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GW: Gravitational Wave
IEEE: Institute of Electrical and Electronic Engineers
IIR: In�nite Impulse Response �lter
IMS: Interferometric Measurement System
IQ: In-phase/Quadrature
LIGO: Laser Interferometric Gravitational-Wave Observatory
LISA: Laser Interferometer Space Antenna
LO: Local Oscillator
LSB: Least-Signi�cant Bit
LSD: Linear Spectral Density
LUT: Look-Up Table
MI: Michelson Interferometer
MSB: Most-Signi�cant Bit
NaN: Not a Number
NASA: National Aeronautics and Space Administration
NCO: Numerically Controlled Oscillator
Nd:YAG: Neodymium-doped Yittrium Aluminum Garnet
NPRO: Non-Planar Ring Oscillator
NS: Neutron Star
OB: Optical Bench
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PC: Personal Computer
PCI: Peripheral Component Interconnect interface
PD: Photodiode
PDF: Probability Density Function
PDH: Pound-Drever-Hall
PLL: Phase-Lock Loop
PM: Phase Meter
PZT: Piezoelectric actuator
RF: Radio Frequency
RMS: Root Mean Square
SC: Space Craft
SDRAM: Synchronous Dynamic Random Access Memory
SiC: Silicon Carbide
SMBH: Super-Massive Black Hole
SR: Special Relativity
TCP/IP: Transmission Control Protocol / Internet Protocol
TDI: Time-Delay Interferometry
TOA: Time Of Arrival
TT: Transverse-Traceless
UF: The University of Florida
ULE: Ultra-Low Expansion
VCO: Voltage-Controlled Oscillator
VIM: Velocity Interface Module
VME: Virtual Machine Environment
WD: White Dwarf
ZOH: Zero-Order Hold
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KEY TO SYMBOLS
¤ : D'Alembertian operator
Aµν : tensor amplitude
A(t) : amplitude
b : bit width
c : speed of light
c(s) : control signal
C(t) : Dirac delta-function comb
ds2 : di�erential spacetime interval
e(s) : error signal
E(t) : time-component of electric �eld
Edig : digitization noise energy
ESN : shot-noise energy
erfc(x) : complimentary error function
f : Fourier frequency
fc : cuto� frequency
fn : interferometer null frequency
fNyq : Nyquist frequency
fUG : unity-gain frequency
F : Fourier transform
fs : sampling frequency
gµν : metric tensor for general relativity
G : Newton's gravitational constant
G(s) : �lter or system transfer function
Gµν : Einstein curvature tensor
h : gravitational wave strain, Planck's constant
ĥ+ : + polarization tensor
ĥ× : × polarization tensor
h+ : strain amplitude in + polarization
h× : strain amplitude in × polarization
hµν : metric perturbation
h̄µν : trace-reversed metric perturbation
hTT

µν : metric perturbation in TT gauge
hij : phase change due to GWs on light propagating from SCi to SCj

h(n) : impulse response function
H(s) : feedback transfer function
I : quadrupole moment tensor
I(t) : in-phase component, intensity
k : wave number
kµ : 4-D wavevector−→
k : 3-D wavevector
L : optical path length
LGW : gravitational wave luminosity
L : Laplace transform
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M : total memory
M(t) : mixer output
M¯ : Solar mass
n : index
N : photon number
Nchan : number of channels
p̃(s) : free-running noise
P : signal power
Pslip : probability of cycle slip
Q : reduced quadrupole moment, quadrature component
R : decimation rate, reference signal, rectangular impulse
Rµ

αβν : Riemann curvature tensor
s : Laplace complex frequency variable
Sij : PM signal from PDmain on OBij

S+ : common-arm error signal
S− : di�erential-arm error signal
Sdirect : direct arm-locking error signal
T : sampling interval, measurement time
TCL(s) : closed-loop transfer function
TOL(s) : open-loop transfer function
Tsen(s) : arm-locking sensor transfer function
Tµν : matter stress-energy tensor
Udig : digitization noise
Udig1 : single-channel digitization noise
ULSB : LSB amplitude
ŨSN : shot-noise amplitude spectral density
w(n) : window function
x(s) : input signal
x(n) : discrete input signal
y(s) : output signal
y(n) : discrete output signal
z : z-domain variable
Z : z transform
Γµ

νρ : Christo�el symbol
δ(x) : Dirac delta function
δij : Kronecker delta function
δIdig : digitization noise in in-phase component
δQdig : digitization noise in quadrature component
δνdig : digitization noise in frequency correction
∆τ : arm length di�erence
ε : electric �eld amplitude
φ : signal phase
φe : PM phase error
φi : PM input phase
φm : PM model phase
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φo : PM output phase
φr : PM residual phase
φij : phase di�erence between φi and φj

ηµν : special relativity metric
λ : wavelength
ν : signal frequency
νcorr : PM correction frequency
νij : frequency di�erence between νi and νj

νm : PM model frequency
νoff : PM o�set frequency
ρ : Laplace or z-domain pole
τ̄ : average arm length
τij : light travel time from SCi to SCj

τmax : maximum delay time in EPD unit
τRT : round-trip light travel time
ω : angular frequency
ΩGW : gravitational wave angular frequency
ζ : Laplace or z-domain zero
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The Laser Interferometer Space Antenna (LISA) is a collaboration between the

National Aeronautics and Space Administration (NASA) and the European Space Agency

(ESA) to design and build a space-based interferometric detector of gravitational waves.

The LISA sensitivity band will range from 3 × 10−5 Hz to 100mHz, a regime currently

inaccessible to ground-based detectors.

The LISA detector will consist of a constellation of three identical spacecraft arranged

in a triangular formation 5 × 106 km on a side. Each spacecraft will contain a pair

of freely-falling proof-masses that will act as the geodesic-tracking test particles of

general relativity. The separation between the proof-masses will be monitored using laser

interferometry with a precision of ∼ 10 pm, allowing for the detection of gravitational

waves with strain amplitudes in the range of 10−21.

The author is part of a group at the University of Florida that is developing a

laboratory-based simulator of LISA interferometry. This dissertation describes the

simulator in detail, emphasizing the electronic components designed and constructed

by the author. These include a phase meter capable of measuring the phase of a

cavity-stabilized laser beat-note with a noise �oor of better than 10−5 cycles/
√
Hz

from 1Hz − 10 kHz and an electronic phase delay unit capable of delaying signals with

frequencies up to 25MHz for more than 300 s with or without a frequency o�set.
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Also described is a set of experiments made using the simulator that investigate

arm-locking, a proposed method for reducing the phase-noise of the LISA lasers. A laser

beat note was successfully stabilized to a 1.065ms delay with a bandwidth of ∼ 10 kHz.

The residual frequency noise was less than 200mHz/
√
Hz from 10mHz through 100Hz.
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CHAPTER 1
INTRODUCTION

1.1 Motivation for Gravitational Wave Astronomy

The history of science is rife with examples of new technologies leading to breakthroughs

in our understanding of the natural world. This is particularly true in the �elds of

astronomy and astrophysics. The study of the heavens is undoubtedly one of the planet's

oldest sciences and for countless millenia it proceeded with one instrument: the human

eye. Fortunately, the eye is quite a good instrument and a great deal was learned about

the universe using it.

The invention of the optical telescope brought an improvement in angular resolution

over the eye, allowing Galileo to observe moons orbiting Jupiter. These observations

helped to cement the Copernican model of a heilocentric universe. While telescopes

improved the spatial resolution of astronomical observations, the advent of photography

widened the spectral window of these observations to include wavelengths at which the

human eye is insensitive.

The 20th century saw an explosion of new spectral windows opened to the heavens.

The universe can now be observed in radio, microwave, infrared, optical, ultra-violet,

X-ray, and γ-rays. Each of these new spectral windows produced surprising and signi�cant

results that altered our understanding of the universe. For example, microwave astronomy

led to the detection of the cosmic microwave background and the validation of the Big

Bang theory while X-ray observations provided the �rst evidence of the existence of black

holes.

Nearly all of our information about the universe outside our own solar system comes

from some form of electromagnetic radiation. Despite the wide range of observable

frequencies (there are more than eighteen decades of frequency between a 1MHz

radio wave and a 10GeV gamma ray), all electromagnetic observations have common

characteristics. Electromagnetic radiation gives us direct information about the particles,

atoms, or molecules that generate it and interact with it. It is fundamentally a probe
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of microscopic physics. Only through the association of radiating material with a

macroscopic object, such as the corona of a star or an accretion disk around a black

hole, can we make observations of macroscopic objects.

Gravitational waves1 (GWs) represent an entirely new potential source of information

about the universe. A prediction of general relativity, GWs are disturbances in spacetime,

the combined fabric of space and time that is the arena for physics in relativity. GWs

are thought to be produced by a variety of astrophysical systems, ranging in mass from

solar-mass neutron stars to black holes millions or billions of times larger at the centers

of colliding galaxies. In addition, the Big Bang may have produced GWs which would

exist today as a cosmological background. Unlike electromagnetic radiation, GWs couple

directly to large-scale objects. This makes them ideal for probing gravity, the dominant

force over macroscopic distances.

The ability to detect GWs will provide more than opening a new spectral window;

it is more akin to providing an entirely new �sense� with which we can learn about the

universe. If electromagnetic observations are our eyes, GWs are our ears. While it is risky

to make grand predictions about what we may learn, it certainly seems that we ought to

try and listen.

1.2 Gravitational Wave Detectors

The previous Section makes clear the motivations for trying to detect GWs. The

reason why it has yet to be done is that it is extremely di�cult. The e�ect of a GW

passing through a detector is a tidal distortion characterized by a strain amplitude (change

in length over length) on the order of 10−21. A km-scale detector must detect length

changes on the order of 10−18 m, 1000 times smaller than the classical radius of a proton.

1 For two excellent extended introductions to gravitational wave astronomy, see Schutz
[1] and Hughes [2].
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Despite these di�culties, there has been signi�cant e�ort over the past half-century

to build GW detectors. The types and sizes of the detectors vary, with di�erent detectors

optimized to observe GWs in di�erent frequency bands. While no con�rmed direct

detections have been made, measurements of orbital decay in binary pulsars [3] have

provided extremely convincing circumstantial evidence that GWs exist and generally

behave as expected.

One proposed GW detector is the Laser Interferometer Space Antenna (LISA),

which will consist of three separate spacecraft forming a triangular detector with sides of

5Gm = 5× 109 m. To measure GWs, LISA must detect length changes in these arms with

a precision of ∼ 10 pm. Achieving this level of precision over such vast distances requires a

number of novel techniques and technologies.

1.3 LISA at the University of Florida

The author is part of a group in the Department of Physics at the University of

Florida (UF) that is developing a laboratory-based simulator of LISA interferometry. The

purpose of this simulator is to provide an arena in which the interferometric techniques

of LISA can be studied and developed. It also provides a source of LISA-like signals with

which to test prototype components. A long-term goal of the simulator is to have the

ability to inject model GW signals into the apparatus and produce LISA-equivalent science

signals with realistic instrumental noise. Such signals would be valuable for evaluating

data analysis techniques.

The remainder of this dissertation is divided into four parts. Chapter 2 presents

an overview of GWs including their theoretical origins, properties, likely sources, and

potential detection methods. Chapter 3 describes LISA in detail, with an emphasis on

the interferometry. Chapter 4 describes the development of the UF LISA interferometry

simulator, focusing on the electronic components of the simulator that were designed and

built by the author. Chapter 5 presents a series of experiments using the simulator that
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investigate a laser phase-noise stabilization technique known as arm-locking that has been

proposed for LISA.

23



CHAPTER 2
GRAVITATIONAL WAVES

2.1 Overview

2.1.1 Relativity

The theoretical framework of Special and General Relativity represents our best

understanding of the macroscopic universe1 . In both cases, the three usual dimensions of

space and the one dimension of time are combined into a single four-dimensional entity

known as spacetime. In Special Relativity (SR), spacetime is a passive background in

which physics occurs. Points in spacetime are known as events, and physics is concerned

with the relation between events. For example, the set of events that mark the position of

a particle in three-dimensional space as time evolves is known as that particle's worldline.

The worldline of a particular particle may be a�ected by non-gravitational phenomena

such as electromagnetic or nuclear forces.

As with Newtonian physics, it is useful to de�ne a coordinate system, or frame, which

can be used to label and compare events. In Special Relativity (SR), there exists a special

class of frames known as the Lorentz or inertial frames, in which free particles move in

straight lines with uniform velocity. A set of coordinate transformations, known as the

Lorentz transformations, relate the coordinates of an event in one inertial frame to the

coordinates of the same event in another inertial frame. Physically observable quantities

are independent of the particular frame used.

The four-dimensional Cartesian coordinate system xµ = (t, x, y, z) can be used to

describe an inertial frame in SR2 . The interval, or distance between events separated by

1 Much of the theoretical development in this Chapter follows Schutz [4]. Other portions
were adapted from Misner, et al. [5] and Shapiro & Teukolsky [6].

2 Unless otherwise noted, I will adopt the �natural units� of G = c = 1 for this Chapter.
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the four-vector V µ, can be computed as

∆s2 = ηµνV
µV ν , (2�1)

where ∆s is the interval, ηµν is the metric tensor, and the Einstein summation convention

(xαy
α =

∑3
α=0 xαyα) applies. The metric tensor for an inertial frame in SR can be written

using the Cartesian coordinates described above as

ηµν =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



. (2�2)

Spacetime intervals are split into three classes according to their sign. Four-vectors

with negative intervals are known as time-like. The worldlines of all massive particles have

time-like intervals. The magnitude of the interval is equal to the proper time, the time

elapsed in an inertial frame comoving with the particle. Four-vectors with null intervals

are known as light-like, because photons and other massless particles have worldlines with

null intervals. Four-vectors with positive intervals are known as space-like.

In the language of di�erential geometry, spacetime is a four-dimensional Riemannian

manifold for which the distance between points on the manifold is given by a rank-2

metric tensor. In SR the manifold is ��at,� meaning that every inertial frame is valid

over all of spacetime and the metric ηµν can be used to compute the spacetime interval

between distant events. The straight lines that describe the worldlines of free particles are

special curves known as geodesics, which have the property that the interval along them is

extremal.

In General Relativity (GR), the manifold is curved in an additional dimension or

dimensions. Because of the curvature, the global inertial frames of SR do not exist in GR.

However, since spacetime is smooth, it appears to be �at over small distances. At each

point in spacetime, a local inertial frame can be constructed in which the physics of SR
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apply locally. The di�erential interval between two nearby points separated by dxµ can be

computed using a di�erential form of (2�1)

ds2 = gµνdx
µdxν , (2�3)

where the metric is labeled gµν to distinguish it from the SR metric. Since spacetime is

curved, the local inertial frames will di�er between adjacent patches and consequently gµν

will be a function of position within spacetime. To compute the interval between distant

events, (2�3) must be integrated along the path between the two events. As in SR, the

worldlines of free particles in GR will follow geodesics. Due to the curvature of spacetime,

geodesics in GR will not generally be straight lines in a local inertial frame. Variational

principles can be used to produce equations describing geodesics in GR. If the worldline

is described by a set of events parametrized by a scalar parameter λ, xµ(λ), then the

geodesic equation can be written as

ẍµ + Γµ
νρẋ

ν ẋρ = 0, (2�4)

where the dot denotes derivation with respect to λ and Γµ
νρ is a combination of derivatives

of the metric known as a Christo�el symbol,

Γµ
νρ ≡

1

2
gµσ(gσν,ρ + gσρ,ν − gρν,σ), (2�5)

where

gµν,ρ ≡ ∂gµν

∂xρ
. (2�6)

The geodesic equation describes the behavior of free particles in a curved spacetime.

GR connects this with gravity by specifying that the source of the spacetime curvature is

matter. More speci�cally it is the energy density of all forms of matter and non-gravitational

forces. This relationship is expressed mathematically by the Einstein equations,

Gµν = 8πTµν , (2�7)
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where Tµν is the stress-energy tensor of matter and non-gravitational forces and Gµν is

the Einstein curvature tensor, a particular combination of metric derivatives. The form of

Gµν is imposed by the constraints placed by conservation laws for energy and momentum

on Tµν . In order for (2�7) to be generally valid, Gµνmust satisfy the same constraints.

The Einstein curvature tensor is a combination of metric derivatives that satis�es the

constraints on Tµν .

GR is sometimes summed up by stating that spacetime tells matter how to move

(geodesic equation) and matter tells spacetime how to curve (Einstein equations).

2.1.2 Weak-�eld GR and Gravitational Waves

The Einstein �eld equations are a set of ten coupled non-linear partial di�erential

equations. Only a handful of analytic solutions are known. It is often useful to consider

approximations to the full theory, which are more amenable to analytical study. One such

approximation is the weak-�eld limit, in which the GR metric is equal to the SR metric

plus some small perturbation, hµν ,

gµν = ηµν + hµν , (2�8)

|hµν | ¿ 1 (2�9)

The linearized theory is developed by truncating the full GR equations to �rst order in

hµν . In doing so, it is useful to exploit the gauge freedom of GR. Gauge freedom refers

to the ability to make changes to tensors such as hµν without a�ecting the observable

quantities, such as the spacetime interval between two events, that are computed from

these tensors. The linearized Einstein equations are typically written using the Lorentz

gauge, which requires

h
µν

,ν = 0. (2�10)

With this condition, the linearized Einstein equations become

¤hµν
= −16πT µν , (2�11)
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where hµν
= hµν− 1

2
ηµνhρ

ρ is the trace-reverse of hµν and ¤ is the D'Alembertian operator.

The D'Alembertian operator is also known as the wave operator, since it gives the wave

equation when applied to a function,

¤f = (− ∂2

∂t2
+∇2)f, (2�12)

where ∇2 is the Laplacian in the three spatial dimensions. The form of (2�11) indicates

that there will be a set of wave solutions to the linearized Einstein equations. These

solutions are known as Gravitational Waves (GWs).

2.1.3 Properties of Gravitational Waves

The properties of GWs can be deduced from the homogeneous version of (2�11),

which corresponds to linearized GR in a vacuum (T µν = 0). The general solution of the

homogeneous wave equation is a superposition of plane waves of the form

h
µν

(xµ) = Aµν exp(ikµx
µ), (2�13)

where Aµν is an amplitude tensor and kµ is the four-dimensional analog of the wave vector

in classical radiation theory. In order for the expression in (2�13) to satisfy (2�11), kµ

must be a null or light-like four-vector,

kµkµ = 0. (2�14)

The dispersion relation for GWs can be found by expressing kµ in a 3 + 1 (three spatial

coordinates plus one time coordinate) coordinate system and identifying the time

component, k0, as the angular frequency of the wave, ω. The condition in (2�14) can

then be written as

ω2 =
∣∣∣−→k

∣∣∣
2

, (2�15)

where −→k is the spatial component of the wave vector. From (2�15) it can be seen that

both the phase and group velocities of GWs are 1 in natural units, which corresponds to

the speed of light.
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In order to be a solution to (2�11), the expression in (2�13) must also satisfy the

Lorentz gauge condition in (2�10). This places restrictions on Aµν ; requiring it to be

orthogonal to −→k ,

Aµνkν = 0. (2�16)

The Lorentz gauge condition in (2�10) describes a class of gauges. Additional restrictions

on hµν can be obtained by choosing a particular gauge within this class. For GWs in

vacuum, the transverse-traceless (TT) gauge is useful. The TT gauge conditions are

h
µ

µ = 0 (2�17)

and

hµ0 = 0. (2�18)

Within the TT gauge, there is an inertial frame of the background spacetime (the ηµν in

(2�8)) for which the wave is traveling in the z-direction. In this frame, there will only be

two independent components of hµν ,

hTT
µν =




0 0 0 0

0 hxx hxy 0

0 hxy −hxx 0

0 0 0 0



. (2�19)

The hTT
µν refers to transverse-traceless gauge and the overbar has been dropped since a

traceless tensor is its own trace-reverse. The two independent components of hTT
µν are

interpreted as two orthogonal polarization states for GWs. It is common to rewrite (2�19)

using two scalar polarization states and two unit polarization tensors,

hTT
µν = h+ĥ+ + h×ĥ× (2�20)
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where the polarization tensors are

ĥ+ =
1√
2




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




(2�21)

and

ĥ× =
1√
2




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0



. (2�22)

The two scalar polarization states, h+ and h× each will obey a scalar wave equation

analogous to (2�13),

h+/× = A+/× exp(ikµx
µ). (2�23)

2.1.4 Interaction with Matter

The preceeding Sections described GWs as mathematical solutions of GR. How they

manifest themselves physically can be examined by studying how these solutions e�ect the

motion of free particles. Recall that the geodesic equation (2�4) describes the motion of

free particles. A related equation, known as the geodesic deviation equation, describes the

evolution of the 4-vector linking two nearby geodesics,

ξ̈µ = Rµ
αβνV

αUβξν , (2�24)

where ξµ is the 4-vector linking the two geodesics, the dots denote di�erentiation to

a parameter of the geodesic (such as proper time), Rµ
αβν is a combination of metric

derivatives known as the Riemann tensor, and V α and Uβ are the four-velocities of the

particles on the geodesics. Consider a frame in which there are two neighboring free
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particles, both initially at rest, separated by a distance ε in the x direction. For this case,

ξµ = (0, ε, 0, 0) (2�25)

and

V α = Uβ = (1, 0, 0, 0). (2�26)

These expressions can be substituted into (2�24) to obtain

ξ̈µ = −εRµ
0x0. (2�27)

To �rst order in hµν , the Riemann tensor is given by

Rµ
ναβ =

1

2
ηµσ(hσβ,να + hνα,σβ − hσα,νβ − hνβ,σα). (2�28)

Using the expressions for hµν in the TT gauge, the four equations in (2�27) can be reduced

to two

ξ̈x =
1

2
εḧ+ (2�29)

and

ξ̈y =
1

2
εḧ×. (2�30)

All other components of ξ̈µ are zero. The tidal e�ects of GWs on freely-falling particles

will be restricted to the plane normal to the wave's propagation direction. The motion

in this plane will be oscillatory, with an angular frequency equal to that of the GW. A

similar analysis can be made for two particles initially separated by a distance ε in the

y-direction. The results are

ξ̈y = −1

2
εḧ+ (2�31)

and

ξ̈x =
1

2
εḧ×. (2�32)
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The expressions (2�29) through (2�32) can be used to determine the tidal distortions of an

initially-circular ring of freely-falling test particles in the x− y plane as a GW traveling in

the z-direction passes by. The result is shown schematically in Figure 2-1.

(a)

(b)

Figure 2-1. Distortion of an initially-circular ring of freely-falling test particles by a
GW propagating into the plane for (a), the + polarization and (b), the ×
polarization. φGW refers to the phase of the GW.

