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Summary

This dissertation documents my efforts to solve a long-standing problem in general re-

lativity: the task of finding a physically meaningful local description of the energy and

momentum of the gravitational field. I develop a solution, valid within the linear ap-

proximation to general relativity, which eliminates its own gauge-freedom and displays

numerous desirable properties.

In chapter 11, I argue that an apparent solution, recently proposed by Babak and

Grishchuk, is physically ill-defined. In chapter 22, I develop a formalism for generating

perturbative expansions of arbitrary metric-based theories of gravity, and employ these

techniques to construct a quadratic action (a covariantised Fierz-Pauli action) from which

general relativity can be derived, order by order, following a simple procedure which

couples the gravitational field to its own energy-momentum.

The remainder of the thesis focuses on localising the energy, momentum, and spin

of gravity within the linear regime. In chapter 33, I derive a new gravitational energy-

momentum tensor by requiring that the tensor account for the local exchange of energy-

momentum between matter and the gravitational field. The gauge-freedom of this descrip-

tion is removed in a natural fashion: the harmonic gauge condition arises as an automatic

consequence of the tensor’s derivation, and transverse-traceless gauge is then motivated by

comparison with the gauge-invariant exchange of energy-momentum between the gravita-

tional field and an infinitesimal detector. I show that, once this gauge-fixing programme

is employed, my gravitational energy-momentum tensor always describes non-negative

energy-density, and causal energy-flux.

Chapter 44 extends this framework by developing a local description of the angular

momentum (and moment-of-energy) carried by the linearised gravitational field. Ana-

lysing the local exchange of angular momentum between matter and gravity, I derive a

tensor which localises gravitational intrinsic spin; once the aforementioned gauge-fixing

programme is employed, this spin tensor is traceless (which I argue to be necessary for

ensuring the absence of infinite pressure-gradients) and describes purely spatial spin. Re-

capitulating the analysis of the previous chapter, I also give a treatment of the gauge-

invariant exchange of angular momentum (and moment-of-energy) between the gravita-

tional field and an infinitesimal detector.

Finally, in Chapter 55, I investigate the roles played by the previously derived energy-



momentum tensor and spin tensor in a broader theoretical context, demonstrating that (a)

they are indeed Noether currents associated with the translational and rotational symmet-

ries of the linearised gravitational field, and that (b) they generate gravity alongside the

energy-momentum and spin of matter. I confirm (a) by constructing a Lagrangian for lin-

ear gravity (a covariantised Fierz-Pauli Lagrangian) which generates the tensors according

to standard variational definitions. I then demonstrate (b) by identifying the tensors as

the quadratic terms in a perturbative expansion of the Einstein and Einstein-Cartan field

equations. The form of perturbation used in these expansions is also analysed, suggesting

a route by which the formalism may be extended beyond the linear/quadratic regime, and

linking the Lagrangian of this chapter with the action constructed in chapter 22.

Luke Butcher

March 2012
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Chapter 0
Introduction11

0.1 Historical Background

Conservation laws, particularly those of energy, momentum, and angular momentum, are

some of the most powerful and fundamental laws of nature presently known. In their

most basic form, these rules demand nothing more than the constancy of a few important

quantities (the total energy, momentum, and angular momentum of an isolated system)

regardless of what interactions or physical processes may occur. Stated as such, these

global laws do not insist upon a microscopic mechanism to enforce this constancy, and

would allow energy (or momentum, or angular momentum) to disappear from one location

and appear elsewhere, provided only that the two effects occur simultaneously.

During the 19th century, however, force fields came to replace action-at-a-distance in

our understanding of electromagnetic phenomena [5757], and local descriptions of electro-

magnetic energy began to be developed, most notably by Poynting in 1884 [6767]. Following

the arrival of special relativity [3333] in 1905, it soon became clear that a local description

of energy was in fact a necessity, and that any notion of a purely global conservation law

would have to be abandoned. To explain: given that the definition of simultaneity had

been shown to depend on an observer’s motion, any instantaneous transmission of energy

over a finite distance would (a) violate the conservation of energy in all but one reference

frame, and (b) entail not only faster than light communication but also, in some frames

of reference, communication backwards in time. It was therefore necessary to insist that

energy (and momentum, and angular momentum) not only be conserved globally, but

locally also: any energy lost by the particles and fields within a particular region would

need to be accompanied by a flow of energy across the region’s boundary. Accordingly, a

description of energetics would only be considered complete when one could quantify the

energy-density and energy-flux at every point in space.

However, while special relativity required energy and momentum to be localised on

grounds of logical consistency, it did not provide any means to test this localisation ex-

1In order to maintain the numerical correspondence between chapters 11 to 55 and the articles [11–55] from

which they derive, it has been necessary to begin with a zeroth chapter; this also has the advantage of

providing a notional dividing-line between introductory material and the main body of the dissertation.
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Chapter 0. Introduction

perimentally; it would not be until 1915, and the development of a relativistic theory

of gravitation, Einstein’s general relativity [3434], that such a framework would exist. As

special relativity had unified the concepts of mass, energy, and momentum, and because

mass-density was the source of Newtonian gravity, general relativity cast the flux and

density of energy and momentum (packaged into a single object, the energy-momentum

tensor of matter) as the source of the relativistic gravitational field. Thus, with Einstein’s

field equations at hand, and sufficiently accurate measuring apparatus, one could infer the

location of material energy-momentum, at least in principle, by observing the gravity it

generated.

It is here that the ironic twist in the story unfolds, because although gravity had lent

an empirical operational definition to the local energy-momentum of matter, there is one

form of energy-momentum that escapes this definition entirely: the energy-momentum of

the gravitational field itself! In the absence of an operational definition of this form (and

for a host of technical and conceptual reasons, explored in later chapters) even to this day,

nearly a century after general relativity was first discovered, we do not know where the

energy and momentum of the gravitational field resides.

Numerous attempts have been made to define a gravitational energy-momentum tensor

(beginning with Einstein [3535] in 1916, and with notable contributions from Møller [5959] and

Landau and Lifshitz [5252]) but the dependence of these tensors on the gauge freedom of the

gravitational field (historically, the choice of coordinate system) allows them to assign a

vast range of localisations to any one gravitational field. Thus, without a gauge invariant

description, or a strong argument for the choice of one gauge over another, these so-called

pseudotensors remain wildly ambiguous, unable to assign a meaningful local measure of

energy-momentum to the gravitational field.

This difficulty was not a peripheral concern; indeed, it was instrumental in the con-

fusion which reigned, even as late as 1956, as to whether gravitational radiation was a

genuine prediction of general relativity. Although propagating solutions clearly existed

within the theory, in the absence of a measure of the energy they carried, arguments were

made [7070, 7272] which purported to demonstrate that such waves carried no energy at all;

by implication, they were physically unobservable, and presumably an artifact of a poor

choice of coordinates. The dispute was famously put to rest by Feynman at the 1957

Chapel Hill conference, where he argued, in his characteristically pragmatic style, that

a very simple detector, consisting of a rod and two “sticky beads”, would clearly absorb

energy from a gravitational wave [6868].

Having succeeded in persuading the theoretical community that gravitational waves

were indeed physically observable, and that the gravitational field carried energy (regard-

less of the subtlety of its localisation) Feynman’s elegant argument, popularised by Bondi

[1919], set the tone for many of the field’s developments over the following years. In 1958,

Bel first wrote down what we now refer to as the Bel-Robinson tensor [1414, 6969], an object

structurally analogous to the electromagnetic energy-momentum tensor, wherein the Weyl

curvature plays the role of the field strength. Although it was clear from the outset that the

2



0.1. Historical Background

Bel-Robinson tensor did not describe gravitational energy-momentum (having the wrong

dimensions and too many indices) it at least offered a local, covariant, gauge invariant

measure of the “intensity” of a gravitational wave. Soon after, following unrelated lines of

enquiry, meaningful definitions of the total energy of gravitating systems began to appear:

the Komar mass [4949] (for stationary spacetimes) in 1959, followed by the ADM mass [1010]

and Bondi mass [2020] (for asymptotically flat spacetimes) both in 1962.

These global definitions served to highlight the role of gravitational energy-momentum

in contributing to the total gravitational weight of a system, a concept which had originally

been used by Kraichnan, in a more formal setting, to argue that the full non-linear theory of

general relativity arose by coupling the linear spin-2 field to its own energy-momentum [5050].

It was in this conceptual environment, then, that Brill and Hartle developed their “self-

consistent field” approach [2222], a technique which averaged the energy-momentum of the

high-frequency modes of the gravitational field in order to predict their effect on the low-

frequency modes, and allowed them to construct their gravitational geon (a concentration

of gravitational waves, held together by its own gravity) in 1964. Extending this idea to a

more generally applicable framework, Isaacson presented an approach to the propagation of

gravitational waves in the low-amplitude high-frequency limit [4646], and defined a gauge-

invariant “effective” gravitational energy-momentum tensor by the very same method,

taking an average over many wavelengths of the gravitational wave [4747].

Throughout the 1970s, this “averaged” energy-momentum tensor remained the only

available gauge-invariant object that even resembled a truly local picture of gravitational

energy-momentum, and many had arrived at the conclusion that this was all that could

be achieved within the theory. In 1973, Milsner, Thorne and Wheeler famously declared

the whole enterprise to be “looking for the right answer to the wrong question” [5858] and

succeeded in dissuading a generation of physicists from tackling the problem.

Bolstered by the successes of the global definitions of energy-momentum (in particular,

proofs of positivity for the ADM mass [2424, 7373, 8282]) interest in the 1980s turned to quasi-

local definitions of gravitational energy-momentum [1313, 4242, 7878]. These methods attempt

to quantify the total energy within compact finite regions, usually by means of an integral

over the region’s boundary, but stop short of the infinitesimal regions required to define

energy-densities. Despite considerable progress in this area, the quasi-local approach still

struggles with many of the technical and conceptual problems encountered in the truly

local problem, suffering from an overabundance of definitions and constructions, and a

lack of consensus over what properties they should obey [7777].

Over the last two decades, the task of finding a physically well-defined gravitational

energy-momentum tensor has garnered little attention, with a small number of physicists

offering tentative solutions [1111, 5656] which, on closer inspection, have been found to inherit

many of the major flaws of earlier approaches. In contrast to this inactivity, advances in

experimental and computational physics have introduced numerous potential applications

for a local description of gravitational energy-momentum. Considering that the first direct

detection of gravitational radiation is expected to occur in a matter of years [7575], the era of

3



Chapter 0. Introduction

gravitational wave astronomy may soon be upon us. In this context, a gravitational energy-

momentum tensor could prove invaluable in the design of new gravitational detectors,

much as Poynting’s work influenced our understanding of electromagnetic antennae in

the previous century. Complementing this, the art of numerical relativity has entered

something of a “golden age” in recent years [5454]. These methods have bestowed upon us

a wealth of new solutions to the Einstein field equations, the often unintuitive behaviour

of which may be better understood were we to possess a meaningful gravitational energy-

momentum tensor.22 These factors considered, now is perhaps the time to reevaluate the

wisdom of Misner, Thorne and Wheeler’s definitive declaration, and examine whether

there is in fact a “right” question to ask.

0.2 Overview

This dissertation draws together the various avenues of my research into the localisation

of gravitational energy, momentum, and intrinsic spin. Chapters 11 to 55 (being the main

body of the thesis) were written as research papers [11–55] and have either appeared in, or

recently been submitted to, Physical Review D. As each chapter is self-contained in terms

of exposition, beginning with its own motivations and ending with its own conclusions,

there is little need for a detailed introduction here. Instead, the purpose of this overview

is to briefly explain the relationship between the chapters, so they need not be viewed in

isolation.

Chapter 11 can be thought of as a preliminary study, in which the failings of Babak and

Grishchuk’s gravitational energy-momentum tensor [1111] are discussed in order that such

pitfalls might be avoided in the rest of the thesis. The lessons drawn from this work are

threefold: (i) the coordinate dependence of gravitational pseudotensors can be nullified,

and genuine tensors defined, if one presents these tensors in an auxiliary background

spacetime; (ii) this does not rid the description of its gauge freedom, however, as the

tensors will now depend on the arbitrary mapping between the physical and background

spacetimes; (iii) unless the gauge freedom is heavily constrained, or a gauge-invariant

replacement for the tensor found, this ambiguity is so great as to render the description

largely meaningless.33 As such, this chapter lays out the basic truths on which much of the

thesis is built.

Chapter 22 examines the coupling between the gravitational field and its own energy-

momentum (as first described by Kraichnan [5050]) and presents a procedure by which this

coupling can generate the full theory of general relativity, order by order, starting with

2For example, recent simulations of black hole mergers [2323] have displayed peculiar bobs and kicks that

one might hope to explain in terms of the motion of gravitational energy-momentum.
3Babak and Grishchuk adopt a slightly unusual philosophical position, in which the flat background is

considered to be the “real” spacetime, and gravitational forces act on matter in such a way as to reproduce

the same physical predictions of general relativity, without the need for a curved spacetime. As this

stance appears to eschew the arbitrary mappings that would otherwise link the physical spacetime to the

background, much of the chapter is devoted to identifying the gauge freedom that has been obscured.
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0.2. Overview

only an action for linearised gravity. The gravitational energy-momentum tensor defined

by this algorithm cannot escape the problem of gauge dependence, but the aim of this

particular chapter is not to define an unambiguous measure of local energy-momentum.

Rather, by illuminating the connection between background coupling in the action of the

linear spin-2 field, and the non-linear theory that evolves from repeatedly coupling this

field to its energy-momentum, we gain a number of valuable results that prove useful in

later chapters, and observe the importance of linearised general relativity as the seed of

structure within the full theory.

Following this, chapters 33, 44, and 55 constitute the main investigation of the thesis: fo-

cusing exclusively on the linear approximation to general relativity, I succeed in localising

gravitational energy, momentum, and spin. The key to this approach is the appearance

of a natural gauge-fixing procedure, motivated by properties of the gravitational energy-

momentum tensor and spin tensor I derive, and by comparison with the gauge-invariant

energy-momentum (and angular momentum) exchanged with an infinitesimal detector.

Chapter 33 concerns energy and momentum, chapter 44 concerns angular momentum, in-

trinsic spin, and moment-of-energy, and chapter 55 combines all these results, embedding

them within a theoretical framework that connects to previous treatments of gravitational

energy-momentum. It is in this last chapter that the results of chapter 22 find their main

application, linking the gravitational Lagrangian (from which the energy-momentum and

spin tensors of chapters 33 and 44 can be derived) to a perturbative expansion of the Einstein-

Hilbert action, and hinting at a method by which the framework may be extended beyond

linear order.

A more thorough summary of the content of these chapters can be found in section

0.30.3, where the abstracts of the papers [11–55] are reproduced.

Notation and Conventions

Throughout this dissertation, I work in units where c = 1, write κ ≡ 8πG, and ad-

opt the sign conventions of Wald [7979] and Misner, Thorne, and Wheeler [5858]: ηµν ≡
diag(−1, 1, 1, 1), [∇c,∇d]va ≡ 2∇[c∇d]v

a ≡ Rabcdv
b, and Rab ≡ Rcacb. Roman letters are

used as abstract tensor indices [7979, §2.4] and Greek letters as numerical indices running

from 0 to 3.

While notation is broadly consistent throughout the thesis, and entirely consistent

within chapters 33–55, it has been necessary to adopt a different definition of the gravitational

field hab within chapter 11 (following Babak and Grishchuk) and within chapter 22 (for

technical reasons)44. As a result, the differential operator Ĝabcd of chapter 22 has the opposite

sign to the operator Ĝabcd of chapters 33–55.

4See footnote 44 of chapter 22 for details.
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0.3 Abstracts

Chapter 11 [11]

Physical Significance of the Babak-Grishchuk Energy-Momentum Tensor

We examine the claim of Babak and Grishchuk [1111] to have solved the problem of local-

ising the energy and momentum of the gravitational field. After summarising Grishchuk’s

flat-space formulation of gravity, we demonstrate its equivalence to General Relativity at

the level of the action. Two important transformations are described (diffeomorphisms

applied to all fields, and diffeomorphisms applied to the flat-space metric alone) and we

argue that both should be considered gauge transformations: they alter the mathemat-

ical representation of a physical system, but not the system itself. By examining the

transformation properties of the Babak-Grishchuk gravitational energy-momentum tensor

under these gauge transformations (infinitesimal and finite) we conclude that this object

has no physical significance.

Chapter 22 [22]

Bootstrapping Gravity: a Consistent Approach to Energy-Momentum

Self-Coupling

It is generally believed that coupling the graviton (a classical Fierz-Pauli massless spin-

2 field) to its own energy-momentum tensor successfully recreates the dynamics of the

Einstein field equations order by order; however the validity of this idea has recently been

brought into doubt [6464]. Motivated by this, we present a graviton action for which energy-

momentum self-coupling is indeed consistent with the Einstein field equations. The Hilbert

energy-momentum tensor for this graviton is calculated explicitly and shown to supply the

correct second-order term in the field equations; in contrast, the Fierz-Pauli action fails

to supply the correct term. A formalism for perturbative expansions of metric-based

gravitational theories is then developed, and these techniques employed to demonstrate

that our graviton action is a starting point for a straightforward energy-momentum self-

coupling procedure that, order by order, generates the Einstein-Hilbert action (up to a

classically irrelevant surface term). The perturbative formalism is extended to include

matter and a cosmological constant, and interactions between perturbations of a free

matter field and the gravitational field are studied in a vacuum background. Finally, the

effect of a non-vacuum background is examined, and the graviton is found to develop a

non-vanishing “mass-term” in the action.

Chapter 33 [33]

Localising the Energy and Momentum of Linear Gravity

A framework is developed which quantifies the local exchange of energy and momentum

between matter and the linearised gravitational field. We derive the unique gravitational

energy-momentum tensor consistent with this description, and find that this tensor only
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0.3. Abstracts

exists in the harmonic gauge. Consequently, nearly all the gauge freedom of our framework

is naturally and unavoidably removed. The gravitational energy-momentum tensor is then

shown to have two exceptional properties: (a) it is gauge-invariant for gravitational plane-

waves, (b) for arbitrary transverse-traceless fields, the energy-density is never negative,

and the energy-flux is never spacelike. We analyse in detail the local gauge invariant

energy-momentum transferred between the gravitational field and an infinitesimal point-

source, and show that these invariants depend only on the transverse-traceless components

of the field. As a result, we are led to a natural gauge-fixing program which at last

renders the energy-momentum of the linear gravitational field completely unambiguous,

and additionally ensures that gravitational energy is never negative nor flows faster than

light. Finally, we calculate the energy-momentum content of gravitational plane-waves,

the linearised Schwarzschild spacetime (extending to arbitrary static linear spacetimes)

and the gravitational radiation outside two compact sources: a vibrating rod, and an

equal-mass binary.

Chapter 44 [44]

Localising the Angular Momentum of Linear Gravity

In the previous chapter we derived an energy-momentum tensor for linear gravity that

exhibited positive energy-density and causal energy-flux. Here we extend this framework

by localising the angular momentum of the linearised gravitational field, deriving a gravit-

ational spin tensor which possesses similarly desirable properties. By examining the local

exchange of angular momentum (between matter and gravity) we find that gravitational

intrinsic spin is localised, separately from “orbital” angular momentum, in terms of a

gravitational spin tensor. This spin tensor is then uniquely determined by requiring that

it obey two simple physically-motivated algebraic conditions. Firstly, the spin of an ar-

bitrary (harmonic-gauge) gravitational plane-wave is required to flow in the direction of

propagation of the wave. Secondly, the spin tensor of any transverse-traceless gravitational

field is required to be traceless. (This condition is shown to rid the field of infinite pressure

gradients.) Additionally, the following properties arise in the spin tensor spontaneously:

all transverse-traceless fields have purely spatial spin, and any field generated by a static

distribution of matter will carry no spin at all. Following the structure of the previous

chapter, we then examine the (spatial) angular momentum exchanged between the grav-

itational field and an infinitesimal detector, and develop a microaveraging procedure that

renders the process gauge invariant. The exchange of non-spatial angular momentum (i.e.

moment-of-energy) is also analysed, leading us to conclude that a gravitational wave can

displace the centre-of-mass of the detector; this conclusion is also confirmed by a “first

principles” treatment of the system. Finally, we discuss the spin carried by a gravitational

plane-wave.
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Chapter 55 [55]

Localised Energetics of Linear Gravity: Theoretical Development

Thus far, we have developed a local description of the energy, momentum and angular

momentum carried by the linearised gravitational field, wherein the gravitational energy-

momentum tensor displays positive energy-density and causal energy-flux, and the grav-

itational spin-tensor is traceless and describes purely spatial spin. We now investigate the

role these tensors play in a broader theoretical context, with the aim of demonstrating

that (a) they do indeed constitute Noether currents associated with the symmetry of the

linearised gravitational field under translation and rotation, and (b) they are themselves a

source of gravity, analogous to the energy-momentum and spin of matter. To prove (a) we

construct a Lagrangian for linearised gravity (a covariantised Fierz-Pauli Lagrangian for

a massless spin-2 field) and show that our tensors can be obtained from this Lagrangian

using a standard variational technique for calculating Noether currents. This approach

generates formulae that uniquely generalise our gravitational energy-momentum tensor

and spin tensor beyond harmonic gauge: we show that no other generalisation can be

obtained from a covariantised Fierz-Pauli Lagrangian without introducing second derivat-

ives in the energy-momentum tensor. We then construct the Belinfante energy-momentum

tensor associated with our framework (combining spin and energy-momentum into a single

object) and as our first demonstration of (b) we establish that this Belinfante tensor ap-

pears as the second-order contribution to a perturbative expansion of the Einstein field

equations, generating the gravitational field in a manner equivalent to the (Belinfante)

energy-momentum tensor of matter. By considering a perturbative expansion of the

Einstein-Cartan field equations, we then demonstrate that (b) can be realised without

forming the Belinfante tensor: our energy-momentum tensor and spin tensor appear as

the quadratic terms in separate field equations, generating gravity as distinct entities. Fi-

nally, we examine the role of field redefinitions within these perturbative expansions; in

contrast to our tensors, the Landau-Lifshitz tensor is found to require a non-local field

redefinition in order to be cast as a source of the gravitational field. In an appendix, we

also give a brief treatment of the global quantities that our framework defines, and verify

their equivalence (within the quadratic approximation) to the ADM energy-momentum

and angular momentum.
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Chapter 1
Physical Significance of the Babak-Grishchuk

Gravitational Energy-Momentum Tensor

1.1 Introduction

Despite the central role played by the energy-momentum tensor of matter in general

relativity, there is no widely accepted way to localise the energy and momentum of the

gravitational field itself. In the place of a genuine solution to this problem, we are forced to

make do with an over-abundance of energy-momentum pseudotensors, objects designed to

display some or other property befitting a measure of gravitational energy-momentum, but

whose coordinate dependence renders them of little physical significance beyond giving the

correct integrals at infinity in asymptotically flat spacetimes. Even for weak gravitational

waves, the best measures at our disposal only become meaningful once we have averaged

over many wavelengths.

The canonical response to the gravitational energy-momentum problem is to dismiss it

as “looking for the right answer to the wrong question”[5858, §20.4]; but while the well-known

argument presented by Misner, Thorne and Wheeler is certainly compelling, it is far from

watertight. They remind us that the equivalence principle ensures that all “gravitational

fields” Γαβγ can be made to vanish at a point by a suitable choice of coordinates, and

conclude that because gravity is locally zero, there can be no energy density associated

with it. However, this argument fails to consider tensors containing second derivatives

of the metric, which unlike Γαβγ cannot be made to vanish by choice of coordinates,

and really do reflect the local curvature of spacetime: for example, the Riemann tensor

can be used to construct objects such as the Bel-Robinson tensor [6969]. Misner, Thorne

and Wheeler also point out that, while the matter energy-momentum tensor derives its

physical significance by curving space, a similar tensor for gravity would not be a source

term for the field equations. However, this stance is based around a prejudice for writing

the Einstein field equations as Gab = κT ab with gravity on the left and matter on the right;

there is nothing to stop us splitting up Gab in a covariant fashion, grouping one part with

T ab, and interpreting this as the total energy-momentum source, taking the remainder of

Gab to be the gravitational ‘response’. Despite these reservations, the argument in [5858]
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Chapter 1. Physical Significance of the Babak-Grishchuk Energy-Momentum Tensor

remains vindicated as yet by the failure of these escape-routes to yield anything which can

be physically interpreted as an energy-momentum tensor.

It might appear that the only straightforward solution to the problem is to extend

the definition of the matter energy-momentum tensor T ab (a functional derivative of the

matter Lagrangian with respect to the metric) to the gravitational field, and conclude that

the gravitational energy-momentum tensor is −Gab/κ, where κ = 8πG/c4. The Einstein

field equations could then be interpreted as a constraint that everywhere sets to zero the

sum of gravitational and matter energy-momentum. While one might claim this simple

idea conveys some important physical insight, it suffers from numerous problems. Firstly,

−Gab/κ lacks the analytical power one expects from an energy-momentum tensor: the

ability to split the set of all physical systems at a particular time into classes of different

total energy and momenta, so that conservation laws alone can reveal that two particular

spacelike hypersurfaces could never be part of the same spacetime. Secondly, it leads

us to conclude that the gravitational field only has energy where matter is also present,

precluding the use of this prescription to describe the energetics of gravitational waves,

or define a gravitational tension in the vacuum between massive bodies. Thirdly, the

energy-momentum tensors for gravity and matter are conserved separately (∇aGab = 0 and

∇aT ab = 0) so that although there is a delicate balance that keeps their sum zero, it is not

the case that energy or momentum simply ‘flows’ between gravity and matter, as ∇a(T ab−
Gab/κ) = 0 alone would imply. Lastly, we note that the conservation law ∇aGab = 0

actually tells us nothing at all about the gravitational field; it is satisfied identically,

without any need for the equations of motion to hold. Because of these drawbacks, if we

are to regard −Gab/κ as a solution to the gravitational energy-momentum problem, we

consider it rather a trivial one. Clearly, the reason for this triviality is that we have over-

worked the metric: we cannot use the functional derivative with respect to a dynamical

field as a way of defining the energy-momentum tensor for that same field, as we will only

end up writing down the equations of motion twice. This line of reasoning leads us to

consider that one method of attack for this problem may be to separate the two roles

played by gab in general relativity, that of dynamic field and spacetime metric.

In [4040], Grishchuk develops a “field-theoretical” approach to gravitation, which ex-

presses the physical content of general relativity (GR) in terms of a dynamical symmetric

tensor field in flat Minkowski spacetime. Although this formulation has been carefully de-

signed to agree with the empirical predictions of GR, in [1111] Babak and Grishchuk claim

that the flat-space approach allows them to define a unique, symmetric, and non-trivial

energy-momentum tensor for the gravitational field. The major purpose of this chapter is

to examine the extent to which this tensor is physically meaningful.

1.2 Flat-Space Gravitation

Babak and Grishchuk represent gravitation as the theory of a dynamical symmetric tensor

field hab defined over a four-dimensional manifoldM with a (non-dynamical) flat Lorent-
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1.2. Flat-Space Gravitation

zian metric γab. Translation between this picture and the dynamical metric gab of GR can

be achieved using the following relation:

√
−ggab =

√
−γ(γab + hab), (1.1)

where g = 1/det(gαβ) and γ = 1/det(γαβ). It should be emphasised that Babak and

Grishchuk consider this relation to be the definition of gab, a tensor to which they assign

no particular fundamental or geometric significance.11 Accordingly, they use γab, rather

than gab, to raise and lower tensor indices22, and define a (torsion-free) covariant derivative

∇̌a (denoted by indices following “ ;̌ ”33 and with Christoffel symbols Cabc) by ∇̌cγab = 0.

As γab is flat,

Řabcd ≡ Cabd,c − Cabc,d + CebdC
a
ec − CebcCaed = 0, (1.2)

and ∇̌a derivatives commute. This contrasts to the usual (GR) covariant derivative ∇a,
denoted by indices following “ ; ”, defined by ∇cgab = 0, and with curvature tensor

Rabcd 6= 0 in general.44

To ensure that hab obeys an equation of motion consistent with Einstein’s field equa-

tions, its dynamics are determined by an action S that is equivalent to the Einstein-Hilbert

action. Specifically, in [1111] Babak and Grishchuk use the action

S =
−1

2κ

∫ √
−γ
[
hab;̌cP

c
ab − (γab + hab)(P cadP

d
bc −

1

3
PaPb)

]
d4x, (1.3)

where P abc and Pa are functions of hab, γab and hab;̌c given in their paper. If we add to

the Lagrangian the following surface term:

Lsurface =
1

2κ

[√
−γ(γab + hab)P cab

]
,c

=
1

2κ

[√
−γ(γab + hab)P cab

]̌
;c
, (1.4)

1Of course, because Babak and Grishchuk insist that this viewpoint does not contradict the predictions

of general relativity, effects that are traditionally deemed the result of spacetime geometry (proper lengths

of coordinate displacements, rates of clocks, geodesic deviation, etc.) will be viewed as arising from a

4-force that matter feels in response to the presence of hab; see [4040] for details. The correspondence with

GR inevitably means that predictions of this nature can always be expressed in terms of gab alone.
2A singular exception is made for gab: it is assigned the ‘lowered’ form gab = (gab)−1 to coincide with

the GR definition.
3This notation differs from [1111]: where they write ∇ and “ ; ”, we write ∇̌ and “ ;̌ ”.
4There is no contradiction in being able to define two different covariant derivatives on a manifold.

Because both have been defined by a tensor equation (without any reference to coordinate systems) they

must both produce genuine (abstract) tensor indices ;a and ;̌a. The significance of the standard covariant

derivative (in GR) is not just that it is covariant, but that it expresses the Equivalence Principle: in a

system of local inertial coordinates {xα} such that gαβ = ηαβ + O(x2) near some point p, the Christoffel

symbols for the ∇a derivative vanish and we find that (at p) ∇a = ∂a, the ordinary derivative of these

coordinates. Thus ∇cgab = 0 picks out the coordinate independent derivative operator which coincides

with local inertial coordinate derivatives. In contrast, a coordinate system {yα} for which ∇̌a = ∂a at p

will not necessarily have gαβ = ηαβ +O(y2) there; however, as the flat-space picture eschews the geometric

interpretation of gab, we can avoid assigning much significance to this point.
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then, applying the flatness condition (1.21.2) to equation (53) of [1111], we see that

S + Ssurface =
1

2κ

∫ √
−γ(γab + hab)

(
P cab̌;c + P cadP

d
bc −

1

3
PaPb

)
d4x

=
−1

2κ

∫ √
−ggabRabd4x

= SEH, (1.5)

the Einstein-Hilbert action. Extremising S with respect to variations in hab, we have

δS

δhab
= 0 ⇒ δSEH

δgcd

(
∂gcd

∂hab

)
γ

= 0, (1.6)

where the subscript γ indicates that γab has been held constant. As an inverse of
(
∂gcd

∂hab

)
γ

exists, namely (
∂hab

∂gcd

)
γ

=
1√
−γ

∂
√
−ggab

∂gcd

=

√
−g√
−γ

(
2δ

(a
cδ
b)
d −

1

2
gabgcd

)
, (1.7)

the equations of motion (1.61.6) are equivalent to the Einstein Field Equations:

δSEH

δgab
= 0. (1.8)

As presented in [4040], the original motivation for this flat-space picture is that it allows

physicists to study and predict gravitational phenomena in a framework that is free of the

conceptual baggage of differential geometry, and has more in common with the language

of particle physics and classical electrodynamics. However, the work presented in [1111]

elevates this framework beyond the status of a ‘linguistic trick’, as the metric γab allows

one to define the “metrical energy-momentum tensor” according to

m
t ab ≡ −2√

−γ
δL
δγab

≡ −2√
−γ

(
∂L
∂γab

− ∂c
(

∂L
∂γab,c

))
. (1.9)

From this, a unique gravitational energy-momentum tensor tab can be constructed that

is symmetric, free of second derivatives, and conserved by the equations of motion: see

equation (65) of [1111]. Having made this identification, the field equations (1.61.6) take on

the simple form55

κtab =

[
g

2γ
(gabgcd − gacgbd)

]
;̌č;d

. (1.10)

Although this equation does not define the energy-momentum tensor, it provides us with

a simple method for calculating tab, given the gravitational field.66

5This result is a corrected version of equation (78) of [1111]; it is easy to see that the original equation

lacks a factor of −1/γ by comparing it to the preceding equation in that paper.
6This relation also reveals a connection between tab and tabLL, the gravitational energy-momentum
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1.3. Physical Content of tab

1.3 Physical Content of tab

We cannot fault Grishchuk’s formulation of gravitational dynamics within the realm of

general relativity, as agreement over predictions of ‘geometrical phenomena’ (as they would

be interpreted in GR) has been achieved by design.77 However, in comparison with general

relativity, the flat-space theory possesses additional mathematical structure: two tensors

hab and γab fulfil the role played by gab alone. This extra structure endows the flat-space

theory with an increased range of expression, making possible the definition of tensors

that cannot be constructed within the framework of GR. As we shall show, the gravita-

tional energy-momentum tensor is one of these ‘non-GR’ quantities.88 We investigate here

whether tab (or any non-GR quantity) can be physically significant, or whether it can only

ever be interpreted as an artefact of the mathematics.

1.3.1 Gauge Transformations

Besides allowing us to interpret gravity as a force-field on flat space, the presence of γab

has had the important side-effect of increasing the space of gauge transformations of the

theory. The core reason for this is that the flatness constraint (1.21.2) is not enough to define

a unique γab for a given gab, a tensor which, through the correspondence with GR, can

be used alone to construct the observable predictions of the theory. In this section we

examine two transformations and justify their status as gauge transformations, i.e. that

they alter the mathematical representation of a physical system, but not the system itself.

Diffeomorphism gauge transformations

Given a diffeomorphism φ: M→M, we transform all tensor fields Xa...
b... according to

Xa...
b... → (φ∗X)a...b..., (1.11)

where the action of φ∗ on X is defined in the standard way by the action of the pullback

of φ (and the pushforward of φ−1) on the dual-vector (and vector) arguments of X; see

[7979, §C.1] for details. Although, as written, this transformation cannot be the result of a

pseudotensor of Landau and Lifshitz [5252]: in Lorentzian coordinates (γαβ = ηαβ) it follows from (1.101.10)

that tαβ = (−g)tαβLL . Roughly speaking, tab corresponds to a Landau-Lifshitz energy-momentum that

has been rendered coordinate-system independent (tensorial, rather than pseudotensorial) through the

replacement of ordinary coordinate derivatives ∂a with flat-space covariant derivatives ∇̌a.
7Of course, one may still wish to attack the aesthetics of a framework which, from the GR viewpoint,

appears to obscure the geometric nature of gravity, and replaces the Equivalence Principle with a seemingly

arbitrary coupling between hab, γab and matter. However, the potential for a greater understanding of the

local energy-momentum content of the gravitational field should be enough to temporarily assuage these

objections.
8This statement might appear obvious due to the use of γab in (1.91.9), or the presence hab;̌c in the

definition of tab (equation (65) of [1111]). However, a tensor defined in terms of γab, hab, and ∇̌a may also

be expressible in GR, e.g. P cab̌;c + P cadP
d
bc − 1

3
PaPb = −Rab[g].
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change of coordinate system99, it transforms the components Xα...
β... in a typographically

identical manner to that of a coordinate change. More precisely, the components of φ∗X at

φ(p) in a coordinate system {yα} will be equal to the components of X at p in coordinates

{xα} where yα(q) = xα(φ−1(q)). As such, if we had chosen to represent all our tensor

equations in terms of components in some coordinate system, it would be impossible to tell

(from the transformation law alone) whether we had performed the diffeomorphism (1.111.11)

or simply changed coordinates. Therefore, because the physical content of a tensor field’s

components cannot depend on which coordinate system it is expressed in, so the physical

content of tensor fields cannot depend on the action of (1.111.11). Thus, just as in general

relativity, we find that Grishchuk’s formulation contains the group of diffeomorphisms

φ: M→M as a gauge freedom.

The γ-transformation

Besides the diffeomorphism gauge transformation (DGT), it is also possible to use a diffeo-

morphism φ:M→M to define a transformation that reflects the range of flat-metrics γab,

and gravitational fields hab, consistent with a particular gab; we apply the diffeomorphism

to γab alone, and demand that hab compensate in such a way that gab remains unchanged:

γab → (φ∗γ)ab,

hab → h′
ab

=
√
−γ√
−φ∗γ

(
γab + hab

)
− (φ∗γ)ab,

⇒ gab → gab. (1.12)

To be consistent with the field equations, if we are to include matter fields Ma...
b... in the

theory, we must make them similarly invariant:

Ma...
b... →Ma...

b.... (1.13)

It is easy to verify that the flatness of γab is maintained by this map, as Řabcd → (φ∗Ř)abcd
and φ∗0 = 0.1010 It should be noted that the replacement γab → (φ∗γ)ab does not represent a

coordinate change, but is a map between two different metric tensors. Obviously, because

both metrics are flat, we can always find coordinates for each such that their components

are those of the Minkowski matrix ηαβ = diag(+1,−1,−1,−1), but while γαβ = ηαβ in

some coordinates {xα}, in general (φ∗γ)αβ = ηαβ in a different set of coordinates {yα}.
A key feature of the γ-transformation (1.121.12) is that it allows us to distinguish between

the two types of tensors in Grishchuk’s formulation: those that can be constructed in

9In this chapter we use the abstract index notation developed by Penrose and Rindler [6666], so that

the Roman indices of γab indicate the tensor ‘slots’ of the metric, and do not refer to components of the

tensor in any coordinate system. Thus the ‘effect’ of a coordinate transformations is completely invisible

to a tensor equation notated with abstract indices. To notate the matrix of components of a tensor such

as γab in coordinates {xα} we use Greek indices: γαβ ≡ γab(dxα)a(dxβ)b.
10These transformations form a subgroup of a larger group of transformations for which γab → γ′ab

(still flat) and hab compensates such that gab is held fixed. Because this larger group does not relate so

simply to the diffeomorphism gauge freedom, it is not discussed here.
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standard GR, and ‘non-GR’ tensors, which cannot. Because gab is invariant under (1.121.12),

all GR tensors (which must be expressible in terms of gab, ∇a and Ma...
b... only) will be

likewise unchanged:

GR: Aa...b... → Aa...b.... (1.14)

Thus, any tensor which is not invariant under all transformations of the form (1.121.12) must

be non-GR:

non-GR: Ba...
b... → B′

a...
b... 6= Ba...

b..., (1.15)

for some γ-transformation.

From this identification, and the formula (1.101.10), we can confirm our suspicions that

tab is a non-GR quantity: under a γ-transformation (1.121.12), the g’s in the square brackets

are untouched, but the ;̌ derivatives are transformed according to

∇̌a → ∇̌′a,

where ∇̌aγbc = 0,

and ∇̌′a(φ∗γ)bc = 0. (1.16)

Although there may be some φ for which the transformation of 1/γ in (1.101.10) cancels the

effects of transformation of ∇̌a, this will not happen for all φ.1111 Thus tab is not in general

an invariant of the transformation, and must be impossible to construct in GR without

introducing additional structure in the form of γab.

Clearly, it is important to know whether the γ-transformation should be thought of

as a gauge transformation, or as map between physically inequivalent systems. This is

not a trivial problem, however, because we must be careful to avoid the tacit assumption

that the GR metric gab describes everything about the gravitational field. Because gab

is invariant under (1.121.12), the physics traditionally thought of as spacetime ‘geometry’

(and, in the flat-space view, are the observable effects of hab on particle worldlines, rods

and clocks) must be left invariant also. Thus, comparing the γ-dependence of tab with

the γ-independence of spacetime ‘geometry’1212, we can immediately conclude that that tab

cannot be determined by spacetime ‘geometry’ alone. However, it does not immediately

follow that tab is an unphysical tensor, as we must seriously examine the possibility that

gravity is more than just gab, and that in performing the γ-transformation we have altered

something physical about the system that standard general relativity simply does not ‘see’.

If we suppose that (1.121.12) does effect a physically meaningful change, we must conclude

that every physical system is associated with a ‘true’ γab, or at least with a class of

11To demonstrate this rigorously it is sufficient to show that tab is not invariant under infinitesimal

γ-transformations; this calculation is performed in appendix 1.A1.A.
12We insist on writing ‘geometry’ in inverted commas because although the phenomena to which we

are referring are traditionally deemed to be the result of spacetime geometry, we must stress that this

interpretation is not endorsed by Grishchuk’s formulation. The term ‘geometry’ in this sense should

simply be taken as a short-hand for the observable predictions shared by general relativity and the flat-

space formalism.
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Chapter 1. Physical Significance of the Babak-Grishchuk Energy-Momentum Tensor

physically equivalent flat-metrics {γab} that is smaller than the complete space spanned

by all possible γ-transformations. The question is, given a physical system, how can we

know when we have chosen the correct γab? Clearly, no ‘geometric’ measurements can

ever reveal which γab is hidden beneath the gab metric, because ‘geometric’ phenomena

are invariant under the γ-transformation. The only possibility of revealing γab empirically

would be if we could directly measure a non-GR tensor like tab. However, to assume that

such a measurement could be carried out would make our logic circular, as for that to be

possible the tensor would certainly need to be physically meaningful, and it is the truth of

precisely this assertion that we have been trying to determine!

Even if we cannot rely on an empirical method to reveal the ‘true’ flat-metric γab of

a particular physical system, there may still be a systematic way to define one, given

knowledge of quantities we can measure. Such a definition would pick out a ‘canonical’

γab and we would be forbidden from performing γ-transformations because the new γab

would no longer be canonical.1313 The situation is analogous to the following question in

electrostatics: what is the potential V at a particular point x? Even though we can never

measure this quantity directly, we can still define a canonical potential V (x) in a natural

and systematic way by demanding that V → 0 as the distance from the sources r → ∞,

or equivalently, as the electric charges qi → 0. In the same sense that we have V = 0

(everywhere) synonymous with the absence of electric charges, we would certainly hope

that we could choose a canonical γab such that hab = 0 (everywhere) is synonymous with

the absence of matter fields. Indeed, given a GR metric gab that satisfies the Einstein field

equations with a matter energy-momentum tensor T ab as the source, we can write:

gab = gab(T cd), (1.17)

and define the canonical flat metric by

γab = gab(T cd)|T cd=0 (everywhere). (1.18)

For example, we could view the Schwarzschild spacetime with central mass M as a family

of spacetimes gab(M) and identify γab with gab(0). For any other prescription for the

canonical γab there will arise the following peculiar situation: in the absence of matter,

despite spacetime ‘geometry’ being flat, gab will be not be equal to γab, and we will still

have to use a non-zero hab field to convert between these two different flat metrics. In this

sense (1.181.18) is the only natural prescription for a canonical flat metric.

However, it turns out that even this effort cannot force us to abandon (1.121.12) as a genu-

ine gauge transformation, as (1.181.18) does not behave correctly under some diffeomorphism

gauge transformations (DGTs). To see this, start with a GR metric gab = gab(T cd)

and a canonical flat metric defined by (1.181.18). Now, consider a family of diffeomorphisms

{φf :M→M ∀f ∈ R} such that φ0 is the identity diffeomorphism: φ0(p) = p ∀p ∈M.

13One might expect γαβ = ηαβ to be a perfectly good definition for a canonical flat-metric; however

this does not really fix γab at all, it only begs the question: in which coordinate system do we insist that

this equation holds?
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1.3. Physical Content of tab

We change nothing physical about this system by performing a DGT with φf for any value

of the parameter f , and we are free to have the value of f determined by some functional

of T cd such that T cd = 0 (everywhere) gives f = 0. Then, having performed this DGT,

we can calculate the canonical flat metric again:

γ′
ab

= g′
ab

(T ′
cd

)|T ′cd=0 =
[
(φ∗fg)ab(T ′

cd
)
]
T ′cd=0

= (φ∗0γ)ab = γab. (1.19)

Thus, our DGT, coupled with our definition of the natural canonical flat metric, has had

the following effect:

gab → (φ∗fg)ab,

γab → γab,

hab → h′
ab

=

√
−φ∗fγ√
−γ

(
(φ∗fγ)ab + (φ∗fh)ab

)
− γab,

Ma...
b... → (φ∗fM)a...b.... (1.20)

Whereas, under the DGT, we should have recovered γab → (φ∗fγ)ab and hab → (φ∗fh)ab.

We are left with a choice: either we completely abandon the idea of a natural canon-

ical γab on the grounds that it is not covariant under all DGTs (and thus accept that

the γ-transformation (1.121.12) is a gauge transformation), or we agree that this ‘γ-fixed’

transformation (1.201.20) is on equal footing with a DGT and is therefore another gauge

transformation of the formalism. Of course, this is not really a choice at all, as the γ-fixed

transformation has precisely the same effect as performing a diffeomorphism gauge trans-

formation with φf and then a γ-transformation with (φf )−1; thus, by agreeing that (1.201.20)

is a gauge transformation, one has agreed that the γ-transformation is one also.

The key to this argument is that because the prescription (1.181.18) does not pick γab in

a diffeomorphism covariant fashion1414, we retain the ability to perform γ-transformations

through our choice of which diffeomorphism gauge we use to express the T ab = 0 spacetime

when we apply the definition for the canonical flat metric.

It is interesting to note that when Grishchuk refers to the gauge transformations of his

formalism in [4040], he appears to mean the γ-fixed variety: in appendix 1.A1.A we calculate

that the effect of an infinitesimal γ-fixed transformation on hab is

hab → h′
ab

= hab +
(
ξc(γab + hab)

)
;̌c
− 2ξ

(a
;̌c

(
γb)c + hb)c

)
(1.21)

and on setting γαβ = ηαβ (which can either be viewed as a coordinate choice, given γab,

or a choice of γab given some coordinate system) we recover

h′
αβ

= hαβ + ηαβξλ,λ + (hαβξλ),λ − 2ξ(α,β) − 2ξ
(α
,λh

β)λ, (1.22)

which is equation (38) of [4040].

Thus we must finally conclude that the γ-transformation (1.121.12) is a gauge transform-

ation of Grishchuk’s formalism, and that not only is the flat metric γab unobservable, it

14We implicitly picked a gauge when we wrote gab as a particular solution of the field equations with

source T cd in (1.171.17).
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Chapter 1. Physical Significance of the Babak-Grishchuk Energy-Momentum Tensor

is impossible to define a ‘canonical’ choice of γab in a diffeomorphism gauge covariant,

systematic, and natural fashion.

1.3.2 Transformation Properties of tab

We have demonstrated that the γ-transformation should be thought of as a map between

different mathematical representations of the same physical system. As tab is not invariant

under this gauge change (i.e. non-GR) we might be suspicious that this ‘energy-momentum

tensor’ has no physical significance. However, before we dismiss tab, it is worth consid-

ering the following possibility: even though tab is not invariant under γ-transformations,

could the transformed tensor t′ab, somehow, have the same physical content as the un-

transformed tensor tab? After all, we see exactly this behaviour for a DGT: no tensor field

is invariant under (1.111.11), however we can consider tensor fields to be covariant under this

transformation (and their physical content unaltered) because they allow for the construc-

tion of gauge invariant quantities.1515 We must therefore consider the possibility that the

γ-transformation law for tab constitutes some form of ‘generalised covariance’ that would

allow gauge invariant quantities to be constructed.

Of course, the expected form of these invariants rather depends on what one supposes

the physical content of tab to be. If it is, indeed, an energy momentum tensor, then an

observer with 4-velocity ua would expect to ‘find’ some energy density ρ = tabucudgacgbd, or

possibly ρ = tabucudγacγbd. It is easy to check that neither of these quantities is invariant

under a γ-transformation, despite the fact that we were forced to conclude that these

transformations do not alter whatsoever the physical system we are examining. From

this we deduce that, whatever physical meaning tab may have, since it cannot define a

meaningful energy-density in the standard way, it is definitely not an energy-momentum

tensor.

Infinitesimal transformations

It is instructive to examine the transformation properties of tab for an arbitrary infinites-

imal gauge transformation. We proceed by constructing a diffeomorphism very close to

the identity by Lie dragging tensor fields along an infinitesimal vector field ξa:

(φ∗X)a...b... = Xa...
b... + (LξX)a...b..., (1.23)

15All measurements necessarily correspond to scalars, thus the action of a DGT is simply to move these

scalars to different points of M. Because all the worldlines of observers and test particles are similarly

displaced, the correlations between these scalars will be diffeomorphism gauge invariant.
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1.3. Physical Content of tab

where Lξ is the Lie derivative along ξa. Under a γ-fixed gauge transformation for an

infinitesimal diffeomorphism φ defined by (1.231.23), we find that tab → t′ab, where

κt′
ab

= κ
(
tab + (Lξt)ab

)
+

[
ξe;̌e

(
g

γ

(
gabgcd − ga(cgd)b

))
;̌c

]
;̌d

− ξe;̌č;d
(
g

2γ

(
gabgcd − gacgdb

))
;̌e

. (1.24)

This result is calculated in appendix 1.A1.A. An important point of (1.241.24) is that, unlike the

γ-fixed behaviour of a GR field (A → A + LξA), the transformation law for tab includes

second derivatives of ξ. Thus, in a qualitative sense, the new t′ab (evaluated at some

point p ∈ M) seems to depends much more on the details of the transformation than a

GR quantity would; certainly the complex formula (1.241.24) cannot be interpreted as some

simple algebraic or geometric operation. If we imagine producing a finite transformation

by ‘exponentiating’ (1.241.24) then the GR part of the transformation tab + (Lξt)ab would

correspond (loosely speaking) to a diffeomorphism ‘ φ∗ = eLξ ’ which would, to first

order in ξ, only depend on ξ and its first derivatives. The extra terms in (1.241.24), once

exponentiated, would vastly increase our freedom to determine t′ab at any particular p,

possibly enough to set t′ab(p) = 0 for any tab. If this were indeed shown to be the case,

then tab could hardly represent a meaningful local property of any field.

A particularly undesirable feature of (1.241.24) is that t′ab is not determined by ξa and

tab alone; we also need to know the tensor [(g/2γ)(gabgcd − gacgdb)]̌;e from which tab has

been constructed. This detail seems to preclude the assembly of invariants from tab and

observer worldlines alone.1616

Finite transformations

To study the effect of finite gauge transformations on tab, we focus on the Schwarzschild

spacetime with a central point-mass M . Working in natural units (c = G = 1) and

suppressing the abstract indices on the coordinate differentials (dxα)a, we write the GR

metric as

gαβdxαdxβ =
1

(f1g1 − f2g2)2

(
(g2

1 − g2
2)dt2 + 2(f1g2 − f2g1)dtdr − (f2

1 − f2
2 )dr2

)
− r2(dθ2 + sin2θdφ2), (1.25)

where {f1, f2, g1, g2} are functions of r and t only. Birkhoff’s theorem [1616] shows the

Schwarzschild spacetime to be the only spherically symmetric vacuum solution to the

Einstein equations; thus for any choice of {fi, gi} consistent with Rab = 0, the metric given

by (1.251.25) represents the Schwarzschild spacetime. This form of gab will be particularly

16Because non-GR tensors can be combined to form GR tensors, it will always be possible to ‘add in’

some combination of γab, hab, and ∇̌a to create a gauge invariant quantity from tab. However, in this case

we should not associate the invariants with tab by itself, but instead with the larger GR object we have

assembled.
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Chapter 1. Physical Significance of the Babak-Grishchuk Energy-Momentum Tensor

useful for the present discussion, as it will allow us to choose explicitly the ‘gauge’ in which

to express the gravitational field. To illustrate this point, we record below the recipes for

the commonly used representations of the Schwarzschild spacetime.

