3.9 Second Inspiral

After the TRIGBANK files have been generated, lalappps inspiral is run again [63].

As with first inspiral, the second instance of inspiral loads the strain data from

the frame files, conditions the data, adds injections (for injection runs), and match

filters the data. There are two important differences: first, χ2 is now computed along

with SNR, and a χ2 threshold and r2 veto are applied to triggers. Second, rather than

load a TMPLTBANK file, a TRIGBANK file is used. Since the TRIGBANK file only contains

the single-detector triggers that passed first coincidence, this reduces the number of

triggers for which inspiral will have to calculate a χ2 value.

χ2 is computed for any trigger that exceeds the SNR threshold. (Note that triggers

have been defined before this happens; i.e. the max-over chirp-length algorithm is

still based solely on SNR.) As per the equations outlined in section 3.3 of Chapter

3, this is done by breaking the template up into bins of equal power, match filtering

each bin individually, and comparing the SNR in each bin to the expected SNR in
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a single bin [32, 12]. The number of bins used is set in the configuration file. For

S5 and S6 16 bins were used, making the number of degrees of freedom equal to 30.

This process is computationally expensive [12]; hence it is only used for triggers that

survive first coincidence. Once the χ2 value for a trigger is computed, the χ2 threshold

is applied. While the exact value of the χ2 threshold is SNR dependent, the value

of χ2
∗ (see equation 3.66 in Chapter 3) is a tunable parameter [62] that is set in the

configuration file. If a trigger has a χ2 that exceeds the χ2 threshold, it is discarded.

Inspiral also computes an r2 value for each trigger across a period of time that is

also set in the configuration file (see equation 3.67 in Chapter 3). If the r2 value

exceeds a threshold r2
∗ determined in the configuration file, the trigger is discarded.

For values of χ2
∗, r

2
∗, and the size of the r2 window used for S5 see [33, 62]. The same

values were used for S6. Inspiral does not compute effective SNR nor New SNR.

Instead, the χ2 value for surviving triggers and the number of degrees of freedom are

saved to the sngl inspiral table along with the triggers’ other information (SNR,

template parameters, end time). Later programs use this information to compute

effective or New SNR as needed (cf. section 5.5.1).

Clustering across the bank (either by the hard-window method or TrigScan) is still

based on SNR. However, because this occurs after the χ2 and r2 vetoes are applied,

the trigger that survives bank clustering may not be the same as in first inspiral.

For example, a glitch or signal may cause a trigger with a large SNR but a poor χ2. If

this template had the largest SNR across the bank, it would have been selected in the

first stage. However, if the template’s χ2 or r2 value exceeds the veto threshold, it will

not survive to the bank clustering phase, and so another template will be selected.

As can be seen in Figure 19, one second inspiral job is run for every trigbank

file. Since there are many more trigbank files than tmpltbank files, this may seem

to defeat the purpose of limiting the number of triggers for which χ2 is calculated.

However, templates in a given trigbank file are only filtered through segments that

overlap with the corresponding thinca file (the entire analysis block is used for to

compute the PSD [63]). For example, in our toy analysis, there are two trigbank files

— and therefore two second inspiral jobs — for the first H1 analysis block. This

was because part of the way through the block, V1 turned on, and so we switched

from H1L1-coincident time to H1L1V1-coincident time. The second inspiral job

that reads in the H1L1 trigbank file in this analysis block will only match filter the
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segments that overlap the H1L1-coincident time (which is the first 1672 seconds of the

block). Likewise, the second second-inspiral job in this block, which is associated

with the H1L1V1 trigbank file, will only match filter the segments that overlap

H1L1V1-coincident time (which is the last 376 seconds). For this reason, the naming

convention for second inspiral’s output XML files is:

{IFO}-INSPIRAL_SECOND_{COINCIDENT-TIME}_{USER-TAG}

-{GPS-START}-{DURATION}.xml

By limiting the filtering in this manner we minimize the number of triggers for which

we need to compute a χ2 value [63].

5.3.10 Second Coincidence

Since many triggers will have failed the χ2 and r2 vetoes in second inspiral (and

since slightly different templates may have taken their place) we must again perform

the coincidence test [62]. This is carried out by lalapps thinca with many of the

same arguments as before. In fact, the CAT1, zero-lag coincidence job will perform

exactly the same operations as its first stage counterpart; even the start/end times

(which correspond to the coincidence times) will be the same. The only difference is

the second stage coincidence will read in the corresponding INSPIRAL SECOND files.

It is at this point that we perform time-slides and apply higher-category (i.e., >

CAT1) vetoes. This results in several additional thinca jobs than were carried out

at first stage. Specifically, for a non-injection run, there will one zero-lag and one

slide thinca job for each category of veto analyzed.22 We do not perform slides for

injection runs, but we do apply higher vetoes.

Higher category vetoes are applied by feeding lalapps thinca an ASCII file con-

taining the list of veto segments to apply for a given detector (and by adding a

--do-veto argument). These ASCII files are created by ihope at run-time from

the veto XML files created by ligolw segments from cats,23 and are stored in the

segments directory. A separate ASCII file is given to thinca for each detector. If

22Although there are, in principle, up to four categories of vetoes — see table 5.1 — not all of

them have to be analyzed by HIPE. The specific categories that we wish to analyze are determined

by the configuration file. For example, note that in Figure 19 there are no CAT4 THINCA SECOND

files.
23Thinca does not read the XML files directly because it was written several years before
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a veto file for a detector is specified, thinca loads it, then removes all triggers from

the given detector that have end times intersecting the veto segments. This is done

prior to performing the coincidence test. As mentioned above, vetoes are applied

cumulatively. Thus, the CAT2 veto file will contain the union of category 1 and 2

veto segments; CAT3, the union of 1, 2, and 3; etc. For this reason, thinca only

needs to load one veto file per detector per job.

Slides are carried out by giving thinca a --num-slides argument, followed by

arguments giving the relative offset to apply for each detector. Thinca uses these

arguments to construct offset vectors for each slide. The offset values for each detector

in a given slide are determined by the slide number and the relative offsets of the

detectors. For example, if the H1 offset is 0 (set via the --h1-slide argument), the

L1 offset is 5 (via --l1-slide), and V1 offset is 10 (--v1-slide), then for the third

slide, the offset vector will be:

~O3 = [∆tH1 ∆tL1 ∆tV1] = [0 s 15 s 30 s] (5.1)

The num-slides argument sets the total number of slides to perform. The number

of slides will be twice the value given by this argument: one set of forward slides,

and one set of backward slides. For example, if num-slides is 20, 40 total slides will

be created: 20 slides with positive offsets and 20 slides with negative offsets. The

number of slides to perform, and the offset for each detector is set in the configuration

file. For both S5 and S6, the relative offset between the Hanford detectors and L1

was 5 s; the relative offset was 10 s between the H1 and V1 in S6. H1 and H2 were

not slid with respect to each other (i.e., their relative offset was 0 for all slides) due

to correlated noise between them (see Chapter 6 for details). In both S5 and S6, 100

slides were used (50 forward slides and 50 backward). These could be increased if we

had a particularly loud coincident trigger; see Chapter 7 for more details.

Both the num-slides and offset arguments must be integers. This means that

thinca cannot perform slides with offsets that are fractions of a second. Furthermore,

due to the way thinca constructs the offset vectors, it is not possible to mix positive

offsets with negative, nor is it possible to have two separate vectors in which two of

the detectors have the same offset (unless the two detectors have the same relative

ligolw segments from cats. Rather than try to adjust thinca to read the new XML files, we

found it easier to simply convert the XML to ASCII format.
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offset). For example, thinca cannot create the vectors [H1 = 0 s L1 = 5 s V1 = 10 s]

and [H1 = 0 s L1 = 5 s V1 = 20 s]. This limits the total number of slides thinca can

perform for times in which there are more than two coincident detectors.

For each slide, thinca adds the offsets to the end times of the single-detector

triggers then performs the coincidence test. This is done after vetoes are applied, so

that higher-category vetoes are effectively slid around with the offset, too. Slides are

performed on a ring : triggers that are slid past the end time of the thinca job are

placed at the beginning of the time. This means that a thinca slide job does not

have to load triggers from any other segment. It also means that triggers occurring in

single-detector time cannot be slid into coincidence time. Thus we are safe discarding

triggers that occur during single-detector time after the first stage coincidence test.

Since there is no minimum required duration for a thinca file, this can mean that

some slides will be redundant if a file is too short. Studies have shown that this is

rare, however, and so it has little effect on the background analysis.

The naming conventions for second thinca output XML files are:

{COINCIDENT-TIME}-THINCA_SECOND_{COINCIDENT-TIME}_{USER-TAG}

-{GPS-START}-{DURATION}.xml

for the CAT1 zero-lag files, and:

{COINCIDENT-TIME}

-THINCA_SECOND_{COINCIDENT-TIME}_{USER-TAG}_CAT_{N}_VETO

-{GPS-START}-{DURATION}.xml

for the Nth-higher veto category.24 Slide files follow the same convention, except that

THINCA SECOND is replaced with THINCA SLIDE SECOND.

One important final note: by definition, when an detector is vetoed, it is no longer

considered to be “on.” This means that when we apply the higher-category vetoes,

coincidence times will change. For instance, if a category-2 L1 veto comes on for t

seconds during H1L1V1-coincident time, then at CAT2 (and all higher cumulative

categories) that period of time is now H1V1-coincident time. The same rule applies

to time slides. Second thinca files, however, are grouped by whatever the coincidence

24Note that the second COINCIDENT-TIME in the naming convention is unnecessary; it is simply a

relic of the trigbank and second inspiral naming conventions and has no other meaning.
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time was at CAT1, and this does not change after vetoes are applied (we seen this

in Figure 19: all the THINCA SECOND files have the same start and end times across

all veto categories). This means that for higher veto categories, a THINCA SECOND file

will contain multiple coincidence times. Unfortunately, thinca does not store which

triggers fall in which coincidence times, nor does it store the duration of each of the

coincidence times in its output file. As discussed in Chapter 4, knowing the start and

end of coincidence times is important information: uncombined FARs are computed

for each coincidence type, and FARs are not combined across coincidence time. Thus

later programs must re-apply the vetoes to sort out the triggers and times. This is

done by ligolw thinca to coinc, which is the first program to run in Pipedown (see

section 5.5).

Figure 18 : The Science, category 1 vetoes, and selected segments of H1, L1, and V1 between GPS

times 967228343 and 967238583.

5.4 Data Storage

Before stepping through Pipedown, we pause to detail the table structure used to

store triggers in files. Table structure is central to Pipedown: part of its purpose is
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Figure 19 : The selected segments and all zero-lag FULL DATA files created by HIPEfor the segments

shown in Figure 18.
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to convert from older table structures to newer, more convenient ones, and all the

programs Pipedown runs take advantage of these newer tables. We begin by reviewing

the sngl inspiral table, and how this was used to store data up to this point.

5.4.1 The sngl inspiral Table

As discussed above, the sngl inspiral table is the table used to store data by nearly

every HIPE program: lalapps tmpltbank, lalapps inspiral, and lalapps thinca

all use it to store template and both single-detector- and coincident-trigger informa-

tion. Consequently, the sngl inspiral table has a large number of columns to store

all needed data. Table 5.7 shows some of the relevant columns used for the CBC

analysis and their purpose. There are several extra columns not discussed here.25

Each row in the sngl inspiral table represents a single trigger or template in a

single detector. Associated with each row is an event id to uniquely identify each

event. This provides a convenient way to retrieve information about a template or

single-detector trigger. Coincident information is more difficult to store, however,

since coincidence requires grouping rows together. Since the sngl inspiral table

was the only available way to store trigger data in a file when lalapps thinca was

written, a method was devised to encode coincidence in the event id. The id was

set to be 18 digits long. The first (starting from the left) 9 digits were the GPS time

of the trigger. The next 4 digits gave the slide that the coincidence was from, where

0000 was zero-lag. The last 5 digits formed a counter that assigned a unique number

to each coincidence. For example, the first coincident trigger in H1L1-coincident time

in the first slide of our toy analysis has event id:

967228415︸ ︷︷ ︸
GPS time

0001︸︷︷︸
slide number

00001︸ ︷︷ ︸
event counter

Any rows that had event ids with the same last 9 digits — i.e., if the slide number

and event counter matched — are coincident triggers.

25To see all current columns of the sngl inspiral, as well as any other table discussed in this

section, see the lsctables.py code in the LALSuite repository. A URL to the repository is given

in section 5.4.6.
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5.4.2 The sim inspiral and process Tables

Two other tables used by HIPE, as well as Pipedown, are worth mentioning: the

sim inspiral and process tables. The sim inspiral table is similar to the

sngl inspiral table. Instead of storing triggers, it stores lists of injections. Some

of the columns of the table are shown in Table 5.7. The table is indexed by the

simulation id. This id is simply a number: no information is stored in it, as it is

with the event id.

Note that both the sim inspiral and sngl inspiral table (as well as many other

tables) have process id columns. These are used to map their entries to the process

table. This table — the columns of which are shown in table 5.7 — is used to store

relevant information about the program that created the entry. Associated with the

process table is the process params table, which stores the arguments and values

given to the program at run-time. For example, all the injections created by a single

instance of lalapps inspinj will have the same process id in the sim inspiral

table. These will all point to a single entry in the process table and multiple entries

(one for each argument given to lalapps inspinj) in the process params table.

These tables are useful for troubleshooting problems and verifying the correct program

versions were used when an analysis was run. They are also used to associate a set

of injections with a given injection USER-TAG; see section 5.6.1 for details.

5.4.3 Coinc Tables

There were a few problems with using the sngl inspiral table to store coincident

information. First, the number of coincident events in a single file could not exceed

99 999, or else the event counter would spill over into the slide number. Likewise, no

more than 9999 slides could be stored in a single file. Third, it consumed more memory

than necessary. If a single-detector trigger formed coincidences in multiple slides (as

is often the case), multiple entries would have to be created in the sngl inspiral

table for it. The values in all columns (of which there are many) for these entries

would be exactly the same, except for the last 9 digits of the event id. Finally, any

coincident parameters, such as combined New SNR,26 would have to be computed on

26Recall from section 3.4 of Chapter 3 that single-detector parameters and statistics are combined

for coincident triggers. In the case of combined New SNR, we sum the single-detector New SNRs in
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the fly. For coincident statistics that could not easily be computed on the fly, such

as FARs, a sngl inspiral column (meant to store single-detector information) had

to be used, and the same value would be stored repeatedly for each detector in the

coincidence.

To remedy this situation, coincident event tables (coinc tables) were developed.

The coinc tables consist of the coinc inspiral, coinc event, coinc event map, and

the coinc definer table [77]. Additionally, there is the time slide table, although

this is considered to be a part of the experiment tables (see section 5.4.4). The

columns in each of these tables and their purpose is shown in tables 5.7 – 5.7.

The coinc inspiral table is the coincident analog to the sngl inspiral table.

Instead of storing single-detector information, the coinc inspiral table stores com-

bined statistics and parameters. As mentioned in section 3.4, how information is

combined depends on the parameter or statistic. Combined New SNR is calculated

by taking the quadrature sum of the constituent single-detector’s New SNRs, and

is stored in the snr column.27 Intrinsic parameters of the templates, such as chirp

mass (stored in the mchirp column) and total mass (stored in the mass column),

are combined by taking the mean of the of single-detector parameters. Coincident

end times are computed by taking the end time from the first detector when sorted

alphabetically. For example, in an H1L1 coincidence, the coincident end time will be

whatever the H1 end time is. In an L1V1 coincidence, the L1 end time will be used.

Similar to the original intent of the event id, a unique coinc event id is assigned

to each coincidence in a file to provide a quick way to identify them. Additionally,

the coinc event id is used to map entries in the coinc inspiral table to entries in

other tables. For every entry in the coinc inspiral table there is one entry in the

coinc event table, as well as multiple entries in the coinc event map table with the

same coinc event id.

The coinc event map table is used to map the coincident triggers in the

quadrature. For other parameters, see section 5.5.1.
27Admittedly, storing combined New SNR, not combined SNR, in a column named snr is a little

misleading. When the column names were defined, the snr column was intended to be a catch-all

for whatever statistic was used to rank triggers. This way, multiple searches that may not use the

same ranking statistic could use the same column. In retrospect, however, doing it in this manner

was probably not needed, since SQLite allows columns to be added at will (see section 5.4.7). At the

very least, the column probably should have been called something along the lines of ranking stat.
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coinc inspiral table to their constituent triggers in the sngl inspiral table. As

can seen in Table 5.7, the coinc event map table has three columns: a coinc event id,

an event id, and a table name. To map a single-detector trigger in the sngl inspiral

table to a coincident event, the single event’s event id is entered in the coinc event map

table next to the coinc event id of the coincidence it is part of. Likewise, all other

single-detector triggers that are a part of the coincidence will have entries in the

coinc event map table with the same coinc event id. In this way, one coincident

event is mapped to multiple single events. A single event id does not have to be

associated with one coinc event id. If a single event takes part in multiple coin-

cidences it can also be added to the coinc event map table, with each entry being

associated with a different coinc event id. By using an intermediate table we have

allowed for many-to-many mappings between coincidences and single events. As a

result, multiple entries do not have to be added to the sngl inspiral table, and the

event ids no longer need to encode coincident information. Event ids are therefore

changed to simple counters used to index the sngl inspiral table, so that each row

has a unique id. This fixes the problem of counter-overflow; the number of events

that can be stored in a single file is now only limited by disk or memory space.

Note that the table name from which a single event came — in this case, the

sngl inspiral table — is also stored in the coinc event map table. This is done so

that the coinc event map table can be used to draw multiple types of maps, e.g., it

is also used to draw mappings between coincident events and injections. The manner

in which injection mappings are drawn is more complicated, however.

By changing the event id to a simple counter, we have also freed it from storing

time-slide information. Information describing which particular slide an event belongs

to is instead stored in the time slide table. As listed in table 5.7, the time slide

table has an ifo, an offset, and a time slide id column.28 Each slide is given a

unique time slide id; each slide id is repeated in the time slide table for every

detector that was analyzed, with each row giving the offset (in seconds) applied to

that detector in that slide. For example, if H1, L1, and V1 are being analyzed, and

one of the slides has the offset vector given in equation 5.1, then that slide will have

three entries in the time slide table:

28Recall from Chapter 2 that “IFO” is an acronyms for “interferometer.”
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time slide id ifo offset

time slide:time slide id:37 H1 0

time slide:time slide id:37 L1 15

time slide:time slide id:37 V1 30

where we have assigned the slide the arbitrary id time slide:time slide id:37.29

Storing time-slides in this manner makes it easier to find what offset was applied

to each detector, and it allows for non-multiple slide vectors should a new version

of thinca be written. Coincident triggers (and, via the coinc event map table,

single-detector triggers) are mapped to time slides through two parallel tracks. One

path is through the coinc event table; the other is by way the experiment map and

experiment summary tables, which are discussed in the next section.

The coinc event table stores additional information about coincident triggers,

or events, as well as map events to other tables. Table 5.7 shows the coinc event’s

columns. Every coincident event will have one entry in the coinc event table via

their coinc event id. Since the table also has a time slide id column, it maps the

events to their respective time-slides (a many-to-one mapping). The table additionally

has an instruments column which gives the coincident time that the coincident

event occurred in, which is important for computing FARs. Coincident times are

also stored in the experiment table, which is discussed in the next section. The

likelihood column is used if a likelihood statistic is computed in a search. We

do not do this in the low-mass CBC search, however, and so it is unused. That

it exists in the table is due to the fact that the coinc event table, along with the

coinc event map, are search-independent tables. That is, they can be (and are)

used by multiple search pipelines within the CBC group. Contrast this with the

coinc inspiral and sngl inspiral tables, which are specific to CBC searches. An

advantage of having search independent tables is that they provide an easy way to

store data if a search is carried out that draws from multiple pipelines. Indeed, being

able to combine results from multiple pipelines is an active field of research.

Note that we have referred to coincident triggers as coincident “events.” The

reason for this is a “coincidence” can occur between other things besides CBC single-

detector triggers. For example, in order to know whether or not a coincident trigger

29All ids have the basic format [originating table]:[id column name]:[index number]. The

index number is what makes each id unique within a given class.
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resulted from an injection we must do injection finding. This involves checking the list

of coincident-triggers that came out of the pipeline to see if any occurred around the

time of an injection. If one is found, we draw a map between the injection (stored in

the sim inspiral table) and the coincident trigger (stored in the coinc inspiral)

table. This mapping is also a coincident “event.” Thus, we see that an “event” is

more abstract form of trigger.

To define what type of coincidence an event is, we use the coinc definer table.

This table is mapped to the coinc event table via the coinc def id column. The

coinc definer table groups together various types of mappings; its columns are

shown in table 5.7. A human-readable description of the type of mappings is given

in the description column. For example, all coincident events that are mapped to

sngl inspiral triggers will be associated with a single coinc def id. The entry

in the description column for this id will be sngl inspiral<-->sngl inspiral

coincidences. Mappings between injections (which are stored in the sim inspiral

table) and coincident events will have a different coinc def id, and the description

column will be sim inspiral<-->coinc event coincidences. The coinc definer

table is therefore useful to select coincidences formed by a specific method. For

example, if two types of injection finding were being experimented with (e.g., a time-

based method and an e-thinca ellipsoid-based method), the coinc definer table

would be needed to pick out which mappings occurred from which method. However,

since the current low-mass CBC search only performs one type of coincidence test

and one type of injection finding (see section 5.6.1 for details), the coinc definer

table is largely unused by Pipedown programs.

5.4.4 Experiment Tables

The coinc tables solved many of the problems and difficulties of saving coincident

information to a file. However, neither the older table structure nor the coinc tables

provided a way to store information about the experiments performed. In particular,

there was no way to store the live time of a slide, nor the data type of a trigger, i.e.,

whether the trigger came from playground data, data with playground excluded, time-

slides, or an injection run. Initially, there was also no way to store what coincidence

time a trigger was in. This was amended by adding the instruments column to

the coinc event table. However, the coinc event table only stores information if a



126

coincident event occurs. This means that if we perform an experiment, but nothing

happens during it, we cannot store information about the experiment, such as what

detectors were coincident during which times and for how long (i.e., live time). Even if

no coincident triggers occur during an experiment, we still want to know information

about it. This is particularly true for computing false alarm rates: we need to know

all the time that was observed in every slide, regardless of whether or not a slide

produced an event. The only way to keep track of experiment information, such as

live times, was to store it in auxiliary ASCII files. This could be confusing, and it

forced meta-data to be stored in file names.

For these reasons, the experiment tables were developed. The experiment tables

consist of the experiment, experiment summary, and experiment map tables. Their

columns are listed in tables 5.7 – 5.7. The experiment table lists the experiments

that were performed as well as information about each one. The gps start time and

gps end time columns give the period across which the experiment was performed.

In ihope, these columns are set whatever the start and stop times were that were

given to ihope to analyze. The search group and search columns define what group

performed the search (e.g., the CBC group, or the Burst group) and what type of

search was performed (e.g., lowmass). Since different instrument times are mutually

exclusive, and since we do not calculate FARs across them, every instrument time

that was analyzed in the search by the search group between the GPS start and

end times is listed as an independent experiment in the experiment table. Thus

the experiment table not only lists the experiments performed, it defines what an

experiment is.

Within each experiment, we apply various vetoes, perform slides, and construct

different data types (e.g., playground data is a distinct data type from slide data).

Each of these actions results in a slightly different realization of an experiment. To de-

fine and list these realizations, we use the experiment summary table. Table 5.7 shows

the columns of the experiment summary table. Each row has its own time slide id

and experiment id which maps it to the experiment and time slide table; thus,

each row gives information about every slide that was performed in each instru-

ment time. Additionally, there is a datatype column to enumerate each of the data

types constructed in every experiment. This can have one of five entries: all data,

playground, exclude play, slide, and simulation. The all data, playground,
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exclude play, and simulation are all zero-lag data types: playground is data con-

sisting only of times occurring during playground seconds (defined in section 5.1,

above), exclude play is the converse, and all data consists of both. The slide

data type is any non-zero lag data. We do not define a slide playground because

playground slides are rarely used.30

The simulation data type describes zero-lag data that has software injections in

it. This allows us to easily separate injection runs from non-injection runs. In order

to separate various injection runs we use the sim proc id column. The process id

of the lalapps inspinj job that created a set of injections is stored in this column.