2.1.5 Generation of Gravitational Waves

The general solution of the inhomogeneous wave equation (2�11) for hµν at an event

with coordinates (t, xi) is given by the integral of the retarded Green's function over the

past light cone of the event,

hµν(t, x
i) = 4

∫
Tµν(t− |xi − yi| , yi)

|xi − yi| d3y. (2�33)

The integrand can be simpli�ed in the case that the source is compact and far from the

�eld point xi,

hµν(t, x
i) ≈ 4

r

∫
Tµν(t− r, yi)d3y, (2�34)
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where r is the distance between the source and the �eld point and the integral is over the

source where |yi| ¿ r. Further simpli�cations can be made by exploiting the restrictions

placed on Tµν by conservation laws. The laws of conservation of energy and conservation

of momentum can be expressed together as

T µν
,ν = 0. (2�35)

When (2�35) is applied to (2�34), the result to �rst order in (1/r) is

h
µ0 ≈ 0 (2�36)

and

hjk(t, x
i) ≈ 2

r
Ïjk(t− r), (2�37)

where Ijk is the quadrupole moment tensor of the source mass distribution and the dots

indicate derivatives with respect to t. The quadrupole moment tensor is de�ned as

Ijk =

∫
ρxjxkd3x, (2�38)

where ρ ≡ T 00 is the energy-density of the source distribution in its rest frame and the

integral is over the entire source. Oftentimes, it is useful to express (2�36) and (2�37) in

the TT gauge. In a coordinate frame at the observation point with the z-axis oriented

along the propagation direction of the wave, the expressions become

h+ =
1

r

[
Q̈xx(t− r)− Q̈yy(t− r)

]
(2�39)

and

h× =
2

r
Q̈xy(t− r), (2�40)

where Qij is the reduced quadrupole moment tensor, de�ned as

Qij = Iij − 1

3
δijI

k
k (2�41)
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and δij is the identity tensor. The expressions in (2�36) through (2�41) are known as the

quadrupole approximation and can be used to describe the gravitational radiation in many

physical systems. This is the topic of Section 2.2.

2.1.6 Energy Carried by Gravitational Waves

Like their electromagnetic counterparts, GWs carry energy. In GR, gravitational

energy results from curvature, which is a global phenomenon. Consequently, the energy

density cannot be assigned to a speci�c point and can only be computed as an average

energy density over a region large enough to de�ne the curvature. To compute the energy

for a GW, the quadratic contributions from hµν to the left-hand side of the Einstein

equation, (2�7) can be moved to the right-hand side and treated as a stress-energy source

term. The result3 is

T (GW )
µν =

1

32π

〈
hαβ,µh

αβ
,ν − 1

2
h

α
α,µh

α
α,ν − h

αβ
βhαµ,ν − h

αβ
βhαν,µ

〉
, (2�42)

where the angle brackets denote an average over several wavelengths. The expression in

(2�42) can be simpli�ed if the TT gauge conditions ((2�17) and (2�18)) are applied,

T (GW )
µν =

1

32π

〈
(hTT )ij,µ(hTT )ij

,ν

〉
. (2�43)

Using (2�43) and the quadrupole approximation described in Section 2.1.5, the GW

luminosity for a compact source can be estimated as

LGW =
1

5

〈...
Qij

...
Q

ij
〉
. (2�44)

To compute the luminosity in physical units, (2�44) is multiplied by the conversion factor

L0 = c5/G ≈ 3.6× 1052 W. (2�45)

3 For details see Section 35.7 of Misner, et al. [5]
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This luminosity is an upper limit that is never reached since LGW ¿ 1 in natural units.

Nevertheless, in certain astrophysical systems, GWs carry a tremendous amount of energy

and play an important role in the system dynamics.

2.2 Sources of Gravitational Waves

Section 2.1.5 described the quadrupole approximation for the generation of gravitational

waves. It was found that a mass distribution with a time varying quadrupolar (or higher)

moment would generate GWs. In theory, GWs could be generated by a laboratory

apparatus such as the one in Figure 2-2. Consider a uniform beam of mass M and length

L lying in the x− y plane. The z-axis passes through the center of the beam and the beam

makes an angle φ with the x-axis.

Figure 2-2. A hypothetical laboratory generator of GWs consisting of a bar of length L
and mass M

Under the assumption that the cross-sectional dimensions of the beam are small

compared to its length, the reduced quadrupole tensor can be written as

Qij =
ML2

12




cos2 φ− 1
3

cosφ sinφ 0

cosφ sinφ sin2 φ− 1
3

0

0 0 −1
3



. (2�46)
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If the beam is assumed to rotate about the z-axis with angular frequency ω, the second

and third time derivatives of Qij are

Q̈ij =
ML2ω2

6




− cos(2φ) − sin(2φ) 0

− sin(2φ) cos(2φ) 0

0 0 0




(2�47)

and

...
Qij =

ML2ω3

3




sin(2φ) − cos(2φ) 0

− cos(2φ) − sin(2φ) 0

0 0 0



. (2�48)

The quadrupole formulas for h, (2�39) and (2�40) can be used to estimate the strain

amplitude from (2�47). It is clear from (2�47) that the quadrupole moment oscillates

with an angular frequency of 2ω. This is to be expected from the symmetry of the system

under a rotation of π radians about the z-axis. The GWs will have this same frequency so

that ΩGW = 2ω.

Since the quadrupole approximation is valid only in the far-�eld, (2�39) and (2�40)

must be evaluated at a source distance of at least one GW wavelength (r = c/2ω). The

strain amplitude at that distance can be estimated as

h(lab) ≈ 2

3
ML2ω3. (2�49)

For a beam with M = 104 kg, L = 10m, and ω = 60 rad/s, (2�49) gives h(lab) ∼ 10−42. The

GW luminosity from the beam can be estimated using (2�44) and (2�48) as

LGW
(lab) ≈ 1

15
M2L4ω6. (2�50)

Using the same parameters, this gives LGW
(lab) ∼ 10−33 W. It is clear from the small size

of h(lab) and LGW
(lab) that GWs are not relevant for laboratory systems. What is needed

to generate physically meaningful GWs is larger masses and higher velocities. Both can be

found in astrophysical systems.

36



A binary star system is an example of an astrophysical system with a time-varying

quadrupole moment. It is well-known that the 2-body problem in GR has no analytic

solution. However, for most systems it is appropriate to use Newtonian mechanics to

describe the orbital motion and then use the quadrupole approximation to compute the

GW amplitudes and strains. Consider two point masses with masses m1 and m2 in a

circular orbit of radius a in the x− y plane, as shown in Figure 2-3.

Figure 2-3. A binary star system as generator of GWs

If the system center of mass is placed at the origin, the position vectors of the two

masses will be
−→x 1 = a

µ

m1

(cosφ, sinφ) (2�51)

and
−→x 2 = a

µ

m2

(− cosφ,− sinφ), (2�52)

where µ = m1m2/(m1+m2) is the reduced mass and φ is the orbital phase angle, measured

from the positive x-axis to m1. The reduced quadrupole moment for this system is

Qij = µa2




cos2 φ− 1
3

cosφ sinφ 0

cosφ sinφ sin2 φ− 1
3

0

0 0 −1
3




(2�53)

This is the same form as that for the beam in (2�46) as should be expected from the

similarity of the geometries. The time derivatives of Qij can be obtained from (2�47) and
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(2�48) with the substitutions M → µ and L → 2a as well as a division by 3 that results

from the distribution of mass within the uniform beam. For the binary system, Kepler's

law gives a relation between the orbital frequency and the binary separation,

ω2 =
M

a3
(2�54)

where M = m1 + m2 is the total mass. As with the rotating beam, the gravitational

waves will be emitted at a frequency equal to twice the orbital frequency. Using the above

relationships, the GW amplitude and luminosity for a binary system can be estimated as

h(binary) ≈ 2

r

µM

a
(2�55)

and

LGW
(binary) =

32

5

µ2M3

a5
. (2�56)

The forms of (2�55) and (2�56) demonstrate that the largest and most energetic GWs

will be generated in binaries with large mass and small separations. Ideal candidates for

such binaries are binaries where one or both members is a compact object such as a white

dwarf (WD), neutron star (NS), or black hole (BH).

For example, a NS-NS binary (m1 ≈ m2 ≈ 1.4MSun = 2.8 × 1030 kg) with an orbital

separation of 2a = 500 km would produce a GW luminosity of LGW
(binary) ∼ 1044 W at

a frequency ΩGW = 370Hz. At a distance of 1Mpc = 3 × 1022 m, this would produce

an energy �ux of ∼ 9mW/m2 at Earth, about three times brighter than the visible light

�ux from the full Moon. The corresponding GW strain amplitude at Earth would be

h(binary) = 2.3× 10−21, thought to be within the range of GW detectors.

The energy carried away from the binary in the form of GWs causes the overall

energy of the binary to decrease with time. Consequently, the orbital radius must decrease

while the orbital frequency increases. The decrease in orbital radius increases the GW

energy output (LGW
(binary) ∝ a−5), causing the system to radiate more strongly. The

resulting GWs increase in both frequency and amplitude with time, a waveform known as
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a chirp. So long as no other physical e�ects conspire to prevent it, the orbit will continue

to decay until the two objects merge. The chirp waveform can be estimated using an

adiabatic approximation in which the GWs are calculated from the Keplerian orbits and

the orbital parameters are changed to match the energy loss. For a circular orbit, the total

orbital energy is

E(binary) = −1

2

µM

a
. (2�57)

Taking a time derivative of (2�57) and equating it with (2�56) results in a di�erential

equation for a,

ȧ = −64

5

µM2

a3
. (2�58)

This equation can be solved to yield

a(t) = a0(1− t/tmerge)
1/4, (2�59)

where a0 is the orbital radius at time t = 0 and tmerge is the time of merger, given by

tmerge =
5

256

a4
0

M2µ
. (2�60)

As the orbital radius decreases, the accuracy of the Newtonian adiabatic approximation

worsens. This is precisely the regime in which the GW luminosity is the largest, so it

is important that more accurate methods be applied to predict GW waveforms. These

include analytic treatments with relativistic corrections to the orbits as well as numerical

simulations that incorporate the full Einstein equations [7].

In addition to binary systems, several other types of astrophysical sources of GWs

are thought to exist. Rapidly rotating NSs with a slight asymmetry will produce GWs.

The energy lost through GW emission will cause their rotation rate to decrease, much

as the electromagnetic radiation from pulsars cause spin-down. The waveforms for such

sources can be calculated in a manner similar to that for the binary systems [8]. Stellar

core collapse associated with supernovae are also a likely source of GWs, although in

order to generate GWs, there must be an asymmetric �ow of mass. The di�culty in
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modeling supernovae makes detailed predictions of their GW signatures hard to obtain

[9]. Finally, there is also a possibility of a cosmological background of GWs analogous to

the cosmic microwave background for electromagnetic radiation. This cosmic gravitational

wave background would be a stochastic signal, the level of which can be estimated from

cosmological arguments [2].

GW sources can be separated by frequency band, much as electromagnetic sources are

separated into radio, visible, gamma-ray, etc. In general, larger masses translate to lower

frequencies. The merger of a stellar-mass binary will occur in the ∼ 1 kHz band, where as

the merger of two supper-massive black holes (SMBHs), with masses 106MSun − 109MSun,

will occur in the ∼ 1mHz band. A GW spectrum suggested by Hughes [2] is contained in

Table 2-1.

Table 2-1. Suggested frequency bands for GWs

Band Frequency Range Persistent Srcs. Transient Srcs.

Ultra-low Frequency 10−18 Hz ∼ 10−13 Hz ? ?

Very-low Frequency 10−9 Hz ∼ 10−7 Hz
SMBI

CGBR
?

Low-Frequency 10−6 Hz ∼ 1Hz
BI

EMRI

CGBR

SMBM

High-Frequency 1Hz ∼ 10 kHz
RNS

CGBR

BM

SN

(SMBI = Super-Massive Binary Inspiral, BI = stellar-mass Binary Inspiral, EMRI =
Extreme Mass-Ratio Inspiral, SMBM = Super-Massive Binary Merger, BM = stellar-mass
Binary Merger, SN = Supernovae, RNS = Rotating/pulsating Neutron Stars, CGBR =
Cosmic Gravitational Wave Background)

As with electromagnetic sources, the same physical object may radiate in di�erent

bands at di�erent epochs within its evolution. A stellar-mass binary in the early stages

40



of inspiral will exist as a persistent source in the low-frequency band. As it evolves, the

frequency will increase until it merges in the high-frequency band.

2.3 Detection of Gravitational Waves

With the knowledge that GWs represent a set of solutions to the Einstein equations

(Section 2.1) and the existance of several plausible mechanisms for their generation

(Section 2.2), it is a reasonable assumption that most of the universe is bathed in

gravitational radiation. The obvious question is how can this radiation be detected. A

number of techniques for detecting GWs have been proposed or implemented. These

techniques generally fall into two categories: direct techniques which measure the

amplitudes of the waves themselves and indirect techniques which infer the presence

of the waves from their e�ects on a well-understood physical system.

2.3.1 Indirect Detection

Thus far, only indirect detections of GWs have been made. In 1975, Russel Hulse

and Joseph Taylor discovered a pulsar known as PSR 1913+16 [3]. A pulsar is a

rapidly-rotating NS with a highly-beamed radio emission. As the pulsar rotates, its

radio beam sweeps across Earth, producing a pulse in a radio detector. Pulsars are

some of the most stable oscillators in the universe and provide a unique opportunity for

precision measurement of the motion of a distant compact object. After observing PSR

1913+16 for some time, it was determined that it was in a binary orbit with a radio-quiet

companion, likely a second NS. The mass of the companion and the orbital parameters

(radius, eccentricity, orbital phase, etc.) were extracted by �tting the pulse arrival times to

an orbital model. Once the binary system was characterized, the expected GW luminosity

could be computed from a modi�cation of (2�56)4 . With LGW known, an energy balance

4 For elliptical orbits, (2�56) is modi�ed by an enhancement factor f(e) =
1+(73/24)e2+(37/96)e4

(1−e2)7/2 , that depends on the orbital eccentricity, e. The system also radiates
preferentially at periastron, meaning that GW emission tends to circularize orbits [10].
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could be used to determine the predicted rate of orbital decay as in (2�59). Figure 2-4

shows a plot of the observed shift in orbital phase (versus a non-decaying orbit) of PSR

1913+16 from 1975 to 1988 along with the predictions of GR.

Figure 2-4. Observed shift of periastron for PSR 1913+16. The solid line is the predicted
shift due to GW emission (Figure 5 from Taylor and Weisberg [11], used by
permission of the American Astronomical Society)

The stunning agreement provides excellent circumstantial evidence for the existence of

GWs and provided Hulse and Taylor with the 1993 Nobel Prize in physics. In addition to

PSR 1913+16, several other binary pulsars have been observed. The observations of each

have thus far been in agreement with the predictions of GR [12].

2.3.2 Direct Detection

While the measurements of binary pulsars provide extremely strong evidence for the

existence of GWs, they do not allow the information carried by the waves themselves to be

extracted. What is needed is a method to directly measure the GW strain h(t). This will

allow for comparison with predicted models of h(t), providing tests of the models as well

as providing a means to measure parameters of the systems generating the waves. In the
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following subsections, the most common methods for measuring GWs are discussed. For a

more exhaustive list of potential detectors see Misner, et al. [5], Chapter 37.

2.3.2.1 Doppler-tracking of spacecraft

Beginning in the 1960s, man-made probes began to leave Earth orbit and travel

towards the outer planets. The radio communications systems on these spacecraft (SC)

provide a means to make precise measurements of the spacetime interval between the

SC and a receiver on Earth. Since both Earth and a SC in cruise phase appoximate

freely-falling particles, this is a measurement of geodesic separation and will be e�ected

by GWs. The Doppler tracking technique [13, 14] begins with an ultra-stable oscillator

of frequency ν0 , which is used to drive an Earth-based transmitter. This signal travels

to the distant SC, which receives a Doppler-shifted version of the signal a time τ1 later.

A phase-lock-loop (PLL) on-board the SC is used to �x the SC's local oscillator to the

incoming signal. The SC then transmits this signal back to Earth, where it is received

after an additional delay τ2 and with a two-way Doppler shift ∆ν. For a coordinate system

in which a GW propagates in the z-direction with the x− y axes oriented parallel to the +

polarization (See Figure 2-5), the response of the Doppler shifts to GWs can be written as

∆ν(t)

ν0

= −1− µ

2
h(t)− µh[t− (1 + µ)τ1] +

1 + µ

2
h(t− τ1 − τ2)

+N1(t) +N2(t− τ1) +N3(t− τ1 − τ2), (2�61)

where the polar angles to the SC are (θ, φ), µ = cos(θ), N1, N2, and N3 are noise terms

and

h(t) ≡ h+(t) cos(2φ) + h×(t) sin(2φ). (2�62)

The response to GWs in (2�61) is sometimes called a three-pulse response, since an

impulse in h(t) will show up in the signal at three distinct times. For long wavelengths

(λGW ≥ τ1,2), the three pulses will interfere destructively. This sets the lower frequency

limit for the Doppler-tracking technique.
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Figure 2-5. Concept for Doppler-tracking detection of GWs.

At high frequencies, the noise terms, which include scintillation in Earth's atmosphere,

scintillation in the interplanetary medium, mechanical motion of the antennae, and

thermal noise in the receivers, begins to dominate the signal. For typical experiments, this

sets the frequency range to be roughly 10−4 Hz ≤ fGW ≤ 10−1 Hz [13]. The sensitivity of

the signal is set by the remaining noise level in the system.

An improvement upon the simple Doppler tracking can be made by �ying an

additional ultra-stable oscillator on the SC and making a separate measurement of the

one-way Doppler shift between Earth and the SC. Since the noise terms that enter into

this measurement will be related to the noise terms in (2�61) under time shifts of τ , it is

possible to create a linear combination of the Earth-SC and SC-Earth Doppler shifts that

partially cancels the noise terms. It is expected that this two-way Doppler technique could

provide amplitude sensitivity of 10−18 at frequencies around 1mHz, corresponding to a

strain spectral density amplitude of 3 × 10−20 /
√
Hz [13]. Experiments using the one-way

technique have been performed using the Pioneer SC, Galileo, Mars Surveyor, and most

recently Cassini [15].

2.3.2.2 Pulsar timing

Another technique is to use a distributed array of pulsars as a timing network for

GW detection [16, 17]. Pulsars are among the most precise clocks in the universe, a fact

that made the indirect detection of GWs using binary-pulsars possible. In the direct
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pulsar-timing technique, the pulse time-of-arrivals (TOAs) are measured for each pulsar

and used to generate a model of the pulsar's environment. This model includes all known

e�ects on the TOAs, including relative motion between Earth and the pulsar, detector

systematics, and the e�ect of GW emission on the pulsar orbit if it is in a binary system.

A set of residual TOAs is then formed by subtracting the model TOAs from the observed

TOAs. For a perfect model, the residuals will be zero. If a GW disturbs spacetime

between the pulsar and Earth, the signal will show up in the residual TOAs. Roughly

speaking, the relationship between TOA residuals and GW amplitude sensitivity is

hPT ≈ R · ΩGW (2�63)

where R is the rms of the TOA residuals in the absence of a GW, and ΩGW is the

frequency of the GW. The best current measurements have R ∼ 200 ns, which allows

for a GW sensitivity of ∼ 10−15 in the extremely low frequency band, ΩGW ∼ 1 nHz. In

theory, a single pulsar measurement would be capable of detecting GWs in this manner.

In practice, multiple pulsars are needed to reduce the possibility of signals due to noise in

the residuals. For N completely uncorrelated sets of residuals with equal R, the sensitivity

in (2�63) will increase with
√
N . The Parkes Pulsar Timing Array [18] is a US-Australian

collaboration with a goal of observing 20 pulsars with 100 ns residuals over a period of

10 yrs. This would give an amplitude sensitivity of ∼ 10−16 at ΩGW = 1 nHz. Sources

in the extremely low frequency band include inspiraling SMBH binaries and stochastic

sources such as the cosmological background.

2.3.2.3 Resonant mass detectors

The earliest GW detectors were resonant mass detectors, or �bars�, �rst conceived by

Joseph Weber in the 1960s [19]. They consist of large masses (bars) suspended in such

a way as to minimize damping. A passing GW will deposit some energy into mechanical

vibrations of the bar. If this excess energy can be measured, the GW can be detected. The

challenge for bar detectors is distinguishing the small amount of energy added to the bar
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by a GW from the large amount of energy already present in the bar and the read-out

system.

The amount of energy deposited in the bar can be increased by increasing the bar's

mass. Todays bars have masses of several thousand kilograms. To prevent vibrations from

the outside world from disturbing the bar, it must be mechanically well-isolated.

Cooling the bars to cryogenic temperatures reduces the thermal noise present in

the bars. The remaining thermal noise can be mitigated by using materials with a high

mechanical quality factor, or Q. This places most of the thermal energy in a narrow

frequency band, leaving lower noise in the remainder of the band.

The second major challenge for bar detectors is measuring the energy within the bar

without disturbing it. Most modern bar detectors use mechanically resonant read-out

systems, which consist of smaller masses coupled to the main bar in such a way that

they are resonant with the GW frequency of interest. The motion of these smaller

masses is measured with electromechanical transducers built from SQuID (Sub-Quantum

Interference Device) electronics.

Figure 2-6 shows a 1996 sensitivity curve for ALLEGRO, a bar detector in Baton

Rouge, LA [20]. To produce the curve, the spectral density of the detector noise was

scaled to equivalent GW strain amplitude. Detectable events would have a strain

amplitude above the curve. The curve for ALLEGRO shows two narrow bands of

maximum sensitivity, corresponding to resonances within the detector. In this sensitivity

curve the maximum sensitivity reaches 10−21 /
√
Hz in a narrow band near 921Hz. In

general, size restrictions and limits on vibrational isolation limit the observational window

of bar detectors to the high frequency regime (fGW ≥ 100Hz, see Table 2-1). Persistent

sources in this frequency band include rotating NSs and cosmological background. For

GWs originating from optically-observed pulsars, the frequency of the GWs is known and

the resonances of the bars can be tuned to search for it. Transient sources include the �nal

merger of stellar mass binaries, supernovae, and other unmodeled sources.
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Figure 2-6. Sensitivity of ALLEGRO bar detector 1996 (courtesy of W.O. Hamilton)

To date, no con�rmed detections of GWs have been made with bar detectors. A

key technique for distinguishing GW signals from spurious noise bursts is coincidence

measurements between multiple bar detectors. This can also help provide direction

information for the observed GW, since bar detectors have nearly uniform antenna

sensitivity patterns. A number of major bar experiments are underway around the world,

some of which are listed in Table 2-25 .