Standard

Schwarzschild

Advanced

Eddington-

Finkelstein

Painlevé-

Gullstrand

f1 1/
√

1− 2M/r 1 +M/r 1

f2 0 M/r 0

g1

√
1− 2M/r 1−M/r 1

g2 0 −M/r −
√

2M/r

As we have emphasised, there is no unique γab hidden beneath the metric defined in

(1.251.25). However, for the sake of concreteness, we fix the flat-metric as

γαβdxαdxβ = dt2 − dr2 − r2(dθ2 + sin2θdφ2), (1.26)

so that altering the functions {fi, gi} will give rise to γ-fixed transformations.1717

In order to proceed, we remove some of the gauge freedom by demanding

1. f2 = 0,

2. ∂tgαβ = 0.
(1.27)

Then we find that the vacuum field equations Rab = 0 enforce

f1g1 = C, (1.28)

g2
1 − g2

2 = 1− 2M/r, (1.29)

where C and M are constants, and we have identified the latter as the central mass by

comparison with the Standard Schwarzschild and Painlevé-Gullstrand gauges. Under these

conditions we find that all the components of tab vanish apart from the energy density:

tαi = tiα = 0, (1.30)

t00 = −g
3
1 − g1 + 2r∂rg1

g3
1r

2
. (1.31)

This last formula makes manifest the large space of gauge equivalent energy-momentum

tensors associated with the Schwarzschild spacetime, even after we have removed a large

portion of gauge freedom by demanding (1.271.27). Notice in particular that the Standard

Schwarzschild gauge yields

t00 = −
(

2M

r(r − 2M)

)2

, (1.32)

17Equally we could have arranged for this process to run in the opposite direction. Starting with the

standard form of the Schwarzschild metric in (t, r, θ, φ) coordinates, we could have performed a coordinate

transformation to a system (T,R, θ, φ) that preserved the spherical symmetry. Working in these coordin-

ates, a seeming natural choice of the flat-metric would have been γαβdx′αdx′β = dT 2 − dR2 − R2(dθ2 +

sin2θdφ2), a different tensor from the one defined by (1.261.26). The choice of coordinates used to represent

gab would therefore determine γab but not alter gab itself. The effect would be that of a γ-transformation.
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1.3. Physical Content of tab

whereas, in the Painlevé-Gullstrand gauge

t00 = 0. (1.33)

The gauge equivalence of these two results leaves little room for a physical interpretation

of this energy-momentum tensor. Because tab can be made to vanish everywhere by a

gauge transformation, it cannot possibly convey any more gauge-invariant information

than to tell us that this spacetime is empty of whatever it is that tab represents. While

this is not unreasonable per se (as tab might only be sensitive to gravitational radiation

or some other phenomena absent from the Schwarzschild spacetime) it then becomes very

difficult to justify why the energy-momentum tensor should be non-zero in any gauge at

all. This uncomfortable situation would force us to identify a whole host of non-trivial

energy-momentum tensors with emptiness, of which (1.311.31) are only a small fraction.

As the Advanced Eddington-Finkelstein gauge has f2 6= 0, we cannot use (1.311.31) to

calculate the energy-momentum tensor. Instead, we take the general formula (1.101.10) as

our starting point, and recover tab = 0, just as we found in the Painlevé-Gullstrand gauge.

This agreement suggests that the non-zero energy-momentum tensor (1.321.32) might only be

an artefact of the ‘horizon’ present in the Standard Schwarzschild gauge: in the (t, r, θ, φ)

coordinate system picked out by γab, the components of the GR metric gαβ are singular at

r = 2M . In contrast, Painlevé-Gullstrand and Advanced Eddington-Finkelstein are global

gauges: the components gαβ are regular everywhere but at the origin. While a coordinate

singularity is admissible within differential geometry, in Grishchuk’s flat-space picture this

would correspond to an infinite ‘gravitational field’ hab, which could be deemed unphysical.

This line of reasoning allows us to reject (1.321.32) because it was derived in a gauge which

transforms the gravitational field to infinity at some points, and we would then hope to

confirm that the physical result (tab = 0) applies in all global gauges. Unfortunately, this

turns out to be impossible, as we show by means of a counter-example. Consider a family

of gauges parametrised by λ:

f1 =
√
r/(r + λM),

f2 = 0,

g1 =
√

(r + λM)/r,

g2 =
√

(2 + λ)M/r. (1.34)

It is easy to check that these obey the restrictions (1.271.27) and the vacuum field equations

(1.281.28) and (1.291.29). Furthermore, for λ ≥ 0, gαβ defined by (1.251.25) is regular everywhere but

the origin. Using (1.311.31) we find that (apart from λ = 0 which is just Painlevé-Gullstrand

again) the energy-momentum tensor is non-zero:

t00 = −
(

λM

r(r + λM)

)2

. (1.35)

Not only can we make t00(r) take on a wide range of values by adjusting λ, we also note

that in the limit λ→∞, we have the disconcerting situation of a non-zero energy density

that is independent of M .
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Chapter 1. Physical Significance of the Babak-Grishchuk Energy-Momentum Tensor

In light of all these results, it appears highly unlikely that the behaviour of tab would

permit the extraction of gauge invariant information and allow us to view this tensor as

maintaining some physical content under gauge transformations.

1.4 Conclusion

The formulation of gravity presented in [4040] succeeds in recasting general relativity as

a flat-space theory of a symmetric tensor field. While we do not find fault with the

formalism itself, we assert that care must by taken in its interpretation, as we believe

we have demonstrated that only those quantities which can be defined solely in terms of

GR tensors are of any physical importance. The physically insignificant content of the

flat-space formalism is a consequence of an unmeasurable field γab which is not uniquely

determined by the requirement that it be a flat metric tensor.

There are in principle two ways to deal with the non-uniqueness of γab: 1. Pick a

particular flat metric and declare that this is the immutable ‘correct’ choice, to be used in

all situations; 2. Allow γab to depend somehow on the physical system we are describing,

or how we have chosen to represent the system mathematically.

The problem with the first stance is that the theory still retains γ-fixed gauge trans-

formations. To see this, note that equation (53) of [1111] expresses the equivalence of

Grishchuck’s equations of motion (rab ≡ −P cab̌;c−P cadP dbc+ 1
3PaPb = 0) with the Einstein

field equations:

Rab[g] = Řab[γ] + rab[h, γ]. (1.36)

Babak and Grishchuk interpret this relation as follows: given a flat-metric γab, an hab that

satisfies rab = 0 will enforce Rab = 0, establishing the agreement with GR. However, one

can always use this equation to make the converse argument: given a flat-metric γab, a

gab which solves Rab = 0 will enforce Grishchuk’s equation rab = 0. As Rab[φ
∗g] = 0 if

Rab[g] = 0, we can construct a whole range of solutions {h′ab : rab[h
′] = 0} from hab simply

by applying diffeomorphisms to gab. Because we declared γab to be immutable, these new

solutions will correspond to γ-fixed transformations of hab. Crucially, as g′ab = φ∗gab, no

‘geometric’ experiment can tell any h′ab apart from from hab. Thus, without a method

to measure a non-GR quantity directly, we have to conclude that these new solutions

represent physically equivalent systems, and that the γ-fixed transformation is a gauge

transformation of the theory.

The second stance appears to be able to dodge this argument, because one can claim

that we should have applied the same diffeomorphism to γab that we applied to gab, forcing

us to perform a harmless DGT instead of a γ-fixed transformation. However, if we take

this view, we will need a heuristic for deriving γab from measurable quantities, otherwise

we will never know where to start with the ‘correct’ pairing (gab, γab). In order that

this heuristic be consistent with arbitrary DGTs (which are gauge transformations of any

tensorial theory) a prescription for which T ab = 0⇒ hab = 0 inevitably leads us to identify
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γ-transformations as gauge transformations anyway, because we are free to represent the

T ab = 0 limit in any diffeomorphism gauge we choose.

Accepting that γ-transformations and γ-fixed transformation are maps between differ-

ent mathematical representations of the same physical system, we conclude that the exotic

gauge transformation properties of tab cannot allow us to interpret this tensor as a local

measure of the energy and momentum content of the gravitational field. Although tab is a

perfectly legitimate mathematical construction, its dependence on the unmeasurable and

non-unique tensor γab renders it ill-defined, and devoid of physical meaning.

1.A Appendix: Infinitesimal Transformations

Here we calculate how hab, tab, and ∇̌a change under transformations defined by dif-

feomorphisms infinitely close to the identity: φ∗ = 1 + Lξ. In this limit, the γ-fixed

transformation (1.201.20) for hab is

hab → h′
ab

h′
ab

= (−γ)−1/2 (1 + Lξ)
(√
−γ(γab + hab)

)
− γab

= (−γ)−1/2Lξ
(√
−γ(γab + hab)

)
+ hab. (1.37)

Thus,

δhab ≡ h′ab − hab

= (γab + hab)(−γ)−1/2Lξ
√
−γ + Lξ(γab + hab)

= (γab + hab)ξc;̌c + ξc
(
γab + hab

)
;̌c
− 2ξ

(a
;̌c

(
γb)c + hb)c

)
=
(
ξc(γab + hab)

)
;̌c
− 2ξ

(a
;̌c

(
γb)c + hb)c

)
, (1.38)

proving (1.211.21).

To calculate the behaviour of the energy-momentum tensor under a γ-fixed transform-

ation, we define the tensor

Y abcd ≡ g

γ
g(a[b)g(c]d) =

g

2γ

(
gabgcd − ga(cgd)b

)
, (1.39)

so that

κtab = Y abcd
;̌č;d. (1.40)

Under the γ-fixed transformation, tab → t′ab where

κt′
ab

=
[
γ−1(1 + Lξ)

(
gg(a[b)g(c]d)

)]̌
;č;d

= κtab +
[
Lξ
(
Y abcd

)
− gg(a[b)g(c]d)Lξ(γ−1)

]̌
;č;d

= κtab +
[
Y abcd

;̌eξ
e − 2ξ

(a
;̌eY

b)ecd − 2Y abe(cξ
d)

;̌e + 2Y abcdξe;̌e

]̌
;č;d
. (1.41)
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In contrast, were tab a GR tensor, under the γ-fixed transformation we would have tab →
tab + Lξtab, with

κLξtab = ξeY abcd
;̌č;ď;e − 2ξ

(a
;̌eY

b)ecd
;̌č;d. (1.42)

Thus, the non-GR part of κt′ab is

∆(κtab) ≡ κ
(
t′
ab − tab − Lξtab

)
= ξe;̌č;dY

abcd
;̌e + 2ξe;̌cY

abcd
;̌ě;d − 2ξ

(a
;̌ě;č;dY

b)ecd − 4ξ
(a

;̌ě;cY
b)ecd

;̌d

− 2
[
Y abe(cξ

d)
;̌e − Y

abcdξe;̌e

]̌
;č;d

. (1.43)

Note that the third and fourth terms vanish because Y abcd = −Y acbd and ∇̌a operators

commute. Expanding out the derivatives acting on the square brackets, then cancelling

and collecting like terms, we arrive at

∆(κtab) = 2ξe;̌eY
abcd

;̌č;d − ξe;̌č;dY abcd
;̌e + 2ξe;̌ě;dY

abcd
;̌c

= 2
[
ξe;̌eY

abcd
;̌c

]̌
;d
− ξe;̌č;dY abcd

;̌e. (1.44)

Replacing Y abcd with its definition (1.391.39), the transformation law (1.241.24) immediately fol-

lows.

Because the γ-fixed transformation is simply a DGT with φ followed by a γ-transform-

ation with φ−1, it is easy to use this result to calculate the behaviour of tab under an

infinitesimal γ-transformation:

(γ-fixed)φt
ab = (γ-trans)φ−1 (DGT)φ t

ab

= (γ-trans)φ−1

(
tab + Lξtab

)
= (γ-trans)φ−1 t

ab + Lξtab, (1.45)

for infinitesimal ξ. Thus, under a γ-transformation, κtab becomes

κt′
ab

= κtab −

[
ξe;̌e

(
g

γ

(
gabgcd − ga(cgd)b

))
;̌c

]
;̌d

+ ξe;̌č;d

(
g

2γ

(
gabgcd − gacgdb

))
;̌e

, (1.46)

which clearly demonstrates that tab is non-GR.

For completeness, we calculate how the derivative operator ∇̌a changes under an in-

finitesimal γ-transformation. We shall proceed without using the flatness of γab, in order

that the result be in its most general form; only at the end we will set Řabcd = 0 to recover

the formula applicable here. According to (1.161.16), we have

∇̌aγbc = 0,

∇̌′a (γbc + Lξγbc) = 0. (1.47)
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Any two torsionless derivative operators can be related by a symmetric connection; thus,

in the same way one might write the figurative relation “ ∇ = ∂ + Γ ” to define the GR

Christoffel symbols, we write “ ∇̌′ = ∇̌+E ” to define a connection Eabc = Eacb between

∇̌′a and ∇̌a. By continuity Eabc must be at least first order in ξ, so (1.471.47) becomes:

∇̌a
(
γbc + 2γd(b∇̌c)ξd

)
− 2γd(bE

d
c)a = 0,

⇒ E(bc)a =
(
∇̌a∇̌(cξb)

)
. (1.48)

However, because Eabc is symmetric in its last two indices,

E(ab)c + E(ac)b − E(bc)a = Eabc,

⇒ Eabc = γae
(
E(eb)c + E(ec)b − E(bc)e

)
. (1.49)

Substituting (1.481.48) into the right-hand-side and reorganising the derivatives, we find

Eabc = ∇̌(b∇̌c)ξa + γae
(
∇̌[b∇̌e]ξc + ∇̌[c∇̌e]ξb

)
. (1.50)

Finally, using the defining property of the Riemann tensor, ∇̌[a∇̌b]ξc = −1
2Ř

d
cabξd, we

arrive at the following compact formula:

Eabc =
(
δad∇̌(b∇̌c) − Řa(bc)d

)
ξd. (1.51)

In the case where γab is flat, this becomes

Eabc = ξa;̌b̌;c. (1.52)
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Chapter 2
Bootstrapping Gravity: A Consistent

Approach to Energy-Momentum Self-Coupling

2.1 Introduction

It is a standard view in particle physics that the non-linearity of a field theory, such as

those of Yang and Mills, can be equated with the notion that the field in question carries

the charge of the very interaction it mediates. This idea has been brought to bear on

gravity many times, and various arguments [2121, 2525, 2626, 3636, 4141, 5050, 6363] aim to derive general

relativity from a linear starting point by coupling gravity to the energy and momentum of

all fields, including the gravitational field itself. Despite the conventional wisdom that this

self-coupling process is already well understood, Padmanabhan has uncovered a number of

serious problems with the standard arguments [6464]. Although we postpone an examination

of Padmanabhan’s analysis to appendix 2.A2.A, it suffices to express here what is, in our

view, his most pertinent observation: one cannot start with linear gravity, the Fierz-

Pauli massless spin-2 action [3737, 6464], and generate the higher-order corrections of general

relativity by coupling the gravitational field to its own Hilbert energy-momentum tensor.

More succinctly: one cannot derive the Einstein equations by bootstrapping gravitons11 to

their own energy and momentum.

To clarify the content of this observation, consider a perturbative expansion of the

Einstein field equations Gαβ = κTmatter
αβ about a Minkowski background: gαβ = ηαβ +hαβ.

Working to second-order in hαβ, we obtain

G
(1)
αβ = −G(2)

αβ + κTmatter
αβ , (2.1)

where the numbers in parenthesis denote the powers of hαβ the term contains. Because

G
(1)
αβ = 0 is the equation of motion for a massless spin-2 field hαβ, the right-hand side of

(2.12.1) can be interpreted as this field’s source. Thus a satisfying physical picture suggests

1In discussions of this nature, the word graviton is often used as a shorthand for the classical massless

spin-2 field. We follow this convention to cohere with the literature, but stress that this graviton is in no

way quantum mechanical. What is actually being referred to is a gravitational wave, a classical fluctuation

in the geometry of spacetime.
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Chapter 2. Bootstrapping Gravity

itself: the gravitational field hαβ is induced by the energy-momentum tensor of all fields

Tαβ = Tmatter
αβ + tαβ, where tαβ is gravity’s own energy-momentum tensor, identified as

−G(2)
αβ/κ. In actuality, however, this description cannot be formulated in a straightforward

manner. Although the Fierz-Pauli action SFP is typically used to prescribe the dynamics

of a massless spin-2 field, its Hilbert energy-momentum tensor22

tαβ ≡
−1√
−γ

δSFP

δγαβ
, (2.2)

is not proportional to G
(2)
αβ , and thus cannot be used as the source-term for the second-

order field equations. As an alternative approach, one could introduce energy-momentum

self-coupling at the level of the action: because tαβ is a function of hαβ, adding the self-

coupling term tαβh
αβ to the Lagrangian yields a different result from adding tαβ directly

to the equations of motion. Unfortunately, this procedure also fails to generate −G(2)
αβ/κ

in the field equations.

Padmanabhan claims that these realisations bring to light a previously neglected object

Sαβ (see appendix 2.A2.A) which appears to codify the self-coupling of the gravitational field.

Unfortunately, this object has many undesirable features: it is not a tensor under general

coordinate transformations, has no clear physical interpretation, and fails to reveal any

equivalence between the coupling of gravity to matter, and gravity to itself.

We propose an alternative solution to this apparent inconsistency: the action for the

graviton is not the Fierz-Pauli action but is instead S2 given by (2.42.4), possessing a non-

minimally coupled term that vanishes when the (vacuum) background equations are en-

forced.33 We shall demonstrate that the energy-momentum tensor of this action is the

correct second-order contribution to the equation of motion, and furthermore, that this

action provides the starting point for a straightforward energy-momentum self-coupling

procedure that generates the Einstein-Hilbert action (modulo surface terms) to arbitrary

order. We conclude the discussion by extending our formalism to non-vacuum spacetimes.

Throughout the chapter we employ the abstract index notation [7979, §2.4], with lower-

case Roman indices indicating a tensor’s ‘slots’, and Greek indices serving to enumerate

its components in a particular coordinate system. The metric has signature (−,+,+,+),

κ ≡ 8πG/c4, and the Riemann and Ricci tensor are defined with the following conventions:

Rabcdv
b ≡ 2∇[c∇d]v

a, Rab ≡ Rcacb.

2Although other definitions of the energy-momentum tensor exist (see §2.2.32.2.3) we must define tαβ

according to the Hilbert’s prescription (2.22.2) in order to maintain the analogy with Tmatter
αβ . This definition

requires that SFP be “covariantised” (represented in arbitrary coordinates using a flat metric γαβ) and a

functional derivative taken with respect to the metric. It is important to realise that even though γαβ is

flat, the arbitrary variations δγαβ required to construct the functional derivative inevitably explore curved

metrics in a neighbourhood of γαβ . Thus “covariantisation” is not really sufficient: the action must be

generalised to a curved background spacetime. One of the key aims of this chapter is to generalise SFP to

curved spacetime in such a way that energy-momentum self-coupling is consistent with general relativity.
3More precisely, S2 is the action for the graviton in a background spacetime with metric in some small

neighbourhood of the solutions of the vacuum field equations. We use the term vacuum to signify a region

without matter; this does not necessarily imply the absence of spacetime curvature.
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2.2. Graviton Action

2.2 Graviton Action

Contrary to the standard approach, we represent the gravitational field as a perturbation

hab of the inverse physical metric gab from the background ǧab:

gab = ǧab + hab. (2.3)

This expression is exact in that we have not neglected termsO(h2); in contrast, the physical

metric gab = ǧab− hcdǧcaǧdb +O(h2) . Following this convention, we use the contravariant

field hab, rather than hab, as the fundamental dynamical variable of the action.44 In general

we will write “caron” marks over tensors derived solely from the background geometry,

and adopt the usual notational convenience of raising and lowering indices with ǧab and

ǧab.
55

We posit that the dynamics, energy and momentum of the gravitational field hab,

propagating in a background spacetime with metric ǧab, are all determined (to lowest-

order) by the following action:

S2[ǧab, hab] ≡ 1

2κ

∫
d4x
√
−ǧhab(Ĝabcd + Ȟabcd)h

cd, (2.4)

where

Ĝabcd ≡ 1
2(ǧa(cǧd)b − ǧabǧcd)∇̌2 − ∇̌(cǧd)(a∇̌b) + 1

2 ǧab∇̌(c∇̌d) + 1
2 ǧcd∇̌(a∇̌b) (2.5)

is a differential operator representing the linearised Einstein tensor (see appendix 2.B2.B) and

Ȟabcd ≡ 1
2Ř(ǧacǧdb + 1

2 ǧabǧcd)− Řabǧcd. (2.6)

4Any metric theory of gravity will have an ambiguity as to which variable g ∈ {gab, gab,
√
−ggab, . . .}

should be identified as the true “gravitational field”. Such a distinction is of no physical consequence and

is largely unnecessary for a non-perturbative calculation; however for the present discussion we are forced

to single out a particular field variable for the expansion g = ǧ + h. Our aim is to connect gravity to the

particle physics notion of a spin-2 field and elucidate a simple energy-momentum self-coupling scheme that

generates general relativity; to this end we are required to pick g ∈ {gab, gab} as it is only for these that h is

a genuine spin-2 field, i.e. a symmetric tensor (not a tensor density) with (lowest-order) infinitesimal gauge

transformation δhab = 2∇̌(aεb). Fortunately, it is precisely for g ∈ {gab, gab} that the necessary energy-

momentum self-coupling is its most simple: habtab (see §2.32.3). These considerations provide no criteria for

choosing the metric over its inverse as our expansion variable, and while this choice only trivially alters the

perturbation theory at first-order (hab ↔ −hab) to second-order (the relevant order for S2, tab, and G
(2)
ab )

the two definitions of the h-field differ by a term of the form hachbc. Our choice of g = gab is preferable for

this chapter because it simplifies the mathematics of the action and energy-momentum tensor. The reason

for this is explored in §2.3.52.3.5, and stems from the fact that any Lagrangian for pure gravity must contain

more factors of gab than gab in order that all the derivatives ∂a be contracted; thus an expansion in g = gab

will be algebraically simpler. Indeed, this observation still holds when coupling gravity to a scalar field φ

or a 1-form Aa, and thus taking g = gab simplifies many of the calculations of the non-vacuum case also

(see §2.42.4).
5The only exception to this rule is the physical metric and its inverse, for which gab 6= gcdǧ

acǧdb, but

rather gabgbc = δac .
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Chapter 2. Bootstrapping Gravity

While Ȟabcd has no obvious geometric interpretation, we intend to show that its contribu-

tion to the action is necessary for the consistency of energy-momentum self-coupling with

general relativity. Further motivation for this ansatz is given in section 2.32.3.

Naturally, if we are to obtain general relativity without at first assuming it, we must

begin by considering the graviton in a flat background spacetime. Nevertheless, we will see

from the formalism of section 2.32.3 that (provided we use S2 to describe the graviton) energy-

momentum self-coupling generates the Einstein-Hilbert action even when the background

is not flat; ǧab need only satisfy the weaker condition

Ǧab ≡ Řab − 1
2 ǧabŘ = 0. (2.7)

While this equation expresses the generality of the analysis that is to follow, it should be

stressed that no knowledge of (2.72.7) will be required to assemble the Einstein-Hilbert action

order by order: a flat background will serve as a perfectly satisfactory starting point.66 No

matter which background we use, however, it is absolutely crucial that we refrain from

inserting this particular metric (or even equation (2.72.7)) into the action, thereby reducing

S2 to 1
2κ

∫
d4x
√
−ǧhabĜabcdhcd. This is because we will need to be able to perform arbitrary

variations of ǧab, not just those consistent with Řabcd = 0 or Řab = 0, to construct the

energy-momentum tensor for hab. That said, it will be instructive to temporarily ignore

this advice so that we may relate S2 to the Fierz-Pauli action.

2.2.1 The Fierz-Pauli Action

For a flat background, Ȟabcd vanishes, and we can choose coordinates {xα} such that

ǧαβ = ηαβ and evaluate S2 as a functional of the components hαβ. Integrating by parts

and discarding surface terms, we find that S2 reduces to −1
2κ

∫
d4xLFP, where

LFP = 1
2∂λhαβ∂

λhαβ − 1
2∂λh∂

λh− ∂λhαβ∂αh λ
β + ∂αh∂βh

αβ (2.8)

is the Fierz-Pauli Lagrangian [6464].77 Modulo surface terms and an overall rescaling, LFP

is the unique specially relativistic Lagrangian for a symmetric tensor field hαβ that is

invariant under the infinitesimal gauge transformation δhαβ = 2∂(αεβ) (see [6464] for proof);

hence it is the Lagrangian for the graviton (massless spin-2 field) in flat spacetime.

Starting from (2.82.8), we can “covariantise” LFP by making the replacements ηαβ →
ǧαβ, ∂α → ∇̌α and multiplying by

√
−ǧ. This process obviously generates a unique

manifestly covariant Lagrangian density if ǧab is flat, as in this case the procedure is

equivalent to representing the same Lagrangian in arbitrary coordinates. However, for the

6Of course, once the self-coupling procedure is complete, and the Einstein-Hilbert action has been

assembled starting from the graviton on a flat background, we will be in a excellent position to justify

(2.72.7), as this is precisely the field equation (applied to the background) that we will have derived. With

hindsight, then, we can see there was nothing special about our flat-space starting point: we may begin

with any one solution to (2.72.7) and use energy-momentum self-coupling to derive the action (and field

equation) that defines all the others.
7Here and elsewhere we use the customary shorthand h ≡ haa ≡ habǧab.
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purposes of calculating the energy-momentum tensor (via arbitrary variations of ǧab) it

will be necessary to generalise LFP to arbitrary backgrounds, and for a curved metric the

covariantisation procedure is ambiguous. To see this, observe that we can transmute the

third term of (2.82.8) by twice integrating by parts:

∂λh
αβ∂αh

λ
β ↔ ∂αh

αβ∂λh
λ
β . (2.9)

However this equivalence relies on the commutativity of partial derivatives, and does not

occur for the covariant derivatives of a curved background; instead, integration by parts

yields

∇̌chab∇̌ah c
b ↔ ∇̌ahab∇̌ch c

b − hcahbcŘab − habhcdŘacdb. (2.10)

Thus we are forced to make a seemingly arbitrary choice: do we to covariantise (2.82.8) as

written, or should we do so after performing (2.92.9)? These two possibilities determine Lag-

rangians which differ by hcahbcŘab + habhcdŘacdb; they lead to different (first-order) equa-

tions of motion if the background is curved,88 and determine different energy-momentum

tensors even if the background is flat.99 This last problem is discussed by Padmanabhan

[6464], and is one of his many non-trivial objections to the conventional wisdom that gen-

eral relativity is the unique energy-momentum self-coupled limit of the flat-space massless

spin-2 field.

A greater problem than this ambiguity, however, is that neither choice (nor an admix-

ture) leads to general relativity after coupling it to its own energy-momentum. As we shall

see in section 2.32.3, the contribution from habȞabcdh
cd is necessary to achieve this, and it is

impossible to use the covariantising ambiguity to produce this tensor because it does not

contain habhcdŘacdb. Instead, the presence of Ȟabcd represents a rather different coupling

ambiguity faced when moving from a flat background to a curved one. Typically we would

invoke the Einstein equivalence principal to banish from the action terms coupling mat-

ter fields and Ricci tensors; we would argue that, working in locally inertial coordinates

about a point p, the Lagrangian at p should have the same form as the Lagrangian in flat

spacetime. This amounts to a minimal coupling procedure: once we have covariantised a

specially relativistic Lagrangian, the job of coupling the field to the gravity is complete.

However, while this rule may make sense to curve the background spacetime of a spin-2

field that is “just another matter-field” and has nothing to do with gravitation, it is far

from clear that the principal should hold for the graviton, for which it was only ever a

convenient fiction to think of as a tensor field propagating over a background geometry.

In summary, the Fierz-Pauli action is insufficient to determine S2 for an arbitrary back-

ground geometry; the principal of equivalence fails to give a unique solution, and cannot

justify all the contributions necessary for an energy-momentum self-coupling procedure

8The first-order field equation only describes the spacetime perturbations of general relativity if the

ambiguous term is covariantised to become ∇̌chab∇̌ah c
b ; see §2.2.22.2.2 and appendix 2.B2.B.

9Note that all other terms of LFP are invariant under the operation that generated (2.92.9) so do not

introduce further ambiguity.
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consistent with general relativity. However, it was never our aim to construct general

relativity from LFP, and we do not pretend to be able to derive a curved spacetime theory

of gravity from purely specially relativistic concepts. S2 will serve as our starting point,

and the only significance we shall ascribe LFP is that of a special case.

2.2.2 Field Equations

Leaving the Fierz-Pauli action behind, we refocus our attention on S2 and begin the

process of deriving its advertised connection to general relativity. First, we shall calculate

the associated field equations. As usual, the equations of motion are derived from the

condition that their solutions be stationary configurations of S2 with respect to variations

in the dynamical field hab. As we will have no cause to vary ǧab in the derivation, we

can enforce the background equations (2.72.7) immediately and discard Ȟabcd. Next, observe

that Ĝabcd is “self-conjugate”: for any tensor fields Aab and Bab∫
d4x
√
−ǧAabĜabcdBcd =

∫
d4x
√
−ǧBabĜabcdA

cd, (2.11)

provided either Aab or Bab has compact support. Therefore, holding ǧab constant and

performing a variation δhab (a symmetric tensor field with compact support) gives rise to

a variation in the action

δS2 =
1

κ

∫
d4x
√
−ǧδhabĜabcdhcd. (2.12)

As Ĝabcd is already symmetric in its first two indices, we can conclude that the equation

of motion is

1√
−ǧ

δS2

δhab
= κ−1Ĝabcdh

cd = 0. (2.13)

The centrally important feature of this equation is that Ĝabcdh
cd = G

(1)
ab , the linear ap-

proximation to the Einstein tensor under the inverse metric expansion (2.32.3). This is par-

ticularly easy to verify for the special case of a flat background in Lorentzian coordinates,

but is shown to hold more generally for vacuum backgrounds in appendix 2.B2.B. Thus S2

prescribes the correct first-order equation of motion for the graviton. In the next section

we show that by adding the energy-momentum tensor tab of hab (determined by S2) to the

right hand side of (2.132.13) we successfully generate the Einstein field equations correct to

second-order.1010

10Of course, the resulting field equation will no longer be a stationary configuration of the action S2.

In order that this self-coupled equation of motion can be derived from the principle of stationary action

it will be necessary to introduce a third-order correction to the action S3. Naturally, S3 will alter the

energy-momentum tensor of hab by a term O(h3); however, seemingly by miracle, this will be precisely

the third-order part of the Einstein field equations. This process continues indefinitely and is explained

systematically in §2.32.3. For the moment we content ourselves with exploring the theory to second-order

only.
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2.2.3 Energy-momentum Tensor

We will now calculate the energy-momentum tensor of the graviton and relate it to the

second-order contribution to the Einstein field equations. We follow Hilbert’s prescription

and define the energy-momentum tensor as a functional derivative of the action with

respect to the (background) metric:

tab ≡
−1√
−ǧ

δS2

δǧab
, (2.14)

where hab (rather than hab or hab) is to be held constant when taking this derivative, as

this is the field we have taken to be the fundamental dynamical variable.1111

As an aside, it is worth contrasting the variational definition (2.142.14) with Noether’s

(canonical) energy-momentum tensor:

tµνcan ≡
∂L

∂(∂µhαβ)
∂νhαβ − ηµνL, (2.15)

comprising the four conserved currents associated with the invariance of the Lagrangian

L under rigid spacetime translations. The canonical tensor cannot be used in the present

discussion for a number of reasons. Firstly, it is not uniquely determined by the action

for hab: as it depends directly on the Lagrangian, we are free to alter tµνcan by adding a

four-divergence to L, without changing either the dynamics of hab or S2. Secondly, we

require a symmetric tensor to act as the source for the first-order field equation (2.132.13),

but the canonical tensor need not have this property.1212 Lastly, Noether’s definition does

not naturally generalise to curved spacetime in such a way that tµνcan inherits a covariant

conservation law [5151]. None of these issues arise with tab, and in any case our aim has

been to connect the coupling between matter and gravity found in general relativity with

a perturbative coupling of gravity to itself; it is the Hilbert energy-momentum tensor of

matter, not the canonical tensor, that appears in the full Einstein field equations as the

gravitational source. For these reasons we discard the canonical tensor and henceforth

refer to tab, following Hilbert’s prescription (2.142.14), as the energy-momentum tensor of hab.

To begin the calculation of tab, we divide the action into two pieces S2 = S2G + S2H :

S2G ≡
1

2κ

∫
d4x
√
−ǧhabĜabcdhcd, (2.16)

S2H ≡
1

2κ

∫
d4x
√
−ǧhabȞabcdh

cd. (2.17)

It will be convenient to perform the functional derivative (2.142.14) on these two components

separately. Focusing first on S2G, we integrate by parts1313 so as to remove the second

11In later sections, the tensor written here as tab will be notated t2ab to indicate that it is the energy-

momentum contribution from the second-order action S2 only. Here we need not make this distinction.
12It is true that the canonical tensor can be made symmetric by adding to it an identically conserved

“correction” ∂αφ
µ[να], a function of hab that cancels the antisymmetric part of tµνcan. However, if we allow

this sort of ad hoc adjustment of the energy-momentum tensor, we only exacerbate the problem of non-

uniqueness.
13More precisely, one adds to the integrand a divergence of the form ∂a(

√
−ǧ[h∇̌h]a) =

√
−ǧ∇̌a[h∇̌h]a

that alters S2 only by a function of the fields on the boundary (or at infinity) and thus may be neglected

for the purposes of functional variation.
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derivatives from the integrand:

S2G =
−1

2κ

∫
d4x
√
−ǧ∇̌chab∇̌dhefK c d

ab ef , (2.18)

for which we have introduced the abbreviation

K c d
ab ef ≡

1

2

(
ǧcdǧa(eǧf)b − ǧcdǧabǧef − 2δc(eǧf)(aδ

d
b) + δc(eδ

d
f)ǧab + δd(aδ

c
b)ǧef

)
= K c d

ba ef = K c d
ab fe = K d c

ef ab . (2.19)

An infinitesimal variation in the inverse background metric δǧab, vanishing on the bound-

ary of the integral, induces a variation in the action

δS2G =
−1

2κ

∫
d4x
√
−ǧ

[
δǧpq∇̌chab∇̌dhef

(
∂K c d

ab ef

∂ǧpq
− 1

2
ǧpqK

c d
ab ef

)

+ 4∇̌chabC(e
sdh

f)sK c d
ab ef

]
, (2.20)

where

Cabc ≡ 1
2 ǧ
ad
(
∇̌bδǧcd + ∇̌cδǧbd − ∇̌dδǧbc

)
= −1

2

(
2δapδ

r
(bǧc)q − ǧ

arǧbpǧqc

)
∇̌rδǧpq (2.21)

is the connection that arises from the variation of the covariant derivative: ∇ǧ+δǧ = ∇̌+C.

We can move the covariant derivatives off δǧpq in the connection term using integration by

parts, and arrive at an equation of the form δS2G =
∫

d4x δǧpq[. . .]pq; the tensor density

in square brackets is then the functional derivative we seek:

κ√
−ǧ

δS2G

δǧpq
=
−1

2
∇̌chab∇̌dhef

(
∂K c d

ab ef

∂ǧpq
− 1

2
ǧpqK

c d
ab ef

)
− ∇̌r

(
∇̌chab

(
K c
ab (p|f |q)h

rf +K
c r

ab f(p h
f

q) −K
cr

ab f(ph
f

q)

))
. (2.22)

Meanwhile, S2H varies by

δS2H =
1

2κ

∫
d4x
√
−ǧδŘab

(
1
2 ǧ
ab
(

1
2h

2 + hcdh
cd
)
− habh

)
, (2.23)

where we have used the background equation (2.72.7) (after the variation) to remove the

terms proportional to Řab; these would only be significant if we intended to perform

further variations in the metric. Now, because

δŘab = 2∇̌[cC
c
b]a

=
(

1
2 ǧ
rsǧapǧqb + 1

2δ
r
(aδ

s
b)ǧpq − δ

r
pδ
s
b ǧaq

)
∇̌r∇̌sδǧpq, (2.24)

when we (twice) integrate by parts to alleviate δǧab of its covariant derivatives, we generate

a second-order differential operator

R̂pqab ≡ 1
2 ǧa(pǧq)b∇̌2 + 1

2 ǧpq∇̌(a∇̌b) − ∇̌(aǧb)(p∇̌q), (2.25)
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with the property ∫
d4x
√
−ǧδŘabAab =

∫
d4x
√
−ǧδǧpqR̂pqabAab (2.26)

for all Aab. Therefore, we can conclude from (2.232.23) that

κ√
−ǧ

δS2H

δǧpq
=

1

2
R̂pqab

(
1
2 ǧ
ab
(

1
2h

2 + hcdh
cd
)
− habh

)
. (2.27)

Finally, we have only to combine equations (2.222.22) and (2.272.27), expand out all the

products and derivatives, and assemble the outcome into a formula for tab as a function

of ∇̌chab. This is a straightforward but arduous calculation, and as such we chose to

complete it with a computer algebra package. The result is

κtpq = 1
4 ǧpq

(
h∇̌a∇̌bhab + 2hab∇̌a∇̌bh− 2hab∇̌2hab − h∇̌2h− 1

2∇̌ah∇̌
ah− 5

2∇̌chab∇̌
chab

+ ∇̌ch b
a ∇̌bhac + 2∇̌ah∇̌bhab

)
+ 1

4h∇̌(p∇̌q)h− 1
2hpq∇̌

2h+ 1
4h∇̌

2hpq + ha(p∇̌2h
a

q)

− 1
2h

ab∇̌a∇̌bhpq + 1
2hpq∇̌a∇̌bh

ab − ha(p∇̌b∇̌q)hab + 1
2hab∇̌(p∇̌q)hab − 1

2h∇̌a∇̌(ph
a

q)

+ 1
4∇̌ah∇̌

ahpq + 1
2∇̌bhap∇̌

bhaq − 1
2∇̌ahpq∇̌bh

ab + 3
4∇̌phab∇̌qh

ab − ∇̌bha(p∇̌q)h
b
a

− 1
2∇̌bh∇̌(ph

b
q) + 1

2∇̌bh
a
p∇̌ahbq. (2.28)

It is possible to render this formula rather more manageable by working in a gauge with

∇̌ahab = 0, h = 0:

κtpq = ǧpq

(
1
4∇̌ch

b
a ∇̌bhac − 5

8∇̌chab∇̌
chab − 1

2hab∇̌
2hab

)
+ ha(p∇̌2h

a
q) −

1
2h

ab∇̌a∇̌bhpq

− hbcŘabc(ph
a

q) + 1
2hab∇̌(p∇̌q)hab + 1

2∇̌bhap∇̌
bhaq + 3

4∇̌phab∇̌qh
ab − ∇̌bha(p∇̌q)h

b
a

+ 1
2∇̌bh

a
p∇̌ahbq, (2.29)

but we will not need this partially gauge-fixed result for this present chapter.1414

Our task now is to compare tab with G
(2)
ab and demonstrate that the energy-momentum

self-coupling of hab (determined by S2) is consistent with general relativity. Details of the

calculation of G
(2)
ab can be found in appendix 2.B2.B; the conclusion is

G
(2)
ab = −κtab +O(h3), (2.30)

and thus, to second-order, the vacuum Einstein field equations are

Ĝabcdh
cd = κtab (2.31)

as advertised.

14Gauge transformations are covered in §2.3.32.3.3; we note here only that because tab is not invariant under

the infinitesimal gauge transformation δhab = 2∇̌(aεb), only the first formula (2.282.28) can be used in all

gauges. Although gauge invariance would be a highly desirable property if we intended to argue that tab

was a physically meaningful tensor in full general relativity, it is an impossible request to make of the

tensor we seek, which should be proportional to the gauge dependent tensor G
(2)
ab .
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As a corollary of (2.312.31), we can confirm Padmanabhan’s observation that general

relativity cannot be derived from energy-momentum self-coupling the Fierz-Pauli Lag-

rangian. Only once the contribution from Ȟabcd is included will Einstein’s gravity result

from an energy-momentum self-coupled graviton. This realisation casts doubt on Man-

nheim’s recent treatment of gravitational energy-momentum [5656], in which a tensor is

constructed by applying (2.142.14) to a covariantised Fierz-Pauli Lagrangian, rather than S2.

2.3 Perturbative Gravity

Here we develop the formalism to uncover the root cause of the second-order energy-

momentum self-coupling (2.312.31), and reveal how the process continues to arbitrary order.

The vast majority of this section applies to any metric theory of pure gravity1515 and can

be generalised to include interactions with matter (see §2.42.4). Only in section 2.3.52.3.5 will

we commit to general relativity, fix our action S = SEH, the Einstein Hilbert action, and

derive the formula (2.42.4) for S2.

We shall concern ourselves with an expansion of the inverse metric gab about a non-

dynamical background ǧab, which is itself an exact solution of the vacuum field equations:

gab = ǧab + λhab, (2.32)

0 =
δS[ǧ]

δǧab
, (2.33)

where λ, a dimensionless expansion parameter, is constant over spacetime.

Following (2.322.32), the action of the exact theory S[g] becomes a λ-dependent functional

of ǧab and hab, which can be Taylor expanded thus:

S[g] = S[ǧ + λh] =
∞∑
n=0

λnSn[ǧ, h], (2.34)

where Sn is the “nth partial action” given by

Sn[ǧ, h] =
1

n!
(∂nλS[ǧ + λh])λ=0 . (2.35)

The derivative ∂λ acts on each instance of λhab in the integrand of S[ǧ + λh] by Leibniz’s

law, removing the factor of λ. The ‘bare’ hab left behind may still be covered by spacetime

derivatives ∂a, but these can be moved onto the remainder of the integrand by integration

by parts. This operation generates the usual functional derivative:

∂λS[ǧ + λh] =

∫
d4xhab(x)

δ

δǧab(x)
S[ǧ + λh]. (2.36)

In truth, the left hand side of this equation differs from the right by the surface term∫
d4x∂aJ

a created when integrating by parts. As this is only a functional of the fields on

15We require only that the dynamics are determined by an action that is a coordinate-independent

integral of the metric and its derivatives.
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the boundary (or as xµ → ∞ if the integral of S runs over the entire manifold) it will

not contribute to equations of motion or energy-momentum tensors, the calculation of

which are dependent only on variations of the field that vanish on the boundary (or have

compact support). Hence these surface terms may be neglected for our present purposes.

It follows from the repeated application of (2.362.36) that

∂nλS[ǧ + λh] =

[∫
d4xhab

δ

δǧab

]n
S[ǧ + λh], (2.37)

and thus the partial actions (2.352.35) are given by

Sn[ǧ, h] =
1

n!

[∫
d4xhab

δ

δǧab

]n
S[ǧ]. (2.38)

An important consequence of this relation is that, using S2 as our starting point, we can

generate the entire set of partial actions {Sn : n ≥ 3} by calculating

Sn[ǧ, h] =
2

n!

[∫
d4xhab

δ

δǧab

]n−2

S2[ǧ, h], (2.39)

which is possible provided S2 is known in a neighbourhood of whichever particular back-

ground (a solution of (2.332.33)) we are interested in. Note that the first two partial actions

do not contribute to the dynamics of hab: S0 = S[ǧ] is manifestly independent of hab,

and S1 vanishes once the background equation (2.332.33) has been enforced. We conclude,

therefore, that S2 contains all the information necessary to reconstruct the “dynamical”

part of the action

Sdyn[ǧ, h] ≡
∞∑
n=2

λnSn[ǧ, h], (2.40)

which itself contains all the dynamical information of the full action S. This is absolutely

key to the calculations of section 2.22.2, in which we saw the first consequence of this recon-

struction process, the recovery of the second-order equation of motion from an action that

one would expect to encode only first-order dynamics.

2.3.1 Field Equations

In general, we could let λ be a free parameter and, on demanding δS[g]/δgab = 0 for fixed

ǧab, derive a λ-dependent equation of motion Eλ[ǧ, h] = 0 for our dynamical field hab.

Any hab that solved this equation would correspond to a metric gab = ǧab + λhab that

solved the field equations exactly.1616 However, if we are interested in approximating small

variations of the metric (i.e. the limit λhab → 0) we can choose some order N to which we

want the equation of motion to hold:

δS[g]

δgab
= O(λN+1). (2.41)

16It is advisable to set λ = 1 before attempting to solve Eλ[ǧ, h] = 0, as this constant can always be

absorbed into the magnitude of hab. Although this refinement was convenient for §2.22.2, here we shall keep

λ as it provides a simple method for tracking the powers of hab in expressions and is useful as a variable

for differentiation.
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This is equivalent to

1

λ

δSN+1
dyn [ǧ, h]

δhab
= O(λN+1), (2.42)

where SN+1
dyn is defined by discarding from Sdyn those terms that can be neglected in (2.412.41):

SN+1
dyn [ǧ, h] ≡

N+1∑
n=2

λnSn[ǧ, h]. (2.43)

We shall adopt this “N th-order approximation” picture for the development of our form-

alism, as we can always write N =∞ if we wish to discuss the exact theory.

For the sake of continuity with the previous section, we introduce the notation

δS2[ǧ, h]

δhab

∣∣∣∣
δS[ǧ]/δǧab=0

≡ κ−1
√
−ǧĜabcdhcd, (2.44)

where, because S2 is second-order in hab, Ĝabcd will be a linear differential operator de-

pendent only on ǧab.1717 The equation of motion (2.422.42) now takes the form

λĜabcdh
cd = − κ

λ
√
−ǧ

δ

δhab

N+1∑
n=3

λnSn[ǧ, h], (2.45)

where it should be taken as given that terms O(λN+1) have been neglected. This is

the N th-order approximation to the equation of motion for hab that is consistent with

the dynamics of gab prescribed by the action S. The first-order contribution has been

separated from the sum so as to evoke the picture of a wave equation λĜabcdh
cd = 0 with

a source. In the next section we will see that the source term on the right of (2.452.45) is

indeed the energy-momentum tensor of the field hab, neglecting terms O(λN+1).

2.3.2 Energy-momentum Tensor

First we shall demonstrate that the dynamical part of the action (2.402.40) can be gener-

ated from S2 by a simple energy-momentum self-coupling procedure. Observe that, as a

consequence of (2.382.38), we have

Sn[ǧ, h] =
1

n

∫
d4xhab

δSn−1[ǧ, h]

δǧab
. (2.46)

Defining the nth partial energy-momentum tensor tnab by applying Hilbert’s prescription

to the nth partial action,

tnab ≡
−1√
−ǧ

δSn[ǧ, h]

δǧab
, (2.47)

17The operator Ĝabcd defined here coincides with the definition in (2.52.5) once S = SEH has been fixed.

This is shown in §2.3.52.3.5 by deriving S2.
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we conclude that

Sn[ǧ, h] =
−1

n

∫
d4x
√
−ǧhabtn−1

ab . (2.48)

This makes manifest the energy-momentum self-coupling procedure that allows us to gen-

erate the dynamical part of the action (2.402.40) to arbitrary order, given only S2. The nth

partial action is nothing more than the integral of the contraction of hab with the energy-

momentum tensor of the previous partial action (divided by −n). The dynamical part of

the action is therefore given by

SN+1
dyn [ǧ, h] = λ2S2[ǧ, h]−

∫
d4x
√
−ǧhab

N∑
n=2

λn+1tnab
n+ 1

. (2.49)

Note that, for the particular case of general relativity (S = SEH), the background equation

(2.72.7) also sets S0 = 0, thus Sdyn = SEH (modulo surface terms) and the energy-momentum

self-coupling procedure recovers the entire action of the full theory, not just the dynamical

part.

Because of factors of n + 1 dividing each tnab in (2.492.49), it is not the case that in the

action hab couples directly to its (N th-order) total energy-momentum tensor, given by

TNab ≡
−1√
−ǧ

δSNdyn

δǧab
=

N∑
n=2

λntnab. (2.50)

Instead, the numerical denominators account for the n + 1 factors of hab in habtnab, and

ensure that the equations of motion do indeed have TNab as the source. To prove this, note

that for any symmetric field lab (vanishing on the boundary, or with compact support) we

have ∫
d4xlab

δSn[ǧ, h]

δhab
=

∫
d4x

lab

n!

δ

δhab
(∂nλS[ǧ + λh])λ=0

= 1
n! (∂µ (∂nλS[ǧ + λ(h+ µl)])λ=0)µ=0

= 1
n! (∂nλ∂µS[ǧ + λ(h+ µl)])λ=µ=0

= 1
n! (∂nλ (λ∂αS[ǧ + λh+ αl]))λ=α=0 ,

where α ≡ λµ⇒ ∂µ = λ∂α. Thus,∫
d4xlab

δSn[ǧ, h]

δhab
=

1

n!

(
λ∂nλ∂αS[ǧ + λh+ αl] + n∂n−1

λ ∂αS[ǧ + λh+ αl]
)
λ=α=0

=
1

(n− 1)!

(
∂α∂

n−1
λ S[ǧ + λh+ αl]

)
λ=α=0

= (∂αSn−1[ǧ + αl, h])α=0

=

∫
d4xlab

δSn−1[ǧ, h]

δǧab
. (2.51)

Hence we have the following important result:

δSn[ǧ, h]

δhab
=
δSn−1[ǧ, h]

δǧab
. (2.52)
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Or, using definition (2.472.47),

δSn[ǧ, h]

δhab
= −

√
−ǧtn−1

ab . (2.53)

Therefore the equation of motion (2.452.45) takes on the form

λĜabcdh
cd = κλ−1

N+1∑
n=3

λntn−1
ab , (2.54)

or, recalling (2.502.50),

λĜabcdh
cd = κTNab . (2.55)

We have derived the relation we sought, demonstrating that any metric theory of pure

gravity can be formulated as a first-order wave equation with its own energy-momentum

tensor as a source. For every N ≥ 1, we can derive the equation of motion (2.552.55) by apply-

ing the variational principle to the action SN+1
dyn ; the left hand side is the wave equation for

the linearised theory, and the right hand side is the energy-momentum tensor prescribed

by the action SNdyn. This energy-momentum tensor is, to some extent, incomplete: it does

not include the O(λN+1) contribution from the highest-order partial action SN+1. This

contribution could be calculated, if so desired, and added by hand to the field equations

(2.552.55) so that the right hand side read κTN+1
ab , but this equation would no longer be a sta-

tionary configuration of the action SN+1
dyn . To remedy this, we could introduce a correction

to the action λN+2SN+2 that would generate the extra term in the equation of motion;

the appropriate functional is given by (2.482.48) and couples hab to the highest-order partial

energy-momentum tensor tN+1
ab . But now once again the energy-momentum tensor TN+1

ab

is incomplete, and we can apply this same line of reasoning anew. So long as there is no

N for which tNab vanishes identically, this process can continue indefinitely, and as N →∞
the exact field equations are recovered, along with the action Sdyn = S − S0 − λS1.

All that remains is to connect our formalism to the specific results of the previous

section. For the sake of completeness, however, we shall first discuss the gauge symmetries

of the theory, and deduce the conservation law for TN+1
ab .

2.3.3 Gauge Transformations

Because the action S[g] is a coordinate-system independent integral, any diffeomorphism

φ :M→M gives rise to a gauge transformation of the theory through the action of φ∗,

the map comprising the pullback of φ on covector indices and the pushforward of φ−1 on

vector indices:

S[φ∗g] = S[g]. (2.56)

Taylor expanding both sides about ǧab and applying the background equation reveals the

gauge invariance of the dynamical part of the action:

SN+1
dyn [ǧ, h′] = SN+1

dyn [ǧ, h], (2.57)
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where

λh′ab ≡ φ∗gab − ǧab. (2.58)

In the context of an N th-order approximation, we must insist that φ∗ = 1 +O(λ), other-

wise these transformations will map the small metric fluctuations λhab onto fluctuations

comparable in magnitude to ǧab. We can write a general diffeomorphism of this form as

φ∗ = eλLξ , where Lξ is the Lie derivative along a vector field ξa = O(1). The gauge

transformations of the theory are hence given by

hab → h′ab = hab + δhab,

δhab ≡ λ−1
N∑
n=1

(λLξ)n

n!
ǧab +

N−1∑
n=1

(λLξ)n

n!
hab, (2.59)

where we have discarded all terms O(λN ), as these will only contribute terms O(λN+1) to

the equation of motion, and terms O(λN+2) to SN+1
dyn . If we wish we can let ξa = εa, an

infinitesimal vector field, and derive the infinitesimal gauge transformation

δhab =

Lε
(
ǧab + λhab

)
N ≥ 2,

−2∇̌(aεb) N = 1.
(2.60)

Because these gauge transformations (infinitesimal or otherwise) are symmetries of SN+1
dyn ,

they map solutions of the equation of motion (2.552.55) to other solutions. We can therefore

use the equation of motion to deduce the transformation law for TNab :

δTNab ≡ TNab [ǧ, h′]− TNab [ǧ, h] =
λ

κ
Ĝabcdδh

cd. (2.61)

This verifies the earlier remark that the energy-momentum tensor is gauge dependent,

except in the trivial case N = 1, for which TNab = 0 by definition. It may come as a surprise

that the energy-momentum tensor does not inherit the gauge invariance of the action from

which it was derived. It should be stressed, however, that SN+1
dyn is not identically gauge

invariant: the relation (2.572.57) is only true when the background equation is obeyed. For

general ǧab, the diffeomorphism invariance of S[g] only furnishes the gauge transformation

law δSN+1
dyn = −λδS1, the right-hand side of which has a non-vanishing energy-momentum

tensor responsible for the variation in TNab . Equivalently, the gauge dependence of TNab can

be seen to result from the non-commutativity of gauge transformations and the functional

derivative δ/δǧab used to define TNab [5555]; these operations would only commute if the

gauge invariance of SN+1
dyn extended to a neighbourhood of the solutions of the background

equation, rather than being confined to the solutions themselves.