All injections in a single injection run are created by a single inspinj job; thus all

these injections will have the same process id in the process id column of the

sim inspiral table. By storing the same value in the sim proc id column of the

experiment summary table, we map the two tables together. Note that this mapping

simply means that a given set of injections were performed during a realization of an

experiment. It does not mean that all events that occurred during that realization

were from injections. To pick out what events were due to injections and which are

due to noise, we rely on mappings in the coinc event map table.

The final mapping in the experiment summary table is the veto def name col-

umn. This column stores the name of a set of vetoes applied in the given realization

of an experiment, e.g., VETO CAT3 CUMULATIVE (the veto names are determined by

ligolw segments from cats). This column maps the row to the segment definer

table, which in turn maps to the veto segments, stored in the segment table. (See

section 5.4.5 for more information on segment tables.) In this manner, the type of

vetoes, and their segments, that were applied during an experiment can be retrieved

without needing external files.

All of the experiment summary columns we have reviewed so far serve to catego-

rize realizations of experiments. The duration and nevents columns, on the other

hand, store data about a realization. Perhaps the most important column is the

duration column. This column stores the amount of live time that exists in dur-

ing a coincident detector time during the experiment period (again, stored in the

experiment table and mapped to via the experiment id) for a given veto category

30Looking at all-data slides is not considered un-blinding the analysis.
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in a given slide for a given data type. The live time is computed by a single pro-

gram (ligolw cbc compute durations — see section 5.6.2 below) for all experiment

realizations, which stores the results in the duration column. This makes live time

retrieval quick and easy for other programs. The nevents column stores the number

of coincident events that occurs during an experiment realization.

The final experiment table is the experiment map table. This table maps coinci-

dent events to realizations of experiments defined in the experiment summary table.

It has two columns: an experiment summ id and a coinc event id. Having a table

devoted solely to mapping coincident events and experiments allows for many-to-

many mappings. This is needed: an experiment will have many events in it, and

a coincident event can occur in multiple experiment realizations. For example, all

zero-lag events will belong to the all data data type as well as either playground

or exclude play. The experiment map allows all of these events to be efficiently

stored in the same file, without needing to rely on file names to separate them. The

effect of vetoes and which events survive which category — a question that comes up

often — can also be ascertained by simply looking at what mapping exist between a

coincident event and experiment summ ids of various veto categories.31

5.4.5 The Segment Tables

As they have already been mentioned a several times, and are used by several codes,

we briefly describe here the segment tables. The segment tables consist of the

segment, segment definer, and segment summary tables [70]. The columns of the

segment and segment definer tables are shown in tables 5.7 and 5.7, respectively.

The segment summary table is not shown nor described here, as it is not used by

Pipedown programs.

The segment definer table serves to identify a collection of segments by name.

For example, all of the CAT3 veto segments for a given detector will be given a sin-

gle segment def id and have the name VETO CAT3 CUMULATIVE. The start and end

times of each segment in the collection are listed in the segment table; the mapping

between segments and their grouping in the segment definer table occurs via the

31Currently, Pipedown stores different veto categories in separate files, and so checking veto cate-

gories via experiment tables is not currently taken advantage of. Combining vetoes into a single file

is planned for the future, however.
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segment def id. As mentioned above, entries in the experiment summary table map

to the veto segments applied via the name in the segment definer table. The map-

ping is not done using the segment def id because each detector will have its own

entry, and therefore its own segment def id, in the segment definer table. Using

these mappings, we can re-construct the periods of time vetoed in any realization or

slide in an experiment.

For more information on the segment tables and how they are used by the segment

database, see [70].

5.4.6 Other Tables

There are many other tables in use by searches in the CBC group as well as the rest

of the LSC in addition to the ones presented here. These include meta-data tables

such as the search summary tables, as well as a large number of tables used by other

searches and search groups. Since these tables have little, if any, impact on the low-

mass CBC search, we do not describe them here. For a complete list of all the tables,

and their columns, see the lsctables.py code in the LALSuite repository. This

can be accessed online at: http://www.lsc-group.phys.uwm.edu/cgit/lalsuite/

tree/glue/glue/ligolw/lsctables.py

5.4.7 File Formats

It will be useful to also make a note of the file formats used to store data. As described

throughout section 5.3 all HIPE programs store data in LIGO_LW XML files. This is

convenient because XML files can opened, viewed, and edited using any text editor;

at the same time, they provide a standard format that can be interpreted by code

[71].

The downside to XML files is that the entire file must be loaded by a program

in order to parse its data. This puts a limit to how much data can be stored in a

file, and has proven to be troublesome when computing statistics, such as FARs, that

require large quantities of data. It also means that many files can only be handled

by computers with large amounts of memory, which limits the number of nodes in a

cluster a that a program can be executed on. Even then, periods of high glitch rate

occasionally exhaust memory, thus requiring more aggressive clustering. Finally, it

http://www.lsc-group.phys.uwm.edu/cgit/lalsuite/tree/glue/glue/ligolw/lsctables.py
http://www.lsc-group.phys.uwm.edu/cgit/lalsuite/tree/glue/glue/ligolw/lsctables.py


130

can be difficult to quickly sort through large amounts of data to find a few triggers

of interest, such as the ones with the smallest FAR. Doing so requires writing code

that can filter through large numbers of files as well as access to library packages that

know how to interpret LIGO_LW XML files.

For these reasons, Pipedown converts LIGO_LW XML files to SQLite databases [78],

which are used by a number of its programs. SQLite has a number of advantages.

Database files remain on disk: when a program reads from a database, it does not

need to load the database into memory. Instead, it queries only the information it

needs to perform a specific task. Once an operation is completed on that data, the

results can be dumped back to the database and cleared from memory. Thus, file

size is limited only by disk space, of which there is far more — and which is much

cheaper — than memory. SQLite is also fast: it automatically invokes a number of

optimization schemes which allows it to quickly read and write data, without needing

special commands. Thus, when coding, we can concentrate more on what to do with

data rather than how to get it. SQLite is also flexible. With LIGO_LW XML files,

what columns exist in a table must be defined in lsctables.py. The only way extra

columns can be added is to edit lsctables.py to add the column, re-install it, then re-

create the XML. This can be frustrating when doing investigations into new statistics.

SQLite, on the other hand, does not demand static table definitions. It can create

new columns on the fly and add them to any table in the database. This is taken

advantage of by a number of Pipedown programs, such as ligolw_cbc_repop_coinc

and ligolw_cbc_cfar; see sections 5.5.4 and 5.6.3, respectively, for details. Finally,

SQLite is well supported: it is developed and maintained by dedicated professional

programmers, and is open-source software [78]. There also exists a Python interface

for SQLite so that it can be used from within Python code, even though SQLite itself

is written in C. Additionally, there exists a free SQLite command-line tool (installed

on all the LIGO clusters) which can parse a database without needing support code

to read data tables, as is the case with XML files. One can therefore quickly search

data from the command line without needing to write new tools.

The downside to SQLite is database files are not human-readable. Either the

command-line tool must be used to see data, or code must be written to print data

out. Additionally, while the flexibility to create arbitrary columns on the fly is useful

for investigations, once a statistic has been settled on, we wish to standardize the
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column. Otherwise it could be difficult to know what is stored where when going back

over results created by different people at different times. For these reasons, XML

files are considered to be the “final” data products produced by the CBC pipeline.

One of Pipedown’s goals is to take all the data analyzed by ihope and disseminate

it down to a few XML files containing a handful of “loudest” triggers that are of

interest.

5.5 Pipedown in Detail

We now step through Pipedown in detail, using Figure 16 and our toy analysis as

a guide. Pipedown is run after all HIPEruns have completed. It combines data

from all these runs — including zero-lag, time-slides, and all injection runs — into a

single database. FARs are calculated and a number of plots are generated using this

database. Although the experiment table structure allows multiple veto categories

to be stored in a single database, Pipedown currently keeps each veto category in a

separate database. Thus, the pipeline shown in Figure 16 is repeated for each veto

category.

5.5.1 ligolw thinca to coinc

The first program run in Pipedown is ligolw thinca to coinc. This program reads

second THINCA files, and uses sngl inspiral event id to construct coinc and exper-

iment tables, as well as convert the event id to a counter. It also loads the veto-

segments file corresponding to the given category that was produced by ihope at

run time. The veto segments are used to determine what coincident-detector times

triggers belong to. (As discussed in section 5.3.10, when higher category vetoes are

applied, some coincidences will be moved to a different coincident-detector time than

what is indicated in the file name. Thinca does not store this information, so it must

be reconstructed.)

For non-injection runs, thinca to coinc combines the zero-lag and slide second

THINCA files into a single XML file. Thus, for every two FULL DATA second THINCA

files, there is one THINCA TO COINC file. The output file has the same naming con-

vention as the second THINCA files, except THINCA (SLIDE )SECOND is replaced with

THINCA TO COINC. Although the veto-segments file is loaded by ThincaToCoinc, the
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veto-segments stored in the veto file are not added to the output XML file.

In addition to constructing coinc and experiment tables, ligolw thinca to coinc

also computes some coincident parameters, storing them in the coinc inspiral table.

The coincident end time, combined chirp mass, combined total mass, and combined

New SNR are computed for each coincident trigger.

5.5.2 ligolw sqlite

The next step in the Pipedown pipeline is to convert XML files to SQLite databases.

This is done by ligolw sqlite. As can be seen in Figure 16, ligolw sqlite turns

all of the thinca to coinc XML files sharing a common USER-TAG into one database.

(Blue arrows on the diagram indicate SQLite databases; black arrows indicate XML

files.) The naming convention for the output database is:

{ANALYZED-IFOS}

-{USER-TAG}_CAT_{N}_VETO_RAW_CBC_RESULTS

-{GPS-START}-{DURATION}.sqlite

where ANALYZED-IFOS are all the IFOs that are in the database, N is veto category32,

GPS-START is the ihopestart time, and DURATION is the ihopeduration. For example,

in our toy analysis, we would have two CAT3 databases:

H1L1V1-FULL_DATA_CAT_3_VETO_RAW_CBC_RESULTS-967228343-10240.sqlite

and

H1L1V1-BNSINJ_CAT_3_VETO_RAW_CBC_RESULTS-967228343-10240.sqlite

At this point the FULL DATA database contains both zero-lag and slide data.

In addition to being able to add XML files to a database, ligolw sqlite can also

extract XML files from databases. As a result, it is used many times in Pipedown to

go between SQLite databases and XML files, as can be seen in Figure 16.

32Note: in keeping with the HIPEnaming conventions, for CAT1 databases, the CAT N VETO part

of the file name is excluded.
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5.5.3 ligolw cbc dbsimplify

ID columns must be unique in a single file. For example, there can only be one coin-

cident trigger in the coinc_inspiral table with

coinc_event_id:coinc_event:coinc_event_id:0 in a given file. Since the IDs are

simply counters, however, there is no way to ensure that they are unique across

files. Thus, when ligolw_sqlite combines XML files into a single database, it has

to increment all the table IDs to prevent “collisions.” For example, if a coincident

event in the database already has coinc_event_idcoinc_event:coinc_event_id:0,

and we wish to add another THINCA_TO_COINC file that also has a coincident event

with coinc_event_id coinc_event:coinc_event_id:0, this latter ID will be incre-

mented to one plus whatever the largest ID is in the database. The same goes for

all other IDs. This ensures that independent entries across files remain independent

when combined into a single database or file.

However, we may not wish to keep all entries independent when combining files.

For example, all the THINCA_TO_COINC files in a single ihope run will have the same

entries in the experiment table. When ligolw_sqlite adds all of these files into

a single database, it will keep all of the entries independent by incrementing the

experiment_ids. In our toy analysis — in which we have five FULL_DATA

THINCA_TO_COINC, with each one containing four experiment entries (one for each

possible instrument time) — each experiment entry will be repeated five times in

the FULL_DATA

THINCA_TO_COINC database, leading to 20 total entries when we should only have

4. The same is true of any other table that stores information that spans multi-

ple THINCA_TO_COINC files, including the experiment_summary, time_slide, and

coinc_definer tables. The same is also true of the veto_definer, sim_inspiral,

and segment tables. However, as these tables only exist in the veto file and the

INJECTIONS file, we avoid having to deal with them by adding them to the database

after all the THINCA_TO_COINC files have been added.

To remove these redundancies, ligolw_cbc_dbsimplify is run. This program

loads a database created by ligolw_sqlite and removes any redundant entry from

the experiment, experiment_summary, time_slide, and coinc_definer tables. It

then updates the corresponding IDs in all other tables to point to the correct entry.
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This is done in-place, i.e., the output database has the same name as the input

database. Due to the redundancy problem, ligolw_cbc_dbsimplify should always

be run after ligolw_sqlite is used to add files to a database.

5.5.4 ligolw cbc repop coinc

After all the RAW databases have been created and simplified, Pipedown runs

ligolw_cbc_repop_coinc. This program reads single-detector information from the

single_inspiral table, computes a specified combined statistic, and saves it in

the coinc_inspiral table. For example, if told to compute combined SNR, it will

calculate the quadrature sum of the single-detector triggers’ SNRs and save it to the

coinc_inspiral table. If told to compute combined chirp mass, it will calculate the

mean single-detector chirp mass and save it.

What column repop_coinc saves the combined parameter to is specified using

the output-column. Repop_coinc takes advantage of SQLite’s ability to create new

columns in a table. The column does not need to already exist in the coinc_inspiral

table, nor does it need to be apart of the “blessed” columns specified in the table

definitions in lsctables.py. If the column does not exist, repop_coinc will sim-

ply create it, then store the data. If the column does exist, the data in it will be

overwritten. This makes repop_coinc extremely useful for experimenting with new

statistics: one can take a database created by Pipedown, and add to it any statistic

they wish without needing to update and re-install the LALSuite code base. Since the

experimental statistic can be added to the coinc_inspiral table, it can sit alongside

currently used statistics (i.e., older data need not be overwritten), which makes it

easy to compare the new statistic to older ones. However, columns that are not in

the table definitions in lsctables.py will not be in XML files that are extracted

from a database. Therefore, if a column is going to be used long-term, it should be

added to list of “blessed” columns.

As thinca_to_coinc already populates most of the coinc_inspiral columns

needed by the low-mass CBC search, repop_coinc is currently bypassed in the low-

mass pipeline. However, as new statistics are invented or desired parameters are

added, they will be computed by repop_coinc rather than thinca_to_coinc. This

is partly because thinca and thinca_to_coinc are planned to be phased out in favor

of a new coincidence program that uses the coinc and experiment table structure
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natively. The primary purpose of such a program is simply to find coincidences

between single-detector triggers; once coincidences have been drawn, it will be left to

repop_coinc to compute and store all combined statistics.

5.6 ligolw cbc cluster coincs

Although we apply some template bank-wide clustering in lalapps_inspiral, expe-

rience has taught us that a single event can still cause many triggers after inspiral’s

clustering. Further, because it does not compute New SNR, bank clustering in

lalapps_inspiral is based on SNR. We therefore try not to be too aggressive with

clustering in inspiral, as it may not necessarily pick the best candidate. Instead,

we do a final round of bank-wide clustering in Pipedown using

ligolw_cbc_cluster_coincs.

ClusterCoincs clusters triggers based on combined statistics in the

coinc_inspiral table. What statistic it uses is determined by the ranking-stat

argument, set in the configuration file. In the low-mass CBC search we use combined

New SNR.33 The clustering is done using a sliding time window in a similar manner

as max-over chirp length: if there is another trigger within ±twin of a given trigger’s

end time with a ranking-stat value greater-than it (or less-than it — see footnote

33), the trigger is deleted. The difference from max-over chirp-length is that the time

window, twin, used by cluster_coincs is a fixed value set in the configuration file.

In the low-mass CBC search we set the window to 10 s for both S5 and S6.

Since all slides and zero-lag, as well as playground, all-data, and exclude-play,

triggers exist in the same database, the experiment_map table is used to ensure the

triggers are only clustered within their slides and data type. We do not wish to

cluster triggers across data types: it is possible for a trigger to survive clustering

in playground, but be clustered away in all-data. Thus, clustering is carried out

by first deleting mappings between coincident events and experiment_summ_ids in

33 In addition to ranking-stat, there is another argument, rank-by, which tells cluster coincs

whether to cluster on large values of the ranking-stat, or small values. Thus, the program can cluster

using statistics in which larger is better, such as New SNR, or ones in which smaller is better, such

as FAR.
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the experiment_map table; only events with the same experiment_summ_id are com-

pared to each other.34 Events that have no mappings left to any experiment_summ_id

are deleted entirely from the database.

In addition to binning events by data type, slide, and coincident-detector time,

cluster_coincs can optionally bin by a coincident parameter and coincidence type35

Two arguments can govern binning by a parameter range: param-name, which sets

what column in the coinc_inspiral table to use, and param-ranges, which set

the values to bin by. For coincidence type, cluster_coincs can be told to bin

by the detectors that took part in the coincidence (using group-by-ifos), or the

number of coincident detectors (using group-by-multiplicity). For example, if

group-by-ifos is set, H1L1- and L1V1-coincident triggers would not be clustered

together. If group-by-multiplicity is set, H1L1- and L1V1-coincident triggers

would be clustered together, but H1L1V1-coincident triggers would not. If neither is

set, all types are clustered together. These same arguments are used by several other

programs to bin triggers, including ligolw_cbc_cfar and a number of the plotting

programs.

In both S5 and S6, triggers were grouped by coincidence type when being clustered.

In S6 triggers were additionally grouped into the same chirp-mass bins that are used

to compute uncombined FARs (see section 5.6.3 for the bin boundaries). We chose

to cluster in chirp-mass bins out of concern that higher trigger rates and larger New

SNRs in one bin would cause triggers that would otherwise have lower uncombined

FARs to be lost in other bins. This would negate some of the benefits of binning

triggers when computing FARs. However, as a result of this choice, a loud event that

created off triggers in all bins would have three candidate triggers: one in each bin.

In this case, we resolved to use the trigger that had the lowest uncombined FAR. If

a trigger was loud enough to have a FAR of 0 in multiple bins,36 we would try to

measure a FAR, either by doing more slides or by folding in data from other runs. If

a FAR could still not be determined, we would use the one with the largest combined

34As a result, events must also be in the same coincident-detector time for them to be clustered

together.
35By coincidence type, we mean by detectors that are coincident in a coincident trigger.
36Recall from Chapter 4 that a 0 FAR means that a coincident trigger is louder than all slide,

or background, triggers. This means that the true FAR of the trigger is smaller than 1 over the

background live time. Thus, 0 FARs represent upper limits on the false alarm rate of an event.
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New SNR. These considerations became important in the investigation of the blind

injection made during S6; see Chapter 7 for details.

As seen in Figure 16, cluster_coincs runs separately on each RAW database. It

writes the results to a new database which has naming convention:

{ANALYZED-IFOS}-{USER-TAG}_CAT_{N}_VETO_CLUSTERED_CBC_RESULTS

-{GPS-START}-{DURATION}.sqlite

In our toy analysis we thus have two clustered databases at CAT3:

H1L1V1-FULL_DATA_CAT_3_VETO_CLUSTERED_CBC_RESULTS-967228343-10240.sqlite

and

H1L1V1-BNSINJ_CAT_3_VETO_CLUSTERED_CBC_RESULTS-967228343-10240.sqlite

5.6.1 The Injection Branch

At this point in Pipedown, additional steps are carried out on the CLUSTERED injec-

tion databases that are not carried out on the FULL_DATA database. First,

ligolw_cbc_dbaddinj is run on each injection database. This adds the INJECTIONS

file that was created by lalapps_inspinj to the database with the corresponding

USER-TAG. Included in the INJECTIONS file is the sim_inspiral table. The same

code that ligolw_sqlite uses to add files to databases is used by dbaddinj. We

do not need to run dbsimplify after it, however, because there are no tables in

the INJECTIONS file that will lead to redundancies when added to the database.

We do not use ligolw_sqlite to add the file because, in addition to adding the

INJECTIONS file, ligolw_cbc_dbaddinj updates the sim_proc_id column of the

experiment_summary table with the process_id of the instance of insinj that cre-

ated the injections.

After dbaddinj is run, ligolw_sqlite is run to convert each injections database

into a single XML file. The name of the XML files are the same as the CLUSTERED

database, except the .sqlite file extension is replaced with .xml. This conversion

must be done because the next program, ligolw_inspinjfind, can only read XML

files.

Inspinjfind performs injection finding : it maps injections that were performed

to triggers that were caused by the injection. To decide whether or not a trigger
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was created by an injection inspinjfind uses a 1 s time window; i.e., any coincident

trigger that occurs within ±1 s of an injection is considered to have been caused by

that injection. Note that this means that multiple events can be mapped to a single

injection. Simply using a time window does increase the chance for random noise

events to get mapped to an injection. We use such a large window for purposes

of calculating upper limits. When calculating upper limits we are only interested

in injections that are louder than the loudest event. Since (in principle) the only

difference between the FULL_DATA results and the simulation runs are the injections,

any event in the simulation runs that is louder than the loudest full-data event must

be from an injection. Thus, we are safe simply using a time window for calculating

upper limits. Admittedly, however, this method is not ideal when using injections

to tune the pipeline. For that, an e-thinca-ellipsoid based approach might be better.

Investigations into implementing such a method are planned.

Inspinjfind works on the XML file in place; i.e., the mappings are added directly

to the file. The maps between the injections (stored in the sim_inspiral table) and

coincident event are stored in the coinc_event_map table. How exactly the maps

are done is more complicated than how single-detector events are mapped to their

coincident counterparts; we do not discuss it here.

5.6.2 Preparing the Final Database

After lalapps_inspinjfind has run on each of the injection XML files, they are

added to the FULL_DATA CLUSTERED database. This is done by ligolw_sqlite fol-

lowed by ligolw_cbc_dbsimplify. Next the veto XML file (the same one given

to thinca_to_coinc) is added to the database. Thus, the FULL_DATA CLUSTERED

database contains all triggers from the zero-lag, slide, and injection runs, as well as

all injections made (both “found” and “missed”) in all runs, and the veto segments

applied to the run. The FULL_DATA CLUSTERED database is therefore the final data

product from the pipeline: it is from this that false alarm will be computed (and

saved) and all plots will be generated. The other databases — i.e., all of the RAW and

injection databases — are only intermediate data products.

Now that the veto segments are in the database, ligolw_cbc_compute_durations

is run to compute the live time in each slide and zero-lag. To do the computation,

compute_durations must know what times were analyzed (pre-vetoes). It gets this
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from the thinca start and stop times, which is stored in one of the meta-data tables

(specifically, the search_summary table, which is not described here). The thinca

start and stop times are needed because these define the ring boundaries within which

triggers and vetoes were slid around. For each entry in the experiment_summary

table, the single-detector veto segments are retrieved (using the veto_def_name col-

umn to get the appropriate segments from the segment table) then slid around on

the thinca rings according to the offset vector associated with the entry (retrieved

from the time_slide using the time_slide_id column). Subtracting the duration

of the vetoes from the total analysis time gives the live time of the entry. For the

playground and exclude_play data types, the playground segments (computed from

the GPS times) are additionally intersected with the analysis segments. The results

are saved to the duration column of the experiment_summary table.

5.6.3 Computing False Alarm Rates

All of the pieces are now in place in the FULL_DATA CLUSTERED database to compute

the FARs of the triggers. FARs are computed using the algorithm described in section

4.6: an “uncombined FAR” is computed in bins defined by chirp-mass and coincidence

type, then “combined” across bins using the uncombined FAR. Both the uncombined

and combined FARs are calculated using ligolw_cbc_cfar. cFar is run twice. On the

first pass, the group-by-ifos, param-name and param-ranges arguments are given

to cFar, which causes it to compute the uncombined FARs. As outlined in section 4.6,

the FAR for each trigger is calculated by counting the number of background triggers

in the same coincidence type and chirp-mass bin that have a new SNR greater-than-

or-equal to it. Specifically, cFar uses the experiment and experiment_summary

tables to grab all of the slide triggers in each coincident-detector time, and it uses

the ifos and mchirp columns in the coinc_inspiral table to apply the bins. The

background time is retrieved by summing the slide exerpiment_summary entries’

live time. For slide triggers, triggers nor live time within that slide are used to

compute their FARs. The uncombined FARs are saved to the false_alarm_rate

column of the coinc_inspiral table.