Table 2-2. Operational GW bar detectors

Name Location Bar Temperature Operational Date

ALLEGRO Baton Rouge, USA 4.2K 1991

ALTAIR Frascati, Italy 2K 1980

AURIGA Lengaro, Italy 0.2K 1997

EXPLORER Geneva, Switzerland 2.6K 1989

NAUTILUS Rome, Italy 0.1K 1994

NIOBE Perth, Australia 5.0K 1993

5 Table 2-2 is an adaptation of a similar table by Johnston [21].
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In addition, there are plans to build larger detectors, including ones with spherical or

nearly-spherical geometries. Spherical detectors both increase mass for a given volume as

well as provide additional resonant modes that can be used to determine GW polarization

and direction from a single detector [22].

2.3.2.4 Interferometric detectors

The tidal motion induced by GWs (Figure 2-1) is ideally suited to be detected with

a Michelson Interferometer (MI). Consider a simple MI consisting of a light source,

beam-splitter (BS), two mirrors (Mx,My), and a photodetector (D) oriented along the

x − y axes as shown in Figure 2-7. The optics are assumed to be free to move along the

interferometer axes.

Figure 2-7. A Michelson interferometer as a detector of GWs. (LS = light source, BS =
beam splitter, Mx,y = mirrors, D = photodetector.

If a GW propagating in the z-direction passes through the detector, the mirrors will

respond as the masses in Figure 2-1, with the BS at the origin. The distances between the

BS and the mirrors in the x, y arm will then be

Lx(t) = Lx0[1 + h+(t) cos(2ψ)− h×(t) sin(2ψ)] (2�64)

and

Ly(t) = Ly0[1− h+(t) cos(2ψ) + h×(t) sin(2ψ)] (2�65)
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where Lx0 and Ly0 are the nominal lengths of the x, y arms, h+,×(t) are the polarization

amplitudes of the GW, and ψ is the angle between the x-axis and the ĥ+ polarization

direction.

Interferometry is a technique for measuring changes in the arm-lengths given in (2�64)

and (2�65) . The light entering the BS can be described by an electric �eld oscillating at a

given frequency with a phase φ(t). As each light beam makes its out-and-back trip along

the arms, it will gain a phase of

φi(t) = 2kLi(t) (2�66)

where i = x, y and k = 2π/λ is the wavenumber of the incoming light. When the light is

recombined at the BS, the two beams will have a phase di�erence given by

∆φ(t) = 2k∆L(t), (2�67)

where ∆φ(t) ≡ φx(t) − φy(t) and ∆L(t) ≡ Lx(t) − Ly(t). A number of techniques can be

applied to measure the phase di�erence in (2�67), which can then be used to extract h+(t)

and h×(t).

For a more general relationship between the GW propagation direction, polarization,

and the detector plane, the expressions in (2�64) and (2�65) will include a functions of sky

position known as antenna patterns for each polarization. Except for certain orientations

such as a GW propagating along the x or y axes, the antenna patterns are nearly uniform.

Interferometric GW detectors are sensitive to GWs over the entire sky.

The observable frequency band for interferometric GW detectors is limited by

their size and by noise sources. The expression for phase accumulation in (2�66) is

valid only when the round-trip time is short compared to the GW period. For longer

arms (or shorter GW periods), the sign of the GW strain will reverse as the light is

propagating, causing the round-trip phase change to average towards zero. This e�ect acts

as a low-pass �lter with a sinc(2LfGW ) transfer function. There is no fundamental limit to
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the low-frequency response of a interferometric GW detector. However, practical limits are

set by instrumental noise sources.

The many challenges that must be overcome in order to convert the concept in (2-7)

into a working detector can be broken into two areas: the ability to build freely-falling

test masses and the ability to make precision distance measurements between these

test masses. The former is known in the ground-based interferometer community as

displacement noise while the latter is called readout noise.

The chief source of displacement noise in interferometers is often seismic noise.

An Earth-bound laboratory is not a freely-falling frame, but a free-fall condition in

one dimension can be approximated by suspending the test masses on pendula. This

constrains the test mass motion in the vertical and transverse directions. Longituinally,

for small displacements at frequencies above the natural frequencies of the pendula, the

masses are free to move.

Vibrations can couple into the test masses through the pendula, spoiling the free-fall

condition. Other sources of displacement noise are radiation pressure noise from the

light on the mirrors, internal vibrations of the mirrors driven by thermal energy, and

gas pressure noise. Signi�cant e�ort is required to suppress these noise sources to a

level su�cient for GW detection. The ultimate limit on displacement noise may be

gravity gradient noise, which describes the time-dependent portions of the Newtonian

gravitational �eld. For Earth-bound detectors with current technologies, gravity gradient

noise limits the useful band to roughly 10Hz and above.

The other class of noise sources for interferometric GW detectors is readout noise.

Readout noise includes shot noise and phase noise in the light source. Shot noise can

be reduced by increasing the power of the light source, however a penalty is paid in

displacement noise through increased radiation pressure noise. The shot-noise/radiation-pressure

noise limit represents the theoretical maximum sensitivity for a given detector operating

over a broad frequency band.
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Laser phase noise is a particularly important noise source for interferometric

detectors. As shown in (2�67), the detector output is derived from the phase di�erence

between the two arms, ∆φ. Changes in ∆φ can result from two sources, a change in ∆L or

a change in k

δ(∆φ) = 2k · δ(∆L) + 2δk ·∆L, (2�68)

where δ denotes a time-dependant change from the nominal value. The �rst term

corresponds to motion of the mirrors and a potential GW detection, while the second

is caused by frequency (or phase) �uctuations in the light source. Note that the phase

noise term is proportional to ∆L, so that in the case where the arm-lengths are exactly

equal, it vanishes. To �rst order, an equal-arm interferometer is insensitive to phase noise

of the light source.

In the past decade, several kilometer-scale interferometric detectors have been built

around the globe (see Table 2-3, based on data from Johnston [21]). Multiple detectors are

necessary for performing correlations in order to reduce the occurrences of false detections.

In addition, the relative timing between events as measured by widely-seperated detectors

can provide information on the direction to the GW source.

Table 2-3. Major ground-based GW interferometers.

Project Location Arm Length Status

LIGO USA(2) 4 km in operation

VIRGO Italy 3 km commisioning

GEO600 Germany 600m in operation

TAMA300 Japan 300m under construction

A representative example of a modern interferometric GW detectors are the LIGO

(Laser Interferometric Gravitational Wave Observatory) detectors in the US [23]. Figure

2-8 shows an aerial photo of the 4 km LIGO detector at Hanford, WA. The e�ective length
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of the arms is enhanced by placing Fabry-Perot cavities in each arm. A frequency and

intensity stabilized Nd:YAG laser operating at 1064 nm provides ∼ 6W of power to the

interferometer, which is enhanced by a factor of ∼ 40 by a power-recycling mirror. The

test masses are 10 kg fused silica optics suspended from a wire pendulum with a 0.75Hz

resonance frequency. Additional passive and active vibration isolation further reduce

seismic coupling into the test masses.

Figure 2-8. Aerial photograph of the LIGO interferometric GW detector (courtesy LIGO
Scienti�c Collaboration)

Figure 2-9 shows a sensitivity curve for LIGO during the science runs known as

S4 (Spring 2005) and S5 (Nov. 2005 - present) along with the design goal for LIGO

sensitivity. Aside from a few narrow peaks and a slight excess at low frequencies, the

LIGO detectors are now performing at their design sensitivity. The peak sensitivity of

∼ 3× 10−23 /
√
Hz occurs just above 100Hz. At higher frequencies the sensitivity degrades

with a slope of roughly one (sensitivity is proportional to f 1). At lower frequencies the

sensitivity decreases sharply, reaching ∼ 10−18 /
√
Hz at 10Hz. This sharp decrease

in sensitivity can be attributed to displacement noise, mainly from vibration coupling

through the pendula as well as gravity gradient noise. This sets the LIGO observing band

to the �high-frequency� band as de�ned by Table 2-1. LIGO is currently searching for

GWs from many of the predicted sources in this band. While no con�rmed detections have

been made, the data has allowed important upper limits to be set [25�27].
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Figure 2-9. Sensitivity curves for the LIGO detectors during the S5 science run (courtesy
LIGO Scienti�c Collaboration [24])

The sharp drop in sensitivity below ∼ 30Hz is sometimes called the �low-frequency

wall� and represents a limit for current ground-based interferometric GW detectors. While

future technology may allow for some improvement at low frequencies, it is unlikely that

ground-based interferometers will be able to access GW sources in the low-frequency band.

To do this, the detector must leave the noisy environment of Earth. One possibility is to

place LIGO-type detectors on celestial bodies with less seismic activity, such as the Moon.

Alternatively, the detector itself can be placed in space to avoid seismic noise completely.

This is the goal of the Laser Interferometer Space Antenna (LISA), the subject of the

remainder of this dissertation.
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CHAPTER 3
THE LASER INTERFEROMETER SPACE ANTENNA

3.1 Introduction

As mentioned in Chapter 2, current understanding of GW detection suggests that

gravity gradient noise will prevent Earth-based GW detectors from observing sources

in the low-frequency band (10−6 Hz ∼ 1Hz, see Table 2-1). One way to access the

many interesting sources in this band is to move the detector into space. The Laser

Interferometer Space Antenna [28] (LISA) is a joint project of the National Aeronautics

and Space Administration (NASA) and the European Space Agency (ESA) that plans

to launch a space-based instrument capable of detecting gravitational radiation in

the frequency band of 3 × 10−5 Hz to 10−1 Hz with a strain sensitivity in the range of

10−21/
√
Hz.

3.2 Sources

Three known types of sources populate the LISA observational window: galactic

binaries, extreme mass-ratio inspirals (EMRIs), and SMBH mergers (see Figure 3-1).

Galactic binaries refer to the early inspiral phase of stellar-mass compact objects. Since

these objects will be far from merger while in the LISA band, they can be treated as

persistent sources. So many of these sources are thought to exist that the LISA sensitivity

will likely be limited by a confusion background of galactic binaries in some frequency

regimes. The fact that GW sources are treated as �noise� to some in the LISA community

is indicative of the di�erence in source abundance between the low-frequency and

high-frequency GW bands. There are also a handful of binary systems that have been

observed electromagnetically and should produce isolated GW signals in the LISA band.

These �veri�cation binaries� will provide an instant test of the instrument, as well as

serving as valuable calibration sources throughout the mission lifetime [29].

An EMRI refers to a small (1M¯ ∼ 10M¯) compact object falling into a SMBH

(106M¯ ∼ 109M¯). In an EMRI, the spacetime is dominated by the SMBH and the

smaller object serves as a �test particle�, tracing out the geodesics of the spacetime

54



near the SMBH. This will allow for the �rst time precision tests of GR in highly-curved

spacetimes, a major goal of LISA science [2].

Figure 3-1. Sources in the LISA observational window (Courtesy NASA)

A merger of two SMBHs may occur during galactic collisions, when the SMBHs at the

center of each parent galaxy inspiral into one another and merge. These events would be

among the most energetic in the universe and would be visible to redshifts of z ∼ 5 − 10

[2].

LISA will also have an opportunity to search for a cosmological background of GWs

produced by the Big Bang. However, most models of such backgrounds that exist predict

that they will lie below the LISA band.

3.3 Mission Design

The LISA mission concept calls for three individual spacecraft (SC) arranged in a

triangular constellation approximately 5Gm (1Gm = 109 m) on a side. The center of

the constellation will follow a circular heliocentric orbit with a radius of 1AU, o�set in

orbital phase from Earth by approximately 20o, as shown in Figure 3-2. The plane of the

55



constellation is inclined with respect to the ecliptic plane by 60o and the constellation

revolves in its plane with a period of one year.

Figure 3-2. Orbital con�guration of LISA constellation (Courtesy NASA)

Each SC contains two optical benches at the center of which is a 4-cm cube

of gold-platinum alloy known as the proof mass. Like the mirrors in ground-based

interferometers, the proof mass will represent the geodesic-tracking free particle in GR.

Passing GWs will modulate the proper distance between the six proof-masses, an e�ect

that will be measured using laser interferometry.

As with ground-based detectors, the challenges of LISA naturally divide into two

areas: building a proof mass that approximates a freely-falling test particle and measuring

the distance between the proof masses with a precision su�cient to detect the minute

length changes caused by GWs. Accomplishing these tasks is the goal of the two

major LISA instrumental systems, the Disturbance Reduction System (DRS), and the

Interferometric Measurement System (IMS).

3.4 The Disturbance Reduction System (DRS)

A test mass in GR is completely isolated, its motion dictated solely by the geometry

of the space-time in which it exists. Real objects in the universe can only approximate

an ideal test mass; they are subject to electromagnetic interactions, particle interactions,

and other spurious forces. Isolating the LISA proof mass from these other forces is

the function of the disturbance reduction system (DRS). The LISA DRS is based on a
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technology called drag-free control, in which the SC is used as a shield that �ies around

the proof mass. Upon reaching their designated orbits, the SC will carefully release the

proof masses so that they are freely-�oating inside a small enclosure. Capacitive and

optical sensors will monitor the position and orientation of the proof-mass and feed

this information to a controller. The controller will keep the proof masses centered in

their enclosures by utilizing one of two actuators: electrostatic plates to push the proof

mass and micro-Newton thrusters to move the SC. With an appropriately-designed

controller, the proof masses will act much as the suspended mirrors in ground-based GW

interferometers: free to move along the sensitive axis but constrained in other directions.

Design and construction of the DRS is an extremely challenging aspect of LISA

technology. In order to reach the desired strain sensitivity, the residual acceleration of the

proof-mass in the sensitive direction must be less than ∼ 10−15 (m/s2)/
√
Hz. Dozens of

potential noise sources such as electrostatic noises, thermal noises, and SC gravity gradient

noise can spoil this goal and must be addressed. Much e�ort has been made to design

ground-based experiments which can be used to investigate various aspects of the DRS

[30]. Most of these use model proof masses suspended on torsion pendula, providing a

similar system with a reduced number of degrees of freedom. In addition, an on-orbit

test of the DRS technology will come with the LISA Path�nder mission, a technology

demonstrator mission planned for launch in 2009 [31].

3.5 The Interferometric Measurement System (IMS)

The other main function in LISA, measuring the distance between the proof-masses,

is the role of the interferometric measurement system (IMS). The goal is to measure length

changes on the order of h × L ≈ 10−21/
√
Hz · 5Gm ≈ 10 pm/

√
Hz between pairs of

proof-masses. While LISA is often colloquially referred to as �a Michelson interferometer

in space�, in reality LISA operates quite di�erently from a Michelson interferometer or

from any of the ground-based GW interferometers such as LIGO. Rather than utilizing

many optical elements to generate a single electronic readout, LISA makes a series of
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one-way interferometric measurements between pairs of optical components and then

combines the results electronically to generate useful signals. The technologies required for

this approach di�er greatly from those required for traditional interferometry.

3.5.1 IMS Overview

Figure 3-3 contains a schematic of the LISA IMS, consisting of the three SC each

with two identical optical benches. Each optical bench contains a proof mass, an infrared

laser light-source, photoreceivers, and optics. Referring to the notation in the �gure, OBij

is the optical bench on SCi oriented towards SCj. The two optical benches on each SC

are connected to one another via an optical �ber. Optical benches on opposite ends of

a LISA �arm� are connected via a two 40 cm telescopes and a 5Gm free-space link. Due

to di�raction losses over the long arms, only about 100 pW of light are received from the

∼ 1W of light produced at the far SC.

Interferometry is used to make three types of measurements: distance between the

proof mass and the optical bench, the distance between optical benches on di�erent SC,

and the phase di�erence between the lasers on adjacent optical benches.

Figure 3-3. Diagram of the LISA IMS. OBij refers to the optical bench on SCi oriented
towards SCj. τij is the light travel time from SCi to SCj.
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The basic premise of optical interferometry is to use the phase of a light �eld to make

measurents of distance. In general, a light �eld at a particular frequency can be described

by the real-part of a complex electric �eld given by

−→
E (t) =

−→
E 0 exp {i[2πνt+ φ(t)]} · exp[

−→
k · ẑ] (3�1)

where <[
−→
E 0] describes the electric �eld amplitude and its transverse variations (spatial

mode and polarization), ν is the optical frequency, and φ(t) is the optical phase, and −→k
is the wavevector. In (3�1), all of the variation of the light �eld is contained in φ(t), ν is

assumed to be constant. An alternative view descirbes all variation in E(t) as �frequency

noise�, or a change in ν rather than φ. These two equivalent descriptions are easily related.

If the frequency is described by ν(t) = ν0 + δν(t), the equivalent phase noise is

φ(t) = 2π

∫ t

0

δν(τ)dτ + φ(0) (3�2)

and the equivalent noise spectra is

φ̃(f) =
δ̃ν(f)

2πf
(3�3)

where f is the Fourier frequency and the tilde indicates a frequency spectrum.

Since electromagnetic waves are linear, a superpostion of two optical signals can

be descirbed by adding their electric �elds. A photodiode (PD) can be used to measure

the intensity of the combined beam, which is proportional to the squared magnitude of

the total electric �eld. If the two signals have frequencies ν1,2 and phases φ1,2(t), the PD

output will be a signal of the form

S(t) ∝ sin[2πν12t+ φ12(t)] (3�4)

where ν12 ≡ ν1 − ν2 is the di�erence frequency between the two light beams and φ12(t) ≡
φ1(t) − φ2(t) is the di�erence phase between the two beams. This signal is commonly

referred to as a �beat note�.
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In interferometry it is the phase of the beat note that contains the distance

information that is of interest. Unfortunately, it also contains noise from the light source

itself. In LISA the interfered light �elds are produced by independent light sources,

meaning that the size of the �uctuations in the beat note φ̃12(f) will be roughly equivalent

to the �uctuations in the individual lasers.

φ̃12(f) =

√
φ̃2

1(f) + φ̃2
2(f) ≈

√
2φ̃1(f) (3�5)

The concept behind LISA interferometry is to measure these large phase �uctuations

with high precision and then make combinations of di�erent signals which will cancel the

laser phase noise while leaving the phase �uctuations induced by GWs. The key to this

approach is the ability to make phase measurements with a precision of ∼ 1µcycle/
√
Hz of

laser noise that may be greater than 106 cycles/
√
Hz in the LISA band. This is the task of

an instrument known as the phasemeter (PM). A detailed discussion of PMs, focusing on

two prototypes designed for the UF LISA simulator, is presented in Section 4.5.

3.5.2 The Optical Bench

A conceptual LISA optical bench is shown in detail in Figure 3-4. Three di�erent

infrared laser beams enter the optical bench. The local beam (red), is produced by the

laser associated with the optical bench. The adjacent beam (blue) is produced by the laser

associated with the neighboring optical bench on the same SC, and reaches the optical

bench through an optical �ber. The far beam (green), is produced by the laser associated

with the optical bench on the far SC. These beams are interfered at three PDs, PDmain,

PDback1, and PDback2.

In the baseline design of Figure 3-4, PDmain is used to interfere the incoming beam

with the local beam, producing a signal containing the one-way motion between the local

and far optical benches. In the �cross-over� design option, the incoming beam is interfered

with the adjacent beam rather than the local beam. Since the local and adjacent beams

will generaly have di�erent carrier frequencies, this will reduce the e�ect of stray light.
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At PDback1, the adjacent beam is interfered with a local beam that has re�ected o�

the proof mass, producing a signal that contains the motion between the proof-mass and

the local optical bench.

The signal at PDback2 is similar to that in PDback1 except that the local beam has

not re�ected o� the proof mass. This signal serves as a reference signal to compare the

two lasers on adjacent benches. It can also be used as the error signal in a phase-lock loop

(PLL) in which the phase of the laser on one bench is forced to track the phase of the

laser on the adjacent bench. This is the LISA equivalent of a beam-splitter in a traditional

interferometer.

Figure 3-4. Diagram of a LISA optical bench. Light from the local laser (red) enters from
the �ber coupler on the bottom, light from the adjacent optical bench (blue)
enters from the left, and light from the far SC (green) enters from the right.

These three measurements are repeated on all six optical benches, resulting in

eighteen independent measurements that must be properly combined in order to extract

the distances between the proof masses.

Consider the two �backside� PDs (PDback1 and PDback2) on the optical bench in

Figure 3-4. A PM can be used to extract the phase of the beat signals. The PM outputs

of the backside PDs are:

Sback1(t) = φl(t) + kxpm(t)− φa(t)− nal(t) (3�6)

and

Sback2(t) = φl(t)− φa(t)− nal(t), (3�7)
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where φl(t) and φa(t) are the phases of the light �elds on the local and adjacent benches

respectively, k ≡ 2πν/c is the wavenumber of the light, xpm(t) is the motion of the proof

mass in the sensitive direction relative to the optical bench, and nal(t) is the phase noise

accumulated during travel from the adjacent bench to the local bench. This will include

both noise in the �ber as well as the relative motion between the benches. By taking the

linear combination Sback1(t)− Sback2(t), the laser phase noise and �ber noise cancel, leaving

only the term proportional to the proof mass motion.

The measurement between optical benches on opposite ends of an arm is accomplished

using the signals from PDmain. The PM signals Sij(t) from PDmain on OBij are

S12(t) = φ12(t)− φ21(t− τ21) + h21(t) (3�8)

and

S21(t) = φ21(t)− φ12(t− τ12) + h12(t), (3�9)

where φij(t) is the phase of the laser associated with OBij, hij(t) is change in phase due to

a GW for a beam traveling from SCi to SCj, and τij is the light travel-time between SCi

and SCj. The information of interest in Sij(t), the GW signal hij(t), will be overwhelmed

by the laser phase noise1 , φij(t). Unlike the situation with the back-side interferometers,

it is not possible to form a linear combination of Sij(t) and Sji(t) that eliminates φij(t)

while retaining hij(t). The reason is that the phase noise terms enter with time delays due

to the large separation between the SC.

3.5.3 Time Delay Interferometry

While it is not possible to create a signal free of laser phase noise using the PM

signals on one arm, it is possible to do so, or nearly so, by using PM signals from multiple

1 Other noise sources, such as relative motion of the SC due to non-gravitational
e�ects, will also enter the PM signals at levels much higher than the GW signal. They
are typically smaller than the laser phase noise and can be treated in a similar fashion.
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arms with appropriate time delays. This process is known as time-delay interferometry

[32] (TDI), and is key to the success of LISA. The three LISA arms provide a total of

six one-way links, each of which can be potentially utilized to form a TDI signal. The

resulting space of possible signals is large and is typically broken into several classes [33].

Some of the most basic TDI combinations are the Michelson-like combinations, typically

referred to as X, Y , and Z. The three letters refer to the three-fold symmetry of LISA:

the X combination is the Michelson-like combination with SC1 as the �corner� SC, the

Y combination is the Michelson-like combination with SC2 as the corner SC, and the Z

combination is the Michelson-like combination with SC3 as the corner SC.