2.3.4 Conservation Law

It should be expected that SN+1
dyn [ǧ, h] inherits the diffeomorphism invariance of S[g], and

that this symmetry endows the energy-momentum tensor with a covariant conservation
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law with respect to the background metric. The derivation proceeds in close analogy to

the proof of ∇aTmatter
ab = 0 from general relativity.

We again appeal to the diffeomorphism invariance of the action (2.562.56) but this time

expand S[g] about ǧab (a solution of the background equation) and S[φ∗g] about φ∗ǧab

(which will also be a solution). The result,

SN+1
dyn [φ∗ǧ, φ∗h] = SN+1

dyn [ǧ, h], (2.62)

affirms that SN+1
dyn is diffeomorphism invariant.1818 Now let φ be an infinitesimal diffeo-

morphism: φ∗ = 1+Lε for an arbitrary infinitesimal vector field εa with compact support.

Then (2.622.62) becomes

0 =

∫
d4x

[
δSN+1

dyn

δǧab
Lεǧab +

δSN+1
dyn

δhab
Lεhab

]
. (2.63)

Clearly the second term vanishes (to O(λN+1)) if hab solves the equation of motion (2.552.55),

and thus

0 =

∫
d4x

δSN+1
dyn

δǧab
∇̌aεb +O(λN+2)

=

∫
d4x
√
−ǧεb∇̌aTN+1

ab +O(λN+2). (2.64)

As this equation holds for any εa it follows that

∇̌aTN+1
ab = 0 (2.65)

is valid up to and including O(λN+1). Because this relation holds whenever hab solves its

equation of motion, and because gauge transformations map solutions to solutions, the

conservation law is gauge invariant.

It is important to recognise that (2.652.65) applies to the (N+1)th-order energy-momentum

tensor: this is the highest-order approximation to the energy-momentum tensor that can

be constructed from our truncated action SN+1
dyn , and is a better approximation than the

tensor TNab which features in the equations of motion appropriate to this order. Of course,

the conservation law for TNab follows from (2.652.65) by discarding the highest-order term, and

ensures the consistency of the equation of motion (2.552.55) with the identity ∇̌aĜabcdhcd = 0,

which holds for all hab once the background equation has been enforced.

2.3.5 Constructing the Graviton Action

It is now time to close the circle of our discussion and connect the abstract formalism to

our earlier calculation. We shall derive here the graviton action S2, the ansatz of section

2.22.2, by applying the perturbative formalism to the particular case

S[g] =
1

κ

∫
d4x
√
−gR ≡ SEH[g], (2.66)

18Note that diffeomorphism invariance is equivalent to being independent of coordinate system, and is

a distinct property from gauge invariance as defined in §2.3.32.3.3.
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the Einstein-Hilbert action. To proceed, we will use equation (2.382.38) to derive S1, and

then S2, by successive functional derivatives δ/δǧab acting on SEH[ǧ]. The first derivative

generates

S1[ǧ, h] =
1

κ

∫
d4x
√
−ǧǦabhab, (2.67)

which of course vanishes for all hab when ǧab solves the background equation Ǧab = 0. A

second variation in ǧab gives rise to

δS1 =
1

κ

∫
d4x
√
−ǧ
[
δŘab

(
hab − 1

2hǧ
ab
)

+ δǧcd 1
2

(
hcdŘ− hŘcd − ǧcdǦabhab

)]
. (2.68)

Replacing δŘab → δǧcdR̂cdab in accordance with (2.262.26), we determine δS1/δǧ
ab and as-

semble

S2 =
1

2

∫
d4xhcd

δS1

δǧcd

=
1

2κ

∫
d4x
√
−ǧ
[
hcdR̂cdab

(
hab − 1

2hǧ
ab
)

+ 1
2h

cd
(
hcdŘ− hŘcd − ǧcdǦabhab

)]
=

1

2κ

∫
d4x
√
−ǧhab(Ĝabcd + Ȟabcd)h

cd. (2.69)

In the last line we referred to the definitions (2.52.5) and (2.62.6), and made use of the identity

R̂abef (δecδ
f
d −

1
2 ǧ
ef ǧcd) ≡ Ĝabcd. (2.70)

This completes the derivation of the graviton action (2.42.4) and confirms that it can be

used as the starting point of an energy-momentum self-coupling procedure (2.482.48) that

generates the Einstein field equations and the Einstein-Hilbert action (modulo surface

terms) to arbitrary order.

The preceding calculation helps to reveal the advantage of using hab, a perturbation in

the inverse metric, as our fundamental degree of freedom. Had we instead taken the usual

approach, expanding gab = ǧab + λhab and taking hab as fundamental, the perturbative

formalism would have unfolded identically but for the placement of indices. However,

the calculation of S2 from SEH would have differed dramatically. The Lagrangian of

S1 would instead be proportional to Ǧabhab, and because the Ricci tensor is naturally

covariant, the variation of Ǧab = Řcdǧ
caǧdb − 1

2Řcdǧ
cdǧab under δǧab would have been

complicated by the extra two factors of ǧab on the first term, compared to the relevant

tensor in our approach: Ǧab = Řab− 1
2Řcdǧ

cdǧab. This trend continues at every order; the

hab convention leads to a greater proliferation of terms in each partial energy-momentum

tensor because the Lagrangian of Sn has the form (∇̌a)2(hab)
n so must be contracted with

a further n+ 1 factors of ǧab to render it a scalar.1919 Each of these metric factors generates

a term in the partial energy-momentum tensor, and thus act as compound interest for

the process of energy-momentum self-coupling. In comparison, our convention leads to

19There are of course the instances of ǧab∂cǧde in each ∇̌a, but these occur equally in either convention.
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Lagrangians of the form (∇̌a)2(hab)n, which need only n − 1 additional factors of ǧab.
2020

Clearly the inefficiency of the hab approach stems from the natural covariance of derivative

operators (∂a or ∇̌a) and curvature tensors; the advantages of the contravariant expansion

gab = ǧab + hab are therefore not peculiar to the Einstein Hilbert action, and are expected

to be even more distinguished in higher derivative theories of gravity.

2.4 Matter

To avoid over-complicating our discussion, we have so far focused exclusively on pure grav-

ity. Here we will go some way to remedy this simplification, and generalise the formalism

of the previous section to include the perturbations of matter fields, and the effects of

non-vacuum backgrounds.

In the most general case, let the action S be a functional of gab and a generic matter

field ΨA, where A will serve as a placeholder for any number of internal or spacetime

indices. We then expand S about a background (ǧab, Ψ̌A) as follows:

gab = ǧab + λhab, (2.71)

ΨA = Ψ̌A + λψA, (2.72)

⇒ S[g,Ψ] =

∞∑
n=0

λnSn[ǧ, h, Ψ̌, ψ], (2.73)

where ǧab and Ψ̌A satisfy the background equations

δS[ǧ, Ψ̌]

δǧab
= 0,

δS[ǧ, Ψ̌]

δΨ̌A
= 0. (2.74)

As before, each partial action can be calculated from the partial action at the previous

order; with matter included, the appropriate recurrence relation is

Sn =
−1

n

∫
d4x
√
−ǧ
(
habtn−1

ab + ψAjn−1
A

)
, (2.75)

where

tnab ≡
−1√
−ǧ

δSn
δǧab

, jnA ≡
−1√
−ǧ

δSn

δΨ̌A
. (2.76)

There are two aspects of this coupling scheme that differ from pure gravity. The first is

immediately apparent: the habtab term has been joined by an analogous coupling between

matter fluctuations ψA and its “source current” jA. The second difference is hidden within

the definitions of tab and jA; because the {Sn} now represent the partial actions for gravity

and matter together, habtab and ψAjA are no longer just self-couplings, and will in general

contain terms coupling hab to ψA. In particular, tnab should now be interpreted as the

20This does not mean that all terms in such a Lagrangian will contain only n− 1 additional factors of

ǧab; there will often be cases in which ǧab is contracted with (∇̌a)2 and thus n+1 factors of the metric (and

its inverse) will be present. These cases only represent a small proportion of all possible terms, particularly

as n becomes large, and are no worse than the terms afforded by the hab convention.
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2.4. Matter

(nth-order) energy-momentum tensor due to all the fields: hab, ψA, and the background

matter Ψ̌A.

Proceeding as before, we can now demand that the dynamical fields hab and ψA solve

the field equations of the action SN+1
dyn =

∑N+1
n=2 λ

nSn, and generate approximate solutions

of the exact field equations (prescribed by S) accurate to O(λN ). Instead of using the

definition (2.442.44) for Ĝabcd, we write the general form of S2, modulo surface terms, as

S2 =
1

2

∫
d4x
√
−ǧ
(
habĜabcdh

cd/κ− 2habÎabAψ
A + ψAŴABψ

B
)
, (2.77)

once the background equations (2.742.74) have been enforced. In the above equation, Ĝabcd,

ÎabA, and ŴAB are linear operators that depend only on background fields, Ĝabcd and

ŴAB are self-conjugate, in the sense given by (2.112.11), and ÎabA is conjugate to Î†Aab:∫
d4x
√
−ǧAabÎabABA =

∫
d4x
√
−ǧBAÎ†AabA

ab, (2.78)

for all Aab or Bab, provided one has compact support. These definitions lead to equations

of motion, accurate to O(λN ), as follows:

λĜabcdh
cd = κTNab + λκÎabAψ

A, (2.79)

λŴABψ
B = JNA + λÎ†Aabh

ab, (2.80)

where

TNab ≡
N∑
n=2

λntnab, JNA ≡
N∑
n=2

λnjnA. (2.81)

Although this formalism is quite general, it is probably too general to be usefully

employed. Indeed, the complications involved in describing matter as a background field

and a dynamical perturbation generally serve to obscure the physical interpretation of the

mathematics. An interesting example of this occurs when one tries to rederive ∇̌aTN+1
ab = 0

by applying the argument of section 2.3.42.3.4. The result that now follows is

∇̌aTN+1
ab =

1

2
√
−ǧ

δ

δεb

∫
d4x
√
−ǧJN+1

A LεΨ̌A, (2.82)

the physical interpretation of which is far from clear. Rather than continue with this

formulation in its full generality, it will therefore be more instructive to examine two

special cases. First, we set Ψ̌A = 0 and consider small matter fields λψA interacting

with λhab. Second, by setting ψA = 0 we can study the effect of a background matter

field Ψ̌A on the propagation of the graviton. In principal, one could reach these special

cases starting from the formalism we have just described, but it will be simpler and more

illuminating to build them up from scratch.

2.4.1 Matter Perturbations

In a region where the matter fields are small enough that their effects on spacetime

curvature can be described by small perturbations λhab in the inverse metric, we can
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model the dynamics by taking Ψ̌A = 0, and describe the matter field using λψA alone. As

it is often the case for gravitational theories, let us suppose that the action S is the sum

of a gravitational action Sg and a matter action SΨ:

S[g,Ψ] = Sg[g] + SΨ[g,Ψ]. (2.83)

Moreover, for the sake of simplicity, we take ΨA to be a free field:

SΨ[g, λΨ] = λ2SΨ[g,Ψ] ∀ gab,ΨA. (2.84)

This assumption will mean that the perturbative expansion of S can be described by an

energy-momentum coupling procedure only. To see this explicitly, we expand the action

about a background (ǧab, 0):

S[ǧ + λh, λψ] =
∞∑
n=0

λn (Sgn[ǧ, h] + SΨn[ǧ, h, ψ]) , (2.85)

where each gravitational partial action

Sgn[ǧ, h] =
1

n!
(∂nλSg[ǧ + λh])λ=0

=
1

n!

[∫
d4xhab

δ

δǧab

]n
Sg[ǧ], (2.86)

much as before, and the matter partial actions

SΨn[ǧ, h, ψ] =
1

n!
(∂nλSΨ[ǧ + λh, λψ])λ=0

=
1

n!

(
∂nλ
(
λ2SΨ[ǧ + λh, ψ]

))
λ=0

=
1

(n− 2)!

(
∂n−2
λ SΨ[ǧ + λh, ψ]

)
λ=0

=
1

(n− 2)!

[∫
d4xhab

δ

δǧab

]n−2

SΨ[ǧ, ψ]. (2.87)

Defining the partial energy momentum tensors for hab and ψA as

tgnab ≡
−1√
−ǧ

δSgn

δǧab
, tΨnab ≡

−1√
−ǧ

δSΨn

δǧab
, (2.88)

respectively, we see that the partial actions are coupled as

Sn[ǧ, h] = −
∫

d4x
√
−ǧhab

(
tgn−1
ab

n
+
tΨn−1
ab

n− 2

)
. (2.89)

These partial actions lead to the N th-order equations of motion

λĜabcdh
cd = κTNab =

N∑
n=2

λn
(
tgnab + tΨnab

)
, (2.90)

λŴABψ
B =

N∑
n=2

[
−λn

(n− 1)
√
−ǧ

δ

δψA

∫
d4x
√
−ǧhabtΨnab

]
. (2.91)
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The first equation confirms that the energy-momentum tensors of ψA and hab combine as

the source for the graviton. The second equation describes how the coupling between hab

and tΨab acts as a source for ψA. Note that even when the matter field is not free, because

SΨ never contains terms linear in the matter fields, ÎabA must be at least linear in Ψ̌A, so

we will always have ÎabA = 0 when Ψ̌A = 0.

2.4.2 Non-Vacuum Background

For a non-vacuum spacetime, we expect to be able to approximate (at least to first-order)

the behaviour of a gravitational perturbation by ignoring the perturbations in the matter

field that it might induce. Alternatively, we may have in mind a particular non-vacuum

solution of the field equations (ǧab, Ψ̌A) and wish to find nearby solutions (approximate or

exact) with precisely the same matter content. For these two scenarios, we can set ψA = 0

and investigate the effect that the background Ψ̌A has on the dynamics of hab.

Considerations of this nature highlight an interesting feature of our prior discussion of

the graviton action. In section 2.22.2 we saw the importance of a contribution to the action

habHabcdh
ab that vanished in the vacuum; the obvious question to ask is whether a similar

term exists in the non-vacuum case, and whether or not it will vanish on the non-vacuum

background equations. To answer these questions we will derive the graviton action for

a non-vacuum background, which will also include the cosmological constant as a special

case.

Let us restrict our attention to general relativity in the presence of a matter field:

S[g,Ψ] = SEH[g] + SΨ[g,Ψ], (2.92)

SΨ[g,Ψ] ≡ 2

∫
d4x
√
−gLΨ(gab,ΨA, ∂aΨ

A). (2.93)

The factor of two in the definition of the matter Lagrangian LΨ compensates for our

slightly unusual normalisation of SEH.2121 It should be noted that we have assumed that

LΨ does not depend on derivatives of the metric. This is the case for the Lagrangians of

all the fields of the standard model except the spin-1
2 fermion, which in any case should

be coupled to gravity using the vierbein formalism, e.g. [5353]; such an approach is beyond

the scope of this chapter. The results of this section can be generalised to allow Lm to

depend on ∂cg
ab without any great difficulty, but this is an added algebraic complication

that seems to add little insight to our investigation.

We proceed by expanding the action about a background (ǧab, Ψ̌A) just as in (2.712.71)

and (2.722.72), but now, as ψA = 0, the coupling scheme (2.752.75) reverts to the familiar energy-

momentum coupling of section 2.32.3. Following precisely the same method as section 2.3.52.3.5,

we can compute S2 by two successive functional derivatives (with respect to ǧab) applied

21All our actions are twice as large as the usual definition. This normalisation has no effect on the

classical equations of motion, but has allowed us to define the energy-momentum tensor without a factor

of two, simplifying the algebra of §§2.22.2&2.32.3.
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to S[ǧ, Ψ̌]. The first derivative yields

S1 =
1

κ

∫
d4x
√
−ǧ
(
Ǧab − κŤΨ

ab

)
hab, (2.94)

where

ŤΨ
ab =

−1√
−ǧ

δSΨ[ǧ, Ψ̌]

δǧab
= −2

∂ĽΨ

∂ǧab
+ ǧabĽΨ (2.95)

is the energy-momentum tensor of the background matter. The second derivative yields

the graviton action:

S2 =
1

2

∫
d4xhab

δS1

δǧab

=
1

2κ

∫
d4x
√
−ǧ
[
habĜabcdh

cd −
(
Ǧab − κŤΨ

ab

)
habh+ 2κhabhcd

∂2ĽΨ

∂ǧab∂ǧcd

+
(
Ř+ 2κĽΨ

) (
1
2habh

ab − 1
4h

2
) ]
. (2.96)

This is the action we sought: the generalisation of equation (2.42.4) to a non-vacuum back-

ground.

If we are only interested in the linear theory, and have no wish to calculate the energy-

momentum tensor, then we are free to enforce the background equation

Ǧab = κŤΨ
ab, (2.97)

in the graviton action. In sharp contrast to the vacuum case, however, the background

equation does not reduce S2 to 1
2κ

∫
d4x
√
−ǧhabĜabcdhcd, or indeed any other covariantisa-

tion of the massless spin-2 Fierz-Pauli action. Instead, it appears as though the background

matter has endowed the graviton with mass:

S2 =
1

2κ

∫
d4x
√
−ǧ
(
habĜabcdh

cd + α
)
, (2.98)

where the “mass-term” α is given by

α ≡ −1
2M

(
habhab − 1

2h
2
)

+Nabcdh
abhcd, (2.99)

with

M ≡ 2κ

(
ĽΨ − ǧab

∂ĽΨ

∂ǧab

)
, Nabcd ≡ 2κ

∂2ĽΨ

∂ǧab∂ǧcd
. (2.100)

We refer to α as a “mass-term” because it is quadratic in hab, free from derivatives, and

has been added to the kinetic term habĜabcdh
cd in the Lagrangian. However, as we will see

for the specific case of the cosmological constant, α does not by itself determine whether

the graviton is actually massive, i.e. whether it propagates subluminally ; the curvature of

the background will play an equally important role in the field equations. In particular,

while it is tempting to identify a mass m for the graviton according to m2 = M (at least
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2.4. Matter

when Nabcd = 0) we will soon see that the background matter often sets M < 0, so this

idea is essentially untenable.

To explore these issues, it will be instructive to calculate α for a few simple examples.

First, consider a scalar field background Φ̌ with Lagrangian

ĽΦ = −1
2 ǧ
ab∂aΦ̌∂bΦ̌− V (Φ̌); (2.101)

the mass-term is

αΦ = κV (Φ̌)
(
habh

ab − 1
2h

2
)
. (2.102)

To ensure that the scalar field has positive energy density, we must insist that V (Φ̌) ≥
0; hence M ≤ 0 as previously warned. Equation (2.1022.102) can also be used to find the

corresponding mass-term for a cosmological constant. In this case the Lagrangian is LΛ =

−Λ/κ, which we can reach from LΦ by setting ∂aΦ̌ = 0 and V = Λ/κ. Clearly this gives

αΛ = Λ
(
habh

ab − 1
2h

2
)
, (2.103)

which similarly suffers from M < 0 if the cosmological constant is positive.

At this point, the reader may be suspicious that the formulae for αΦ and αΛ (with M <

0 and Nabcd = 0) signify that hab is a tachyon in the presence of a scalar field background

or a cosmological constant. Indeed, if the background were flat and M constant over

spacetime, we could derive the field equations from (2.982.98), observe that their divergence

enforces the de Donder gauge condition

∂αhαβ − 1
2∂βh = 0, (2.104)

and, substituting this back into the equations of motion, conclude that the dynamics of

the graviton were described by (
∂2 −M

)
hαβ = 0. (2.105)

This argument appears to justify the relation m2 = M for the graviton’s mass, and

motivate the conclusion thatM < 0 betrays tachyonic behaviour. It is important to realise,

however, that the field equation above is of little relevance to the actual physical system we

were discussing. In reality, M will not be constant, and the presence of background matter

will inevitably preclude background flatness. To understand how this last consideration

alters the dynamics of the graviton, we shall briefly examine the field equation for hab in

the presence of a cosmological constant. First, we substitute (2.1032.103) into (2.982.98) and derive

the field equation

Ĝabcdh
cd + Λ

(
hab − 1

2 ǧabh
)

= 0. (2.106)

In contrast to the naive approach, the covariant divergence of this equation vanishes

identically, and so cannot be used to relate ∇̌bh and ∇̌ahab. In place of this, the gauge
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invariance of the vacuum theory remains intact2222, and the field equation may be simplified

by setting h = 0, ∇̌ahab = 0:

∇̌2hab − 2Řdabch
dc = 0. (2.107)

Surprisingly, the contribution from αΛ has been cancelled by a term proportional to the

background Ricci tensor, resulting in a field equation that is identical in form to the first-

order vacuum field equation (2.132.13) in this gauge. Of course, this does not indicate that

the cosmological constant has no effect on the propagation of hab, only that these effects

are limited to the constraints imposed on the background geometry by the background

equation Řab = Λǧab. For this reason, it does not seem particularly natural to interpret

2Řdabch
dc as endowing the graviton with a mass; equation (2.1072.107) can instead be under-

stood as a (partially gauge-fixed) massless spin-2 field equation that has been generalised

to cosmological backgrounds. Quite aside from this, there is also the technical issue of in-

terpreting the four-index tensor Řabcd as a mass: only if this tensor can be defined in terms

of a single scalar variable (and the background metric) could the argument be made that

this single variable described the graviton’s mass. For a non-zero cosmological constant,

the only background with this property is de Sitter space: Řdabc = Λ
3 (ǧdbǧac− ǧdcǧab), thus

the gauge-fixed field equation (2.1072.107) becomes(
∇̌2 − 2Λ

3

)
hab = 0. (2.108)

If we were so inclined, we might interpret this as a field equation for a graviton with

m2 = 2Λ/3, and note that this relation has the correct sign for positive Λ, unlike the

formula m2 = −2Λ suggested by our preliminary inspection of αΛ. In truth, however,

further investigation is needed before we can either adopt or discard this interpretation.

This is not only because (2.1072.107) (of which (2.1082.108) is a special case) can be understood as a

generalisation of a massless field equation to cosmological backgrounds, but also because

of the subtleties involved in interpreting the wave operator ∇̌2 in curved space, and issues

of whether or not to use a conformal coupling. Clearly, more work must be done to

ascertain the physical ramifications of αΛ, and the “mass-term” α in general, before we

can understand the degree to which its effects can be thought of as giving mass to the

graviton.

Although massive gravitons and the cosmological constant were historically viewed

as entirely separate concepts, recent work has brought to light a number of interesting

connections between the two. Deser and Waldron [2828] have demonstrated that, in (anti-)de

Sitter background spacetimes, a massive spin-2 field is stable if and only if m2 ≥ 2Λ/3,

or m = 0. While it is intriguing that our de Sitter background field equation (2.1082.108)

22If we wish to extend our discussion of gauge invariance (§2.3.32.3.3) to include background matter in

general, we would need to account for the gauge-fixing implicit in our starting assumption ψA = 0, which

is obviously not preserved by a (first-order) infinitesimal diffeomorphism δψA = LεΨ̌A. However, because

Λ is constant over spacetime, no such difficulty arises here, and the transformations δhab = −2∇̌(aεb)

remain a symmetry of the equations of motion.
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suggests precisely the same special value of m2 = 2Λ/3, Deser and Waldron’s analysis

differs significantly from our own, so this superficial observation may be misleading. In

particular, whereas our mass-term arises as a direct result of the perturbative expansion,

Deser and Waldron add their mass-term to the action by hand. Thus it is far from clear that

the massive gravitons of their paper correspond to the physical system considered above.

In contrast, Novello and Neves [6262] claim to prove that m2 = −2Λ/3, with the implication

that Λ ≤ 0. This approach considers an unusual generalisation of the spin-2 field equation

to curved backgrounds, making a non-standard choice for the covariantisation ambiguous

term discussed in section 2.2.12.2.1. Thus, while their calculations arguably describe a spin-2

field, this does not appear to be a natural way to describe the spin-2 field that results

from perturbations of the metric (or its inverse) in Einstein’s theory. It is our intention

to disentangle the connections between these two approaches, and our own, in a later

publication.

For the sake of completeness, we conclude this section with an example of a mass-term

that can have M > 0, and Nabcd 6= 0. Unlike αΛ, however, we shall not attempt to derive

any of the implications for the equations of motion. Consider an electromagnetic 1-form

background Ǎa, with Lagrangian

ĽA = −1
4 F̌

2 = −1
4 ǧ
abǧcdF̌acF̌bd, (2.109)

and note that F̌ab ≡ 2∂[aǍb] is independent of the metric. The calculation yields

αA = −1
4κF̌

2
(
habh

ab − 1
2h

2
)
− κhabhcdF̌acF̌bd, (2.110)

which has the aforementioned properties.

2.5 Conclusion

Contrary to the prevailing maxim, coupling the classical Fierz-Pauli graviton to its own

energy and momentum does not recreate general relativity order by order. However, there

is an alternative action for the graviton (2.42.4) for which energy-momentum self-coupling

is consistent with Einstein’s theory. Using this action, the energy-momentum tensor of

the graviton (2.282.28), added as a source to the graviton’s first-order equation of motion

(2.132.13), builds a field equation consistent with the Einstein equations to second-order.

Furthermore, the perturbative formalism developed in section 2.32.3 reveals that our action

provides sufficient information to reconstruct general relativity to arbitrary accuracy: a

simple recurrence relation (2.482.48) identifies the energy-momentum tensor at one order as

the appropriate contribution to the action at the next. To any order N , this scheme

assembles an action that dictates field equations (2.552.55) in which the graviton’s N th-order

energy-momentum tensor is the source.

The formal machinery used to understand vacuum perturbations is easily extended

to include matter, although the physical interpretation of the most general approach, in

which matter comprises both a background field and a small perturbation, is less than
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transparent. Focusing on matter perturbations separately from non-vacuum backgrounds

serves to clarify the formalism significantly. In a vacuum background, the interactions

between the graviton and perturbations of a free matter field lead to a field equation

(2.902.90) in which the source for the graviton is the sum of gravitational and matter energy-

momentum. This interaction inevitably induces a source in the field equations for matter

(2.912.91). Alternatively, one may neglect matter perturbations and examine the consequences

of a non-vacuum background. In this case, the dynamics and energy-momentum of the

graviton are prescribed by the action (2.962.96), generalising our previous ansatz. Surprisingly,

the background matter appears to induce a “mass-term” in the graviton action, although

it is currently unclear to what extent its interpretation as a mass is valid at the level of the

field equations. The mass-terms induced by a scalar field (2.1022.102), a cosmological constant

(2.1032.103) and electromagnetism (2.1102.110) have been calculated.

2.A Appendix: Padmanabhan’s Analysis

The recent article by Padmanabhan [6464] unearths many significant shortcomings of the

well known arguments [2525, 3636, 4141, 5050] that supposedly derive Einstein’s equations by

coupling the Fierz-Pauli graviton to its own energy-momentum tensor. Here we attempt

to summarise his observations, and explain their relation to this present work.

In broad terms, Padmanabhan’s criticisms fall into three areas:

1. The Einstein-Hilbert action consists of a bulk term (the Γ2 action) and a surface

term. The latter includes a piece linear in hαβ, so there can be no way to construct

it from a self-coupling procedure that starts with an action that is already quadratic

in hαβ.2323

2. The starting point, the Fierz-Pauli Lagrangian (2.82.8), describes a Lorentz invariant

field theory, and yet the end result, general relativity, is generally covariant. It is

claimed that this metamorphosis only occurs because general covariance has been

assumed in the various derivations, in which case it is “no big deal to obtain Einstein’s

theory”. More generally, the classic bootstrapping arguments wield ideas developed

in general relativity (such as Hilbert’s definition of the energy-momentum tensor) or

use knowledge of the end result to achieve their goal. Hence they cannot be regarded

as a derivation of general relativity from first principles.

3. The first-order field equation can only take a symmetric tensor as its source; the

canonical energy-momentum tensor (2.152.15) is not necessarily symmetric, and although

it can be made to be so, this process is not unique. Therefore the energy-momentum

self-coupling procedure is ill-defined. The Hilbert definition is uniquely determined

by the action, but to use it would violate criticism 2. Crucially, even if we allow

23The argument given by Padmanabhan is phrased in terms of non-analyticity in a dimensionful coupling

constant. This form of the argument depends on his particular choice of normalisation for hαβ and SEH,

but is essentially equivalent to the statement given here.
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ourselves to use Hilbert’s definition, we still fail to recover the correct source term

for the second-order field equation.

It is to this very last crucial point that we have devoted the bulk of this chapter. We now

wish to explain our position with regards to the first two criticisms, and also Padman-

abhan’s proposed solution to the third.

1. Our approach expressly avoids discussing surface terms. This has greatly stream-

lined our formalism, and because such terms are completely irrelevant for determining field

equations or energy-momentum tensors, the only price to pay for this simplicity is that we

can only claim to reconstruct the Einstein-Hilbert action modulo surface terms.2424 In this

sense, Padmanabhan’s first criticism still stands, although it is unclear whether it has any

great importance. If the action is an integral over the whole manifold, and asymptotic

conditions apply to hab such that the surface term at infinity vanishes, then of course there

is no distinction between the Einstein-Hilbert action and the action we have constructed.

Even if the action is an integral over a manifold with a boundary, so long as we consider

the action to be a functional over all fields with a particular boundary configuration (just

as we might think of the action of a particle as a functional over all paths with particular

end-points) the two actions differ only by an irrelevant constant. Besides, in situations

where contributions from the boundary really are important, one does not typically use

the Einstein-Hilbert action anyway: the Gibbons-Hawking-York boundary term [3939, 8383]

must be included to remove the dependence on second derivatives of the metric. This

allows the field equations to be derived using a variational principle that only demands

that the variation in the fields (and not also their derivatives) vanish on the boundary.

Padmanabhan’s major concern is that the surface term of the Einstein-Hilbert action

has some quantum mechanical significance. As the nature of quantum gravity has yet

to be understood, it remains unclear whether or not this is the case. We stress once

again that the analysis in this chapter is purely classical, and that we make no claims

as to a quantum mechanical interpretation. Furthermore, it is not even known whether

the graviton is a useful theoretical object for describing quantum gravity. We note again

that the Gibbons-Hawking-York boundary term is usually included in quantum gravity

investigations for which the boundary is not negligible.

2. It is our view that Padmanabhan’s concerns about general covariance are unjustified:

we take the position of Weinberg [8080], that “general covariance by itself is empty of physical

content.” Any theory (Lorentz invariant or not) can be expressed in arbitrary curvilinear

coordinates, so the requirement of general covariance cannot, in and of itself, constrain the

sort of theory one might construct. Rather, the kinematical content of general relativity

is encapsulated by the equivalence principle, that the effect of gravity vanishes locally in

an inertial coordinate system; thus expressing physical equations in coordinate invariant

notation is an invaluable tool for describing how their dynamics are modified by gravity.

It is possible that when Padmanabhan refers to ‘general covariance’ he is referring to the

24Note that this does not nessesarily mean that we have constructed the Γ2 action, only that the

integrand of the action differs from
√
−gR by some total divergence.
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equivalence principle also. As the latter is tantamount to identifying the gravitational

field with a dynamical metric, he would certainly be correct to criticise any “derivation”

that contained such a step; needless to say, we do not appeal to the equivalence principle

in our approach.

General covariance aside, though, Padmanabhan’s objection to the use of curved-space

ideas is a valid one, indicating that none of the classic arguments constitute a derivation

from first principles. Our approach certainly makes use of curved-space concepts; how-

ever our goals are perhaps not quite so bold as the other derivations that Padmanabhan

has scrutinised: we do not pretend to derive general relativity purely from the ideas of

Lorentz-invariant field theory. It should be stressed, however, that even if some of the

kinematical content of general relativity is in some way assumed (curved spacetime, func-

tional derivatives with respect to the metric, etc.) it is still a “big deal” to derive the

dynamical content of the theory, Einstein’s equations.

3. We have already explained our position with regards to the definition of the energy-

momentum tensor in section 2.2.32.2.3; the only reason that Hilbert’s definition is unpalatable

to Padmanabhan is that his aim is to start with as little curved-space mathematics as

he can. However, the failure of the Hilbert energy-momentum tensor to give the correct

second-order term for the Einstein field equations is a more significant stumbling-block.

We have explained our remedy, the use of a different starting action, in the body of this

chapter. Padmanabhan, on the other hand, eschews energy-momentum self-coupling and

introduces a new object Sαβ that he defines with the following algorithm. Start with

a Lorentz invariant Lagrangian L(ηαβ, hαβ, ∂γhαβ) expressed in Lorentzian coordinates

{xα}. Replace every instance of ηαβ with the metric ǧαβ to produce a new Lagrangian

L̃(ǧαβ, hαβ, ∂γhαβ); note that this is not the same as expressing L in an arbitrary co-

ordinate system because the partial derivatives ∂α have not been upgraded to covariant

derivatives ∇̌α. We can now define

Sαβ ≡ 2
∂
√
−ǧL̃

∂ǧαβ

∣∣∣∣∣
ǧ=η

. (2.111)

The subscript reminds us that we must set ǧαβ = ηαβ after taking the metric derivative,

as we are supposedly working in Lorentzian coordinates. Padmanabhan claims to be able

to reconstruct the Γ2 action by coupling hαβ to this new object Sαβ. Unfortunately Sαβ

has a number of highly undesirable properties, suggesting that it is a rather unnatural

object, ill-defined in its current form.2525

Firstly, as it has been constructed from a Lagrangian rather than an action, Sαβ

depends directly on surface terms. This introduces a very large ambiguity, as Sαβ will

depend on whether we write the integrand of the action in the form (∂h)2, as Padmanabhan

does, in the form h∂2h, or as some arbitrary combination of both. Each possibility defines

a different Sαβ and (presumably) leads to a different self-coupled limit for the graviton.

25In private communication, Padmanabhan has indicated that he shares our concerns about Sαβ and

does not believe it to be of any fundamental importance; hence we present the case against Sαβ for the

sake of completeness rather than rebuttal.
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It seems that the only remedy for this ambiguity is to artificially stipulate that L contain

no second derivatives, although we note in passing that even this leaves us free to add

surface terms of the form ∂α(φAα) in theories for fields other than the graviton.

The second troubling aspect to Sαβ is the “half-covariantising” algorithm used to con-

struct L̃. It should be clear that this procedure has only been defined in Lorentzian

coordinates, thus the matrix Sαβ does not really constitute the components of a tensor,

as we have not explained how their values change when expressed in another coordinate

system.2626 There are essentially two ways to extend the definition (2.1112.111) to include cur-

vilinear coordinates. The trivial solution is to construct the tensor Sab ≡ Sαβ(∂α)a(∂β)b

using the vectors {(∂α)a}, partial derivatives with respect to the Lorentzian coordinates

used to calculate Sαβ in the first place. This obviously defines a genuine tensor, so the

components Sα
′β′ of Sab in some curvilinear coordinate system {xα′} can be calculated,

and they will be related to Sαβ by the usual transformation rules. It should be clear,

however, that this solution is rather unnatural: suppose we have a Lagrangian expressed

in a curvilinear coordinate system, then the only way to calculate the components Sα
′β′

in that system is to first transform to Lorentzian coordinates, calculate Sαβ according to

(2.1112.111), and then transform back to our original coordinate system. Also, because this

process picks out a special set of coordinates, there is also no reason to expect that Sab

can be written as a tensorial function of hab, ǧab and ∇̌a. The natural way to proceed

would be to generalise the definition (2.1112.111) in such a way that we could calculate Sα
′β′

working in any coordinate system. It might seem that a viable solution would be to define

the tensor

Sab ≡ 2√
−ǧ

∂
√
−ǧL
∂ǧab

∣∣∣∣
Γ̌

, (2.112)

where L = L(ǧab, hab, ∇̌chab) is the fully covariant Lagrangian, and the subscript indicates

that the Christoffel symbols Γ̌abc are to be treated as independent of the metric and

held constant in the derivative. This expression generalises (2.1112.111) to define a tensor

Sab in a coordinate invariant fashion; because the Christoffel symbols are held constant,

no term arises from a variation of the covariant derivatives, and Sab will reduce to Sαβ

in Lorentzian coordinates. This expression gives us some insight into the geometrical

meaning of Padmanabhan’s half-covariantised algorithm; in particular it reveals that the

derivative ∂/∂ǧαβ used to define Sαβ is in fact exploring geometries (infinitesimally close

to Minkowski spacetime) with connections that are not metric compatible.2727 It is perhaps

unsurprising that this Γ̌-constant derivative introduces a new layer of ambiguity to the

procedure, as we can now alter Sab by adding terms proportional to 0 = ∇̌cǧab to the

Lagrangian. Although this might seem a rather contrived objection, it is in fact a very

26The insistence that we be able to calculate the components of this object in arbitrary coordinates has

nothing to do with curved spacetime or general relativity. Rather, this reflects the perfectly reasonable

expectation that we should be able to express Padmanabhan’s self-coupling procedure in flat-space spherical

polar coordinates, for example, or any other coordinate system we choose.
27This is the same operation as the derivative used to acquire the Einstein equations from the Palatini

action [4545, §19.10], although here we will have no cause to perform the complementary derivative ∂/∂Γ|ǧ.
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common consideration. For example, suppose the Lagrangian includes a term of the form

∇̌ahab; should we calculate Sab by acting with ∂/∂ǧ|Γ̌ on ∇̌a(ǧachcb), or should we first

commute the metric past the covariant derivative, and act on ǧac∇̌ahcb instead? Note that

this issue would have been invisible in Lorentzian coordinates because

∂∇̌cǧef
∂ǧab

∣∣∣∣
Γ̌

= −2Γ̌
(a
c(eδ

b)
f), (2.113)

which we would have automatically set to zero. It seems the only way to avoid this

uncertainty in Sab is to introduce another artificial constraint on the Lagrangian: we insist

that it be written in such a way that no derivatives act on the metric. This should be

achieved by commuting covariant derivatives through the metric, rather than integrating

by parts, due to the aforementioned issues with surface terms.

We shall take our analysis of Sαβ no further at this time. It is still uncertain whether

this object can be generalised, naturally and uniquely, to form a genuine tensor; without

such a generalisation it is difficult to ascertain what sort of mathematical object the matrix

of functions Sαβ is supposed to represent. Although we cannot claim to have exhausted

all possibilities, the evidence before us suggests, at the very least, that this goal is not

easily achieved.

Aside from these technical issues, we should also emphasise that, unlike the energy-

momentum tensor, Sαβ has no apparent physical interpretation beyond its supposed role in

a graviton self-coupling scheme. Energy-momentum self-coupling was justified by analogy

with matter-gravity coupling, and advanced by the notion that the energy-momentum of

all fields should source gravitation. In contrast, the self-coupling scheme involving Sαβ

only serves to set gravity apart from the other fields. Furthermore, our solution displays

an unusual symmetry between the coupling terms in the action and source terms generated

in the field equations as a result (see §2.3.22.3.2); this symmetry is broken by Padmanabhan’s

self-coupling procedure.

2.B Appendix: Expansion of Gab

Here we determine the first two terms of the expansion of the Einstein tensor

Gab = G
(1)
ab +G

(2)
ab +O(h3), (2.114)

induced by a perturbation of the inverse metric about a vacuum background:

gab = ǧab + hab, (2.115)

Ǧab = 0. (2.116)

The perturbation in the metric is of course fixed by the relationship gabgbc = δac ,

⇒ gab = ǧab − hab + hach
c
b +O(h3). (2.117)
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To begin, introduce a connection Eabc between the derivative operators ∇a and ∇̌a:

Eabc = 1
2g
ab(∇̌bgcd + ∇̌cgbd − ∇̌dgbc). (2.118)

This allow the Ricci tensor to be expressed as

Rab = 2
(
∇̌[cE

c
a]b + Ecd[cE

d
a]b

)
. (2.119)

From (2.1182.118) it is clear that

E
a(0)
bc = 0, (2.120)

E
a(1)
bc = −1

2 ǧ
ad(2∇̌(bhc)d − ∇̌dhbc), (2.121)

E
a(2)
bc = −1

2h
ad(2∇̌(bhc)d − ∇̌dhbc) + 1

2 ǧ
ad(2∇̌(b(hc)eh

e
d)− ∇̌d(hbehec)). (2.122)

Hence the terms of the expansion Rab = R
(1)
ab +R

(2)
ab +O(h3) can be computed as follows:

R
(1)
ab = 2∇̌[cE

c(1)
a]b (2.123)

R
(2)
ab = 2

(
∇̌[cE

c(2)
a]b + E

c(1)
d[cE

d(1)
a]b

)
. (2.124)

Thus,

G
(1)
ab = R

(1)
ab −

1
2 ǧabR

(1)
cd ǧ

cd

= −∇̌c∇̌(ah
c

b) + 1
2∇̌

2hab + 1
2∇̌a∇̌bh−

1
2 ǧab

(
−∇̌c∇̌dhcd + ∇̌2h

)
, (2.125)

which confirms that Ĝabcd, as defined in (2.52.5), represents the linearised Einstein tensor:

Ĝabcdh
cd = G

(1)
ab . (2.126)

In particular, note that both sides of this equation agree on the order of the derivatives

in ∇̌c∇̌(ah
c

b) ; this is the descendant of the covariantisation ambiguous term discussed in

section 2.2.12.2.1.

To find G
(2)
ab , start with

G
(2)
ab = R

(2)
ab −

1
2 ǧab

(
R

(2)
cd ǧ

cd +R
(1)
cd h

cd
)

+ 1
2habR

(1)
cd ǧ

cd, (2.127)

and substitute equations (2.1232.123) and (2.1242.124), followed by (2.1212.121) and (2.1222.122). The book-

keeping for this calculation is characteristically laborious, but is easily accomplished using

a computer algebra package; the result is

G
(2)
ab = −κtab + 1

2hĜabcdh
cd, (2.128)

where tab is given by (2.282.28). As expounded in section 2.2.22.2.2, and now confirmed by dir-

ect calculation (2.1262.126), the first-order approximation to the Einstein field equation is

Ĝabcdh
cd = 0, so Ĝabcdh

cd = O(h2) must hold true at second-order. Clearly it follows from

this that hĜabcdh
cd = O(h3), and hence (2.302.30) is verified.

The third-order difference between G
(2)
ab and −κtab exists because the field equation

approximated to second-order in (2.312.31) is actually
√
−gGab/

√
−ǧ = 0; this is of course

entirely equivalent to the usual form of the Einstein field equation Gab = 0.
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Chapter 3
Localising the Energy and Momentum of

Linear Gravity

3.1 Introduction

Half a century ago, a simple argument established that gravitational waves carry en-

ergy and can exchange this energy with matter. Often attributed to Feynman (certainly

popularised by Bondi [1919]) the argument asked us to imagine a gravitational detector com-

prising a rigid rod along which two “sticky beads” are threaded. A passing gravitational

wave then acts to alter the proper distance between the beads, and this motion, opposed

by friction, heats the detector and thus mediates a transfer of energy from gravity to mat-

ter. Despite the simplicity of this idea, even after fifty years, it has not been possible to

explain where in spacetime this gravitational energy resides, and it is generally accepted

that attempts to do so are “looking for the right answer to the wrong question”[5858, §20.4].

The elusiveness of the “right answer”, and the wrongness of the question, are very

often identified as arising from gravity’s gauge freedom, the consequence of which is a one-

to-many mapping between physical spacetime and whatever localisation of gravitational

energy-momentum might be proposed. Historically this issue was cast in terms of coordin-

ate dependence, and the multitude of non-covariant objects that were constructed (first

by Einstein [3535], and most famously by Landau and Lifshitz [5252]) were termed energy-

momentum pseudotensors. However, a more recent formulation [1111] has made it clear that

the construction of a genuine tensor (defined on some background spacetime) is not the

central problem; rather, it is the tensor’s dependence on the arbitrary diffeomorphism that

maps physical spacetime to the background (see chapter 11).

Nevertheless, there is no reason a priori that gauge dependence should preclude the

construction of a physically unambiguous tensor, provided we are prepared to remove

the gauge freedom in some well-defined way. In cosmology this is frequently done by

constructing new variables which are gauge invariant but equal to the relevant gauge-

dependent fields (such as gravity or density fluctuations) in a particular gauge [1212, 7676];

however, it is just as effective to provide a physically unambiguous method by which the

gauge may be fixed, and to then insist that the gravitational field be evaluated in this
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gauge when locating its energy and momentum. Unfortunately, no previous approach has

supplied instructions of this nature, and more importantly, neither the construction of

these energy-momentum objects, nor their key properties, appear to favour one gauge (or

one set of gauge-invariants) over another; thus it appears impossible to justify any of these

seemingly arbitrary choices as natural.

Besides gauge dependence, there is also a great range of choice over which proper-

ties, physical or mathematical, should define the gravitational energy-momentum tensor:

should we be guided by a putative conservation law, or have in mind a particular role in

the field equations? For instance, it is always possible to locate the energy-momentum of

matter by measuring the gravity it generates, so one might suggest that gravity’s energy-

momentum should be localised in a similar fashion, by examining the interaction it has with

itself. Following this idea to its conclusion, it has been shown (in chapter 22 and elsewhere

[2525, 2727, 3636]) that general relativity may be constructed from an initially linear (spin-2)

field theory that is then systematically coupled to its own (Hilbert) energy-momentum

tensor. Sadly, this scheme leads us to identify the non-linear part of the Einstein tensor

Gab−G
(1)
ab as the gravitational energy-momentum, so (a) the gauge problem remains, and

(b) the result is additionally ambiguous, as different choices of “gravitational field” (gab,

gab,
√
−ggab, etc.) mix the linear and non-linear terms in Gab.

In spite of these various difficulties, one aspect of this enduring problem stands op-

posed to conventional wisdom and motivates our present discussion: when gravity and

matter interact, the exchange of energy is local! To see this we need look no further than

the sticky bead detector: here, the energy exchange is certainly localised in so far as it

takes place only within the confines of the detector. Furthermore, we can imagine a very

small detector, much smaller than a wavelength of the incident gravitational radiation,

and observe that at each instant a well-defined power is developed in the detector as heat;

thus, at least in this case, the rate of energy exchange is associated with a particular point

in spacetime. One might hope, therefore, that consistency with this phenomenon would be

enough to localise the energy and momentum of the gravitational field outside the detector,

or even when no detector is present. Moreover, even if a gravitational energy-momentum

tensor could not be found, there would still be great value in constructing a framework

for the description and analysis of local gravitational energy-momentum exchange. The

purpose of this chapter is to develop precisely this framework, and to examine the gravit-

ational energy-momentum tensor it brings to light. In doing so we uncover a simple and

unambiguous “right answer” through which the effects of gravitational energy-momentum

may be usefully understood. Conceivably, this was the “right question” to ask.

For the sake of simplicity, we have restricted our present discussion to linearised gen-

eral relativity on a flat Minkowski background. It is only in this linear regime that the

convenient fiction of a “gravitational field” propagating on a background spacetime can

be taken seriously, a construction which is essentially unavoidable when localising gravita-

tional energy-momentum.11 On a technical level, the restriction to the linear approximation

1As long as there is some spacetime with everywhere vanishing gravitational energy-momentum, then
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limits the space of gauge transformations to a manageable size, facilitating the analysis

and eventual removal of our description’s gauge dependence. Furthermore, our gravit-

ational energy-momentum tensor will not be derived from non-linear terms in the field

equations, so we avoid any ambiguity arising from field redefinition. We shall not attempt

to extend our results beyond the linear theory at this time.22

The structure of the chapter will be as follows. We begin by building the foundations

of our framework, deriving a gravitational energy-momentum tensor (3.233.23) by demand-

ing consistency with the energy and momentum exchanged with matter. As we will see,

most of the tensor’s gauge freedom is eliminated immediately as a natural consequence

of this derivation. Following this, we demonstrate two important additional properties

of our tensor, further solidifying its interpretation as gravity’s energy-momentum tensor.

We then develop our framework more concretely by analysing the transfer of gravita-

tional energy-momentum onto an infinitesimal detector; in the process of making this

analysis gauge invariant, we will purge the last trace of gauge ambiguity from our energy-

momentum tensor. Finally, we examine the gravitational energy-momentum in some spe-

cific examples. Throughout, we work in units where c = 1, write κ ≡ 8πG, and use the

sign conventions of Wald [7979]: the metric signature is (−,+,+,+), and the Riemann and

Ricci tensors are defined by [∇c,∇d]va ≡ Rabcdvb, and Rab ≡ Rcacb.

3.2 Motivation and Derivation

The purpose of this section is to explain how, by considering the energy-momentum trans-

ferred between matter and gravity, we are led to a formula for the gravitational energy-

momentum tensor. We begin by laying down some mathematical groundwork.

3.2.1 Preliminaries

As previously explained, this chapter focuses exclusively on linear gravity: we only con-

sider physical spacetimes (M, gab) in which the curvature Rabcd is everywhere small. As

usual, this allows us to identify the physical spacetime with a flat background spacetime

(M̌, ǧab), where Řabcd = 0, using a diffeomorphism φ :M→ M̌. The “gravitational field”

this will naturally play the role of the background, and fluctuations away from this configuration will con-

stitute the gravitational field. Although the most natural choice for this “ground-state” is flat spacetime,

this does not necessarily preclude the extension of our formalism to less trivial backgrounds; however, we

suspect there may be technical or conceptual problems with “ignoring” the energy-momentum of a non-

trivial background. In particular, we anticipate issues analogous to those of associating energy-momentum

with a fluctuation in the electromagnetic field δFab when the background F̌ab is non-zero: the energy-

momentum tensor T ∼ F̌ 2 + F̌ δF +(δF )2, so the dominant contribution from the fluctuation will be linear

in the field, rather than quadratic.
2Of course, it may not be possible to extend the framework we develop here to the full non-linear

theory, and we accept that localising gravitational energy-momentum in this regime (where the distinction

between background and fluctuation is virtually meaningless) may be an inherently flawed idea. Of course,

this does not alter the validity of our work in the linear case, where the “field theoretic” view is justified.
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hab is then defined on M̌ by

φ∗gab = ǧab + hab, (3.1)

and we insist that φ be chosen such that hab is small everywhere, in order that the linearised

Einstein field equations are a good approximation:33

Ĝ cd
ab hcd = κŤab +O(h2). (3.2)

In the above relation, Ťab ≡ φ∗Tab = O(h) is the matter energy-momentum tensor Tab

mapped onto the background, and

Ĝ cd
ab hcd ≡ ∇̌c∇̌(ah

c
b) −

1
2∇̌

2hab − 1
2∇̌a∇̌bh+ 1

2 ǧab

(
∇̌2h− ∇̌c∇̌dhcd

)
(3.3)

is the linearised Einstein tensor G
(1)
ab . Our freedom of choice over φ will of course give rise

to the usual gauge transformation δhab = ∇̌(aξb).

On the background it will be useful to define four vectors44 {ě a
µ } obeying

∇̌aěbµ = 0, (3.4)

ě a
µ ěνa = ηµν , (3.5)

which form the basis of a Lorentz coordinate system {xµ} on M̌: ě a
µ ≡ (∂µ)a. From this

starting point, we shall define a corresponding set of vector fields {e a
µ } in the physical

spacetime,

e a
µ ≡ (φ−1)∗ě a

µ , (3.6)

the behaviour of which will only be determined once we have fixed the gauge φ, an issue

to which we will return later.

3.2.2 Energy-Momentum Currents

Superficially, general relativity is a theory in which the energy and momentum of matter

is always conserved:

∇aTab = 0. (3.7)

However, the sticky bead argument has already demonstrated that this is not the case;

in reality, matter may gain (or lose) energy through interaction with the gravitational

field. The reason for this apparent contradiction is as follows. In order to determine

the energy of each part of the detector, one must first specify a timelike vector field

3We use O(hn) as an abbreviation of O((hab)
n); this should not be confused with the trace of the

gravitational field h ≡ habǧab.
4We use Roman letters as abstract tensor indices [7979, §2.4] and Greek letters as numerical indices

running from 0 to 3. Tensor indices of fields defined on the background are of course raised and lowered

with ǧab.
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e a
0 (the “time direction” conjugate to the energy) with which to form an energy current-

density Ja ≡ T abe b
0 . The incoming gravitational wave will then prevent e b

0 from satisfying

∇ae b
0 = 0, and we will find that ∇aJa = T ab∇ae b

0 6= 0. This inequality indicates a

mismatch between the energy of the matter flowing into a given point, and the change

in energy of the matter at that point; in other words, it represents the appearance of

additional energy which was not already present in the matter – this is the energy absorbed

from the gravitational wave! What is needed, therefore, is a framework which can account

for this gained energy by identifying a corresponding loss in the energy of the gravitational

field. We devote the rest of this section to the development of this idea, which will form

the basis of our description of gravitational energy-momentum.