Combined FARs are computed when ligolw_cbc_cfar is run again. This time,

coincident triggers are not binned by chirp mass nor coincidence type, and the un-

combined FARs computed on the first pass are used as the ranking statistic. This
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result is saved to the combined_far column of the coinc_inspiral table.

With the completion of the second cFar job, the FULL_DATA CLUSTERED databases

have obtained their final form. All other jobs launched by Pipedown either create

plots, summarize the most significant events in short lists, or run follow-ups on loud

triggers. The programs that carry these out are described in the next few sections.

5.6.4 IFAR Plots

Pipedown launches several plotting programs to summarize the results for analysts.

Perhaps the most significant is ligolw_cbc_plotifar. PlotIFAR creates cumulative

histograms of the triggers as a function of the inverse false alarm rate, or IFAR. Plots

are created of both inverted uncombined FAR and combined FAR; figure 5.7 shows

a sample of each. Both plots show the expected background distribution, which is

simply 1/IFAR, as a dashed black line. The yellow regions show the expected back-

ground ±
√
N and ±2

√
N where N is the number of counts. These regions are the

expected variance of the background, which at high N corresponds to the 1 and 2σ

significance bands in a Gaussian distribution.37 The gray lines show the actual back-

ground distribution: each line represents a single slide.38 The zero-lag distribution is

plotted by the colored symbols. In the uncombined plot, the symbols are determined

by the chirp-mass bin they represent and the color is determined by the coincident de-

tector. The dashed colored lines show where the background for a particular detector

combination (represented by the lines’ colors) and chirp-mass bin (represented by the

dash pattern) “runs out”; i.e., they are points of maximum (minimum) background

FAR (IFAR). The uncombined plots are useful for understanding characteristics of

the data. For example, we do not see any high mass H1L1V1-coincident triggers (pur-

ple squares) in the plot. This is expected, because we can see that the background for

high mass H1L1V1-coincident triggers (the purple dashed line furthest to the right)

37The 1 and 2σ significance bands in a Gaussian distribution are the regions we expect ±34% and

±47.5% of the triggers in the distribution to fall.
38Note that the actual background appears to disagree with the expected variance (yellow regions)

at high IFAR. This is due to the difference between Gaussian and Poisson distributions. At low N

the Poisson distribution becomes asymmetric around the mean, so that the variance does not agree

with the familiar 1 and 2σ bands of a Gaussian. If the yellow regions mapped out σ — i.e., if they

mapped out where the regions were we expect to find a given percentage of the triggers — instead

of variance then they would appear to agree with the gray lines.
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runs out at an IFAR greater than the expected background at a cumulative number

equal to one. Thus the probability of getting a H1L1V1-coincident high mass trigger

in a single experiment realization is less than one. In the combined plot, all zero-lag

triggers are plotted as blue triangles.

If a trigger is louder than all the background we set its FAR equal to zero. As

discussed in Chapter 4, this means that we have placed an upper limit on the FAR

equal to 1/Tb where Tb is the total background live time. On IFAR plots, zero-

FAR triggers are therefore placed at the point corresponding to x = Tb and an

arrow pointing to the right is added to the trigger to indicate that the true IFAR

is somewhere in the region to the right.39 Such triggers are of utmost interest to us

since they represent events that could potentially be a GW signal. The first thing we

look for when looking at an IFAR plot is whether or not any trigger is louder than

all the background.

Since the combined IFAR plot quickly conveys whether or not a trigger is louder

than all the background — i.e., whether or not there is a GW candidate — as well as

how significant triggers are and how consistent the zero-lag distribution is with the

background, it is our primary detection plot. When we open boxes it is the first thing

we look at. For example, in the sample combined IFAR plot shown in Figure 20(b),

we see that the loudest zero-lag event has a IFAR of ∼ 0.02, corresponding to a FAR

of ∼ 50 per year. There is therefore no GW candidate in this data. Additionally,

since the zero-lag is consistent with background across the entire region, we can be

fairly confident that we are treating zero-lag and slides the same, and that there is

not something wrong in our analysis.

5.6.5 PlotCumHist and PlotSlides

In addition to IFAR plots, Pipedown also generates cumulative histograms as a func-

tion of combined New SNR using ligolw_cbc_plotcumhist. A sample plot is shown

in Figure 5.7. To create the plot, bins of equal width in combined New SNR squared

are constructed. Within each bin, the number of triggers that have a new SNR

squared greater-than or equal-to the left-edge of the bin is plotted on the y-axis.

39Since the loudest background trigger will always have a zero-FAR, this point can be seen in the

combined plot where the gray lines end; in the uncombined plot the point is marked by the solid

black line.
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Zero-lag results are indicated by the blue triangles; there is one triangle per-bin. For

slide triggers, the cumulative number is computed by counting the number of trig-

gers in each slide, then taking the mean of the counts. The black crosses show the

mean background number in each bin, and they yellow regions indicate the standard

deviation of the counts.

These cumulative histograms are used to check the SNR distribution of coincident

triggers. We do not use cumulative histograms as our primary detection plot because

they do not quantify the significance of triggers as IFAR plots do. We also cannot

easily judge the significance of triggers across chirp-mass bins and coincidence types

using these plots. If all of the categories are plotted together, as they are in Figure 5.7,

then the effect of different rates and new SNR distributions, as discussed in Chapter

4, is not accounted for. It is possible to make PlotCumHist plot each category on

separate plots; even so, this results in a large number of plots with no way to compare

significance across plots.

Another program that creates plots useful for checking data is

ligolw_cbc_plotslides. Sample plots are shown in Figures 5.7 and 5.7. These plots

are used to check the distribution of live times and trigger rates across slides. Figure

5.7 shows the duration-per-slide for H1L1V1- and H1L1-coincident time from the

same six weeks of data used for the PlotCumHist and PlotIFAR plots. Note that the

H1L1V1-coincident time decreases with increasing slide number whereas H1L1 time

increases. This is a common feature; it is due to the vetoes sliding around (the plots

shown are after CAT2 and 3 vetoes have been applied). As described in section 5.3.10,

when vetoes slide around their alignment across detectors changes. This causes times

that were formerly in H1L1V1-coincident time to drop to double-coincident time (i.e.,

either H1L1-, H1V1-, or L1V1-coincident time), and double to drop to single-detector

time. Although double-coincident times lose time to single-detector times, they gain

time from triple. No double-coincident times can be promoted to triple, however,

because the third detector is off for the entire double-coincident time segment. The

net effect is that H1L1V1-coincident time only loses time while double-coincident

times both lose and gain.

Figure 5.7 shows a sample rate-per-slide plot created bye PlotSlides. PlotSlides

creates a separate plot for each coincidence type and all types combined (the color

scheme for the zero-lag bar is the same as used by PlotIFAR). Shown is the rate of
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H1L1V1-coincident triggers in H1L1V1-coincident time.

5.6.6 PlotFM

None of the plots discussed so far make use of the simulation data type (i.e., the data

that contains injections). To make various plots showing found and missed injections

Pipedown runs ligolw_cbc_plotfm. PlotFM is a versatile program that can create

scatter plots of many different variables. In its default mode it creates plots of injected

decisive distance versus chirp mass. Decisive distance is the second furthest effective

distance out of the analyzed detectors;40 it is so-named because at least two detectors

are needed to create a coincident trigger. Even if a binary has an effective distance

small enough to be seen in one detector, if the next largest effective distance in

another detector is outside the that detector’s range, no trigger will be created in

that detector, and so we will have no coincident trigger. Thus, decisive distance is

the main arbiter of whether or not we expect to see an injection. Figure 5.7 shows an

example decisive distance versus chirp mass plot. “Found” injections (as determined

by ligolw_inspinjfind) that had combined FARs equal to zero are plotted as blue

stars. Injections found with non-zero combined FARs are plotted as colored circles,

where the color corresponds to the FARs. Red crosses indicate “missed” injections.

These plots are therefore useful to check how sensitive the detectors are, and whether

or not this matches what is expected from the PSD. Nearby missed injections and

close injections with poor FARs are followed up. These can indicate a problem with

an analysis, or can point to data quality issues that may be dealt with by vetoing.

By making use of Python’s eval function, PlotFM can set the x- and y-axes to be

any function of any of the columns in the sim_inspiral table or coinc_inspiral ta-

ble. What functions to plot are set on the command line, or, if running in Pipedown,

in the configuration file. Thus, PlotFM can create any number of desired plots found-

missed plots, which are useful for investigating the effects of changing tuning pa-

rameters and the efficacy of new statistics on injections. As an example, Figure 25

shows two additional plots currently created when Pipedown runs. The top plot is

the fractional difference in recovered and injected chirp mass versus the difference and

recovered and injected end times. This gives an indication of what “found” injections

40Recall from Chapter 2 that effective distance is the distance to a binary if it were optimally

oriented.
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are actually injections and which ones are probably due to noise triggers that happen

to be within the time window inspinjfind uses to associate coincident triggers with

injections. The bottom plot shows the difference in recovered and injected end times

for each injection type. Not surprisingly, the best recovery is for BNS injections.

This is because BNS waveforms have the most inspiral cycles in band, allowing for

the most accurate timing reconstruction.

The second plot also shows that PlotFM can plot against strings as well as func-

tions. Although the injection tag is not a column in the sim_inspiral table, it adds

the column in memory using the process_id. Note that in this plot and in plot

25(a) there are no red crosses. Whenever a recovered parameter is plotted (which

is any column in the coinc_inspiral table), no missed injections are plotted since

recovered parameters are undefined for them.

PlotFM plots have been used for a number of studies in S6; see Chapter 7 for

examples.

5.6.7 PlotROC

The program lalapps_cbc_plotroc creates receiver operator characteristic (ROC)

plots. This program is not launched by Pipedown. However, it is often used to

compare results from pipelines using different ranking statistics and vetoes. For this

reason we describe it here.

PlotROC can read in multiple FULL_DATA CLUSTERED databases created by

Pipedown. It then computes the “relative volume and time”, V T , to which a search

was sensitive to as a function of combined FAR. Recall from section 2.3 of Chapter

2 that rate-upper limits on CBCs go as 1/V T , where T is the live time and V is the

volume to which the search was sensitive at the false alarm rate of the loudest event.

We wish a search to maximize V T since this will increase our chance of detecting one

or more GW signals. Even if we do not detect a GW in a search, maximizing V T

leads to a smaller rate-upper limit; as these limits approach the expected CBC rates,

the results become more astrophysically relevant. However, since we must blind the

analysis, (see section 5.1) we cannot know in advance what the FAR of the loudest

event is going to be.

ROC plots give us a sense of how large V T will be in a search without forcing us

to un-blind the analysis. This allows us to tune various parameters and vetoes prior
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to un-blinding the results. Examples of ROC plots used in the S6 analysis can be seen

in Figures 7.2.1 and 7.2.3. For each FAR plotted on the x-axis, PlotROC calculates

V T by retrieving all injections that are labelled as “found” by inspinjfind with a

FAR less-than or equal-to the given FAR. Since the injections are labelled as found,

we assume that a GW signal that was emitted from a binary at the same physical

distance would be detected by our pipeline with the same FAR as the injection. Thus

by using the distance41 of each injection we can calculate the volume of space to

which the search was sensitive to at that FAR. To get a measure of the time, we

sum the volumes calculated from every injection that has a FAR less-than the given

FAR. Recall from section 5.3.5 that injections are uniformly distributed in time at

semi-random intervals. The distribution is set up so that on average, we will get an

injection every 800 s. Thus the number of injections that are performed is proportional

to the period of time searched [79]. Of course, by simply adding the volumes we end

up with a somewhat arbitrary number in Mpc3. However, since ROC plots are used

to compare searches that used different tuning parameters, we are only interested in

the relative value between the searches. Thus, all of the searches are normalized by

dividing the largest sum of volumes from a single search at the largest false alarm

rate, giving us a relative measure of the size of V T in each search. For this reason,

the largest ROC curve always terminates at 1 (cf. Figure 7.2.3 in Chapter 7). Since

large V T leads to higher detection rates, the search that has the highest (i.e., closest

to the top of the plot) curve has (ostensibly) the better tuning parameters.

There are a few subtleties to ROC plots that must be considered, however. As

discussed in section 5.6.1, it is possible to get noise triggers within the injection-

finding time window of an injection. This is particularly true for injections that have

larger effective distances, since it is more likely that any triggers they create will be

clustered away by a noise trigger.42 We can see that effect in figure 25, in which

triggers with high FAR are randomly scattered across the recovered parameter plots.

In other words, these injections have been labelled as “found” when they have not

been found at all. This problem does not affect us when calculating rate-upper limits.

41By “distance,” we mean the actual distance to the binary, regardless of antenna pattern; i.e.,

this is not the effective distance.
42Recall from Chapter 2 that SNR is inversely proportional to effective distance. Thus, the larger

the effective distance, the smaller the SNR, which leads to a larger FAR.
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As discussed in section 2.3 any coincident trigger in the simulation data type that

is found with a false alarm rate smaller than the loudest trigger in the all-data data

type must be from an injection, since the only difference between the simulation and

all-data data types is injections are added to the former. In ROC plots, however, we

are considering all possible FARs. Thus it is likely that at larger FAR (to the right of

the plot), coincident triggers that have been labelled as “found” injections are most

likely due to noise. Therefore, when considering ROC plots, we should focus on the

left side of the plot, at lower FAR.

For these reasons, when performing tuning studies, we use both ROC and PlotFM

plots. PlotFM is used to check for found and missed injections, and to see how well

injections are recovered. ROC plots are used to give an approximate measure of

how one search quantitatively compares to another. By balancing the strengths and

weaknesses of the two types of plots we can establish what tuning parameters to use.

To see examples of how this was done in S6, see Chapter 7.

5.6.8 PrintLC and MiniFollowups

While plotting programs are useful for quickly evaluating large amounts of data,

exact information about specific triggers is hard to ascertain. To list more detailed

information about events of interest we use ligolw_cbc_printlc.

PrintLC ranks triggers according to a given statistic — say, combined FAR —

then prints all the information stored in the coinc_inspiral, as well as relevant

information in the experiment and experiment_summary tables, for the top ten

triggers. The output table can either be in HTML, LIGO_LW XML, or “wiki” format.

(“Wiki” means the table is formatted for use in the CBC group’s wiki page.) When

run in Pipedown a separate loudest event list is created for each instrument time and

saved to an XML file. The naming convention is:

{INSTRUMENT-TIME}

-FULL_DATA_CAT_{N}_VETO_LOUDEST_{DATATYPE}_EVENTS_BY_{RANKING-STAT}_SUMMARY

-{GPS-START}-{DURATION}.xml

RANKING_STAT is the ranking-stat used to rank the triggers (in our case,

COMBINED_FAR). DATATYPE is one of ALL_DATA, PLAYGROUND, EXCLUDE_PLAY, or SLIDE;

a separate file is created for each of these. These files only contain a single, customized

loudest_events table that contains the columns PrintLC prints. In addition to this

file, Pipedown also has PrintLC generate a LIGO_LW XML file containing all of the
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data tables, pared down so that they only contain information relevant to the loudest

events. These additional files have the same naming convention, sans the _SUMMARY

part proceeding the GPS-START time.

PrintLC adds a column for the end time of the trigger in UTC, which doubles as a

hyperlink to the daily ihope page for the day the trigger occurred on, and it replaces

the coinc_inspiral table’s ifos column with one that doubles as a hyperlink to the

e-log page for each detector on that day. The daily ihope page is an automatically-

generated HTML page that is created at the end of each day [80]. The page is created

by running a shortened version of ihope; in this version, lalapps_inspiral is run

once with χ2 on using a smaller template bank. Additionally, no coincidence test is

performed. The page is used as a DQ tool to get a sense of how the CBC search will

respond to data on a given day, and to quickly assess the efficiency of automatically

generated DQ flags. Figure 5.7 shows a screen shot of a sample page. For more details

on daily ihope, see [80].

The e-log page is an online notebook used to keep track of events that occur at

each of the observatories. Entries are added by operators, on-site instrumentalists,

and visiting scientists. These entries provide valuable insight into the causes of DQ

issues that would be difficult to ascertain from instrumentation alone. For example,

if a truck drives on the site, someone will record it, or if a study of equipment is being

done, explanations of the study and the results are added. A screen shot of a sample

e-log page is shown in Figure 5.7.

PrintLC has the ability to add single-detector information to the loudest_events

table in the summary file. We do this for slide triggers: since the sngl_inspiral table

contains the un-slid end times, printing the single end times along with the coincident

loudest slides, we can quickly see what events most hurt our search. This ability was

one of the most useful applications of Pipedown: it allowed to us to loudest-slide

information to fine tune vetoes during S6. For more details, see Chapter 7.

After PrintLC has run, Pipedown runs minifollowups. MiniFollowups takes for

input the two XML files PrintLC generated for a given data type and the cache

file generated by ihope. For every trigger in the SUMMARY file, MiniFollowups

uses the information stored in the full XML file to track how the time evolved

through the pipeline. Relevant data files (using the cache file) and a SNR-versus-

time plot of the single-detector triggers within 10 s of the event time is made for each
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stage (INSPIRAL_FIRST, THINCA_FIRST, INSPIRAL_SECOND, THINCA_SECOND) in the

HIPE pipeline. These plots are saved to an HTML page.

MiniFollowups also launches Omega scans [81] of the GW channel in each coin-

cident detector around the time of the loudest events. Omega scans generate time-

frequency spectrograms of any of the detectors’ data channels, including auxiliary

environmental monitors. It is therefore an often-used tool for data quality investiga-

tions. However, for speed and simplicity, MiniFollowups only generates an Omega

scan of the GW channel in each detector (LDAS-STRAIN in the LIGO detectors, and

h_16384Hz in Virgo).

After the “minifollowup” page and Omega scans have finished, MiniFollowups

adds links to the pages in the “mini followup” and “omega scan” columns of the

loudest_events table in the SUMMARY XML file (these columns were created by

PrintLC, but not populated). The table is then converted to HTML format and

saved so that it can later be viewed in a web-browser. The naming convention of the

file is the same as the SUMMARY XML file, with .xml replaced with .html.

Figures 5.7 and 5.7 show an example of what the loudest-events table looks like for

the loudest all_data and slide events, respectively. Note that the single-detector

information is added to the slide table. Figures 5.7 and 5.7 show the minifollowup

page and Omega scan of the loudest all_data event; Figures 5.7 and 5.7 show the

same for the loudest slide event. In this case, the loudest all_data event was

a hardware injection. The chirp pattern can clearly be seen in the H1 scan (Figure

28(a)). Also note the sharp spike in triggers in the MiniFollowups plot. Contrast this

to the slide event: the L1 Omega scan is clearly not a chirp, and the MiniFollowup

plot shows an elevated trigger rate in L1 around the time of the event.

Note, however, that the lack of a noticeable chirp pattern in the Omega scan does

not necessarily mean there is no signal there. Indeed, below a SNR of about 10, it

becomes difficult to see a pattern. This fact is made evident by the L1 Omega scan

of the hardware injection (Figure 28(b)): while the SNR in H1 is ≈ 24, the SNR

in L1 is ≈ 9 (most likely due to the injection’s sky-position and orientation). As a

result, no chirp can be seen in the L1 scan. This highlights an important point: all

of these follow-up tools and scans are not used to determine if an event is from a

gravitational wave. The probability an event is a GW detection is based solely on

the FAR. Rather, the follow-up tools are used to better understand what types of



149

glitches affect the performance of the pipeline. Glitches can thereby be classified; if

an environmental or instrumental cause can be found, the detector can be fixed or

vetoes can be created, thereby improving the search.

5.6.9 PrintMissed and PrintSims

To get more details about found and missed injections, Pipedown runs

ligolw_cbc_printmissed and ligolw_cbc_printsims. These programs are similar

to PrintLC: they create tables detailing information about specific events. Instead

of printing information about all_data and slide events, however, these programs

print information about injections.

PrintMissed lists information about missed injections. These are injections for

which no coincident event could be found within the one second window used by

ligolw_inspinjfind. We are most interested in the closest missed injections, par-

ticularly if they are within the range that the PSD suggests we should be be able to

find them. Thus, when run in Pipedown, PrintMissed prints the closest 10 missed

injections by decisive distance. Since there are obviously no coincident detectors for

missed injections, the decisive distance is determined by taking the second farthest

effective distance out the detectors that were on (and not vetoed) during the injection.

PrintMissed then returns all of the information stored in the sim_inspiral table

for that injection, along with information about the experiment from the experiment

and experiment_summary table. Like PrintLC, PrintMissed also gives hyperlinks

to the daily ihope and e-log pages for the day that the missed injection occurred on.

Figure 5.7 shows example tables produced by PrintMissed when run in Pipedown.

For each injection type, two tables are generated: one that combines all of the injection

runs together, and a separate table for each injection type. Figure 34(a) shows the

table with all injections together, and Figure 34(b) shows the table for the BNSLOGINJ

injection run. (In the analysis from which this table came, BNSLOGINJ were BNS

injections distributed uniformly in log distance.) Notice that in this second table there

are minifollowup links and links to Omega scans. Like PrintLC, the PrintMissed

results are saved to a summary table in either HTML, XML, or wiki format. When

run in Pipedown the individual injection run tables are saved to XML and passed

to MiniFollowups. As with the all_data results, MiniFollowups creates a page

summarizing how the injection fared through the pipeline and it launches Omega
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scans of the time surrounding the injection. The minifollowup page for injections

contains additional information not found in the all_data and slide pages. A table

of injected parameters is added, along with a table summarizing whether or not the

injection was found or missed (using a time window as the arbiter) at each stage in the

pipeline. Figure 5.7 shows a screen shot of this latter table and the INSPIRAL_FIRST

plot for a missed injection.

When used in conjunction with PlotFM plots, these PrintMissed tables allow us

to spot and quickly follow up injections that we think should have been found. For

example, the found/missed plot shown in Figure 5.7 is from the same analysis as the

PrintMissed tables shown in Figure 5.7. Looking at the plot, the closest missed

injection (a red cross with a chirp mass of ∼ 1.3 M� at a decisive distance of about

30 Mpc) is clearly in a range that it should have been found: other injections of the

same mass and distance are all found with zero FARs. Looking at the table in Figure

34(a) we see that this is a BNSLOGINJ injection; going to the table in 34(b) we can

access its minifollowup page and Omega scans. The table and INSPIRAL_FIRST plot

shown in 5.7 are for this injection. In the INSPIRAL_FIRST plot there appears to be

some sort of transient in L1 a couple seconds before the injection. This is confirmed

by the L1 Omega scan, which is shown in Figure 36(b): a short-duration, broadband

glitch is clearly visible ∼ 2 s prior to the end time of the injection.43 Going back to

the minifollowup table in Figure 35(a) we see that injection was found well in both

H1 and L1 at INSPIRAL_FIRST and THINCA_FIRST, but no trigger was found in L1

at INSPIRAL_SECOND. We know that at SECOND_INSPIRAL χ2 is calculated and the

χ2 threshold and r2 veto is applied. We thus have a picture of why the injection

was missed: the glitch two seconds prior most likely inflated the injection’s χ2 value,

causing it to fail either the χ2 test or the r2 veto.