To form the X combination, the two lasers on-board SC1 (Figure 3-3) are phase-locked

using the signals on PDback2 so that φ12(t) ≈ φ13(t) = φ1(t). This is the LISA equivalent of

the beam-splitter in a true Michelson interferometer.

To approximate the mirrors, the far SC (SC2 and SC3) are con�gured as optical

transponders. The PM signals at PDmain on OBj1 will be

Sj1(t) = φj1(t)− φ1(t− τ1j) + h1j(t), j = 2, 3. (3�10)

A PLL is used to adjust the phase of the laser on the far SC so that Sj1(t) ≈ 0.

Consequently,

φj1(t) = φ1(t− τ1j)− h1j(t). (3�11)

This is the optical equivalent of the radio transponders used in the Doppler-tracking

experiments discussed in Section 2.3.2.1. When the two beams return to SC1, the PM

signal at PDmain on OB1j will be

S1j(t) = φ1(t)− φj1(t− τj1) + hj1(t)

= φ1(t)− φ1(t− τ1j − τj1) + h1j(t− τj1) + hj1(t). (3�12)
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The X combination is formed from S12(t) and S13(t) as follows:

X(t) = S12(t)− S13(t)− S12(t− τ13 − τ31) + S13(t− τ12 − τ21). (3�13)

Substituting (3�12) into (3�13) and simplifying gives

X(t) = h21(t)− h31(t) + h12(t− τ21)− h13(t− τ31)

−h21(t− τ13 − τ31) + h31(t− τ12 − τ21)

−h12(t− τ21 − τ13 − τ31) + h31(t− τ12 − τ31). (3�14)

The X combination completely removes the contributions from laser phase noise, while

leaving the contributions from the GW signals. The response of X to GWs is sometimes

referred to as a �four-pulse� response since an impulse in h(t) will result in an impulse

in X(t) at four distinct times: t, t + τ , t + 2τ , and t + 3τ , where τ is an average of the

four one-way light travel times. It is important to note that the quality of the PLLs in

the transponders is not critical. In actual practice, the errors in the PLLs on each of the

SC will be monitored and added into the TDI signals. A similar procedure can be used to

measure and correct for any residual phase noise between φ12(t) and φ13(t) using the signal

at PDback2[34].

3.5.3.1 Visualizing TDI

The Michelson-like TDI variables can be visualized using the �rabbit-ear� diagram in

Figure 3-5. Time delaying the PM signals by an amount τ can be interpreted as sending

them along a virtual path with a light-travel time of τ. In the X combination, one beam

(red) makes a physical trip (solid line) from SC1 to SC2 and back and then makes a

virtual trip (dashed line) from SC1 to SC3 and back. The other beam (blue) does the

reverse. When they return to SC1, both have traveled the same distance and consequently

the phase noise is common and cancels out. This can be viewed as synthesizing an

equal-arm Michelson interferometer or zero-area Sagnac interferometer from the individual

PM signals.
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Figure 3-5. The �rabbit-ear� diagram for the �rst-generation TDI X combination. Each
light beam originates at SC1 and takes physical (solid) as well as virtual
(dashed) trips to the far SC. The total round-trip path length for the two
beams is identical and the laser phase noise in each beam at SC1 is common.

3.5.3.2 Extensions to TDI

If the LISA constellation were static, the TDI variables such as X would perfectly

cancel laser phase noise. However, as the orbits of the individual SC evolve, the

constellation will change shape, causing the τij to di�er by up to one percent between

arms. Aditionally, the rotation of the constellation causes an asymmetry in the light travel

time for a single arm, τij 6= τji. With time-dependant values of τi, laser phase noise is

no longer completely canceled in the �rst-generation TDI variables such as X. Instead,

it couples into the measurement at a level proportional to the relative velocity between

the SC. One way to surmount this problem is to utilize the �second-generation� TDI

variables [35], which include four additional terms and cancel out the relative velocities

of the SC. These are sometimes referred to as the �eight-pulse� TDI variables, since an

impulse in h(t) will arrive at eight separate times in the signal. The cancellation of the

second-generation TDI variables is also not perfect, since there is a relative acceleration
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between the SC as well. However, the residual laser phase noise after second-generation

TDI is applied is low enough so that satis�es the LISA error budget.

3.5.3.3 The zero-signal TDI variable

One important TDI variable for LISA is the symmetric Sagnac variable ζ [36]. A

Sagnac interferometer consists of two beams from a common source propagating in

opposite directions around a closed loop. The phase di�erence between the two signals is

proportional to the area enclosed by the loop and the rotation speed of the loop. In LISA

a Sagnac signal can be generated either physically through a combination of PLLs on

appropriate benches or virtually through an appropriate combination of time-delayed PM

signals. In either case, the rotation in the constellation results in a path length di�erence

between the two beams of approximately 14 km, which is equivalent to a time-di�erence

of ≈ 47µs. This will cause laser phase noise and other instrumental noise sources to

couple into ζ. The GW signal, on the other hand, will not be present in ζ since the tidal

distortions caused by GWs are area-preserving. What ζ provides is a measurement channel

containing instrumental noise but no signal. This is essential for distinguishing between

possible signals and instrumental noise since, unlike ground-based detectors, LISA will

not have other detectors with which to perform correlations. In a sense, the three arms

in LISA are equivalent to two co-located interferometers and the ζ variable measures the

uncorrelated instrumental noise.

3.5.3.4 Limitations and noise sources

In addition to the restrictions placed on TDI by the motion of the constellation,

there are sources of error that occur when the variables are formed in the �rst place.

In order to form a variable such as X in (3�13), one must know the values of τij. This

requires an independent measurement of the range between the SC. Errors in this ranging

measurement will degrade the noise cancellation in TDI. It is estimated that a ranging

accuracy of 20m to 200m is needed to su�ciently suppress laser phase noise [34]. This
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requirement is dependant on the initial laser phase noise, and can be relaxed if the input

laser phase noise can be reduced through stabilization.

Another source of error in forming the TDI variables is obtaining the PM signals at

the proper times. Once τij is known from ranging measurements, signals such as Sij(t−τij)
must be formed. The original TDI concept called for a triggered PM fed by a real-time

ranging system in order to obtain the time delayed signals at the appropriate times. This

approach has since been abandoned in favor of a PM with a �xed sampling frequency of

∼ 10Hz. The PM data and ranging data are telemetered to the ground and the delayed

combinations are formed by time-shifting the various PM signals. In order to achieve the

required timing accuracy, the PM signals must be accurately interpolated within a small

fraction of a sample period. This can be accomplished e�ciently using a technique known

as fractional delay �ltering [37], which is discussed in Section A.4.6.

3.5.4 Arm-locking

In the previous Section, it was demonstrated how TDI will be utilized by LISA to

suppress laser phase noise in the GW measurement. The requirements on TDI and its

associated tasks (ranging and interpolation) are strongly tied to the input laser phase

noise. LISA will use lasers that are intrinsically stable, but the laser phase noise will still

be large compared with what is required. The stability of the lasers can be improved by

several orders of magnitude by using an optical cavity [38, 39] or molecular transition

[40, 41] as a frequency reference. The current LISA baseline calls for each laser to have an

optical cavity system capable of providing a frequency stability of

δ̃ν(f) ≤ (30Hz/
√
Hz)×

√
1 + (1mHz/f)4 (3�15)

or better in the LISA band (3×10−5 Hz−0.1Hz). With this frequency noise, second-generation

TDI, and a ranging/interpolation error of ≤ 30m, the IMS will meet its displacement

noise requirements [34, 42]. Improvement in δ̃ν(f) over (3�15) will allow a relaxation of

ranging/interpolation requirements and possibly the use of �rst-generation TDI variables.
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Arm-locking [43] is a technique whereby some combination of the LISA arms is used

as a frequency reference for laser stabilization. Although the lengths of the LISA arms

change over a period of a year by as much as a few percent, in the LISA band they are

extremely stable. If this stability can be transferred to the laser phase, the requirements

on TDI can be relaxed considerably.

3.5.4.1 Closed-loop system dynamics

Before examining arm-locking in detail, it is useful to review the basics of closed-loop

system dynamics. Figure 3-6 shows a Laplace-domain representation of a generic

closed-loop system. The input x(s) is combined with the control signal c(s) to produce the

error signal e(s). The error signal propagates through the system, with transfer function

G(s), to produce the output signal y(s). The controller, with transfer function H(s), forms

c(s) from y(s).

Figure 3-6. Diagram of a closed-loop SISO system with negative feedback. Signals: x(s) =
input, e(s) = error, y(s) = output, c(s) = control. G(s) is the system transfer
function. H(s) is the controller transfer function

This type of system can be referred to as a single-input single-output (SISO)

closed-loop system with negative feedback [44]. The signals and the transfer functions

G(s) and H(s) are complex-valued functions of the complex Laplace variable, s = σ+2πif .

The advantage of expressing the closed-loop system in the Laplace-domain is that the

di�erential equations that relate the time-domain signals reduce to algebraic equations

relating the Laplace-domain signals. The error, output, and control signals can be
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expressed in terms of the input signal as

e(s)

x(s)
=

1

1 + TOL(s)
, (3�16)

y(s)

x(s)
=

G(s)

1 + TOL(s)
, (3�17)

and
c(s)

x(s)
=

TOL(s)

1 + TOL(s)
, (3�18)

where TOL(s) ≡ G(s)H(s) is the open-loop transfer function.

In the case of a control-loop used for stabilization, x(t) is a noise input to the system

and y(t) is the noise in the system output. The goal of the control system is to reduce

the magnitude of y(t) for a given x(t). Note that (3�17) contains the term 1 + TOL(s) in

the denominator. The magnitude of this term indicates the performance of the loop as

a suppressor of noise. If |1 + TOL(s)| > 1, the closed-loop value for y(s) will be smaller

than the open-loop value, given by (3�17) with H(s) = 0. If |1 + TOL(s)| ≤ 1, then the

closed loop values for y(s) will be greater than or equal to the open-loop value, a condition

known as noise enhancement.

The performance of a particular stabilization system can be evaluated using a Nyquist

plot, a plot of TOL(s) in the complex s-plane. As shown in Figure 3-7, the Nyquist plot

has two regions separated by a circle of unit radius centered on the point (−1, 0) marked

with an ×. If TOL(s) lies inside the circle, the closed-loop system will enhance the noise. If

it lies outside the circle, the closed-loop system will suppress the noise. The degree of noise

enhancement or suppression is related to the distance from the point (−1, 0). The closer

TOL(s) lies to (−1, 0) the larger the noise enhancement or smaller the noise supression.

If TOL(s) reaches the point (−1, 0), known as a pole, the expressions in (3�16) - (3�18)

become in�nite.

In a Nyquist plot, TOL(s) is plotted as a curve parameterized by the Fourier frequency

(s → 2πif). For most systems, the curve will be a spiral with frequency increasing
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clockwise. Since the gain of most systems eventually decreases with frequency, the spiral

will be an inward spiral. Because of this tendency to spiral inwards, any curve that

encircles the point (−1, 0) will eventually become arbitrarily close to it, causing the system

to become unstable. This behavior is summarized by the Nyquist stability criterion [44]:

for closed-loop stability, the open-loop transfer function TOL(f) must not encircle the point

(−1, 0) in the complex plane.

Figure 3-7. Generic Nyquist plot for open-loop transfer function TOL(f). The shaded
region indicates noise enhancement. The pole at (−1, 0) is marked by an ×.
Frequency increases clockwise along the curve of TOL(f).

3.5.4.2 Steady-state arm-locking performance

In order to transfer the stability of the LISA arm to the laser phase, an error signal

must be derived from the PM signals. Ideally, this signal would be directly proportional

to the laser phase. The most basic arm-locking scheme is single-arm locking, where the

round-trip length of a single LISA arm is used as a frequency reference. Consider the PM

signal from PDmain on OB12 with SC2 acting as a transponder, (3�12). In the absence of

GW signals (h12(t) = h21(t) = 0), this signal can be simpli�ed to

S12 = φ1(t)− φ1(t− τRT ), (3�19)
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where τRT ≡ τ12 + τ21 is the round-trip light travel time between SC1 and SC2. The

sensor's transfer function can be computed as

Tsen(s) ≡ S̃12(s)

φ̃1(s)
= 1− e−sτRT . (3�20)

The Nyquist plot of Tsen(f), contained in Figure 3-8(a) is a circle, the result of a

vector sum of the two terms in (3�20). The �rst term is a unit vector along the positive

real axis. The second term is a rotating unit vector making an angle 2πfτ with the

negative real axis. As f increases, Tsen(f) traces out a clockwise circle, reaching the origin

at f = fn ≡ n/τRT , n = 0, 1, 2.... These are the �null frequencies� for which the signals

φ1(t) and φ1(t − τRT ) are in phase and cancel. As the curve passes through the origin, the

phase of Tsen(f) shifts discontinuously from −90◦ to +90◦.

(a) (b) (c)

Figure 3-8. Representative Nyquist plots for single-arm arm-locking: (a) sensor
(1− e−sτRT ), (b) system 1

s
(1− e−sτRT ), (c) open-loop s1/2 1

s
(1− e−sτRT ). The red

curves in (b) and (c) have higher gains than the blue curves.

In order to compute the system transfer function G(s), Tsen(s) must be combined

with the actuator transfer function. Most laser actuators are frequency actuators,

producing a change in laser frequency that is proportional to the controller input. A

frequency actuator can be represented as a phase actuator in the Laplace domain with an

additional 1/s in its transfer function. The system transfer function (sensor + actuator)
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for single arm-locking is then

G(s) =
G0

s
(1− e−sτRT ), (3�21)

where G0 is an overall constant gain factor. A Nyquist plot of G(s) for two di�erent

values of G0 is shown in Figure 3-8(b). Comparing the curves in Figure 3-8(b) with Figure

3-8(a), the e�ect of the actuator transfer function can be seen as a clockwise rotation of

90◦ coupled with a decrease in magnitude as frequency increases. This causes the system

to enter the noise enhancement region (inside the dashed circle).

An alternative view of G(s) is the Bode plot in Figure 3-9. Here the interferometer

nulls and phase discontinuities are clearly seen at multiplies of 1/τRT ≈ 30mHz.
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Figure 3-9. Bode plot of Tsen(f) with τRT = 33 s, the round-trip delay in a single LISA
arm

As G0 is increased (red curve vs. blue curve in Figure 3-8(b)), the system passes

closer to the instability point at (−1, 0). This is a marginally-stable condition where

an increase in gain produces an increase in noise suppression at some frequencies but a

corresponding increase in noise enhancement at other frequencies. Any additional phase

loss will rotate the system further, allowing it to encompass the (−1, 0) point and become

unstable.
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One solution to this problem is to design a controller with a transfer function whose

magnitude drops below unity before f = f1 = 1/τRT . This allows large gains for

f ¿ f1 while avoiding the instabilities at f ≥ f1. Unfortunately for single-arm locking,

f1 ≈ 30mHz lies right in the middle of the LISA measurement band.

An alternative approach is to utilize a controller that provides some phase advance

in the vicinity of the interferometer nulls, rotating the Nyquist plot away from the point

(−1, 0). This can be achieved with a transfer function of the form

H(s) = H0s
p, (3�22)

where H0 is a gain constant and 0 ≤ p ≤ 1. This form of H(s) will produce a phase

advance of p× 90◦. A Nyquist plot of TOL(s) ≡ G(s)H(s) with p = 1/2 is shown in Figure

3-8(c). As compared to Figure 3-8(b), the curve is rotated 45◦ counter-clockwise. As the

gain is increased (red curve vs. blue curve), the curve approaches the line Re[TOL(s)] =

Im[TOL(s)]. With this type of controller, the gain can be arbitrarily increased (assuming

no additional phase loss) without increasing the level of noise enhancement.

In the Bode representation (Figure 3-9), the phase response of the open-loop transfer

function is equal to the sum of the system phase response and the controller phase

response. The phase advance in the arm-locking controller lifts the phase minima at the

null frequencies away from −180◦. This provides some positive phase margin and hence

stability.

The price paid for the phase advance of the controller in (3�22) is a reduced slope

in the magnitude of TOL(f). For a given controller bandwidth, this limits the gain at low

freuqencies. Alternatively, a higher bandwidth is required to reach a given low-frequency

gain.

A general arm-locking controller will have a transfer function similar to that in Figure

3-10. The frequency response can be divided into three distinct regions. For f < f1,

the controller can have a transfer function with a steep slope, allowing for large gains for
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f ¿ f1. From slightly below f1 to the unity-gain frequency2 , fUG, the controller must be

of the form in (3�22) so that it provides the necessary phase advance. For f > fUG, the

controller response can begin to roll o�.

Figure 3-10. Bode plot for a generic arm-locking controller. The controller must provide a
phase advance between f1 and fUG

For a general arm-locking controller with transfer function H(s), the closed-loop

supression of phase noise can be computed from (3�16) and (3�21),

TCL(s) ≡ φ(s)

p(s)
=

1

1 +H(s)G0s−1 (1− e−sτ )
, (3�23)

where p(s) is the laser phase noise prior to arm-locking and φ(s) is the laser phase noise

after arm locking. The magnitude of the closed loop supression, |TCL(f)|, is plotted for a

generic arm-locking system in Figure 3-11.

For f ¿ f1, the suppression can be large, due to the steep roll-o� of the controller.

At a frequency just below f1, the closed-loop suppression crosses the 0 dB line, indicating

noise enhancement. This corresponds to the curve of TOL(f) entering the dashed circle

2 Strictly speaking, arm lock loops have many unity-gain frequencies, one for each time
TOL crosses the dashed circle in the Nyquist plot. There will be two of these points for
each fn where |G0H(fn)/2πifn| > 0. Here we refer to the unity-gain frequency between
the interferometer nulls |G0H(fUG)/2πifUG| = 0.
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in Figure 3-8(c). The level of noise enhancement increases until it reaches a maximum,

corresponding to the closest approach to the point (−1, 0) in the Nyquist plot.

Figure 3-11. Closed-loop noise suppression for a generic arm-locking loop

At f = f1, the closed-loop suppression is again 0 dB, corresponding to the curve

passing through the origin in the Nyquist plot. This behavior is repeated at each fn with

the heights of the noise-enhancement peaks and the depths of the noise-suppression valleys

decreasing as f increases. Near f = fUG, a �servo bump� may occur, caused by the loss of

phase in the controller as its magnitude �attens out.

3.5.4.3 Transient response

The noise suppression curve in Figure 3-11 represents a steady-state limit that is

reached only after any transient responses decay. For a qualitative understanding of

arm-locking transients, consider (3�19), the single-arm error signal in the time-domain.

Under the assumption of high gain, the arm-locking controller will enforce the condition

φ1(t) ≈ φ1(t− τRT ). (3�24)

If the controller is suddenly switched on at t = τRT , the phase noise φ(t) for 0 ≤ t ≤ τRT

will e�ectively become �frozen� in the system. Under the idealized conditions of in�nite

gain and no losses, the pattern of noise would repeat inde�nitely. In the frequency domain,
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this would correspond to all of the transient signal power being concentrated in the

frequency bins near f ≈ fn, producing noise peaks similar to the ones in Figure 3-11.

For a real system, the relationship in (3�24) becomes more approximate as additional

uncorrelated noise mixes into the system. As it does so, the transients decay and the

system approaches its steady-state limit. The time constants for this decay are a critical

measure of arm-locking performance. If the time-constants are too large, valuable

observing time might be wasted while waiting for the noise to die down. It could also

limit the �exibility of mission managers to unlock and re-lock the constellation as needed.

For a given controller, it is possible to make an analytical estimate of the transient

frequencies and time-constants [45]. This is done using a Laplace-domain analysis that

properly accounts for the integration constants in the Laplace-transform of the constituent

signals. For the system described above,

f (trans)
n ≈ n

τRT

− Im{G(fn)−1}
2πτRT

, (3�25)

and

τ (trans)
n ≈ τRT

Re{G(fn)−1} , (3�26)

where f (trans)
n is the frequency and τ (trans)

n is the time constant of the nth transient, and

G(s) ≡ G0H(s)/s is the ratio of the open-loop transfer function to the interferometer

transfer function. These expressions are valid to �rst order in |G(s)−1|. In order to

compute the transient response for a given initial condition, the initial phase from 0 ≤
t ≤ τRT is expressed as a Fourier sum of signals with frequencies f (trans)

n and amplitudes

A
(trans)
n . After the loop is closed, the amplitudes will then decay with time constants

τ
(trans)
n .

Numerical simulations of arm-locking [43] suggest that the transient response may

be suppressed by slowly ramping the loop gain to its steady-state value rather than

suddenly turning it on at t = τRT . The analytical treatment above does not apply

for time-dependant gains, but the result can be intuitively understood as follows. For
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the initially low gains (small G0), the transient time constants will be small (3�26).

The system will reach steady state quickly, but the steady state will only be a slight

improvement over the free-running condition. The gain is then incrementally increased,

increasing the time constants and decreasing the steady-state noise. However, the input

noise is now slightly lower than the free-running case, corresponding to smaller initial

A
(trans)
n . This process is then repeated until the �nal gain is reached. The overall time to

reach steady state is decreased since
[
1− exp

(
−

N∑
i

τi

)]
>

N∑
i=1

[1− exp (−τi)] , (3�27)

where τi represent the values of τ (trans)
n for each quasi-steady-state value of the gain G0(i).

3.5.4.4 Alternative arm-locking schemes

The single-arm locking discussed in 3.5.4.2 is feasible, but its performance is less than

ideal. Since 1/τRT is in the LISA band, extremely large bandwidths would be needed to

achieve su�cient suppression. A suppression in laser phase noise by a factor of 104 at

10mHz would require a unity-gain frequency of 1MHz for a controller with p = 1/2.

Regardless of the controller shape or bandwidth, there will still be noise peaks in the

�stabilized� spectrum that are larger than the un-stabilized noise in the same frequency

bins.

The fundamental reason that these peaks are present is that the single-arm sensor

signal, (3�19), contains no information about phase noise with Fourier frequencies f = fn.

Suppression of noise at those frequencies requires an error signal that is sensitive to noise

at those frequencies. One way to obtain such an error signal is to utilize additional LISA

arms. As mentioned in Section 3.5.3.4, the orbital dynamics of the constellation cause the

LISA arms to di�er by up to one percent. Consequently the values of fn for one arm will

be slightly di�erent than those for another arm.

Consider the LISA constellation arranged as in the Michelson X TDI combination.