Following the previous discussion, it should now be clear that we must define one

energy current-density, and three momentum current-densities, by

J a
µ ≡ T abe b

µ , (3.8)

using the vectors {e a
µ } that get mapped to the Lorentz basis of the background. This is

a generalisation of the practice of defining conserved currents by contracting Tab with a

killing vector in a spacetime with a continuous symmetry. Here, however, the vector fields

{e a
µ } only correspond to approximate symmetries (present because spacetime is nearly

flat) and thus the currents will not be conserved. The real difficulty is choosing sensible

behaviour for {e a
µ } that sufficiently captures the “parallelism” of killing vectors in the

absence of any gravitational symmetry. Because e a
µ ≡ (φ−1)∗ě a

µ , this question has been

recast as a choice of gauge, which we will address later.

Having defined our energy-momentum currents (apart from specifying φ) we are now

in a position to express the key idea of our approach. We seek a symmetric tensor field

τab, defined on the background, that is a quadratic function of the gravitational field hab.

We wish to be able to interpret τab as the energy-momentum tensor of the gravitational

field, and we shall achieve this by insisting that its non-conservation (in the background)

exactly balances the non-conservation of the J a
µ in the physical spacetime. Specifically,

we wish to be able to define gravitational energy-momentum current-densities j a
µ by

j a
µ ≡ τabě b

µ , (3.9)

such that

∇̌aj a
µ + φ∗(∇aJ a

µ ) = 0. (3.10)

This equation captures the idea that energy-momentum is transferred between matter and

the gravitational field. In particular, equation (3.103.10) indicates that knowing the behaviour

of hab at some point will be sufficient to determine the fields ∇aJ a
µ that express the local

change in energy-momentum of the matter at the corresponding point in the physical

spacetime.

We proceed by calculating the two elements of (3.103.10). Because we are using a Lorentz

basis in the background, ∇̌aěbµ = 0 trivially gives

∇̌aj a
µ = ě b

µ ∇̌aτab. (3.11)
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The second term is a little less trivial; using (3.73.7),

φ∗(∇aJ a
µ ) = φ∗(T ab∇ae b

µ ),

= φ∗T abφ
∗(∇ae b

µ ),

= (Ť ab +O(h2))(∇̌aě b
µ + ě c

µ C
b
ac), (3.12)

where Cabc = 1
2(∇̌bh a

c + ∇̌ch a
b − ∇̌ahbc) + O(h2) is the connection between the two

derivative operators: φ∗(∇avb) = ∇̌aφ∗vb + Cbacφ
∗vc. Now, because ∇̌aěbµ = 0, and

Ťab = Ťba, we have

φ∗(∇aJ a
µ ) = 1

2 Ť
a
bě

c
µ (∇̌ch b

a + ∇̌ah b
c − ∇̌bhac) +O(h3)

= 1
2 ě

c
µ Ť

a
b∇̌ch b

a +O(h3). (3.13)

Finally, we use the field equations (3.23.2) to write

φ∗(∇aJ a
µ ) =

1

2κ
ě q
µ (Ĝ cd

ab hcd)(∇̌qhab) +O(h3). (3.14)

Inserting (3.113.11) and (3.143.14) into (3.103.10), and discarding the O(h3) terms, we arrive at the

defining relation of the gravitational energy-momentum tensor:

κ∇̌aτaq = −1
2(∇̌qhab)Ĝ cd

ab hcd. (3.15)

The next step will be to use this equation to derive a formula for τab in terms of hab.

In order to do so, however, we must make one additional demand: τab will not depend

on second derivatives of hab, but will be a function of ∇̌chab and ǧab only. The reason we

must impose this condition is that equation (3.153.15) can only define τab up to the addition

of “superpotential” terms, those fields whose divergence vanishes identically. Because

these terms are of the form ∇̌c∇̌dH[ac][bd] (where H[ac][bd] = H[bd][ac] is some function of

hab) they necessarily contain second derivatives; thus our restriction on τab is sufficient to

remove this ambiguity. At the moment, it might be tempting to view this condition as

a convenient way to tame the derivation, and keep in mind that we can always add in

super-potentials later if we wish. However, in section 3.33.3 it will become clear that many

of the interesting properties displayed by τab will be unavoidably spoilt by the addition of

such terms. For this reason we will not consider superpotentials further here.

3.2.3 Determining the Energy-Momentum Tensor

In truth, it will not be possible to construct a symmetric tensor τab that satisfies (3.153.15) for

all hab;
55 to make progress we will need to impose some condition on ∇̌chab and specialise

to this restricted set of gravitational fields. Although this forced restriction might appear

to be a flaw in our formalism, as we shall soon see, it is actually a valuable asset.

There are only three linear conditions we can place on ∇̌chab which neither introduce

extra fields, nor break Lorentz invariance: (a) ∇̌chab = 0, (b) ∇̌ah = 0, or (c) ∇̌ahab =

5We will shortly describe how to check this assertion, which is simply a property of (3.153.15) and inde-

pendent of the requirement that τab contain no second derivatives.
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λ∇̌bh, for some constant λ.66 Condition (a) is obviously far too restrictive: it does not

allow us any gravitational field whatsoever. In contrast, condition (b) is not restrictive

enough: there is no τab that solves (3.153.15) for all gravitational fields with constant trace.77

We must therefore focus on condition (c), which we repeat for later reference:

∇̌ahab = λ∇̌bh. (3.16)

Using this relation, it will be possible to replace any occurrence of ∇̌ahab with λ∇̌bh; hence

the most general formula for a symmetric tensor τab, a quadratic function of ∇̌chab, is as

follows:

κτpq = ǧpq(A0∇̌chab∇̌chab +A1∇̌ah∇̌ah+A2∇̌chab∇̌bhac) +A3∇̌phab∇̌qhab

+A4∇̌ph∇̌qh+A5∇̌ah∇̌(ph
a

q) +A6∇̌ahb(p∇̌q)hab +A7∇̌ahbp∇̌ah b
q

+A8∇̌bhap∇̌ah b
q +A9∇̌ah∇̌ahpq, (3.17)

where {An} are arbitrary constants. We proceed by substituting this ansatz into (3.153.15)

and solving for {An}. First, let us calculate ∇̌pτpq by taking the divergence of (3.173.17);

using (3.163.16) to convert every ∇̌ahab to λ∇̌bh, and collecting terms, we find that left-hand

side of (3.153.15) amounts to

κ∇̌pτpq = (2A0 +A3)∇̌q∇̌chab∇̌chab + (2A1 +A4 + 1
2λA5 + λA9)∇̌ah∇̌a∇̌qh

+ (2A2 + 1
2A6)∇̌chab∇̌q∇̌bhac +A3∇̌2hab∇̌qhab +A4∇̌2h∇̌qh

+ (1
2A5 + λA7 + λA8 +A9)∇̌a∇̌bh∇̌ahbq + (1

2A5 + 1
2λA6)∇̌a∇̌bh∇̌qhab

+ 1
2A5∇̌ah∇̌2haq + (1

2A6 +A7)∇̌a∇̌bhcq∇̌ahbc + 1
2A6∇̌ahbq∇̌2hab

+A8∇̌chab∇̌a∇̌bhcq. (3.18)

Meanwhile, (3.163.16) simplifies the right-hand side of (3.153.15):

−1
2(∇̌qhab)Ĝ cd

ab hcd = −1
2∇̌qh

ab
(
(λ− 1

2)∇̌a∇̌bh− 1
2∇̌

2hab + 1
2 ǧab(1− λ)∇̌2h

)
. (3.19)

Comparing (3.183.18) with (3.193.19), term by term, we conclude that the unique solution to

(3.153.15) is

A0 = −1
8 , A1 = 1

16 , A3 = 1
4 , A4 = −1

8 ,

A2 = A5 = A6 = A7 = A8 = A9 = 0, λ = 1
2 .

(3.20)

We have therefore determined the formula for our gravitational energy-momentum tensor,

κτpq = 1
4∇̌phab∇̌qh

ab − 1
8∇̌ph∇̌qh−

1
8 ǧpq(∇̌chab∇̌

chab − 1
2∇̌ah∇̌

ah), (3.21)

6The only other possibility, ∇̌ahab = 0, can be achieved by taking (c) with λ = 0.
7For the sake of brevity, we will not prove this assertion here. Instead we will attend to condition (c)

and derive the formula for τab that it admits. After we have done so, we invite the reader to perform a

similar calculation under condition (b) and verify that no solution exists.
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and the condition,

∇̌ahab − 1
2∇̌bh = 0, (3.22)

that we must place on the gravitational field. Finally, we introduce the abbreviation

h̄ab = hab − 1
2 ǧabh for the trace-reversed gravitational field, and τ̄ab = τab − 1

2 ǧabτ for the

trace-reversed gravitational energy-momentum tensor, allowing us to compactly re-express

our results:

κτ̄pq = 1
4∇̌phab∇̌qh̄

ab, (3.23)

∇̌ah̄ab = 0. (3.24)

We are now in a position to justify our earlier claim, that the restriction on the grav-

itational field is not a hindrance but a major advantage. The condition we have derived

(3.243.24) is simply the defining equation of the harmonic gauge.88 As this equation can always

be satisfied by making a gauge transformation, it does not in any way limit the physical

applicability of our approach! Moreover, we have received a valuable gift: this condition

has appeared as a natural consequence of the derivation, and forces upon us a very strong

restriction for the diffeomorphism φ that maps the physical spacetime onto the back-

ground. Specifically, φ−1 is required to map the Lorentz coordinates of the background

onto harmonic coordinates in the physical spacetime.99 We can therefore think of (3.243.24) as

the condition that specifies the correct behaviour to demand of the basis {e a
µ } needed to

define sensible energy-momentum currents J a
µ . We should stress, however, that while the

harmonic gauge condition has removed the vast majority of the gauge freedom, a small

amount remains in the form of transformations δhab = ∇̌(aξb) which satisfy ∇̌2ξa = 0; we

will return to this issue in section 3.43.4.

This completes the derivation of τab. We have found the unique symmetric tensor, a

quadratic function of ∇̌chab, that describes the transfer of energy and momentum between

matter and the gravitational field according to (3.103.10). In doing so we have found that this

solution only exists if the harmonic condition ∇̌ah̄ab = 0 is obeyed, and this in turn has

solidified the definition of energy-momentum currents J a
µ as the contraction of Tab with

the basis vectors associated with harmonic coordinate systems of physical spacetime. In

the next section we shall prove that τab displays many other interesting properties very

much in keeping with its interpretation as an energy-momentum tensor. In section 3.43.4 we

shall examine energy-momentum exchange in detail, and address the last piece of gauge

freedom.

8This is also commonly referred to as de Donder gauge or Lorentz gauge.
9To see this, let {xµ} be Lorentz coordinates on the background (∇̌a∇̌bxµ = 0), and let {yµ} be

coordinates in physical spacetime defined by yµ(p) = xµ(φ(p)) for all p ∈ M. Then φ∗(∇2yµ) = ∇̌2xµ −
hab∇̌a∇̌bxµ − (∇̌ahab − 1

2
∇̌bh)∇̌bxµ = 0.
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3.3 Properties

Here we will demonstrate that, in two important special cases, τab exhibits interesting

mathematical properties (beyond accounting for ∇aJ a
µ ) that further promote its inter-

pretation as the energy-momentum tensor of the linear gravitational field.

3.3.1 Gauge Invariance of Plane-Waves

Consider an arbitrary gravitational plane-wave:

hab = hab(kµx
µ). (3.25)

Here, ka is a constant vector, and {xµ} are Lorentz coordinates on the background. The

linear vacuum field equation ∇̌2h̄ab = 0, and the harmonic condition ∇̌ah̄ab = 0, enforce

kaka = 0, kah̄′ab = 0, (3.26)

respectively, where the prime indicates differentiation with respect to the variable kµx
µ.

We wish to consider the most general gauge transformation δhab = ∇̌(aξb) that maintains

the plane-wave form of hab. Clearly we require ξa = ξa(kµx
µ), and thus

δhab = k(aξ
′
b). (3.27)

Note that kaka = 0 now guarantees ∇̌2ξa = 0, ensuring that the harmonic condition (3.243.24)

is not broken by the transformation. Let us now calculate the effect of this transformation

on the gravitational energy-momentum tensor; working from (3.233.23),

κδτ̄pq = 1
2∇̌pδhab∇̌qh̄

ab + 1
4∇̌pδhab∇̌qδh̄

ab

= 1
2kpkqk(aξ

′′
b)h̄
′ab + 1

4kpkqk(aξ
′′
b)(k

(aξ′′b) − 1
2 ǧ
abkcξ′′c )

= 1
8kpkq((k

cξ′′c )2 − (kcξ′′c )2) = 0. (3.28)

Thus the energy-momentum of an arbitrary gravitational plane-wave is completely invari-

ant under the gauge freedom consistent with the harmonic condition and its plane-wave

form. This is significant for a number of reasons. Firstly it reveals that, for the special

case of plane-waves, we need not concern ourselves with the gauge freedom that remains

after enforcing the harmonic condition: the requirement that the gauge be chosen such

that the plane-wave form of the field be manifest is sufficient to unambiguously define the

energy-momentum tensor τab from the physical spacetime (M, g). Thus, even if one does

not accept our method for resolving the last of the gauge ambiguity (to be presented in

section 3.43.4) it is still possible to stop at this point and agree that a well-defined energy-

momentum tensor for linearised gravitational plane-waves has been found. Secondly, this

particular gauge invariance will prove useful when we wish to produce a global picture of

the motion of energy-momentum: if the source region of a gravitational wave is very far

from the detection region, we may use a different gauge in each and yet still produce a
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consistent picture of energy-momentum transfer – the field in intermediate region will ap-

proximate a plane-wave, and thus τab in this region will agree with both end-point gauges.1010

There is also a third significance to this result, but this will only become apparent once

we have demonstrated the second important property of gravitational energy-momentum:

positivity.

3.3.2 Positivity

This section concerns the energy-momentum of transverse-traceless (tt) gravitational

fields, those for which h = 0, ∇̌ahab = 0, and uahab = 0, for some constant timelike

vector field ua defined on the background.1111 For now let us simply suppose that these

conditions apply to hab and derive the consequences for τab. We shall justify our interest

in this specialisation, and offer an interpretation of ua, in section 3.43.4. Presently, let it

suffice to say that because these conditions may always be imposed (at least locally) by a

gauge transformation in regions where Ťab = 0, the results of this section will be generally

applicable to vacuum regions, but it will not be necessary to demand that Ťab = 0 globally.

We present our result as the following theorem.

Theorem. If, at some point p ∈ M̌, the gravitational field hab obeys the transverse-

traceless conditions

∇̌ahab = 0, h = 0, uahab = 0, (3.29)

for some timelike vector ua, then τab satisfies the following inequalities

vaτabv
b ≥ 0, (3.30)

vaτacτ
c
bv
b ≤ 0, (3.31)

at p, for any timelike vector va.

Proof. Without loss of generality we can set uaua = −1 and vava = −1. Now, introduce

two Lorentzian coordinate systems at p, the first {x0, xi} (i = 1, 2, 3) such that u0 = 1,

ui = 0, and the second {x0′ , xi
′} (i′ = 1, 2, 3) such that v0′ = 1, vi

′
= 0. The transverse-

traceless conditions (3.293.29) reduce (3.233.23) to

κτpq = −1
8 ǧpq∇̌chab∇̌

chab + 1
4∇̌phab∇̌qh

ab, (3.32)

and set h0i = h00 = 0. Using the primed basis to express the tensor indices of ǧab and ∇̌a,
the unprimed basis for hab, and writing ḣij ≡ ∂0′hij , we find that

κvaτabv
b = κτ0′0′

= 1
8((∂i′hij)

2 − (ḣij)
2) + 1

4(ḣij)
2

= 1
8((∂i′hij)

2 + (ḣij)
2) ≥ 0, (3.33)

10This idea is explained fully in section 3.4.43.4.4.
11Clearly, the harmonic condition is satisfied as a result of these requirements.
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because (∂i′hij)
2 ≡

∑3
i,j,i′=1 ∂i′hij∂i′hij and (ḣij)

2 ≡
∑3

i,j=1 ∂0′hij∂0′hij are sums of

squares. Similarly,

(4κvaτab)
2 = 16κ2(−(τ0′0′)

2 + (τ0′i′)
2)

= −1
4((∂i′hij)

2 + (ḣij)
2)2 + (ḣij∂i′hij)(ḣkl∂i′hkl)

= −1
4((∂i′hij)

2 − (ḣij)
2)2 − (ḣij)

2(∂i′hkl)
2 + (ḣij∂i′hij)(ḣkl∂i′hkl)

= −1
4((∂i′hij)

2 − (ḣij)
2)2 − 1

2(ḣij∂i′hkl − ḣkl∂i′hij)2 ≤ 0. (3.34)

The inequalities we have just deduced are the gravitational version of the Dominant

Energy Condition: the first indicates that τab only ever defines positive energy-densities;

the second indicates that the flux of this energy can never be spacelike. Succinctly, they

tell us that gravitational energy is positive and never flows faster than light. As the

Dominant Energy Condition has always referred to matter, we will avoid confusion if

we resist subsuming (3.303.30) and (3.313.31) under this name; instead, when the gravitational

energy-momentum tensor obeys these inequalities (for all timelike va) we shall simply say

that it is positive, and write τab ≥ 0 as a shorthand.

That τab is positive for all transverse-traceless hab is one of the major advantages our

approach has over previous descriptions of gravitational energy-momentum [1111, 3535, 5252, 5656,

5959]. Provided we work with a transverse-traceless field (with respect to some timelike vec-

tor ua), which is always possible locally in a vacuum, τab will always make good physical

sense in that it will obey its own version of the Dominant Energy Condition. To some ex-

tent, this result supplies its own justification for choosing the tt-gauge whenever possible;

however, we will see in the next section that these conditions arise naturally by considering

the gauge invariant transfer of energy-momentum onto point-sources. Furthermore, the

significance of ua (in terms of energy-momentum transfer) will also be explored through

these arguments.

Before we move on, however, we take this opportunity to present an important co-

rollary of the plane-wave gauge-invariance of section 3.3.13.3.1. It is well known that there

always exists exactly one gauge transformation of the form (3.273.27) that takes an arbitrary

plane-wave (3.253.25) to one obeying the tt-conditions [4545, §18.1]. Hence we can transform

any gravitational plane-wave into transverse-traceless gauge without altering the energy-

momentum tensor, at which point the positivity theorem ensures that τab ≥ 0. Thus, all

gravitational plane-waves have positive energy-momentum tensors, even if they are not

transverse-traceless.

3.4 Interactions

In this section we apply our formula for the gravitational energy-momentum tensor to

the interaction between gravity and an idealised matter distribution that we shall refer to

as a point-source. The reader will be familiar with the compact source, an isolated body
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confined to a compact spatial region of radius d much smaller than the wavelength λ of

the gravitational radiation it emits; point-sources are the limit of such systems as d→ 0,

entirely analogous to the infinitesimal dipoles of electromagnetism.1212 Not only will this

provide a useful example of the practical application of our approach, these considerations

will finally allow us to rid ourselves of the last trace of gauge-dependence in our description.

From now on we will work almost exclusively in the flat background spacetime; as such

it will generally be convenient to represent all tensors in some Lorentzian coordinate system

{xµ}, and to drop the “caron” mark from Ťµν . Thus, our formula for the gravitational

energy-momentum tensor is written as

κτ̄µν = 1
4∂µhαβ∂ν h̄

αβ, (3.35)

the harmonic condition becomes

∂µh̄µν = 0, (3.36)

and the linearised field equations (3.23.2) are

∂2h̄µν = −2κTµν . (3.37)

Also, it will be useful to separate {xµ} into a time coordinate t = x0, and spatial co-

ordinates ~x = (x1, x2, x3), define a radial coordinate r ≡ |~x|, and to use lower-case Roman

indices (i, j, k . . .) to indicate spatial components. Typically, the coordinates will be im-

plicitly chosen to coincide with the rest-frame of the system under consideration.

3.4.1 Pulses and Point-Sources

The core of our analysis will be to examine the most localised gravitational interaction

possible: an infinitesimal point-source (at ~x = 0) met by an instantaneous pulse plane-

wave (propagating along the x1 direction, arriving at ~x = 0 at t = t0).

As a result of calculations in appendix 3.A3.A, we know that a point-source has the

following energy-momentum tensor:

T00 = Mδ(~x) + 1
2Iij∂i∂jδ(~x),

T0i = 1
2(İij − Lij)∂jδ(~x), (3.38)

Tij = 1
2 Ïijδ(~x).

Here M and Lij = L[ij] are constants representing, respectively, the mass and angular

momentum of the source, and Iij = I(ij)(t) its (time dependent) quadrupole moment.1313

We do not intend to use this point-source as an actual source of gravitational radiation,

but rather as a probe of the energy-momentum of the incident pulse. To this end, we

are interested in the limit M, Iij , Lij → 0, allowing us to neglect the self-interaction of

12We derive the energy-momentum tensor and gravitational field of the point-source in appendix 3.A3.A.
13The reader should refer to appendix 3.A3.A for definitions of these quantities in terms of the infinitesimal

limit of the compact source.
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the source. As this procedure is entirely analogous to using a “test-particle” to probe the

geometry of spacetime, we shall refer to the point-source as a test-source in this limit.

The gravitational field will consist of two parts: hµν = hsource
µν + hwave

µν . The first, due

to the test-source, is given in appendix 3.A3.A by (3.853.85) and satisfies the inhomogeneous field

equations

∂2h̄source
µν = −2κTµν . (3.39)

The latter is the incident pulse plane-wave,

hwave
µν = AµνH(kαx

α − t0), (3.40)

where H is the Heaviside step function, kµ = (1,−1, 0, 0) is a null vector in the x1 direction,

and Aµν is a constant tensor satisfying kµĀµν = 0, as demanded by the harmonic condition.

Obviously, hwave
µν satisfies the homogeneous field equations: ∂2hwave

µν = 0.

Let us now compute ∂µτµν , which, via (3.103.10), quantifies the exchange of energy-

momentum between the test-source and the gravitational wave. Starting from (3.353.35),

we have

κ∂µτµν = 1
4∂

2h̄αβ∂νh
αβ

= −1
2κTαβ∂ν(AαβH(kσx

σ − t0)) +O((hsource
µν )2), (3.41)

and we neglect terms of order (hsource
µν )2 compared to those of order hwave

µν hsource
µν in the

limit M, Iij , Lij → 0.1414 Using H ′ = δ, the Dirac delta function, we arrive at

∂µτµν = −1
2kνδ(kσx

σ − t0)TαβA
αβ

= −1
4kνδ(kσx

σ − t0)
(
ÏijAijδ(~x)− 2(İij − Lij)∂jδ(~x)Ai0

+ (2Mδ(~x) + Iij∂i∂jδ(~x))A00

)
. (3.42)

This is the equation we sought. It determines the energy and momentum collected by our

probe due to the incident pulse, and locates this transfer in spacetime. The key problem

is that above relation is not, as it stands, gauge invariant; we address this issue the next

section.

3.4.2 Gauge Invariance and Microaveraging

The incident wave possesses gauge freedom that neither breaks the harmonic condition

nor spoils its pulse plane-wave form:

δhwave
µν = ∂(µξν); ξµ = Eµ∆(kαx

α − t0), (3.43)

14There is a slight technical issue here. From (3.853.85), we can see that, as r → 0, hsource
µν → ∞; thus

hsource
µν inevitably becomes larger than hwave

µν at small enough distances. Strictly speaking, then, one should

use a finite-size source (of radius d, say) when one takes M, I, J → 0 and neglects O((hsource
µν )2). As we

can choose d to be as small as we like, however, we can always replace the finite source with an equivalent

point-source after this limit has been taken.
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where Eµ is any constant vector, and ∆′ = H. The effect of this transformation is to

alter Aµν by δAµν = k(µEν), and although the transverse components do not change

(δA22 = δA23 = δA33 = 0) the right-hand side of (3.423.42) is clearly not invariant. The

beauty of working with an instantaneous interaction, however, is that we can average over

the (infinitesimal) interaction region

lim
ε→0
Bε(t0), where Bε(t0) ≡ {(t, ~x) : |t− t0| ≤ ε, |~x| ≤ ε}, (3.44)

without sacrificing the localised description of ∂µτµν . Let us call this operation a mi-

croaverage (at ~x = 0, t = t0) and denote it by 〈. . .〉t0 :

〈f〉t0 ≡ δ(~x)δ(t− t0) lim
ε→0

∫
Bε(t0)

fd4x. (3.45)

For the interaction we are analysing, the integral
∫
Bε(t0) ∂

µτµνd4x captures the key phys-

ical content of ∂µτµν . To elaborate: the divergence theorem equates this integral with∫
∂Bε(t0) τµνd3Sµ which measures the mismatch between the net flux of gravitational energy-

momentum entering through a spherical surface Sε ≡ {~x : |~x| ≤ ε} barely larger the source,

and the gravitational energy-momentum contained within Sε that is gained between the

times t = t0 − ε and t = t0 + ε. By the defining property (3.153.15) of τµν , this mismatch

in gravitational energy-momentum precisely accounts for the energy-momentum absorbed

by the source, which is what we wanted to know. The only information we have lost in

taking the microaverage is the knowledge of precisely where within the test-source the

energy-momentum is being absorbed. As we have let the size of this probe shrink to zero,

however, this is of little concern.

The computational advantage of the microaverage is that the integration in (3.453.45)

allows us to transfer derivatives off the delta-functions in (3.423.42); for example,∫
Bε(t0)

δ(kαx
α − t0)İij∂jδ(~x)Ai0d4x = −

∫
Bε(t0)

∂jδ(t− x1 − t0)İijδ(~x)Ai0d4x

=

∫
Bε(t0)

δ̇(t− x1 − t0)İi1δ(~x)Ai0d4x

= −
∫
Bε(t0)

δ(t− x1 − t0)Ïi1δ(~x)Ai0d4x

= −Ïi1(t0)Ai0. (3.46)

Applying this technique to the whole of (3.423.42) yields

〈∂µτµν〉t0 = −1
4kνδ(~x)δ(t− t0)

(
ÏijAij + 2Ïi1Ai0 + Ï11A00 + 2MA00

)
. (3.47)

Finally, we unpack kµĀµν = 0,

A00 +A11 + 2A01 = 0, A22 +A33 = 0, A02 +A12 = 0, A03 +A13 = 0, (3.48)

and substitute these into (3.473.47). The result is

〈∂µτµν〉t0 = −1
2kνδ(~x)δ(t− t0)

(
Ï×A× + Ï+A+ +MA00

)
, (3.49)
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where we have written the transverse components of the wave as A× = A23 and A+ =

(A22 − A33)/2, and extended this notation to Iij . We are almost done: δA× = δA+ = 0

under the gauge transformation (3.433.43), so the first two terms in (3.493.49) are manifestly gauge

invariant; however, the term proportional to MA00 is not.

Various arguments can be made to show that this “monopole term” is physically irrel-

evant to the energy-momentum transfer we are considering. At the simplest level, the fact

that we are free to set A00 to any value (including zero) through gauge transformation

(leaving A× and A+ untouched) indicates that the monopole term can have no bearing on

the energy-momentum of the physical system under scrutiny. Furthermore, if we consider

a wave for which Aµν = k(µEν), then it is clear that, while such a pulse is gauge-equivalent

to flat spacetime (Aµν = 0) it would nonetheless register a transfer of energy-momentum

if the monopole term were to be believed.

The physical irrelevance of the monopole term should come as no great surprise, as

there can be no way to extract energy-momentum from a gravitational wave using a

monopole alone (i.e. a test-source with Iij = Lij = 0): an observer sitting on an isolated

point mass could perform no local test to distinguish whether a gravitational wave had

even passed, and in particular, must be unable to extract any energy.

In fact, all that the monopole term is responding to is a change in normalisation of the

time coordinate in the physical spacetime: φ∗(ea0e0a) = −1+h00. Naively, we might expect

this factor to be significant as it represents the Newtonian potential at the test-source.

However, this is not a local effect. The only way an observer on the test-source could

be aware of such a shift is by comparison with some standard clocks at spatial infinity.

The pulse plane-wave prevents this idea from being well-defined, however, as it divides

spatial infinity into two regions: x1 < t − t0, where wave has already been received, and

x1 > t − t0, where it has not. Fortunately, a gauge can always be chosen that does not

suffer from this inconsistency; setting A00 = 0 is the only way to ensure that the standard

clocks at infinity all run at the same rate (relative to our coordinate t) and this inevitably

removes all trace of the monopole term from the interaction. Thus the insistence that the

clocks at infinity agree with each other amounts to a prescription that removes the gauge-

dependence of our microaveraged energy-momentum transfer.1515 We can implement this

procedure mathematically (without fixing the gauge, or setting M = 0, which is physically

untenable) by acting on 〈∂µτµν〉t0 with the operator (1−M∂M ):

〈∂µτµν〉 /Mt0 ≡ (1−M∂M )〈∂µτµν〉t0

= −1
2kνδ(~x)δ(t− t0)

(
Ï×A× + Ï+A+

)
. (3.50)

We shall call this the monopole-free microaverage. This is a local, completely gauge

15The reader should not be under the impression that the monopole term is universally insignificant.

Thus far we have argued its irrelevance only for pulse plane-wave, and as we shall see at the beginning

of the next section, this idea follows by linearity to general gravitational waves. However, should the

gravitational field have a time-independent part, then it is possible for this to couple to the monopole in

a physically meaningful way. This is due to the particularly limited gauge freedom available to h00 when

the field is time-invariant. We will return to this issue in section 3.4.53.4.5.
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invariant description of the energy-momentum transferred onto test-sources by pulse plane-

waves. Furthermore, the right-hand side of (3.503.50) has an obvious physical interpretation:

the coupling between Ïij and Aij can be understood, roughly speaking, as the product

of a force (responsible for accelerating the constituents of the quadrupole moment) and a

distance (actually an expansion/contraction of spacetime) and thus represents the work

done on the test-source. For example, consider a test-source composed of two bodies of

mass m separated by a light elastic rod of length 2d aligned with the x2-axis; provided

the amplitude of the motion of the masses is much smaller than d, then Ï22
∼= 4dma,

where a is the (outward) acceleration of each mass. Due to the gravitational wave, the

proper distance of each mass from the centre of the rod increases by A22d/2; thus, counting

the motion of both ends of the rod, the total work done on the source, by the wave, is

−2(ma)(A22d/2) = −Ï22A22/4 = −Ï+A+/2, which agrees precisely with (3.503.50). Thus we

see that the monopole-free microaverage corresponds to the familiar physical quantities

that we would intuitively use to define the energy and momentum of the test-source.

In the next section we will generalise the monopole-free microaverage to arbitrary

gravitational fields, and uncover a substantial mathematical shortcut that will greatly

simplify this procedure.

3.4.3 Arbitrary Gravitational Fields

Clearly, pulse waves are a special case, and one might expect that for an arbitrary (har-

monic gauge) plane-wave

hwave
µν = Bµν(kαx

α), kµB̄µν = 0, (3.51)

we would need to perform finite averages, rather than microaverages, to remove the gauge

dependence of our description; thus, we would be forced to sacrifice our localised picture

of energy-momentum transfer. However, provided Bµν(t)→ 0 as t→ −∞, we can always

write

hwave
µν =

∫ ∞
−∞

Bµν(t0)δ(kαx
α − t0)dt0

=

∫ ∞
−∞

Ḃµν(t0)H(kαx
α − t0)dt0 − [Bµν(t0)H(kαx

α − t0)]+∞−∞

=

∫ ∞
−∞

Ḃµν(t0)H(kαx
α − t0)dt0, (3.52)

and perform the monopole-free microaverage on each component of this sum:

〈
∂µτµν [hsource

αβ + hwave
αβ ]

〉 /M∫ ≡ ∫ ∞
−∞
〈∂µτµν [hsource

αβ + Ḃαβ(t0)H(kσx
σ − t0)]〉 /Mt0 dt0. (3.53)

The result of this process is

〈∂µτµν〉 /M∫ = −1
2kνδ(~x)

(
Ï×Ḃ× + Ï+Ḃ+

)
, (3.54)
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which renders the interaction completely gauge invariant, and does not sacrifice the local

character of our description of energy-momentum transfer.1616

Although the operation of splitting the wave into a series of pulses and performing

a monopole-free microaverage on each pulse may seem too complicated to be useful, the

same result can be achieved by a simple alternative method: transform hwave
µν to transverse-

traceless gauge, where the vector uµ referred to by the tt-conditions (3.293.29) corresponds

to the rest-frame of the test-source. Then, when we calculate ∂µτµν , we will automatic-

ally recover the monopole-free microaveraged result. To demonstrate this, we recalculate

∂µτµν , generalising (3.423.42) for use with arbitrary plane-waves (3.513.51),

∂µτµν = −1
4kν

(
ÏijḂijδ(~x)− 2(İij − Lij)∂jδ(~x)Ḃi0

+ (2Mδ(~x) + Iij∂i∂jδ(~x))Ḃ00

)
, (3.55)

and substitute the tt-conditions B0ν = B = 0 (which, along with kµB̄µν = 0, set B1ν = 0

and B22 = −B33):

∂µτttµν ≡ ∂µτµν [hsource + (hwave)tt]

= −1
4kνδ(~x)ÏijḂij

= −1
2kνδ(~x)

(
Ï×Ḃ× + Ï+Ḃ+

)
. (3.56)

Hence,

〈∂µτµν〉 /M∫ = ∂µτttµν . (3.57)

Furthermore, this equation is not only applicable to incident plane-waves. Because both

sides are linear in hwave
µν , equations (3.573.57) must also hold when hwave

µν is any sum of plane-

waves, propagating in arbitrary directions. Locally, we can always express hwave
µν as a sum

of plane-waves (and some time-independent part, which we will ignore until section 3.4.53.4.5)

so, quite generally, we have

〈∂µτµν〉 /M∫ = −1
4δ(~x)Ïij∂νh

tt
ij , (3.58)

where httµν is the incident gravitational field in transverse-traceless gauge. This equation

provides an easy method for calculating the energy-momentum transferred onto the mi-

croaveraged test-source due to the presence of arbitrary incident gravitational radiation.

Moreover, we see that (ignoring the time-independent field) our gauge invariant probe only

exchanges energy-momentum with the transverse-traceless field; the other components of

the field do not play a role in this process. We explore the wider significance of this result

in the next section.

3.4.4 Energy-Momentum and Transverse-Traceless Gauge

Let us now take a step back from the fine details of the test-source interaction and assess

the general picture that is unfolding. As we first saw in section 3.2.33.2.3, τµν is not in

16Just as we write Iij for Iij(t), we have, in (3.543.54) and elsewhere, left the argument of Bµν(t) implicit.
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general invariant under the gauge freedom that remains after the harmonic condition has

been enforced. As a partial remedy of this, the monopole-free microaveraged test-source

emerged as a local, gauge invariant probe of gravitational energy-momentum exchange. It

has now come to light that only the transverse-traceless field takes part in this process.

From this standpoint, a method suggests itself which will remove the remaining ambiguity

of τµν in a natural fashion: simply transform the incident gravitational field to transverse-

traceless gauge! Consequently, only the degrees of freedom relevant to gauge invariant

energy-momentum exchange will contribute to the gravitational energy-momentum tensor.

We shall codify this idea as a gauge-fixing programme defined in terms of two “frames”,

one associated with gravitational detectors, the other with astrophysical sources. In what

follows, the gauge-fixing only refers to the dynamical part of the gravitational field; as we

explain in section 3.4.53.4.5, the time-independent part of the gravitational field is essentially

gauge invariant and so does not need to be fixed in any way.

Detector-frame. Consider a gravitational detector D in a region VD which contains

no matter besides the detector. We shall suppose that the incident field (due to sources

outside VD) is much larger than the field due to the detector itself; in other words, we

model D as a test-source. The detector-frame is then obtained by transforming the incid-

ent field to tt-gauge, taking uµ to be the four-velocity of the detector.1717 As a result, the

energy-momentum transferred onto D will be exactly equal to the gauge invariant quant-

ities defined by the monopole-free microaverage. What is more, we can imagine adding

hypothetical test-sources (co-moving with D) anywhere within VD in order to “measure”

the gravitational energy-momentum there; because the field has been prepared in this

gauge, the result will agree with the gauge invariants we have already defined. In this

way, the detector-frame defines τµν through the gauge invariant energy-momentum that

would be absorbed by furnishing VD with an array of infinitesimal probes moving at the

same velocity as the actual detector.

Source-frame. Now consider a compact source S in a region VS which, as above,

contains no other matter. In contrast to the detector, we shall assume any incident

field can be neglected in comparison to the outgoing field due to S. The source-frame is

obtained by transforming the outgoing field to tt-gauge, taking uµ to be the four-velocity

of the source. This gauge transformation can only be achieved by breaking the harmonic

condition at S (see Appendix 3.B3.B for details) so it will not be possible to use τµν to describe

the energy-momentum lost by the source; however, this self-interaction is ill-defined for a

point-like system anyway, and we would have to resolve the source into component parts

before such a question could be answered. Outside the source, hµν will remain harmonic,

so τµν will still represent the energy-momentum that could be absorbed by a hypothetical

test-source (with the velocity of S) were we to insert one. Much like the detector-frame,

we can think of this prescription as measuring τµν by filling VS with infinitesimal probes

17Note that it is not the total field, but just the incident field, which is made transverse-traceless. We

cannot alter the gauge of the field generated by the detector because it is impossible to produce outgoing

spherical waves in the gauge field ξµ without breaking the harmonic condition at D. This cannot be

allowed to happen if τµν is to account for the energy-momentum exchanged with the detector.
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Figure 3.1: Schematic showing plane-wave regions sewing various source-

frames to the detector-frame of D. S1 and S2 represent compact sources many

wavelengths apart; if they have different velocities, then each will determine a

separate source-frame. In contrast, S3 and S4 are only separated by a small

number of wavelengths; as there is no plane-wave region dividing the sources,

they must share their source-frame. It is natural to base this joint source-frame

on the velocity of the centre of mass of the multi-component system.

that are co-moving with the source.

The gauge-fixing programme is simple: if one wishes to describe the energy-momentum

of the gravitational field as it would be measured by some detector D, then adopt the

source-frame near distant astrophysical sources, and the detector-frame of D everywhere

else. This allows the energy-momentum in the vicinity of a source to be unambiguously

determined by the source alone, whilst simultaneously adapting the gravitational field for

a description of energy-momentum absorption by the detector. Remarkably, despite using

different tt-gauges in the various regions, this programme still produces a self-consistent

picture of the propagation of energy-momentum from the sources to the detector. This is

because, many wavelengths from an isolated source, the gravitational field approximates

a plane-wave, and so (as we saw in section 3.3.13.3.1) the gravitational energy-momentum is

gauge invariant there. Thus, in this regime, the source-frame energy-momentum and the

detector-frame energy-momentum are equal, regardless of the relative velocity between the

source and the detector. The plane-wave regions will therefore “sew together” the different

frames and produce a globally consistent description of energy-momentum flowing from

source to detector. When the sources are not isolated, but are separated from each other by

only a small number of wavelengths, no plane-wave region will exist between the sources.

In this case, the sources must be treated as one extended source, with a joint source-frame

that identifies uµ with the four-velocity of the centre of mass of the many-body system.

We illustrate the gauge-fixing programme schematically in figure 3.13.1.

Up to this point, we have justified our insistence on tt-gauge based purely on consider-

ations of energy-momentum exchange with matter. Of course, there is another exceptional

77



Chapter 3. Localising the Energy and Momentum of Linear Gravity

property of τµν , derived in section 3.3.23.3.2, that also holds under these conditions: it is always

positive. This is a peculiar and surprising result. It is something of a small miracle that

transverse-tracelessness guarantees not only agreement with the monopole-free microaver-

age, but also ensures that τµν represents positive energy-density, and causal energy flux.

Under these conditions it will always be possible to make physical sense of the gravita-

tional energy-momentum tensor: we will never have to interpret (or explain) negative or

superluminal energy.

We feel that the dual significance of transverse-traceless gauge leaves little doubt that

this is the correct procedure by which to remove the final trace of ambiguity in the defin-

ition of τµν . In section 3.53.5 we will apply this programme to a small number of examples,

including two specific compact sources: a vibrating rod, and an equal-mass binary. First,

however, we must address a technical issue regarding the time-independent part of the

gravitational field.

3.4.5 Time-Independent Fields

Unlike the dynamical part of the gravitational field, the gauge of the time-independent

mode (i.e. the time-averaged field) is completely fixed by insisting that (a) the harmonic

condition ∂µh̄µν = 0 holds everywhere, (b) hµν → 0 as r → ∞, and (c) gauge transform-

ations δhµν = ∂(µξν) are finite everywhere and bounded at infinity. To see this, suppose

that our time-independent field hµν(~x) obeys the harmonic condition and vanishes at spa-

tial infinity. Then the transformed field h′µν = hµν + ∂(µξν) will only satisfy the harmonic

condition if ∂2ξ = 0, and will only be time-independent if ξ̈µ = 0. Thus ∂2
i (∂(µξν)) = 0,

the only bounded solutions of which are constants (by Liouville’s theorem). Hence we are

forced to take h′µν = hµν if the new field is to also vanish at spatial infinity, and we thus

conclude the gauge is unique.1818

This result reveals that we are not required to perform any form of microaverage to

remove the gauge dependence of the energy-momentum transfer associated with the time-

independent mode of the gravitational field: this mode is already gauge invariant. In truth,

this is a rather convenient situation. We could not microaverage a time-independent field

even if we needed to, due to the caveat Bµν(t)→ 0 as t→ −∞, encountered when deriving

(3.533.53).

As there is no gauge freedom in the time-independent part of the gravitational field,

we cannot expect this mode to have h0µ = 0 or h = 0 in general. This leaves open the

possibility (at least in principal) that close to sources, where the time-independent mode

can become comparable in amplitude to the dynamical field, the positivity of τµν may be

compromised. However, in section 3.5.33.5.3 we will see that, even very close to (but not inside)

18This argument relies on our insistence that the harmonic condition be valid everywhere. In section

3.5.33.5.3 we will make use of the following mathematical trick: by relaxing the harmonic condition at the

source itself, we will be able to combine many local tt-gauges to form a gauge in which the dynamical part

of the gravitational field (outside the source) is transverse-traceless for all time. As we will see, however,

it is impossible to apply this procedure to a time-independent field. Thus there is nothing to gain from

weakening the harmonic condition on the time-independent mode, and it is therefore kept unbroken.
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a compact source, the time-independent field obeys h̄00 � h̄0i � h̄ij .
1919 It is easy to show

that such a field will not upset the positivity of τµν . Neglecting the small quantities, the

trace-reversed gravitational field will take the form

h̄µν = httµν − 4Φuµuν , (3.59)

where httµν is the dynamical field in transverse-traceless gauge, and Φ ≡ −h̄00/4 is the

the Newtonian potential, the only non-negligible contribution from the time-independent

mode. The trace-reversed gravitational energy-momentum tensor therefore takes the form

4κτ̄µν = ∂µhαβ∂ν h̄
αβ = ∂µh

tt
ij ∂νh

tt
ij + 8∂µΦ∂νΦ, (3.60)

which ensures that the positivity proof of section 3.3.23.3.2 can proceed almost exactly as

before, with Φ effectively behaving as an additional component of httij . Thus, even though

it is not transverse-traceless, the time-independent mode does not give rise to any negative

or superluminal energy.

3.5 Applications

This section is devoted to calculating the energy-momentum content of the gravitational

field in a small number of examples, following the gauge-fixing programme of section 3.4.43.4.4.

3.5.1 Plane-Waves

Although we have already studied gravitational plane-waves in a variety of contexts, we

have yet to evaluate the energy-momentum they carry. This calculation will serve as a

simple first example, and will illustrate the use of the detector-frame.

We begin with an arbitrary (harmonic gauge) plane-wave,

hµν = hµν(kαx
α), kµkµ = 0, kµh̄′µν = 0, (3.61)

and substitute this field into equation (3.353.35):

κτµν = 1
4kµkνh

′
αβh̄

′αβ. (3.62)

As we ascertained in section 3.3.13.3.1, the energy-momentum of plane-waves is gauge invariant.

Consequently, we can simplify (3.623.62) by evaluating hµν in tt-gauge, thereby removing all

components except for h+ and h×:

κτµν = 1
2kµkν((h′+)2 + (h′×)2). (3.63)

19These order-of-magnitude inequalities are not limited to the compact source. The time-independent

mode of the gravitational field is always generated by the time-averaged energy-momentum tensor of matter

〈Tµν〉, and it is to be expected that this field will be dominated by the slow (i.e. non-relativistic) motion of

matter, so that 〈T00〉 � 〈T0i〉 � 〈Tij〉. Hence h̄00 � h̄0i � h̄ij will hold quite generally: whenever 〈Tµν〉
is dominated by non-relativistic motion.
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In fact, because δh+ = δh× = 0 under any gauge transformation that keeps hµν a plane-

wave, the right-hand side of this equation is gauge invariant also. Hence, equation (3.633.63)

must hold in any gauge, and all other terms on the right-hand side of (3.623.62) must cancel in

general.2020 Using this formula for τµν , every future-directed timelike unit-vector vµ defines

a gravitational energy current-density,

vµτµν = vµkµkν((h′+)2 + (h′×)2)/2κ, (3.64)

which is clearly future-directed and null; unsurprisingly, the energy of a gravitational

plane-wave is positive and flows at the speed of light in the direction of propagation.

So far, the gauge invariance of τµν has made gauge-fixing unnecessary. The insistence

that we evaluate the hµν in the detector-frame only becomes important when there are

multiple plane-waves propagating in different directions. Suppose, for example, that there

are two plane-waves:

hµν = hI
µν(kI

αx
α) + hII

µν(kII
αx

α), (3.65)

where kI
µ and kII

µ are non-parallel null vectors. As τµν is quadratic in hµν , the energy-

momentum of the total field takes the form

κτµν = κτ I
µν + κτ II

µν + 1
2k

I
(µk

II
ν)h

I′
αβh̄

II′αβ − 1
4ηµνk

I
σk

IIσhI′
αβh̄

II′αβ, (3.66)

where τ I
µν and τ II

µν are the individual energy-momentum tensors of hI
µν and hII

µν respect-

ively. Now, any gauge transformation that preserves the form (3.653.65) of the gravitational

field can be thought of as a pair of gauge-transformations that act on hI
µν and hII

µν separ-

ately, preserving their plane-wave forms; thus τ I
µν and τ II

µν must be invariant under gauge-

transformations of this type. However, the “cross-terms” in (3.663.66) are gauge-dependent, as

the (gauge-dependent) longitudinal components of hI
µν will be transverse to hII

µν , and vice

versa. This gauge ambiguity is removed, however, by the presence of a physical detector:

once we demand that the energy-momentum exchanged with this detector is to equal the

monopole-free microaverage, we fix the gauge completely. This is the detector-frame: hµν

is transverse-traceless, with uµ identified as the four-velocity of the detector. In this sense,

the gauge-fixing programme is the procedure that enables us to “add together” the energy-

momentum tensors of gravitational plane-waves (which, individually, are gauge invariant)

to form the energy-momentum tensor of the total field.

For the sake of the concreteness, let us set kI
µ = (1, 1, 0, 0), kII

µ = (1, 0, 1, 0), and

uµ = (1, 0, 0, 0). Then, once we have transformed hµν to tt-gauge, the energy-momentum

tensor becomes

κτµν = κτ I
µν + κτ II

µν − 1
4(2kI

(µk
II
ν) + ηµν)hI′

+h
II′
+ ,

where hI
+ = hI

22 = −hI
33, and hII

+ = hII
33 = −hII

11. Due to the positivity theorem of section

3.3.23.3.2, we already know this tensor describes a positive energy-density, and a causal energy

20This can be verified by taking kµ = (1,−1, 0, 0) and using kµh̄µν = 0 in the same form as (3.483.48).
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flux. As a particular example of this, it is easy to calculate the energy-density associated

with uµ,

κτ00 = 1
2

(
(hI′

+)2 + (hI′
×)2 + (hII′

+ )2 + (hII′
× )2

)
− 1

4h
I′
+h

II′
+ ,

and, as (hI′
+)2 + (hII′

+ )2 ≥ hI′
+h

II′
+ /2, we can confirm that this energy-density can never be

negative.

3.5.2 Linearised Schwarzschild Spacetime

The Schwarzschild spacetime is the vacuum solution to the Einstein field equations out-

side any uncharged spherical non-rotating body of mass M . At distances much greater

than κM , where the linear approximation is valid, the gravitational field must therefore

correspond to that of the compact source with Iij = Lij = 0:

h̄00 =
κM

2πr
, (3.67)

and h̄0i = h̄ij = 0. Obviously, this is an example of a gravitational field that is entirely

time-independent; thus, as explained in section 3.4.53.4.5, there will be no possibility of trans-

forming to transverse-traceless gauge, nor any need to do so.2121 The formula (3.353.35) for the

gravitational energy-momentum tensor yields

τµν = κ

(
M

8πr2

)2

(2x̂µx̂ν − ηµν) , (3.68)

where x̂µ is the radial unit vector.2222 It is easy to confirm that this energy-momentum

tensor is everywhere positive. Any timelike unit vector vµ defines a positive gravitational

energy-density,

% ≡ vµτµνvν = κ

(
M

8πr2

)2 (
2(x̂ivi)

2 + 1
)
≥ 0, (3.69)

and an energy current-density Jν ≡ vµτµν which is nowhere spacelike:

JνJν = −κ2

(
M

8πr2

)4

≤ 0. (3.70)

It is also worth comparing equation (3.683.68) with the electromagnetic energy-momentum

outside a point-charge: Tµν ∼ (gµν + 2uµuν − 2x̂µx̂ν)/r4. While both tensors diminish in

proportion to 1/r4, they define very different stress profiles at each point. The gravitational

field has τrr = −τθθ = −τii = τ00 ≥ 0 and thus describes radial compression, tangential

tension, and negative pressure; while the electromagnetic field has −Trr = Tθθ = Tii =

T00 ≥ 0 and thus describes radial tension, tangential compression, and positive pressure.

The physical significance of this difference is far from obvious, but may relate to the

21Of course, the linearised Schwarzschild spacetime can be represented in other gauges, but no others

obey ∂µh̄µν = 0 and ḣµν = 0 everywhere, and are well-behaved at infinity.
22This is a trivial extension of the notation x̂i = xi/r from appendix 3.A3.A; we simply define x̂0 = 0.
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like-attracts-like character of gravity: the negative gravitational pressure mediating the

attraction of other masses, while positive electromagnetic pressure causes the repulsion

of like-charges. In addition, it may be possible to understand the radial gravitational

compression (and tangential tension) in terms of some “elastic” analogy for spacetime, as

the Schwarzschild geometry “squeezes in” extra radial distance (between spheres of given

area) in comparison to flat space. However, the theoretical value of such an analogy is

unclear, and we do not intend to develop it any further here.

Although we have focused here on the linearised Schwarzschild spacetime as a partic-

ular example of a time-independent field, we note in passing that it is easy to evaluate the

gravitational energy-momentum tensor associated with any static configuration of matter

Tµν = uµuνρ(~x): equation (3.353.35) simplifies to

κτµν = 2∂µΦ∂νΦ− ηµν∂αΦ∂αΦ, (3.71)

where the Newtonian potential Φ ≡ −h̄00/4 is determined by solving Poisson’s equation

∂2
i Φ = κρ/2. Equation (3.713.71) reveals that the energy-momentum of the Newtonian po-

tential is exactly that of a massless Klein-Gordon scalar field.

3.5.3 Gravitational Field of a Compact Source

We shall now calculate the energy-momentum content of the gravitational field (3.853.85)

generated by a compact source.2323 The first step will be to enter the source-frame: we must

transform the dynamical part of the outgoing field into tt-gauge, with uµ identified as the

four-velocity of the source. We can always make this transformation locally by choosing the

gauge fields ξµ such that h0µ = ḣ0µ = 0 and h = ḣ = 0 at some time t = t0; then ∂2ξµ = 0

(which preserves the harmonic condition) and the field equations ∂2hµν = 0 (outside the

source) ensure that h0µ = 0 and h = 0 continues to be true for t ∈ (t0 − r, t0 + r).2424 This

method is problematic in that it is based around an arbitrary special time t0, and that

transverse-tracelessness always breaks down within a time ∆t = 2r; these issues prevent

us from forming a global picture of the energy-momentum outside the source.

As we show in appendix 3.B3.B, these problems can be completely avoided if we weaken

the harmonic condition slightly, so that ∂µh̄µν = 0 is only enforced outside the source.

This trick allows us to find a gauge in which the dynamical field is transverse-traceless

everywhere outside the source, for all t, and does not require us to choose a special time t0.