PrintSims is used to list information about “found” injections (as determined by

ligolw_inspinjfind). It can print all of the columns that are in the coinc_inspiral

table along with the matching injections’ sim_inspiral information. We are most

43Note that the injection is not visible in the Omega scan. This is not because of it has small

SNR. Since software injections are only added to the data in memory by lalapps inspiral, they

are not visible to Omega scans, which are generated from the frame files. The scans are centered on

the end-time of the injection, however, and so we can get a sense of what was going on during the

injection even if we cannot see the injection itself.
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interested in the closest “quietest found” injections. Ideally, we would like to know

more about the closest injections that have a FAR larger than the loudest all_data

coincident trigger.44 We cannot know this prior to un-blinding the analysis, however;

since the PrintSims results are used to check the pipeline, we must choose a different

FAR. Typically ihope is run on periods that are a few weeks long. With 100 slides,

this means that any injection that is quieter than the loudest slide event will have a

combined FAR of at least 1 per few years. Any event with that large of a FAR would

not be considered as a candidate detection. Thus, we define “quietest found” as any

injection that has a non-zero FAR. Pipedown has PrintSims sort these by decisive

distance. Like PrintMissed, two tables are created for each injection type: one for

all the injections together, and one for each injection type. An example of each of

these tables is shown in Figure 5.7. The individual injection-type tables are passed

through minifollowups and a minifollowup page similar to the missed injection’s

page is created, along with Omega scans. We can thereby follow-up quietest found

injections in the same manner that we did the missed injections.

5.7 Tying it All Together: The ihope Page

The completion of all of the minifollowup jobs marks the end of Pipedown, and

therefore the end of the ihope pipeline. By this point we have many files and plots

containing a wealth of information sprawled across the ihope directory. To bring

all of these files together into one easily-accessible place, we run write_ihope_page.

This program copies the most useful plots and files to a directory that is accessible

to all LSC and Virgo members through the internet. It then generates a web page

that displays the plots and tables in click-able menus. Figure 5.7 shows a screen shot

of one of these ihope pages. Shown is the IFAR plot with hardware injections left in

the data (note the arrow on the loudest zero-lag triggers, indicating they have zero

FARs) and the corresponding PrintLC table. Clicking on the links in the table will

open up the other pages, such as the minifollowup page and the Omega scans. Note

that this is only one subsection; the right menu bar provides links to many other

sections summarizing playground data, all injection runs (which includes the PlotFM

44Recall again from section 2.3 that the FAR of the loudest all-data event is what determines the

FARs of injections for which we set the sensitive volume.
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plots discussed above, along with the PrintMissed and PrintSims tables), and other

auxiliary information about the run.

The page shown in Figure 5.7 is a page for which the analysis has been un-blinded.

When we do carry out a search for CBCs, a blinded ihope page is initially generated.

The format of the page is the same, but only plots and tables containing playground

data are shown; all_data information is off-limits (and the frog is not coming out

of a box). Using this page, we check and follow-up the loudest slide triggers, as well

as the missed and quietest found injections. If a new glitch class is found for which a

cause can be determined, we create a veto for it (this would be a category 2 or higher

veto). We then re-run the THINCA_SECOND stage and Pipedown, applying the new

vetoes. The new blinded page is checked and, if everything looks good, an un-blinded

page is generated. We then look at this page to see if we have found any gravitational

waves.

Pipedown and the ihopepage, in the current form described here, were not devel-

oped until after S6 had started. Prior to this, and for S5, scripts were run by hand

to do the equivalent steps. However, the results were not as easily accessible, and so

this method of checking loudest slide triggers to develop vetoes was not implemented

until after Pipedown was completed, in the latter-half of S6. In Chapter 7 we detail

some of the vetoes and tuning decisions that were made as a result of these loudest

slide studies.
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Column Purpose

ifo Name of detector the trigger/template belongs to, e.g.,

H1.

end time End time (in integer GPS seconds) of the trigger (not

used by tmpltbank).

end time ns The fractional seconds of the end time, in nanoseconds.

template duration The duration of the template (in seconds).

eff distance The effective distance to the binary (in Mpc). For tem-

plates, this is set to 1; for triggers, this is calculated

using equation 3.36.

mass1 The component mass of one of the objects in the binary

(in M�).

mass2 The other component mass.

mtotal The total mass of the binary (in M�).

mchirp The chirp mass, M, of the binary (in M�).

eta The symmetric mass ratio, η, of the binary.

tau0 τ0 (see equation 3.43)

tau3 τ3 (see equation 3.44)

snr The SNR, ρ, of the trigger.

chisq The χ2 value of the trigger.

chisq dof The number of χ2 degrees of freedom.

Gamma[0-9] The components of the bank metric at the trigger/tem-

plate. (There are 9 of these).

process id Unique value used to map the trigger/template to the

process that created it.

event id A unique value to identify the event. In HIPE this is

used to draw coincidences. In Pipedown it is used as an

index of the table.

Table 4 : Commonly used columns of the sngl inspiral table. Not all columns are shown.
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Column Purpose

waveform The waveform family used to generate the injection, e.g.,

TaylorT4threePointFivePN.

geocent end time The end time of the injection as measured from the cen-

ter of the Earth (in GPS seconds).

geocent end time ns The fractional seconds of the Geo-centric end time (in

nanoseconds).

[h,l,v] end time The end of time of the injection as measured at LHO,

LLO, and the Virgo observatory, respectively. (There

are three columns, one for each site).

[h,l,v] end time ns The fractional seconds of the LHO/LLO/Virgo end time

(in nanoseconds).

mass1 The mass of one of the objects in the injection (in M�).

mass2 The other component mass.

mchirp The chirp mass, M, of the injection (in M�).

eta The symmetric mass ratio, η, of the injection.

distance The physical distance to the injection (in Mpc).

longitude The longitudinal coordinate of the injection, as mea-

sured on Earth.

latitude The latitude of the injection, as measured on Earth.

inclination The inclination angle between the angular momentum

vector of the injection and a line of site drawn from the

center of the Earth to the center of the binary.

spin1[x,y,z] The x, y, and z magnitudes of the spin of one of the in-

jection’s masses, as measured in the binary’s coordinate

system. (These are three separate columns.)

spin2[x,y,z] The spin components of the other mass.

f lower The frequency at which the injection was started.

f final The GW frequency of the injection at coalescence.

eff dist [h,l,v] The effective distance to the injection, as measured at

LHO, LLO, and Virgo, respectively (in Mpc). (These

are three separate columns.)

process id The process id of the program that created the entry.

simulation id Unique id used to identify the entry.

Table 5 : Some of the columns of the sim inspiral table.
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Column Purpose

program The name of the program.

version Currently used to store the git-hash tag of the program.

cvs repository Currently used to store the status of the git repository

from which the program came.

cvs entry time Currently used to store the GPS time that the program

was last committed to git.

node The cluster node that the program was executed on.

username The UNIX user-name of the person that ran the pro-

gram, or that launched the DAG that launched the pro-

gram.

unix procid The process id assigned to the program by UNIX while

it was running.

start time The GPS time that the program began running.

end time The GPS time when the program terminated.

ifos The detectors analyzed by the program. Only used by

HIPE programs.

process id A unique id to identify the entry.

Table 6 : Relevant columns of the process table. Not shown are the comment, jobid, and domain

columns as they are rarely used.

Column Purpose

program The name of the program (also stored in the process

table).

process id Maps the entries to a process in the process table.

param An argument given to the program, e.g., num-slides

might be here for a thinca entry.

type The data type of the argument, e.g., float, or lstring.

value The value given for the argument. In our num-slides

example, this might be 50. If the argument requires no

value (i.e., if it is just a flag), then this is empty.

Table 7 : Columns of the process params table.
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Column Purpose

ifos The detectors that took part in the coincidence. This is

comma-separated, e.g. H1,L1.

end time The coincident end time (in integer GPS seconds).

end time ns The fractional seconds of the coincident end time (in

nanoseconds).

mchirp The combined chirp mass, Mc, of the coincidence.

minimum duration The duration of the shortest template in the coincidence

(in seconds).

snr The combined new SNR, ρnc, (not SNR) of the coinci-

dence.

false alarm rate The uncombined FAR of the coincidence (in yr−1).

combined far The combined FAR of the coincidence (in yr−1).

coinc event id A unique value to identify the coincidence.

Table 8 : The columns of the coinc inspiral table and their purpose.

Column Purpose

coinc event id A unique value to identify coincidences and to map them

to single-detector events.

event id The id of one of the coincident event’s constituents. This

may not necessarily point to a column named “event id”;

e.g., to map an injection to a coincident events, the in-

jection’s simulation id will be stored here.

table name The name of the table that the event id is found in.

Table 9 : The columns of the coinc event map table and their purpose.
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Column Purpose

coinc event id Used to map entries to coincident events.

time slide id Used to map entries to a slide (see time slide table).

coinc def id Used to map entries to a coinc-definer entry (see

coinc definer table).

instruments Instruments that were on at the time of the coincidence.

Also stored in the experiment table.

likelihood Likelihood statistic of the coincidence. This is not used

for low-mass CBC searches.

process id Unique value used to map coincidences to the process

created them.

Table 10 : The columns of the coinc event table and their purpose.

Column Purpose

search Name of search that produced a class of coincidences,

e.g., inspiral.

description Human-readable entry describing the type of co-

incidence, e.g., sim inspiral<-->coinc event

coincidences.

search coinc type Integer to identify the type of coincidence.

coinc def id Unique value used to index each row in the table.

Table 11 : The columns of the coinc definer table and their purpose.

Column Purpose

instrument One of the analyzed detectors.

offset The offset (in seconds) applied to the detector.

time slide id Used to identify a slide; each slide has a unique id.

process id Unique value used to map the slides to the process that

created them.

Table 12 : The columns of the time slide table and their purpose.
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Column Purpose

experiment id Unique id to index the row.

instruments The instruments that were on for the experiment, e.g.,

H1,L1,V1. If a coincident event happens during the ex-

periment, then this is the instrument-time of the event.

search group The search group that carried out the experiment, e.g.,

cbc.

search The type of search done, e.g., lowmass.

gps start time The GPS start time of the experiment.

gps end time The GPS end time of the experiment.

comments Add a comment to the experiment. (Not typically used.)

lars id The LARS id of the experiment. This is a number meant

to index all searches.

Table 13 : The columns of the experiment table and their purpose.

Column Purpose

experiment summ id Unique id to index the row.

experiment id Maps the row to an experiment in the experiment table.

time slide id Maps the row to a slide in the time slide table.

veto def name The name of the vetoes applied, e.g.,

VETO CAT3 CUMULATIVE. This can be used to map

the row to the collection of veto segments to the

segment definer table.

datatype The data type of the row. This can either be all data,

playground, exclude play, slide, or simulation.

sim proc id If the data type is simulation, this maps the row to

an injection set in the sim inspiral table via the set’s

process id.

duration The live time of the slide.

nevents The number of coincident events that occurred in the

slide.

Table 14 : The columns of the experiment summary table and their purpose.
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Column Purpose

experiment summ id Maps the row to a particular instantiation of an exper-

iment in the experiment summary table.

coinc event id Maps the row to a coincident event.

Table 15 : The columns of the experiment summary table and their purpose.

Column Purpose

process id The process id of the process that created the group of

segments.

segment def id Unique id to identify the entry.

ifos The detector(s) that the segments are from.

name A name to identify the segments, e.g.,

VETO CAT3 CUMULATIVE.

version The version of the flag in the segment database that was

used to generate the segments.

comment A user-added comment about the segments. Not typi-

cally used.

Table 16 : The columns of the segment definer table.

Column Purpose

process id The process id of the process that created the segment.

segment id Unique id to identify the segment.

start time Start time of the segment, in GPS seconds.

start time ns Fractional seconds of the start time, in nanoseconds.

end time End time of the segment, in GPS seconds.

end time ns Fractional seconds of the end time, in nanoseconds.

segment def id Maps the segment to an entry in the segment definer

table.

Table 17 : The columns of the segment table. Note: the nanosecond columns are not

used in the segment database, and so are currently not used by ligolw segment query,

ligolw segments from cats, nor any Pipedown programs. This may change in the future.
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(a) Uncombined IFAR plot

(b) Combined IFAR plot

Figure 20 : Sample IFAR plots created by ligolw cbc plotifar. Both plots taken from ∼ 6 weeks

of S6 data, between GPS times 931035296 and 935798487. In both plots, the black dashed-line

indicates the expected background distribution, yellow-shaded regions are the expected background

±
√
N and ±

√
2N , and gray lines are slide distributions when treated as zero-lag. The blue triangles

in the bottom plot indicate the zero-lag distribution of combined IFARs. The top plot shows

the uncombined IFAR distribution, with each symbol representing a separate chirp-mass bin and

each color a coincident-detector combination. Colored dashed lines indicate maximum (minimum)

background FAR (IFAR). See section 5.6.4 for more details.
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Figure 21 : Sample cumulative histogram created by ligolw cbc plotcumhist. Data taken from

∼ 6 weeks of S6 data, between GPS times 931035296 and 935798487. The data is binned and the

cumulative number of triggers with New SNR greater-than or equal-to a given bin are plotted on

they y-axis. Zero-lag triggers are indicated by blue triangles. The mean slide counts are indicated by

the black crosses and the shaded regions show the standard deviation across the slides. See section

5.6.5 for more details.
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(a) Sample duration-per-slide plot for H1L1V1 time.

(b) Sample duration-per-slide plot for H1L1 time.

Figure 22 : Sample duration-per-slide plots created by ligolw cbc plotslides. Both plots taken

from ∼ 6 weeks of S6 data, between GPS times 931035296 and 935798487. The top plots shows the

duration-per-slide for H1L1V1-coincident time; the bottom, H1L1-coincident time. These plots are

after CAT3 (cumulative) vetoes have been applied. Gray bars show the duration in each slide; the

blue bar shows the zero-lag duration. The black solid line is the mean duration and the dashed lines

show the standard deviation. See section 5.6.5 for more details.
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Figure 23 : Sample trigger-rate-per-slide plot created by ligolw cbc plotslides. The data is from

the same time as Figure 5.7. Shown is the rate of H1L1V1-coincident triggers in H1L1V1-coincident

time in each slide. Gray bars indicate the rate in each slide; the purple bar shows the rate in zero-lag.

(The color of the zero-lag bar is based on the coincident detectors.) The black solid line shows the

mean rate and the dashed lines the standard deviation. See section 5.6.5 for more details.
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Figure 24 : Sample decisive distance versus chirp mass plot for H1L1 time created by

ligolw cbc plotfm. The data is taken from ∼ 6 weeks of S6 data, between GPS times 961545543

and 965174487. The blue stars are injections found with a combined FAR equal to zero. The circles

are injections found with non-zero combined FAR; they are colored according to their combined

FAR. Missed injections are indicated by red crosses. The black dashed lines show the chirp mass

boundaries used. See section 5.6.6 for more details.
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(a) Chirp mass fractional difference versus end-time accuracy.

(b) Injection type versus end-time accuracy.

Figure 25 : More examples of PlotFM plots. The data used and color-coding is the same as

in Figure 5.7. Here, we have plotted the fractional difference in recovered and injected chirp-mass

(top) and the injection type as a function of the difference in injected and recovered end times. Plots

such as these help to establish what “found” injections are actually due to noise triggers occurring

within the injection-finding time-window, tinjfind, of an injection. (See section 5.6.1.) For example,

the orange-red dots (representing “found” injections with high combined FAR) that are scattered

across the fractional chirp-mass and end-time recovery are most likely due to noise triggers occurring

with ±tinjfind of an injection and not due to the injection itself. Contrast these to the blue stars

— injections “found” with 0 combined FAR — which all have good recovered parameters. It is

therefore highly likely that these triggers came from injections.
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Figure 26 : An example all data loudest-events list created by PrintLC when run in Pipedown.

This list shows the top ten loudest (i.e., most significant) events, as ranked by combined FAR, in a

search. The “end time utc” column provides a link to the daily ihope page [80], the “ifos” column

provides a link to the e-log page, the “mini followup” column provides a link to the minifollowup

page, and the “omega scan” column provides a link to the Omega scans of the event. These links

are used to investigate what caused each event. See section 5.6.8 for more details.
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(a) A screen shot of the minifollowup page.

(b) A close-up of the INSPIRAL FIRST minifollowup plot.

Figure 27 : The minifollowup page for the third event, a hardware injection, in the loudest events

list shown in Figure 5.7. The top figure shows a screen shot of the page. On this page, there is a

table giving more details about the single-detector parameters, as well as plots of SNR versus time

within ±10 s of the event are shown for each stage in the HIPE pipeline (first inspiral — second

coincidence). The bottom figure shows INSPIRAL FIRST SNR verus time plot from the page. We see

that there is a spike in SNR at the time of the injection in both detectors surrounded by relatively

low-level noise. This is what we would expect to see for a GW signal.
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(a) The H1 Omega scan.

(b) The L1 Omega scan.

Figure 28 : An example of an Omega scan. These scans are of the hardware injection shown in

Figure 5.7. The “normalized tile energy” is roughly equivalent to SNR2/2 in a time-frequency tile.

For Gaussian noise in the absence of signal, the normalized tile energy rarely exceeds 8. In the H1

scan (top) a chirp pattern is clearly visible (compare this to Figure 3(a)). However, in the L1 scan

(bottom) nothing can be seen, since the injection had a SNR <∼ 10 in L1. This is why we do not

simply look at Omega scans to determine if an event is a GW signal. Scans can provide clues as to

the cause of an event. In this case, due to the clear chirp and the lack of noticeable noise in L1 (cf.

Figure 5.7), we can be confident this is a GW signal. See section 5.6.8 for more details.
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Figure 29 : An example slide loudest-events list created by PrintLC when run in Pipedown. This

is similar to the all-data loudest-events list shown in Figure 5.7, except that the un-slid single-

detector end times are shown. This allows us to easily follow-up loud slide events which — since

they determine the FAR of potential signals — are the events that have the greatest impact on the

pipeline to detect. We can use this information to provide clues for new vetoes. See Chapter 7 for

how these loudest-slide studies were carried out in S6.
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Figure 30 : The INSPIRAL FIRST minifollowup plot for the first loudest slide event (the one on

Friday July 2 2010) shown in Figure 5.7. Contrast this to the minifollowup plot shown in Figure

27(b), which is of a hardware injection. In this case, the SNR of triggers is elevated in L1 around the

time of the event, suggesting that an environmental or instrumental source has caused heightened

noise in L1 at that time.
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(a) The H1 Omega scan.

(b) The L1 Omega scan.

Figure 31 : The Omega scans of the slide event shown in Figure 5.7. Compare these scans to those

of the hardware injection in Figure 5.7. The H1 scan is relatively clean, and so it could contain

a GW signal. The L1 scan, however, clearly shows a low-frequency glitch; this looks nothing like

a chirp we would expect to see from a GW. Based on this, we can search the e-log and use other

tools (some of which are discussed in Chapter 7) to understand what caused this glitch in L1. If an

environmental cause can be found, we can veto this period of time in L1, which would remove this

slide coincidence from the background estimation.
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Figure 32 : A screen shot of a daily ihope page. This page is from the same day as the loudest slide

event shown in Figures 5.7 and 5.7. It can be accessed from the loudest-events table by clicking on

the sngl end time utc column for the trigger. Shown is the rate, New SNR and SNR of triggers

as a function of time for L1 after CAT1 vetoes have been applied. As evident from the side bar,

there are several other plots and lists available for all the detectors at various vetoes and clustering

windows. For more details on daily ihope see [80].
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Figure 33 : A screen shot of a L1 e-log. The day shown is from the same day as the loudest slide

event shown in Figures 5.7 and 5.7. It can be accessed from the loudest-events table by clicking

on the “L1” in the sngl ifo column for the trigger. For a further discussion of the e-log page see

section 5.6.8.
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(a) All injections.

(b) The BNSLOGINJ table.

Figure 34 : Example tables produced by PrintMissed when run in Pipedown. The top table shows

the 10 closest missed injections out of all of the injection runs. The bottom table shows the 10

closest missed injections in the BNSLOGINJ run. Note that in the second table, minifollowup and

Omega scan links have been added. See section 5.6.9 for more information.
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(a) A screen shot of the found/missed table produced by MiniFollowups.

(b) The INSPIRAL FIRST plot from the minifollowup page for this missed injection.

Figure 35 : An example of the output produced by MiniFollowups when run on a missed injection.

The top figure is a screen shot of the found/missed table that traces whether or not the injection

was found, and with what parameters, at each stage in the pipeline. The bottom figure shows the

INSPIRAL FIRST plot created for the event. As with the MiniFollowup plots shown in Figure 27(b),

this plot shows the SNR versus time of single-detector triggers within ±10 s of the injection. Here,

a large spike in SNR is evident in L1 just prior to the injection. This follow-up is for the closest

missed injection shown in the tables shown in Figure 5.7.
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(a) The H1 Omega scan.

(b) The L1 Omega scan.

Figure 36 : The Omega scans of the missed BNSLOGINJ injection detailed in Figure 5.7. The H1

scan is clean, but the L1 scan shows a short-duration broadband glitch ∼ 2 s before the injection’s

end time (which is placed at 0 s on the spectrograms). The presence of this glitch is most likely

reason why the injection was missed. Note that the H1 (and possibly the L1) SNR of the injection

is large enough to be seen in Omega scan. Nothing is seen because Omega scans do not currently

show software injections.
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(a) All injections.

(b) The BNSLOGINJ table.

Figure 37 : An example of the tables produced by PrintSims when run in Pipedown. The top table

shows a portion of the quietest found table for all the injection runs. The bottom table shows a

portion of BNSLOGINJ table. Note that in the latter table, MiniFollowup and Omega scan links have

been added. See section 5.6.9 for more details.
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Figure 38 : A screen shot of an ihope page. This is the final page that is created after ihope has

completed. It summarizes all of the data and plots generated by ihope and provides links to auxiliary

pages to further follow-up triggers. For more details, see section 5.7.
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Chapter 6

S5 Results

In November 2005 the three first-generation detectors of the LIGO reached design

sensitivity and began a two-year period of observations (known as the fifth science

run, or S5) which concluded in October 2007 [82]. As discussed in Chapter 1, one of

the most promising sources of gravitational waves for LIGO is a CBC; the inspiral and

merger of BNS, BBH, or a NSBH systems [16, 17, 18, 19, 20, 21]. These systems spiral

together as they emit energy in the form of gravitational waves, finally merging to form

a single object, which then settles down to equilibrium. Ground-based gravitational-

wave detectors are most sensitive to waves with frequencies between∼ 40 and 1000 Hz,

corresponding to the late stages of inspiral and merger. In this chapter we report the

results of a search for gravitational waves from binaries with total mass between 2

and 35 M� and a minimum component mass of 1 M� (the “low-mass” CBC search)

in LIGO observations between November 14, 2006 and May 18, 2007 (the “S5 12–

18 month” search). The results of a search for these systems in data taken from

November 4, 2005 to November 14, 2006 — known as the “S5 first year search”

— were reported in [21]. From May–October 2007, the Virgo gravitational-wave

detector operated in coincidence with the LIGO detectors [83] and the LIGO data

from that period were analyzed together with the Virgo data (known as the “S5-LV

search”). The joint analysis required significant modifications to our analysis pipeline.

Therefore, results of that search are not reported here; see [6] for more details. In

contrast, the results presented here were obtained with substantially the same analysis

pipeline used in [21], and described in Chatper 5.

No gravitational-wave signals were observed during this search and so we report
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upper limits on CBC rates using the upper limits of [21] as prior rate distributions.

6.1 The Data Analysis Pipeline

The data-analysis pipeline used in this search is fundamentally the same as that of

[21] and discussed in Chapter 5. Here, we only describe the major components and

highlight differences to the previous, “S5 first year” search, referring to [20, 21]

for details. The most substantial change in this analysis was a modification to the

way in which the significance of candidate events are compared to instrumental noise

background. In previous searches, the noise background was computed using the

entire observation period by introducing an artificial time shift between data recorded

at the two LIGO observatories. In this search, the observation period was split into

six four-week segments and one 18 day segment (referred to as “months”) and the

instrumental background was measured independently in each month, as the detector

behavior varied over the course of the S5 run. Candidate triggers were therefore

compared to a background that better reflected the instrumental behavior at the

time of the candidate. Each month was searched independently for gravitational-

wave candidates. In the absence of a detection, the results from the months were

combined (together with the results from [21]) to set an upper limit on the CBC

rate.