SC1 is designated the �master� SC and its two lasers are phase-locked to generate a single
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light source with phase φ(t). The far SC are con�gured as transponders, so that the PM

signals from PDmain on SC1 are

S1j(t) = φ(t)− φ(t− τ1j), j = 2, 3. (3�28)

If we de�ne the average arm-length and arm-length di�erence as

τ ≡ τ12 + τ13

2
(3�29)

and

∆τ ≡ τ12 − τ13 (3�30)

then (3�28) can be re-written as

S12(t) = φ(t)− φ

[
t−

(
τ +

∆τ

2

)]
(3�31)

and

S13(t) = φ(t)− φ

[
t−

(
τ − ∆τ

2

)]
. (3�32)

The transfer functions of S1j in the Laplace domain can be found using (3�20) with

τ → τ ± ∆τ/2. The signals for each of the two arms can either be added or subtracted.

The former produces the common-arm error signal, S+, while the latter produces the

di�erence-arm error signal, S−. In the Laplace domain, these two signals are

S+(s) = 2

[
1− e−sτ cosh

(
s∆τ

2

)]
(3�33)

and

S−(s) = 2e−sτ sinh

(
s∆τ

2

)
. (3�34)

Common-arm locking uses S+ as an error signal. Figure 3-12 shows a schematic

Nyquist plot of S+. The signal consists of two terms added vectorially, a vector of length

2 along the positive real axis and a vector of length 2 |cos(πf∆τ)| making an angle of

2πfτ with the negative real axis. The curve will make its closest approach to the origin
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for frequencies fn ≡ n/τ . Unlike the case of single-arm locking, the error signal will not

pass through the origin and consequently the error signal phase will not reach −90◦. This

may relax the constraints on the controller, allowing the gain to rollo� more steeply in

the vicinity of the minima. For frequencies where f = m/∆τ, m = 1, 2, 3 . . . , S+ has a

true null. At these frequencies, a controller must provide the same phase advance as the

single-arm controller. For a one-percent arm-length di�erence in LISA, the �rst null would

occur at 3Hz, which is above the LISA measurement band.

Figure 3-12. Nyquist plot for common arm-locking

The depth of the minima in S+ and the corresponding minimum phase will depend

on the value of cosine term as f approaches fn. Since ∆τ ¿ τ in LISA, it is reasonable

to approximate the Nyquist plot of S+ as a series of circles centered on the point (2, 0)

with the radius given by 2 |cos(πf∆τ)|. The minimum amplitude and phase can then be

estimated geometrically as

Amin ≈ 2 [1− cos (πnτ/τ)] (3�35)

and

θmin ≈ sin−1 [cos (πn∆τ/τ)] . (3�36)

The �rst concern is at n = 1, since the cosine function approaches unity at DC. For

∆τ/τ = 0.01, Amin ≈ 10−3 and θmin ≈ −88◦. The additional 2◦ of phase margin provided
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by common arm-locking would not cause a signi�cant improvement in either stability

or performance over single arm-locking. If ∆τ were increased to 0.1τ , the minimum

amplitude would increase to ≈ 0.1 while the minimum phase would increase to −72◦. This

might provide some improvement, but it would also cause the location of the �rst true null

to move from ∼ 3Hz to ∼ 300mHz.

Given the preceeding analysis of common-arm locking, it seems doubtful that it would

be of much use in LISA. However, an improvement over common-arm locking known as

direct arm-locking [42] looks to be more promising. The direct arm-locking error signal is

formed from the common and di�erence error signals as

Sdirect(t) = S+(t)± 2

∆τ

∫
S−(t)dt. (3�37)

The sign of the integrated term depends on which arm is longer and is chosen so that the

term is positive. In the Laplace domain, the direct arm-locking error signal can be written

as

Sdirect(s) = 2

{
1− e−sτ

[
cosh

(
s∆τ

2

)
− 2

s∆τ
sinh

(
s∆τ

2

)]}
. (3�38)

An ideal arm-locking error signal would only retain the �rst term in the curly brackets.

The second term will go to zero when the magnitude of the square-bracketed term is zero.

Figure 3-13 contains a plot of the magnitude of the square-bracketed term versus Fourier

frequency f . For f ¿ 1/∆τ , the term drops to zero. At these frequencies, the response

of the direct arm-locking error signal is nearly �at, greatly relaxing the restrictions on

controller shape. This allows for increased noise supression at these frequencies and the

removal of the frequency noise peaks.

As f increases, the square-bracketed term in (3�38) approaches unity, allowing the

overall error signal to come closer to zero at the frequencies fn = n/τ . This results in

a loss of phase at these points and a corresponding increase in noise in the closed-loop

system. Just before f reaches 1/∆τ , the term actually exceeds unity. In the Nyquist

representation of Figure 3-12, this results in the system entering the noise enhancement
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region on the left-hand side of the complex plane. The maximum amplitude of 1.06 is

reached at f ≈ 0.87/∆τ . The direct arm-locking controller must provide additional phase

advance at these frequencies in order to maintain the stability of the system.
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Figure 3-13. Magnitude of square-bracketed term in (3�38)

One minor problem with direct arm-locking arises in the fact that the arm-length

di�erence is not constant and at times the arms are equal. This causes problems with

scaling S−(t) by 1/∆τ in the direct arm-locking error signal (3�37). The arms will only be

equal occasionally (a few times a year) and it should be possible to address the problem

by occasionally switching the location of the master SC, reverting to single arm-locking,

or simply waiting for the arm-length di�erence to drift through zero while some scheduled

maintenence activity is taking place.

A �nal possibility for an arm-locking error signal is to use the entire constellation in a

Sagnac mode, much as for the ζ variable discussed in Section 3.5.3. Starting at the master

SC, one beam is sent via phase-locks on the far SC on a counter-clockwise loop around

the constellation. The other beam is sent on a clockwise loop. This produces two signals

similar to those in (3�31) and (3�32), except that τ ≈ 50 s and ∆τ ≈ 47µs. These signals

can also be combined to form the common and di�erential signals, which can be used to

form a direct arm-locking error signal.
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The small size of ∆τ pushes the location of the �rst instability to 21 kHz, well

above the LISA band. Furthermore, the rotation of the constellation is always in the

same direction, meaning that ∆τ will be constant. Sagnac arm-locking would allow for

extremely large gains in the LISA band, reducing the residual phase noise considerably.

The downside is that it would require all six links to be operational and quiet, whereas the

other arm-locking con�gurations would still be viable if one or more links were inoperative

or degraded.

3.5.4.5 GW signals

At �rst glance, there appears to be one major drawback to arm-locking: the

arm-locking error signals are sensitive to phase changes caused by GWs as well as those

caused by laser noise. If the signal is suppressed along with the noise, nothing is gained.

However, it is important to remember that the GW signals in LISA are extracted from

the TDI signals, not the individual PM outputs. The cancellation of laser frequency noise

in TDI works for any disitrbution of laser noise. If some of the laser noise happens to be

correlated with the GW signals, it will not e�ect the cancellation.

3.5.4.6 Interaction with pre-stabilization system

As mentioned earlier, the lasers on LISA will be externally stabilized to a local

frequency reference, most likely a stable optical cavity. Ideally, arm-locking should

cooperate with the local frequency stabilization, so that the maximum stability can be

achieved. The problem in doing this is that the lock points for the local reference and the

arm-locking reference will not generally be the same. For example, an optical cavity has

a series of lock points separated by a free-spectral range (FSR) of c/2L, where L is the

cavity length. For a 30 cm cavity, this corresponds to an FSR of 500MHz. The linewidth

of the cavity stabilized laser will be in the range of 10Hz over 1000 s timescales. Over

longer time scales, thermal and mechanical e�ects in the cavities can cause the lock points

to drift by many MHz with slopes of 100Hz/s or more [46].
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A single-arm arm-lock controller will also have a series of lock points separated by an

FSR of c/(2 × 5Gm) = 30mHz, meaning that there will be an arm-locking point near the

cavity lock point. Unfortunately the drifts in the cavity will cause the cavity lock point to

move over thousands of arm-locking FSRs.

One possibility is to simply replace the pre-stabilization with the arm-locking loop.

While this has the advantage of simplicity, it would require a much larger gain in the

arm-locking loop. In addition, the PMs would have to be capable of handling the larger

phase noise without loosing accuracy.

Several possibilities for combining arm-locking with laser pre-stabilization have

been proposed [42]. Each of these involve creating a �loop-within-a-loop� using an

additional actuator. The tuneable-cavity approach, shown in Figure 3-14, replaces the

�xed optical cavity with a PZT-actuated tuneable cavity. The laser is locked to the cavity

using a standard locking scheme such as Pound-Drever-Hall (PDH) [47], providing the

pre-stabilization. The arm-locking error signal is used to actuate the cavity, keeping it

�locked� to the arm-length. The concern with this approach is that placing a PZT in the

cavity will degrade the cavity's length stability. It remains to be seen how severe this

degradation will be.

Figure 3-14. Combining pre-stabilization and arm-locking with a tuneable cavity

A second approach involves using a �xed cavity but modifying the PDH scheme to

use a sideband lock. The PDH locking scheme utilizes an electro-optic modulator (EOM)

to place RF sidebands on the laser beam entering the cavity. The error signal is typically
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generated by making the carrier beam nearly resonant with the cavity and observing the

phase of the re�ected sidebands. It is also possible to generate an error signal by making

one of the sidebands resonant in the cavity. In the sideband-lock approach (Figure 3-15),

one RF sideband is locked to the cavity, providing stability to the carrier as well. The

carrier is used to generate the arm-locking error signal, which is fed back to the local

oscillator (LO) driving the EOM. This approach provides tunability while avoiding the

need for a tuneable cavity. However, sideband locking is known to introduce additional

noise sources and is not generally utilized in ultra-stable applications.

Figure 3-15. Combining pre-stabilization and arm-locking using a sideband cavity lock

A �nal option for combining arm-locking with laser pre-stabilization is the o�set

phase-lock approach, shown in Figure 3-16. Here an additional low-power laser is locked

to a �xed cavity, providing a stable reference. The main high-power laser is phase-locked

to this reference laser with an o�set frequency provided by a tuneable LO. For a high-gain

PLL, the phase noise of the main laser will be the same as that of the reference laser. The

arm-locking error signal is derived from the main laser, and is used to generate a feedback

to the LO. Since low-noise high-gain PLLs are an existing LISA technology requirement

(transponder locks), no new technologies are needed. However the additional laser is a

potential source of added mass and power consumption.
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Figure 3-16. Combining pre-stabilization and arm-locking using a reference laser and an
o�set PLL
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CHAPTER 4
THE UF LISA INTERFEROMETRY SIMULATOR

4.1 Background

A group of researchers at the University of Florida (UF), including the author, are

developing a laboratory-based model of LISA interferometry. The purpose of this model

is to provide an arena for studying measurement techniques and technologies under

conditions similar to those present in LISA. Examples include laser pre-stabilization

systems, phase-lock-loops, phasemeters, TDI, arm-locking, inter-SC ranging, and laser

communication, all of which were discussed in Chapter 3. A long-term goal is to inject

GW signals into the simulator and produce data streams with LISA-like noise sources that

can be used by data analysis groups for mock data challenges.

There are two aspects of LISA interferometry that the simulator seeks to re-create:

noise sources and transfer functions. For the most part, this can be accomplished by

building a bench-top model of the IMS with a one-to-one correspondence between

parts. For example, the optical cavity pre-stabilization system is built with a laser, an

ultra-stable high-�nesse cavity, and appropriate electronics. Standard components are used

in favor of space-quali�ed versions to reduce cost, but the noise characteristics and transfer

functions are essentially the same.

There is one aspect of LISA that cannot be simply copied on the ground: the size of

the constellation. There is no viable way to optically delay a laser beam for 16 s. Delays

in the microsecond or perhaps millisecond regime can be achieved using long optical �bers

[48], but eventually loses and �ber noise will overwhelm the signal. To model this aspect

of LISA interferometry, which is essential for studying TDI, arm-locking, and ranging, the

UF simulator uses a novel technique known as Electronic Phase Delay (EPD) [49].

4.2 The EPD Concept

The motivation behind EPD comes from the fact that nearly all of the information of

interest for interferometry is contained in the phase of the laser beams. Recall from (3�1)

that the time-varying component of a light �eld can be described by a complex electric
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�eld with a time-varying phase,

E(t) = E0 exp {i[2πνt+ φ(t)]} . (4�1)

In LISA, the phase can include contributions from GW signals, laser phase noise, motion

of the optical bench, etc. If φ(t) can be extracted from (4�1) and delayed, the result is

interferometrically equivalent to delaying E(t). Furthermore there is a limited bandwidth

over which variations in φ(t) are important. For most components, this is the LISA band,

but for some components, such as data communication and clock transfer, this may be as

high as a few GHz.

The infrared lasers used in LISA will have wavelengths of ∼ 1µm, which corresponds

to an optical frequency of ν ≈ 280THz. At such high frequencies, it is impossible to

measure the oscillations in (4�1) directly. However, if two beams with di�erent frequencies

are interfered on a photodiode (PD) to produce a beat note, the resulting intensity signal

is given by

I(t) ∝ sin[2π∆νt+ ∆φ(t)], (4�2)

where ∆ν is the di�erence frequency between the beams and ∆φ(t) is the di�erence in

phase between the two beams. Unlike ν, ∆ν can be made arbitrarily small by carefully

tuning the lasers. If the two lasers have similar noise characteristics but are independent,

then the noise spectrum of ∆̃φ(f) will be approximately equal to
√

2φ̃(f). In terms of

phase, I(t) is an analogue of E(t) at a lower frequency. If ∆ν can be brought within the

bandwidth of a photoreceiver and a digital signal processing (DSP) system, it will be

possible to measure I(t), store it in a digital delay bu�er, and regenerate it at a later time.

This is the concept behind the EPD technique.

As an illustration of how EPD is applied to model LISA interferometry, consider the

measurement of a single LISA arm between optical benches on di�erent SC, shown in

Figure 4-1(a). A laser on one SC (L1), produces a light �eld with frequency ν1 and phase

φ1(t). This light �eld traverses the 5Gm to the other SC, incurring a delay of τ ≈ 16 s and
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a frequency shift, νDoppler, caused by the relative motion between the SC. At the other SC,

the incoming light-�eld is interfered on a PD with the light from a local laser (L2), which

has a frequency ν2 and phase φ2(t). The frequency and phase of the resulting beat signal

are

νLISA = ν1 − ν2 + νDoppler (4�3)

and

φLISA = φ2(t)− φ1(t− τ) (4�4)

(a) LISA

(b) EPD Analog

Figure 4-1. The EPD technique applied to a single LISA arm

The EPD equivalent of 4-1(a) is shown in Figure 4-1(b). The light �eld from L1 is

�rst interfered with a reference laser (L0), which has phase φ0(t). This beat signal has a

frequency ν10 ≡ ν1 − ν0 and phase φ10(t) ≡ φ1(t)− φ0(t). So long as φ̃0(f) ≤ φ̃1(f) and the

phases are uncorrelated, φ̃10(f) ≈ φ̃1(f). The L1 − L0 beat signal is the EPD analog of the

optical signal from L1 in Figure 4-1(a).
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The L1 − L0 beat signal is used as an input to the EPD unit, which digitizes the

signal, stores it in a memory bu�er for a time τ , and regenerates the delayed signal. The

output of the EPD unit is a signal with phase φ10(t − τ). Some versions of the EPD

hardware (see Section 4.6) are also capable of putting a frequency shift on the beat signal,

mimicking the Doppler shifts present in LISA.

The optical signal from L2 in Figure 4-1(a) is modeled by a beat between L2 and L0

in Figure 4-1(b). This signal has a frequency ν20 ≡ ν2−ν0 and phase φ20(t) ≡ φ2(t)−φ0(t).

As with the L1 − L0 beat, the noise characteristics of this signal will be the same as that

for the original optical signal so long as L0 is independent from L2 and has equal or lesser

phase noise.

The PD in Figure 4-1(a) is replaced by an electronic mixer in Figure 4-1(b). The

mixer performs a similar operation on the two electronic signals as the PD does on the two

optical signals. The mixer output contains two terms, one with a frequency equal to the

di�erence frequency of the two input signals and one with a frequency equal to the sum of

the two input signals. A low-pass �lter is used to remove the high-frequency term, leaving

a signal with a frequency and phase given by

νEPD = ν10 − ν20 + νDoppler (4�5)

and

φEPD = φ20(t)− φ10(t− τ). (4�6)

A comparison of (4�5) and (4�6) with (4�3) and (4�4) indicates that the EPD model

produces a signal that is of the same form as the LISA arm. With the restrictions on L0

mentioned above, the noise characteristics will be similar as well. More complex models of

LISA can be built up in a similar fashion. Table 4-1 lists the major components in LISA

and their EPD equivalents.

As a �nal note, although Figure 4-1(b) is drawn with the same reference laser being

used to generate φ10(t) and φ20(t), it is not a requirement of the EPD technique. Provided

89



all reference lasers had the appropriate noise characteristics, it would be possible to use a

di�erent reference laser for each beat note. Of course, using the same reference laser at all

beat notes is more cost e�ective. Since the various beat notes are time-delayed before they

are mixed, the noise from the common reference laser will not cancel out.

Table 4-1. Major LISA IMS components/signals and their EPD equivalents

LISA Component EPD Equivalent

laser �eld beat note with reference laser

optical delay electronic delay

photodiode electronic mixer

optical beat note mixer output

4.3 Optical Components

The UF LISA interferometry simulator is designed to study primarily the SC to

SC interferometry in LISA. While in theory it would be possible to include the backside

interferometry by including a model proof mass suspended on a torsion pendulum [50],

this would signi�cantly complicate the experiment. Furthermore, such a combined

experiment is not necessary at this stage since the SC to proof-mass and SC to SC

interferometry are treated as separate measurements in LISA.

4.3.1 Layout

In the current optical layout of the simulator, shown in Figure 4-2, each of the three

SC is modeled by an independent Nd:YAG non-planar ring oscillator (NPRO) laser,

denoted as L1 through L3 in the �gure. A fourth NPRO, L0, is used as a reference laser.

The lasers L1 and L0 are each locked via the PDH method [47] to independent optical

cavities housed in a thermally-isolated vacuum chamber. Beat notes between the far SC

lasers (L2 and L3) are made with L0, allowing two complete LISA arms to be modeled

[51].
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Figure 4-2. Optical layout of the UF LISA interferometry simulator. L1 − L3 represent
SC1 − SC3 in LISA. L0 is the reference laser.

4.3.2 Pre-stabilization

The function of the optical cavities in Figure 4-2 is to provide LISA-like laser phase

noise for the simulator. The dominant noise source for cavity length in the LISA band is

thought to be thermally-driven expansion. Consequently, the LISA cavities will likely use

spacers of ultra-low expansion glass such as Dow-Corning's ULE or Schott's Zerodur. If

the pre-stabilization requirements are relaxed due to improvements in TDI or arm-locking,

it may be possible to utilize other materials such as Silicon Carbide (SiC). In parallel with

the interferometry experiments, the UF group is studying the stability of various materials

and bonding techniques [52]. Consequently, the optical cavities used for pre-stabilization in

the simulator are occasionally changed.

Figure 4-3 shows a spectrum1 of the beat note frequency between L1 and L0 for

two pairs of optical cavities (Zerodur-Zerodur and Zerodur-SiC), along with the LISA

pre-stabilization requirement given by (3�15). As can be seen, the Zerodur-SiC frequency

noise rises steeply above the Zerodur-Zerodur frequency noise at frequencies below

∼ 10mHz.

1 All spectra were computed using the MATLAB routine �mypsd.m�, written by the
author. It implements Welch's method of overlapped-average periodograms as described
by Heinzel et al. [53].
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In addition, both beat notes exhibit long term drifts of tens or hundreds of MHz.

For the Zerodur-Zerodur beats, the slope of the drift is typically ∼ 1Hz/s, comparable

to the changing Doppler shift present in LISA. For the SiC-Zerodur beats, the slopes

can be much larger, typically in the range of 100Hz/s ∼ 400Hz/s. Over short time

periods (hours to days) the drifts are monotonic but over longer time periods (days to

weeks) the behavior becomes more complex. Similar drifts on the order of a few Hz/s

were seen between a pair of ULE cavities in an other experiment [46], and the cause is not

completely understood. For short-term interferometry experiments, the short-term drifts

are of the most concern.
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Figure 4-3. Frequency noise in the L1 − L0 beat note

As mentioned in Section 3.5, the noise in a sinusoidal signal can be placed either in

the frequency or in the phase. Figure 4-4 shows the same data as Figure 4-3 converted to

phase noise using (3�3).

4.4 Electronic Components

In addition to the optical components described in the previous Section, several

electronic components are key to the operation of the simulator. These can be broken

down into three primary categories: the control �lters, phasemeters (PMs), and the EPD

unit. Control �lters are used to provide actuator signals for the laser-pre-stabilization,

phase-lock loops, and arm-locking loops. PMs are used to measure the phase of the various
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Figure 4-4. Data from 4-3 converted into phase noise by dividing by 2πf , where f is the
Fourier frequency

beat signals in the optical layout, providing inputs to the control loops as well as the

science signals.

Both the control �lters and the PMs are critical components for LISA as well. Since

the simulator versions and their LISA counterparts are subjected to similar signals, the

simulator provides an excellent arena for evaluating potential designs. The EPD unit is of

course unique to the simulator, and must reproduce the LISA arm as faithfully as possible.

The addition of noise not present in LISA or elimination of noise present in LISA would

limit the accuracy of the simulator.

Several types of electronic architectures are employed in the UF simulator. These

include both analog systems and digital systems, which are reviewed in Appendix A. For

the most demanding electronic subsystems, such as the PMs and EPD unit, the UF group

selected and purchased a high-speed digital signal processing system from the Pentek

Corporation in Upper Saddle River, NJ. An overview schematic of the system is shown in

Figure 4-5 below.

The system consists of three individual products, the model 4205 carrier board, the

model 6256 digital downconverter, and the model 6228 digital upconverter. The model

4205 carrier board is housed in a VME crate and contains a 1GHz, 32-bit PowerPC
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microprocessor. The processor is connected via a PCI bus to several components,

including SDRAM, serial ports, Ethernet ports, and the VME backplane. In addition

the model 4205 provides four specialized high-speed interfaces known as velocity interface

module (VIM) connectors.

Figure 4-5. Overview of the DSP system from Pentek Corporation

The VIM interface consists of a 32-bit data interface and a 32-bit control/status

interface. The data interface is connected to the main PCI bus via a bi-directional

�rst-input �rst-output bu�er (BIFO) and a direct-memory access (DMA) controller. The

DMA controller allows data to be read from the BIFO and directly deposited into memory

or another location on the PCI bus without the need for processor intervention. The speed

of the VIM interface is limited by the speed of the PCI bus, which is clocked at 66MHz.

The control/status interface is connected to the processor via a separate 33MHz PCI bus.