We can think of this gauge as a way of joining up the many possible local gauges (defined

using the aforementioned method) in a mutually consistent fashion.2525 The process of

23This calculation should not be confused with the analysis performed in section 3.43.4, where a test-

source (essentially a compact source in the limit d,M,Lij , Iij → 0) interacted with an incident field, which

presumably had been generated by another source, very far way. Here the compact source will represent

an astrophysical source (with finite d, M , Lij and Iij) and by adopting the source-frame we will compute

the energy-momentum of the outgoing field as it would be measured by microaveraged detectors co-moving

with the source.
24See [7979, §4.4] for details.
25Presumably, there is some topological obstruction which prevents us from joining these local gauges
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transforming the gravitational field of the compact-source (3.853.85) can be found in appendix

3.B3.B, here we simply display the result:

h̄00 = (2M + 〈Iij〉∂i∂j)
κ

4πr

h̄0i = −Lij∂j
κ

4πr

h̄ij =

∫ ∞
−∞

dω

2π
eiωt

[(
Ĩklδij + Ĩδikδjl − 4Ĩk(iδj)l

)
∂k∂l

− 1

ω2
Ĩkl∂k∂l∂i∂j + ω2

(
Ĩδij − 2Ĩij

)]κe−iωr
8πr

,

(3.72)

where we have introduced the notation

〈Iij〉 ≡ lim
∆→∞

∫ ∞
−∞

Iij(t)
e−t

2/∆2

√
π∆2

dt, (3.73)

for the time-average of the quadrupole moment, and

Ĩij(ω) ≡
∫ ∞
−∞

e−iωt (Iij(t)− 〈Iij〉) dt, (3.74)

for the Fourier transform of its dynamical part. Notice that the terms proportional to M ,

Lij , and 〈Iij〉 constitute the time-independent mode of the field, and have therefore not

been transformed. At this point we can confirm the assertion of section 3.4.53.4.5, that the

time independent field satisfies h̄00 � h̄0i � h̄ij . To do so we note that, firstly, there is no

time-independent term in h̄ij , and secondly, seeing as the radius of the source d & L/M ,

and that we are outside the source (which is to say, r � d, the regime of validity of (3.723.72))

then we must have L/r �M .

Having rendered the dynamical field transverse-traceless outside the source, all that

remains is to substitute (3.723.72) into (3.353.35) to calculate τµν . As was shown in the process

of deriving (3.603.60), the energy-momentum of the time-independent field adds linearly (i.e.

without cross-terms) to that of the dynamical field. Given that we have already invest-

igated the part due to the time-independent field in section 3.5.23.5.2, it is generally more

interesting to discard this term, and focus on the additional energy-momentum due to the

dynamical field. In figure 3.23.2 we show the results of a computation of this additional grav-

itational energy-density τ00 outside two monochromatic compact sources: a vibrating rod,

and an equal-mass binary. It goes without saying that the energy-density is everywhere

positive, and that the energy current-density is nowhere spacelike.

without violating the harmonic condition at the source. However, provided we do not intend to calculate

the energy-momentum transferred between matter and gravity at the source, this is not an issue. Even if we

were careful to keep the gravitational field harmonic at the source, more work would be needed to perform

such a calculation, as this self-interaction only becomes well-defined by breaking down the compact source

into component parts.
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0.0 0.1 0.2 0.3 0.4

0.0 0.1 0.2 0.3 0.4

Figure 3.2: Plots of the energy-density of the dynamical gravitational

field outside two monochromatic compact sources: a vibrating rod, and an

equal-mass binary. Only half a period is shown, as τµν oscillates with

twice the frequency of the source. Although the rod and the binary are

much smaller than one wavelength, they have been magnified to illustrate

the phase of their motion. The propagation of gravitational energy is

more easily appreciated in the animated versions of these plots, available at

www.mrao.cam.ac.uk/~lmb62/animationswww.mrao.cam.ac.uk/~lmb62/animations.
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3.6. Conclusion

3.6 Conclusion

It is natural to suspect that wherever matter gains energy under the influence of gravity,

a corresponding loss in the energy of the gravitational field must have occurred. By

constructing a framework to quantify this idea, we have succeeded in localising the energy

and momentum of the linear gravitational field, and have shown this energy to be positive

and to not flow faster than light.

The core result of our investigation is the formula (3.233.23) for the gravitational energy-

momentum tensor, the unique symmetric tensor, quadratic in ∇̌chab, which accounts for

the energy-momentum lost or gained by matter through its interaction with gravity (3.103.10).

Crucially, a tensor satisfying these conditions only exists in the harmonic gauge (3.243.24)

and thus, as a matter of necessity rather than choice, our framework discards nearly all

its gauge freedom. A small set of viable gauge transformations still remain, however, and

although these do not alter the energy-momentum of gravitational plane-waves (§3.3.13.3.1)

this invariance does not extend to arbitrary gravitational fields.

In response to this ambiguity, the monopole-free microaverage was developed (§3.4.23.4.2);

this constitutes a local and fully gauge-invariant description of energy-momentum trans-

fer, and agrees with the intuitive notion that the “work done” on a gravitational detector

is the product of the force (proper acceleration) and the proper distance through which

the force is applied. Of the incident field, only the transverse-traceless part contributes to

the microaveraged exchange (3.573.57), and thus a natural gauge-fixing programme is motiv-

ated, based around transverse-traceless gauge (§3.4.43.4.4). The effect of this programme is to

prepare the field so that no microaverage is needed, and furthermore, to ensure that energy-

momentum is only assigned to those components of the field whose energy-momentum can

be measured by a microaveraged detector. Because the positivity property (§3.3.23.3.2) holds

true wherever the field is transverse-traceless, the gauge-fixing procedure also ensures that

(for the dynamical field at least) gravitational energy-density is positive, and gravitational

energy flux is timelike or null. No longer burdened by gauge ambiguity, the gravitational

energy-momentum tensor can be evaluated without difficulty: the energy-momentum of

gravitational plane-waves (3.633.63), the linearised Schwarzschild spacetime (3.683.68), and the

gravitational radiation outside compact sources (Fig. 3.23.2) have been provided as specific

examples.

With regards to further investigation, there are two obvious directions in which our

framework might be extended: beyond the linear approximation, and beyond the flat

background.2626 However, it is currently unknown whether such extensions are possible, or

even conceptually sound. On a more practical level, one could apply our formalism to

26To extend τab beyond the linear regime, one would hope to construct a tensor tab, defined on the

physical spacetime M, such that φ∗tab = τab + O(h3). Clearly, it will only be possible to make this

identification if τab is gauge invariant to second order, as δ(φ∗tab) ∼ O(h2)∂ξ under a change of gauge,

whereas δτab ∼ O(h)∂ξ unless it is invariant. Thus, only once τab has been brought into the detector-frame,

or the source-frame, can we proceed. Consequently, we should expect that tab will not only depend on the

physical metric gab, but also on the four-velocity of the relevant detector or source.
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the energetics of actual gravitational detectors, rather than the idealised test-sources that

have so far dominated our discussion. In doing so, the framework developed here may

benefit the design and analysis of future gravitational-wave experiments.

3.A Appendix: Sources

The aim of this Appendix is to derive the formula for Tµν that defines a gravitational

point-source (essentially an infinitesimal gravitational quadrupole) and the field hµν that

it generates. The derivation comprises two parts: first, a calculation of the field due to

a compact source; second, a calculation of the field due to a candidate Tµν that vanishes

everywhere but at ~x = 0. As the field from the first calculation matches that of the second

(within the region of validity of the compact source approximation) we will be able to

conclude that our candidate Tµν is indeed the energy-momentum tensor we sought, that

of an infinitesimal compact source.

3.A.1 The Compact Source

A compact source is an isolated gravitational body confined to a compact spatial region

D of radius d much smaller than the wavelength λ of the gravitational radiation it emits.

Although calculations of the field hµν(~x, t) outside a compact source are available in many

standard references, we present our own here for two reasons. Firstly, textbook treatments

commonly conflate the slow-motion approximation (d� λ) with the far-field approxima-

tion (|~x| ≡ r � λ). Here we shall assume only that the source is very small (d� r, λ) but

not anything about the ratio of λ to r.2727 Secondly, the standard approaches frequently

omit a full calculation of h̄00 and h̄0i. Presumably, these components are ignored because

they do not appear to contribute to the gravitational field in transverse-traceless gauge;

however, they must be included if hµν is to satisfy the harmonic condition.

The retarded solution to the linearised field equations (3.373.37) is given by

h̄µν(~x, t) =
κ

2π

∫
D

Tµν(~x′, t− |~x− ~x′|)
|~x− ~x′|

d3x′. (3.75)

We shall proceed by expanding the right-hand side of this equation to second order in the

small quantities d/λ and d/r, so that we have an integral of energy-momentum tensors

Tµν ≡ Tµν(~x′, t− r) evaluated at the same time t′ = t− r. Using

|~x− ~x′| = r

(
1− ~x · ~x′

r2
+
|~x′|2

2r2
− (~x · ~x′)2

2r4
+O((d/r)3)

)
, (3.76)

27As we are working with in the confines of linearised gravity, we should also insist that d� 2κM , the

Schwarzschild radius of the source. However, this will have little bearing on our calculation.
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equation (3.753.75) expands to

h̄µν =
κ

2πr

∫
D

d3x′
[
Tµν

(
1 +

~x · ~x′

r2
− |~x

′|2

2r2
+

3(~x · ~x′)2

2r4

)
+ rṪµν

(
~x · ~x′

r2
− |~x

′|2

2r2
+

3(~x · ~x′)2

2r4

)
+ r2T̈µν

(~x · ~x′)2

2r4
+O((d/r)3)

]
. (3.77)

Although we have not written their arguments, it should be understood that the Tµν terms

in the integral are evaluated at (~x′, t− r), while h̄µν is evaluated at (~x, t).

In order to relate this integral to the basic physical properties of the source, we define

its mass, momentum, and moment-of-energy by

M ≡
∫
D
T00d3x′, Pi ≡ −

∫
D
T0id

3x′, Xi ≡
∫
D
T00x

′
id

3x′, (3.78)

respectively. Notice that, because the source is entirely contained within D (so Tµν = 0 on

the boundary ∂D) the conservation equation ∂µTµν = 0 (the linearised version of (3.73.7))

leads to the following relations:

Ẋi =

∫
D
∂0T00x

′
id

3x′ =

∫
D

(∂′jTj0)x′id
3x′ = −

∫
D
Tj0(∂′jx

′
i)d

3x′ = Pi, (3.79)

Ṗi = −
∫
D
∂′jTjid

3x′ = 0. (3.80)

Thus Ẍi = 0, and we are free to fix Xi = Pi = 0 by our choice of coordinate system. Note

also that Ṁ = 0 follows by an identical argument. Next we define the quadrupole moment

Iij ≡
∫
D
T00x

′
ix
′
jd

3x′, (3.81)

and then derive

İij = −2

∫
D
T0(jx

′
i)d

3x′, (3.82)

Ïij = 2

∫
D
Tijd

3x′, (3.83)

in a similar fashion. Finally we define the angular momentum of the source

Lij ≡ −2

∫
D
T0[jx

′
i]d

3x′, (3.84)

and note that conservation sets L̇ij = 0.

Before substituting these definitions and results into (3.773.77), note that equations (3.823.82)

and (3.833.83) indicate that
∫
T0id

3x′ ∼ İ/d ∼ Md/λ and
∫
Tijd

3x′ ∼ Ï ∼ Md2/λ2; hence

the integrals of T0j and Tij already have (respectively) one and two extra factors of (d/λ)

than the integrals of T00. Thus, to second order, h̄ij will include contributions from only

the zeroth order quantities multiplying Tij in (3.773.77), and h̄0i will include only first and
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zeroth order quantities multiplying T0i. The final result, accurate to second order in the

small quantities (d/λ) and (d/r), is therefore

h̄00 =
κ

4π

(
2M + Ïij x̂ix̂j

r
+

3İij x̂ix̂j − İ
r2

+
3Iij x̂ix̂j − I

r3

)
,

h̄0i = − κ

4π

(
Ïij x̂j
r

+
İij x̂j
r2
− Lij x̂j

r2

)
,

h̄ij =
κÏij
4πr

,

(3.85)

where x̂i = xi/r is the radial unit vector, and all the Iij terms are evaluated at the retarded

time t′ = t − r. Note that, while the fields h̄00 and h̄0i are often omitted from standard

calculations, even in the far-field limit (r → ∞), they still contain terms of equal size to

h̄ij ; these are necessary for consistency with the harmonic condition.

We have successfully derived the form of the gravitational field outside a compact

source. However, because (3.853.85) was constructed under the approximation scheme d� r,

we can only trust these equations at distances much larger than the size of the source.

However, we can still ask the following question: what source would produce a field such

that (3.853.85) was valid for all r, no matter how small? This is the point-source we have been

interested in: the limit of the compact source as d→ 0. In the next section we present a

candidate for the point-source, calculate its gravitational field, and show that this agrees

with (3.853.85) for all r.

3.A.2 The Point-Source

Consider the following energy-momentum tensor for matter:

T00 = Mδ(~x) + 1
2Iij∂i∂jδ(~x),

T0i = 1
2(İij − Lij)∂jδ(~x), (3.86)

Tij = 1
2 Ïijδ(~x),

where M , Lij = L[ij] are constants, Iij = I(ij)(t) is independent of ~x, and overdots indicate

differentiation with respect to t. It is easy to check that this distribution obeys ∂µTµν = 0.

We wish to solve the linearised field equations

∂2h̄µν = −2κTµν , (3.87)

looking for the retarded solution. Recalling that

∂2 (f(t− r)/r) = −4πδ(~x)f(t), (3.88)

for any twice differentiable function f(t), we see that we can replace f → κÏij/4π to

generate the result

h̄ij =
κÏij(t− r)

4πr
. (3.89)
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Also, from equation (3.883.88), we have

∂2(∂j(f(t− r)/r)) = −4πf(t)∂jδ(~x). (3.90)

Thus, setting f → κ(İij − Lij)/4π gives

h̄0i =
κ

4π
∂j

(
İij(t− r)− Lij

r

)
= − κ

4π

(
Ïij x̂j
r

+
İij x̂j
r2
− Lij x̂j

r2

)
. (3.91)

By the same method,

h̄00 =
κM

2πr
+

κ

4π
∂i∂j

(
Iij(t− r)

r

)
=

κ

4π

(
2M + Ïij x̂ix̂j

r
+

3İij x̂ix̂j − İ
r2

+
3Iij x̂ix̂j − I

r3

)
. (3.92)

Therefore the source (3.863.86) generates a gravitational field identical to that of the compact

source (3.853.85), except that these equations are now valid for all ~x (except, possibly, ~x = 0)

not just r � d. The energy-momentum tensor (3.863.86) is the point-source we required and

(3.853.85) the field it generates; the correspondence with the compact source allows us to

validate the interpretation of M as the mass, Iij the quadrupole moment, and Lij the

angular momentum of the source.

3.B Appendix: Persistent Transverse-Traceless Gauge

Here we describe a method by which the dynamical part of the gravitational field outside

a compact source (centred at ~x = 0) may be transformed to a gauge which remains

transverse-traceless for all time, everywhere outside the source. This will be achieved by

relaxing the harmonic condition slightly, so that ∂µh̄µν = 0 only holds outside the source.

First, a point of notation. The gauge transformation described in this section is only

applicable to the dynamical part of the gravitational field hdyn
µν ≡ hµν − 〈hµν〉, where 〈. . .〉

signifies a time average. Rather than crowd the notation, it will be convenient to assume

that 〈hµν〉 = 0, and use hµν to stand for hdyn
µν . For the compact source, this amounts to

setting M = Lij = 〈Iij〉 = 0 in (3.853.85). At the end of the calculation we will reinsert these

time-independent terms to the transformed field without alteration.

The general procedure is as follows. To begin, take the Fourier transform of the

dynamical part of the gravitational field:

h̃µν(ω, ~x) ≡
∫ ∞
−∞

e−iωthµν(t, ~x)dt. (3.93)

The Fourier transform renders the field equations as

(ω2 + ∂2
i )h̃µν(ω, ~x) = 0, (3.94)

everywhere outside the source, i.e. for ~x 6= 0. The harmonic condition becomes

−iω˜̄h0µ + ∂i
˜̄hiµ = 0, (3.95)
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and writing ξ̃µ(ω, ~x) for the Fourier transform of ξµ(t, ~x), the general gauge transformation

δhµν = ∂(µξν) takes the form

δh̃00 = iωξ̃0,

δh̃0i = 1
2 iωξ̃i + 1

2∂iξ̃0, (3.96)

δh̃ij = ∂(iξ̃j).

To achieve transverse-tracelessness we set

ξ̃0 = iω−1h̃00, ξ̃i = 2iω−1h̃0i − ω−2∂ih̃00. (3.97)

From the field equations (3.943.94) it is clear that this gauge transformation obeys (ω2 +

∂2
i )ξ̃µ = 0 for ~x 6= 0, and thus the harmonic condition is preserved outside the source. It

is also easy to check that (3.973.97) fixes δh̃00 = −h̃00 and δh̃0i = −h̃0i, and hence ensures

that the transformed field h′µν = hµν + δhµν has h′0µ = 0 everywhere. Furthermore,

δh̃ = −δh̃00 + δh̃ii

= h̃00 + ∂i(2iω
−1h̃0i − ω−2∂ih̃00)

= −ω−2∂2
i h̃00 − h̃ii, (3.98)

where, in the last step, we have used the µ = 0 component of (3.953.95). Thus, for ~x 6= 0,

where we may use (3.943.94), we have

δh̃ = h̃00 − h̃ii = −h̃, (3.99)

so that h′ = 0 outside of the source. In summary, the transformed field is

h′ij =

∫ ∞
−∞

dω

2π
eiωt

(
h̃ij +

2i

ω
∂(ih̃j)0 −

1

ω2
∂i∂j h̃00

)
, (3.100)

with all other components zero, and h′ = 0, ∂µh̄′µν = 0 everywhere outside the source.2828

We are now in a position to apply this procedure to the gravitational field of the

compact source (3.853.85). Before doing so, however, it is worth mentioning that the technique

just described is not limited to compact sources. In generalising, the only adjustment

needed is that (3.943.94) will only hold at ~x such that Tµν(t, ~x) = 0 for all t. Figure 3.33.3

illustrates the difference between this technique and the standard method mentioned in

section 3.5.33.5.3.
28It should now be clear why this method cannot be applied to the time-independent mode of the

field: ill-defined contributions proportional to δ(ω)/ω or δ(ω)/ω2 would appear in the integral on the

right-hand side of (3.1003.100). Even without a delta-function at ω = 0, this integral is not unambiguous until

we explain how to deform the contour to avoid the poles there. We suggest the contour should dodge

into the lower half of the complex plane, as this ensures that h′ij(t1) is dependent only on hµν(t2) for

t2 ≤ t1, which is to say, the transformed field does not depend on future values of the untransformed field.

Using this “causal” contour, we can substitute (3.933.93) into (3.1003.100) and perform the ω integral, arriving at

h′ij(t, ~x) = hij(t, ~x) +
∫ t
−∞ dt′((t− t′)∂i∂jh00(t′, ~x)− 2∂(ihj)0(t′, ~x)). In general, this formula is less useful

than (3.1003.100), however it does reveal the asymptotic conditions that the dynamical field must obey for this

gauge-transformation to be well-defined: as t → −∞, the non-oscillatory modes of ∂i∂jh00 and ∂(ihj)0

must vanish faster than t−2 and t−1 respectively.
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Figure 3.3: Comparison of the standard method for achieving transverse-

traceless gauge in the vicinity of a source [7979, §4.4], and the “persistent” method

described here. In the two diagrams, S represents an arbitrary source (a region

with Tµν 6= 0) moving relative to uµ. The hypersurface t = t0 used to define the

gauge in the standard method is also shown, but plays no role in our method.

Continuing with the compact source, we write the dynamical part of (3.853.85) as

h̄00 = ∂i∂j(κIij(t− r)/4πr),

h̄0i = ∂j(κİij(t− r)/4πr),

h̄ij = κÏij(t− r)/4πr,

(3.101)

and take the Fourier transform:

˜̄h00 = Ĩij∂i∂j(κe
−iωr/4πr),

˜̄h0i = iωĨij∂j(κe
−iωr/4πr),

˜̄hij = −ω2Ĩijκe
−iωr/4πr,

(3.102)

where Ĩij is the Fourier transform of the dynamical part of the quadrupole moment.

Substituting this into (3.1003.100) yields

h′ij =

∫ ∞
−∞

dω

2π
eiωt

[(
Ĩklδij + Ĩδikδjl − 4Ĩk(iδj)l

)
∂k∂l

− 1

ω2
Ĩkl∂k∂l∂i∂j + ω2

(
Ĩδij − 2Ĩij

)]κe−iωr
8πr

. (3.103)

Finally we recall that h′µν = h̄′µν (for ~x 6= 0) and reinsert the time-independent mode

〈h̄00〉 = (2M + 〈Iij〉∂i∂j)
κ

4πr
,

〈h̄0i〉 = −Lij∂j
κ

4πr
, (3.104)

〈h̄ij〉 = 0,

to confirm equation (3.723.72).
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Chapter 4
Localising the Angular Momentum of

Linear Gravity

4.1 Introduction

In the previous chapter, we developed a local description of energy and momentum in

linear gravity, deriving a gravitational energy-momentum tensor τab that describes positive

energy-density and causal energy-flux. The purpose of this present chapter is to complete

our picture of local linear gravitational energetics, extending our framework to quantify

the angular momentum carried by the field. This approach will localise both the “orbital”

angular momentum and the intrinsic spin of linear gravity, the former in terms of τab,

and the latter in terms of a gravitational spin tensor sabc. Not only is this spin tensor

vital if one is to account for the angular momentum possessed by gravity and exchanged

locally with matter, the formula we derive for it will display a number physically desirable

algebraic properties, closely analogous to those of τab.

Armed with a local description of the energy, momentum, and angular momentum of

linear gravity, we will be ready to tackle the task of chapter 55: to understand τab and sabc
in terms of the familiar theoretical apparatus that has been used to define gravitational

energy-momentum in the past [77, 3535, 5252], and energy-momentum in general [1515, 4444, 6161].

These developments will crystallise the tensors’ physical interpretation, deepen our under-

standing of their theoretical underpinnings, and suggest a route by which our work might

be generalised beyond the linear approximation.

Let us begin by summarising the key points of the programme developed in chapter

33.11 We define the gravitational field hab on a flat background spacetime (M̌, ǧab) by

a diffeomorphism φ : M → M̌ that maps the physical spacetime (M, gab) onto the

1As before, we work in units where c = 1, write κ ≡ 8πG, and use the sign conventions of Wald

[7979]: ηµν ≡ diag(−1, 1, 1, 1), [∇c,∇d]va ≡ 2∇[c∇d]va ≡ Rabcdv
b, and Rab ≡ Rcacb. We use Roman letters

(except i, j, k, l) as abstract tensor indices [7979, §2.4] and Greek letters as numerical indices running from 0

to 3. The indices i, j, k, l are reserved for spatial components, and run from 1 to 3.
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background:22

φ∗gab = ǧab + hab. (4.1)

The physical spacetime is assumed to be “nearly flat”, and φ chosen such that hab is small

everywhere, so that the linear approximation to the Einstein field equations is valid:

Ĝ cd
ab hcd = κŤab +O(h2), (4.2)

where Ťab ≡ φ∗Tab ∼ O(h) is the matter energy-momentum tensor Tab mapped onto the

background, and

Ĝ cd
ab hcd ≡ ∇̌c∇̌(ah

c
b) −

1
2∇̌

2hab − 1
2∇̌a∇̌bh+ 1

2 ǧab

(
∇̌2h− ∇̌c∇̌dhcd

)
(4.3)

is the linearised Einstein tensor G
(1)
ab .

The gravitational energy-momentum tensor τab is defined by seeking a symmetric

tensor, quadratic in ∇̌chab, which solves

∇̌aj a
µ + φ∗(∇aJ a

µ ) = 0, (4.4)

neglecting terms O(h3). In the above equation, J a
µ ≡ T abe

b
µ are the (1 energy, 3 mo-

mentum) current-densities of matter, associated with the (1 timelike, 3 spacelike) vector

fields e a
µ ≡ (φ−1)∗ě a

µ , the images of the Lorentzian coordinate basis ě a
µ ≡ (∂/∂xµ)a that

generate the translational symmetries of the background; the j a
µ ≡ τabě

b
µ = τaµ con-

stitute the energy-momentum current-densities of the gravitational field. Consequently

(4.44.4) indicates that the extent to which material energy-momentum fails to be conserved

at a point in the physical spacetime is exactly equal and opposite to the extent to which

gravitational energy-momentum fails to be conserved at the corresponding point in the

background. Interactions between matter and gravity can then be understood in terms of

a local exchange of energy and momentum between the two.

It is not possible to construct a τab to solve (4.44.4) for all gravitational fields, so a

condition must be placed on hab in order to proceed. Of all possible symmetric tensors

τab, quadratic in ∇̌chab, and all (non-trivial, linear and Lorentz invariant) field conditions,

only one combination solves (4.44.4):

κτ̄ab = 1
4∇̌ahcd∇̌bh̄

cd, (4.5)

∇̌ah̄ab = 0, (4.6)

where the overbars signify trace-reversal. Because (4.64.6) is simply the equation of har-

monic gauge, which can always be satisfied through a choice of φ, the field condition does

not restrict the physical applicability of our approach in any respect. In fact, the only

2As usual, fields defined on M have their indices raised and lowered with gab, and those on M̌ with

ǧab. Lorentzian coordinates {xµ} are commonly deployed in M̌, for which ǧµν = ηµν .
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4.1. Introduction

effect of the field condition is to vastly reduce the gauge freedom in our description of

gravitational energy-momentum (4.54.5). What at first appeared as a weakness, is in fact

a great strength of our approach. Essentially, (4.64.6) indicates that φ is to be chosen such

that it maps Lorentzian coordinates {xµ} of the background onto harmonic coordinates

yµ(p) ≡ xµ(φ(p)) of the physical spacetime. This ensures that the energy-momentum cur-

rents J a
µ are defined by the generators of a harmonic coordinate system; these represent

the approximate translational symmetries of the physical spacetime (present due to its

small curvature) and give a sensible replacement for killing vectors in the absence of an

exact symmetry.

The gravitational energy-momentum tensor τab has two notable mathematical proper-

ties, in addition to solving (4.44.4). Firstly, the energy-momentum tensor for any (harmonic

gauge) gravitational plane-wave

hab = hab(x
αkα), kah̄ab = 0, kaka = 0, (4.7)

is completely invariant under the remaining gauge freedom consistent with (4.64.6) and

(4.74.7). Secondly, and most remarkably of all, τab displays the following positivity prop-

erty : all transverse-traceless (tt) gravitational fields have positive energy-density and

causal energy-flux, for all observers. To state this rigorously: if, at some point p ∈ M̌, the

gravitational field hab obeys the transverse-traceless conditions

∇̌ahab = 0, h = 0, uahab = 0, (4.8)

for some timelike vector ua, then τab satisfies the following inequalities

vaτabv
b ≥ 0, (4.9)

vaτacτ
c
bv
b ≤ 0, (4.10)

at p, for any timelike vector va.

In order to deal with the last trace of gauge freedom that remains after enforcing

(4.64.6), we examined the energy-momentum transferred between the gravitational field and

an infinitesimal probe, i.e. a matter “point-source” with energy-momentum tensor

Ť00 = Mδ(~x) + 1
2Iij∂i∂jδ(~x),

Ť0i = 1
2(İij − Lij)∂jδ(~x), (4.11)

Ťij = 1
2 Ïijδ(~x),

derived by shrinking a compact source down to a point.33 The exchange is rendered com-

pletely gauge invariant by the monopole-free microaverage: the incoming wave is split

into an sum of Heaviside step-functions, and the energy-momentum delivered by each is

3M , Iij and Lij are the mass, moment of inertia, and angular momentum of the source, respectively.

Overdots indicate differentiation with respect to t ≡ x0, and the three spatial coordinates are abbreviated

~x = (x1, x2, x3).
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Chapter 4. Localising the Angular Momentum of Linear Gravity

integrated over a vanishingly small 4-volume centred on the probe.44 The result

〈∂µτµν〉 /M∫ = −1
4δ(~x)Ïij∂νh

tt
ij (4.12)

is equal to the bare (i.e. not microaveraged) energy-momentum delivered by the incident

field in tt-gauge. This motivated the programme of fixing the final piece of gauge freedom

by insisting that the incident hab be transverse-traceless; consequently, τab represents the

gauge-invariant gravitational energy-momentum that is accessible to an infinitesimal probe

at rest in the tt frame. Furthermore, due to the positivity property of τab, this programme

ensures that the gravitational field is always described with positive energy-density and

causal energy flux.

The approach we will take for localising gravitational angular momentum will be very

similar to the one we have just described. Section 4.24.2 of this chapter begins with the

counterpart of (4.44.4) for the local exchange of angular momentum between matter and

gravity. We will show that the local change in the angular momentum of matter is not

entirely accounted for by the change in orbital angular momentum 2x[µτν]
a carried by the

gravitational field: gravity’s intrinsic spin saµν must be included to balance the exchange.

This argument defines sabc up to the addition of total divergences, so further requirements

must be placed on the tensor before we have a unique formula localising gravitational

intrinsic spin. We achieve this in section 4.34.3 by demanding that sabc satisfy two simple,

physically motivated, algebraic conditions, analogous to the algebraic properties of τab.

As a result, a formula (4.364.36) is derived for the spin tensor of the gravitational field. The

gauge freedom of sabc is automatically nullified by the tt programme motivated in chapter

33; however, it is still enlightening to reprise our analysis of the infinitesimal probe and

develop a microaverage procedure that renders the transfer of angular momentum gauge-

invariant without the need of gauge-fixing. This is covered in section 4.44.4. In section 4.54.5

we examine the role of the non-spatial components of gravitational angular momentum,

demonstrating that the exchange of non-spatial spin sa0i can displace the centre-of-mass

of a gravitational probe. We conclude our investigation with a calculation and analysis of

the intrinsic spin carried by a gravitational plane-wave.

4.2 Local Angular Momentum Exchange

The purpose of this section, and the one that follows it, is to extend the basic framework

of chapter 33 to include a local description of gravitational angular momentum. Unlike our

work on τab, eliminating gauge freedom will not be a major concern: we already know that

harmonic gauge (4.64.6) is necessary, and that the last trace of freedom must be removed by

insisting that the incident field be transverse-traceless. We begin by formulating the local

exchange of angular momentum.

As noted in section 4.14.1, the material energy-momentum current-densities J a
µ are

formed by contracting T ab with the vectors e b
µ ≡ (φ−1)∗ě b

µ , the push-forward of which

4Details are to be found in sections 3.4.23.4.2 and 3.4.33.4.3 of chapter 33.
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4.2. Local Angular Momentum Exchange

under φ generate the translational symmetries of the background. Therefore, to define

material angular momentum current-densities J a
µν , we must contract T ab with the vector

fields (φ−1)∗(2x[µěν]
b), the push-forward of which generate the rotational symmetries of

the background:55

J a
µν ≡ T ab(φ−1)∗(2x[µěν]

b) = 2T aby[µeν]
b. (4.13)

As usual, {xµ} comprise a Lorentzian coordinate system on the background, and yµ(p) ≡
xµ(φ(p)) are the image of these coordinates in the physical spacetime. The {yµ} are

harmonic (that is, ∇2yµ = 0) as a result of the gauge condition (4.64.6).

We wish to explain the effect of the gravitational field on the angular momentum of

matter in terms of a local exchange of angular momentum between the two. Just as (4.44.4)

captured this idea for energy-momentum, we will require

∇̌aj a
µν + φ∗(∇aJ a

µν ) = 0 (4.14)

for angular momentum, where j a
µν is the angular momentum current-density of the grav-

itational field. Neglecting terms O(h3), equation (4.144.14) is equivalent to

∇̌aj a
µν = −φ∗(∇a(J a

µν ))

= −φ∗(T ab∇a(2y[µeν]
b))

= −φ∗(T ab)
[
(∇̌ch b

a + ∇̌ah b
c − ∇̌bhac)x[µěν]

c + 2∇̌a(x[µěν]
b)
]

= −Ť ab(∇̌ch b
a )x[µěν]

c − 2(Ť ab − hacŤcb)∇̌a(x[µěν]
b), (4.15)

where in the last line we used φ∗(T ab) = φ∗(gacTcb) = Ť ab− hacŤcb +O(h3) and Ťab = Ťba.

As we now have an equation relating tensors defined on the background, we can express

these tensors in terms of their components in the Lorentzian coordinate system:

∂αj
α

µν = −Ťαβ(∂γh
β
α )x[µδ

γ
ν] − 2(Ťαβ − hαγ Ťγβ)∂α(x[µδ

β
ν])

= −x[µŤ
αβ∂ν]hαβ + 2hβ[µŤν]

β. (4.16)

Finally, we recall the field equations (4.24.2) in harmonic gauge,

∂2h̄ab = −2κŤαβ, (4.17)

and eliminate Ťαβ from (4.164.16):

∂αj
α

µν = (∂2h̄αβx[µ∂ν]hαβ − 2hβ[µ∂
2h̄ν]

β)/2κ

= ∂α

[
2x[µτν]

α + hβ[ν∂
αhµ]

β/κ
]
. (4.18)

5We use the term “rotational symmetry” here as a shorthand for both rotations and Lorentz boosts.

The three independent vector fields 2x[iěj]
a generate rotations (so that 2x[1ě2]

a rotates about the x3-axis,

for example) and hence define angular momentum current-densities. The 2x[0ěi]
a generate boosts (in

the xi-direction) and define moment-of-energy current-densities, the interpretation of which we explore in

section 4.54.5.
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Chapter 4. Localising the Angular Momentum of Linear Gravity

This is rather surprising result, and one that reveals the importance of the gravitational

field’s intrinsic spin. The first term in the square brackets clearly represents the orbital

angular momentum of the field: it takes the familiar form x × p and is the result of the

tangential linear momentum about the origin. The second term, in contrast, does not

depend explicitly on xµ; it measures the extent to which the field itself is spinning at

a particular point, and contributes the same gravitational angular momentum without

regard to where this spin is taking place. We are forced by (4.184.18) to accept that the

angular momentum of the gravitational field is not simply orbital, but also has an intrinsic

component:

j α
µν = 2x[µτν]

α + sαµν , (4.19)

where sαµν is the gravitational spin tensor (composed of intrinsic spin current-densities)

without which the local exchange of angular momentum would not balance. Of course,

the division of angular momentum into orbital and intrinsic components is not a new idea,

and the form of equation (4.194.19) originates from standard flat-space field theory [1717, 1818]. In

general, the Noether current of a rotational symmetry cannot be constructed entirely from

Noether currents of translational symmetries: the mismatch, born of the field’s tensorial

(or spinorial) structure, is called intrinsic spin.66 More neatly, and of greater relevance

to our later analysis, the energy-momentum tensor and the spin tensor can be derived

separately from a Lagrangian by ‘gauging’ the translational and rotational symmetries

of spacetime and taking the functional derivatives with respect to the two gauge fields.

In chapter 55 we construct τµν and sαµν according to this method, confirming that our

formulae for τµν and sαµν (soon to be derived) are in keeping with the established concepts

of energy-momentum and spin.77

4.3 Gravitational Intrinsic Spin Tensor

Our immediate goal, of course, is to arrive at a formula for sαµν in terms of hαβ. With

this in mind, it is tempting to solve (4.184.18) simply by setting

κsαµν
?≡ hβ[ν∂

αhµ]
β, (4.20)

6Essentially, this is because a tensor field undergoes two types of transformation when it is rotated. A

vector field Aµ(x), for example, becomes ΛµνA
ν(Λ−1(x)); in the parlance of quantum field theory, this can

be understood as a displacement x → Λ(x) generated by the orbital angular momentum operator x × p,
and a pointwise Lorentz transformation Aµ → ΛµνA

ν generated by the spin operator.
7Because spin tensors are usually associated with asymmetric energy-momentum tensors, it is worth

mentioning that the symmetry of τµν does not contradict the existence of sαµν . Typically, one argues that

τ[µν] 6= 0 describes finite torques acting on infinitessimal regions [5858, §5.7], and then states that this is only

acceptable if one can interpret these torques as generating intrinsic spin: ∂αs
α
µν = 2τ[µν]. Clearly, this

argument does not run in reverse: the presence of a spin tensor does not require that the energy-momentum

tensor be asymmetric. A symmetric gravitational energy-momentum tensor simply indicates that there

are no torques on infinitesimal regions due to gravity, and so (in the absence of matter) the spin-tensor is

conserved: ∂αs
α
µν = 2τ[µν] = 0.
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4.3. Gravitational Intrinsic Spin Tensor

and declare that we have found our local description of gravitational spin. However, this

is not the only solution: the exchange equation (4.184.18) only defines sαµν up to terms with

identically vanishing divergence, so further demands must be made of the spin tensor before

it can be determined uniquely. Obviously, sαµν should have the same basic properties as

τµν : it should be a local, quadratic, Lorentz-covariant function of hαβ, and contains no

dimensionful constants other than κ.88 The general solution to (4.184.18) is then

κsαµν = hβ[ν∂
αhµ]

β + ∂βΣαβ
µν , (4.21)

where Σαβ
µν is any local, quadratic, Lorentz-covariant function of hαβ (but not its deriv-

atives) that obeys

Σαβ
µν = −Σβα

µν = −Σαβ
νµ. (4.22)

The most general tensor that can be formed from hαβ this way is

Σαβ
µν ≡ A1h

α
[µh

β
ν] +A2hh

[α
[µδ

β]
ν] +A3h

γ
[µδ

[β
ν]h

α]
γ + δα[µδ

β
ν]

(
A4h

2 +A5hγδh
γδ
)
, (4.23)

where the {An} are arbitrary dimensionless constants. Equations (4.214.21) and (4.234.23) de-

scribe the range of possible gravitational spin tensors that account for the angular mo-

mentum exchanged with matter; the aim of this current section is to find a distinguished

member of this set, deserving of its physical interpretation.

We encountered a similar “superpotential”99 freedom when deriving τµν in chapter 33,

and extinguished it immediately by insisting that the energy-momentum tensor should be

free of second derivatives. Unfortunately, this tactic is of no use here: all the terms in

sαµν have the same form h∂h, and so cannot be distinguished from one another by their

differential structure. Instead, we must place algebraic requirements on the spin tensor,

and we shall do so by choosing two conditions that are physically well-motivated, and

closely analogous to the algebraic properties of τµν .

4.3.1 The Plane-wave Condition

Condition 1: The spin tensor of any (harmonic gauge) gravitational plane-wave (4.74.7), with

wave-vector kµ, must obey

sαµν ∝ kα. (4.24)

8This last stipulation (which forces the terms in sαµν to contain exactly one derivative, in order that

they have the correct units) is essentially unavoidable within the context of classical general relativity:

κ is the only dimensionful constant available. If we allow ourselves to use Planck’s constant ~ (as we

would for a quantum theory) or introduce a new dimensionful gravitational constant (as would arise in a

higher-derivative theory of gravity) then higher derivative terms would be dimensionally permissible within

the spin tensor; nonetheless, these higher-derivative terms would each be multiplied by small factors (such

as the Planck length) that would ensure the terms were negligible within the low-curvature regime of the

theory that corresponds to classical general relativity.
9These superpotentials are so called because they are total derivatives. They bear no relation to the

homonymous concept from supersymmetric field theory.
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Chapter 4. Localising the Angular Momentum of Linear Gravity

Clearly, this ensures that spin flows in the direction of propagation of the wave, a phys-

ically reasonable request that reciprocates the property τµν ∝ kµkν of plane-wave energy-

momentum. Substituting (4.74.7) into equations (4.214.21) and (4.234.23), we find that the condition

(4.244.24) holds for all harmonic gauge plane-waves if and only if

A2 = −A1, A4 = A1/4, A3 = A5 = 0. (4.25)

This leaves us with a much smaller range of spin tensors

κsαµν = hβ[ν∂
αhµ]

β +A1∂β

(
h̄α[µh̄

β
ν]

)
, (4.26)

parametrised by A1.

Of course, the influence of this first condition is not limited to gravitational plane-

waves. In fact, the restriction (4.264.26) automatically endows the spin tensor with two highly

desirable properties that apply to much more general gravitational fields. Furthermore,

one can check that these two properties occur only if the spin tensor takes the form (4.264.26);

hence the logic can be reversed, with both properties taken together as conditions on sαµν ,

and (4.244.24) derived as a consequence.

Property 1a: The spin carried by a transverse-traceless gravitational field (4.84.8) is purely

spatial :

h0α = 0, h = 0, ∂ihij = 0 ⇒ sα0i = 0. (4.27)

Not only are transverse-traceless fields blessed with positive energy-density and causal

energy-flux, now we see they carry only standard spatial spin! This result is akin to

the Frenkel condition [3838] that constrains the spin-tensor of a Weyssenhoff fluid [6060, 8181]:

Sα0i = 0, in the rest-frame of the fluid.1010 The only difference here is that the gravitational

field, being massless, has no rest-frame; in its place, the tt-frame defines the space/time

split.

The reader should not be under the impression that the non-spatial spins sα0i are com-

pletely unphysical, however; as a matter of fact, they have a simple physical interpretation.

In section 4.54.5, we explain that the non-spatial angular momentum current-densities j α
0i

localise gravity’s Moment-of-Energy, the conserved quantity associated with the symmetry

of the background under Lorentz boosts. Accordingly, the intrinsic current-densities sα0i

signify an “internal displacement of energy” of the field. This alters the gravitational

Moment-of-Energy just as the “internal spinning motion”, signified by sαij , contributes

to the total gravitational angular momentum. Due to (4.274.27) it is now clear that the

transverse-traceless field does not carry these internal displacements, and hence, that the

location of gravitational energy is determined by τµν alone. The sα0i still play an im-

portant role in the local exchange of Moment-of-Energy with matter (see §4.5.24.5.2) because

tt-gauge cannot be adopted where Ťµν 6= 0.

10The Weyssenhoff fluid is simply a perfect fluid with intrinsic spin. Note that the massive spin-1/2

field (described by the classical Dirac Lagrangian) also obeys the Frenkel condition, if one takes the charge

current-density to define the field’s 4-velocity [1818].
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4.3. Gravitational Intrinsic Spin Tensor

Property 1b: All static distributions of matter give rise to spinless gravitational fields:1111

Ťµν = ρ(~x)δ0
µδ

0
ν ⇒ sαµν = 0. (4.28)

The meaning of this statement is intuitively obvious: matter must be in motion if it

is to generate gravitational intrinsic spin. It is worth remembering that the linearised

gravitational field due to static matter is just the Newtonian potential Φ, so (4.284.28) is

equivalent to the statement that Φ has no spin. This is in keeping with our observation

in chapter 33 that the gravitational field corresponding to a static Newtonian potential has

the energy-momentum tensor of a massless scalar field.

4.3.2 The Traceless Condition

So far we have placed one algebraic condition on the gravitational spin tensor and removed

all but one of the superpotential degrees of freedom. Our second condition will fix A1 and

determine sαµν uniquely. Before we take this step, however, it will be valuable to examine

the spin tensor of the transverse-traceless gravitational field in detail. The purpose of this

analysis is to isolate an algebraic property of sαµν that signifies unphysical behaviour; we

will then design our condition so that this possibility cannot arise.1212

Because the spin of a transverse-traceless field is spatial (Property 1a) we can write

sαij ≡ sαkεkij , (4.29)

where sαi is the axial spin tensor, the current-density of intrinsic spin about the xi-axis.

Each component sij represents the flux of xj-axis spin in the xi-direction; in other words,

sijΣ is the torque (along the xj-axis) that acts on a small surface (xi = const.) of area Σ.

Let us consider the l → 0 limit of an l × l × l cube of vacuum (Ťµν = 0, hµν 6= 0)

as depicted in figure 4.14.1. The torque along the x2-axis, acting on the x1 = 0 face, is

G1 = s12l
2. There will also be contributions from the x[iτj]k part of the angular-momentum

current density, but these terms will be of order l3 and so can be safely neglected. It is

convenient to think of G1 as being generated by two equal and opposite forces F1 = 2s12l

acting on the points (0, l/2, l/4) and (0, l/2, 3l/4) as shown in the diagram. On the opposite

face (x1 = l) there will be a torque along the x2-axis G′1 = −(s12+l∂1s12)l2, the minus sign

arising as a result of the opposite direction of the outward normal, and the second term

being negligible as long as sij is smooth in the cube. Again, this torque can be thought

of as being generated by equal and opposite forces F1 acting at the points (l, l/2, l/4) and

(l, l/2, 3l/4). Following the same approach, we render the x1-axis torques on the x2 = 0

and x2 = l faces as forces F2 = 2s21l acting on the appropriate points on the cube.

11In order that the distribution does not collapse under its own gravity, the matter will also have stresses

Tij ∼ O(ρh) ∼ O(h2), but these can be neglected in the linear approximation.
12 Note that we restrict our attention to the spin of the transverse-traceless gravitational field. The spin

tensor can only be expected to have a sensible physical interpretation under the same conditions that τµν

describes positive energy-density and causal energy-flux, i.e. for all tt-fields, arbitrary (harmonic-gauge)

plane-waves, and static fields. It will be trivial to extend Condition 2 to include the last two cases, and

since their inclusion does not constrain A1, it is simpler to ignore them in what follows.
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Figure 4.1: The torques on an infinitesimal cube of vacuum due to the flux

of gravitational intrinsic spin.

We now split the cube along the plane x3 = l/2, and consider the two “half-cubes”

separately. The isotropic pressure acting on each half-cube can be evaluated using the

formula

P =
−1

6

∑
r

~fr · ~nr
Ar

, (4.30)

where the index r enumerates the six faces of the half-cube (each with area Ar and outward

unit normal ~nr) and ~fr is the force acting on the rth face.1313 For the upper half-cube

(x3 ≥ l/2) both F1 forces are directed inwards, while the two F2 forces are outwardly

directed; thus (4.304.30) gives

Pupper =
−1

6

2F2 − 2F1

l2/2
=

4(s12 − s21)

3l
, (4.31)

where we have once again ignored the negligible forces, such as τ33l
2 on the x3 = l and

x3 = l/2 faces. The calculation for the lower half-cube (x3 ≤ l/2) is identical except that

the forces F1 point outward and F2 point inward; as a result, Plower = −Pupper. Therefore,

within the cube we find a pressure gradient

∂P

∂x3
≈ Pupper − Plower

l/2
=

16(s12 − s21)

3l2
, (4.32)

which grows without bound as the limit l → 0 is taken! The only way to avoid these

infinite pressure gradients is to insist that s[ij] = 0, or equivalently

sααν = 0. (4.33)

13To confirm the validity of this formula, describe the forces in terms of a stress tensor σij by writing

fri = −σijnrjAr. The sum in (4.304.30) then becomes −σij
∑
r nrinrj = −σij(2δij) = −6P .
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This argument inspires the second algebraic condition that we place on the gravitational

spin tensor.

Condition 2: The spin tensor of a transverse-traceless gravitational field (4.84.8) must be

traceless:

h0α = 0, h = 0, ∂ihij = 0 ⇒ sααν = 0. (4.34)

As we have just seen, this condition rids the transverse-traceless gravitational field of un-

physical pressure gradients and is roughly analogous to the symmetry property of energy-

momentum, τ[µν] = 0.1414 Furthermore, this condition strengthens the similarity between

gravitation spin and standard examples of material spin: the spin tensors of the Weyssen-

hoff fluid [6060, 8181], and the spin-1/2 field [1818], are also traceless.

The spin tensor (4.264.26) is consistent with Condition 2 if and only if

A1 = −1; (4.35)

as a result, we arrive at our final formula for the gravitational spin tensor:

κsαµν = 2h̄β[ν∂
[αh̄µ]

β]. (4.36)

This is the unique local, quadratic, Lorentz-covariant function of hµν that accounts for

the local exchange of angular momentum with matter (4.144.14), satisfies the two physically

well-motivated algebraic conditions (4.244.24) and (4.344.34), and contains no dimensionful con-

stants other than κ. This is an exceptionally compact formula, and one that embodies a

remarkably parsimonious description of gravitational spin: for a transverse-traceless field,

sαµν is specified by no more than 9 independent components (due to (4.274.27) and (4.344.34)) as

opposed to the 24 that would be needed in the generic case.

Lastly, we should mention that equation (4.354.35) has a fundamental significance of its

own: the superpotential term −∂β
(
hα[µh

β
ν]

)
is essential for generalising the gauge in-

variance of hµν beyond the flat background, and ensures that a local field redefinition

is sufficient to cast τµν and sαµν as the first self-interaction terms in the Einstein (and

Einstein-Cartan) field equations. We give a full explanation of these statements in chapter

55.

This completes the foundational portion of the chapter. Following the structure of

chapter 33, our next task is to apply our newly assembled framework to an investigation

of the angular momentum absorbed by an infinitesimal gravitational detector. Section

4.44.4 will focus on the exchange of standard (i.e. spatial) angular momentum j α
ij , and the

microaverage that renders this process gauge-invariant; section 4.54.5 concerns the interpreta-

tion of non-spatial angular momentum j α
i0 , and the physical consequences of its exchange.

A reader whose primary interests are the theoretical underpinnings of τµν and sαµν may

wish to skip to chapter 55 at this point: knowledge of sections 4.44.4, 4.54.5, and 4.64.6 will not be

necessary for the discussion therein.

14Of course, the argument [5858, §5.7] that justifies T[µν] = 0 is highly analogous to (and indeed, the main

inspiration of) the argument given in this section.
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4.4 Angular Momentum Microaverage

Having derived the formula (4.364.36) for gravitational spin, we now possess a complete de-

scription of the local energy, momentum, and angular momentum carried by the linear

gravitational field. Our first application of this framework will be an analysis of the

angular momentum exchanged with an infinitesimal probe. This will allow us to re-

visit the monopole-free microaverage, the procedure which defined the gauge-invariant

energy-momentum transferred onto the probe, and motivated the (equivalent) programme

of preparing the incident field in transverse-traceless gauge. Clearly, this gauge-fixing

programme also provides us with an unambiguous definition of the angular momentum

exchanged with the probe. What is not obvious, though, is whether a microaveraging

procedure can also achieve this effect, allowing us to define a gauge-invariant exchange

of angular momentum that does not rely on gauge-fixing. The aim of this section is to

confirm the truth of this idea.

We shall consider a system that is almost identical to the one described in section

3.4.13.4.1 of chapter 33: a point-like detector in the path of a gravitational “pulse” plane-

wave. The gravitational detector will once again consist of an infinitesimal point-source

at ~x = 0,1515 the energy-momentum tensor of which is given by (4.114.11) as M, Iij , Lij → 0.1616

The gravitational field

hµν = hwave
µν + hsource

µν , (4.37)

is the sum of the incoming gravitational wave,

hwave
µν = Aµνδ(kαx

α − t0), Aµν = const., kµ = (1,−1, 0, 0), kµĀµν = 0, (4.38)

and the field hsource
µν generated by the detector,

∂2h̄source
µν = −2κŤµν . (4.39)

It is important to recognise that the plane-wave (4.384.38) is not quite the same as the one we

used when defining the energy-momentum microaverage. There, the gravitational wave

had the profile of a Heaviside step function H, and this brought about an exchange of

energy-momentum ∂µτµν ∼ ∂h∂2h ∼ δ(t − t0)δ(~x) that was confined to an infinitesimal

spacetime region over which we could average. The same is not true of angular momentum,

15It might appear that we risk a loss of generality in placing the probe at the origin, but this is not

the case. To explain, let us consider a uniform translation of the coordinates xi → xi + ai; the probe

then lies at ~x = ~a, and according to (4.194.19) the only effect on the gravitational angular-momentum current-

density is ∆j α
ij = 2a[jτi]

α. Because ai is constant, the exchange of angular-momentum associated with

this term is simply ∂α(∆j α
ij ) = 2a[j∂

ατi]α, and we already know from (4.124.12) that ∂ατiα (which quantifies

the local exchange of linear momentum) is rendered gauge-invariant by the monopole-free microaverage:

〈∂α(∆j α
ij )〉 /M∫ = 2a[j〈∂ατi]α〉 /M∫ . Clearly, this term accounts for the angular momentum that results from the

transfer of linear momentum onto the detector; by assuming that the probe is at ~x = 0 in what follows, we

are simply ignoring the trivial exchange of angular momentum associated with the detector’s bulk motion.
16We take this limit as the size of the source shrinks to zero. The detector is then a form of generalised

“test-particle” with negligible self-interaction in comparison to the effect of the external field.