We searched for gravitational-wave signals when at least two of the LIGO detectors

were operational. This comprised a total of 0.28 yr when all three detectors (the 4 and

2 km Hanford detectors, denoted H1 and H2, respectively, and the 4 km Livingston

detector, denoted L1) were operational (H1H2L1 coincident data), 0.10 yr of H1H2

coincident data, 0.02 yr of H1L1 coincident data, and 0.01 yr of H2L1 coincident data.

Noise correlations between the co-located H1 and H2 detectors cause our method of

estimating the instrumental background using time-shifted data to fail, and so we did

not search data when only the H1H2 detectors were operating. Approximately 10%

of the data was designated playground and used for tuning our search pipeline.1

Post-Newtonian (pN) theory provides accurate models of the inspiral waveform

predicted by General Relativity up to ISCO [23, 24, 25, 26, 27, 28, 29, 30]. The

frequency of the waveform from low mass binaries targeted in this search sweeps

1See section 5.1 for a further discussion of “playground” data.
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across the sensitive band of the LIGO detectors. Therefore, we searched for signals

from our target sources by match filtering the data with pN templates terminated at

ISCO. This method is suboptimal if a true signal differs from our template family

due to unforeseen physical effects. Matter effects in BNS and NSBH are not included

in our templates, but are expected to be important only at higher frequencies [84, 85].

We constructed template banks [58] of restricted second order pN waveforms in the

frequency domain [86, 87, 24] such that no more than 3% of the SNR was lost due to

the discreteness of the bank [55]. A “trigger” was generated if the matched-filter SNR

of the strain data filtered against the template exceeded a threshold of 5.5 [12]. We

demanded that triggers are coincident in time of arrival and mass [34] in at least two

of the three LIGO detectors. When all three detector were operating we could obtain

(in principle) four possible types of coincidence: H1H2L1 triple coincident triggers

and three different double coincident types: H1H2, H1L1 and H2L1. We discarded

H1H2 double coincident triggers, due to the problems estimating the background for

these triggers, and we discarded H2L1 triggers when the H1 detector was operating

nominally (since the 4 km H1 detector was more sensitive than the 2 km H2 detector).

Coincident triggers were subjected to consistency checks using signal-based vetoes

[88, 32, 33]. Times of poor detector data quality were flagged using environmental

and auxiliary data; triggers from these times were also vetoed [21]. We constructed

three categories of data-quality vetoes depending on the severity of the instrumental

artifact being flagged (“CAT1”, “CAT2”, and “CAT3” vetoes; see section 5.1 for

a more details). In our primary search, and in our upper limit computation, we

vetoed coincident triggers that fall in times from either category 1, 2, or 3. We also

considered detection candidates in data with only category 2 vetoes applied, in case

a loud signal was present that may otherwise have been vetoed. Surviving triggers

were clustered in time and ranked by the effective SNR statistic, which was computed

from the trigger’s matched-filter SNR and the value of the χ2 signal-based veto for

that trigger [20]; see equation 3.68.2 After discarding playground data and times in

both veto categories, a total of 0.21 yr of triple coincident data (H1H2L1) ,0.02 yr of

H1L1 coincident data, and 0.01 yr of H2L1 coincident data remained. In the absence

of a detection, these data were used to compute upper limits on CBC rates.

2We used effective SNR as opposed to New SNR because New SNR had not been developed at

the time of the search.
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Figure 39 : The posterior distribution for the rate of BNS coalescences. The dashed black curve

shows the rate computed in [21]. The solid black curve shows the result of this search using the

previous analysis as a prior. The figure also shows the rate distributions for two of the individual

months computed using a uniform prior. The improvement from month 0 to month 5 is due to

increasing detector sensitivity during this search.
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The rate of instrumental noise artifacts was measured by time-shifting data from

the Livingston and Hanford observatories (H1 and H2 data are kept fixed with respect

to each other). The data was offset by more than the light-travel time between

observatories, thus triggers which survived the pipeline were due to noise alone. We

performed 100 such time-shifts to obtain a good estimate of the noise background

in our search. CBC signals of higher-mass contain fewer gravitational-wave cycles

in the sensitive band of our detectors: our signal-based vetoes were not as powerful.

High-mass templates are therefore more sensitive to non-stationary noise transients

and hence our FAR for these system is larger. In order to account for this mass-

dependent behavior we computed the background for three different mass regions

and compared foreground and background within each of these ranges. Specifically,

in each region we counted the number of background triggers with effective SNR

greater-than or equal-to a given foreground trigger; dividing this number by the

amount of background time analyzed gave us the FAR for that trigger. This allowed

us to define a single detection statistic for every trigger in each of the mass categories.

The FAR could then be directly compared to obtain a ranking of the significance of

the triggers, regardless of their mass [21].

6.2 Search results

The seven months of data were analyzed separately using the procedure described

above. No gravitational-wave candidates were observed with a FAR significantly

above those expected from the noise background. The loudest trigger in this search

was a triple coincident trigger with a FAR of 6 per year. This is consistent with the

expected background, since we searched 0.21 yr of data. The second and third loudest

triggers had FAR values of 10 and 11 per year, respectively. Although we did not

have any detection candidates, we exercised our follow-up procedures by examining

any triggers with a FAR of less than 50 per year. This exercise prepares us for future

detections and often identifies areas where our search pipeline can be improved to

exclude noise transients.

In the absence of detection candidates, we used our observations to set an upper

limit on CBC rates. We followed the procedure described in [46, 47, 48] and used the

results reported in [21] as prior information on the rates. We present five different
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classes of upper limits. The first three limits are placed on binaries of neutron stars

and/or black holes assuming canonical mass distributions for BNS [m1 = m2 =

(1.35±0.04) M�], BBH [m1 = m2 = (5±1) M�], and NSBH [m1 = (5±1) M�, m2 =

(1.35 ± 0.04) M�] systems. We also present upper limits as a function of the total

mass of the binary and, for NSBH binaries, as a function of the black hole mass. We

combined the results from each of the seven months, along with the prior results from

the first year analysis, in a Bayesian manner, using the same procedure as described

in [21].

We first calculated upper limits on BNS, BBH and NSBH systems assuming the

objects have no spin; these results are summarized in Tables 18 and 19. The rate

of binary coalescences in a galaxy is expected to be proportional to the blue light

luminosity of the galaxy [89]. Therefore, we placed limits on the rate per L10 per

year, where L10 is 1010 times the blue solar luminosity (the Milky Way contains

∼ 1.7L10 [90]). To calculate the search sensitivity, the analysis was repeated nu-

merous times adding simulated signals with a range of masses, distance and other

astrophysical parameters to the data. Table 19 shows the sensitivity of the LIGO

detectors to coalescing binaries quoted in terms of the horizon distance, i.e., the dis-

tance at which an optimally oriented and located binary would produce an SNR of

8.

There are a number of uncertainties which affected the upper limit calculation,

including Monte Carlo statistics, detector calibration, distances and luminosities of

galaxies listed in the galaxy catalog [89], and differences between the pN templates

used to evaluate efficiency of the search and the actual waveforms. The effect of these

errors on the cumulative luminosity are summarized for the BNS search in Table 18.

We marginalized over all of the uncertainties [46] to obtain a posterior distribution

on the rate of binary coalescences.

In Fig. 39, we show the derived distribution of the rate of BNS coalescences. The

distribution is peaked at zero rate because there were no detection candidates. We

include the distribution for all searches previous to this one (which was our prior).

In addition, we present the result that would be obtained from each month, were

it analyzed independently of the others and of the previous searches. This pro-

vides an illustration of the amount that each month contributes to the final upper
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Coincidence time H1H2L1 H1L1 H2L1

Observation time (yr) 0.21 0.02 0.01

Cumulative luminosity

(L10)
490 410 110

Calibration error 23% 23% 26%

Monte Carlo error 3% 7% 10%

Waveform error 31% 32% 31%

Galaxy distance error 16% 16% 3%

Galaxy magnitude error 19% 19% 17%

Table 18 : Detailed results from the BNS search. The observation time is the time used in the

upper limit analysis. The cumulative luminosity is the luminosity to which the search was sensitive

above the loudest event for each coincidence time. The errors in this table are listed as one-sigma

logarithmic error bars (expressed as percentages) in luminosity associated with each source error.

limit result, and demonstrates the improvement in sensitivity of the detectors dur-

ing the search. The upper limit is finally obtained by integrating the distribution

from zero to R90% so that 90% of the probability is contained in the interval. The

results obtained in this way were: R90%,BNS = 1.4 × 10−2 yr−1L10
−1 ,R90%,BBH =

7.3× 10−4 yr−1L10
−1 , and R90%,NSBH = 3.6× 10−3 yr−1L10

−1 .

Additionally, we calculated the upper limit for BBH systems as a function of the

total mass of the binary, assuming a uniform distribution of the component masses.

For NSBH systems, we constructed an upper limit as a function of the black hole

mass, assuming a fixed neutron star mass of mNS = 1.35M�. These upper limits are

shown in Fig 40.

Finally, we present upper limits on coalescence rates where the spin of the com-

ponents of the binary is taken into account. Astrophysical observations of neutron

stars indicate that their spins will not be large enough to have a significant effect

on the BNS waveform observed in the LIGO band [59, 60]. Theoretical consider-

ations limit the magnitude of the spin, S, of a black hole to lie within the range

0 ≤ S ≤ Gm2/c. However, the astrophysical distribution of black hole spins, and

spin orientations, is not well constrained. Therefore, we provide a sample upper limit

for spinning systems using a spin magnitude and orientation distributed uniformly

within the allowed values. This gives upper limits on the rate of BBH and NSBH
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Component

masses (M�)
1.35/1.35 5.0/5.0 5.0/1.35

Dhorizon (Mpc) ∼ 30 ∼ 100 ∼ 60

Cumulative

lminosity (L10)
490 11000 2100

Nonspinning

upper limit(
yr−1L−1

10

)
1.4× 10−2 7.3× 10−4 3.6× 10−3

Spinning upper

limit
(
yr−1L−1

10

) ... 9.0× 10−4 4.4× 10−3

Table 19 : Overview of results from BNS, BBH and NSBH searches. Dhorizon is the horizon distance

averaged over the time of the search. The cumulative luminosity is the luminosity to which the search

was sensitive above the loudest event for times when all three LIGO detectors were operational. The

first set of upper limits are those obtained for binaries with non-spinning components. The second

set of upper limits are produced using black holes with a spin uniformly distributed between zero

and the maximal value of Gm2/c.

systems of: R90%,BBH = 9.0×10−4 yr−1L10
−1 and R90%,NSBH = 4.4×10−3 yr−1L10

−1 .

These rates are about 20% larger than the non-spinning rates.

Discussion We searched for gravitational waves from CBCs with total mass be-

tween 2 and 35M� in LIGO observations between November 14, 2006 and May 18,

2007. No detection candidates with significance above that expected due to back-

ground were found in the search. By combining this search with our previous results,

we set a new upper limit on the CBC rate in the local universe which is approximately

a factor of 3 lower than that reported in [21]. This improvement was significant, even

though we searched only two thirds as much data as in [21]. It was due, in part,

to improvements in detector sensitivity during the second year of S5 which increased

the horizon distance. Moreover, the shorter analysis time and improved stationarity

of the data led to many of the months having a less-significant loudest event than

in the previous search. Both of these effects increased the luminosity to which the

search was sensitive, thereby improving the upper limit.

Astrophysical estimates for CBC rates depend on a number of assumptions and

unknown model parameters, and are still uncertain at present. In the simplest models,
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the coalescence rates should be proportional to the stellar birth rate in nearby spiral

galaxies, which can be estimated from their blue-light luminosity [89]. The optimistic,

upper end of the plausible rate range for BNS is 5 × 10−4 yr−1L−1
10 [91, 92] and 6 ×

10−5 yr−1L−1
10 for BBH and NSBH [93, 94]. The upper limits reported here are ∼ 1–2

orders of magnitude above the optimistic expected rates. The most confident BNS

rate predictions are based on extrapolations from observed binary pulsars in our

Galaxy; these yield realistic BNS rates of 5×10−5 yr−1L−1
10 [91, 92]. Rate estimates for

BBH and NSBH are less well constrained, but realistic estimates are 2×10−6 yr−1L−1
10

for NSBH [93] and 4×10−7 yr−1L−1
10 for BBH [94]. Thus, the expected rates are ∼ 2–3

orders of magnitude lower than the limits presented in this chapter. The Advanced

LIGO and Virgo detectors, currently under construction, will increase our horizon

distance by an order of magnitude or more, allowing us to measure the rate of CBCs

in the Universe.
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Figure 40 : The marginalized 90% rate upper limits as a function of mass. The upper plot shows

limits for BBH systems as a function of the total mass of the system. The lower plot shows limits for

NSBH systems as a function of the black hole mass, assuming a fixed neutron star mass of 1.35M�.

Here the upper limits were calculated using only H1H2L1 data since the relatively small amount of

H1L1 and H2L1 data made it difficult to evaluate the cumulative luminosity in the individual mass

bins.
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Chapter 7

S6 Tuning and Results

The sixth LIGO Science (S6) run began on 7 July 2009 and ended on 20 October

2010. This observing run overlapped with two separate Virgo Science runs: Virgo’s

second science run (VSR2), which ran from 7 July 2009 to 11 January 2010, and

Virgo’s third science run (VSR3), which ran from 11 August 2010 to 20 October

2010. A number of improvements were made in both detector hardware and CBC

analysis software between S5 and S6. The software improvements have already been

described in prior chapters: New SNR was developed to replace effective SNR, and

Pipedown was implemented.

In this chapter we describe the S6 and VSR2/3 analysis. Section 7.1 describes

the hardware improvements made to the detectors between S5 and S6. In section 7.2

we describe each of the four epochs the analysis was broken into. Section 7.3 details

some of the major data quality (DQ) issues that arised during S6/VSR2/3 and how

they were dealt with, along with tuning decisions made. In this section we give an

example of a veto developed from the loudest-slide studies that were implemented in

the second half of S6. Finally, in section 7.5 we give the results of the search. No

gravitational waves from CBCs were detected. We describe a blind injection that

was made, and found, during S6/VSR3. Upper limits on the rate of CBCs will be

presented in a forthcoming LSC and Virgo publication [61].
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7.1 Hardware Improvements

The two 4 km LIGO interferometers, H1 and L1, were used for S6. The 2 km Hanford

detector, H2 was not operational during this run. Several hardware changes were

made to the LIGO detectors so that prototypes of Advanced LIGO technology could

be installed and tested. This included the installation of a more powerful, 35 W laser,

and the implementation of a DC readout system that included a new Output Mode

Cleaner on an Advanced LIGO seismic isolation table [3]. In addition, the hydraulic

seismic isolation system was improved by fine-tuning its feed-forward path. Known

as “HEPI feed-forward,” this improvement was implemented in January of 2010; it is

described in more detail in section 7.2.2, below.

Several hardware enhancements were also made to the Virgo detector in the period

between VSR1 and VSR2. A more powerful laser was installed, along with a thermal

compensation system and scattered light was better mitigated. During early 2010,

monolithic suspension was installed, which involved replacing Virgo’s test masses with

new mirrors hung from fused-silica fibers. Following this upgrade Virgo began VSR3.

The average sensitivity of the detectors to binary coalescence signals in each epoch

is shown in Figures 7.2 – 7.2. These figures show the distance at which an optimally

oriented and located binary would produce a SNR of 8 in a given detector. The

figures show how the detectors were improved over the course of the run, and they

eventually surpassed the best S5 ranges.

7.2 S6 Epochs

S6 and VSR2/3 were broken into four epochs: S6A, which ran from 7 July 2009 to 1

September 2009; S6B, 24 September 2009 to 11 January 2010; S6C, 6 February 2010

to 25 June 2010; S6D, 26 June 2010 to 20 October 2010. Table 20 lists the analyzed

time (live time) and duty cycle in each epoch after CAT3 vetoes1 have been applied.

Across all of S6 we analyzed 0.48 years of data, giving a duty cycle of 0.41.

Figure 41 shows a plot of the BNS inspiral range (with each component mass

= 1.4 M�) across all of S6 and the span of each epoch. The start and end times of

the epochs were based on a combination of instrumental and analysis factors. S6A

1See section 5.1 for definition of vetoes and veto categories.
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ended at a pre-planned commissioning break to try to improve the detectors after

learning lessons from the first two months of running. S6B ran from the end of the

commissioning break until the end of VSR2. At this point, Virgo was taken off line for

eight months in order to install the monolithic suspension. S6C therefore consisted

only of coincident time between Hanford and Livingston. Another commissioning

break was taken at the end of S6B, hence the gap between the end of S6B and the

start of S6C. S6D was to begin when Virgo came back online in August of 2010.

During S6C we noticed that non-Gaussian noise transients (glitches) often created

triggers with SNRs above threshold when match filtered with templates that had

total masses > 25 M�. Thus we decided to lower the mass-range of our template

bank2 from 2 ≤ Mtotal/M� ≤ 35 to 2 ≤ Mtotal/M� ≤ 25. We wanted to do this as

soon as possible, and so the somewhat arbitrary date of 26 June 2010 was chosen as

the break between S6C and S6D. Aside from Virgo coming back online, there were

no major instrumental adjustments between S6C and D. There were, however, new

vetoes implemented for S6D based on CBC results in S6C. These new vetoes, as well

as more details about the decision to decrease the range of the template bank, are

discussed in section 7.3. In the next few sections we give more details about each of

the epochs.

Epoch
Live Time by Instrument Time (days) Total Live

Time (days)
Duty Cycle

H1L1 H1V1 L1V1 H1L1V1

S6A 1.2 10.9 10.0 7.1 29.2 0.53

S6B 7.1 20.6 9.4 10.6 47.7 0.44

S6C 39.3 – – – 39.3 0.28

S6D 22.6 7.7 8.3 19.7 58.3 0.50

Total 70.2 39.1 27.7 37.4 174.5 0.41

Table 20 : The analyzed time (live time) in each epoch, and the total for S6/VSR2/3. All times are

calculated after CAT3 vetoes have been applied.

2Recall from section 3.2 that a template bank is the collection of waveforms we use to match

filter the data.
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7.2.1 S6A

At the start of the S6 Science run, the LIGO detectors had lower sensitivity and a

higher rate of non-Gaussian transient noise (glitches) than in later epochs. This can

be seen in Figure 41. In fact, the S6A LIGO ranges were somewhat lower than they

had been during their peak sensitivity in S5. Figure 7.2 shows the average inspiral

range versus binary total mass during S6A as compared to best ranges of S5. We can

see that Virgo, however, showed much improvement over VSR1.

In the joint LIGO and Virgo search that occurred during VSR1 and the last five

months of S5 (the “S5-LV” search), false alarm rates (FARs) were based on a likeli-

hood statistic that took into account the relative sensitivities of various interferometer

combinations. The sensitivities were used to apply a weighting factor to each coin-

cidence type so that more sensitive detector combinations were promoted, allowing

false alarm rates to be computed once across all combinations (as opposed to using

equal-weighted bins to compute combined FARs from uncombined, as described in

Chapter 4) [6]. This was implemented for two main reasons: first, with both H2 and

V1 active, four interferometers had to be analyzed, which led to a large number of

coincidence types and coincident-detector times to consider. Second, Virgo’s sensitiv-

ity was much lower than the LIGO detectors in VSR1, and, due to high amounts of

low-frequency noise, its low-frequency cutoff had to be set to 60 Hz. Thus its template

bank was truncated to have a maximum chirp mass of ∼ 2.6 M� [6]. The probability

that various coincidence types detected a GW was therefore far from equal, and so

re-weighting of triggers’ SNRs needed to be applied. As can be seen in Figure 7.2,

however, the range of V1 was substantially better in VSR2 — better than H2 — and

we were able to lower its low-frequency cutoff so that it could cover the same mass

range as LIGO. Essentially, V1 in S6 had taken the place of H2 in S5. Further, since

V1 was not co-located with the other detectors, we could slide all the instruments

against each other, which allowed us to analyze all instrument times. (Recall from the

last chapter that H1 and H2 could not be slid against each other because they were

co-located, and so H1H2-coincident time could not be analyzed.) For these reasons,

and the fact that the S5-LV likelihood method was still being developed when S6A

started, we decided to analyze S6 in the same manner as in the S5 search described in
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Figure 42 : Average inspiral range of S6A. Ranges were computed by lalapps tmpltbank using

equation 3.36 with ρ = 8, then averaged over all analysis chunks in the epoch. S6 ranges are in

color; best S5 ranges are in gray. Although H2 was not used in S6, it is shown for comparison to

V1.



195

0 5 10 15 20 25 30 35
Total Mass (M�)

0

50

100

150

200

250

In
sp

ir
al

H
or

iz
on

d
is

ta
n

ce
(M

p
c)

H1

L1

V1

H2

Figure 43 : Average inspiral range of S6B. Ranges were computed using the same method as in

Figure 7.2.
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Figure 44 : Average inspiral range of S6C. V1 is not shown as it was down for commissioning during

this period. Ranges were computed using the same method as in Figure 7.2.
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Figure 45 : Average inspiral range of S6D. Shaded region indicates the mass range that was excluded

in the low mass search for this period. Ranges were computed using the same method as in Figure

7.2.



198

Chapter 6 (the “12-18 month search”3), using combined FAR as our ranking statistic,

and with all the coincidence types being given equal weight. We also used many of

the same tuning parameters as the S5 12-18 month search: the SNR cut, χ2 and r2

veto thresholds, chirp-mass bins, and size of the e-thinca parameter4 all remained the

same.

There were a few minor adjustments, however. As mentioned in Chapter 3, we

switched to using 3.5 restricted pN templates, although the template bank metric

was still calculated using the 2pN approximation. New SNR was implemented as our

ranking statistic for computing uncombined FARs after it was noticed — in the 12-

18 month search and the S6A CBC high-mass search5 — that effective SNR tended

to over-weight triggers with statistically low χ2 values. Pipedown replaced older,

more cumbersome, scripts to do post-HIPE processing. As discussed in Chapter 5,

we decided to do coincidence clustering within each chirp-mass bin as opposed to

across all bins, as done in the 12-18 month search. We also switched algorithms for

computing combined FARs from the method discussed in section 4.5 of Chapter 4 to

using slide triggers’ uncombined FARs, discussed in section 4.4. This change had little

effect on the analysis, as they are equivalent. In the 12-18 month search, ihope was

run on month-long blocks of data as opposed to the year-long block used in the S5

first-year search. As discussed in Chapter 6, the duration of ihope analysis periods

were decreased to better reflect changing detector behavior. We continued this trend

of decreasing the analysis periods in S6: in S6A we decided to run ihope in week-long

periods, with a different analyst being in charge of each analysis period. Thus, S6A

was (initially) broken into 8 week-long runs.

Initially we also planned to use TrigScan clustering6 in lalapps_inspiral7 to

cluster triggers across templates. However, we were surprised to find that trigger

rates were much higher than in S5. TrigScan clustering was unable to keep the

rate low-enough for many inspiral jobs to finish (recall from Chapter 5 that a

disadvantage of TrigScan is that it cannot guarantee a maximum trigger rate). Many

3The name 12-18 month comes from the fact that that search covered months 12 to 18 of S5.
4See chapters 3 and 4 for definitions of these parameters.
5Recall from Chapter 1 that the CBC high-mass search covers the mass ranges 25 ≤ Mtotal/M� ≤

100
6See section 5.3.6 in Chapter 5 for a description of TrigScan clustering.
7Recall from Chapter 5 that lalapps inspiral is the program we use to perform match filtering.
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jobs took several days to complete, or would simply run out of memory. As a result,

only two weeks out of the eight were able to finish with TrigScan. Figure 7.2.1 shows

a comparison of the average trigger rate-per-template between one of the weeks that

finished (“S6aWk3”) and one of the months from the S5-LV analysis (“lvMonth8”)

at each stage of the pipeline. The rate was clearly higher for both H1 and L1 at

all stages in the pipeline. In particular, the rate at second inspiral (2 on the x-axis)

was not much lower than first inspiral (0 on the x-axis), implying that χ2 was being

calculated for a large number of triggers.8 As this comparison had to use one of the

weeks that finished, the other weeks that did not finish most likely had an even higher

rate as compared to S5.