The 6256 digital downconverter contains four 14-bit ADCs that can be clocked at

frequencies up to 105MHz. The ADCs are connected to front-panel connectors via RF

transformers with a high-pass frequency response. The −3 dB point of the transformers is

at 400 kHz. Signals at lower frequencies cannot be measured with the 6256. The full-scale
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input of the ADCs is reached with a +4 dBm signal at the front-panel input, which has an

impedence of 50 Ω.

Data from the ADCs is passed into one of two FPGAs, where it can be processed.

The processed data is connected via two of the VIM interfaces to the BIFOs on the

4205. The VIM control/status interface also connects with the FPGA and can be used to

con�gure the board.

The 6228 digital upconverter connects to the 4205 via the second pair of VIM

modules. Data from the BIFOs passes into an FPGA where it is processed. The processed

data is fed to two two-channel 16-bit DACs that can be clocked at frequencies up to

500MHz. The DACs produce a full-scale output of −2 dBm and are coupled to the

front-panel via RF transformers with a 50 Ω output impedance and a −3 dB point at

400 kHz. As with the 6256, the VIM control/status interface connects with the FPGA and

can be used to con�gure the board.

This arrangement provides a powerful and �exible system for digital signal processing.

The FPGAs on the 6256 and 6228 can be used to perform high-speed processing with

�xed-point arithmetic, while the microprocessor can be used for �oating-point processing

at lower speeds. This system is used for the EPD units (Section 4.6), the hardware PM

(Section 4.5.5), and one instance of the arm-locking control �lter (Section 5.4).

4.5 Phasemeters

4.5.1 Overview

The phase of a sinusoidal signal can be speci�ed by the time at which the signal

has a speci�c value and speci�c �rst derivative (i.e. positive zero-crossing). Since this

is fundamentally a timing measurement, all phasemeters (PM)s must be based on a

reference clock. The phase measured by the PM is the di�erence phase between the signal

and the reference clock. Any single phase measurement will be limited in accuracy by

the phase stability of the reference clock. With multiple measurements using the same
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reference clock, the phase noise of the reference clock can be measured and canceled. In

the remainder of this Section, phase noise in the reference clock is not explicitly included.

A simple PM that is often used in the laboratory is the analog mixer. The signal to

be measured, S(t), can be described by a sinusoid with amplitude A, angular frequency ω,

and phase φ(t),

S(t) = A sin[ωt+ φ(t)]. (4�7)

This signal is mixed with a reference signal, R(t), with the same frequency and a constant

phase,

R(t) = cos[ωt]. (4�8)

The mixer output, M(t), is the product of (4�7) and (4�8),

M(t) = S(t)×R(t)

= A sin[ωt+ φ(t)] cos[ωt]

=
A

2
{sin[φ(t)]− sin[2ωt+ φ(t)]} . (4�9)

The mixer output is then low-pass �ltered to remove the 2ω term. If the phase noise is

small and the signal amplitudes are constant, then the resulting signal is proportional

to φ(t). Some analog mixers are speci�cally designed to compensate for the sinusoidal

response and can produce a linear phase response for |φ(t)| ≤ 70o.

The �ltered mixer PM is an example of a general type of PM called in-phase/quadrature

or IQ PMs. Mathematically, a sinusoidal wave at a given frequency contains two pieces of

information. These can be expressed as the amplitude and phase, as was done in (4�7) or

as the in-phase, I(t), and quadrature, Q(t), components:

A(t) sin[ωt+ φ(t)] = I(t) sin[ωt] +Q(t) cos[ωt]. (4�10)
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Trigonometric identities can be used to derive the following relationships between the IQ

and amplitude-phase formalisms:

I(t) = A(t) cos[φ(t)], (4�11)

Q(t) = A(t) sin[φ(t)], (4�12)

A(t) =
√
I(t)2 +Q(t)2, (4�13)

φ(t) = arctan[Q(t)/I(t)]. (4�14)

Comparison of (4�12) with (4�9) reveals that the �ltered mixer PM described above

measures Q(t)/2 rather than φ(t). A complete IQ PM can be built by extending the

�ltered mixer concept to include two demodulations, one with cos[ωt], which produces

Q(t)/2, and one with sin[ωt], which produces I(t)/2. The relations in (4�11) - (4�14) can

then be used to compute φ(t) and A(t).

In addition to direct mixing, I(t) and Q(t) can be measured in a number of other

ways. One technique involves sampling the signal of interest with a sampling frequency

equal to four times the carrier frequency of the signal [54]. Each set of four data points

can be manipulated to measure the phase at a rate of one-half the carrier frequency.

Another approach is to use integral transforms of the time series data to extract the phase

[55].

One type of PM that is distinct from the IQ type is the counter/timer PM [56]. In

this technique, the number of zero-crossings in a time interval T is counted, providing a

crude estimate of the signal frequency. This estimate is then corrected by measuring the

additional time between �rst and last zero-crossings and the time-interval boundaries.

A combination of these two measurements gives an estimate of the phase accumulated

during the interval T . This approach is used in frequency counters such as the ones used

to measure the beat note stabilities discussed in Section 4.3.2.
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4.5.2 Phasemeters for LISA-like signals

The accuracy requirement for the LISA PM is set by the error budget for the IMS to

be ∼ 10−6cycles/
√
Hz in the LISA measurement band (Shaddock [57] gives 3µcycles/

√
Hz

at 5mHz). Reaching this level of performance requires careful suppression of other noise

sources that present themselves as phase noise. Examples include phase and amplitude

noise in the reference signal, residual signals from the second harmonic term in (4�9),

and, for digital systems, digitization and quantization e�ects. It has been shown that

commercial digital radio receivers are capable of meeting the LISA phase accuracy

requirements for low-noise signals at �xed frequencies [59].

The input signals to the PM in LISA di�er from those for a commercial radio receiver

in two important ways: large shifts of the carrier frequency, and large intrinsic phase noise

on the signal. The relative motion between the SC will cause the one-way Doppler shifts

to vary by up to 30MHz over the course of a year. If the frequencies of the SC lasers are

held �xed, the beat frequencies will also vary over a range of 30MHz. This range can be

reduced by periodically adjusting the laser frequencies during the course of the year. One

proposed frequency plan will keep the beat notes in the range 2MHz− 20MHz.

Of comparable size to the Doppler shifts are the drifts in the optical reference cavities

discussed in Section 4.3.2. These drifts will be more di�cult to model and must be taken

into account when specifying the PM range requirements.

In addition to the frequency drifts, which can be considered as noise in the beat

note below the LISA band, there is also a large amount of phase noise in the LISA

measurement band, as evidenced by Figure 4-4. This large phase noise poses a problem

to the IQ phasemeter. As shown in (4�11) and (4�12), I(t) and Q(t) are periodic in φ(t).

Therefore the IQ phase measurement in (4�14) is a measurement of φ(t) modulo 2π and

only gives φ(t) if |φ(t)| ≤ π rad. In other words, the rms phase noise must be less than half

a cycle in the measurement band or the phase noise measurement will �wrap�. The LISA

laser phase noise requirement (Figure 4-4) corresponds to an rms phase noise of greater
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than 106 cycles in the LISA band, meaning that the phase noise will constantly wrap

between ±1/2 cycles. Addressing phase wrapping is a major challenge to the designers of

the LISA PM.

4.5.3 An IQ phasemeter with a tracking LO

One way to address both the frequency drifts and the large laser phase noise is

to demodulate the incoming signal with a local oscillator that tracks the phase of the

incoming signal to within ±1/2 cycle. This is the approach taken by researchers at the Jet

Propulsion Laboratory who are designing the LISA PM [57, 58]. A schematic of such a

system is shown in Figure 4-6 below.

Figure 4-6. Schematic of a IQ phasemeter with feedback

The input signal is a sinusoid with frequency νi, amplitude Ai(t), and phase φi(t).

The frequency is assumed to be �xed and any frequency noise is converted to phase noise

using (3�2). The input signal is demodulated with two signals from a local oscillator (LO),

a cosine and a sine with model phase, φm(t). The sine term is �ltered by a low-pass �lter

with a transfer function G(s) and scaled by 2 to form the signal I(t),

I(t) = 2G(t)⊗
{
Ai(t)

2
(cos [φi(t)− φm(t)]− cos [4πνit+ φi(t) + φm(t)])

}
, (4�15)
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where G(t) is the �lter's impulse-response function, and ⊗ denotes convolution. The cosine

term is similarly �ltered and scaled to form Q(t),

Q(t) = 2G(t)⊗
{
Ai(t)

2
(sin [φi(t)− φm(t)] + sin [4πνit+ φi(t) + φm(t)])

}
. (4�16)

With a properly designed �lter, the high-frequency terms in (4�15) and (4�16) can be

eliminated while retaining the �rst terms. The additional scaling by a factor of 2 produces

the standard de�nitions of I(t) and Q(t).

The I(t) and Q(t) signals can be used to compute the residual phase, de�ned as

φr(t) ≡ φi(t) − φm(t), and the output amplitude, Ao(t), using (4�13) and (4�14). If φr(t)

is small enough to linearize the equations without introducing unacceptable errors, the

relations become

φr(t) ≈ Q(t)/I(t) (4�17)

and

Ao(t) ≈ I(t). (4�18)

The residual phase is used as an error signal for the LO tracking loop. It is �ltered

by a control �lter with transfer function H(s), forming the control signal for the LO. For

most types of oscillators, the control signal is proportional to the oscillator's frequency.

This adds an implicit factor of 1/s into the controller transfer function.

In most cases, the approximate frequency of the beat signal will be known, and an

o�set frequency, νoff , can be added to the frequency correction, νcorr(t), provided by the

control �lter. The model frequency, νm(t), is the sum of νoff and νcorr(t) and is integrated

to form the model phase, φm(t),

νm(t) = νoff + νcorr(t) (4�19)

φm(t) =

∫
νm(t)dt. (4�20)
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To form the PM output phase, φo(t), φm(t) must be reconstructed and added to φr(t).

The constant linear drift arising from the νoff term in (4�20) does not contain any

information of interest. Consequently, in the phase reconstruction only νcorr(t) is included

in the integration2 . The output phase is then

φo(t) = φr(t) +

∫ t

0

νcorr(t
′)dt′ + φ(0), (4�21)

where φ(0) is an arbitrary reference phase, typically set to zero once the tracking loop

has been closed. The output phase is a measurement of the phase of the input signal

relative to a ideal (zero phase noise) sinusoid with frequency νoff . A linear trend in φo(t)

corresponds to a di�erence between νoff and νi.

As with other closed-loop systems, it is useful to form a Laplace-domain model

that can be used to analyze the PM's dynamics. Such a model for the system in Figure

4-6 is shown in Figure 4-7. To build the model, it is assumed that |φr(t)| ¿ 1, so

that Q(t) ≈ Ai(t)φr(t)/2. The mixing and �ltering process can then be replaced by a

subtraction of phases followed by a �ltering by G(s).

Figure 4-7. Laplace domain model of the system in Figure 4-6

2 For discrete-time systems, a running sum of νcorr scaled by the sample time of φm is
equivalent to an integration.
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Using the simpli�ed model in Figure 4-7, the following relationships can be derived

between the phase variables.

φr(s)/φi(s) =
G′(s)

1 +H ′(s)G′(s)
, (4�22)

φm(s)/φi(s) =
H ′(s)G′(s)

1 +H ′(s)G′(s)
, (4�23)

φo(s)/φi(s) =
G′(s) +H ′(s)G′(s)

1 +H ′(s)G′(s)
, (4�24)

where G′(s) ≡ (Ai(t)/2)G(s) and H ′(s) ≡ (1/s)H(s). The PM error, de�ned as the

di�erence between the output phase and the input phase,

φe(t) ≡ φo(t)− φi(t), (4�25)

will have a spectrum given by

φe(s)/φi(s) =
G′(s)− 1

1 +H ′(s)G′(s)
. (4�26)

Given an input phase noise spectrum, such as the laser noise in Figure 4-4, the

relations in (4�22) and (4�26) can be used to design the �lters G(s) and H(s) so that

|φr(t)| < 1/2 cycle and the phase accuracy requirements are met.

The chief function of G(s) is to eliminate the e�ect of the second terms in (4�15) and

(4�16). In frequency space, these terms will be a peaks centered at a frequency of 2νi with

linewidths related to the input phase noise spectrum, φ̃i(f).

In general, the frequency 2νi will be far away from the measurement band (> 10MHz

vs. 1mHz for LISA), so the direct e�ect of the peak is not of much concern. The only

requirement is that the peak be reduced to much less than 1/2 cycle so that the residual

phase will not wrap. The picture changes somewhat if the signals in (4�15) and (4�16)

are sampled at a rate lower than 2ν (or down-sampled in the case of a digital PM). This
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allows the frequency noise in the peak to alias into lower frequency bands3 . If G(s) also

functions as the anti-aliasing �lter, it must be carefully designed to minimize aliasing of

the peak and other high-frequency phase noise into the measurement band.

The transfer function G(s) should also be �at in the measurement band, to ensure

that the PM output is constant for all phase-modulation frequencies of interest. This

gain is typically scaled to 2 at DC so that a signal with amplitude Ai(t) = 1 will produce

signals with the standard de�nitions of I(t) and Q(t).

The design of H(s) is driven by the shape of G(s) and the input phase noise. The

goal of the design of H(s) is to ensure that the residual phase does not wrap. This can be

accomplished if
∫ ∞

LF

φ̃r(f)df =

∫ ∞

LF

∣∣∣∣
G(f)

1 +G(f)H(f)

∣∣∣∣ φ̃i(f)df ≤ 0.5 cycle, (4�27)

where LF is the low-frequency limit of the measurement band. At low frequencies,

the gain of H(f) must increase at least as fast as the input phase noise. For the phase

noises in Figure 4-4, this corresponds to a slope4 between f−2 and f−3. The unity gain

frequency must occur at a point past any peaks in φi(t) that are comparable to 0.5 cycles.

The unity gain frequency is typically limited by phase loss associated with G(s).

4.5.4 A Software Phasemeter

4.5.4.1 Design

As an initial investigation into IQ PMs with feedback, a software-based PM was built

using MATLAB's SIMULINK environment. The PM was designed to analyze time series

data from a laser beat note demodulated to approximately 10 kHz and sampled at a rate

of 80 kHz. Building the PM in SIMULINK allowed for �exibility in the design of �lters

3 For a discussion of the phenomenon of aliasing, see Section A.2.1.
4 Recall that one factor of f−1 is automatically present due to the conversion from

frequency to phase in the LO.
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and also limited the e�ects of digitization and quantization noise. Furthermore, it allowed

for the PM to be tested by generating input signals with known phase noise from within

SIMULINK.

The PM follows the form in Figure 4-6. The �lter G(s) is a 16-tap (N = 16) FIR

�lter with a passband of 10 kHz and a stopband of 18 kHz. It was designed in MATLAB

using the equiripple design technique which speci�es that the ripple in the passband match

that in the stopband. A Bode plot of G(s) is shown in Figure 4-8.
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Figure 4-8. Bode plot of G(s) for the software PM

The feedback �lter H(s) is designed to have an f−1 response for 200Hz ≤ f ≤
20 kHz and an f−2 response elsewhere, including the 1/s from the frequency to phase

conversion in the LO. This can be accomplished with two poles at DC (one in the LO) and

a pole-zero pair with the zero at 200Hz and the pole at 20 kHz,

H(s) = 5 · 108 (s− 2π · 200Hz)
s2(s− 2π · 20 kHz) . (4�28)

A Bode plot of H(s) is shown in Figure 4-9. The unity-gain frequency of the tracking loop

in the software PM is approximately 2 kHz.
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Figure 4-9. Bode plot of H(s) for the software PM

4.5.4.2 Results

To test the software PM, an input phase noise signal with a phase noise spectral

density of approximately (1 cycle/
√
Hz) × (1Hz/f) was formed by �ltering white noise

with a digital �lter having a single pole at 10mHz. This phase noise was then placed on

a carrier frequency of ∼ 10 kHz using a second LO to produce an input signal. Using

(4�22)-(4�26) with G(s) and H(s) as speci�ed in Figure 4-8 and Figure 4-9, the spectral

densities φ̃r(f), φ̃m(f), φ̃o(f), and φ̃e(f) can be predicted. These predictions are shown in

Figure 4-10 .

To test these predictions, the simulation was run and φi(t), φr(t), φm(t), φo(t), and

φe(t) were recorded for a 100 s simulation time. To reduce the size of the generated data,

the signals were down-sampled to a 10 kHz data rate using a cascaded-integrator-comb

(CIC) decimation �lter5 . The spectral densities of each signal are plotted in Figure 4-11.

5 For a discussion of CIC �lters, see Section A.4.5.
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A comparison of Figure 4-10 and Figure 4-11 reveals that, with the notable exception

of the φ̃e(f), the observed behavior matches that of the expected behavior. The fact that

for frequencies below 20Hz, φ̃e(f) actually exceeds φ̃r(f) indicates that the problem may

lie in the reconstruction of the model phase.

The integration of the frequency correction νcorr(t) used to form φm(t) is not exactly

the same as the integration that takes place inside the LO. Inside the LO, the integrator

uses a modulo- 1 cycle accumulator to compute the phase, since the phase is only used to

compute sinusoids with values that repeat every 2π. Furthermore, the accumulator inside

the LO includes the o�set frequency νoff . For ideal arithmetic operators, these di�erences

do not matter, but it is possible that the numerical errors in the two cases di�er. This

seems unlikely in the case of the software PM since SIMULINK utilizes double-precision

�oating-point arithmetic.
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Figure 4-10. Expected behavior of the software PM for signal with input phase noise with
linear spectral density (1 cycle/

√
Hz)× (1Hz/f)

Another possibility is an error in reconstruction due to a time shift between the

reconstructed model phase and the residual phase. In order to accurately compute

the output phase, the residual phase output must be delayed by whatever throughput
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delay exists between the control �lter and the output of the LO. In the SIMULINK

environment, this delay should be well-known and has been corrected for.
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Figure 4-11. Observed behavior of the software PM

The software PM was successfully used for a number of simulator experiments,

including investigations of TDI [51] and arm-locking [52]. These experiments were mainly

proof-of-principle measurements, and the excess noise �oor in Figure 4-11 was not much

of a concern. One issue that did arise were the size of the data sets required to reach the

LISA band. A signal digitized with 16-bit resolution at a frequency of 80 kHz produces

data at a rate of 156 kB/s. For the TDI measurements, which required two signals

recorded for several minutes, the data �les reached 100MB. This created issues with data

storage as well as the length of time it took to process the data through the software PM.

It is likely that with further work, the problems with the software PM could have

been addressed. However, once the initial success of the PM concept was veri�ed, the

focus was shifted to building a real-time hardware PM. This is the topic of the next

Section.
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4.5.5 A Real-time Hardware Phasemeter

The hardware PM was built using the DSP system described in Section 4.4. The

design of the hardware PM, shown in Figure 4-12, is similar to the design described in

4.5.3. To take advantage of the di�erent architectures present in the Pentek system,

the PM function is broken into two parts. The front-end, implemented on the model

6256 daughterboard, tracks the incoming signal and generates the signals I(t), Q(t), and

νcorr(t). The back-end, implemented on the model 4205 carrier board, uses these signals to

reconstruct the input phase and perform further processing.

Figure 4-12. Schematic of the real-time hardware PM

4.5.5.1 Front-end design

The LO on the hardware PM is a type of numerically-controlled oscillator known as a

direct digital synthesizer (DDS), shown in detail in Figure 4-13. The input to the DDS is

the phase increment register, a fractional number equal to the fraction of cycles to advance

per clock period. This corresponds to the model frequency, νm. For example, a phase

increment of 0.1 with a 100MHz clock frequency would correspond to νm = 10MHz. The

frequency resolution of the DDS is

δνm =
2−N

Tclk

, (4�29)
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where Tclk is the clock period and N is the number of bits in the phase increment register.

The phase increment is an unsigned binary fraction with 32 total bits and 32 fraction bits

(U32.32)6 . For a 100MHz clock frequency, δνm ≈ 23mHz.

Figure 4-13. Schematic of a Direct Digital Synthesizer (DDS)

The phase increment is used as the input to an accumulator, which performs a

running sum of the phase increment value at each rising clock edge. The accumulator

variable is also U32.32 and wraps to zero on over�ow. The value of the accumulator

corresponds to the phase of the DDS in cycles. The accumulator output is �sliced�

(re-quantized to a lower bit resolution) to a U10.10 and used to feed the address bits of

two look-up tables (LUTs). The purpose of the slicer is to reduce the amount of memory

needed for the LUTs while still preserving the frequency resolution of a larger phase

increment width. The price paid is an increase in the amplitudes of spurious harmonics

in the output of the LUT [60]. For the purposes of the PM, a 10-bit address depth in the

LUT results in su�ciently low harmonics. Each LUT contains one cycle of sine or cosine

waveforms in S14.13 format.

The input signals from the model 6256 ADCs, expressed as S14.14, are multiplied

with the DDS outputs. These signals are then �ltered by a 2-stage CIC �lter with a

decimation rate of 128. CIC �lters, discussed in detail in Section A.4.5, are an e�cient

type of multi-rate digital �lters often used to achieve large sample-rate changes with

minimal aliasing. Section A.4.5 derives the magnitude response for a CIC decimator with

6 For an overview of binary fractions, see A.3.1.
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a decimation factor of R. The magnitude response has nulls at the centers of the aliasing

bands, f = (k/R)fs, k = 1, 2, 3 . . ..

Figure 4-14 contains a plot of |G(f)| for the hardware PM around the �rst aliasing

band, centered at fs/128 = 781.25 kHz. The amplitude of the �lter stays below 10−7 for

a band of half-width ∼ 250Hz around the central null. No more than 10−7 of the phase

noise at higher frequencies will be aliased into the band 0Hz ≤ f ≤ 250Hz by the CIC

�lter.
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Figure 4-14. Magnitude response of the CIC decimation �lter in the hardware PM near
the �rst aliasing band at 781.25 kHz

The other concern for the magnitude response of the decimation �lter is the passband

�atness. Figure 4-15 contains a plot of 1− |G(f)| near DC. As can be seen from the �gure,

the passband �atness is better than 10−7 up to ∼ 135Hz. This ensures that any coupling

between phase noise frequency and measured phase noise amplitude will be minimal.

The phase of the CIC �lter is linear, with an equivalent group delay of ≈ 1.3µs. After

exiting the CIC �lter, the data are scaled by a factor of two and formed into S16.16 words

corresponding to the standard de�nitions of I(t) and Q(t) given in (4�11) and (4�12).

The hardware PM uses the Q(t) signal rather than φ(t) as the error signal for

the tracking loop driving the DDS. This is done to avoid the need to perform division

or arctangent operations, both of which are problematic for �xed-point systems. The

downside of this approach is that the tracking-loop gain scales with the signal amplitude.
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Figure 4-15. Passband �atness of the CIC �lter in the hardware PM

This is not a serious problem so long as the gain in the tracking loop is easily adjustable

and the signal amplitudes remain relatively constant during the measurement time.