104
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however: a step function wave will give rise to a local exchange ∂αj
α

µν including a term

∂αs
α
µν ∼ h∂2h ∼ H(t− t0)δ(~x) that is not localised at t = t0 and is therefore unsuitable

for microaveraging. We have no choice but to use a delta-function wave to generate a

point-like angular momentum exchange.1717 This will be the only modification needed to

adapt the microaverage for angular momentum.1818

Following the same reasoning that took us to equation (3.423.42) of chapter 33, we find that

the exchange of spatial angular momentum for this system is given by

∂αj
α

ij = 2x[i∂
ατj]α + hβ [j∂

2h̄i]β/κ

= −1
2k[jxi]δ̇(kαx

α − t0)
[
ÏklAklδ(~x)− 2

(
İkl − Lkl

)
Ak0∂lδ(~x)

+
(
2Mδ(~x) + Ikl∂k∂lδ(~x)

)
A00

]
− δ(kαxα − t0)

[
A0[i

(
İj]k − Lj]k

)
∂kδ(~x)−Ak[iÏj]kδ(~x)

]
. (4.40)

As was the case with energy-momentum, the local exchange of angular momentum (4.404.40)

is clearly not invariant under the gauge transformations

δAµν = E(µkν), Eµ = const., (4.41)

which neither break the harmonic condition (4.64.6) nor alter the form (4.384.38) of the wave.

This gauge dependence can be dealt with in one of two ways. The simplest approach is to

invoke the familiar tt programme, insisting that the incident field be transverse-traceless:

Aµν = Att
µν . The alternative, which will now examine, is to integrate over the infinitesimal

interaction region and render the exchange gauge invariant without gauge-fixing. The two

methods give identical results, as we shall soon show.

The microaverage 〈. . .〉t0 is defined, just as it was in chapter 33, by

〈f〉t0 ≡ δ(~x)δ(t− t0) lim
ε→0

∫
Bε(t0)

fd4x,

where Bε(t0) ≡ {(t, ~x) : |t− t0| ≤ ε, |~x| ≤ ε}. (4.42)

Applying this definition to (4.404.40) and integrating by parts,1919 we arrive at

〈∂αj α
ij 〉t0 = δ(~x)δ(t− t0)

[
k[j

(
Ïi]kAk0 + Ïi]1A00

)
+A0[iÏj]1 +Ak[iÏj]k

]
. (4.43)

17One might try to use a pulse based on derivatives of the delta-function, but the process of splitting a

general wave into such pulses is non-local and introduces an arbitrary constant of integration.
18The lesson here is that the microaverage is not a process in which we split the incident wave into

a particular sort of pulse: as we have seen, the profile of the pulse depends on what exchange we are

microaveraging. Rather, it is a process in which we split the wave such that the local exchange (of energy-

momentum ∂ατ
α
µ, or angular momentum ∂αjij

α) takes a particular form: a series of delta-function pulses

(and possibly derivatives of delta-functions) each of which can then be averaged over a vanishingly small

4-volume.
19For each term, integrate by parts to move derivatives from δ(~x) onto the xiδ̇(kαx

α−t0) or δ(kαx
α−t0)

part of the term, convert ∂iδ(kαx
α − t0) = −δ1iδ̇(kαxα − t0), and integrate by parts once again to send

the time-derivatives to the M,Jij , Iij part of the term, recalling that Ṁ = J̇ij = 0. Note that at least

one of the spatial derivative must act on the xi in front of the orbital terms: those terms where xi is left

untouched will vanish because δ(~x) will set xi = 0 when the integral is finally evaluated.
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Chapter 4. Localising the Angular Momentum of Linear Gravity

Although it is far from obvious in its current form, this equation is in fact invariant under

the gauge transformations given in equation (4.414.41). The easiest way to demonstrate this

is to examine each component in turn and to use kµĀµν = 0 in the following form:

A00 +A11 + 2A01 = 0, A22 +A33 = 0, A02 +A12 = 0, A03 +A13 = 0. (4.44)

After a great deal of cancelling, one finds that

〈∂αj α
23 〉t0 = δ(~x)δ(t− t0)

(
A+Ï23 −A×(Ï22 − Ï33)/2

)
,

〈∂αj α
12 〉t0 = −δ(~x)δ(t− t0)

(
A+Ï12 +A×Ï13

)
/2,

〈∂αj α
13 〉t0 = −δ(~x)δ(t− t0)

(
A×Ï12 −A+Ï13

)
/2, (4.45)

all of which depend only on the transverse components of the wave A× = A23, A+ = (A22−
A33)/2 which are invariant under (4.414.41). Considering that the microaverage was developed

purely for the purposes of energy-momentum exchange, it is gratifying to discover that it

renders the exchange of angular momentum gauge invariant as well.

It is possible to write the above relations (4.454.45) in a more compact form:

〈∂αj α
ij 〉t0 = δ(~x)δ(t− t0)Att

k[iÏj]k, (4.46)

where Att
µν is the transverse-traceless part of Aµν , the only non-zero components of which

are Att
22 = −Att

33 = A+ and Att
23 = Att

32 = A×. As previously advertised, this is exactly the

same result as would be obtained from applying the tt programme to the bare angular

momentum exchange (4.404.40):

∂αj
ttα
ij ≡ ∂αj α

ij [hsource
µν +Att

µνδ(kαx
α − t0)]

= δ(~x)δ(t− t0)Att
k[iÏj]k. (4.47)

The only subtlety with this calculation is that one must set xiδ̇(kαx
α− t0)δ(~x) = 0, which

is valid as an identity between distributions on test functions that are differentiable with

respect to t at (t0,~0).

The angular momentum microaverage need not be restricted to plane-wave pulses: we

can generalise equation (4.464.46) following the same procedure as the energy-momentum case.

First we note that an arbitrary (harmonic-gauge) plane-wave

hwave
µν = Bµν(kαx

α), kµB̄µν = 0, (4.48)

can be split into a sum of individual pulses

hwave
µν =

∫ ∞
−∞

Bµν(t0)δ(kαx
α − t0)dt0, (4.49)

and the angular momentum exchange of each pulse microaveraged separately:2020〈
∂αj

α
ij [hsource

µν + hwave
µν ]

〉∫
δ
≡
∫ ∞
−∞
〈∂αj α

ij [hsource
µν +Bµν(t0)δ(kαx

α − t0)]〉t0dt0. (4.50)

20This microaverage carries the subscript
∫
δ to remind us that the wave has been split into δ-function

pulses, rather than Heaviside steps.
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Second we recall that any incident field hin
µν can be expressed as a sum of plane-waves, at

least locally. Because (4.464.46) is linear in the incident field, we can split any incident field

into a sum of plane-waves, each of which can be split into a sum of pulses, then perform the

microaverage on each element and reassemble the result. The general formula is therefore

〈∂αj α
ij 〉∫ δ = δ(~x)httk[iÏj]k, (4.51)

where httµν is the transverse-traceless part of hin
µν .

This concludes our analysis of the spatial angular momentum transferred onto the

probe. The non-spatial currents j α
0i can also be absorbed by the detector; the exchange

equation (4.144.14) then ensures that the shift in gravity’s moment-of-energy is accompanied

by a displacement in the detector’s centre-of-mass. This is a rather surprising phenomenon,

and one that, to our knowledge, has not been discussed in the literature. Under reson-

ant conditions, this effect can cause the detector to “walk” in a direction transverse to

the gravitational wave.2121 The next section is devoted to a detailed examination of this

phenomenon.

4.5 Moment of Energy

Through its unification of space and time, and energy and momentum, special relativity

fused together the once disparate notions of angular momentum and centre-of-mass. In

this section we review this idea in terms of local currents, and offer an interpretation for the

non-spatial intrinsic spin currents sα0i . We also examine the local exchange of moment-

of-energy between the gravitational field and an infinitesimal detector. In appendix 4.A4.A

we confirm that this phenomenon is also predicted by a “first principles” description of

the system.

4.5.1 Definitions and Interpretation

It goes without saying that the non-spatial components j α
0i and J α

0i are needed to form

the Lorentz-covariant currents j α
µν and J α

µν ; thus, at the most basic level, these non-

spatial components carry the interpretation of standard “spatial” angular-momentum as

seen by a moving observer. Beyond this, the non-spatial components carry an additional

interpretation that is quite distinct from spatial angular momentum. They are the current

densities of a conserved 3-vector quantity: the Moment-of-Energy at t = 0.

To explain, let us first define the moment-of-energy Xi, total linear momentum Pi, and

total mass/energy M for matter:

Xi ≡ −
∫ √

−gT 0
0yid

3y, Pi ≡
∫ √
−gT 0

id
3y, M ≡ −

∫ √
−gT 0

0d3y, (4.52)

21This should not be confused with the motion associated with the linear momentum that the probe

gains according to (4.124.12). There, a resonance between the detector and the incident wave gives rise to a

longitudinal acceleration, and the velocity gained in this process remains after the wave passed.
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noting that the centre-of-mass x
(0)
i is simply the moment-of-energy normalised by the total

mass/energy:

x
(0)
i ≡ Xi/M. (4.53)

The total non-spatial angular momentum of matter is then∫ √
−gJ 0

0i d3y ≡
∫ √

−g(T 0
iy0 − T 0

0yi)d
3y ≡ −tPi +Xi, (4.54)

where we have written y0 = t.2222 In the absence of the gravitational field (hµν = 0) the

angular momentum currents are conserved,

∂α(
√
−gJ α

µν ) =
√
−g∇aJ a

µν = 0, (4.55)

and as a result,

∂t (Xi − tPi) = 0. (4.56)

Furthermore, the conservation of energy-momentum (∂α(
√
−gTαµ) =

√
−g∇aJ a

µ = 0)

ensures that Ṗi = 0, and leads to the following global conservation law:

Ẋi − Pi = 0. (4.57)

This equation integrates to Xi = tPi +Xi|t=0, which on substitution into (4.544.54) gives∫ √
−gJ 0

0i d3y = Xi|t=0, (4.58)

which is constant by definition. In other words, the total non-spatial angular momentum

is equal to the moment-of-energy at t = 0, a conserved quantity which we will refer to by

the acronym MoE, where the stipulation “at t = 0” should be taken as given.

The same analysis can be performed for the gravitational field in the absence of matter.

Working in the background, we define

X τi ≡
∫
τ00xid

3x, Pi ≡
∫
τ0
id

3x, X si ≡
∫
s0

0id
3x, Xi ≡ X τi + X si . (4.59)

Then the total non-spatial gravitational angular momentum is given by∫
j 0
0i d3x ≡ Xi − tPi, (4.60)

which, due to ∂αj
α

0i = 0 and ∂ατ
α
i = 0, is conserved:

Ẋi − Pi = 0,

∫
j 0
0i d3x = Xi|t=0. (4.61)

22Note that we use the same symbol t to represent the value of the time coordinate y0 in physical

spacetime and the time coordinate x0 of the background. This has the advantage of allowing us to drop

the distinction between the physical quantities Xi, Pi, M , x
(0)
i , and their background representations

φ∗(Xi), φ
∗(Pi), φ

∗(M), φ∗(x
(0)
i ): the first set are functions of y0 only, the second set of x0 only, and the

two sets are numerically equal when x0 = y0.
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We conclude from this that the j α
0i are the current-densities of the conserved quantities

Xi|t=0 that constitute the gravitational MoE.

As (4.594.59) makes clear, the non-spatial spin densities s0
0i shift the gravitational MoE by

X si , displacing it from the value X τi that would have been expected from τ00 alone. This

suggest that the s0
0i represent an “internal displacement of energy” at a point (analogous

to the notion of s0
ij as “internal spinning motion” at a point) so that the field’s energy lies

locally off-centre. The value of τ00(p) still represents the density of gravitational energy

at the point p, but an asymmetry in the distribution of the energy “within the point”,

quantified by s0
0i, shifts the MoE by a small amount.2323 Because s0

0i = 0 for any transverse-

traceless gravitational field, these internal displacements rarely arise when describing the

energetics of the gravitational field in vacuum. However, as tt-gauge cannot be adopted

where Ťµν 6= 0, the s0
0i inevitably play an active role in the exchange of MoE between

matter and gravity.

4.5.2 Moment of Energy Exchange

When matter and gravity interact, neither j α
0i nor J α

0i are independently conserved, and

MoE is exchanged between them according to (4.144.14). Consequently, the conservation laws

(4.574.57) and (4.614.61) are broken,

Ẋi − Pi ≡ ∆Ẋi 6= 0, (4.62)

Ẋi − Pi ≡ ∆Ẋi 6= 0, (4.63)

but the extent to which they are broken is exactly equal and opposite:2424

∆Ẋi + ∆Ẋi = 0. (4.64)

To understand this process in general, we turn once again to our preferred testing

ground: an infinitesimal detector in the path of a gravitational plane-wave. Unlike our

analysis of angular momentum for this system (§4.44.4) we will not employ the microaver-

age here. The reason for this is simple: the microaverage does not produce a gauge-

invariant description of the exchange of MoE. In contrast to angular momentum and

energy-momentum, the gauge invariant modes of the gravitational field do not deliver

MoE evenly across the whole detector, they are biased by a dipole term proportional to

∂iδ(~x).2525 The microaverage is therefore unable to capture the exchange properly, as it

can only produce quantities proportional to δ(~x). This is an notable qualitative difference

between the exchange of angular momentum and MoE, but in reality it poses no practical

23This pointwise internal structure (spinning motion and displacements) presumably takes place in the

tangent space of the manifold, where the gravitational field is defined.
24This global exchange equation follows directly from the local exchange equations: multiply equation

(4.144.14) by φ∗(
√
−g) =

√
−ǧ +O(h), discard terms O(h3), and integrate over the spatial coordinates. This

gives ∆Ẋi + ∆Ẋi − t(Ṗi + Ṗi) = 0, and Ṗi + Ṗi = 0 follows from the local exchange of linear-momentum

(4.44.4) by exactly the same method.
25This can be seen in equation (4.674.67) below.

109



Chapter 4. Localising the Angular Momentum of Linear Gravity

difficulty: we can still remove the gauge dependence by insisting that the incident field is

transverse traceless.

With this in mind, we consider the same system as described in section 4.44.4 with one

exception: the incident field is an arbitrary transverse-traceless plane-wave,

hwave
µν = Btt

µν(t− x1), Btt
0ν = Btt

1ν = Btt = 0, (4.65)

rather than a pulse. Taking the same steps that were used to derive (3.423.42) of chapter 33,

and deploying the distributional identity xiδ(~x) = 0, we find that the local exchange of

non-spatial angular momentum is

∂αj
α

10 = t∂ατα1, (4.66)

i = 2, 3 : ∂αj
α

i0 = Btt
ik

(
İkj − Lkj

)
∂jδ(~x)/2. (4.67)

As the longitudinal (4.664.66) and transverse (4.674.67) equations represent two very different

phenomena, we shall examine them separately.

Equation (4.664.66) is essentially trivial: it accounts for the extra MoE that arises from

the exchange of linear momentum in the x1 direction. To demonstrate this, let us take

the time derivative of (4.604.60):

Ẋi − Pi − tṖi =

∫
∂0j

0
0i d3x =

∫
∂αj

α
0i d3x. (4.68)

Unlike the non-interacting case, we now have

Ṗi =

∫
∂0τ

0
id

3x =

∫
∂ατ

α
id

3x, (4.69)

which is nonzero in general. Consequently,

∆Ẋi ≡ Ẋi − Pi =

∫
t∂ατ

α
i + ∂αj

α
0i d3x. (4.70)

Thus, the quantity that describes the local exchange of MoE is in fact the sum

t∂ατ
α
i + ∂αj

α
0i , (4.71)

as it is this combination which contributes the extra increase in Xi beyond what would

be expected from simply integrating Pi(t) with respect to time. Because the gravitational

wave only deposits momentum in the longitudinal direction (see equation (4.124.12)) this

argument has no effect on the interpretation of (4.674.67); however, equation (4.664.66) reveals

that

t∂ατ
α
1 + ∂αj

α
01 = t∂ατ

α
1 + (−t∂ατα1) = 0, (4.72)

confirming that there is no exchange of MoE in the x1-direction, only the exchange of

linear momentum. The centre-of-mass of the detector will accelerate in the x1-direction,

but this acceleration will be exactly what one would expect from the linear momentum

transfer discussed in chapter 33.
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In comparison, the exchange of transverse MoE (4.674.67) is considerably less trivial. The

first complication is that ∂αj
α

i0 ∝ ∂jδ(~x), indicating that the transfer of MoE occurs

within a dipole-like distribution, taking opposite signs at opposite ends of the detector.

In general, these effects will partially cancel each other, so a more pertinent quantity

to calculate (rather than the local exchange) is the total MoE exchange over the whole

detector:

∆Ẋi = −∆Ẋi = −
∫
t∂ατ

α
i + ∂αj

α
0i d3x

= Ḃtt
ik (t)

(
İk1 − Lk1

)
/2, (4.73)

for i = 2, 3. This equation describes the transverse drift in gravitational MoE, and via

(4.644.64), the opposite drift in the matter MoE.

In general, the centre-of-mass of the detector (4.534.53) will move according to

ẋ
(0)
i = (∆Ẋi + Pi)/M −XiṀ/M2, (4.74)

under the influence of the gravitational wave. Focusing our interest on the transverse

directions (for which Pi = 0 for all time) we note that the last term in (4.744.74) is the product

of two small quantities (Xi and Ṁ) and can therefore be neglected in comparison to the

first term, which only contains one small quantity (∆Ẋ).2626 Making these simplifications,

and substituting (4.734.73) into (4.744.74), we finally arrive at a formula for the transverse motion

of the detector’s centre-of-mass:

i = 2, 3 : ẋ
(0)
i = Ḃtt

ik

(
İk1 − Lk1

)
/2M. (4.75)

It is important to realise that this motion is not simply a “coordinate effect”. If we

were to place a free particle at rest at the origin, then because the plane-wave is tt, this

reference point will remain at ~x = 0 indefinitely. Equation (4.754.75) therefore predicts the

displacement of the centre-of-mass relative to this reference point, and the proper distance

between the two points will be, to lowest order, equal to the Euclidean distance in the

background.

In passing we also note that, when Iij = 0, the acceleration of the centre-of-mass is

exactly that of a spinning test-particle (of mass M and spin Lij) as predicted by the

linearised Papapetrou-Dixon equations [3030, 6565] in transverse-traceless gauge:

Mẍ
(0)
i = −LjkRi0jk/2 +O(h2)

= −Lk1B̈
tt
ik /2 +O(h2), (4.76)

26To argue this more rigorously, suppose that the incident wave has amplitude B and frequency Ω, and

that the internal motions of the probe have frequency ω and amplitude l. We require B � 1 in the linear

approximation, Ωl � 1 to ensure that the probe is much smaller than the gravitational wavelength, and

ωl < 1 so that the internal motions are not superluminal. It follows from (4.734.73) that the first term ∆Ẋ/M ∼
Bl2Ωω, and from (4.124.12) that the second term XṀ/M2 = (X/M)(

∫
∂ατα0d3x/M) ∼ (X/M)Bl2Ωω2. The

factor X/M =
∫

∆Ẋdt/M can be no larger than (∆Ẋ)max∆t/M ∼ Bl2Ωω∆t, where ∆t is the duration

of the interaction. From this we conclude that the second term XṀ/M2 . B2l4Ω2ω3∆t is negligible in

comparison with the first unless the wave and the probe interact for a very long time ∆t ∼ (Bl2Ωω2)−1.

This becomes completely impossible as the length-scale of the probe l→ 0.
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Figure 4.2: A toy model detector: two masses, connected by a light rod,

rotate in the x3 = 0 plane; a gravitational plane-wave, propagating in the

x1-direction, disturbs its centre-of-mass.

where, because the probe begins at rest, we have taken ẋ
(0)
i = O(h). Thus (4.754.75) generalises

this equation to include the effect of the quadrupole moment Iij of the particle. Because

this quantity is time dependent, this allows for the possibility of resonance between the

probe and the wave, the consequence of which we shall explore in the following example.

Example: Rotating Rod

Let us consider the probe depicted in figure 4.24.2, a light rod (length 2l) with bobs of

mass m/2 at each end, spinning with angular frequency ω about the x3-axis. A valuable

feature of equation (4.754.75) is that one only needs the unperturbed motion of the detector

(as captured by Iij and Lij) to calculate the motion of the centre-of-mass to lowest order

in hµν ; this is not true of a “first principles” approach to the problem (see appendix 4.A4.A)

which complicates that calculation considerably. The unperturbed locations of the two

masses are, in the background,

~x(1) = l(cosωt, sinωt, 0) = −~x(2), (4.77)

and assuming that the speeds are not relativistic (for the sake of simplicity) it is easy to

confirm that

İij − Lij = mωl2

 − sin(2ωt) cos(2ωt)− 1 0

cos(2ωt) + 1 sin(2ωt) 0

0 0 0


ij

.

Inserting this into (4.754.75) and setting the total mass/energy M = m under the nonrelativ-

istic assumption, we conclude that centre-of-mass of the spinning rod moves according

to

ẋ
(0)
i =

ωl2

2
Ḃtt
i2 (t)(cos(2ωt) + 1), (4.78)

in the transverse directions i = 2, 3. For a generic gravitational wave, this equation predicts

an oscillation in the centre-of-mass that averages to zero over many wavelengths. If the

wave is of frequency 2ω, however, a resonance occurs in which the detector can steadily
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“walk” in the transverse-direction. A gravitational wave of the form(
B22

B23

)
=

(
β+

β×

)
sin(2ω(t− x1)), (4.79)

gives rise to an average transverse velocity(
〈ẋ(0)

2 〉
〈ẋ(0)

3 〉

)
=
ω2l2

2

(
β+

β×

)
. (4.80)

One of the most surprising aspects of this phenomenon is that the walking motion (4.804.80) is

not associated with any transverse momentum: P2 = P3 = 0. The detector moves without

being pushed, as it were: due to a careful conspiracy between the probe’s internal motion,

and the stretching and squeezing of space, the centre of the probe is displaced with each

period.

To understand this on an intuitive level, let us imagine for a moment that the rod

joining the masses does not exist, but that at t = 0 the masses have the same positions

and velocities as before. Because the gravitational wave is invariant under translations

in the transverse directions, the transverse momentum (i.e. the transverse components

of the momentum covectors) of the two particles will be conserved, and hence the total

transverse momentum remains zero. However, the velocity vectors of the masses are

related to their conserved momentum covectors by the physical metric gab, which varies

in the x1-direction. Thus, because the physical metric differs between the positions of the

two masses, while their momenta are equal and opposite, their velocities will not be. In

this fashion, a gradient in the gravitational field across the detector can cause a drift in

the centre-of-mass of the system. The role of the rod in our detector is simply to apply

equal and opposite forces to the masses (again, having no effect on the total transverse

momentum) so that once t = π/2ω and the gradient of the gravitational wave across the

detector has reversed, the masses are now at the same value of x1, and the drift that has

occurred in the first quarter-wavelength will not be undone.

In appendix 4.A4.A we substantiate this intuitive picture with a detailed rederivation of

equation (4.734.73) from first principles. Not only does this further aid our understanding of

the phenomenon, it should assuage any concerns that this unfamiliar effect might simply

be an unphysical artifact of our formalism. In fact, the subtlety and complexity of this

calculation emphasises the computational advantage of our approach, not only for MoE,

but for angular momentum and energy-momentum also.

4.6 Gravitational Plane-Waves

As a final exploration of our formula (4.364.36) for gravitational intrinsic spin, we shall evaluate

sαµν for a plane-wave. The motivation for this endeavour is to point out a number of

interesting features, and to allow for a comparison with other descriptions of gravitational

angular momentum.
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A transverse-traceless gravitational plane-wave

hµν = hµν(kαx
α), kµ = (1,−1, 0, 0), hµ0 = hµ1 = h = 0, (4.81)

has an extremely simple spin tensor:

sαµ0 = sαµ1 = 0, κsα23 = kα(h×ḣ+ − h+ḣ×), (4.82)

where h× = h23 and h+ = h22 = −h33 are the transverse components of the wave. As one

would expect, sαµν describes transverse spatial spin flowing in the direction of propagation

of the wave. Furthermore, the amplitude of sα23 quantifies the internal spinning motion

of the field, as can be seen when we consider a monochromatic wave where the “plus” and

“cross” polarisations differ by a phase θ:

h+ = A+ cos
(
ω(t− x1)

)
, h× = A× cos

(
ω(t− x1)− θ

)
. (4.83)

In this case, the spin-density is constant over spacetime,

κs0
23 = ωA×A+ sin θ, (4.84)

and is greatest in magnitude when the wave is circularly polarised, that is, when θ = ±π/2.

Note that a wave with a purely linear polarisation will carry no spin at all.

In chapter 33 we saw that the energy-momentum tensor of a tt gravitational plane-

wave was independent of the timelike vector uµ that defines the wave’s tt-frame (4.84.8). A

similar property holds for the spin tensor, but it is complicated by the fact that spin is

constrained to be spatial with respect to the tt-frame, that is, uνsαµν = 0. As we shall

see, the longitudinal and non-spatial spins do transform as the tt-frame is changed, and in

doing so they adapt the spin tensor to obey the spatial constraint for the new uµ; however,

the transverse spatial spin current sα23 is left invariant. To demonstrate this invariance,

we perform a gauge transformation on the field (4.814.81) that maintains its plane-wave form,

δhµν = ∂(µ

(
ξν)(kαx

α)
)

= 2k(µξ̇ν), (4.85)

and note that the spin tensor changes by

κδsαµν = kαk[µ

(
hν]β ξ̈

β − ḣν]β ξ̇
β + kβ

(
ξ̇ν]ξ̈β − ξ̈ν]ξ̇β

))
, (4.86)

confirming that δsα23 = 0.

Now suppose that the gravitational field (4.814.81) has been transformed to a new tt-

frame, so that in some other Lorentz coordinate system {xµ′} we have hµ′0′ = hµ′1′ = 0.

Then by the same calculation that led us to (4.824.82) the transformed spin tensor s′abc will

obey s′α
′
µ′0′ = s′α

′
µ′1′ = 0 exactly as the original tensor did in the original coordinate

system. The only non-zero component of the transformed tensor (in the primed basis) will

be s′α
′
2′3′ , and this quantity will also be gauge invariant by the same argument we used

for sα23. These two gauge-invariant currents are related by the constant factor 2Λ[2′
2Λ3′]

3,

where Λµ
′
ν is the Lorentz transformation between the two coordinate bases:

sα23 = s′α23 = Λµ
′
2Λν

′
3s
′α
µ′ν′ =

(
2Λ[2′

2Λ3′]
3

)
s′α2′3′ .
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This constant of proportionality ensures that sabc and s′abc describe exactly the same

spatial transverse spin current in either basis: sα23 = s′α23 and sα
′
2′3′ = s′α

′
2′3′ . Thus,

the only effect of a change in tt-frame is to re-express the same physical information (the

transverse spin current of the wave) in terms of spin that is spatial with respect to a new

rest-frame. In the absence of some material body (a detector or a source, for example) the

massless gravitational plane-wave cannot define a preferred rest-frame, and so the spatial

nature of its intrinsic spin will always have this ambiguity.

As a consequence of this, while a plane-wave region can “sew together” two different

tt-frames to form a seamless picture of the propagation of gravitational energy-momentum

(as described in section 3.4.43.4.4 of chapter 33) the same cannot be done for angular momentum:

there will always be a discontinuity where the spatial spin of one frame is converted into

the spatial spin of the other. Even so, one can construct a gravitational spin pseudovector

sα ≡ εαλµνsλµν/2, (4.87)

which is truly independent of tt-frame, and will therefore give a continuous description

of gravitational spin within the sewing region. The invariance of sα follows directly from

the totally antisymmetric part of (4.864.86): δs[αµν] = 0. The physical interpretation of

this pseudovector is not immediately clear, but suffice it to say that for a plane-wave,

sα captures only the spin that is linearly independent of the wave-vector kµ.2727 For the

plane-wave (4.814.81) we have been studying, the spin pseudovector is

κsα = kα(h×ḣ+ − h+ḣ×), (4.88)

capturing all the physically pertinent information of (4.824.82) in a completely frame-independ-

ent fashion.

Finally, we should highlight the major difference that exists between the gravita-

tional spin currents in (4.824.82) and the corresponding quantities given by the traditional

approaches, including the Landau-Lifshitz tensor [5252] and the integrand of the ADM

energy-momentum [77]. In these descriptions, the local energy-momentum and spin of the

gravitational field are packaged together in a single object, a Belinfante energy-momentum

tensor tµν ∼ ∂h∂h + h∂2h + O(h3).2828 The local angular-momentum currents are then

x[µtν]
α alone, with no extra “intrinsic” component. According to this viewpoint, there

is no transverse angular momentum within a harmonic-gauge plane-wave: x[2t3]
α = 0.2929

This differs dramatically from our description (4.824.82) and stands opposed to the intuitive

27We also note that sα bears a resemblance to the Pauli-Lubanski pseudovector Sα ≡ εαλµνPλLµν/2,

which characterises the total spin of a particle or matter field, and reduces in the particle’s rest-frame to

(mass times) the familiar axial angular-momentum vector of non-relativistic mechanics [7171].
28A Belinfante energy-momentum tensor can be constructed from any energy-momentum tensor and

spin tensor, including our own: tµν [τ, s] ≡ τµν + ∂α(s α
µν + s α

νµ − sαµν)/2. We perform this calculation in

chapter 55 and compare the result with the Landau-Lifshitz and ADM Belinfante tensors discussed here.
29This follows from simple index combinatorics. Within the plan- wave tµν ∼ kkḣḣ+kkhḧ+O(h3), and

because kµk
µ = 0 and kµh̄µν = 0, both the free indices must occur on the wave-vectors, i.e. tµν ∝ kµkν .

This continues to be true at higher order, where the terms in tµν are of the form kkḣḣhn−2 + kkḧhn−1.

Consequently, the transverse angular momentum vanishes exactly: x[2t3]
α ∝ x[2k3]k

α = 0.

115



Chapter 4. Localising the Angular Momentum of Linear Gravity

notion of intrinsic spin as quantifying the internal spinning motion of the field. Without

separating gravitational energy-momentum and spin into two separate tensors, τµν and

sαµν , the intrinsic spin carried by a (harmonic-gauge) plane-wave can never be manifestly

present within the wave.

To be clear: the Belinfante-style descriptions still correctly quantify the total angular

momentum of the wave, but they assign this angular momentum to the wave’s boundary,

not its interior.3030 Considering that the angular momentum currents along this boundary

are given by x[2t3]
α as always, and are thus explicitly dependent on xµ, even these currents

cannot be thought of as a local and intrinsic property of the field. This perverse picture,

in which all the spin of a gravitational wave resides on the edge of the wave, and this

supposedly intrinsic quantity depends on the coordinate distance from the origin, only

emphasises what was already well-known: the Landau-Lifshitz tensor and the integrand

of the AMD energy-momentum should not be taken seriously as local descriptions of

gravitational energy-momentum or spin. While they certainly define meaningful global

quantities [1010], the gauge-freedom of these Belinfante tensors cannot be fixed in a natural

manner, and they commonly display negative energy-density and spacelike energy-flux.

4.7 Conclusion

Together, the energy-momentum tensor τµν and the spin tensor sαµν completely charac-

terise the energy, momentum, and angular momentum carried locally by the linearised

gravitational field:

κτ̄µν = 1
4∂µhαβ∂ν h̄

αβ, (4.89)

κsαµν = 2h̄β[ν∂
[αh̄µ]

β]. (4.90)

The gauge freedom of this description is highly constrained by the harmonic gauge condi-

tion,

∂µh̄µν = 0, (4.91)

which arose as a consequence of the derivation of τµν ; the last remnant of this freedom is

then eliminated by insisting that the incident gravitational field be transverse-traceless,

a programme motivated in part by appealing to the gauge-invariant exchange of energy-

momentum between gravity and an infinitesimal probe, and also distinguished by the

numerous desirable properties that the tensors display in transverse-traceless gauge: pos-

itive energy-density, causal energy-flux, and traceless spatial spin.

We developed this framework around a simple principle: wherever the energy, mo-

mentum, or angular momentum of matter is changed under the influence of gravity, there

30To avoid a discussion of the boundary at infinity, suppose the plane-wave is in fact restricted to a

spatially compact region; in this case, one will find that x[2t3]
α 6= 0 at the boundary of the region, and

the spatial integral of x[2t3]
0 will amount to the same total angular momentum described by s0

23. In fact,

it is generally true that (under suitable boundary conditions) tµν [τ, s] gives the same global measure of

energy-momentum and angular momentum as τµν and sαµν ; see chapter 55 for details.
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must be an equal and opposite change in the energy, momentum, or angular momentum of

the gravitational field. This idea, and the requirement that τµν be symmetric and free of

second derivatives, was enough to determine the energy-momentum tensor (4.894.89) and the

field condition (4.914.91). To determine the spin tensor uniquely, we demanded that it satisfy

two physically-motivated conditions: first, the spin of a gravitational plane-wave must

flow in the direction of propagation of the wave (4.244.24); second, a transverse-traceless field

must possess a traceless spin tensor (4.344.34) and hence be free of infinite pressure gradients.

In addition, the resulting spin tensor (4.914.91) displays a number of notable properties that

were not required of it: the Newtonian potential has vanishing spin-tensor (4.284.28) and any

transverse-traceless field carries purely spatial spin (4.274.27).

The microaverage, which defines the gauge invariant exchange of energy-momentum

between gravity and an infinitesimal probe, also renders the exchange of spatial angular

momentum gauge-invariant (4.514.51) without the need for gauge-fixing. In the same system,

the exchange of non-spatial angular momentum can displace the centre-of-mass of the

detector, beyond that which would be expected due to the exchange of linear momentum

alone (4.754.75). Indeed, if the internal motions of the probe resonate with the incident

wave, the detector may “walk” in a transverse direction, and acquire a net displacement

over many wavelengths. We have explored this phenomenon for the specific example of a

rotating rod (4.784.78) and rederived our predictions from first principles (see appendix 4.A4.A).

Unlike τµν , the spin tensor of a gravitational plane-wave is not completely independent

of the tt-frame in which the wave is prepared. While the current-density of transverse

spatial spin (in any frame) is invariant, the full tensor adapts so as to remain spatial

with respect to whichever tt-frame is used. Thus, if a plane-wave region is used to sew

together two tt-frames and produce a seamless picture of energy-momentum propagation,

there will inevitably be a discontinuity in sαµν where the spin is projected from one

spatial hypersurface to another; however, a spin psuedovector can be defined (4.874.87) that

is conserved across this interface.

The spin carried by a plane-wave (4.824.82) is also an excellent example with which to

compare our framework to the familiar “Belinfante” energy-momentum tensors of Landau

and Lifshitz, and Arnowitt, Deser and Misner. Whereas sαµν describes spin that is mani-

festly present within the wave, the density of which depends on the rotational motion of

hµν at each point, the Belinfante tensors assign all angular-momentum to the boundary

of the wave, and its density there is not simply a function of hµν (as a truly local intrinsic

property of the field would be) but is also dependent on the distance of the point from the

origin.

Returning to chapter 33, it becomes clear that many of the remarkable properties

of our gravitational energy-momentum tensor (including its positive energy-density and

causal energy-flux) owe their existence to the careful separation of gravitational energy-

momentum and gravitational spin. Now that we have made this separation explicit, and

derived a formula for sαµν , we have all the ingredients necessary to understand the broader

theoretical picture in which our description resides. This is the task of chapter 55, the res-
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ults of which, in many respects, are the main reward for our work here.

4.A Appendix: Moment of Energy Exchange from First

Principles

In order to rederive equation (4.734.73) from first principles, we shall consider a detector,

centred at the origin, composed of a set of N test-particles connected by some form of

“light” mechanical apparatus.3131 The nth particle has mass mn, proper time τn, and

follows a worldline yµn(τn) in the physical spacetime; its 4-velocity uµn ≡ dyµn/dτn has

unit norm: uanu
b
ngab = −1. In this approach, the detector is not truly infinitesimal, but

we stipulate that the length-scale of the detector l ∼ yin be sufficiently small that we

may ignore terms O(l3) in our calculation, leaving us with a quadrupole approximation

of the probe. As usual, a weak gravitational plane-wave is incident upon the detector,

represented in transverse-traceless gauge in the background: hµν = hwave
µν as given in

(4.654.65). As ∂2hµν = ∂3hµν = 0, the physical spacetime is isometric under translations in

the y2 and y3 directions of the {yµ} coordinate system; for this section, we will reserve

the index k = 2, 3 for these transverse directions.

In the physical spacetime, the energy-momentum tensor of the particles is

(Tparticles)
a
b =

N∑
n=1

1√
−g

∫
dτnδ(y

µ − yµn(τn))uanpnb, (4.92)

where pna ≡ mngabu
b
n is the 4-momentum of the nth particle. For the purposes of defining

the moment-of-energy of the detector, we assume that the energy-momentum of the light

apparatus is negligible:

Xi = −
∫ √

−g(Tparticles)
0
0yid

3y = −
N∑
n=1

pn0yni.

In terms of background quantities, this is

Xi = −
N∑
n=1

mn(η0α + hn0α)x′αn xni =
N∑
n=1

mnx
′0
n xni, (4.93)

where xµn(τn) are the coordinates of the particles in the background spacetime, primes

indicate differentiation with respect to τn, and hnµν ≡ hµν(xαn(τn)) is the gravitational

field evaluated at the nth particle. The rate of change of the moment-of-energy is therefore

Ẋi =
N∑
n=1

mn

(
x′′0n xni
x′0n

+ x′ni

)
. (4.94)

The normalisation of the 4-velocity,

−1 = −(x′0n )2 + (hnij + δij)x
′i
nx
′j
n , (4.95)

31The adjective “light” is used to indicate that the total energy-momentum of the apparatus is negligible

compared to that of the particles.
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ensures that x′0n ∼ O(1) and x′′0n ∼ O(l2), so the first term (4.944.94) is O(l3) and can therefore

be neglected. Consequently,

Ẍi =

N∑
n=1

mnx
′′
ni

x′0n
+O(l3). (4.96)

The accelerations x′′ni in (4.964.96) are be caused by both the gravitational field and the

mechanical forces exerted on the particles by the apparatus. Our aim is to infer Ẍi

without assuming any detailed model of the latter. This might seem an impossible task,

as it appears that we will need to know the motions of the particles (or the forces from the

apparatus) to first order in hµν if we wish to calculate the first order contribution to Ẍk.

Fortunately, because the apparatus is light, and the transverse momentum is conserved,

only the unperturbed motions of the particles will be required. To see this, we start by

calculating the linear momentum of the probe:

Pi =

∫ √
−g(Tparticles)

0
id

3y =
N∑
n=1

pni, (4.97)

where once again we assume that the momentum of the apparatus can be neglected.

Because the physical spacetime is isometric under translations in the y2 and y3 directions,

the transverse momentum Pk will be conserved:3232

0 = Ṗk = ∂t

(
N∑
n=1

mn(δki + hnki)x
′i
n

)
=

N∑
n=1

mn

x′0n

(
x′′nk + ∂τn(hnkix

′i
n)
)
, (4.98)

which is equivalent to the statement that the mechanical forces on the particles (due to

the apparatus) balance each another.3333 Substituting this constraint into equation (4.964.96)

we find that

Ẍk = −
N∑
n=1

mn

x′0n
∂τn(hnkix

′i
n) +O(l3)

= ∂t

(
−

N∑
n=1

mnhnkix
′i
n

)
+O(l3), (4.99)

which is easy to integrate:3434

Ẋk = −
N∑
n=1

mnhnkix
′i
n +O(l3). (4.100)

32This follows from the standard argument: ∂kgαβ = 0 guarantees that (∂k)a is a Killing vector,

∇(a(∂k)b) = 0, and thus 0 =
√
−g∇a(T ab(∂k)b) = ∂α(

√
−gTαk), the spatial integral of which is Ṗk = 0.

33Although the total momentum of the apparatus is assumed to be negligible, we have not made any

assumptions about the local flux of momentum between the apparatus and the particles, and so the

individual mechanical forces on each particle cannot be neglected. The constraint (4.984.98) arises because

the apparatus has much less mass than the particles, and so any momentum it were to gain would send it

off with a very large velocity that would be impossible to maintain while in contact with the particles; in

order to stay connected to the particles, the momentum of the apparatus must remain very small, and the

forces acting on the apparatus must (approximately) sum to zero.
34The constant of integration is set to zero by the initial conditions: the probe is at rest (Ẋi = 0) before

the wave arrives (hµν = 0).
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This is the equation we sought: every instance of x′in is multiplied by hµν , so only the

unperturbed motions are needed to determine Ẋk to linear order in the gravitational field.

The last step is to relate the hnki to the gravitational field at the origin:

hnµν = hµν(t,~0) + xin∂ihµν(t,~0) +O(l2)

= Btt
µν(t)− x1

nḂ
tt
µν(t) +O(l2); (4.101)

as a result, equation (4.1004.100) becomes

Ẋk = −Btt
ki

(
N∑
n=1

mnx
′i
n

)
+ Ḃtt

ki

(
N∑
n=1

mnx
1
nx
′i
n

)
+O(l3)

= −Btt
ki

(
Ẋk

)
+ Ḃtt

ki

(
N∑
n=1

mnx
1
nx
′i
n

)
+O(l3)

= Ḃtt
ki

(
N∑
n=1

mnx
1
nx
′i
n

)
+O(h2) +O(l3). (4.102)

This simplifies even further when we notice that

İij − Lij = ∂t

(
−
∫ √

−g(Tparticles)
0
0yiyjd

3y

)
− 2

∫ √
−g(Tparticles)

0
[jyi]d

3y

= ∂t

(
N∑
n=1

mnx
′0
n x

i
nx

j
n

)
− 2

N∑
n=1

mnx
′[j
n x

i]
n +O(h)

= 2

N∑
n=1

mnx
′(i
n x

j)
n − 2

N∑
n=1

mnx
′[j
n x

i]
n +O(h) +O(l4)

= 2

N∑
n=1

mnx
j
nx
′i
n +O(h) +O(l4), (4.103)

which gives us our final result:

Ẋk = Ḃtt
ki

(
İi1 − Li1

)
/2 +O(h2) +O(l3), (4.104)

exactly as predicted by equation (4.734.73).

It should be clear that our formalism provides a much more direct route to this result:

one needs only to produce (4.674.67) and integrate, a straight-forward operation that lacks

the “insightful” steps of the first principles calculation, such as invoking conservation of

transverse momentum (4.984.98) to remove degrees of freedom from (4.964.96). However, the

moral of this appendix is not simply that our method is more computationally efficient;

equally important is the intuitive power that our framework confers. Working from first

principles, it is hard to imagine that one would have thought to derive (4.1044.104) in the first

place, as there is no obvious reason to expect that a gravitational wave would produce a

transverse motion in the detector’s centre-of-mass. In comparison, our unified picture of

local gravitational energetics brought this phenomenon to mind as readily as the exchange

of energy, momentum, or angular momentum.
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Chapter 5
Localised Energetics of Linear Gravity:

Theoretical Development

5.1 Introduction

There are at least three ways to quantify the energy of a physical system. One approach is

to consider interactions with a second system (the energy of which is known) and to seek

a function-of-state of the first system which, by undergoing equal and opposite changes,

accounts for the energy lost or gained by the second system. Alternatively, a Lagrangian

for the physical system might be constructed, and the energy identified as the Noether

charge associated with the Lagrangian’s symmetry under translation in time. Thirdly,

and most simply of all, one can “weigh” the system; the energy is then determined by the

gravity it generates.

In chapters 33 and 44, we arrived at a local description of the energy, momentum, and

angular momentum of the linearised gravitational field. The resulting gravitational energy-

momentum tensor τab and spin tensor sabc are particularly notable in that, whenever the

field is transverse-traceless, they describe non-negative energy-density, causal energy flow,

and traceless spatial spin; moreover, these properties, and the gauge invariant energetics

of an infinitesimal probe, motivate a natural gauge-fixing procedure. These two tensors

were derived by what is essentially the first method described above: we sought functions

of the gravitational field which could account for the energy, momentum, and angular

momentum exchanged locally with matter. The purpose of this present investigation

is to explore the other two roles played by τab and sabc: as the Noether currents of local

translations and rotations, and as self-interaction terms in the field equations that generate

gravity alongside the energy-momentum of matter.

The chapter is organised as follows. In section 5.25.2, we construct a Lagrangian for

linear gravity (a covariantisation of the Fierz-Pauli Lagrangian for a massless spin-2 field)

and show that it generates τab and sabc according to standard variational definitions of

energy-momentum and spin. This process of “gauging” the translational and rotational

symmetries of the background, and deriving τab and sabc as functional derivatives of the

Lagrangian with respect to the gauge fields, confirms their status as Noether currents of
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translational and rotational symmetry.11 In section 5.35.3 we then demonstrate that, under

a local redefinition of the gravitational field, τab and sabc appear (combined into a single

Belinfante energy-momentum tensor) as the quadratic part of the vacuum Einstein field

equations. The same techniques are then applied to Einstein-Cartan gravity, with τab and

sabc appearing as the quadratic parts of two separate field equations. In both cases, τab

and sabc quantify the self-interaction of the gravitational field, and generate gravity in

an identical fashion to material energy-momentum and spin. Finally, in section 5.45.4 we

examine the significance of the field redefinitions used in section 5.35.3; in contrast to our

tensors, we show that a non-local redefinition is required in order to cast the Landau-

Lifshitz tensor [5252] as a source of the gravitational field.

From all of this we learn that τab and sabc stand on an equal footing with the energy-

momentum and intrinsic spin of matter: they can be derived from the symmetries of a

suitable Lagrangian, and behave as sources for the gravitational field. These developments

solidify the tensors’ physical interpretation, and embed them within the same theoretical

apparatus that has been used to define gravitational energy-momentum in the past [77, 2929,

3535, 5252]. Furthermore, through their role in the non-linear field equations, we gain insight

into how τab and sabc may be extended beyond the linear regime, and also uncover a new

and possibly valuable set of gravitational field-variables.

Our notation and conventions are the same as those of chapters 33 and 44.22 We will,

however, introduce a new variety of index: Greek letters with overbars,33 which we will use

to enumerate the components of tensors in the non-holonomic basis defined by the tetrad

eaµ̄; see appendix 5.A5.A for details. As before, when working in the flat background spacetime

(M̌, ǧab) it will often be convenient to express our tensors in a coordinate system {xµ}
that is Lorentzian with respect to the background metric: ǧµν = ηµν .44

5.2 Lagrangian Formulation

The primary aim of this section is to reproduce the formulae obtained in chapters 33 and

44,

κτ̄µν = 1
4∂µhαβ∂ν h̄

αβ, (5.1a)

κsαµν = 2h̄β[ν∂
[αh̄µ]

β], (5.1b)

1More precisely, the vectors τaµ are the Noether currents of translations in the xµ direction, and

j a
µν ≡ 2x[µτν]

a + saµν are the Noether currents of rotations in the xµxν-plane.
2We work in units where c = 1, write κ ≡ 8πG, and use the sign conventions of Wald [7979]: ηµν ≡

diag(−1, 1, 1, 1), [∇c,∇d]va ≡ 2∇[c∇d]va ≡ Rabcdv
b, and Rab ≡ Rcacb. We use Roman letters as abstract

tensor indices [7979, §2.4] and Greek letters as numerical indices running from 0 to 3.
3These bars should not to be confused with those placed over 2-index tensors, which indicate trace-

reversal: h̄ab ≡ hab − ǧabh/2 and τ̄ab ≡ τab − ǧabτ/2.
4In the next section we will need to implicitly vary ǧab in order to take functional derivatives with

respect to the background tetrad ěaµ̄; when the background metric is curved, the coordinate system {xµ}
has no special properties.
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from a Lagrangian L that also generates the field equations of linear gravity. Before we

do this, however, we will have to make some accommodation for the harmonic gauge

condition,

∂µh̄µν = 0, (5.2)

which we have been diligently enforcing since its appearance as an unexpected consequence

of the derivation of τµν in chapter 33. While this condition has been immensely valuable,

naturally reducing the gauge ambiguity of our framework, it now has the potential to

interfere with the arbitrary field variations that occur when taking functional derivatives

of a Lagrangian. To avoid this problem, we shall temporarily relax the gauge condition

(5.25.2) and aim to derive from L an energy-momentum tensor and spin tensor that gen-

eralise τµν and sαµν beyond the harmonic gauge, reducing to the familiar formulae (5.15.1)

only once the harmonic condition is reintroduced. It is worth noting, however, that al-

though the generalised forms of the tensors will be useful for technical reasons in later

sections, they will not give us any further physical information than their restriction to

harmonic gauge (5.15.1). This is because in order to interpret τµν and sαµν physically, we

must first extinguish their gauge freedom; the only way to do this that produces sensible

local properties (positive energy-density, causal energy-flow, and traceless spatial spin)

is by insisting on transverse-traceless gauge, which obviously ensures that the harmonic

condition is satisfied.

In addition to relaxing the harmonic condition, it will also be convenient to ignore

matter (Tµν = 0) and work with gravity in vacuo for the entirety of this section. Even

though the framework of our previous chapters was developed around the exchange of

energy-momentum and angular momentum between matter and gravity, here we will be

able to construct τµν and sαµν from the dynamics of the gravitational field alone.

5.2.1 The Fierz-Pauli Lagrangian

We begin in a flat background spacetime (M̌, ǧab) with the Fierz-Pauli Lagrangian for a

massless spin-2 field [3737]:

LFP ≡
1

4κ

(
∂µhαβ∂

µh̄αβ − 2∂µh̄
µα∂ν h̄

ν
α

)
. (5.3)

From a non-gravitational standpoint, this Lagrangian can be derived by demanding in-

variance under the massless spin-2 gauge transformation:55

δhµν = ∂(µξν) ⇒ δLFP = surface terms. (5.4)

For our purposes, however, it suffices to observe that LFP correctly reproduces the linear-

ised vacuum Einstein field equations:

0 =
δLFP

δhµν
=

1

κ
Ĝµναβhαβ, (5.5)

5Ignoring surface terms and an overall rescaling, LFP is the unique scalar, quadratic in ∂µhαβ , which

is invariant (up to surface terms) under δhµν = ∂(µξν); see [6464] for a proof.
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where

Ĝ αβ
µν hαβ ≡ G(1)

µν ≡ ∂α∂(µhν)
α − ∂2hµν/2− ∂µ∂νh/2 + ηµν(∂2h− ∂α∂βhαβ)/2 (5.6)

is the linear part of the Einstein tensor when the physical metric gab is perturbed according

to

φ∗gab = ǧab + hab. (5.7)

As before, φ :M→ M̌ maps the physical spacetime (M, gab) to the background.

To obtain an energy-momentum tensor and a spin tensor from LFP, we will follow

the standard definitions (5.1215.121) from Einstein-Cartan gravity, a brief review of which can

found in appendix 5.A5.A.66 We first need to covariantise LFP. Invoking a tetrad ěaµ̄ and spin

connection ω̌ µ̄ν̄
a to “gauge” the translational and rotational symmetries of the background,

we write the Fierz-Pauli Lagrangian in terms of quantities which are covariant under local

translations and rotations:

L′FP ≡
ě

4κ

(
Ďµ̄hᾱβ̄Ď

µ̄h̄ᾱβ̄ − 2Ďµ̄h̄
µ̄ᾱĎν̄ h̄

ν̄
ᾱ

)
, (5.8)

where Ďa is a covariant derivatives with connection ω̌ µ̄ν̄
a , the volume element ě ≡ 1/ det(ěaµ̄),

and Greek indices with overbars enumerate the components of tensors in the non-holonomic

basis {ěaµ̄}.
So far, the background (M̌, ǧab) is still flat and torsion-free: we have only rewritten the

Fierz-Pauli Lagrangian in a more general language. We will soon need to perform arbitrary

infinitesimal variations in ěaµ̄ and ω̌ µ̄ν̄
a , however, and in doing so we will inevitably explore

backgrounds with curvature Řabµ̄ν̄ and torsion Ť aµ̄ν̄ . For this reason, we must also decide

how our Lagrangian should change when the background is no longer flat and torsion-free.

The obvious response to this uncertainty is to follow the “minimal coupling” maxim, and

insist that the Lagrangian remain as it is in equation (5.85.8) even when the background

6In standard general relativity, the rotational and translational symmetries of Minkowski space-

time are “gauged” into a single local symmetry: diffeomorphism gauge invariance. As a result, the

energy-momentum and angular momentum of matter are all contained within a single Belinfante energy-

momentum tensor TBel
ab (written simply as Tab in chapters 33 and 44) which we derive according to Hilbert’s

definition: TBel
ab ≡ (1/

√
−g)(δLmatter/δg

ab). The Belinfante tensor includes intrinsic spin in so far as it

integrates to give the correct global measure of angular momentum (see section 5.2.45.2.4) but as we saw in sec-

tion 4.64.6 of the previous chapter, it cannot provide a physically sensible local description of the spin carried

by a field. In order to derive two separate tensors, τµν and sαµν , following a Hilbert-like approach, one

must gauge the rotational and translational symmetries separately, and take derivatives of a Lagrangian

with respect to the two gauge fields (5.1215.121). These are the techniques of the Kibble/Sciama formulation

of Einstein-Cartan gravity [1717, 3232, 4343, 4848, 5353, 7474], of which we give a brief summary in appendix 5.A5.A.