To mitigate the high rates we decided to switch from TrigScan to time-window

clustering, discussed in section 5.3.6. What size window to use was an open question

and so we used the two weeks that completed to investigate various clustering win-

dows. We aimed to find the smallest window that allowed the search to continue, and

that resulted in the most efficient recovery of vetoes. Three windows were considered:

10 ms, 30 ms, and 100 ms. The 10 ms window was found to be too short: the trigger

rates were still too high for many runs to complete. This left the 30 ms and 100 ms

windows. Figure 7.2.1 shows a ROC plot9 using 30 ms and 100 ms clustering. Note

that in this plot we also considered raising the low-frequency cutoff to 65 Hz. As can

be seen, the 30 ms window with the standard 40 Hz low-frequency cutoff provided the

best results. We therefore decided to use the 30 ms clustering for all of S6. Why

TrigScan clustering did not work as well is an open question. It may have simply

been due to the high trigger rate. Another possibility is the switch from 2pN to

3.5pN templates somehow affected its ability to properly cluster [80]. We plan to

re-address this before Advanced LIGO.

7.2.2 S6B

S6B began after the commissioning break in September of 2009. While the sensitivity

in H1 improved slightly, the sensitivity in L1 was lower than in S6A. Further, due

to inclement weather, L1 struggled to stay in Science mode for most of the period,

and so the duty cycle was much lower. As stated above, S6B ran from September to

8Refer to Chapter 5 for a description of each of these steps in the ihope pipeline.
9Refer to section 5.6.7 for a description of ROC plots.
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(a) H1 (b) L1

(c) V1

Figure 46 : The average trigger rate per template in week 3 of S6A as compared to one month from

the S5-LV analysis. Each point represents a different stage in the pipeline: 0 → INSPIRAL FIRST,

1 → THINCA FIRST, 2 → INSPIRAL SECOND, and 3 → THINCA SECOND. (See Chapter 5 for a de-

scription of each of these stages.) Stages 4–7 represent the higher-category vetoes being applied

at THINCA SECOND; there is an extra stage in S6A because hardware injections were removed by an

extra veto-category (between steps 5 and 6), whereas in the LV search hardware injections were

removed as a part of the CAT2 vetoes (at step 4).
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Figure 47 : ROC plot from week 3 of S6A using various clustering windows and low-frequency

cutoffs.
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January. Fall brings a number of storms to the Gulf of Mexico, resulting in increased

microseismic (0.1–0.35 Hz) noise. The effects of this noise can be seen in Figure 41:

note that L1 is off for large periods of time, and that it has lower sensitivity when it

is in Science mode.

To mitigate the seismic problem at Livingston Hydraulic External Pre-Isolation

(HEPI) feed-forward was developed during S6B. Many of the interferometer’s optics

sit on tables housed in vacuum chambers. These chambers are situated on hydraulic

actuators, which are used to actively dampen seismic noise. In the feed-forward

process, the output from seismometers on the floor were fed into the actuators to

cancel out the seismic motion [95]. The digital filters used in the feed-forward were

implemented and tuned across S6B. This led to L1 becoming more stable, allowing

for longer Science mode periods. The effect can be seen in Figure 41: a few days prior

to 16 December L1 begins to stay in Science mode for longer periods of time. The

increased stability eventually also allowed the laser power to be increased to 14 W10

which in turn led to better range.11

Due to the sensitivity of the LIGO detectors and L1’s low duty cycle, we decided

to analyze S6B in three analysis periods. The first lasted from the start of S6B until

11 November 2009, at which point the detectors were re-calibrated. The second and

third periods ran from 11 November to 11 December, and 11 December to 11 January,

respectively. We chose 11 December to end the second period so that each period was

approximately the same duration.

7.2.3 S6C

After V1 went offline in January of 2010, another commissioning break was taken

to improve the sensitivity of the LIGO detectors. Thus the S6C analysis began

approximately two weeks after the end of S6B, on 6 February. As can be seen in

Figures 41 and 7.2, the commissioning throughout S6A and B paid dividends during

S6C and D: it was during these periods that the LIGO detectors reached their peak

sensitivity, surpassing that of S5.

10The laser power was set to 14 W at both H1 and L1 during the evening and on weekends —

when there was little seismic noise from human activity — throughout S6C and D. During working

hours, the laser was typically set to 10 W.
11Recall from Chapter 2, increasing laser power decreases shot noise.
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It was during S6C that Pipedown was completed.12 This allowed us to perform

studies to improve the sensitivity of the search that used the loudest coincident-

triggers from time-slides (loudest-slide studies). New data-quality tools were also

finished, including daily ihope [80] and a DQ wiki page. This page, which was

generated each week, brought together information from online analyses and veto

tools, including daily ihope, an online excess-power search (Omega), “hveto” (for

Hierarchical Veto, this is a tool that hierarchically ranks various auxiliary channels as

potential vetoes by the significance of the correlation between the vetoes and triggers

from the GW channel [96]), and UPV (for Used Percentage Veto, this is a tool that

looks for correlations between auxiliary channels and the GW channel; if a channel

is strongly coupled for a set of triggers, it is used as a veto [97]). We therefore

implemented the following system to analyze the data:

• Each week a different analyst would be assigned to complete the DQ study.

This involved examining the DQ page for that week and checking the e-log for

potential issues that would affect the CBC analysis. The analyst would record

their findings on the DQ page (as this page was a wiki, it could be edited after

it was generated) and then present them on a weekly teleconference devoted to

the S6 analysis.

• A “lead” analyst would run ihope on two weeks’ worth of data, with a “second”

providing support (e.g., if the lead could not make a teleconference or had

difficulty getting the analysis to complete, the second would provide help). We

required that the lead analyst be one of the two people who performed the DQ

study for one of the weeks that the ihope run covered. Thus the analyst would

be intimately familiar with potential issues in his or her run.

• The lead or second would generate a blinded ihope page13 after ihope com-

pleted (typically a few days). We would look over the page on the S6 tele-

conference, paying careful attention to loudest-slide events and nearby missed

12Pipedown was used throughout S6A and B. However, for both of those periods, it could only

produce tables of loudest zero-lag events and IFAR plots. An early form of the ihope page and

loudest-events table was used for S6A. For S6B injection finding, PrintMissed, and PrintSims

tables were added. By S6C, loudest-slide tables were added along with PlotFM plots.
13Recall from section 5.7 that a “blinded” page is one that only presents results from playground-

analysis time and injections. An “unblinded” page is one in which all data from all times is presented.
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injections. We were particularly interested in slide events that had combined

New SNRs greater than 11.3 as this would prevent detecting a GW with a SNR

of 8 in each detector.14 The DQ studies would be reviewed to see if any flags

or events recorded in the e-logs could explain the loudest slides. If a flag was

found that passed safety checks — i.e., it did not veto injections — it would

be added to the collection of vetoes used by the search as either a category 2

or category 3 veto. UPV vetoes were also added at this point, as category 3

vetoes. The lead or second would then re-run the second coincidence stage and

Pipedown with these new vetoes (this typically took a few hours). The new

blinded ihope page would be checked again to make sure no new vetoes could

be derived and that there were no glaring problems. An unblinded page would

then be generated and presented on the full CBC teleconference to see if there

were any GW candidates.

• This process would be repeated on successive weeks, with each new analysis

using the updated vetoes from the previous two weeks. The analysis was thereby

fine-tuned as S6C continued.

This method of using loudest slide triggers resulted in a number of vetoes being

generated specifically for the low-mass CBC search. Many of these vetoes were only

used once, as they were based on a specific event that occurred at one of the de-

tectors, such as a computer malfunctioning on a particular day. However, the study

did result in several long-term vetoes being implemented. Section 7.3.1 gives an ex-

ample of one of these vetoes. Routinely un-blinding the analysis also decreased the

latency between when data was taken and when results were obtained. By the end of

S6C and throughout S6D we were un-blinding results and checking for GW signals

approximately two weeks after the data had been taken.

We decided to decrease the mass-range of our template bank to 2 ≤ Mtotal/M� ≤
25 M� at the end of S6C, based on results obtained during that epoch. This decision

to change the upper-mass limit of the bank was influenced by two observations: first,

14Recall from section 3.4 that combined New SNR is calculated from the quadrature sum of the

single-detector triggers. If a loudest-coincident trigger had a combined New SNR greater than 11.3,

all zero-lag triggers would have a false alarm rate of at least 1 per few years. We cannot claim

statistical confidence that a zero-lag trigger was from a GW signal with a FAR that large.
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we found that the templates in the 25–35 M� range frequently created triggers with

relatively large New SNR when a glitch existed in the data. Nearly half of the top

10 loudest events came from this part of the template bank in each of the two week

periods, despite it covering less than a third of the total mass space. The loudest-

slide events in the medium and high chirp-mass bins15 were also largely dominated

by this mass range. The other factor leading to the decision was that the high-mass

CBC search, which covers the mass range 25 ≤ Mtotal/M� ≤ 100, overlapped the

low-mass search in this region. This overlap was unneeded since the template placing

algorithm in lalapps tmpltbank would adequately cover the Mtotal = 25 M� line

within each search. We therefore had two questions to answer: first, which search

was more sensitive to astrophysical GW signals in the 25–35 M� region, the low-mass

or the high-mass? Second, if the high-mass search was more sensitive in this range,

and we decreased the upper limit of the low-mass search template bank, what would

the effect on the low-mass search be?

To answer the first question, we ran the low-mass and high-mass search on the

same 3 weeks of data (weeks 11-14 of S6C) and then compared how well they recov-

ered injections in the overlap region (Mtotal ∈ [25, 35] M�). Figure 48(a) shows the

found/missed plot16 as a function of total mass in the overlap region for the low-mass

search, and Figure 48(b) shows the same for the high-mass search. The high-mass

search appears to be more sensitive: more injections are recovered at farther dis-

tances, and a few injections that were missed in the low-mass search are now found.

That the high-mass search is more sensitive in the overlap region is further supported

by Figure 7.2.3, which shows the ROC plot for injections in the overlap region.17

15Recall from Chapter 4 that we bin coincident triggers by chirp mass in order to calculate “un-

combined” FARs. The bins used are M/M� ∈ {[0.0, 3.48); [3.48, 7.4); [7.4, 15.8)}, which we refer to

as the “low”, “medium”, and “high” chirp-mass bins, respectively.
16Recall that a “found/missed” plot compares properties of injections that are recovered at the

end of the pipeline to those that are missed. Refer to section 5.6.6 for further discussion of these

plots.
17It is not surprising that the high-mass search is more sensitive in this mass region. The high-

mass search uses templates that include the “merger” part of a GW signal, whereas the low-mass

templates only include the “inspiral” part of the signal. (Recall from Chapter 2 that merger occurs

when the component masses pass the ISCO radius, at which point they plunge into each other.)

Since ISCO grows with mass, and since GW-frequency goes as the inverse of the separation distance

(cf. equations 2.53 and 2.56), high mass systems merge at lower gravitational-wave frequencies.
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The high-mass search was clearly more sensitive in the overlap region, suggesting

we should decrease the upper limit of the mass-range covered by the template bank

of the low-mass search. To see the effect this might have on the low-mass search, a

test ihope analysis with a template bank covering the range 2 ≤ Mtotal/M� ≤ 25 was

carried out over the first two weeks of S6C and compared to the original run, which

had the 2 ≤ Mtotal/M� ≤ 35 template bank. Figure 7.2.3 shows the found/missed

plot as a function of chirp mass for the two runs (spinning injections are excluded

in these plots). There are a few subtle differences. Several injections on the edge of

the range are found with lower FARs with the lower-bank. This is expected since the

volume of parameter-space we are searching is smaller, effectively giving a smaller

trials factor.

Only one injection appears to have a lower false alarm rate in the analysis with

a lower-mass bank: the one with M ≈ 3.8M� and decisive distance ≈ 18 Mpc. In

the analysis with Mtotal ∈ [2, 35]M� the injection was “found,” albeit with a large

combined FAR (signified by the orange dot in Figure 50(a)). In the analysis with

Mtotal ∈ [2, 25]M� the injection was missed (signified by the red cross). This injec-

tion never should have considered “found” in the Mtotal ∈ [2, 35]M� analysis, how-

ever: a follow-up investigation found that a glitch occurred during the injection.

This glitch created a trigger when match filtered with a high-mass template. Since

ligolw inspinjfind only uses a time-window to match injections with triggers, it

labelled the injection as “found” even though the recovered parameters were not close

to the injected. In the Mtotal ∈ [2, 25]M� analysis, no templates match filtered with

the glitch created triggers and so the injection was considered missed, as it should

have been. Thus, this injections was another indication that the 2 ≤ Mtotal/M� ≤ 25

template bank was better suited for the low-mass search.

Another metric of interest was the effect of using the 2 ≤ Mtotal/M� ≤ 25 template

bank on the loudest-slide events. Table 7.2.3 compares the three loudest-slide triggers

from the original run and from the new run. There was little difference in the low

and medium chirp-mass bins, but the high-mass bin shows clear improvement. The

loudest event in the high chirp-mass bin with the 2 ≤ Mtotal/M� ≤ 35 bank had a

combined New SNR of 11.78 whereas with the smaller bank it is 9.64. This means

This means that higher-mass binaries will have fewer inspiral cycles and will merge in the frequency

range to which the LIGO and Virgo detectors are most sensitive.
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that an event in the high chirp-mass bin with SNR 8 in each IFO (the SNR on which

we base projected detection capabilities) would now stick out above the background.

Using a template bank with 2 ≤ Mtotal/M� ≤ 25 offered clear advantages and

little or no disadvantages as compared to the bank with Mtotal ≤ 35M�. For this

reason we decided that we should lower the upper limit of the template bank to

Mtotal ≤ 35M� for all subsequent analysis. This decision was made as the analysis of

the two weeks ending on 25 June 2009 was being completed. We therefore decided to

stop S6C on that date, and begin “S6D” with the analysis starting on 26 June using

the 2 ≤ Mtotal/M� ≤ 25 template bank. It was suggested that we re-analyze all of

the S6C weeks with this new bank. However, given the relatively minor differences

in the found/missed plots, we decided against it. This decision was further bolstered

by Figure 7.2.3, which shows a ROC plot comparing the analysis with Mtotal ≤ 25M�

to the analysis with Mtotal ≤ 35M�. The gain in relative volume was not considered

large enough to warrant a re-analysis.

7.2.4 S6D

The method of analyzing data on two week periods that was pioneered during S6C

was continued throughout S6D. There were a few differences between S6C and D: in

addition to reducing the template bank, described above, we also implemented two

new automated vetoes: SeisVeto and a “SNR > 250” flag. These are discussed in

more detail in sections 7.3.1 and 7.3.2, respectively. The other major difference from

S6C was that VSR3 began during S6D.

Virgo came back online on 11 August 2009 to begin VSR3. As mentioned above,

in the break between VSR2 and VSR3, monolithic suspension was installed in an

effort to increase Virgo’s range. Unfortunately, a mirror with an incorrect radius of

curvature was installed in the process. As can be seen in Figure 41, this resulted in

V1 having lower sensitivity than it did in VSR2. The rate of non-Gaussian transient

noise (glitches) was also higher in V1 during VSR3.

Given Virgo’s reduced sensitivity, we were concerned about leaving H1V1- and

L1V1-coincident triggers that occurred during H1L1V1-coincident time in the data.
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(a) Results using the low-mass search.

(b) Results using the high-mass search.

Figure 48 : Found/missed plots as a function of total mass in the overlap region (25 ≤ Mtotal/M� ≤
35) between the low-mass and high-mass search. Plot generated by ligolw cbc plotfm by running

on three weeks of S6C data.
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Figure 49 : ROC plot comparing the sensitive volume in the overlap region between the low-mass

and high-mass CBC searches. All injection used for this plot have Mtotal/M� ∈ [25.0, 35.0]. We see

that the high-mass search has a larger relative volume at all FARs, indicating it is more sensitive to

GW signals in this mass-range. For more details on ROC plots, see section 5.6.7.
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(a) Results using the full bank.

(b) Results using the reduced bank.

Figure 50 : Found/missed plots as a function of total chirp mass. Both plots were generated by

ligolw cbc plotfm using the first two weeks of S6C data. The top plot shows the results from using

a template bank spanning 2 ≤ Mtotal/M� ≤ 35 (“full” bank) and the lower plot shows the results

from using a 2 ≤ Mtotal/M� ≤ 25 (“reduced” bank). Only non-spinning injections with total mass

≤ 25 M� were used in each plot.
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Figure 51 : ROC plot comparing the sensitive volume between the analysis using a template bank

that spanned 2 ≤ Mtotal/M� ≤ 25 (here, labelled as the “clipped bank”) and the analysis using a

template bank that spanned 2 ≤ Mtotal/M� ≤ 35. Only injections distributed uniformly in linear

distance were used in this plot; log-distributed injections showed similar results.
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As discussed in Chapter 4, if we use all the possible coincidence types18 in H1L1V1-

coincident time, we have a trials factor of 12 (4 coincidence types× 3 chirp-mass bins).

This means that the combined FAR of all (loud) triggers will be 12 times larger than

the uncombined FAR. In doing so we have treated all the coincidence types with equal

weight. However, with V1’s reduced sensitivity, it was far less probable that an H1V1-

or L1V1-coincident trigger was a caused by a GW than H1L1- or H1L1V1-coincident

triggers. That the combined FARs of H1L1- and H1L1V1-coincident triggers would

gain a factor of 12 due to the much weaker H1V1- and L1V1-coincident triggers

would clearly be an over-estimation of the false alarm rate. The simplest fix was to

simply remove H1V1- and L1V1-coincident triggers in H1L1V1-coincident time. This

would decrease the trials factor in H1L1V1-coincident time to 6. Before doing this,

however, we investigated what the effect of removing these triggers would be. Namely,

we wanted to know if any injections would be missed, and we wanted to weigh this

against the decrease in FARs for H1L1- and H1L1V1-coincident triggers.

In order to perform the study, two weeks of S6D/VSR3 data were used (from 3

September to 18 September 2010). Both ligolw_cbc_cluster_coincs and

ligolw_cbc_cfar have the ability to remove specific coincidence types from a database;

thus we simply re-ran cFAR on the Pipedown database generated by the standard run

to re-compute the combined FARs with the H1V1- and L1V1-coincident trigger in

H1L1V1-coincident time excluded.

Figure 52(a) shows the found/missed plot in H1L1V1-coincident time for the “orig-

inal” analysis (with V1 doubles included); Figure 52(b) shows the same, but with the

V1 doubles excluded. Some injections do appear to be missed when the H1V1- and

L1V1-coincident triggers (“V1 doubles”) are excluded. To get a better handle on how

many, and whether or not they are really “found” injections (as opposed to being a

glitch within the injection-finding window), the plots in Figure 7.2.4 were created.

The top plot shows found/missed injections in H1L1V1-coincident time as a function

of coincidence type in the original analysis (with V1 doubles included). There are

clearly some injections found as H1V1- and L1V1-coincident triggers, some of which

18Recall that a “coincidence type” refers to the detectors contributed to a coincident trigger. For

example, if a trigger in H1 is coincident with a trigger in V1, then the coincidence type of the trigger

is H1V1. In H1L1V1-coincident time there are four possible coincidence types: H1L1-, H1V1-,

L1V1-, and H1L1V1-coincident triggers.
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are louder than all time-slide (or “background”) coincidences. To get a sense of how

many of these triggers are actually due to injections (as opposed to being from a glitch

that occurred near the time of the injection), the bottom plot shows the accuracy of

the recovered chirp mass: triggers with a recovered chirp-mass fractional accuracy

∼ 0.0 are most due to injections. When more detailed information was printed for

some of these injections, it was found that their effective distance in V1 was lower

than that in H1 or L1, meaning that, despite Virgo’s poor over-all sensitivity, there

were still small areas in the sky to which V1 was more sensitive due to the relative

antenna patterns of the detectors.

Still, the relative number of injections found as H1V1- and L1V1-coincident trig-

gers as compared to the number found as H1L1- or H1L1V1-coincident triggers is

clearly small. To weigh the gain in detecting these extra few injections against the

cost of doubling the trials factor, the ROC plot in Figure 7.2.4 was created. This

plot compares the relative sensitive volume of leaving H1V1- and L1V1-coincident

triggers in H1L1V1-coincident time (blue curve) to excluding them (green curve).

While the two curves are roughly the same at high FARs, removing the V1 doubles

provides more sensitive volume at lower FARs, which is the region of most interest

since we would never claim a detection at the higher FARs.19 Note in particular that

at lower FAR the green curve has approximately half the FAR as the blue curve at

the same relative volume, as expected from the reduction in trials factor. Based on

these results and the small number of injections that would be missed, we therefore

decided to exclude H1V1- and L1V1-coincident triggers in H1L1V1-coincident time

from the analysis for S6D.20

7.3 DQ Issues

In the above sections we have described some of the data quality issues that arose

during S6 that resulted in tuning changes. These were the elevated trigger rate,

19Also, recall from section 5.6.7 that ROC plots can be affected by injections being mis-labelled

as found if a glitch occurs near the time of the injection. This occurs most often at high FARs.
20Note that we still kept all triggers in H1V1- and L1V1-coincident time. Since these times

are mutually exclusive from H1L1V1- and H1L1-coincident time, leaving them in the analysis had

no effect on the FARs of H1L1- and H1L1V1-coincident triggers. Thus we only stood to gain by

considering these times.
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(a) H1V1 and L1V1 doubles included.

(b) H1V1 and L1V1 doubles excluded.

Figure 52 : Found/missed plots as a function of chirp mass in H1L1V1-coincident time. The top plot

includes H1V1- and L1V1-coincident triggers, the bottom plot was created with H1V1 and L1V1

coincidences excluded. Both plots created by ligolw cbc plotfm using two weeks of S6D/VSR3

data.
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(a) Decisive distance v. coincidence type.

(b) Recovered chirp mass accuracy v. coincidence type.

Figure 53 : Found injections as a function of the coincidence type that they were found with. Both

plots were created by ligolw cbc plotfm using the same data as used in Figure 7.2.4.
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(a) Injections distributed uniformly in linear distance.

(b) Injections distributed uniformly in log distance.

Figure 54 : ROC curves comparing relative sensitive distance in H1L1V1-coincident time when

H1V1- and L1V1-coincident triggers are included (blue curve) to when they are excluded (green

curve). The top plot was created using injections distributed uniformly in linear distance;

in the bottom injections were distributed uniformly in log distance. Both plots created by

lalapps cbc plotroc using the same data as used in Figure 7.2.4.
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the switch to a smaller template bank, and the decision to drop H1V1- and L1V1-

coincident triggers in H1L1V1-coincident time during S6D/VSR3. Here we discuss

two of DQ issues that we found during S6 and how we dealt with them. The two DQ

topics listed here are by no means exhaustive. They are simply meant to highlight

some results from detailed loudest-slide and other DQ studies.

7.3.1 The H1 LVEA SEISZ Veto: An Example Veto using Loudest Slides

As described in section 7.2.3, during S6C and D we used the loudest-slide triggers

from the low-mass CBC search to identify potential new vetoes. Many of the resulting

vetoes were only used once based on observations noted in the e-log of some event

at the detector sites. However, the loudest-slide (i.e., background coincident triggers

computed from time-slides that had the smallest FARs) results did result in a few

vetoes that were used extensively. Here we present an example of one of those flags,

the H1 LVEA_SEISZ veto.