The feedback �lter consists of two parallel paths, a proportional path and an integral

path. The integral path consists of an accumulator that performs a running sum of the

error signal. The running sum operation is related to a true integral by T , the clock period

of the accumulator

TΣN
n=0x(nT ) ≈

∫ NT

0

x(t)dt. (4�30)

A simple running sum is therefore equivalent to a continuous-domain integrator with an

addition gain of (1/T ). The integral path of the feedback �lter has an additional gain of

2−7 so that the overall transfer function can be written as

H1(s) = 1− 2−7 100MHz
128

1

s
≈ s− 970Hz

s
. (4�31)

In other words, the feedback �lter is equivalent to a pole-zero pair with a pole at DC

and a zero at 970Hz. The output of the feedback �lter is scaled by an overall gain, H0

(U16.16), to produce an S32.32 signal containing the frequency correction, νcorr(t). The

frequency correction is in the same units as the phase increment for the DDS, cycles per

clock period.
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A frequency o�set (U16.16) is added to νcorr(t) and the result is up-sampled by 128

to generate the phase increment input to the DDS. Including the accumulator in the

DDS, which has a clock frequency of 100MHz, the overall feedback �lter has the transfer

function

H(s) = H0(6× 1011 Hz)(s− 970Hz)
s2

. (4�32)

For full-scale inputs (Ai ≈ 0.5) a gain of H0 ≈ 0.0005 is used, corresponding to a

unity-gain frequency of ∼ 8 kHz. Figure 4-16 shows a plot of |H(f)| computed using

(4�32) for H0 = 0.0005. Also shown is an observed value for |H(f)| made from 5 s

of laser beat note data. To compute |H(f)|, the measured model phase spectrum was

divided by the measured residual phase spectrum. From (4�22) and (4�23) it is clear that∣∣∣φ̃m

∣∣∣ /
∣∣∣φ̃r

∣∣∣ = |H(f)|.
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Figure 4-16. Feedback �lter for hardware PM tracking loop. Predicted results were
computed from (4�32), observed results were computed as a ratio of model
phase to residual phase during a 5 s data run.

The outputs of the PM front end are I(t), Q(t), and νcorr(t) signals (IQν). These

outputs are either transmitted as is at a rate of 781.25 kHz or are down-sampled in a

second 2-stage CIC �lter to 97.65625 kHz (an additional division by 8). This reduces the

10−7 anti-aliasing band to 30Hz and the 10−7 �at passband to 17Hz.

As shown in Figure 4-5, the model 6256 has two FPGAs, each of which is associated

with two ADCs and one VIM interface. Consequently, each FPGA contains two PM
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front-ends, one for each channel. The data for the two channels is then packed into a block

of four 32-bit words using the packing format shown in Figure 4-17 and transferred across

the VIM interface to the BIFO on the model 4205 carrier board. Due to the packing

scheme, the average clock rate on the VIM is four times the sampling rate of the PM data.

Figure 4-17. Packing format for PM data transferred over the VIM interface

The current front-end design occupies approximately 10% of the resources on the

model 6256 FPGA (total for both channels). There is room to add several additional

channels to allow for PM tracking of multiple tones for clock transfer, data transmission,

etc. on the same input signal. Doing so would require a modi�cation of the packing format

in Figure 4-17. The primary bottleneck is the speed of the VIM and the processing in the

PM back-end.

4.5.5.2 Back-end design

The �rst task of the PM back-end is to read the data placed on the BIFO by the PM

front-end. This task must be accomplished with su�cient speed to prevent the BIFO from

over�owing. The processor-side of the BIFO is connected to a 66MHz PCI bus, which

allows the processor to periodically read the BIFO at a high rate and then perform other

tasks while waiting for the BIFO to re-�ll. The raw data is read from the BIFO in large

blocks of words, typically 1024. This corresponds to 256 samples of the IQν signals. This
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block of data is then unpacked into six data streams, corresponding to the IQν signals for

each of the two channels associated with the VIM.

The IQν signals are used as the inputs to a phase reconstruction algorithm. The �rst

step in the algorithm is to convert the IQν signals into double-precision �oating-point

representation. This reduces quantization error in subsequent arithmetical operations

and allows for operations such as division and arctangent. The reconstruction algorithm

has three modes: arctangent, no arctangent, and model-only, summarized in Table

4-2. The arctangent mode is the most accurate, but is also the most computationally

intensive. The no arctangent mode utilizes the approximation tanx ≈ x for x ¿ 1. The

model-only mode, the simplest possible reconstruction mode, relies on the large gain of the

tracking loop in the front-end. The error in the model-only mode is the residual phase,

φr = atan(Q/I).

Table 4-2. Reconstruction algorithms for the hardware PM. R is the overall decimation
rate between the DDS clock rate and the IQν data rate.

Mode Algorithm

arctangent R
∑
νm + atan(Q/I)

no arctangent R
∑
νm +Q/I

model-only R
∑
νm

The behavior of the PM back-end can be easily adjusted by running a di�erent

program on the model 4205. In the simplest versions, the user enters con�guration data

(o�set frequencies, track-loop gains, etc.) via a serial terminal, the PM runs for a speci�ed

amount of time, and the data is transferred to a host computer via FTP. This data can

be the raw data from the BIFO, the unpacked IQν data, the reconstructed phase data, or

some processed version of the reconstructed phase. More sophisticated versions provide the

user with a graphical user interface (GUI) for con�guring the PM and continually stream

the data via TCP/IP to a program running on a host PC.
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4.5.5.3 Single-signal PM test with a VCO

Unlike the software PM, which could be provided with a known input phase, tests

of the hardware PM necessarily involved real signals. Consequently e�ects such as clock

jitter, ADC noise, amplitude noise, etc. were present in the tests, as they would be in any

experimental environment. The �rst set of tests involved using a single oscillator, either a

commercial function generator, analog voltage controlled oscillator (VCO), or laser beat

note. The oscillator signal was split into multiple parts using RF splitters and run into

separate PM channels.

The �rst test used a 25MHz VCO demodulated to 10MHz with a function generator

as an input signal. The electronic beat signal was ampli�ed using a ×10 RF ampli�er

and split into four channels using three 50-50 RF splitters. The power of the function

generator was adjusted so that the total signal power in each channel was ≈ 4 dBm, the

full-scale input of the PM. Figure 4-18 contains a spectrum of the original signals and

of three residuals from the pairwise subtractions. The lowest residual, labeled ∆φsame

was obtained by subtracting pairs of signals that share a VIM interface (channel 1/2

and channel 3/4). The residuals between pairs on di�erent VIM interfaces (channel

1/3, channel 1/4, channel 2/3, and channel 2/4) were larger by a factor of ∼ 10 at high

frequencies (curve labeled ∆φdiff in Figure 4-18).

One possibility for the higher noise would be a time-lag between the measured phase

signal from each channel. The residual signal with a time delay is

∆φ(t) = φ(t)− φ(t−∆t). (4�33)

In the frequency domain, the magnitude of the residual noise is then
∣∣∣∆̃φ(f)

∣∣∣ =
∣∣∣φ̃(f)

∣∣∣ 2 sin(πf∆t). (4�34)

This relationship can then be used to estimate ∆t. For the curve labeled ∆φdiff in Figure

4-18, the estimate was ∆t ≈ 6µs. The source of such a large ∆t is not readily apparent. It
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corresponds to many clock periods of the ADC and FPGA and is therefore unlikely to be

due to any clock jitter between the two devices. One possibility is that when the back-end

of the PM requests data from the front-end, there is a slight delay in requesting the data

from the second VIM. If this is indeed the source of the delay, it might be reduced by

synchronizing the data requests.

The data in Figure 4-18 were sampled at ∼ 98 kHz, corresponding to a sample period

of ∼ 10µs. The estimated delay ∆t corresponds to 0.6 samples. Shifting the data by less

than a sample period can be accomplished using fractional delay �ltering, discussed in

A.4.6. The curve labeled ∆φshift in Figure 4-18 was obtained by shifting the data from

channel 3 by 0.6 samples using a 51-point fractional-delay �lter with a Lagrange window.

As can be seen, the shift reduced the residual noise to nearly the level of ∆φsame.

The curves labeled Udig in Figure 4-18 represent an estimate of the digitization noise

level present in the PM. The source of the digitization noise is the �nite precision of the

IQν data produced by the PM front-end. Section A.3.4 derives a formula (A�19) that

estimates the linear spectral density of digitization noise for a speci�c sampling rate and

bit resolution. Applying this formula for the IQν data gives

δνdig =
100MHz · 2−32

√
6 · 98 kHz

≈ 3µHz/
√
Hz, (4�35)

δIdig = δQdig =
2−16

√
6 · 98 kHz

≈ 2× 10−8/
√
Hz, (4�36)

where the units of I and Q are the full-scale amplitude of the ADC. Both of these noise

sources contribute to phase noise. The frequency noise will scale to phase noise according

to (3�3) , producing a 1/f noise spectrum. The I and Q terms will remain �at. The total

digitization noise for a single channel is given by

Udig1 ≈
√

(δνdig/2πf)2 +
(√

2δQdig/2π
)2

. (4�37)

For a two-channel measurement, the digitization noise �oor is given by
√

2Udig1. Two

curves for digitization noise are plotted in Figure 4-18 . The black curve corresponds to
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the digitization noise for a system with a 32-bit DDS. Both ∆φsame and ∆φshift follow the

32-bit version of Udig, indicating that the PM performance is likely limited by digitization

noise. Digitization noise prevents the current version of the hardware PM from meeting

the LISA phase accuracy requirements at low frequencies. If the DDS accumulator width

was increased to 42 bits (dashed red curve in Figure 4-18), the requirements could be met.

Converting to a 42-bit accumulator will cause the front-end to occupy slightly more FPGA

resources as well as require a re-design of the VIM data packing scheme in Figure 4-17.
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Figure 4-18. VCO phase noise measured by four channels of the hardware PM

4.5.5.4 Single-signal PM test with optical signals

A similar measurement was made using a beat between two lasers locked to

independent cavities. A portion of the laser light from the laser locked to the optically-contacted

Zerodur cavity on the main optical table (Figure 4-2) was focused into an optical �ber

and transmitted to a second optical table. At the second optical table, the light from

the �ber was superimposed on a photodiode with the light from a laser locked to a

hydroxide-bonded Zerodur cavity. The light coming from the �ber had a power of ≈ 5µW

while the local light had a power of 56µW.
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The resulting beat note had a frequency of 113.4MHz and a power of −21.3 dBm. To

bring the frequency in the range of the PM inputs, the beat note was demodulated using

a local oscillator at 130MHz. The local oscillator and the PM clock were both locked to

a Rubidium-stabilized 10MHz reference oscillator. The demodulated beat signal was split

into two portions using a 50-50 RF splitter and ampli�ed using an RF ampli�er with an

amplitude gain of 10. Figure 4-19 contains the linear spectral density of the input phase

noise as well as the interchannel error and the digitization noise for both 32-bit and 42-bit

DDS. At frequencies below ∼ 100Hz, the interchannel error lies on the 32-bit digitization

noise, indicating that it is the limiting factor in the measurement.
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Figure 4-19. Linear spectral density of phase noise in laser beat note as measured by the
hardware PM

Another potential source of noise in the PM is shot noise, the quantum-mechanical

vacuum �uctuations of the light sources. Figure 4-20 shows a schematic representation of

the amplitude spectrum of the electric �elds of two light sources. Each source has a large

peak at an frequency ωi with an amplitude εi, where i = 1, 2. These peaks represent the

coherent laser light, which has a phase φi.
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Each light �eld also contains power in all frequency bins from quantum-mechanical

vacuum �uctuations. The amplitude of these �uctuations is εvac and their phase is random

and uncorrelated. In units where ε2 equals photon number, ε2vac = 1/2. In these same units

the carrier amplitudes can be computed from the signal power using

εi =
√
Ni =

√
PiλT

hc
(4�38)

where Ni is the number of photons in the measurement, Pi is the signal power, λ is the

carrier wavelength, T is the total measurement time, h is Planck's constant, and c is the

speed of light.

Figure 4-20. Qualitative amplitude spectrum of interferring beams with shot noise

If the two light sources in Figure 4-20 are superimposed, the total intensity will

include a beat between the two carriers at ω12 ≡ ω1 − ω2 with an amplitude √ε1ε2. This
beat note will have a phase φ12 ≡ φ1 − φ2. In addition to this term, there will be several

beat signals at ω12 that result from the superposition of one carrier and one shot noise bin.

For example, the signal with amplitude ε1 in source 1 will beat with shot noise at ω1 ± ω12

in both source 1 and source 2. This results in a total of four uncorrelated terms, each with

an amplitude of ε1/
√

2. The signal in source 2 will produce four similar terms from the

vacuum noise in each signal at ω2 ± ω12. Each of these terms will have a random phase.

The total intensity at ω12 can be described by the real part of

I(t) =
[
ε1ε2e

iφ12 + ε1
√

2eiφr1 + ε2
√

2eiφr2

]
eiω12t (4�39)
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where φri are random phase factors.

The phase of I(t) is extracted in the PM by demodulating it with a signal at ω12 with

a �xed phase. If the phase of the demodulating signal is chosen so that φ12 is small, the

the demodulated signal can be written as

S(t) = ε1ε2

[
φ12 +

√
2

ε2
eiφr1 +

√
2

ε1
eiφr2

]
. (4�40)

The phase (in cycles) is extracted from S(t) by dividing by ε1ε2 and multiplying by 2π.

This yields the desired carrier phase, φ12, plus two additional shot noise terms. The noise

energy in these two terms is given by

ESN = 4π2

(
2

ε21
+

2

ε22

)
. (4�41)

Since shot noise is white, this energy is distributed among all frequency bins from DC

up to the Nyquist frequency7 , given by fs/2 where fs is the sampling frequency. The

shot-noise linear spectral density, ŨSN , can consequently be related to the shot-noise

energy using

ŨSN =

√
2ESN

fs

. (4�42)

The shot noise limit for the two-signal measurement in Figure 4-19 can be estimated

using (4�38), (4�41) and (4�42) with P1 = 5µW and P2 = 56µW and a measurement

time of 85 s. The resulting estimate is ŨSN ≈ 2.5 × 10−9 cycles/
√
Hz, nearly two orders of

magnitude below Ũdig and the best results in Figure 4-19.

4.5.5.5 Entangled-phase PM test with VCO

The second type of test used for the hardware PM is a test of three entangled phases,

designed to mimic the individual measurements and cancellations applied in TDI. The

input signals for the test are derived from three oscillators, with frequencies νi and phases

7 For an introduction to the Nyquist frequency and sampling theory, see A.2.
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φi(t). The oscillators are combined pair-wise to produce three beat signals:

S12(t) = A12(t) sin [(ν1 − ν2)t+ φ1(t)− φ2(t)] , (4�43)

S13(t) = A13(t) sin [(ν1 − ν3)t+ φ1(t)− φ3(t)] , (4�44)

S12(t) = A23(t) sin [(ν2 − ν3)t+ φ2(t)− φ3(t)] , (4�45)

where Aij(t) is the amplitude of Sij(t). These three signals are recorded by the PM in

separate channels, producing the phases φij(t). Each of the PM channels uses a separate

o�set frequency corresponding to the frequency of the individual beat note. The phases of

the three signals should be related, such that a particular linear combination,

φ123(t) ≡ φ12(t) + φ13(t)− φ23(t), (4�46)

should equal zero. The signs in this �null combination� will vary depending on the

ordering of the oscillators in frequency space and any additional demodulations that are

used to measure the beat signals.

Figure 4-21 shows the time-series of an entangled phase test using two VCOs and

a function generator as oscillators. The beat frequencies were 4.86MHz, 5.78MHz, and

10.64MHz and the amplitudes were scaled to match the 4 dBm full-scale inputs of the PM.

The function generator has lower intrinsic phase noise than the VCOs, consequently the

phase noise in the three signals is dominated by the VCO noise. The signals appear to be

correlated, a fact which is con�rmed by the plot of φ123(t), which appears to be nearly zero

on the scale of upper panel of the �gure. The lower panel shows a blow-up of φ123(t) with

and without additional time shifting in φ23(t) (see below).

Figure 4-22 contains the corresponding spectral densities of the three beat signals and

the null combination. As with the single-signal tests in Section 4.5.5.4, there appeared

to be a slight delay between the signal recorded on channel 3 and the signals recorded
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Figure 4-21. Linearly detrended time series for an entangled phase test using two VCOs
and a function generator. Bottom panel shows close-up of residual noise in
the null combination.

on channel 1 and channel 2. When a delay of 1.95µs was removed using a 51-point

Lagrange-windowed fractional delay �lter, the residual noise in the null combination (cyan

curve) was reduced to the level of the digitization noise given by
√

3Udig1, with Udig1 being

the single channel digitization noise given in (4�37).
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Figure 4-22. Linear spectral densities of an entangled phase test using two VCOs and a
function generator
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4.5.5.6 Entangled-phase PM test with optical signals

A second entangled-phase measurement was made using beat-notes between

cavity-stabilized lasers as the source signals. A portion of the light from each of the

two cavity-stabilized lasers on the main optical table (Figure 4-2) was focused into an

optical �ber and transferred to a second optical table. The light exiting the �ber was

combined with a third beam from an additional cavity-stabilized laser. The resulting

photodiode signal contained three beat notes, one from each pair of lasers. The frequencies

and powers of each signal are listed in Table 4-3.

Table 4-3. Beat note frequencies and amplitudes for optical entangled-phase measurement

Laser Pair Frequency (MHz) Power (dBm)

O-S 28.7 -23.3

O-H 113.4 -21.3

H-S 142.1 -17.3

O: Zerodur cavity with optically-contacted mirrors
H: Zerodur cavity with hydroxide-bonded mirrors

S: Silicon carbide cavity with optically-contacted mirrors

Before the beat signals in Table 4-3 could be read into the PM, they had to be

conditioned so that their frequencies were ≤ 25MHz and their amplitudes were

approximately equal to 4 dBm, the full-scale input of the PM. This was accomplished

using the signal conditioning arrangement in Figure 4-23. The PD signal was �rst

ampli�ed in a ×10 RF ampli�er and then split into two parts using a 50-50 RF splitter.

Each of which was demodulated with a LO in order to bring the signals within the

frequency range of the PM. One portion was demodulated using a LO at 22MHz and

�ltered using a LPF with an 11MHz corner frequency, producing a 6.7MHz signal from

the O-S beat. This signal was ampli�ed in a second ×10 RF ampli�er and connected to a

PM input channel.
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Figure 4-23. Analog electronics used to prepare beat signals in Table 4-3 for PM

The second portion was demodulated by another LO at 130MHz and �ltered with

a 21MHz LPF, placing the O-H beat at 16.6MHz and the H-S beat at 12.1MHz. Each

of these signals was ampli�ed in an additional RF ampli�er and connected to PM input

channels. The two LOs used for the demodulations as well as the PM clock were each

locked to a Rubidium-stabilized 10MHz reference signal in order to reduce the coupling of

LO phase noise into the measurement.
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Figure 4-24. Linearly-detrended phase for optical entangled-phase measurement
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Figure 4-24 shows the linearly-detrended phase output for the three channels and the

null combination. The most obvious feature is the large parabolic tracks of φOS and φHS.

This is a result of a frequency drift, discussed in 4.3.2, that is present between the SiC

cavity and the Zerodur cavities. A �t to the data in Figure 4-24 gives a drift of ∼ 248Hz/s

at the time of the measurements. Note that the drift between the two Zerodur cavities is

much smaller, on the order of ∼ 1Hz/s, despite the fact that the two Zerodur cavities are

located in di�erent vacuum chambers on opposite ends of the laboratory.

The large frequency drifts do not pose a problem for data analysis, but they do

limit the amount of time for which the PM can stay locked (see Section 4.5.5.7). For

the three-signal measurements, the longest sets of data with three simultaneously-locked

signals lasted around 30 s. Individual measurements using the O-H beat appeared to be

able to last inde�nitely.
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Figure 4-25. Quadratically-detrended phase for optical entangled-phase measurement

When the linear frequency drift of the beat notes is removed, the result is the time

series in Figure 4-25. The noise of the three beat signals is approximately of the same

amplitude, with that of φOS being slightly lower than the other two. This suggests that
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the laser locked to the SiC cavity may have increased noise. More important is the lack

of discernable noise in the null combination of the three beats, which is plotted with only

a linear detrending (�xed frequency o�set). The lower panel of Figure 4-25 contains a

blow-up of the residual noise in the null combination both with and without an additional

shift in φOH(t).

Figure 4-26 shows the linear spectral densities of the three individual beats as well

as the null combination. As in the earlier measurements, a time delay was present in the

third PM channel, which was used to measure φOH . The magnitude of this time delay

was estimated by plotting the noise suppression in the null combination and making a �t

using the expression in (4�34). The result was a time delay of 2.18µs, shown in Figure

4-27. To correct for this delay, the φOH data was shifted by 2.18µs using a 51-point

Lagrange-windowed fractional-delay �lter. The results are the cyan curves in Figure 4-26

and Figure 4-27. The e�ect of the shift is signi�cant, increasing the noise suppression by a

factor of more than 100 near 10Hz.
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Figure 4-26. Linear spectral density for optical entangled-phase measurement
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Also plotted in Figure 4-26 is the expected digitization noise, given by
√

3Udig1 where

Udig1 is the single-channel digitization noise given in (4�37). Unlike the VCO-measurement

data, the residual phase-noise in the null combination does not reach the digitization noise.

It instead follows a 1/f slope with an amplitude around 4.4 times larger than Udig. One

possible source for this noise would be relative phase noise between the two oscillators

used to demodulate the beat signals.
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Figure 4-27. Noise suppression in null combination for optical entangled-phase
measurement

4.5.5.7 Performance limitations

The previous two subsections describe the performance of the hardware PM in terms

of error in measured phase noise. This performance can only be reached if the PM is

operating normally and does not su�er from any failures.