Einstein-Cartan gravity is a reformulation, and slight extension, of general relativity, in which spacetime

torsion is generated by material intrinsic spin. As we will not require the spacetime to actually possess

torsion, or matter to carry intrinsic spin, the results of this chapter do not depend on extending general

relativity in this way. As we will see, however, torsion or no torsion, the tetrad formalism (that is, general

relativity expressed in terms of a tetrad and a connection, rather than a metric) is often a more natural

environment in which to understand τµν and sαµν .
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is curved and contorted. Despite the simplicity of this approach, the Lagrangian L′FP

is actually a highly unnatural choice, as it deprives the field theory of its spin-2 gauge-

invariance when the background is no longer flat. To see this, consider a curved vacuum

background (Řaµ̄ = 0, Ť aµ̄ν̄ = 0, Řabµ̄ν̄ 6= 0) and perform a covariantised spin-2 gauge

transformation:

δhµ̄ν̄ = Ď(µ̄ξν̄) ⇒ δL′FP = − ě
κ
Ďµ̄ξν̄Řᾱµ̄ν̄β̄h̄

ᾱβ̄ + surface terms. (5.9)

Thus, L′FP loses its spin-2 gauge invariance when one tries to extend the theory “minim-

ally” beyond the flat background.

The gauge invariance of the field theory can be preserved, for vacuum backgrounds at

least, if we allow hµν to couple directly the curvature of the background.77 The Lagrangian

(5.105.10) we will use to generate τµν and sαµν will do exactly this, although we should

explain that it is not unique in this regard. If we had wanted to present the subsequent

calculation as a genuine ab initio derivation of τµν and sαµν , then we would need to justify

our specialisation to (5.105.10) over the other possibilities. However, we have already derived

τµν and sαµν from more concrete considerations (in chapters 33 and 44), and our aim here

is only to show that a Lagrangian exists from which the tensors can be obtained. We

will explore this curvature-coupling freedom in section 5.2.35.2.3, and by the end of section

5.4.25.4.2 we will be in a position to look back at L and better understand the significance of

our “choice”. For now, we shall simply write down our Lagrangian as an ansatz, justified

by its being a covariantisation of LFP which preserves the field theory’s gauge-invariance

beyond the flat background, and proceed to calculate its energy-momentum tensor and

spin tensor.

5.2.2 Energy-Momentum Tensor and Spin Tensor

Let us consider the following the Lagrangian for the linearised gravitational field:

L ≡ ě

4κ

(
Ďµ̄hᾱβ̄Ď

µ̄h̄ᾱβ̄ − 2Ďµ̄h̄
µ̄ᾱĎν̄ h̄

ν̄
ᾱ + 2h̄µ̄ν̄Řᾱµ̄ν̄β̄h̄

ᾱβ̄
)
. (5.10)

This clearly reduces to the Fierz-Pauli Lagrangian (5.35.3) when the background is flat and

torsion-free, and furthermore, successfully extends the spin-2 gauge-invariance of the the-

ory to curved (vacuum) backgrounds:

δhµ̄ν̄ = Ď(µ̄ξν̄) ⇒ δL = surface terms. (5.11)

Treating the fields {hµ̄ν̄ , ěaµ̄, ω̌
µ̄ν̄
a } as independent variables,88 we shall evaluate the

7No set of curvature-coupling terms (nor torsion-coupling terms) can extend the theory’s gauge invari-

ance to include non-vacuum backgrounds. This comes as no surprise, considering that we are studying a

Lagrangian LFP that does not include matter. Evidently, the linearised vacuum field equations (5.55.5) can

only be expected to be consistent when they describe perturbations from a vacuum background.
8It is slightly unusual to consider hµ̄ν̄ as the independent field variable, rather than hab; however,

the only difference between the two approaches are terms proportional to δL/δhab that appear in the

energy-momentum tensor, and these vanish on the field equations (5.55.5) anyway.
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energy-momentum tensor and spin tensor of L according to their definitions from Einstein-

Cartan gravity:

τ µ
a ≡

(
1

2ě

δL
δěaµ̄

)
ě=δ
ω̌=0

, saµν ≡
(

1

ě

δL
δω̌ µ̄ν̄

a

)
ě=δ
ω̌=0

, (5.12)

where the subscripts ě = δ and ω̌ = 0 signify that, once the functional derivatives have

been taken, the background returns to its former state (flat and torsion-free) and the

tetrad and spin connection become trivial (5.1235.123) to reflect this. Substituting (5.105.10) into

(5.125.12) we arrive at the following formulae for the energy-momentum tensor and spin tensor

of the linearised gravitational field:

κτ̄µν = 1
4∂µhαβ∂ν h̄

αβ − 1
2∂µh̄να∂βh̄

αβ, (5.13a)

κsαµν = 2h̄β[ν∂
[αh̄µ]

β] + δ[ν
αh̄µ]

β∂γ h̄
γ
β. (5.13b)

This is precisely the result we needed: L has generated an energy-momentum tensor

τµν and spin tensor sαµν which reduce to the familiar formulae (5.15.1) when the harmonic

condition (5.25.2) is reintroduced.

We have achieved the main aim of this section, demonstrating that our energy-mo-

mentum tensor and spin tensor can be identified as translational and rotational Noether

currents of a Lagrangian for linear gravity. In addition, the equations (5.135.13) reveal how

our tensors (5.15.1) generalise beyond harmonic gauge. Before we study these generalised

tensors in detail, we shall first examine the freedom that was available in our choice of

covariantisation of LFP, and demonstrate that the formulae (5.135.13) constitute a suitably

unique extension of (5.15.1).

5.2.3 Background Coupling and Superpotentials

We begin by considering the most general Lagrangian, quadratic in hµν and second-order

in derivatives, which differs from the minimally coupled Lagrangian (5.85.8) only by terms

which couple hµν to background curvature; ignoring surface terms, this is

LŘ ≡ L
′
FP +

ě

2κ
Ř µ̄ν̄

ᾱβ̄
Σᾱβ̄

µ̄ν̄ , (5.14)

where Σαβ
µν = −Σβα

µν = −Σαβ
νµ = Σµν

βα is a local quadratic Lorentz-covariant function

of hµν , the general form of which can be parametrised by five dimensionless constants {An}:

Σαβ
µν ≡ A1h

α
[µh

β
ν] +A2hh

[α
[µδ

β]
ν] +A3h

γ
[µδ

[β
ν]h

α]
γ + δα[µδ

β
ν]

(
A4h

2 +A5hγδh
γδ
)
. (5.15)

If we recall the behaviour of L′FP under a spin-2 gauge transformation (5.95.9), it is im-

mediately clear that the field theory will retain its gauge invariance for curved vacuum

backgrounds (5.115.11) if and only if A1 = −1.

Inserting LŘ into (5.125.12), we find that the energy-momentum tensor of this Lagrangian

is identical to the tensor (5.13a5.13a) derived from L, but that the spin tensor is given by

κsαµν = hβ[ν∂
αhµ]

β + δ[ν
αh̄µ]

β∂γ h̄
γ
β + h̄α[µ∂

βh̄ν]β + ∂βΣαβ
µν . (5.16)
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In harmonic gauge this becomes

κsαµν = hβ[ν∂
αhµ]

β + ∂βΣαβ
µν , (5.17)

revealing that {An} are the very same constants that parameterised the superpotential

freedom of sαµν in section 4.34.3 of the previous chapter. There, the value A1 = −1 was

derived by demanding that sααν = 0 for all transverse-traceless hµν , thereby ridding the

gravitational field of infinite pressure gradients. Now we see that this special value of

A1 has a second significance: it ensures that the spin-2 gauge-invariance of the linearised

theory extends beyond the flat background.99

Equation (5.175.17) also demonstrates that the parameters {An} must take the values

A1 = −1, A2 = 1, A4 = −1/4, A3 = A5 = 0, (5.18)

(as they do in chapter 44) if the spin tensor (5.165.16) is to reduce to its original form (5.1b5.1b) in

harmonic gauge; thus the freedom to add curvature terms (5.145.14) cannot, by itself, produce

any other generalisation of τµν and sαµν than (5.135.13).

Now that we understand the role played by curvature terms in the Lagrangian, we

must also explore the possibility of coupling hµν to background torsion. If the Lagrangian

is to remain quadratic in hµν and second-order in derivatives, the only contribution we

need to consider is

∆L ≡ − ě
κ
Ť aµ̄ν̄Σ µ̄ν̄

a , (5.19)

where Σ µν
a = −Σ νµ

a is composed of terms of the form hDh.1010 The torsion terms generate

the superpotential freedom of the energy-momentum tensor:

κ∆τ µ
a =

(
κ

2ě

δ∆L
δěaµ̄

)
ě=δ
ω̌=0

= ∂νΣa
µν , (5.20)

which is also accompanied by a change in the spin tensor,

κ∆saµν =

(
κ

ě

δ∆L
δω̌ µ̄ν̄

a

)
ě=δ
ω̌=0

= 2Σ[µν]
a. (5.21)

Because the energy-momentum superpotentials are of the form ∂(h∂h), containing tensors

of the form h∂2h, their addition has the potential to spoil the homogeneous differential

structure of (5.13a5.13a): τµν ∼ ∂h∂h. In fact, there is no superpotential ∂νΣa
µν , entirely

composed of terms ∂h∂h, which vanishes in harmonic gauge.1111 Thus, the freedom to add

9In section 5.45.4 of this chapter, we will also see that A1 = −1 allows τµν and sαµν to be cast as the

source terms of the quadratic field equations using a local redefinition of the gravitational field.
10Terms of the form eŤ 2h2 are also allowable, but any contribution they make to τµν and sαµν will be

O(Ť ), vanishing when the background returns to being Minkowski spacetime. Also, note that no term can

couple hµν to both torsion and curvature, as this would be at least third-order in derivatives.
11To prove this, construct the most general 2-index Lorentz-covariant tensor, composed entirely of

terms of the form ∂h∂h, which is at least linear in ∂µh̄
µν , and suppose that it is also a superpotential:

κ∆τµν = ∂αh̄
αβ(C1∂µh̄νβ +C2∂ν h̄µβ +C3∂β h̄µν +ηµν(C4∂βh+C5∂γ h̄

γ
β))+C6∂αh̄

α
µ∂νh+C7∂αh̄

α
ν∂µh+

C8∂αh̄
α
µ∂β h̄

β
ν , where {Cn} are arbitrary dimensionless constants. Equation (5.205.20) informs us that

∂ν∆τ ν
µ = 0 for all hµν ; the only values of {Cn} consistent with this are Cn = 0.
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torsion terms to the Lagrangian is nullified by our insistence that the generalised τµν be

free of second derivatives, and reduce to our original formula when the harmonic condition

is enforced.

We therefore conclude that our Lagrangian (5.105.10) is the unique covariantisation of

LFP, quadratic in hµν and second-order in derivatives, which according to the definitions

(5.125.12) generates an energy-momentum tensor that is free from second derivatives, and an

energy-momentum tensor and spin tensor which agree with our original formulae (5.15.1) in

harmonic gauge. Consequently, the resulting energy-momentum tensor and spin tensor

(5.135.13) are the unique extensions of τµν and sαµν beyond harmonic gauge, which can be

derived from a covariantised Fierz-Pauli Lagrangian according (5.125.12), and which do not

introduce terms of the form h∂2h into τµν .

Having demonstrated that (5.135.13) are indeed the unique extension of (5.15.1) beyond the

harmonic gauge, it will be useful to review the basic properties of these generalised tensors,

and construct their Belinfante tensor.

5.2.4 Basic Properties and Belinfante Tensor

Although the generalised energy-momentum tensor and spin tensor (5.135.13) can only be

interpreted physically once the harmonic condition (and then transverse-traceless gauge)

has been enforced, it will still be valuable to study their mathematical properties in this

broader context, and compute the Belinfante tensor they define.

As our first observation, it is interesting to note that the gravitational energy-mo-

mentum tensor is asymmetric outside harmonic gauge: τ[µν] 6= 0. This is the usual

context in which one encounters a spin tensor: the asymmetry of an energy-momentum

tensor necessitates the existence of a spin tensor, as otherwise finite torques would act

on infinitesimal regions of space [5858, §5.7]. The framework we have developed is slightly

unconventional in this regard, as originally the existence of sαµν was inferred by the ex-

change of angular momentum with matter, rather than any asymmetry in τµν . Even

though a symmetric energy-momentum tensor can be paired with a non-zero spin tensor

(5.15.1) without contadiction,1212 it is perhaps reassuring to know that the moment we venture

beyond harmonic gauge, the conventional inference returns: τ[µν] 6= 0 ⇒ sαµν 6≡ 0.

We should also review a few basic properties that the generalised τµν and sαµν possess

by virtue of their definitions (5.125.12). We begin by observing that the energy-momentum

of the linearised gravitational field is conserved when the vacuum field equations (5.55.5) are

obeyed:

∂ντµν = − 1

2κ
(∂µh

αβ)Ĝ γδ
αβ hγδ = 0. (5.22)

Next we find that the divergence of the spin tensor is given by

∂αs
α
µν = 2τ[µν] +

2

κ
hα[µĜν]

αβγhβγ , (5.23)

12The contradiction lies in having an asymmetric energy-momentum tensor and not having a spin tensor.
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and hence, once the field equations have been applied,

∂α(2x[µτν]
α + sαµν) = 0. (5.24)

This confirms that the angular momentum current densities, defined in section 4.24.2 of

chapter 44,

j α
µν ≡ 2x[µτν]

α + sαµν , (5.25)

are also conserved as a consequence the field equations:

∂αj
α

µν = 0. (5.26)

Of course, τµν and j α
µν are only conserved because we are working with the vacuum field

equations (5.55.5): there is no matter with which to exchange energy-momentum and angular

momentum.

Because τµν and sαµν obey the properties displayed above, it is possible to construct

a Belinfante energy-momentum tensor [1515],

tµν ≡ τµν + ∂α(s α
µν + s α

νµ − sαµν)/2, (5.27)

which is symmetric by virtue of the field equations,

t[µν] = τ[µν] − ∂αsαµν/2 =
1

κ
hα[νĜµ]

αβγhβγ = 0,

and also conserved:

∂νtµν = ∂ντµν = − 1

2κ
(∂µh

αβ)Ĝ γδ
αβ hγδ = 0. (5.28)

Furthermore, provided surface terms are negligible, the Belinfante tensor defines precisely

the same global measure of energy, momentum, and angular momentum as τµν and sαµν :∫
t 0
µ d3x =

∫
τ 0
µ d3x, (5.29a)∫

2x[µtν]
0d3x =

∫
(2x[µτν]

0 + s0
µν)d3x. (5.29b)

The advantage of this Belinfante description is obvious: it combines energy-momentum

and spin into a single symmetric tensor.1313 This apparent simplicity comes at a high price,

however, because although the global picture remains intact (5.295.29) the Belinfante tensor

is unable to reproduce the physically sensible local description that τµν and sαµν provide.

In general, the intermixture of spin and energy-momentum in (5.275.27) prevents us from

localising the two quantities separately, and we are left with angular momentum currents

13That said, as far as our framework is concerned, the symmetry of the Belinfante tensor is not par-

ticularly impressive: our energy-momentum tensor τµν is already symmetric, by virtue of the harmonic

condition (5.25.2) rather than the field equations.
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x[µtν]
α which “contain” spin but do not assign it a local current,1414 and energy-momentum

currents t α
µ which display negative energy-densities and non-causal energy-flux. Further-

more, because the gravitational Belinfante tensor has no special geometric or algebraic

properties in either harmonic or transverse traceless gauge, it becomes impossible to jus-

tify a natural gauge-fixing programme. The tensor tµν can then be evaluated over the

entire gauge space of hµν , and will depend on the arbitrary mapping φ :M→ M̌ as much

as it depends on the physical properties of the gravitational field.

For these reasons, we cannot advocate interpreting tµν as the “true” energy-momentum

of the gravitational field. The tensors τµν and sαµν are the local measures of gravitational

energy-momentum and spin, describing positive energy-density, causal energy-flux, and

traceless spatial spin; tµν is a derived quantity which packages spin and energy-momentum

into a single object, losing some local information in the process.1515 The main application

of the gravitational Belinfante tensor will arise in the next section, where we will also

gain some insight into its physical interpretation. In brief, we will see that tµν appears

as the quadratic contribution to the Einstein field equations, generating perturbations in

the metric alongside the (Belinfante) energy-momentum of matter. In other words, it is

the particular combination of energy-momentum and spin, τµν +∂α(s α
µν +s α

νµ −sαµν)/2,

that curves physical spacetime in a quadratic approximation to general relativity. It would

be implausible to expect τµν alone to fulfill this role, as there is no other field equation

in which sαµν could act as the source; only by considering perturbations in the Einstein-

Cartan equations, as we do in section 5.3.25.3.2, will we find a setting in which τµν and sαµν
arise as the self-interaction source-terms in two separate field equations.

In addition to its place in the Einstein field equations, tµν will also prove useful when

we wish to compare our approach with the traditional treatments of gravitational energy-

momentum, such as the Landau-Lifshitz tensor (see section 5.4.35.4.3) or the ADM energy-

14Even when the orbital angular momentum currents vanish (x[iτj]
α = 0) the Belinfante “spin” currents

x[itj]
α ∼ x∂s still depend explicitly on the coordinates {xµ}; hence they cannot be interpreted as an

intrinsic property of the gravitational field. As we saw in section 4.64.6 of the previous chapter, this defect

is exemplified by the (harmonic-gauge) gravitational plane-wave, the Belinfante spin of which lies entirely

on the boundary, with magnitude that is proportional to the coordinate distance from the origin.
15Historically, the Belinfante tensor has been preferred over the separate localisation of energy-

momentum and spin. This is probably due to the privileged status of the Belinfante tensor of the electro-

magnetic field Aµ, which is invariant under the spin-1 gauge transformation δAµ = ∂µλ, while (generically)

the separate energy-momentum tensor and spin tensor are not. Of course, this criterion cannot be extended

to the gravitational field, as there is no gravitational energy-momentum tensor, Belinfante or otherwise,

which is invariant under the gauge transformation δhµν = ∂(µξν). In many respects, the electromagnetic

field is a special case. Following the same methodology we used in this section, one can isolate the unique

covariantised electromagnetic Lagrangian which (in contrast to a generic covariantisation) preserves spin-1

gauge invariance for arbitrary backgrounds. On applying the Einstein-Cartan definitions (5.1215.121) to this

particular covariantisation, one finds that the energy-momentum tensor is identical to the (gauge-invariant)

Belinfante tensor, and that the spin tensor vanishes. This peculiar situation arises because the electromag-

netic Lagrangian can be written in terms of differential forms, and so can be fully covariantised without

introducing the spin connection: LEM ∝ (dA)ab(dA)cde
a
µ̄e
µ̄cebν̄e

ν̄d. In contrast to electromagnetism, the

spin tensor of the spin-1/2 field does not vanish, and both the energy-momentum tensor and spin tensor

are gauge invariant [3131].
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momentum, which is discussed in appendix 5.C5.C. As these approaches do not contain a

gravitational spin tensor, they must also constitute Belinfante-style descriptions of grav-

itational energetics.

Proceeding with the calculation, we substitute the generalised tensors (5.135.13) into the

definition (5.275.27) in order to obtain the Belinfante tensor associated with our framework.

The resulting formula can be expressed most compactly in terms of the trace-reverse of

tµν :

κt̄µν =
1

4
∂µhαβ∂ν h̄

αβ +
1

2
∂αh̄

αβ
(
∂(µh̄ν)β − ∂βhµν

)
+

1

2
∂αh̄β(µ

(
∂βh̄ν)

α − ∂ν)h̄
αβ
)

+
1

2
h̄αβ

(
∂α∂(µh̄ν)β − ∂α∂βhµν

)
+

1

2
h̄β(µ∂

β∂αh̄ν)α + hα[νĜµ]
αβγhβγ . (5.30)

Although the last term can be removed by applying the field equations, we will retain it for

the sake of generality. Incidentally, this calculation reveals another practical disadvantage

of the Belinfante tensor: algebraic complexity. Not only is tµν composed of many more

terms than the individual tensors τµν and sαµν combined, it also includes instances of

second derivatives. As a result, computations involving tµν will often be considerably

more demanding that those involving τµν , or sαµν , or both.

This concludes our analysis of the Lagrangian formulation of τµν and sαµν . Armed

with the results of this section, we are now in a position to “weigh” the gravitational field,

and investigate the role our tensors play in the non-linear field equations.

5.3 Self-interaction in the Gravitational Field Equations

Here we examine how τµν and sαµν occur as the quadratic terms in a perturbative expan-

sion of the Einstein field equations and also the Einstein-Cartan field equations, generating

gravity in exactly the same fashion as material energy-momentum and spin.

As we move from a linear theory of gravity to a quadratic one, it will become important

to fix the definition of hµν more precisely. Until this point, hµν has been used to signify a

perturbation in the physical metric:

φ∗gab = ǧab + hab. (5.31)

However, because our framework is based exclusively on gravity in the linear approxima-

tion, we could have defined hµν such that

φ∗gab = ǧab + hab +O(h2), (5.32)

and arrived at the very same results. For instance, suppose we had decided to work with

the field h′µν that defines a (negative) perturbation in the inverse metric:

φ∗gab = ǧab − h′ab. (5.33)

The equation for the metric would then have been

φ∗gab = ǧab + h′ab + h′ach
′c
b +O(h3), (5.34)
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instead of (5.315.31), but because h′µν = hµν + O(h2), the linearised theory of h′µν would be

the same as hµν , and our framework would assign the same tensors (5.135.13) to describe its

energy-momentum and spin. Only once we came to study the quadratic approximation of

the field equations, as we do now, would any mathematical difference between the fields

hµν and h′µν have been observed.

For the sake of concreteness, we will start with the standard definition of the gravita-

tional field (5.315.31) and consider this to be true to all orders of approximation. As we will

soon see, however, it is precisely the freedom to make field redefinitions of the form (5.325.32)

that will allow us to cast τµν and sαµν as the sources of the gravitational field; by the

end of the next section, we will have uncovered a new definition of hµν , valid to quadratic

order, that is specially selected by our local description of gravitational energetics. We

will examine the wider significance of this definition, and the effects of field redefinition in

general, in section 5.45.4.

5.3.1 The Einstein Equations

Consider the vacuum Einstein field equations (in the physical spacetime) expressed in

terms of the “mixed” Einstein tensor density:

√
−gG b

a = 0. (5.35)

Mapping this equation to the background, we apply (5.315.31) to every instance of φ∗gab, and

expand the result in powers of hµν :

Ĝ αβ
µν hαβ + G̃(2)

µν +O(h3) = 0, (5.36)

where

G̃(2) b
a ≡

[
φ∗(
√
−gG b

a )
](2)

(5.37)

is the quadratic part of the mixed Einstein tensor density.

Let us now redefine the gravitational field hµν by making the replacement

hµν → hµν + hµαh
α
ν/2; (5.38)

this gives rise to a corresponding change in the definition of the metric,

φ∗gab = ǧab + hab + hach
c
b/2, (5.39)

and causes the vacuum equations (5.365.36) to become

Ĝ αβ
µν hαβ + Ĝ αβ

µν (hαγh
γ
β)/2 + G̃(2)

µν = 0, (5.40)

when working to second order.1616 Moving all quadratic terms to the right-hand side, and

making use of the following identity,

−G̃(2)
µν − Ĝ αβ

µν (hαγh
γ
β)/2 = κtµν , (5.41)

16To clarify: the tensor G̃
(2)
µν is still the quadratic part of φ∗(

√
−gG b

a ) when the metric is expanded

according to (5.315.31); this tensor has exactly the same formula in terms of the new hµν as it did the old

because the replacement (5.385.38) only alters G̃
(2)
µν by quantities O(h3), which we neglect.
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which is derived in appendix 5.B5.B, we find that the quadratic vacuum field equations (5.405.40)

are equivalent to

Ĝ αβ
µν hαβ = κtµν , (5.42)

where tµν is the Belinfante energy-momentum tensor of the gravitational field (5.305.30) con-

structed from τµν and sαµν .

Equation (5.425.42) is exactly what we had hoped to find: gravitational energy-momentum

generates gravity in exactly the same fashion as material energy-momentum. To make this

comparison transparent, we remind ourselves of the non-vacuum field equations at linear

order:

Ĝ αβ
µν hαβ = κTBel

µν , (5.43)

where TBel
µν (written simply as Tµν in chapters 33 and 44) is the Belinfante energy-momentum

tensor of matter, mapped to the background. Because TBel
µν is Belinfante, any intrinsic spin

carried by matter must be packaged inside this tensor according to the same formula (5.275.27)

that defines the Belinfante tensor of the gravitational field, making the analogy with tµν

extremely close. Furthermore, if one assumes that TBel
µν is of the same order of magnitude

as tµν ∼ O(h2), then at quadratic order the non-vacuum version of (5.425.42) is in fact

Ĝ αβ
µν hαβ = κ(tµν + TBel

µν ), (5.44)

wherein the source of the gravitational field is the sum of the material and gravitational

Belinfante tensors.1717

It goes without saying that equation (5.425.42) can also be written as

Ĝ αβ
µν hαβ = κ

(
τµν + ∂α(sµν

α + sνµ
α − sαµν)/2

)
, (5.45)

making the function of τµν and sαµν absolutely clear: these tensors do not simply constitute

a passive “kinematical” description of gravitational energy-momentum and spin, they

actively determine the field’s dynamics.

Despite the satisfying simplicity of this result, equation (5.455.45) is clearly not the best

point at which to end our investigation. Having extolled the virtues of a formalism which

keeps spin separate from energy-momentum, our real goal must be to find a formulation

of gravity in which τµν and sαµν appear as source-terms in separate gravitational field

equations. It should come as no surprise that Einstein-Cartan theory will provide precisely

the environment in which to achieve this objective.

17If TBel
µν ∼ O(h) � tµν , a little more care must be taken: the right-hand side of (5.445.44) is then

κ(tµν + T
Bel(1)
µν + T

Bel(2)
µν + T

Bel(1)
µα h̄αν) the last term arising from the density and index placement of the

equation (5.355.35) on which (5.425.42) was based. These terms do not contradict the statement that tµν and TBel
µν

generate gravity in the same fashion, because t
(1)
µν = 0; furthermore, we would need to work to third-order

in hµν , and have a third-order definition of tµν , before terms such as t
(3)
µν and t

(2)
µαh̄

α
ν could be seen in the

field equations.
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5.3.2 The Einstein-Cartan Equations

We will now disentangle the spin and energy-momentum in equation (5.455.45), formulating

a quadratic approximation to Einstein-Cartan gravity in which τµν and sαµν appear as

separate source-terms in the field equations.1818 In close analogy with the previous section,

we proceed by expanding the field equations (5.1205.120) to second order in fµν and w µν
α ,

where

φ∗eaµ̄ = δaµ − faµ/2, (5.46a)

φ∗ω µ̄ν̄
a = w µν

a , (5.46b)

are initially considered to be true to all orders; we then perform a non-linear field redefin-

ition,

fµν → fµν +O(f2), (5.47a)

w µν
α → w µν

α +O(f2), (5.47b)

to generate the field equations we desire. In order to identify τµν and sαµν in these

equations, it will also be necessary to express tensors of the form w∂f + w2 in terms of

hµν . To this end, we will evaluate these tensors on torsion-free perturbations (5.1305.130),

w µν
α = (∂[νfµ]

α + ∂[νf µ]
α + ∂αf

[νµ])/2 +O(f2), (5.48)

in the “symmetric” rotation gauge (5.1325.132):

f[µν] = O(f2). (5.49)

These relations allow us to identify

fµν ≡ hµν +O(f2), (5.50a)

w µν
α ≡ ∂[νhµ]

α +O(f2), (5.50b)

and thus convert the quadratic parts of the field equations into the corresponding tensors

of perturbative general relativity: w∂f + w2 = ∂h∂h+O(f3).1919

To begin, let us focus our attention on the first Einstein-Cartan field equation (5.120a5.120a).

Following the approach of section 5.3.15.3.1, we express the vacuum field equation in terms of

the mixed Einstein tensor density,

eG b
a = 0, (5.51)

18The essentials of perturbative Einstein-Cartan gravity are reviewed in section 4 of appendix 5.A5.A.
19The validity of the formulae (5.135.13) can only be guaranteed in the generally-relativistic regime, i.e.

torsion-free gravity described by a symmetric tensor field hµν . In the linearised Einstein-Cartan theory,

this corresponds to the restriction (5.485.48) for w µν
α and (5.495.49) for fµν . If we already knew how to generalise

τµν and sαµν beyond the generally-relativistic regime (where the gravitational field is described by uncon-

strained fµν and w µν
α ) then it would be possible to recognise these tensors in the field equations without

making such restrictions. The conversion ∂h → ∂f + w is not unique, however, so it is not immediately

clear how this generalisation should be achieved.
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where G b
a ≡ (R µ̄

a − eµ̄aR/2)ebµ̄ is a function of the physical tetrad eaµ̄ and physical spin

connection ω µ̄ν̄
a . Mapping this equation to the background, we expand to quadratic order

in fµν and w µν
α , and simplify the resulting equation by taking the trace-reverse:

2∂[µwα]ν
α = −f∂[µwα]ν

α + fνβ∂[µwα]
βα + fαβ∂[µwα]ν

β − 2w[µ|
α
νw|β]

β
α. (5.52)

We now redefine w µν
α according to the replacement

w µν
α → w µν

α − fw µν
α /2 + fβ[µwαβ

ν] + fβ
[µ∂αf

ν]β/4; (5.53)

the physical spin connection is then given by

φ∗ω µ̄ν̄
a = w µν

a − fw µν
a /2 + waβ

[νfµ]β + fβ
[µ∂af

ν]β/4,

and the quadratic field equation (5.525.52) becomes

2∂[µwα]ν
α = ∂[µfwα]ν

α − ∂[µ|fνβw|α]
βα − ∂[µf

αβwα]νβ − 2w[µ|
α
νw|β]

β
α

− ∂[µ|f
β
ν∂|α]f

α
β/4 + ∂[µf

βα∂α]fνβ/4. (5.54)

Applying (5.505.50) to the terms on the right-hand side, we obtain

2∂[µwα]ν
α = κτ̄µν , (5.55)

which is simply the trace-reverse of

2∂[µwα]ν
α − ηµν∂αw αβ

β = κτµν . (5.56)

This is the field equation we had hoped to construct, mirroring the structure of the linear-

ised non-vacuum field equation (5.129a5.129a) with gravitational energy-momentum τµν taking

the place of the material energy-momentum tensor Tµν .

We now turn to the second vacuum Einstein-Cartan field equation (5.120b5.120b). Writing

this as

T aµ̄ν̄ = 0 (5.57)

in the physical spacetime, we once again use the standard definitions (5.465.46) and expand

to second order in the background:

∂[µf
α
ν] + 2w[µ

α
ν] = fβ[µ∂

βfαν]/2 + w α
β [νf

β
µ] + w[µ

β
ν]f

α
β. (5.58)

Consistency with the first field equation (5.565.56) requires us to redefine w µν
α as before

(5.535.53) but places no constraint on the definition of fµν ; we are therefore free to make the

replacement

fµν → fµν − fµαfαν/4, (5.59)

and fix the tetrad expansion at quadratic order:

φ∗eaµ̄ = δaµ − faµ/2 + faνf
ν
µ/8. (5.60)
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Appling these redefinitions to the second field equation (5.585.58) and converting the quadratic

terms using (5.505.50), one finds that

∂[µf
α
ν] + 2w[µ

α
ν] = 2h̄β[ν∂

[αhµ]
β]

= κ(sαµν + δ[µ
αsβν]β), (5.61)

from which the desired equation follows:

∂[µf
α
ν] + 2w[µ

α
ν] + δα[µ|(∂|ν]f − ∂βfβ |ν] − 2w β

β |ν]) = κsαµν .

We have found a suitable counterpart to equation (5.565.56), in which the gravitational spin

tensor sαµν takes on the role played by material spin Sαµν in the linearised field equation

(5.129b5.129b).

Combining these results, we conclude that under the perturbative expansions

φ∗eaµ̄ = δaµ − faµ/2 + faνf
ν
µ/8, (5.62a)

φ∗ω µ̄ν̄
a = w µν

a − fw µν
a /2 + waβ

[νfµ]β + fβ
[µ∂af

ν]β/4, (5.62b)

the vacuum Einstein-Cartan field equations are approximated, to quadratic order, by

2∂[µwα]ν
α − ηµν∂αw αβ

β = κτµν , (5.63a)

∂[µf
α
ν] + 2w[µ

α
ν] + δα[µ|(∂|ν]f − ∂βfβ |ν] − 2w β

β |ν]) = κsαµν , (5.63b)

wherein τµν and sαµν generate the gravitational fields fµν and w µν
α in an identical fashion

to the energy-momentum and spin of matter (5.1295.129). We have found the analogue of

(5.425.42) in the Einstein-Cartan theory of gravity, in which gravitational energy-momentum

and spin act as the source terms of separate field equations.

5.4 Field Redefinition

We have succeeded in demonstrating that τµν and sαµν do indeed express the dynamical

“weight” of the gravitational field, and have uncovered the field definitions, (5.395.39) and

(5.625.62), which make this relationship manifest at level of the field equations. We now turn

our attention to the field definitions themselves, investigating the importance of (5.395.39)

and (5.625.62) in a broader context, and exploring the effects of field redefinitions in general.

As section 5.3.25.3.2 was restricted to torsion-free fields (5.485.48) and symmetric gauge (5.495.49),

we will be limited in what we can say about the field redefinitions of Einstein-Cartan

gravity; the majority of our analysis will therefore focus on the definition of hµν in general

relativity.

5.4.1 The “Central” Expansion

In many respects, the most striking aspect of the new definition of hµν , as displayed in

(5.395.39), is how closely it relates to a linear perturbation in the metric (5.315.31) and a linear
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perturbation in the inverse metric (5.345.34); this is in comparison with the full range of local

Lorentz-covariant field definitions consistent with (5.315.31) at linear order:

φ∗gab = ǧab + hab +B1hach
c
b +B2habh+ ǧab(B3h

2 +B4hcdh
dc) +O(h3), (5.64)

where {Bn} are arbitrary constants. One can argue, in fact, that the definition (5.395.39) lies

at a natural “centre” of the four-dimensional space parameterised by {Bn}. This argument

begins by observing that a priori there is no special variable which represents the “true”

dynamical field of general relativity: one can equally well define the gravitational field hµν

as a linear perturbation in a metric density (−g)λgab, or an inverse metric density (−g)λgab,

for any value of λ. Of all these choices, perturbations in the metric and its inverse (i.e.

λ = 0) are distinguished by the fact that they possess linear-order gauge-transformation

of the form ∂(µξν), without a part proportional to ηµν∂αξ
α, and can therefore be identified

with the Fierz-Pauli massless spin-2 field. However, once we have restricted our interest to

these particular definitions ((5.315.31) or (5.345.34)) the decision to focus on one, and discard the

other, is completely arbitrary. Instead of making a forced choice between two essentially

equivalent options, one might instead consider the definition that lies exactly half-way

between them, where the values of {Bn} are the mean of those in (5.315.31) and (5.345.34). It

is easy to see that this “centre point” is precisely the field (5.395.39) that casts tµν as the

self-interaction term of the quadratic field equations (5.425.42)! This is an extraordinary

coincidence, as τµν and sαµν (and consequently tµν) were selected for their capacity to

display positive energy-density, causal energy-flux, and traceless spatial spin; none of

these criteria would be expected to determine a definition of hµν that is geometrically

distinguished in this way.

5.4.2 Expansion of the Einstein Hilbert Lagrangian

The new metric expansion (5.395.39) also offers some perspective on the particular form of the

Lagrangian (5.105.10) that generated the main results of section 5.25.2, including the generalised

formulae (5.135.13) for τµν and sαµν .

In chapter 22 we studied the expansion of the Einstein-Hilbert Lagrangian,

LEH = −
√
−gR/κ, (5.65)

under a linear perturbation of the inverse metric: h′µν as defined in (5.335.33).2020 Taking care

to retain all terms proportional to background curvature, but ignoring surface terms, the

Einstein-Hilbert Lagrangian was found to expand as follows,

LEH[ǧab − h′ab] = −
√
−ǧŘ/κ+ L′1[h′ab] + L′2[h′ab] +O(h′3), (5.66)

20The field written as hµν in chapter 22 is in fact −h′µν in our present notation; the Lagrangians of that

chapter also take the opposite sign to those here.
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where the linear and quadratic parts of the Lagrangian,

L′1[h′ab] =

√
−ǧ
κ

Ǧabh
′ab, (5.67)

L′2[h′ab] =
−
√
−ǧ

4κ

(
h′ab∇̌2h′ab − h′∇̌2h′ − 2h′ab∇̌c∇̌ah′bc + h′∇̌a∇̌bh′ab

+ h′ab∇̌a∇̌bh′ − 2Řabh
′abh′ + Ř(h′abh′ab + h′2/2)

)
, (5.68)

are given by equations (2.672.67) and (2.692.69) of chapter 22. By commuting the derivatives of

the third term, and integrating the first five terms by parts (discarding surface terms), we

now note that L′2 can be rewritten as

L′2[h′ab] =

√
−ǧ

4κ

(
∇̌ch′ab∇̌ch̄′ab − 2∇̌ah̄′ab∇̌ch̄′ bc + 2h̄′abŘcabdh̄

′cd + 2Ǧabh
′a
ch
′cb
)
. (5.69)

To generate the expansion of LEH under our newly defined perturbation hµν , we need

only compare its metric expansion (5.395.39) to that of h′µν (5.345.34),

h′ab = hab − hachcb/2 +O(h3), (5.70)

and substitute this relation into (5.665.66):

LEH[ǧab − (hab − hach b
c /2 +O(h3))] = −

√
−ǧŘ/κ+ L′1[hab − hach b

c /2] + L′2[hab]

+O(h3). (5.71)

Clearly, the quadratic part of this expansion is

L2[hab] ≡ L′2[hab] + L′1[−hach b
c /2]

=

√
−ǧ

4κ

(
∇̌ch′ab∇̌ch̄′ab − 2∇̌ah̄′ab∇̌ch̄′ bc + 2h̄′abŘcabdh̄

′cd
)
, (5.72)

which is precisely the form of the Lagrangian L that we used to reproduce the formulae

for τµν and sαµν ! Thus, the curvature term in (5.105.10), which we introduced in section 5.25.2 as

an ansatz, can be understood as a consequence of the special definition of hµν associated

with our framework: these are simply the terms proportional to the background curvature

that appear when the Einstein-Hilbert action is expanded to quadratic order.

5.4.3 Field Redefinitions and Superpotentials

To understand the new metric expansion (5.395.39) in a wider context, we should also explain

the relationship between field redefinitions and the superpotentials we encountered in

section 5.2.35.2.3.

Recall that the addition of superpotentials to τµν and sαµν corresponds to the addition

of curvature terms (5.145.14) and torsion terms (5.195.19) to the Lagrangian. Notice, however,

that tµν is unaffected by torsion terms: the energy-momentum superpotentials (5.205.20)

cancel those of the spin tensor (5.215.21) when they enter the formula (5.275.27). As a result,

the superpotentials of the Belinfante tensor are characterised by curvature terms alone,
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which were determined by the five parameters {An} of equation (5.155.15). Although these

parameters are fixed according to (5.185.18), for the sake of argument let us relax these

equations and alter each An by an amount ∆An; the gravitational Belinfante tensor then

gains the superpotential term

κ∆t ν
µ = κ∂α(∆s να

µ + ∆sν α
µ −∆sα ν

µ )/2

= ∂α∂
β∆Σαν

βµ, (5.73)

where, according to (5.155.15),

∆Σαβ
µν = ∆A1h

α
[µh

β
ν] + ∆A2hh

[α
[µδ

β]
ν] + ∆A3h

γ
[µδ

[β
ν]h

α]
γ

+ δα[µδ
β
ν]

(
∆A4h

2 + ∆A5hγδh
γδ
)
. (5.74)

It is also possible to generate superpotentials in the quadratic approximation to Ein-

stein’s field equations: an arbitrary field redefinition

hµν → hµν + ∆hµν , (5.75)

adds the divergence-free tensor

−Ĝ αβ
µν ∆hαβ, (5.76)

to the right-hand side of the field equations (5.425.42) and thus defines a new Belinfante tensor,

κt′µν ≡ κtµν − Ĝ αβ
µν ∆hαβ, (5.77)

that acts as the source of the new gravitational field. Therefore, as long as we can find a

field redefinition ∆hµν to solve

−Ĝ ναβ
µ ∆hαβ = ∂α∂

β∆Σαν
βµ, (5.78)

we can produce the same superpotential in the field equations as the ones we have gener-

ated by altering {An} in the Lagrangian.

First we shall try to solve equation (5.785.78) using local field redefinitions. Noting that

∆hµν will also need to be Lorentz-covariant and quadratic in hµν to solve this equation,

the most general field redefinition we need to consider is

∆hµν = ∆B1hµαh
α
ν + ∆B2hµνh+ ηµν(∆B3h

2 + ∆B4hαβh
αβ), (5.79)

where the {∆Bn} correspond to changes in the parameters {Bn} of equation (5.645.64). Com-

paring the number of free parameters here with those of (5.745.74) it is immediately clear that

these local redefinitions will not span the entire space of superpotentials. Indeed, if we

rewrite (5.785.78) as2121

0 = ∂α∂
β
(

∆Σαν
βµ − 2δ

[ν
[µ∆h̄

α]
β]

)
, (5.80)

21The useful identity Ĝ ναβ
µ Xαβ ≡ −2∂α∂

β(δ
[ν

[µX̄
α]

β] ) holds for any symmetric tensor Xµν .
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and insert (5.795.79) and (5.745.74), we arrive at

0 = ∂α∂
β
[
∆A1h

α
[βh

ν
µ] + (∆A2 − 2∆B2)hh

[α
[βδ

ν]
µ] + (∆A3 − 2∆B1)hγ[βδ

[ν
µ]h

α]
γ (5.81)

+ δα[βδ
ν
µ](∆A4 + 2∆B3 + ∆B2)h2 + δα[βδ

ν
µ](∆A5 + 2∆B4 + ∆B1)hγδh

γδ
]
,

which makes the mismatch of parameters unequivocal. Clearly, this equation can only

hold for all hµν if

∆A1 = 0, (5.82)

and if we assume that this is the case, the local field redefinition ∆hµν is determined

uniquely:

∆B1 = ∆A3/2, ∆B2 = ∆A2/2,

∆B3 = −∆A4/2−∆A2/4, ∆B4 = −∆A5/2−∆A3/4. (5.83)

As the ∆An were defined relative to the values (5.185.18) that correspond to our Belinfante

tensor tµν , the condition (5.825.82) implies that

A1 = −1, (5.84)

which also arose in section 5.2.15.2.1 as the requirement that ensured the curvature terms

would extend the spin-2 gauge invariance of the Lagrangian beyond the flat background.

If A1 6= −1 then it is still possible to solve equation (5.785.78) by inverting the differential

operator Ĝ ναβ
µ :

∆h̄ ν
µ =

2

∂2
∂α∂

β∆Σαν
βµ, (5.85)

where the precise form of the propagator 1/∂2 will depend on boundary conditions.2222 As

we have seen, however, this ∆hµν cannot be a local function of hµν ; hence it will no longer

be possible to express the physical metric φ∗gab as a local function of the gravitational

field (5.645.64).

From this vantage point, we can now appreciate another important property of our

framework: the Belinfante tensor tµν (constructed from τµν and sαµν) is the source of

a gravitational field hµν of which the metric is a local function (5.395.39). The new field

definition (5.395.39) is not only notable for its special location in the space of local field

definitions (5.645.64): it is notable in that it even exists within this space!

In contrast, the same cannot be said for the celebrated tensor tLL
µν of Landau and

Lifshitz [5252]:

κtabLL ≡ −φ∗Gab +
1

φ∗g
∇̌c∇̌d

(
φ∗(gga[bgc]d)

)
. (5.86)

22Because ∂µĜ αβ
µν = 0, the inverse of Ĝ αβ

µν is only defined on fields with vanishing divergence, such

as ∂α∂
β∆Σανβµ. Also, because Ĝ αβ

µν (∂(αξβ)) = 0, the inverse is only defined up to the addition of gauge

fields ∂(µξν); to remove this degeneracy, we have set ∂µ∆h̄µν = 0 and absorbed the fields ∂(µξν) into the

gauge freedom of hµν .
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The divergence on the right-hand side clearly contributes a term

∂α∂β(hµ[νhα]β), (5.87)

at second order, corresponding to a superpotential with ∆A1 = 1 ⇒ A1 = 0. Thus,

there can be no local field redefinition that will render the Landau-Lifshitz tensor as the

source term of the vacuum Einstein field equations, and furthermore, the tensor cannot

be derived from a covariantised Lagrangian which maintains its spin-2 gauge invariance

beyond the flat background.

It is rather surprising that this deficiency is not more widely known. In their effort

to construct a gravitational energy-momentum tensor that was symmetric and free of

second derivatives in all gauges, it seems that Landau and Lifshitz were forced to include

a superpotential (5.875.87) that would be impossible to generate in the field equations by

a local redefinition of hµν . The only way the Landau-Lifshitz tensor can be given an

equal footing with the energy-momentum of matter, generating gravity alongside Tµν in

the Einstein field equations, would be to define the gravitational field hµν in terms of a

non-local perturbation in the metric.

5.4.4 Beyond Second Order

It will be difficult to gain any further insight into the physical meaning of the new hµν

without first deciding how the definition (5.395.39) should extend beyond quadratic order. As

this question is intimately related to the issue of extending the formulae of τµν and sαµν
to the full non-linear theory, we shall postpone a thorough investigation of this topic for

another publication. For now, we only mention one particularly attractive possibility. As

we have already explained, the new definition (5.395.39) lies on a point of symmetry between

a linear perturbations in the metric (5.315.31) and a linear perturbation in the inverse metric

(5.345.34); reflecting this, one finds that the expansion of the inverse metric, consistent with

(5.395.39) is

φ∗gab = ǧab − hab + hach b
c /2 +O(h3), (5.88)

which, apart from a change in sign convention hµν → −hµν , is identical to the metric

expansion (5.395.39) to quadratic order. Thus, a particularly natural extension of (5.395.39)

would be one which preserved this symmetry exactly, so that the metric and its inverse

had an identical expansion to all orders, except for a sign change in hµν . This idea can be

realised by viewing the tensor hab/2 as a linear map and forming its exponential [eh/2]ab;

a metric defined by

φ∗gab ≡ [eh/2]caǧcd[e
h/2]db, (5.89)

is then consistent with (5.395.39) to second order, and moreover, the associated expansion of

the inverse metric,

φ∗gab = [e−h/2]acǧ
cd[e−h/2]bd, (5.90)
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is clearly identical to (5.895.89) apart from a change in the sign of hµν .2323 Roughly speaking,

this hµν corresponds to a linear perturbation in the logarithm of the metric; indeed, this

is literally the case for the metric determinant:

φ∗ log(−g) = log(−ǧ) + h. (5.91)

5.4.5 New Fields for Einstein-Cartan

While it is certainly tempting to bring our analysis to bear on the new field definitions

(5.625.62) that arose in Einstein-Cartan theory, unfortunately a full discussion of these vari-

ables will not be possible at this time. As we previously explained, the right-hand sides of

(5.635.63) are only given by the formulae (5.135.13) when we restrict ourselves to the torsion-free

perturbations (5.485.48) and symmetric gravitational field (5.495.49) of general relativity. We are

therefore free to alter the quadratic parts of the new field definitions (5.625.62) by terms pro-

portional to Tαµν and f[µν]: such terms vanish under the aforementioned restrictions, and

so do not interfere with our results. Until we fix the definitions of τµν and sαµν in terms of

arbitrary perturbations fµν and wαµν , this degeneracy will remain, and it will be difficult

to offer a physical interpretation of the new field variables. We leave this generalisation

of τµν and sαµν , and the consequent analysis of the field variables they define, for another

time. For now, we shall simply remark that the new tetrad expansion (5.62a5.62a) defines an

inverse tetrad

φ∗eµ̄a = δµa + fµa/2 + fµνf
ν
a/8 +O(f3), (5.92)

which, to second order, differs from the tetrad expansion only by a change in sign con-

vention fµν → −fµν : mirroring the relationship between the metric expansion (5.395.39) and

inverse metric expansion (5.885.88) for the new definition of hµν that arose in section 5.3.15.3.1.

In fact, fµν defines a metric

φ∗gab = ǧab + f(ab) + f(a|
µfµ|b)/4 + fµafµb/4 +O(f3),

which, if we set

fµν = hµν +O(f3), (5.93)

gives

φ∗gab = ǧab + hab + ha
µhµb/2 +O(h3), (5.94)

identical to the new metric expansion (5.395.39) of section 5.3.15.3.1. Note that the equivalence

(5.935.93) between fµν and hµν now holds to quadratic order, whereas one would only expect

a linear correspondence from the symmetric gauge (5.1375.137) condition alone.

23The advantage of this “double sided” exponential, over the more obvious “one sided” definition

φ∗gab ≡ [eh]caǧcb, is that the symmetry of the metric is automatic. For the one sided definition, we

would need to impose the constraint 0 = h[ab] = hc[bǧa]c, which prevents us from considering hab and ǧab

as independent fields.
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5.5 Conclusion

As a local description of the energy-momentum and spin of the linearised gravitational

field, τµν and sαµν serve a number of purposes within the theory. In addition to account-

ing for the energy-momentum and angular momentum exchanged locally with matter

(chapters 33 and 44), we can now confirm their status as Noether currents of translational

and rotational symmetry, and as sources of gravity itself. Thus, our framework displays

many of the fundamental properties possessed by previous treatments of local gravitational

energetics [2929, 3535, 5252], all the while endowing linear gravity with positive energy-density,

causal energy-flux, and traceless spatial spin.

By “gauging” the translational and rotational symmetries of the Fierz-Pauli massless

spin-2 field, we have constructed a Lagrangian

L ≡ ě

4κ

(
Ďµ̄hᾱβ̄Ď

µ̄h̄ᾱβ̄ − 2Ďµ̄h̄
µ̄ᾱĎν̄ h̄

ν̄
ᾱ + 2h̄µ̄ν̄Řᾱµ̄ν̄β̄h̄

ᾱβ̄
)
, (5.95)

from which the Noether currents

κτ̄µν = 1
4∂µhαβ∂ν h̄

αβ − 1
2∂µh̄να∂βh̄

αβ, (5.96a)

κsαµν = 2h̄β[ν∂
[αh̄µ]

β] + δ[ν
αh̄µ]

β∂γ h̄
γ
β, (5.96b)

may be obtained. Thus a Lagrangian exists which encodes the dynamics of linear grav-

ity and which also defines an energy-momentum tensor and spin tensor that reduce to

our formulae (5.15.1) in harmonic gauge (5.25.2). Furthermore, by exposing the relationship

between background-coupling (the freedom that arises when “covariantising” the Fierz-

Pauli Lagrangian (5.35.3) beyond flat spacetime) and superpotentials, we have demonstrated

that (5.955.95) is in fact the only covariantised Fierz-Pauli Lagrangian capable of reproducing

our tensors in harmonic gauge, without introducing second derivatives into the generalised

τµν . Consequently, the formulae (5.965.96) comprise a suitably unique generalisation of τµν

and sαµν beyond harmonic gauge.

In order to reveal the dynamical role of τµν and sαµν in general relativity, we then

considered a non-linear pertubation of the metric,

φ∗gab = ǧab + hab + hach
c
b/2. (5.97)

According to this expansion, the quadratic approximation of the vacuum Einstein field

equations (5.355.35) takes the form

Ĝ αβ
µν hαβ = κ

(
τµν + ∂α(sµν

α + sνµ
α − sαµν)/2

)
= κtµν , (5.98)

wherein τµν and sαµν combine to form a Belinfante tensor (5.305.30) and this combination

acts as the source of the gravitational wave-equation, generating gravity as though it

were the energy-momentum and spin of matter (5.435.43). Considering the full range of local

Lorentz-covariant metric expansions (5.645.64), the simplicity of (5.975.97) is rather remarkable.
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Indeed, the gravitational field definition (5.975.97) lies on a special “central point” of the field

definition parameter-space, exactly half-way between a linear perturbation in the metric

(5.315.31) and a linear perturbation in the inverse metric (5.345.34). It is possible to preserve

the special symmetry of this field definition to all orders by expanding the metric with an

exponentiated gravitational field (5.895.89).