When we looked at the initial blinded ihope page for weeks 13 and 14 of S6C

(1 May – 14 May 2009), we found that the loudest-slide trigger in the high chirp-

mass bin (M ≥ 7.4M�) had a relatively large combined New SNR of 13.4. The

ihope analysis of the next two weeks (15 May – 28 May 2009) also revealed a relatively

loud slide trigger, this time in the medium chirp-mass bin (3.48 ≤M/M� < 7.4) with

a combined new SNR of 11.9. Table 22 lists some details about these triggers. There

were no entries in either the Hanford or Livingston e-logs to suggest a cause for

these events. However, as can be seen in Figure 7.3.1, the Omega scans of the H1

GW channel showed similar signatures. When a full-Omega scan was run of every

channel at Hanford, we found considerable seismic noise occurring in the LVEA_SEISZ

channel during both events. Figure 7.3.1 shows the scan from this channel during

these events. The LVEA_SEISZ channel monitors vertical ground motion in the LVEA,

which is the building that houses all of the interferometer’s central optics, such as the

beam splitter, intermediate test masses, and dark port, as well as the laser.21

We therefore developed a flag that monitored the RMS value of the LVEA_SEISZ

channel in the 3–10 Hz band [98]. When the channel exceeded 1000 counts (counts

are an arbitrary unit used for LIGO channels; they are a measure of the amplitude

21The x and y seismic channels also picked up motion. We used the z channel as it was found to

be the most efficient at targeting resulting glitches in the GW channel.
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of the channel), the flag would go off. Efficiency studies found the flag to be good

at targeting noise transients caused by the seismic noise, with little “deadtime” (this

is how much time the flag is on for). It was therefore added as a category-3 veto.

Table 23 shows the loudest-slide events in the high and low chirp-mass bin in weeks

13 and 14 and weeks 15 and 16, respectively, after the application of the veto. The

tail of the background distribution has dropped substantially, and the loudest event

is now below a combined New SNR of 11.3. This means that if a GW signal created

a coincident trigger with a New SNR of 8 in each detector, it would be louder than

all background coincident triggers.

Initially, we only intended to use the flag for weeks 13-16 of S6C. Studies on the

later weeks found that the flag became even more efficient, however, and so the flag

was entered into online monitors as:

H1:DMT-BRMS_SEISMIC_LVEA_Z_3_10_HZ_THRESH_1E3;

it was used as a veto until the end of S6C. As we had already opened boxes on weeks

1-12, we did not apply it to those weeks. Further studies showed it would not have

been as effective during those weeks, anyhow. Why this is, and what the cause was

for the increased seismic noise in later weeks of S6C, is unknown [95].

In S6D the LVEA_SEISZ veto was superseded by SeisVeto. SeisVeto improved on

LVEA_SEISZ by used multiple seismic channels. The output from these channels were

loaded into the hveto algorithm along with daily ihope triggers to find the strongest

correlated channels each day. This automation gave even better efficiency with very

little deadtime [99]. For more details on SeisVeto, see [100].

7.3.2 The “Spike” Glitch

One of the major DQ issues of S6 was the “Spike” Glitch. Beginning in August 2009,

loud, short-duration (∼ 1 ms) glitches began to appear in the Livingston data. These

glitches were characterized by a sharp downward “spike” in the GW channel followed

by “ringing” (due to the response filters in the interferometer); Figure 7.3.2 shows a

close-up of one. The glitch would vary in strength; some were so loud that they could

be seen in the raw (unfiltered) time-series of the GW channel. Figure 58(a) shows

the time series of an example loud spike and Figure 58(b) shows the corresponding

Omega scan. The high-amplitude noise surrounding the glitch is due to the impulse
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Chirp Mass Bin Run M(M�) Mtotal(M�) Combined New SNR

Low
Full Bank 2.34 6.26 9.85

Reduced Bank 2.68 10.37 9.81

Medium
Full Bank 5.36 18.88 10.63

Reduced Bank 5.24 19.91 10.29

High
Full Bank 12.87 29.61 11.78

Reduced Bank 9.86 23.11 9.64

Table 21 : Comparison of loudest slide events between low-mass CBC runs, one using the “full”

template bank (2 ≤ Mtotal/M� ≤ 35) and one using the “reduced” bank (2 ≤ Mtotal/M� ≤ 25).

Results are taken from the first two weeks of S6C data. The low, medium, and high chirp-mass bins

are defined as M ∈ [0.0, 3.48), [3.48, 7.4), and [7.4,max(M)], respectively, where max(M) is the

largest possible chirp mass with each bank.

Analysis

Period

Chirp-

mass Bin
M(M�) Mtotal(M�)

Combined

New SNR
IFO

Single-IFO

End Time

(GPS seconds)

1 – 14 May High 12.7 33.3 13.4
H1 957127982.06

L1 957128122.02

15 – 28 May Medium 4.0 18.8 11.9
H1 958413266.29

L1 958413311.36

Table 22 : The loudest-slide events in the high chirp-mass bin (M ≥ 7.4M�) of weeks 13 and 14,

and in the medium chirp-mass bin (3.48 ≤ M/M� < 7.4) of weeks 15 and 16, respectively, of S6C

prior to application of the LVEA SEISZ veto. (Being the loudest slide events in their respective bins,

both of these events had 0 combined FAR.) Both of these events were found to be caused by seismic

noise at Hanford.
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(a) H1 GW channel at 957127982.06 (the loudest-slide event in weeks 13 and 14).

(b) H1 at 958413266.29 (the loudest-slide event in weeks 15 and 16 of S6C).

Figure 55 : Omega scans of the gravitational-wave channel (DARM ERR) during the loudest-slide events

shown in Table 22.
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(a) H1 LVEA SEISZ at 957127982.06 (the loudest-slide event in weeks 13 and 14).

(b) H1 LVEA SEISZ at 958413266.29 (the loudest-slide event in weeks 15 and 16 of

S6C).

Figure 56 : Omega scans of the LVEA SEISZ channel during the loudest-slide events shown in Table

22. Note that the time scale is plotted in minutes here whereas in Figure 7.3.1 it is in seconds.
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response of Omega’s whitening filters and the way they average power over time to

highlight transients in the power spectrum.

The spike glitch also adversely affected the CBC match filter. Figure 7.3.2 shows

a typical response by lalapps_inspiral when a spike glitch passes through; in this

case the glitch was the one shown in Figure 7.3.2. This plot was created with the

2 ≤ Mtotal/M� ≤ 35 template-bank, without any clustering. Each trigger is colored

by its τ0 value, which essentially gives the duration of the template. The large spike

in SNR that begins at the time of the glitch (0 s) is due to the impulse response of

the templates. Although the SNR of these triggers is quite large (in this case, the

loudest trigger had a ρ 8300), they did not typically show up in our loudest events

nor our loudest slides. This is because they would have very poor χ2 values, resulting

in low new SNRs. Of greater concern was the “shoulders” surrounding the spike and

the tail proceeding the glitch. This tail could last several seconds after the glitch and

its triggers could have lower χ2 values. We therefore wished to find the cause of the

glitch, so that the detector could be fixed, or, if that was not possible, so we could

veto it.

Figure 57 : A close-up of a spike glitch. Shown is the GW channel (DARM ERR) raw time series.

Unfortunately, despite a number of intensive data-quality studies and feedback

from instrumentalists, we were never able to determine the cause of the spike glitch.

Not only did this prevent us from fixing the instrument so the glitch would go away,
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but it also made it difficult to veto. As stated above, we typically only veto triggers if

they can be strongly correlated with an auxiliary channel. This is to avoid accidentally

vetoing a gravitational wave. The spike glitch was clearly not a GW, but we had no

other way to veto it than to use the GW channel. We therefore decided to use a

DQ flag based on daily ihope triggers. Named H1:DCH-CBC_SNR_GT_0250, this flag

would go off whenever triggers exceeded a SNR threshold of 250. The flag was used

as a CAT3 veto in S6D, and a “padding” of ±8 s was added to it. The padding was

added to remove the “shoulder” triggers created by the spike. 8 s was chosen based

on the length of the inverse spectrum truncation.

There was some concern that vetoing triggers using the output of daily ihope would

cause us to miss a nearby event. However, any real GW event that had a SNR above

250 would stick above the background at CAT2. Since we check results after CAT2

vetoes have been applied, and the SNR > 250 flag was applied at CAT3, this veto

would not prevent us from detecting such an event.

7.4 Results

As described in section 7.2, we initially analyzed the data in several small analysis

periods — weekly runs in S6a; three month-long chunks in S6B; bi-weekly runs in

S6C and D — and opened boxes on each of these analyses. We did this so we could

obtain results quickly, and so we could pro-actively adapt the pipeline to DQ issues,

as detailed above. However, we did this with the knowledge that we would have

to re-run the pipeline over these periods. Re-runs were required in order to take

advantage of final calibration studies, as well as fix minor issues in published veto

segments.22 For speed and simplicity these re-runs are being carried out in larger

∼ 6-week long chunks. S6A is being analyzed with one run; S6B is divided into

two chunks, one prior to 11 November 2009, and the other from 11 November to 11

January 2010. S6C and D are each being re-analyzed in three chunks. Aside from

the grouping of analysis periods together, no other changes have been made to the

runs. For example, although new vetoes were created throughout S6C and D, these

22Upon review, a CAT1 veto-flag was found to stay on (and off) for slightly longer periods than

it should have. The effect on the analysis is small, amounting to a change in live time of less-than

a day across all of S6. For the sake of rigor, however, we have fixed the flag for re-runs.
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(a) Raw time series.

(b) Omega scan.

Figure 58 : An example spike glitch. This glitch occurred at GPS time 945281603.98 (19 December

2009 18:13:08 UTC). The top plot shows the raw time series from the GW channel; no filtering has

been applied to this plot. The bottom plot shows the Omega scan of this glitch. Omega uses a

whitening filter to create the bottom plot, hence the high-amplitude noise lasts several seconds.
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Analysis

Period

Chirp-

mass

Bin

M(M�) Mtotal(M�)
Combined

New SNR
IFO

Single-IFO

End Time

(GPS sec-

onds)

1 – 14 May High 9.1 25.4 10.1
H1 957858489.74

L1 957858414.75

15 – 28 May Medium 4.4 20.9 10.3
H1 958306864.45

L1 958306784.5

Table 23 : The loudest-slide events in the high chirp-mass bin (M ≥ 7.4M�) in weeks 13 and 14,

and in the medium chirp-mass bin (3.48 ≤ M/M� < 7.4) in weeks 15 and 16, respectively, of S6C

after the application of the LVEA SEISZ veto. (Being the loudest slide events in their respective bins,

both of these events had 0 combined FAR.)

Figure 59 : The unclustered triggers created by the spike glitch shown in 7.3.2 when passed through

lalapps inspiral.
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have not been retroactively applied to earlier periods.

As the changes between the original runs and the final re-runs are minor, we

do not expect our result to change. The result of the S6/VSR2/3 analysis is: No

gravitational-wave candidates were detected. Currently, the most significant event

is an H1L1-coincident trigger in H1L1V1-coincident time with a combined FAR of

2.2 yr−1. The second and third most significant triggers had combined FARs of

5.6 yr−1 and 9.4 yr−1, respectively. All of these triggers are consistent with back-

ground: having analyzed ∼ 0.5 yr of data, we would expect the loudest event to have

a FAR of ∼ 2 yr−1. Although no detection candidates have been found, we will per-

form detailed follow-ups on the loudest triggers in each epoch once the re-runs have

completed. These follow-ups are carried out to aid in future DQ investigations.

As a part of the re-runs we are performing extra injection runs. This is so we can

improve our statistics for placing upper-limits. Since these runs are still on-going,

and since the final upper limits will need to be reviewed once they are produced, we

do not present upper limits here.

7.5 The Blind Injection

A hardware injection was injected into the LIGO and Virgo detectors during S6D/VSR3

without the search groups’ knowledge.23 The purpose of this blind-injection challenge

was to test the groups’ abilities to detect signals and to exercise the LIGO and Virgo

Collaborations’ procedures in the event that a real gravitational-wave candidate is

detected. The blind injection was found by the CBC group with a FAR low enough

to be considered a detection candidate. We treated the event as if it were real: de-

tailed studies were done to establish the significance and parameters of the event, and

to vet the detectors of any possible environmental or instrumental causes. Only after

all procedures were reviewed and a paper draft written was the event unveiled as an

injection. Although the event was not real, we present here details of the analysis of

the injection, including methods used to calculate its FAR.

23The search groups did know that zero or more blind injections could happen over the course of

the Science run, however.
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7.5.1 Observation and FAR Estimation

The blind injection occurred on 16 September 2010 at 06:42:23 UTC (GPS time

968654558.0) and was identified by multiple searches. It was initially observed, within

a few hours, by a low-latency Burst search. Since Burst searches use un-modelled

waveforms, it did not give the event a FAR small enough to be considered a detection.

However, it was significant enough to stand out as a potential CBC candidate, and

so the collaboration was alerted to its presence in the data.

Although we knew about the potential candidate prior to opening the box, we

carried out the analysis of the two weeks containing the event as we did every other

period: a blinded ihope page was generated, loudest-slides were examined, vetoes

were updated, and a re-run was carried out with the new vetoes to prepare of the un-

blinding of the results. The injection was loud enough in H1 that it was a part of the

loudest H1L1-slide event in the medium chirp-mass bin during H1L1V1-coincident

time. In this event the candidate in H1 was coincident with a random noise event in

L1. The slide event had a combined New SNR of 11.56 and the chirp was visible in

the H1 Omega scan. (See Table 25 for more details.) As with any loud slide-event we

checked the DQ studies for the week and the e-log to see if we could find an auxiliary

channel to veto the times in either of the detectors.24 No cause could be found in

either detector, and so the slide event stayed in the data.

When the box was opened the injection was found as two events: one in the low

chirp-mass bin, and one in the medium chirp-mass bin. Both triggers were found

as H1L1 coincidences in H1L1V1 time and had combined FARs of zero; i.e., both

events were louder than all the background in their respective bins. Figure 60 shows

the unblinded IFAR plot for H1L1V1-coincident time from the analysis and Table

24 shows the parameters of the two events that were found. That the injection

created two triggers was a result of our earlier decision to cluster coincident triggers

within each chirp-mass bin. Since both triggers had zero combined FARs it was not

immediately clear which trigger to keep. Further complicating the matter was that

the triggers landed exactly on the bin boundary: the low-mass trigger had a chirp

24Since the blind injection is a hardware injection, it is created by actuating one of the mirrors.

There is a channel that monitors the input to this mirror, and so it is possible to check whether or

not an event is a blind injection without having to wait for the “envelope” to be opened. We forbid

ourselves from checking this channel, however, as it would make the entire challenge pointless.
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mass of 3.47 M� and the high mass trigger had a chirp mass of 3.48 M�; the boundary

was M = 3.48 M�. Since we needed to estimate a combined FAR for the candidate,

we decided to find an estimate in each bin. Whichever trigger had the lower-combined

FAR we would keep.

In order to estimate a FAR for the candidate event we initially combined data

from adjacent analysis periods. This was standard procedure; it was performed on

several different occasions in prior instances when a trigger was found with zero FAR

in a single week of analysis. However, the candidate was the loudest H1L1-coincident

trigger in all of S6. Thus, even if we used all the data in S6, we could still only

estimate the uncombined FAR to be < 1 in 23 years. This was not small enough

to claim a detection. It was also not clear that using data from all of S6 was the

correct approach, since the data quality had changed substantially from S6A to when

the event occurred, in S6D. Additionally, computing a combined FAR using data

from across epochs would have been difficult, since in S6A and B the trials factor in

H1L1V1 time was 12, in S6D it was 6, and in S6C there was only H1L1 time.

To get a better estimate of the FAR, two methods were pursued. One was to

perform an extrapolation using data from the 100 slides. Figure 62 shows a histogram

of all of the H1L1 triggers in S6C and D as a function of combined new SNR (ρnc)

in the low and medium chirp-mass bins. Zero-lag triggers are represented as blue

dots; slide triggers are black. The blind injection is the blue dot all the way to the

right, at ρnc ≈ 12. The structure of the distribution is largely due to χ2 re-weighting

and the SNR cutoff: non-Gaussian triggers have been down-weighted, removing any

tail in the distribution, and the peak at ρnc ≈ 8 is due to the SNR cut. Indeed,

any trigger below a combined new SNR of 7.7 (=
√

2 × 5.5) must be a trigger that

was down-weighted, since we apply the SNR cut at 5.5. For combined new SNRs

> 8.5 the distribution appeared to be Gaussian, particularly in the low chirp-mass

bin. We therefore performed a least-squares fit to the background distribution using

a Gaussian of the form:

Aexp

[
− x2

2πσ2

]

where A and σ2 were the fit parameters. We used the slide data in the range ρnc ∈
[8.5,max(ρnc)] to perform the fit. The green-dashed line shows the result of the fit.

Next, we created a cumulative histogram plot in each bin, shown in Figure 63,
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with the y-axis normalized by the zero-lag live time. Using the fitted parameters from

the non-cumulative histograms, we plotted the complimentary error function:

y(ρnc) = Aerfc

(
ρnc√
2σ2

)

This is shown as the green-dashed line, from ρnc = 8.5 to the combined New SNR

of the blind injection. Thus, the point on the y-axis where the green-dashed line

ends gives the uncombined FAR of the blind injection. In the low chirp-mass bin this

yielded a FAR ≈ 1 in 4× 106 years, and in the medium bin we obtained a FAR ≈ 1

in 2× 106 years.

On the cumulative histogram plots we additionally plotted the probability density

function that the zero-lag events came from the background distribution as a color

map. This map was computed using the Poisson distribution (equation 4.5 in Chapter

4). At each point along the x-axis, λ was determined using the cumulative rate of

the closest slide data point greater-than that point. For points past the loudest-slide

point (indicated by the vertical black line), the extrapolation is used. Note that this

was done prior to dividing by the zero-lag live time, so that the cumulative-rates were

unit-less; i.e.:

λ = Ncum,slide
Tf

Tb

where Ncum,slide is the number of slide triggers with ρnc ≥ the combined new SNR at

the given point on the x-axis, Tf is the zero-lag live time, and Tb is the total slide

live time. The probability density at each point along the y-axis at that x-value is

then determined by substituting the (unit-less) y-value as k in equation 4.5. The

entire plot was then divided by Tf to get it into units of yr−1. The color map ends

at y = 1/Tf because the Poisson distribution is not defined for k < 1. (Technically,

it is not defined for any non-integer k. To make the plot cleaner we interpolated

between integer points using the Gamma Function.) The black dashed-lines indicate

Nσ points, as determined by the Gaussian distribution. For example, 2σ corresponds

to a probability density of 0.045, and so the second black dashed-line maps out points

where the distribution is equal to 0.045. We do this because a false alarm probability

equal to 5σ is generally considered the “gold” standard for a new detection in the

particle physics community.

While the extrapolation appears to fit the low chirp-mass bin well, it clearly

deviates from the slide distribution in medium chirp-mass bin. This is largely due
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to the loudest slide event, which happens to be the event shown in the first row of

table 25: it resulted from the blind injection in H1 being coincident with a random

noise event in L1. If we remove ±8 s around the end time of the injection from each

detector when performing the slides, then any slide event that could be caused by

the blind injection goes away. Figure 64 shows the cumulative histogram for the low

and medium chirp-mass bins when this is done. The low chirp-mass bin is largely

unaffected, but in the medium chirp-mass bin the fit matches better. The extrapolated

FARs were largely unaffected when doing this; both low and medium chirp-mass bins

still gave ≈ 1 in 4× 106 yr and ≈ 1 in 2× 106 yr, respectively.

We did not feel confident using these extrapolated FARs. The validity of extrap-

olating over six orders of magnitude was hard to determine. Additionally, we had

no expected model for the background. Even if new SNR removed all non-Gaussian

transients above an SNR of 5.5 we had no model for the effects of coincidence testing

and the various stages of clustering. We chose to fit a Gaussian largely because that

is what the slide distribution looked like. However, even when the blind injection was

excluded from the background estimation, the extrapolation still appeared to deviate

slightly from the slide triggers in the medium chirp-mass bin. This suggested that a

Gaussian was not the correct distribution to use in the medium bin.

The 100 slides that we typically do is a small percentage of the total number of

possible slides. Thus, another way to estimate the FAR was to do more time slides.

Since we use offsets that are multiples of 5 s between H1 and L1 in the standard

search, we decided to do the maximum number of 5 s slides that was possible in S6D.

We limited the estimation to S6D to try to ensure that the background rate was

roughly constant across the period (recall from Chapter 4 that assuming a stationary

source is central to the FAR analysis). Also, rather than perform slides on rings, we

used linear slides.25 This way we could use single-detector times in the background

estimation. In this manner we were able to perform 4 × 106 slides, resulting in

25Recall from section 5.3.10 that lalapps thinca slides single-detector triggers on rings prior to

doing the coincidence test. Triggers that are slid past the end time of a particular file are placed at

the beginning. Since thinca jobs are set-up so that they only span coincident detector times (after

CAT1 vetoes have been applied), any times for which a single detector is operating (“single-detector

time”) will not be used for the coincidence test. Contrast this to linear slides, in which triggers are

slid without regard to when a particular thinca file starts or ends. Thus, single-detector times can

be slid into coincident-detector time.
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∼ 1 × 106 effective slides. (Recall from chapter 4 that the effective slide number

is obtained by dividing the total slide live time by the zero-lag live time.) This

resulted in a total background live time of 2.0 × 105 years. To remove any effect

on the background estimation from the first coincidence testing, we created a list of

single-detector triggers with χ2 values using a prototype single-stage pipeline. This

pipeline was the same as the HIPE pipeline described in Chapter 5, except that χ2

was calculated at first Inspiral and no second stage was carried out.

Two independent scripts were used to carry out the slides to check the results.

Due to the computational cost of doing so many slides, only single-detector trig-

gers that had new SNRs large enough to cause a coincidence as loud or louder than

the injection’s combined new SNR were considered by both scripts. Additionally,

since the injection was found as an H1L1-coincident event, we did not use V1 in the

analysis. Thus we effectively combined H1L1V1-coincident time and H1L1-coincident

time into one, and pulled out all H1L1 coincidences from H1L1V1-coincident triggers.

Both scripts agreed with each other. The result was that there were 4 coincidences

with combined new SNRs ≥ the injection’s ρnc in the low chirp-mass bin, giving an

uncombined FAR of 1 in 50, 000 years. In the medium chirp-mass bin there were

5 louder coincidences, giving an uncombined FAR of 1 in 40, 000 years. This was

with the candidate event left in the background. If the candidate was removed, no

coincidences were louder than it, putting a limit on the uncombined FAR of < 1 in

200, 000 years. One of the two scripts was able to additionally compute the FAR

using 1 second slides. When this was done, one event was found to be louder than

the injection even when it were removed in the low chirp-mass bin. In the middle

chirp-mass bin, however, there were still no events louder than the injection. Based

on this result, along with the fact that the combined new SNR was larger in the

middle chirp-mass bin, we decided to keep the trigger in the middle bin, i.e., the one

with a chirp mass of 3.48M�, and discard the other.

Figure 65 summarizes these results, which is a cumulative histogram in the middle

chirp-mass bin. This plot was created in the same manner as the cumulative plots

shown in Figures 63 and (minus the extrapolation). Here, the zero-lag triggers in

S6D (S6C is not included) are the blue triangles. The background from the standard

100-slide analysis are represented by the dots. The crosses represent the loudest

triggers from the 4 million 5 second slides. The black dots and crosses are from
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the background estimations in which the injection was left in the background. The

gray dots and crosses are from the background estimation if the injection is excluded.

Rather than use a color map to show the probability density, we plotted shaded

contours to represent the 1–5σ regions of the PDF. The contours were calculated

using the background with the injection left in. Had the injection been a real event,

this plot would have been our main figure of merit in the resulting detection paper.

The question of whether or not to leave the injection in the background was

hotly debated prior to opening the envelope. If the event were a real gravitational

wave, we would remove it from the data. Otherwise, leaving it in would break the

assumption, made at the end of Chapter 4, that the total rate density calculated from

time-slides is the same as the FAR. In this case the noise/GW terms in equation 4.36

at low FAR would be on par with the noise/noise term. Thus we could not make

the approximation in equation 4.43. Yet if the event were from noise, removing it

would underestimate its FAR, as well as the FAR of all other events. Ultimately we

decided to present both backgrounds on the plot (and in the detection paper), but,

to be conservative, quote the false alarm rate with the event left in the background.

(This is why the background points with the injection left in are black, whereas the

event-free background points are light gray, and why the probability contours are

based on the former estimate.) Thus the quoted uncombined false alarm rate for the

event was 1 in 40, 000 years.