While (5.985.98) succeeds in casting τµν and sαµν as gravitational sources, it only achieves

this objective by combining spin and energy-momentum into a single entity. Considering

that many of the notable features of our framework depend on the separation of spin from

energy-momentum, a more desirable result would be a formulation of general relativity

in which τµν and sαµν appear as the sources of separate field equations. Einstein-Cartan

gravity provided the framework needed to achieve this goal: by expanding the tetrad and

spin connection according to

φ∗eaµ̄ = δaµ − faµ/2 + faνf
ν
µ/8, (5.99a)

φ∗ω µ̄ν̄
a = w µν

a − fw µν
a /2 + waβ

[νfµ]β + fβ
[µ∂af

ν]β/4, (5.99b)

the quadratic approximation of the vacuum field equations (5.515.51) and (5.575.57) were shown

to be

2∂[µwα]ν
α − ηµν∂αw αβ

β = κτµν , (5.100a)

∂[µf
α
ν] + 2w[µ

α
ν] + δα[µ|(∂|ν]f − ∂βfβ |ν] − 2w β

β |ν]) = κsαµν , (5.100b)

where τµν appears as the quadratic term in the curvature equation, playing the role of ma-

terial energy-momentum, and sαµν appears as the quadratic term in the torsion equation,

playing the role of material spin. Thus, in a theory of gravity where the energy-momentum

and spin of matter maintain their separate identities, τµν and sαµν occur as distinct objects

in the dynamical equations, disentangling the Belinfante tensor of equation (5.985.98).

Around these main results, a secondary loop of logic has been threaded, connecting

background couplings, superpotentials, and field definitions. The freedom to couple hµν

to the curvature and torsion of the background (when covariantising the Fierz-Pauli Lag-

rangian (5.35.3)) generates superpotentials in the energy-momentum tensor and spin tensor

(§5.2.35.2.3). By performing non-linear redefinitions of hµν (changing the expansion of the met-

ric, for example) it is then possible to produce these superpotentials in the field equations

(§5.4.35.4.3). Coming full-circle, the perturbative expansion of the metric (or the tetrad and

spin connection) determines a perturbative expansion of the Einstein-Hilbert action about

a curved vacuum background, fixing the curvature couplings that occur in the Lagrangian

at quadratic order (§5.4.25.4.2). The interrelation of these ideas makes it possible to derive

many of the key results of this chapter from various starting points: the formulae for τµν

and sαµν , the Lagrangian (5.105.10), or the field definitions (5.975.97) or (5.995.99).

In the process of navigating this mathematical circuit, the privileged status of a par-

ticular class of superpotentials (A1 = −1 in (5.155.15)) has also become clear. At the level of

the spin tensor, A1 = −1 arose in chapter 44 when demanding that sααν = 0 in transverse-

traceless gauge, ensuring the absence of infinite pressure gradients. Within the Lagrangian,
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background couplings with A1 = −1 were necessary to extend spin-2 gauge invariance to

curved vacuum backgrounds (5.115.11). Thirdly, in the quadratic field equations, local field

redefinitions (5.795.79) can only produce superpotentials with A1 = −1; if A1 6= −1, a non-

local redefinition (5.855.85) is required. Thus, the traceless condition we imposed on sαµν
in chapter 44 has conveyed two unexpected but extremely important properties. First,

the Lagrangian that generates our tensors (5.105.10) preserves the gauge invariance of hµν in

curved vacuum backgrounds; second, it has been possible to derive field equations (5.985.98)

and (5.1005.100), in which τµν and sαµν generate the gravitational field, using local definitions

of the gravitational field (5.975.97) and (5.995.99). In comparison, the Landau-Lifshitz tensor [5252]

has been constructed using superpotentials with A1 = 0 and so can claim none of these

advantages: in particular, no local field definition can cast the Landau-Lifshitz tensor as

a source for the gravitational field.

Finally, in appendix 5.C5.C, we briefly examine the global measures of energy, momentum

and angular momentum that our local framework can define. Within the quadratic ap-

proximation to general relativity, and with appropriate boundary conditions, it is possible

to confirm the equivalence of these global quantities to the energy, momentum and angular

momentum of Arnowitt, Deser, and Misner [66, 99].

Having embedded τµν and sαµν within various aspects of the linear and quadratic

approximations to gravity, the key goal that remains is to extend these ideas to the full

non-linear theory. This is obviously an ambitious task, and at the present stage it is far

from clear which of our framework’s properties can survive in the exact theory. However,

based on the results of this chapter, it seems more than likely that Einstein-Cartan gravity

will provide a natural starting point from which to launch this undertaking, with the field

definitions (5.395.39), (5.895.89) and (5.995.99) offering clues as to the new field variables into which

this theory should be cast.

5.A Appendix: Einstein-Cartan Theory

The role of this appendix is to briefly introduce Einstein-Cartan gravity, establish notation,

and serve as a reference for results needed in the body of the chapter. For a more complete

treatment of the subject, see [1717, 3232, 4343, 5353].

5.A.1 Kinematics

Einstein-Cartan theory is a slight extension of general relativity, in which (as formulated by

Kibble [4848] and Sciama [7474]) translational and rotational symmetries are gauged separately,

rather than being subsumed into a single diffeomorphism gauge transformation. The

gravitational field is represented by four vector fields eaµ̄ (the tetrad) and six covector

fields ω µ̄ν̄
a = −ω ν̄µ̄

a (the spin connection). Following the conventions of chapters 33 and

44 and Wald [7979], Greek letters are used as numerical indices (running from 0 to 3, raised

and lowered by ηµν = diag(−1, 1, 1, 1)) while Roman indices represent the tensor “slots” of

Penrose’s abstract index notation [7979, §2.4]. Note that the numerical indices now come in

145



Chapter 5. Localised Energetics of Linear Gravity: Theoretical Development

two varieties: the unadorned Greek letters are used to enumerate the components of tensors

in a Lorentzian coordinate system {xµ} of flat spacetime, whereas the Greek letters with

overbars enumerate the components of tensors with respect to the non-holonomic basis

{eaµ̄} formed from the tetrad. Thus, a generic vector field va, or a generic covector field

va, would define the following quantities:

vµ̄ ≡ eaµ̄va, vµ̄ ≡ eµ̄ava, (5.101)

where eµ̄a is the inverse tetrad, defined by eaµ̄e
ν̄
a = δµ̄ν̄ , or equivalently eaµ̄e

µ̄
b = δab . To make

this convention consistent with general relativity, in which abstract indices are raised and

lowered by the metric gab, we must make the following identification:

gab ≡ eµ̄aeµ̄b. (5.102)

From the point of view of Einstein-Cartan theory, this constitutes the definition of the

metric. Alternatively, from a general relativistic standpoint, this can be thought of as an

orthonormality condition on the tetrad: eaµ̄e
b
ν̄gab = ηµ̄ν̄ .

The tetrad and the spin connection are gauge fields: they allow the global translational

and rotational symmetries of flat space to be generalised to local symmetries. To explain,

let us first consider an infinitesimal local translation generated by a vector field ξa, that

is, a diffeomorphism ϕ : M → M, the action of which on tensor fields is ϕ∗ = 1 + Lξ,
where Lξ is the Lie derivative with respect to ξa. Under this local translation, a scalar

field ψ transforms as follows:

ψ → ϕ∗ψ = (1 + ξa∂a)ψ, (5.103)

which has exactly the same form as a global translation (ξa = const.) because ξa is not

differentiated. This is not the case for the gradient of ψ, however:

∂aψ → ϕ∗(∂aψ) = (1 + ξb∂b)∂aψ + ∂aξ
b∂bψ, (5.104)

which clearly depends on the derivatives of ξa. To remedy this, we can define a transla-

tionally covariant derivative ∂µ̄ ≡ eaµ̄∂a which, because Lξeaµ̄ = ξb∂be
a
µ̄ − ebµ̄∂bξa, defines a

gradient ∂µ̄ψ that transforms exactly as ψ does:

ϕ∗(∂µ̄ψ) = (1 + ξa∂a)∂µ̄ψ. (5.105)

In this fashion, we can convert all spacetime indices into basis indices, and render tensorial

field equations in a form which is covariant under local translations.

Local rotations are embodied by position-dependent Lorentz transformations which

act on the tetrad,

eaµ̄ → eaν̄Λν̄µ̄(x), Λᾱµ̄Λβ̄
ν̄
ηᾱβ̄ = ηµ̄ν̄ . (5.106)

These leave the metric (5.1025.102) unchanged, but affect all quantities with basis indices:

vµ̄ → Λν̄µ̄vν̄ , vµ̄ → (Λ−1)µ̄ν̄v
ν̄ . (5.107)
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Neither ∂a nor ∂µ̄ transform covariantly under local rotations (∂avµ̄ → ∂a(vν̄Λν̄µ̄) =

Λν̄µ̄∂avν̄ + vν̄∂aΛ
ν̄
µ̄) so a rotation-covariant derivative Da is constructed using the spin

connection:

Davµ̄ = ∂avµ̄ − ω ᾱ
a µ̄vᾱ,

Dav
µ̄ = ∂av

µ̄ + ω µ̄
a ᾱv

ᾱ, etc. (5.108)

If we declare that the spin connection should transform according to

ω µ̄
a ν̄ → (Λ−1)µ̄ᾱ

(
∂aΛ

ᾱ
ν̄ + ω ᾱ

a β̄Λβ̄
ν̄

)
, (5.109)

under local rotations, then it is easy to show that these derivatives are indeed covariant:

Davµ̄ → Λν̄µ̄Davν̄ ,

Dav
µ̄ → (Λ−1)µ̄ν̄Dav

ν̄ , etc. (5.110)

Using the tetrad once again, we can now construct a derivative Dµ̄ ≡ eaµ̄Da that

is covariant under both local translations and rotations. Thus, by replacing all partial

derivatives with covariant derivatives, and all spacetime indices with basis indices, we

can “gauge” the global Poincaré-invariance of any flat-space field theory, and in doing so,

extend the theory to a spacetime with curvature and torsion.

5.A.2 Curvature and Torsion

The rotation covariant derivatives define a curvature tensor R ν̄
ab µ̄:

[Da, Db]vν̄ ≡ −R µ̄
ab ν̄vµ̄ ∀vµ̄, (5.111)

from which it follows that

R µ̄
ab ν̄ = 2

(
∂[aωb]

µ̄
ν̄ + ω[a|

µ̄
ᾱω|b]

ᾱ
ν̄

)
. (5.112)

An asymmetric Ricci tensor can then be formed by contraction with the tetrad,

Rbν̄ ≡ eaµ̄R
µ̄

ab ν̄ , (5.113)

and the Ricci scalar by a further contraction:

R ≡ eaµ̄R µ̄
a = 2eaµ̄e

b
ν̄

(
∂aω

µ̄ν̄
b + ω ᾱ

a
[µ̄ωb

ν̄]
ᾱ

)
. (5.114)

The major difference between Einstein-Cartan gravity and general relativity is that,

in addition to curvature, spacetime may also possess torsion, which we quantify with the

torsion tensor

T ᾱab ≡ 2D[ae
ᾱ
b], (5.115)

or equivalently,

T aµ̄ν̄ ≡ −2D[µ̄e
a
ν̄]. (5.116)
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If this tensor vanishes everywhere, we can use D[µ̄e
a
ν̄] = 0 to relate the spin connection to

the tetrad:

ω µ̄ν̄
a = e

[µ̄
b ∂ae

ν̄]b + e[µ̄|b∂|ν̄]gab = eµ̄b∇ae
ν̄b, (5.117)

where ∇a is the familiar (torsion-free) metric-compatible derivative of general relativity.

Thus, when there is no torsion, the covariant derivatives Dµ̄ are equivalent to ∇a,

Dµ̄vν̄ = eaµ̄e
b
ν̄∇avb etc., (5.118)

and thus the curvature tensor R ν̄
ab µ̄ is equivalent to its counterpart from general relativity.

5.A.3 Dynamics

The dynamics of the tetrad, spin connection, and matter fields are determined by a Lag-

rangian LEC that closely resembles that of the Einstein-Hilbert action:

LEC = −eR/κ+ Lmatter, (5.119)

where Lmatter is the (covariantised) matter Lagrangian and e ≡ det(eµ̄a) = 1/ det(eaµ̄) =
√
−g is the volume element. Variation with respect to eaµ̄ and ω µ̄ν̄

a generates the gravita-

tional field equations,

G µ̄
a = κT µ̄

a , (5.120a)

F aµ̄ν̄ = κSaµ̄ν̄ , (5.120b)

where matter’s energy-momentum tensor T µ̄
a , and spin tensor Saµ̄ν̄ , are the conjugate

currents of the translational and rotational gauge fields,

T µ̄
a ≡

1

2e

δLmatter

δeaµ̄
, Saµ̄ν̄ ≡

1

e

δLmatter

δω µ̄ν̄
a

, (5.121)

and we have written

G µ̄
a ≡ R µ̄

a − eµ̄aR/2, (5.122a)

F aµ̄ν̄ ≡ 2e−1Db(ee
a
[µ̄e

b
ν̄]) = T aµ̄ν̄ + 2ea[µ̄T

ᾱ
ν̄]ᾱ. (5.122b)

Consequently, the energy-momentum of matter generates curvature, and the intrinsic spin

of matter generates torsion. When Saµ̄ν̄ = 0 everywhere, the second field equation (5.120b5.120b)

ensures that torsion will vanish also; on substitution of (5.1175.117) and (5.1025.102), the first field

equation (5.120a5.120a) then becomes the usual Einstein field equations.

5.A.4 Perturbations

When the curvature and torsion of the physical spacetime are small, it is often convenient

to represent the gravitational fields as perturbations from a flat torsion-free background

(M̌, ěaµ̄, ω̌
µ̄ν̄
a ). This spacetime is equipped with a constant tetrad

ěaµ̄ = δaµ ≡ (∂/∂xµ)a,

ěµ̄a = δµa ≡ (dxµ)a, (5.123a)
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defined by a Lorentzian coordinate system {xµ}, and a vanishing spin connection,

ω̌ µ̄ν̄
a = 0. (5.123b)

In the background spacetime it is customary to manipulate indices using the background

tetrad; because ěµν̄ = δµν , the distinction between barred indices and unbarred indices can

then be dropped.

Mapping the physical spacetime (M, eaµ̄, ω
µ̄ν̄
a ) onto the background with a diffeo-

morphism φ : M → M̌, we define an asymmetric tensor field faµ as a perturbation

in the physical tetrad,

φ∗eaµ̄ = δaµ − faµ/2, (5.124)

and the tensor field w µν
a = −w νµ

a as a perturbation in the physical spin connection,

φ∗ω µ̄ν̄
a = w µν

a . (5.125)

The perturbation in the tetrad (5.1245.124) will be accompanied by a perturbation in the inverse

tetrad,

φ∗eµ̄a = δµa + fµa/2 + fµνf
ν
a/4 +O(f3), (5.126)

which in turn defines a perturbation in the physical metric:

φ∗gab ≡ (φ∗eµ̄a)(φ∗eµ̄b)

= ǧab + f(ab) + f(a|
µfµ|b)/2 + fµafµb/4 +O(f3). (5.127)

Thus, in the linear approximation, we can identify the symmetric part of fµν with the

metric perturbation hµν of general relativity:

hµν ≡ f(µν) +O(f2). (5.128)

Working to first order in fµν and w µν
a , the Einstein-Cartan field equations (5.1205.120)

take the following form:

2∂[µwα]ν
α − ηµν∂αw αβ

β = κTµν , (5.129a)

∂[µf
α
ν] + 2w[µ

α
ν] + δα[µ|(∂|ν]f − ∂βfβ |ν] − 2w β

β |ν]) = κSαµν , (5.129b)

where, for the sake of notational brevity, we have dropped the φ∗ from the tensors φ∗T µ̄
a

and φ∗Saµ̄ν̄ . To recover the linearised field equations of general relativity, we need only

set Sαµν = 0: the solution to equation (5.129b5.129b) is then

w µν
α = (∂[νfµ]

α + ∂[νf µ]
α + ∂αf

[νµ])/2, (5.130)

which can be substituted into (5.129a5.129a) to retrieve

Ĝ αβ
µν f(αβ) = κTµν . (5.131)
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The equivalence between fµν and hµν can be strengthened further by fixing the rotation

gauge freedom (to linear order) with the condition

f[µν] = O(f2). (5.132)

This can always be achieved by a local rotation (5.1065.106) of the form

Λµν = δµν + (fµν − f µ
ν )/4 +O(f2), (5.133)

which is indeed a valid Lorentz transformation,

ΛαµΛβνηαβ = ηµν +O(f2), (5.134)

and has the desired effect:

fµν → f(µν) +O(f2). (5.135)

In this “symmetric” gauge, the torsion-free spin connection (5.1305.130) is simply

w µν
α = ∂[νfµ]

α +O(f2), (5.136)

and the relationship

hµν = fµν +O(f2) (5.137)

ensures that fµν and hµν are equivalent to linear order.

5.B Appendix: An Identity

Here we derive an identity that relates the Belinfante tensor (5.305.30) to the Einstein tensor of

physical spacetime. First, for notational purposes, let us define a tensor G̃(2) b
a to represent

the quadratic part of the “mixed” Einstein tensor density:

G̃(2) b
a ≡

[
φ∗(
√
−gG b

a )
](2)

. (5.138)

This definition expands to give

G̃(2)
µν = R(2)

µν −R(1)
µαh̄

α
ν − ηµν(R(2) −R(1)

αβ h̄
αβ)/2, (5.139)

where

R
(1)
ab ≡ [φ∗Rab]

(1) , R
(2)
ab ≡ [φ∗Rab]

(2) , (5.140)

are the linear and quadratic parts of the Ricci tensor, when expanded according to (5.315.31):2424

R(1)
µν = ∂α∂(µhν)

α − ∂2hµν/2− ∂µ∂νh/2, (5.141a)

R(2)
µν = −hαβ(2∂α∂(µhν)β − ∂µ∂νhαβ − ∂α∂βhµν)/2 + ∂µh

αβ∂νhαβ/4

+ ∂αhβµ(∂[αhβ]ν)− ∂αh̄αβ(∂(µhν)β − ∂βhµν/2). (5.141b)

24The tensors R
(1)
ab , R

(2)
ab , G̃(2) b

a are defined on the background, and thus their indices are raised and

lowered with ǧab; the indices of physical tensors Rab and Gab are moved with the physical metric gab,

however. Because of this, index manipulations do not commute with the [. . .](2) operation that isolates the

quadratic terms: R(2) ≡ [φ∗Rab]
(2) ǧab 6= [φ∗R](2), for example.
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Now consider the tensor

Qµν ≡ R(2)
µν −R(1)

µαh̄
α
ν +

1

2
∂α∂(µ(hν)βh

βα)− 1

4
∂2(hµαh

α
ν)− 1

4
∂µ∂ν(hαβh

αβ), (5.142)

the trace-reverse of which is

Q̄µν = R(2)
µν −R(1)

µαh̄
α
ν −

1

2
ηµν(R(2) −R(1)

αβ h̄
αβ) +

1

2
∂α∂(µ(hν)βh

βα)− 1

4
∂2(hµαh

α
ν)

− 1

4
∂µ∂ν(hαβh

αβ)− 1

4
ηµν(∂α∂γ(hγβh

βα)− ∂2(hαβh
αβ))

= G̃(2)
µν +

1

2
Ĝ αβ
µν (hαγh

γ
β). (5.143)

Substituting equations (5.1415.141) into (5.1425.142), one finds

Qµν = −1

2
hαβ(∂α∂(µhν)β − ∂α∂βhµν)− 1

2
hα(µ(∂α∂βhν)β − ∂ν)∂αh)

+
1

4
h(2∂α∂(µhν)α − ∂2hµν − ∂µ∂νh)− 1

4
∂µh

αβ∂νhαβ −
1

2
∂αhβµ∂βhνα

− 1

2
∂αh

αβ(∂(µhν)β − ∂βhµν) +
1

4
∂αh(2∂(µhν)α − ∂αhµν)

+
1

2
∂αhβ(µ∂ν)h

αβ − hα[νR
(1)
µ]α

= −κt̄µν , (5.144)

the last line of which can be confirmed by expanding out all the trace-reversed fields on

the right-hand side of (5.305.30) and observing that hα[νR
(1)
µ]α = hα[νG

(1)
µ]α = hα[νĜµ]

αβγhβγ .

Comparing (5.1435.143) with (5.1445.144), we conclude that the following identity

κtµν = −G̃(2)
µν − Ĝ αβ

µν (hαγh
γ
β)/2, (5.145)

is valid for all hµν .

5.C Appendix: ADM Energy-Momentum

In this chapter, and the those that have preceded it, we have focussed on the local aspects

of gravitational energy-momentum and spin; although we will not attempt a thorough

investigation here, it will be valuable to briefly examine the global energy and momentum

that our framework defines, and compare these quantities to the well-known results of

Arnowitt, Deser, and Misner (ADM) [66, 88, 99].

Recall that, as seen in (5.295.29), the Belinfante tensor tµν defines the same total energy,

momentum, and angular momentum as τµν and sαµν .2525 Thus, for the purposes of this

appendix, we are free to use whichever set of tensors is convenient, and the results we

derive will carry over to the other. With this in mind, let us define the total energy-

momentum of gravity and matter by

Pµ ≡
∫

d3y
√
−g
(
TBel b

a + (φ−1)∗t ba

)
(d/dyµ)a(dy0)b, (5.146)

25To be precise: the integrals in (5.295.29) may in fact differ by surface terms quadratic in hµν . However,

as we will see, these can be neglected in comparison to the surface terms linear in hµν when the boundary

of the integral is taken to spatial infinity.
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where yµ ≡ (φ−1)∗xµ are the images of the Lorentzian coordinates {xµ} in the physical

spacetime.2626 To this definition we now apply the Einstein field equations and evaluate the

integral in terms of background quantities:

Pµ =
1

κ

∫
d3y
√
−g
(
G b
a + κ(φ−1)∗t ba

)
(d/dyµ)a(dy0)b

=
1

κ

∫
d3x

(
φ∗(
√
−gG b

a ) + κt ba

)
(d/dxµ)a(dx0)b

=
1

κ

∫
d3x

(
Ĝ 0αβ
µ hαβ + G̃(2) 0

µ + κt 0
µ

)
, (5.147)

where, in the last line, we have expanded the metric according to (5.315.31) and neglected

terms O(h3) under the assumption that the gravitational field is everywhere weak enough

that the quadratic approximation to general relativity will suffice. We now use the identity

(5.415.41) to write the energy-momentum as

Pµ =
1

κ

∫
d3xĜ 0αβ

µ

(
hαβ +O(h2)

)
. (5.148)

Although terms O(h2) cannot be neglected in general (otherwise tµν should never have

appeared in the integral (5.1465.146) to begin with) we note that all the terms in (5.1485.148) are

total spatial derivatives, so Pµ will depend only on the behaviour of the gravitational field

on the boundary of the integral. Thus, as the limit is taken in which this boundary moves

to spatial infinity, we will require the linear surface terms ∂h ∼ 1/r2 in order that integral

be finite, and as a consequence the quadratic surface terms h∂h ∼ 1/r3 will be negligible

in comparison.

Let us first consider the total energy of the system:

P0 =
1

κ

∫
d3xĜ00αβhαβ

=
1

2κ

∫
d3x(∂i∂jhij − ∂i∂ihjj)

=
1

2κ

∫
d2Si(∂jhij − ∂ihjj), (5.149)

which the reader will recognise as the ADM mass [66, 99]. Furthermore, the total linear

26In equation (5.1465.146), the contraction between the energy-momentum tensors and the covector (dy0)a

defines, in the usual way, the energy-momentum densities on the surface of integration y0 = const. The

vectors (d/dyµ)a have assumed the role of killing vectors in the absence of an exact spacetime symmetry;

these same vectors were denoted by eaµ in chapters 33 and 44, but this symbol is now being used for the

Einstein-Cartan tetrad.
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momentum

Pi =
1

κ

∫
d3xĜ 0αβ

i hαβ

=
−1

2κ

∫
d3x(∂j ḣij − ∂k∂kh0i − ∂iḣjj + ∂i∂jh0j)

=
−1

2κ

∫
d2Sj(ḣij − ∂jh0i − δij ḣkk + 2δij∂kh0k − ∂ih0j)

=
−1

κ

∫
d2Sj(Γ

(1)0
ij − δijΓ(1)0

kk)

=
−1

κ

∫
d2Sjπ

(1)
ij , (5.150)

which is the familiar expression for the ADM momentum [66, 99] truncated at linear order.

Thus, when the terms O(h3) can be neglected from the field equations, and the terms O(h2)

can be neglected at spatial infinity, our gravitational Belinfante tensor tµν defines exactly

the same total energy and momentum as ADM. Moreover, as we have already explained,

these results would also arise if we had defined Pµ using τµν , rather than the Belinfante

tensor tµν . Thus, τµν is able to cast the global information present in the ADM energy-

momentum in terms of a local description with physically sensible properties, including

gravitational energy-density that is nowhere negative and gravitational energy-flux that is

nowhere spacelike. Although at present this idea is limited by the restriction of our results

to the quadratic approximation to general relativity, if we can extend our framework to

the full theory, while maintaining the positivity properties of τµν and consistency with

ADM energy-momentum, then this observation has the potential to shed further light

on the global positivity properties of ADM energy-momentum: P0 ≥ 0 and PµPµ ≤ 0

[2424, 7373, 8282].2727

Although the ADM energy-momentum is usually represented in terms of the asymp-

totic behaviour of the gravitational field, as above, the reader should also be aware that

these global quantities can be cast as spatial integrals of a gravitational Belinfante tensor

tADM
µν that emerges from the canonical formalism [66, 88, 99]. Although ADM did not pro-

pose that this tensor should be interpreted as a physically meaningful local measure of

gravitational energy-momentum, it is nonetheless interesting to compare the quadratic

part of tADM
µν with τµν and tµν . The strongest resemblance occurs when we employ our

gauge-fixing procedure (that is, we insist that hµν be transverse-traceless) and examine

the (0, 0) components of the tensors:

τ00 = t00 =
1

8κ
(ḣij ḣij + ∂khij∂khij)

= tADM
00 +O(h3). (5.151)

Remarkably, we find that our gauge-fixed τ00 and t00 are in fact equal to the ADM

27The local positivity of τµν (and the Dominant Energy Condition for TBel
µν ) should be enough to

guarantee these global inequalities, as a sum of future-directed non-spacelike vectors will itself be future-

directed and non-spacelike.
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“Hamiltonian density” tADM
00 when working to quadratic order.2828 This is a rather sur-

prising correspondence, particularly when one considers how little our framework has in

common with the canonical 3+1 approach from which tADM
00 arose. Note, however, that

this equality does not extend to the other components of the tensors:

κτi0 =
1

4
ḣjk∂ihjk (5.152a)

κti0 =
1

4

(
ḣjk∂ihjk − ḣjk∂jhik + hjk∂j ḣki

)
(5.152b)

κtADM
i0 =

1

4

(
ḣjk∂ihjk − 2ḣjk∂jhik

)
+O(h3). (5.152c)

Hence, τµν , tµν , and tADM
µν do not give rise to equivalent local descriptions of gravitational

energy-momentum, even in transverse-traceless gauge; moreover, even though tADM
µν suc-

ceeds in defining a positive gravitational energy-density tADM
00 ≥ 0 as seen by observers at

rest with respect to the tt-frame, it does not display the full (Lorentz-invariant) positiv-

ity properties of τµν : the energy-density vµvνtADM
µν (as seen by an observer moving with

4-velocity vµ) may be negative, and the energy-flux vµtADM
µν may be spacelike.

The formulae (5.1525.152) also serve as another starting point from which to verify that all

three tensors define the same total momentum Pi: those terms in ti0 and tADM
i0 which do

not appear in τi0 can be integrated by parts (discarding a quadratic surface term, as usual)

and then vanish due to the gauge condition ∂ihij = 0. Of course, these terms do contribute

to the total angular momentum: they correspond to the divergence ∂α(s α
µν +s α

νµ −sαµν)/2

that packages intrinsic spin into the Belinfante tensor (5.275.27). Accordingly, when one

neglects quadratic surface terms, one finds that∫
(2x[iτj]

0 + s0
ij)d

3x =

∫
2x[itj]

0d3x

=

∫
2x[it

ADM
j]

0d3x+O(h3), (5.153)

confirming that τµν and sαµν also give the same global description of angular momentum

as ADM at second order.

In summary, whenever general relativity can be approximated to quadratic order, and

quadratic surface terms can be neglected at spatial infinity, our gravitational energy-

momentum tensor τµν and spin tensor sαµν provide the same global description of energy,

momentum, and angular momentum as ADM, but localise these quantities in a physically

sensible fashion, displaying positive gravitational energy-density, causal energy-flux, and

traceless spatial spin.

28We thank Richard Arnowitt and Stanley Deser for bringing this to our attention.
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Chapter 6
Closing Remarks

Within the linear approximation to general relativity, I have uncovered a compelling local-

isation of gravitational energy, momentum, and spin. The gravitational energy-momentum

tensor τµν and spin tensor sαµν account for the exchange of energy, momentum and angu-

lar momentum between matter and linear gravity, constitute translational and rotational

Noether currents of the linearised gravitational field, and generate gravity in quadratic ap-

proximations to the Einstein and Einstein-Cartan field equations. Moreover, the tensors

motivate a natural gauge-fixing programme (removing all ambiguity from the description)

and display numerous desirable properties befitting their physical interpretation, such as

positive energy-density, causal energy-flux, and traceless spatial spin.

At the heart of the framework lie the formulae

κτ̄µν = 1
4∂µhαβ∂ν h̄

αβ, (6.1a)

κsαµν = 2h̄β[ν∂
[αh̄µ]

β], (6.1b)

for the energy-momentum tensor and spin tensor of the linearised gravitational field. These

were obtained, together with the harmonic gauge condition

∂µh̄µν = 0, (6.2)

by considering the local exchange of energy, momentum, and angular momentum between

matter and linear gravity. The gravitational energy-momentum tensor (6.1a6.1a) is the unique

symmetric tensor, quadratic in hµν and free of second derivatives, which accounts for the

energy-momentum exchanged locally with matter, as quantified by equation (3.103.10). This

solution only exists when the field condition (6.26.2) is met, which has the highly beneficial

effect of constraining the gauge of the gravitational field, without limiting the physical

applicability of our results.

The spin tensor (6.1b6.1b) represents a collection of intrinsic spin current-densities; in

combination with the “orbital” angular momentum defined by τµν , this tensor determines

the gravitational angular momentum current-densities

j α
µν = 2x[µτν]

α + sαµν , (6.3)
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which account for the local exchange of angular momentum with matter (4.144.14). In order

to obtain a unique formula for the spin tensor, it was necessary to demand that sαµν
obey two simple conditions: first, the spin of a gravitational plane-wave must flow in the

direction of propagation of the wave (4.244.24), and second, the gravitational field must be

free of infinite pressure gradients (4.344.34).

The tensors τµν and sαµν display an array of notable properties in various regimes, a

summary of which can be found in table 6.16.1. The most remarkable of these is the positivity

property of τµν : for all observers, whenever hµν is transverse-traceless, the gravitational

energy-density is non-negative, and gravitational energy-flux is timelike or null. This is

an extremely valuable property that has not been seen in any previous localisation of

gravitational energy-momentum. It extends the dominant energy condition to include the

energy-momentum of the gravitational field, and ensures that τµν provides a description

of gravitational energy-momentum that makes intuitive sense on local scales. It is also

fortuitous that the positivity of τµν is displayed when the field is transverse-traceless, as

transverse-tracelessness can always be achieved (for the dynamical part of the field at

least) by a gauge transformation, extinguishing the small amount of gauge freedom that

remains after enforcing the harmonic gauge condition (6.26.2).

This transverse-traceless gauge-fixing programme was further motivated by an ana-

lysis of the energy-momentum (and angular momentum) transferred onto an infinitesimal

detector,

T00 = Mδ(~x) + 1
2Iij∂i∂jδ(~x),

T0i = 1
2(İij − Lij)∂jδ(~x), (6.4)

Tij = 1
2 Ïijδ(~x).

By splitting the incident gravitational field into a series of pulses, and averaging over the

infinitesimal interaction region (4.424.42), one arrives at a local and completely gauge-invariant

measure of the energy, momentum and angular momentum exchanged with the detector:

〈∂µτµν〉 /M∫H = −1
4δ(~x)Ïij∂νh

tt
ij , (6.5a)

〈∂αj α
ij 〉∫ δ = δ(~x)httk[iÏj]k. (6.5b)

The same results can be achieved, without the microaveraging process, simply by insisting

that the incident field be expressed in transverse-traceless gauge. Thus, the transverse-

traceless programme removes the final gauge-ambiguity of τµν and sαµν in a manner that is

consistent with the gauge-invariant energy-momentum absorbed by infinitesimal detectors,

whilst simultaneously ensuring that the gravitational energy-density is positive and the

gravitational energy-flux is causal.

In addition to accounting for the energy-momentum and angular momentum lost and

gained by matter, τµν and sαµν play two other major roles within the theory. Firstly,

they are Noether currents associated with the translational and rotational symmetry of

linearised general relativity. Secondly, they occur as the quadratic terms in perturbative
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expansions of the Einstein and Einstein-Cartan field equations, generating gravity along-

side material energy-momentum and spin.

I demonstrated that τµν and sαµν were indeed Noether currents by constructing a

Lagrangian

L ≡ e

4κ

(
Ďµ̄hᾱβ̄Ď

µ̄h̄ᾱβ̄ − 2Ďµ̄h̄
µ̄ᾱĎν̄ h̄

ν̄
ᾱ + 2h̄µ̄ν̄Řᾱµ̄ν̄β̄h̄

ᾱβ̄
)
, (6.6)

which “gauged” the translational and rotational symmetries of the Fierz-Pauli massless

spin-2 field. This Lagrangian prescribes the field equations of linear gravity (5.55.5) and,

according to standard variational techniques (5.125.12), defines Noether currents

κτ̄µν = 1
4∂µhαβ∂ν h̄

αβ − 1
2∂µh̄να∂βh̄

αβ, (6.7a)

κsαµν = 2h̄β[ν∂
[αh̄µ]

β] + δ[ν
αh̄µ]

β∂γ h̄
γ
β, (6.7b)

which reduce to the familiar formulae (6.16.1) in harmonic gauge (6.26.2). In fact, these No-

ether currents are the unique generalisation of τµν and sαµν that can be derived from a

covariantised Fierz-Pauli Lagrangian, in which τµν remains free of second derivatives.

To reveal the role played by τµν and sαµν in the dynamics of general relativity, I

considered the following expansion of the metric:

φ∗gab = ǧab + hab + hach
c
b/2. (6.8)

Under this expansion, the quadratic approximation of the vacuum Einstein field equations

(5.355.35) was seen to take the form

Ĝ αβ
µν hαβ = κ

(
τµν + ∂α(sµν

α + sνµ
α − sαµν)/2

)
= κtµν , (6.9)

in which τµν and sαµν combine to form a Belinfante energy-momentum tensor (5.305.30)

and this combination acts as a source term in the gravitational wave-equation. In order

to disentangle the combination of spin and energy-momentum on the right-hand side of

equation (6.96.9), I performed a similar calculation within the Einstein-Cartan formalism.

Under the field expansion

φ∗eaµ̄ = δaµ − faµ/2 + faνf
ν
µ/8, (6.10a)

φ∗ω µ̄ν̄
a = w µν

a − fw µν
a /2 + waβ

[νfµ]β + fβ
[µ∂af

ν]β/4, (6.10b)

the quadratic approximation to the vacuum Einstein-Cartan field equations ((5.515.51) and

(5.575.57)) were found to be

2∂[µwα]ν
α − ηµν∂αw αβ

β = κτµν , (6.11a)

∂[µf
α
ν] + 2w[µ

α
ν] + δα[µ|(∂|ν]f − ∂βfβ |ν] − 2w β

β |ν]) = κsαµν . (6.11b)

Thus, in a theory of gravity which maintains the separate identities of material energy-

momentum and spin, τµν and sαµν likewise occur as distinct objects in the dynamical

equations.
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Many key features of the framework were illuminated by the metric expansion (6.86.8).

In particular, if one applies this perturbation to the Einstein-Hilbert action, then the

Lagrangian of equation (6.66.6) arises as the quadratic part of the integrand, modulo surface

terms. The expansion (6.86.8) is also notable in its own right, as it occupies a “central” point

between the linear metric perturbation (5.315.31) and the linear inverse metric perturbation

(5.345.34). The symmetry of this expansion can be extended to all orders by defining the

metric according to an exponential gravitational field,

φ∗gab ≡ [eh/2]caǧcd[e
h/2]db; (6.12)

without further investigation, however, it is unclear whether this is definition is particularly

suited for the localisation gravitational energy-momentum.

The results of this thesis are limited in so far as they only apply to general relativity

and Einstein-Cartan gravity in their linear and quadratic approximations. At present,

it is far from clear what approach should be taken to extend the framework beyond this

regime, nor which properties of τµν and sαµν can be preserved in the full theory. That said,

the new field definitions (6.86.8), (6.106.10), and (6.126.12) provide valuable clues as to how progress

might be made. For instance, one might attempt to construct a Belinfante tensor for

the full theory by expanding the vacuum Einstein field equations (5.355.35) according to the

exponential gravitational field (6.126.12), identifying all terms at quadratic order and higher

with κtµν . Following this, one would need to disentangle the spin and energy-momentum

from within this Belinfante tensor; hopefully, this separation can be rendered unique by

the requirement that τµν be free of second derivatives. Alternatively, one could keep τµν

and sαµν separate from the start, rewriting the Einstein-Cartan formalism in terms of

fields which reduce to (6.106.10) at quadratic order. Whatever route is taken, the main aim

of the endeavour should be to maintain the notable properties of τµν and sαµν at higher

orders; hopefully, some combination will be sufficient to determine the tensors completely,

in addition to the gauge-fixing programme that will render them physically well-defined

in the full theory.
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Table 6.1: Properties of τµν and sαµν under various conditions.

Harmonic Gauge Transverse-Traceless Harmonic Plane-Wave Static

hµν ∂µh̄µν = 0

∂ihij = 0

hµ0 = 0

h = 0

hµν = hµν(kαx
α), kµh̄µν = 0(

kµ = (1,−1, 0, 0)

h+ ≡ (h22 − h33)/2, h× ≡ h23

) h̄00 = −4Φ(~x)

h̄µi = 0

τµν κτ̄µν =
1

4
∂µhαβ∂ν h̄

αβ

vµτµνv
ν ≥ 0

vµτµατ
α
νv
ν ≤ 0

∀ vαv
α ≤ 0

κτµν =
1

2
kµkν(ḣ2

+ + ḣ2
×) κτ̄µν = 2∂µΦ∂νΦ

sαµν κsαµν = 2h̄β[ν∂
[αh̄µ]

β]
sα0i = 0

sααµ = 0

sαµν ∝ kα

κsα23 = kα(h×ḣ+ − h+ḣ×)
sαµν = 0
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[17] M. Blagojević. Gravitation and Gauge Symmetries, chapter 3. IOP, 2002.

[18] N. N. Bogoliubov and D. V. Shirkov. Introduction to the theory of quantized fields,

chapter 1. John Wiley, 3rd edition, 1980.

[19] H. Bondi. Plane gravitational waves in general relativity. Nature, 179(8):1072–1073,

1957.

[20] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner. Gravitational waves

in general relativity. vii. waves from axi-symmetric isolated systems. Proceedings

of the Royal Society of London. Series A. Mathematical and Physical Sciences,

269(1336):21–52, 1962.

[21] D. G. Boulware and S. Deser. Classical general relativity derived from quantum

gravity. Annals of Physics, 89(1):193–240, 1975.

[22] D. R. Brill and J. B. Hartle. Method of the self-consistent field in general relativity

and its application to the gravitational geon. Phys. Rev., 135:B271–B278, 1964.

[23] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Merritt. Maximum gravitational

recoil. Phys. Rev. Lett., 98:231102, 2007.

[24] S. Deser. Timelike character of gravitational field energy-momentum. Il Nuovo Ci-

mento B, 55:593–594, 1968.

[25] S. Deser. Self-interaction and gauge invariance. Gen. Rel. Grav., 1(1):9–18, 1970.

[26] S. Deser. Gravity from self-interaction in a curved background. Class. Quant. Grav.,

4(4):L99–L105, 1987.

[27] S. Deser. Gravity from self-interaction redux. Gen. Rel. Grav., 42:641–646, 2010.

[28] S. Deser and A. Waldron. Stability of massive cosmological gravitons. Physics Letters

B, 508(3-4):347–353, 2001.

162



REFERENCES

[29] P. A. M. Dirac. General Theory of Relativity, chapter 31. Princeton University Press,

1975.

[30] W. G. Dixon. Dynamics of extended bodies in general relativity. III. equations of

motion. Philosophical Transactions of the Royal Society of London. Series A, Math-

ematical and Physical Sciences, 277(1264):59–119, 1974.

[31] C. Doran and A. N. Lasenby. Geometric Algebra for Physicists, chapter 13.5.4. Cam-

bridge University Press, 2003.

[32] C. J. L. Doran, A. N. Lasenby, A. D. Challinor, and S. F. Gull. Effects of spin-torsion

in gauge theory gravity. J. Math. Phys., 39:3303, 1998.

[33] A. Einstein. Zur elektrodynamik bewegter körper. Annalen der Physik, 322(10):891–

921, 1905.

[34] A. Einstein. Die feldgleichungen der gravitation. Sitzungsberichte der Preussischen

Akademie der Wissenschaften zu Berlin, page 844847, 1915.

[35] A. Einstein. The Hamiltonian principle and general theory of relativity. Sitzungsber.

preuss. Akad. Wiss., 2:1111, 1916.

[36] R. P. Feynman, F. B. Morinigo, and W. G. Wagner. Feynman Lectures on Gravitation,

pages 74–88. Addison-Wesley, 1995.

[37] M. Fierz and W. Pauli. On relativistic wave equations for particles of arbitrary spin

in an electromagnetic field. Proc. R. Soc. Lond. A, 173(953):211–232, 1939.

[38] J. Frenkel. Die elektrodynamik des rotierenden elektrons. Zeitschrift fr Physik A

Hadrons and Nuclei, 37:243–262, 1926.

[39] G. W. Gibbons and S. W. Hawking. Action integrals and partition functions in

quantum gravity. Phys. Rev. D, 15(10):2752–2756, 1977.

[40] L. P. Grishchuk. Gravity-wave astronomy: some mathematical aspects. In N. Sanchez

and A. Zichichi, editors, Current topics in astrofundamental physics, page 435. World

Scientific, 1992.

[41] S. N. Gupta. Gravitation and electromagnetism. Phys. Rev., 96(6):1683–1685, 1954.

[42] S. Hawking. Gravitational radiation in an expanding universe. J. Math. Phys., 9:598–

604, 1968.

[43] F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester. General relativity

with spin and torsion: Foundations and prospects. Rev. Mod. Phys., 48(3):393–416,

1976.

[44] D. Hilbert. Die Grundlagen der Physik. Nachr. Ges. Wiss. Gottingen, 27:395–407,

1915.

163



REFERENCES

[45] M. P. Hobson, G. P. Efstathiou, and A. N. Lasenby. General Relativity: An Intro-

duction for Physicists. Cambridge University Press, 2006.

[46] R. A. Isaacson. Gravitational radiation in the limit of high frequency. I. the linear

approximation and geometrical optics. Phys. Rev., 166:1263–1271, 1968.

[47] R. A. Isaacson. Gravitational radiation in the limit of high frequency. II. nonlinear

terms and the effective stress tensor. Phys. Rev., 166:1272–1280, 1968.

[48] T. W. B. Kibble. Lorentz invariance and the gravitational field. J. Math. Phys.,

2:212, 1961.

[49] A. Komar. Covariant conservation laws in general relativity. Phys. Rev., 113:934–936,

1959.

[50] R. H. Kraichnan. Special-relativistic derivation of generally covariant gravitation

theory. Phys. Rev., 98(4):1118–1122, 1955.

[51] K. Kuchar. Dynamics of tensor fields in hyperspace. III. Journal of Mathematical

Physics, 17(5):801–820, 1976.

[52] L. D. Landau and E. M. Lifshitz. The Classical Theory of Fields, chapter 11.96.

Pergamon, 1989.

[53] A. Lasenby, C. Doran, and S. Gull. Gravity, gauge theories and geometric algebra.

Phil. Trans. R. Soc. Lond. A, 356(1737):487–582, 1998.

[54] L. Lehner. Numerical relativity: a review. Classical and Quantum Gravity,

18(17):R25, 2001.

[55] G. Magnano and L. M. Sokolowski. Symmetry properties under arbitrary field redefin-

itions of the metric energy-momentum tensor in classical field theories and gravity.

Class. Quant. Grav., 19(2):223–236, 2002.

[56] P. D. Mannheim. Gauge invariant treatment of the energy carried by a gravitational

wave. Phys. Rev. D, 74(2):024019, 2006.

[57] J. C. Maxwell. A dynamical theory of the electromagnetic field. Phil. Trans. R. Soc.

Lond., 155:459–512, 1865.

[58] C. Misner, K. S. Thorne, and J. A. Wheeler. Gravitation. W. H. Freeman, 1973.

[59] C. Møller. The Theory of Relativity, chapter 11.9. Oxford University Press, 1972.

[60] Y. N.Obukhov and V. A. Korotky. The Weyssenhoff fluid in Einstein-Cartan theory.

Class. Quant. Grav., 4(6):1633, 1987.

[61] E. Noether. Invariant variation problems. Transport Theory and Statistical Physics,

1:186–207, 1971.

164



REFERENCES

[62] M. Novello and R. P. Neves. The mass of the graviton and the cosmological constant.

Class. Quant. Grav., 20(6):L67–L73, 2003.

[63] T. Ortin. Gravity and Strings, chapter 3.2. Cambridge University Press, 2004.

[64] T. Padmanabhan. From gravitons to gravity: Myths and reality. Int. J. Mod. Phys.

D, 17(2/3):367–398, 2008.

[65] A. Papapetrou. Spinning test-particles in general relativity. i. Proceedings of the Royal

Society of London. Series A. Mathematical and Physical Sciences, 209(1097):248–258,

1951.

[66] R. Penrose and W. Rindler. Spinors and space-time, Vol. 1: two-spinor calculus and

relativistic fields, page 68. Cambridge University Press, 1984.

[67] J. H. Poynting. On the transfer of energy in the electromagnetic field. Philosophical

Transactions of the Royal Society of London, 175:343–361, 1884.

[68] J. Preskill and K. S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman

et al., pages xxv–xxvi. Westview Press, 2002.

[69] I. Robinson. On the Bel-Robinson tensor. Class. Quant. Grav., 14:A331–A333, 1997.

[70] N. Rosen. Helv. Phys. Acta. Suppl., 4:171, 1956.

[71] L. H. Ryder. Quantum Field Theory, chapter 2.7. Cambridge University Press, 2nd

edition, 1996.

[72] A. E. Scheidegger. Gravitational motion. Rev. Mod. Phys., 25:451–468, 1953.

[73] R. Schoen and S. Yau. Positivity of the total mass of a general space-time. Phys.

Rev. Lett., 43(20):1457–1459, 1979.

[74] D. W. Sciama. The physical structure of general relativity. Rev. Mod. Phys., 36:463–

469, 1964.

[75] J. R. Smith and for the LIGO Scientific Collaboration. The path to the enhanced

and advanced LIGO gravitational-wave detectors. Classical and Quantum Gravity,

26(11):114013, 2009.

[76] J. M. Stewart. Perturbations of Friedmann-Robertson-Walker cosmological models.

Class. Quant. Grav., 7(7):1169, 1990.

[77] L. B. Szabados. Quasi-local energy-momentum and angular momentum in general

relativity. Living Reviews in Relativity, 12(4), 2009.

[78] K. Tod. Penrose’s quasi-local mass. In T. Bailey and R. Baston, editors, Twistors in

Mathematics and Physics, volume 156 of London Mathematical Society Lecture Note

Series, pages 164–188. Cambridge University Press, Cambridge; New York, 1990.

165



REFERENCES

[79] R. M. Wald. General Relativity. University of Chicago Press, 1984.

[80] S. Weinberg. Gravitation and Cosmology, pages 91–93. Wiley, 1972.

[81] J. Weyssenhoff and A. Raabe. Relativistic dynamics of spin-fluids and spin-particules.

Acta Phys. Polon., 9:7, 1947.

[82] E. Witten. A new proof of the positive energy theorem. Comm. Math. Phys.,

80(3):381–402, 1981.

[83] J. W. York. Role of conformal three-geometry in the dynamics of gravitation. Phys.

Rev. Lett., 28(16):1082–1085, 1972.

166


	Titlepage
	Table of Contents
	0 Introduction
	0.1 Historical Background
	0.2 Overview
	0.3 Abstracts

	1 Physical Significance of the Babak-Grishchuk Energy-Momentum Tensor
	1.1 Introduction
	1.2 Flat-Space Gravitation
	1.3 Physical Content of tab
	1.3.1 Gauge Transformations
	1.3.2 Transformation Properties of tab

	1.4 Conclusion
	1.A Appendix: Infinitesimal Transformations

	2 Bootstrapping Gravity
	2.1 Introduction
	2.2 Graviton Action
	2.2.1 The Fierz-Pauli Action
	2.2.2 Field Equations
	2.2.3 Energy-momentum Tensor

	2.3 Perturbative Gravity
	2.3.1 Field Equations
	2.3.2 Energy-momentum Tensor
	2.3.3 Gauge Transformations
	2.3.4 Conservation Law
	2.3.5 Constructing the Graviton Action

	2.4 Matter
	2.4.1 Matter Perturbations
	2.4.2 Non-Vacuum Background

	2.5 Conclusion
	2.A Appendix: Padmanabhan's Analysis
	2.B Appendix: Expansion of Gab

	3 Localising the Energy and Momentum of Linear Gravity
	3.1 Introduction
	3.2 Motivation and Derivation
	3.2.1 Preliminaries
	3.2.2 Energy-Momentum Currents
	3.2.3 Determining the Energy-Momentum Tensor

	3.3 Properties
	3.3.1 Gauge Invariance of Plane-Waves
	3.3.2 Positivity

	3.4 Interactions
	3.4.1 Pulses and Point-Sources
	3.4.2 Gauge Invariance and Microaveraging
	3.4.3 Arbitrary Gravitational Fields
	3.4.4 Energy-Momentum and Transverse-Traceless Gauge
	3.4.5 Time-Independent Fields

	3.5 Applications
	3.5.1 Plane-Waves
	3.5.2 Linearised Schwarzschild Spacetime
	3.5.3 Gravitational Field of a Compact Source

	3.6 Conclusion
	3.A Appendix: Sources
	3.A.1 The Compact Source
	3.A.2 The Point-Source

	3.B Appendix: Persistent Transverse-Traceless Gauge

	4 Localising the Angular Momentum of Linear Gravity
	4.1 Introduction
	4.2 Local Angular Momentum Exchange
	4.3 Gravitational Intrinsic Spin Tensor
	4.3.1 The Plane-wave Condition
	4.3.2 The Traceless Condition

	4.4 Angular Momentum Microaverage
	4.5 Moment of Energy
	4.5.1 Definitions and Interpretation
	4.5.2 Moment of Energy Exchange

	4.6 Gravitational Plane-Waves
	4.7 Conclusion
	4.A Appendix: Moment of Energy Exchange from First Principles

	5 Localised Energetics of Linear Gravity: Theoretical Development
	5.1 Introduction
	5.2 Lagrangian Formulation
	5.2.1 The Fierz-Pauli Lagrangian
	5.2.2 Energy-Momentum Tensor and Spin Tensor
	5.2.3 Background Coupling and Superpotentials
	5.2.4 Basic Properties and Belinfante Tensor

	5.3 Self-interaction in the Gravitational Field Equations
	5.3.1 The Einstein Equations
	5.3.2 The Einstein-Cartan Equations

	5.4 Field Redefinition
	5.4.1 The ``Central'' Expansion
	5.4.2 Expansion of the Einstein Hilbert Lagrangian
	5.4.3 Field Redefinitions and Superpotentials
	5.4.4 Beyond Second Order
	5.4.5 New Fields for Einstein-Cartan

	5.5 Conclusion
	5.A Appendix: Einstein-Cartan Theory
	5.A.1 Kinematics
	5.A.2 Curvature and Torsion
	5.A.3 Dynamics
	5.A.4 Perturbations

	5.B Appendix: An Identity
	5.C Appendix: ADM Energy-Momentum

	6 Closing Remarks