To get a combined FAR for the injection we multiplied the uncombined FAR by

a trials factor of 6. This gave a final false alarm rate for the event of ∼ 1 in 7000

years. Since we folded all H1L1-coincident triggers in together, this was a slight

overestimate. Had we included V1, some of those triggers would have been H1L1V1

coincidences, and so would have been excluded from the bin. Determining what

triggers would have formed triple-coincidences would have been impossible because

we folded H1L1-coincident time together with H1L1V1-coincident time. While we

could have determined what triggers would have been coincident with V1 in H1L1V1-

coincident time, we could not know this in H1L1-coincident time. Since the number of

H1L1V1 coincidences are typically small compared to the number of H1L1-coincident

triggers, however, this overestimate would have been minor.

Even with the injection left in the background, the event was still close to a 5σ

event, as can be seen in 65. Thus we went a head with writing a detection paper,
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and a number of intensive data-quality investigations were carried out on the period

of time. The event passed all tests. The LIGO observatories were in quiet night-

time operation with near maximum astrophysical range; the Virgo detector had quiet

environmental conditions, except for elevated micro-seismic levels. The lack of an

observed signal in Virgo was consistent with a GW. V1’s sensitivity was a factor

of four lower than the LIGO detectors at the time. Since the largest single-detector

SNR, recorded in H1, for the event was ∼ 15 (note the H1 SNR in the loudest slides

in table 25), it very likely had a SNR below our threshold of 5.5 in V1.

7.5.2 Conclusions

The blind injection challenge in S6 was considered a success. The event was identified,

a false alarm rate was calculated, and it was vetted by DQ investigations. For the

first time we wrote a paper detailing a highly-probable GW detection. Had the event

been real this paper would have been published. Even though it was not real, the

experience gained will prove valuable for the first real detection, which is expected to

happen in advanced LIGO. In addition to highlighting the strengths of our pipeline, it

also unearthed some weaknesses. That a GW event can hurt its own FAR if left in the

background estimation was not fully appreciated prior to the exercise. How exactly

to deal with this scenario, particularly if there are multiple GWs in the data, is still

an open question. It will be an area of active research between now and advanced

LIGO.

After the event was revealed to be a blind injection, a veto was created for it and

it was removed from the data. As stated above, with the injection removed, there

were no gravitational-wave candidates in S6/VSR2/3. A paper presenting updated

upper-limits as well as more details about the blind injection is in progress.
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Figure 60 : IFAR plot from the two-week-long ihope run containing the blind injection. The two

coincident triggers that the injection created can be seen as the triangle with a cumulative number

of 2 at the lower-right of the plot. Note the arrow pointing to the right. This indicates that the two

triggers were louder than all slide-coincident triggers in the two-week long analysis period that the

injection occurred in.

Chirp-

mass Bin

Combined

New SNR

M
(M�)

Mtotal

(M�)
IFO

Single-IFO

New SNR

Single-IFO

SNR

Effective

Distance

(Mpc)

Low 12.06 3.47 24.01
H1 10.29 12.14 54.6

L1 6.29 8.25 83.6

Medium 12.48 3.48 23.17
H1 10.29 12.14 54.6

L1 7.06 8.854 81.2

Table 24 : The two events resulting from the blind injection that survived clustering. Both events

occurred at GPS time 968654557.87, and had a zero combined FAR.
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Analysis
Combined

New SNR

M
(M�)

Mtotal

(M�)
IFO

Single-IFO

New SNR

Single-IFO

SNR

Single-IFO

End Time

(968654558+s)

100

slides
11.56 4.62 13.41

H1 10.33 15.34 0

L1 5.19 5.64 −230

4× 106

5 s slides
12.67 4.40 16.53

H1 10.33 15.34 0

L1 7.33 8.48 −5548535

Table 25 : The loudest slide events in the medium chirp-mass bin involving the blind injection in

the standard, 100 slide analysis, and in the 4× 106 5 s slide analysis. In both cases the injection in

H1 is coincident with noise in L1.

(a) H1

(b) L1 (c) V1

Figure 61 : Omega scans of H1, L1, and V1 at the time of the blind injection. The chirp is clearly

visible in H1 and L1.
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(a) The low chirp-mass bin.

(b) The medium chirp-mass bin.

Figure 62 : Histograms of all of the H1L1-coincident triggers in S6C and D as a function of combined

New SNR (ρnc) in the low and medium chirp-mass bins. Zero-lag triggers are represented as blue

dots; slide triggers are black. The y axes are normalized by Texp/Tf , where Texp is the duration of the

experiment type for a given set of points — zero-lag or slide — and Tf is the zero-lag (foreground)

duration. Thus, zero-lag trigger counts are divided by 1, whereas slide-trigger counts are divided

by Tb/Tf ≈ 100, where Tb is the sum of live times in all slides (the background live time). The

x-error bars on the slide triggers indicate the bin widths used in the histogram. The y-error bars

were calculated by dividing the standard deviation in each bin by the square root of the effective

number of slides (= Tf/Tb ≈ 100). The green-dashed line is a Gaussian fit to the slide data using

points from combined new SNR 8.5 and above. The blind injection is the blue dot all the way to

the right, at ρnc ≈ 12.
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(a) The low chirp-mass bin.

(b) The medium chirp-mass bin.

Figure 63 : Cumulative histogram of all H1L1-coincident triggers in S6C and D as a function of

combined new SNR in the low and medium chirp-mass bins. Zero-lag triggers are represented by

blue dots; slide triggers are black. In order to make the probability-density color map, the y axes

were initially normalized by Texp/Tf , as in Figure 62. All points were then divided by Tf to put the

y axis in units of inverse years. The error bars on the slide triggers are calculated using equation

4.48 in Chapter 4. See the text for details on how the probability density was calculated. The

green-dashed line shows the complimentary error function using the fit results from Figures 63.
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(a) The low chirp-mass bin.

(b) The medium chirp-mass bin.

Figure 64 : Cumulative histograms with the blind injection excluded from the time-slides. These

plots are generated in the same manner as in Figure 63. Here, the yellow star represents the

blind injection. A Gaussian was fitted to non-cumulative slide distributions with the blind injection

removed. The fit values were then used to create the extrapolations, shown as the green-dashed line.
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Figure 65 : The cumulative rate of H1L1-coincident triggers with chirp mass 3.48 ≤M/M� < 7.40

in S6D as a function of combined New SNR (here, labeled “Threshold ρc”). This plot was generated

in a manner similar to the Figures 63 and 64, except that no extrapolation was done. We have

also replaced the probability density color map by the gray shaded contours, which show the 1− 5σ

(dark to light) regions of the PDF. The blue triangles show coincident events. Black dots show

the background estimated from 100 time shifts and black crosses show the extended background

estimation from all possible 5-second shifts on this data. The gray dots and crosses show the

corresponding background estimates when a±8 seconds of data around the time of the blind injection

are excluded. Had the blind injection been real, this plot would have been one of the main figures

of merit used in the detection paper.
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Chapter 8

Can We Detect with Two

Detectors? A Study for LIGO

South

The LSC currently plans to have three LIGO detectors when Advanced LIGO comes

online: one interfermeter at Livingston, L1, and two at Hanford: H1 and H2. H2

is planned to have 4 km arms, instead of the 2 km length it had in initial LIGO.

However, in the past year the possibility opened up for a LIGO interferometer to be

built in Australia. In this case, LIGO would still have three interferometers; rather

than have two at Hanford, the optics for H2 would be shipped to the Australian site

to be set up there.

8.1 Advantages of LIGO South

A number of studies were carried out to evaluate the pros and cons of having a H1L1S1

(S1 for the Australian detector) network as opposed to a H1H2L1 network. Most of

these studies found that the H1L1S1 network had a number of advantages over the

H1H2L1 network. Perhaps the biggest benefit is sources can be better localized if the

third detector is in the southern hemisphere. Since the interferometers are not direc-

tional antennas, a network is needed to localize a source. Essentially, by measuring

the difference in time of arrival between the various detectors in the network, we can
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triangulate the source. The accuracy of localizing a source is given by [101, 102]:

p(r|R) ∝ p(r) exp

[
−1

2
(r−R)TM(r−R)

]

where R is the actual location, r is the reconstructed location, p(r) is the prior

distribution on r, and M is given by:

M =
[∑

σ−2
i

]−1∑

i<j

DijD
T
ij

σ2
i σ

2
j

Here, σi is the timing accuracy in the ith detector and Dij is the distance between the

ith and jth detectors. Thus, the larger the distance between any two detectors, the

more strongly peaked the probability distribution will be around the actual location.

It was found [102] that in the H1L1S1 network, an optimally located1 coalesc-

ing binary at SNR 7 could be localized to an area of 8.5 square degrees with 90%

probability. In the H1H2L1 network the best localization was 12.5 square degrees. If

Virgo is added to the network, then with H1L1S1V1 the localization can be as small

as 2.8 square degrees with 90% probability, whereas it is 10.0 square degrees with

H1H2L1V1.

Another advantage of an Australian detector, as opposed to two detectors at

Hanford, is that a relative time-offset can be added between all of the detectors to

perform background estimation. Recall from Chapter 6 that in S5 we could not

analyze H1H2-coincident time due to correlated noise. Further, if there was some

environmental factor that caused one of the Hanford detectors to come out of Science

mode, it would most likely also cause the other Hanford detector to come out of

Science mode. If we instead have three non-co-located detectors, then we increase

the probability that at least two detectors will be operational at any given time,

thereby increasing our total observation time.

8.2 Can We Detect at SNR 8 with Two Detectors?

There were a number of clear advantages to moving the second Hanford detector to

Australia. However, one concern about doing this was the effect it would have on the

1In this case, “optimally located” means that the binary is overhead the plane formed by the

network of detectors. The worst localization occurs when the source is in the plane of the detectors.

The numbers presented are therefore best-case scenarios.
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Advanced LIGO projected chronology. If the optics for the second Hanford detector

were shipped to Australia, it would likely take an additional two or more years to

bring the detector online. This means that we would only have two detectors for the

first few years of Advanced LIGO.2 Our projected detection rates are based on being

able to detect gravitational waves from CBCs at an SNR of 8 in each detector. We

know that non-transient Gaussian noise, or glitches, can affect our ability to detect,

but this can be mitigated by performing coincidence tests across detectors [34]. If we

only have two detectors, can we confidently detect a GW at SNR 8?

To answer this question we looked at the rates of H1L1 coincidences in S5. We

used S5 as opposed to S6 because S6 the S5 analysis was complete and triggers were

available at the time of this study. All of the months from the 12–18 month analysis

were used, along with four months from the S5-LV analysis. All H1L1 coincidences

were used in double-, triple- and (in the case of the LV months) quadruple- coincident

times. For H1H2L1, H1L1V1, and H1H2L1V1 coincidences, the H1L1 part of the

coincidence was used to re-calculate the combined New SNR of the trigger.

Figure 8.3 shows the result of the analysis for the low chirp-mass bin (M <

3.48). Plotted is the cumulative rate of coincident zero-lag (“Foreground”) and slide

(“Background”) triggers as a function of combined New SNR. The slide triggers

were generated from the standard 100-slide ihope analysis. The y-axis was generated

in the same manner as in the cumulative-rate plots in Figures 63 – 65 of Chapter

7. Indeed, the plots presented here were a predecessor to the cumulative-rate plots

shown in Chapter 7. The dashed-red line shows the combined new SNR of a signal

with SNR 8 in each detector (= 11.3). Also plotted, as a yellow star, is the combined

new SNR of a blind CBC injection that was performed during S5.3

It is evident from the plot that an event with a new SNR of 8 in each detector

would stand out above the background. In this case, we would place an upper-limit on

the FAR as being < 1 in 50 years. We can arrive at the same conclusion from looking

2There is also the Virgo detector, but as Virgo is maintained and funded by a different collabo-

ration, they may not have the same schedule as LIGO. Thus, in this study we wanted to focus on

what could be accomplished using only the LIGO detectors.
3Note: this is not the blind injection that was performed during S6. At the time of this study, the

S6 blind injection had not happened yet. The S5 injection, which occurred during S5-LV analysis,

was missed because it was performed when an earthquake was passing Livingston, resulting in L1

being CAT3 vetoed during the time. For more details on this blind injection, see [6].
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at Figure 64(a) of Chapter 7. (Recall that these plots were also created using only

H1L1-coincident triggers.) There we can use the extrapolation to estimate what the

FAR would be for an signal with combined new SNR of 11.3. In the low chirp-mass

bin we would have a FAR ≈ 1 in 104 years.

8.2.1 Deeper Study

There are a few important features to this analysis. First, note that we have shown

results after CAT3 vetoes have been applied. Figure 67(a) shows the same plot as in

Figure 8.3 after CAT2 vetoes have been applied. In this plot we can see that an event

at SNR 8 in each detector would not stand out above the background; it would only

have a FAR of ∼ 1 in 3 years. This highlights the importance of DQ investigations.

Without good data quality, we cannot detect at SNR 8 using two detectors.

Second, note that we have plotted results as a function of combined New SNR.

Figure 67(b) shows the results after CAT3 as a function of combined SNR. The

large tail due to non-Gaussian transients has buried the SNR 8/8 line in background;

such an event would have a FAR of ∼ 30 per year if combined SNR was our ranking

statistic. Clearly, without new SNR we could not detect at SNR 8 (or 40, for that

matter). However, when talking about real signals, we have interchanged New SNR

and SNR: we quote rates based on a SNR of 8 in each detector, yet we have placed

the red-dashed line at a New SNR of 8 in each detector. The reason we can do this

is New SNR reduces to SNR for (well-modelled) GWs. Figure 8.3 shows a plot of

combined new SNR versus combined SNR for (non-spinning) injections. The vertical

dashed line shows the point at which combined ρ = 11.3. At this point, we can see

that most of the injections have a combined New SNR > 11. Note that some of the

lower points are due to glitches being mistakenly mapped to injections; cf. Figure

8.3. Thus to detect with two detectors at the quoted rates, we need New SNR, which

in-turn requires that we have templates that match the GW signal well.

Finally, note that we have so far only shown plots for the low chirp-mass bin. The

background does not fall off as sharply in the higher chirp-mass bins. This can be seen

by comparing Figure 64(a) to Figure 64(b): the medium chirp-mass bin has a higher

tail, leading to larger FARs at the same New SNR. However, as can be seen in the

extended background with the blind injection removed (the gray crosses) in Figure

65, we would still get a FAR of 1 in 3500 years in the medium chirp-mass bin at a
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combined New SNR of 11.3. Though higher than the low chirp-mass bin, this FAR

is still low enough to claim evidence for a detection. Further, we are most concerned

with the low chirp-mass bin, as this contains BNS systems. As discussed in section

2.3 the rate of BNS coalescence in the universe is the best determined, as it is based

on astronomical observations of BNS systems [10]. We are therefore most confident

in quoted expected detection rates for BNS coalescence; it is for these systems that

we wish to ensure that we can detect at SNR 8.

8.3 Conclusions

This study showed that building LIGO South would not hamper our abilities to detect

gravitational waves at the quoted rates in the near term. Thus the decision of whether

or not to build LIGO South can be based solely on practical aspects, such as whether

Australia can commit the funds needed to build the detector. Regardless of whether

or not LIGO South is built, this study proved useful, as it gave us confidence that

we can detect GWs at expected rates in Advanced LIGO. Admittedly, we cannot be

certain that the character of the noise will be the same in Advanced LIGO. However,

by comparing the S5 cumulative rate plot in this chapter to the corresponding S6 plots

in Chapter 7, we see that we obtained largely the same (better, even) background

distribution in S6, despite a number of hardware differences between the runs. Thus,

by making using of New SNR, and with equally successful DQ studies in Advanced

LIGO, we can expect to detect at a SNR of 8 in each detector.
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Figure 66 : Cumulative rate of H1L1 zero-lag (“Foreground”) and slide (“Background”) coincidences

in S5 after CAT3 (cumulative) vetoes have been applied. Only triggers in the low chirp-mass bin

(M < 3.48 M�) are shown. Data used is from all of the S5 12-18 months, plus four months from

the S5-LV analysis. The black line indicates the background; the blue line indicates the foreground.

As with the cumulative rate plots in Chapter 7, the foreground rates are computed by dividing the

cumulative count of foreground triggers by the total zero-lag live time (Tf). The background rates

are computed by dividing the cumulative count of background triggers by total slide live time (Tb),

which is equivalent to dividing by the effective number of slides (= Tb/Tf ), then dividing by the

zero-lag live time. Hence the black line is labelled as the “Average Background.” The red-dashed line

indicates the combined new SNR for an event with single-detector new SNR of 8 in each detector.

The yellow star shows the combined new SNR of a blind injection that was made during the S5-LV

analysis.
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(a) After CAT2 vetoes applied.

(b) Cumulative rate vs. combined SNR, after CAT3 vetoes applied.

Figure 67 : Cumulative rate plot for the same period of time shown in Figure 8.3, after CAT2 vetoes

have been applied (top) and as a function of combined SNR (bottom). In the bottom plot, CAT3

vetoes have been applied.
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Figure 68 : Combined New SNR versus combined SNR for non-spinning injections. All injections

were found as H1L1 coincidences. Results taken from 6 weeks of S6D data. The diagonal black-

dashed line indicates y = x; the vertical dashed line shows the point where combined SNR = 11.3.

This plot was created by ligolw cbc plotfm. As with all PlotFM plots, the blue stars indicate

injections found with 0 FAR in their analysis period and colored circles indicate injections with

non-zero FAR.



248

Figure 69 : Recovered chirp mass fractional accuracy of the injections shown in Figure 8.3 as a

function of combined SNR. Triggers close to zero were most likely caused by injections. Triggers

further from the zero line are most likely glitches that happened to be within ±1 s of the injection.
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Chapter 9

Future Developments and

Conclusions

We have stepped through, in detail, the low-mass CBC pipeline, and we have de-

scribed how this was used to obtain search results from CBCs. We now conclude by

briefly presenting some future developements for the pipeline.

9.1 Gating

In chapter 7 we saw the effects a loud transient — the spike glitch — had on the

matched filter. We dealt with the spike glitch by adding a category 3 veto around

the time of the glitch. Due to the ringing of the filter we had to add a ±8 s padding

to the glitch. However, as can be seen in figure 7.3.2, triggers can be last for several

tens of seconds after the glitch; this duration increases with the size of the glitch.

Another possibility is to remove the glitch prior to match filtering. We can do

this by applying a Tukey window to the data stream to ramp the output down to 0 at

the time of the glitch. We call this “gating.” Figure 70 shows a time series in which

a spike-glitch occurred with a gate applied. In 70(b) the window that is applied can

be seen. We must ramp the data down (in this case, by using the first half cycle of

a cosine) so as not to introduce ringing at the point the window turns on, and we

must do the same after the glitch to ramp the data back up. In this manner we can

cleanly remove the glitch from the data: compare the Omega scans in Figure 71 with

the glitch in the data to the scan with the glitch gated out.
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Zeroing out the data around the glitch does mean that we will slightly underes-

timate the PSD. However, if the gated data is only a few seconds out of an entire

analysis block, the effect should be small. It may also be possible to correct for the

zeroed out data by taking the average power across the segment, then add a correc-

tion factor. Even if we add a correction factor to the PSD, we should probably limit

the amount of time that is gated in an analysis block. The upper limit on how much

time can gated in a block requires more study.

Knowing what to gate also needs study. In the case of the spike glitch, we could

not find the cause, as we could not correlate it with any auxiliary environmental or

instrumental channels. We got around this difficulty by applying the SNR > 250

flag at CAT3, which allowed us to check the results at CAT2 to ensure we did not

accidentally veto a loud GW trigger. Since gating involves removing the glitch before

filtering, we would not have that luxury, unless we were to match filter the data

multiple times. Another possibility is to establish a SNR for which un-modelled

“Burst” searches do as-good-as CBC searches at finding GW signals. We would then

remove any trigger that exceeded that threshold, leaving it to the Burst, or a mixed

Burst-CBC search to find loud triggers. Finding that threshold, and determining the

safety of such a scheme, is yet to be done.

9.2 Single Stage Pipeline and Updates to Pipedown

Using a two stage-pipeline, as presented in chapter 5, makes it difficult to follow-up

triggers, and to do things such as perform more slides, as discussed in chapter 7.

HIPE was developed to have two stages in order to save on the computational cost

of calculating χ2. This was done several years ago. Since then, advancements in

computing speed have made it possible to use a single-stage pipeline. In this, χ2 is

calculated at first inspiral, and so no second stage is needed. Having such a pipeline

would make it far simpler to follow-up triggers and to know how they evolve through

the pipeline.

As mentioned in 7 a prototype single-stage pipeline already exists. Some updates

need to be made to Pipedown to be able to use this pipeline, however, as some of the

programs rely on conventions of the current HIPE pipeline. Of note: in the singe-stage

pipeline, lalapps_thinca is replaced by an updated version, ligolw_thinca, which
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(a) Raw time series.

(b) Gated time series.

Figure 70 : Raw and gated time series of a L1 spike glitch that occurred during S6. In the raw time

series (top) we can see that this was actually two glitches in quick succession. For this reason, the

gate was chosen to be ±1.5s around the larger glitch. The effect of the ramping down of the Tukey

window can be seen in the gated time-series.
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(a) Scan with glitch in.

(b) Scan with gate.

Figure 71 : Omega scan of the spike glitch shown in figure 70. The top plot shows the scan with

the glitch in the data; the bottom plot shows the scan with the glitch removed. Omega applies a

whitening filter when these scans are generated. The “ringing” of the filter is evident in the top plot.

With the glitch gated, we see that there is no ringing. When used in a CBC search, this implies that

we would have neither the central tower of triggers, nor the “shoulder” and “tail” seen in Figure

7.3.2.
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natively makes use of the Coinc and Experiment tables discussed in chapter 5. It

also performs linear slides as opposed to slides on a ring. This removes the need for

ligolw_thinca_to_coinc in Pipedown.

A few other improvements are also planned for Pipedown. As mentioned in Chap-

ter 5, multiple veto categories can be stored in a single database. Pipedown currently

does not take advantage of this. As part of the switch to a single-stage pipeline, we

plan to add a program to Pipedown to apply vetoes in the database, so as not to

have to run ligolw_thinca multiple times. Also, a number of programs in Pipedown

cannot read data from multiple databases. This makes it difficult to combine results

from multiple ihope analysis periods. Reading from multiple databases will require

a slight update to the experiment table. Namely, we plan to replace the gps_start

and gps_stop columns with a segment_def_id column. This would point to a list

of segments in the segment and segment_definer tables that give the analyzed time

covered by the database.

Pipedown can also be greatly simplified. Currently, it has to create intermediate

databases that separately store injection data from each of the runs. These RAW

databases lack much information, such as the vetoes applied and the live time. This

is done so as to limit the size of the LIGO_LW XML files that need to be extracted

for lalapps_inspinjfind. Since clustering is done on these intermediate databases

it makes it difficult to test new statistics. If one wants to cluster with the new

statistic, they must re-run clustering on all of the individual RAW databases, carry

out injection-finding, create a new final database, and re-compute the live time. If

lalapps_inspinjfind could read databases instead, all of the injection runs could be

added to the FULL_DATA RAW database at the outset, greatly simplifying the pipeline

and the ability to test new statistics. Work on this is planned. Along with this

update to the injection-finding program, we plan to implement more sophisticated

injection- finding techniques, such as using e-thinca windows. This will decrease the

chance that a glitch that occurs near the time of an injection will be mapped to the

injection, increasing confidence in ROC plots.
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9.3 Conclusion

The data-analysis methods, pipeline, and search results presented in this thesis are

the result of years of work by a number of people throughout the LSC and the

Virgo Collaboration. Although no gravitational waves have been detected as of yet,

injection studies, comparisons of our rate-upper limits to astrophysical predictions,

and the result of the S6 blind injection challenge have made us confident that we

will be able to detect when Advanced LIGO and Virgo come online. The work to

build Advanced LIGO is currently underway. When it is finished it will present new

challenges to our data-analysis pipeline, some of which are outlined here. In the

coming years we will continue to improve and refine our analysis techniques to meet

those challenges, so that, when a CBC gravitational-wave signal happens, we will

detect it.
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