One type of failure for a tracking IQ PM is a cycle-slip, which occurs when the

amplitude of the residual phase exceeds 0.5 cycles. This can occur if the input noise is

large or the gain of the tracking loop is low. One way to evaluate the likelihood of a

cycle-slip is to plot a histogram of the residual phase and �t a Gaussian to it. Figure 4-28

shows a histogram for 5 s of residual phase in the hardware PM for a beat note between
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the two Zerodur cavities. The data was �t with a Gaussian distribution of the form

PGauss(φr) = A exp

[
−

(
φr − µ

σ

)2
]
, (4�47)

where A is the amplitude of the �t, φr is the residual phase, µ is the mean, and σ is

the standard deviation. Using this distribution, the probability of a cycle slip can be

computed using the complimentary error function

Pslip = Aσ
√
π erfc

(
0.5− µ

σ

)
, (4�48)

erfc(x) ≡ 2√
π

∫ ∞

x

e−y2

dy. (4�49)

For the residuals shown in Figure 4-28, the best �t Gaussian has an amplitude of

17%, a mean of zero, and a standard deviation of 7.4millicycles. For such a small standard

deviation, the probability of a cycle slip is e�ectively zero.
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Figure 4-28. Histogram of residual phase for laser beat note in hardware PM

In addition to being caused by high-frequency phase noise, cycle slips can also be

caused by large frequency drifts in the input signals, such as those on the SiC beat

notes. At low frequencies, the gain of the tracking loop in the PM front-end increases

as f−2, with one power of f coming from the integrator in the feedback �lter and the

second power coming from the implicit integration in the DDS. A linear frequency drift

corresponds to a quadratic increase of the phase with time, which in turn corresponds
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to phase noise increasing with a slope of f−3 at low Fourier frequencies. As the Fourier

frequency decreases, the phase noise will increase faster than the loop gain, meaning that

the magnitude of the residual phase �uctuations will increase. Eventually this will cause a

cycle slip to occur.

One way to reduce the e�ect of the frequency drifts is to increase the low-frequency

gain of the PM by adding additional integrators at low frequency. Another approach

would be to put a ramping signal into the frequency o�set that would cancel most or all

of the frequency ramp in the input signal. This feed-forward approach would not e�ect

the stability of the PM, but would require that the frequency dirft of the input signal be

known in advance, as will be the case for the Doppler shifts in LISA. The best approach

is probably a combination of the two with the majority of the drifts removed through

feed-forward and the remaining noise supressed through feedback. These features will

likely be incorporated in future versions of the PM.

A more practical problem arises when trying to acquire lock with the PM using a

signal with a large frequency drift. The locking range of the tracking loop on the PM

is on the order of ∼ 20 kHz, meaning that the di�erence between the signal frequency

and the model o�set frequency must be less than that amount in order for the PM to

acquire the signal. This requires the user to anticipate the frequency of the signal if it is

drifting, which can be di�cult. The task becomes especially challenging when acquiring

multiple signals, as in the entangled phase measurements. This problem could be solved

by implementing an auto-lock function, where the PM front-end takes an initial sample

of the time series, determines the frequency of the signal, and locks the tracking loop

automatically. This feature will be implemented in subsequent versions of the PM.

4.6 EPD Unit

The purpose of the electronic phase delay (EPD) unit is simply to delay an electronic

signal by a speci�ed amount of time. This is accomplished using three steps: digitizing

the signal, storing the digital information in a memory bu�er, and regenerating the analog
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signal. The important parameters for the EPD unit are the sampling rate, which sets the

bandwidth of the EPD unit, and the amount of memory, which sets the maximum storage

time. The maximum storage time can be computed as

τmax =
M

Nchanbfs

, (4�50)

where M is the amount of memory in bytes, Nchan is the number of delay channels, b is

the width of the sample words in bytes, and fs is the sampling rate.

The EPD units were developed in three generations, summarized in Table 4-4.

The initial prototype was built using a DAP-5216a DSP card by Microstar, Inc. The

DAP-5216a contains 16-bit ADCs and 16-bit DACs clocked at 200 kHz and 64MB of

SDRAM. This allowed signals in the ∼ 10 kHz regime to be delayed by tens of seconds.

This 1st-generation EPD unit was used for several early simulator experiments [61, 62].

Table 4-4. Progression of EPD units

EPD Unit Hardware Sampling Frequency # of Chan. Max. Delay

1st-generation Microstar 200 kHz 2 80 s

2nd-generation Pentek ≤ 25MHz 4 2.6 s

3rd-generation Pentek
100MHz (I/O)

97.66 kHz (phase)
4 340 s

4.6.1 Second-generation EPD unit

The 2nd-generation EPD unit was implemented in the Pentek hardware described in

Section 4.4 and diagrammed in Figure 4-5. The input data is digitized by the ADCs on

the model 6256 downconverter. The ADC data from each pair of channels is packed into a

32-bit word and transferred via the VIM interface to the BIFO on the model 4205 carrier

board. The 4205 reads the data o� the BIFO in blocks of 1024 words and places it in a

memory bu�er in the SDRAM. The output of the memory bu�er is transferred via the
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VIM interface to the model 6228 upconverter, where it is unpacked and used to feed the

DACs.

The bandwidth of the 2nd-generation EPD unit has a lower limit given by the

transformers that couple the ADCs and DACs to the signal inputs and outputs on the

Pentek hardware. These transformers have a −3 dB corner frequency at 400 kHz. Inputs to

the 2nd-generation EPD unit must have frequencies at least this large.

The bandwidth of the EPD unit is also limited at high frequencies. Although the

ADCs and DACs are capable of being clocked at 100MHz or more, the speed of the

VIM interface is limited by the PCI bus. Since the incoming and outgoing data must

share the 66MHz PCI bus, the theoretical maximum data rate for continual two-way

streaming across the VIM is 33MHz. In practice this is reduced to ∼ 25MHz. For the

four-channel case (two VIMs for input and two VIMs for output), the rate is further

reduced to ∼ 12.5MHz. This limits the frequencies of delayed signals to ≤ 5− 10MHz.

Signals passing through the 2nd-generation EPD unit experience an amplitude loss of

−6 dBm due to the fact that the full-scale of the ADC input is +4 dBm while the full-scale

of the DAC output is −2 dBm. This loss does not a�ect the signal-to-noise ratio of the

input signal because both the signal and noise experience the same loss.

The timing resolution of the delay is given by the size of the blocks used to read from

and write to the VIM interface. Typical values were blocks of 1024 words with a sampling

rate of 25MHz, corresponding to a timing resolution of 41µs.

The 2nd-generation EPD unit has been used in a number of experiments including

measurements of TDI-like signals [51, 63] and investigations of arm-locking with optical

signals [64].

The downside of the 2nd-generation system is that, despite having 1GB of SDRAM,

it is unable to delay signals for more than ∼ 2.5 s. This is because the data rates for the

high sampling frequencies are so large. This problem is especially annoying because

there is very little information of interest in the LISA signals at high frequencies.
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Figure 4-29. Schematic of the NCO used in the 3rd-generation EPD unit

The 3rd-generation EPD unit address this problem by incorporating a PM and an

numerically-controlled oscillator (NCO) into the delay process.

4.6.2 Third-generation EPD unit

For the third-generation EPD unit, the model 6256 is con�gured as the front-end of

a PM, as described in 4.5.5.1. The 100MHz sampling frequencies allows for signals with

frequencies of up to ∼ 30MHz. The IQν data for each channel is packed using the format

in Figure 4-17 and transferred across the VIM at a rate of 97.65625 kHz. The 4205 reads

this data o� of the BIFO in blocks of 1024 and unpacks it into separate streams for each

channel. These streams are stored in a memory bu�er on SDRAM for the speci�ed delay

time. The delayed data is repacked and transferred across the VIM to the FPGA on the

6228. The 6228 unpacks the data and feeds the IQν data to a NCO, shown schematically

in Figure 4-29.

The NCO converts the IQν data from the PM into sinusoidal signals with an o�set

frequency νoff at a sampling rate of 100MHz. The output of the NCOs is fed into the

DACs, reproducing the signals.

By decimating the IQν data before storage, the 3rd-generation EPD unit greatly

increases the maximum delay time while simultaneously increasing the maximum carrier

frequency. The price paid is in the bandwidth of the EPD unit: any components of the

signal above ∼ 50 kHz will not be reproduced. This is above the bandwidth of most of

the relevant signals with the exception of the modulation tones and possibly the active
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bandwidths of the PLLs. The PLL bandwidth can easily be encompassed by reducing

the decimation in the PM. Bypassing the additional divide-by-8 CIC �lter in the PM will

result in a EPD passband of ∼ 400 kHz while still allowing for delays of ∼ 40 s per channel.

The modulation tones are likely to be at tens of MHz and will have to be dealt with

separately. One approach is to assign a separate PM channel for each modulation tone,

delay each channel separately by the same amount, and re-generate the signal using a

modulated NCO. So long as a limited number of modulation tones were included, this

could be a viable approach.

An importnat feature of the 3rd-generation EPD unit is the ability to model the

Doppler shifts produced by relative motion between the LISA SC. This is accomplished

by using di�erent values for νoff in the PM and the NCO. For instance, an 11MHz signal

could be measured with a PM with νoff = 10MHz and reconstructed by an NCO with

νoff = 5MHz. The delayed signal would have a carrier frequency of 6MHz with the

same phase information (after a delay) of the 11MHz signal. This feature allows for more

LISA-like arrangements to be used in the simulator.

As a test of the 3rd-generation EPD unit, a VCO was demodulated with a function

generator to create a signal with a frequency of 8MHz. This signal was split in two using

a 50-50 RF splitter, with one portion passing through the 3rd-generation EPD unit with a

time delay of 2 s and a Doppler shift of 4MHz. The output of the EPD unit and the other

portion of the input signal were connected to the inputs of a hardware PM running on a

separate Pentek system. The linearly-detrended time series of the phase data for the two

signals is shown in Figure 4-30.

To check the e�ectiveness of the delay unit, the delayed signal was shifted in time

by various amounts using a combination of simple integer sampling point shifting and

fractional delay �ltering and then subtracted from the input signal. The delay time was

optimized by minimizing the power spectrum of the shifted di�erence. For this data set, a

delay time of τ = 2.039663 s produced the minimal error.
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Figure 4-30. Detrended phase of VCO signal in EPD test. Expected time delay: τ = 2 s.

The linear spectral density of the input signals and the shifted and subtracted

combination is shown in Figure 4-31. For frequencies below ∼ 100Hz, the noise in the

subtracted combination matches the digitization noise, computed as
√

2Udig1, where Udig1

is the single-channel digitization noise given in (4�37). This indicates that the EPD unit

does not add any additional noise to the signal beyond that added by the PM.
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The disparity between the expected and observed time delays of ∼ 40ms is a bit

puzzling. The majority of this extra time seems to be independent of the expected delay

time, indicating that it is some sort of additive a�ect. The source is likely an error in the

computation of the length of the storage bu�er, which currently does not account for time

the data spends in the various processing bu�ers. However it is estimated that the errors

caused by the bu�ers should be of the order of 1ms ∼ 5ms. Regardless of its source, the

timing error can be easily dealt with by adjusting the target delay times.
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CHAPTER 5
ARM-LOCKING IN THE UF LISA INTERFEROMETRY SIMULATOR

5.1 Introduction

The laser phase-stabilization technique known as arm-locking plays an important

role in the LISA IMS (Section 3.5.4). Arm locking is a function of the IMS as a whole,

involving subcomponents such as phasemeters (PMs), laser pre-stabilization systems,

and phase-lock loops (PLLs). To date, arm-locking has been studied analytically [43, 45],

through time-domain simulations [42, 43, 65], and in several hardware-analog experiments

[48, 61, 64, 66]. The particular advantage of the hardware experiments is that, in forcing

one to actually build a working system, they can expose e�ects that have not been

included in the analytic or numerical models.

The UF LISA interferometry simulator is ideally suited to studying arm-locking in a

LISA-like environment. It is the only system in existence that can provide both realistic

laser noise and realistic delay times. For studying arm-locking, the large delay times are

essential, because they set the frequency scale for the controller.

In parallel with the development of the interferometry simulator (Chapter 4), the

author has developed a series of hardware models of single-arm arm-locking based on the

EPD technique. The initial model, described in Section 5.2, was a purely electronic model

using a VCO in place of a laser beat note. This provided a proof-of-principle for the EPD

technique. The next iteration, described in Section 5.3, incorporated improved electronics

to allow locking of a pre-stabilized laser beat note to a ∼ 1ms delay.

The subsequent development of the hardware PM, described in Section 4.5.5, allowed

for a change in the experimental topology that produced the improved optical system

described in Section 5.4. This system is capable of generating LISA-like arm-locking

error signals with delays of 1 s or more. Unfortunately, a technical issue with the

implementation of the arm-locking �lter for this system prevented the system from

being locked.
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5.2 Electronic Model

5.2.1 Method

The �rst EPD-based arm-locking experiment, described in detail by Thorpe &

Mueller [61], was a purely electronic model. The experimental apparatus, shown in Figure

5-1, centers around a VCO with a nominal frequency of ∼ 25 kHz. The VCO signal is

split into two portions, one of which is delayed in an EPD unit. For these experiments,

the EPD unit was the �rst-generation version described in Section 4.6, with a sampling

frequency of 200 kHz. The delayed and prompt signals were mixed in an analog mixer

and the mixer output was low-pass �ltered by a single pole at 300Hz, generating an error

signal of the form

S(t) = 1.6
V

cycle [φ(t)− φ(t− τ)] (5�1)

where φ(t) is the phase of the VCO and τ is the delay time of the EPD unit. This error

signal has the same form as the single-arm arm-locking error signal given in (3�19).

For these experiments, the delay time was set to τ ≈ 500ms, so that the nulls in the

interferometer response occurred at fn ≈ n · 2Hz.

Figure 5-1. Experimental setup for electronic arm-locking experiment

The controller for the electronic model was implemented using a PC-based DSP

system from National Instruments. The error signal was digitized at 1 kHz with 16-bit

resolution and streamed into National Instruments LabVIEW software. The �lter was an
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IIR �lter1 designed using the bilinear transform method with Laplace-domain poles at

50mHz, 3Hz, and 30Hz and Laplace-domain zeros at 500mHz, 1Hz and 10Hz. A Bode

plot of the controller is shown in Figure 5-2 along with a Bode plot of the arm-locking

system (interferometer plus 1/s actuator). An overall gain of ≈ 200 has been removed

from the controller transfer function to allow the two curves to overlap in the plot. Note

from the lower panel of Figure 5-2 that the controller provides a phase advance in the

vicinity of the interferometer nulls.
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Figure 5-2. System and controller transfer functions for electronic arm-locking experiment

5.2.2 Results

To evaluate the electronic arm-locking system, a separate portion of the VCO signal

was demodulated by a LO to DC. Since the rms phase noise of the arm-locked VCO was

less than 1 cycle during the measurement band, the mixer output could be used as a PM,

as described in 4.5. Figure 5-3 shows the linear spectral density (LSD) of the arm-locked

1 For more information on IIR �lters, see Section A.4. For details on the bilinear
transform design method for IIR �lters, see Section A.4.3.2.
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VCO signal. The spectrum exhibits the characteristic noise spikes at Fourier frequencies

just below the null frequencies.
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Figure 5-3. Linear spectral density of arm-locked VCO signal

Ideally, the unlocked spectrum would be included in Figure 5-3 as well. However, the

rms phase noise in the unlocked VCO exceeds 1 cycle, preventing the crude mixer PM

from working properly. As an alternative, the closed-loop noise suppression was measured

in-loop by injecting a sinusoidal signal into the VCO control input and observing the

corresponding signal in the error signal output. The results of this measurement are shown

in Figure 5-4, along with a �t made using the known open-loop transfer functions of the

components. The �t parameters were τ and an overall gain factor and the best �t values

were τ = 500.9ms and H0G0 = 200.

5.2.3 Discussion

The good agreement between the measured and predicted responses in Figure 5-4

indicate that the EPD-based system is a reasonable hardware analogue for LISA. The

primary limitations of this system is the short delay time, the low controller bandwidth,

and the limited dynamic range of the mixer PMs. The latter two limitations precluded
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this system from being used with optical signals, which have larger intrinsic phase noise

than the VCO.
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Figure 5-4. Closed-loop noise suppression for electronic arm-locking experiment

5.3 Initial Optical Model

5.3.1 Method

After the initial success of the electronic arm-locking model (Section 5.2), the next

e�ort was building an arm-locking system incorporating optical signals [64]. The optical

components of the system were composed from the optical bench shown in Figure 4-2.

For the arm-locking experiments, these optics were arranged as shown in Figure 5-5

below. Laser 1 (L1) is stabilized to an optical cavity consisting of a Zerodur spacer

with optically-contacted mirrors. Laser 2 (L2) is phase-locked to L1 with a frequency

o�set provided by a VCO with a nominal frequency of 25MHz. As discussed in Section

3.5.4.6, this is one approach that could be utilized on LISA to combine arm-locking with

pre-stabilization.

The round-trip delay of the LISA arm is modeled using the EPD technique (Section

4.2). The reference laser is Laser 0 (L0), which is locked to the SiC cavity. As mentioned
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Figure 5-5. Experimental arrangement for the initial optical arm-locking experiments

in Section 4.3.2, the Zerodur-SiC beat note, denoted as S20(t), exhibits a large linear drift.

At the time of these experiments, the slope of this drift was ≈ 200Hz/s .

To model the LISA arm, S20(t) is �rst ampli�ed in a ×10 RF ampli�er and split into

two equal parts using a 50-50 RF splitter. This produces two identical copies of S20(t)

with a power of approximately −2.8 dBm. One of the signals is delayed in the EPD unit,

representing the round-trip light travel time in the arm. This experiment utilized the

2nd-generation EPD unit, described in Section 4.6. The second copy of S20(t) is ampli�ed

by an additional ×10 ampli�er and fed into the LO port of an RF mixer. The mixer

output is then �ltered by a single pole with a corner frequency of 300 kHz to remove the

higher harmonics. The �lter output was ampli�ed, producing an overall error signal of

S(t) =

(
2.4

V
cycle

)
mod [φ(t)− φ(t− τ), 1 cycle] . (5�2)

As in the electronic arm-locking system, this mixer-�lter arrangement acts as a crude

PM which gives an unambiguous phase response only when |φ(t)− φ(t− τ)| ≤ 0.5 cycles.

For pre-stabilized laser noise, this will only occur for measurement times of ∼ 100ms or
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Figure 5-6. Laplace-domain model of the system in Figure 5-5

less. Consequently, the delay time in the EPD unit was set to ∼ 1ms so that (5�2) would

approximate the single-arm transfer function in (3�19).

The �ltered mixer output was used as the error signal for the arm-locking controller,

which was implemented on a National Instruments DSP board with an FPGA processor.

The error signal was digitized at 200 kHz with 16-bit resolution and �ltered using a

second-order IIR �lter with transfer function H(s). The �lter output is up-converted in

a 16-bit DAC and used to adjust the frequency of the VCO in the PLL, completing the

arm-locking loop.

Figure 5-6 contains a Laplace-domain model of the system in Figure 5-5. The

unlocked phase noises of L1, L0, and the VCO are p̃1(s), p̃0(s), and p̃V CO(s), respectively.

An analysis of the system in Figure 5-6 shows that the phase noise of S20 is

S̃20(s) =
[p̃1(s)− p̃0(s)] + p̃V CO(s)

1 +H(s)s−1[1− exp(−sτ)] . (5�3)

In (5�3), it is assumed that the gain in the PLL is large enough to e�ectively eliminate

the free-running noise of L2. Comparing (5�3) with the closed-loop transfer function for

arm-locking, (3�23) indicates that the two systems are identical so long as the beat-note

phase noise, [p̃1(s)− p̃0(s)] + p̃V CO, is similar to the LISA laser phase noise, p̃(s).
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The arm-locking controller is a hybrid digital-analog system consisting of a second-order

IIR digital �lter with two additional integrators that can be switched in to provide

additional low-frequency gain. Figure 5-7 contains a Bode plot for the controller with and

without the integrators. The curve without the integrators is a measurement made using

a network analyzer and includes the e�ects of latency in the �lter. The curve with the

integrators included combines the theoretical transfer function of the integrators and the

measured latency in the �lter system. With the integrators on, the �lter has a slope of

f−2 below 100Hz. From 300Hz to 30 kHz, the �lter has a slope of ∼ f 1/2, providing the

required phase advance in the vicinity of the fn frequencies.
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Figure 5-7. Bode plot of controller for initial optical arm-locking system

5.3.2 Results

An initial characterization of the system in Figure 5-5 was made by replacing the

L2 − L0 beat note with a function generator. The response of the interferometer was

measured by injecting sinusoidal phase modulation at a given frequency using the function

generator and observing the mixer output signal. The results of these measurements are

shown in Figure 5-8. The observed data was used to �t to the single-arm error signal
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(3�19) to determine the actual time delay and an overall gain parameter. The best �t

parameters were a delay of 1.065ms and a gain of 8mV/deg.
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Figure 5-8. Response of interferometer to phase modulation

Once the system characterization was complete, the function generator signal was

replaced by the L2−L0 beat note and the error signal was connected to the controller. The

e�ectiveness of the arm-locking system was evaluated using an out-of-loop measurement

system consisting of a beat note between L2 and L0 at a PD separate from the one used to

generate the error signal. The stability of the beat note for both the locked and unlocked

cases was measured using two instruments: a commercial frequency counter and the

software PM described in Section 4.5.4. The frequency counter allowed for long-duration

measurements to probe low-frequencies while the PM allowed the high-frequency regime to

be studied.

5.3.2.1 Frequency counter measurements

Figure 5-9 contains a timeseries of the locked and unlocked frequency noise recorded

using the frequency counter at a rate of 0.5 sample/s. The unlocked case clearly exhibits a
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large frequency drift while the locked case remains nearly constant. Figure 5-10 shows the

same data with a linear drift of 167Hz/s removed from the unlocked data.
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Figure 5-9. Timeseries of L2 − L0 beat note for locked and unlocked cases

The residual unlocked frequency noise drifts over approximately 1 kHz in 1000 s, with

a smaller high-frequency component. On this scale, the locked timeseries consists of a a

series of �at plateaus separated by distinct vertical shifts. These plateaus are a result of

the mod(1 cycle) character of the error signal (5�2), which has lock points seperated in

frequency space by 1/τ . Excess noise can cause the arm-locking system to slip from one

lock point to another, an event dubbed a �fringe-slip�. Close examination of the plateaus

in Figure 5-9 shows that their levels di�er by 1/1.065ms ≈ 939Hz.

Between the fringe-slips, the locked frequency appears nearly constant on the scale

of Figure 5-9. Figure 5-11 shows a close-up of the locked frequency data between 1000 s

and 2000 s. During this time period, the beat note frequency remained within roughly

±250mHz.
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Figure 5-10. Timeseries of L2 − L0 beat note with linear trend removed from the unlocked
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Figure 5-11. Close-up of locked case in Figure 5-9 from 1000 s to 2000 s

The spectra of the locked and unlocked frequency noise are shown in Figure 5-12.

For the locked case, only data between fringe-slips was included. The locked frequency
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noise lies below 200mHz/
√
Hz from 10mHz to 250mHz, a factor of ≈ 400 better than the

unlocked case.
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Figure 5-12. Spectrum of locked and unlocked frequency noise. Fringe-slips have been
removed from the locked frequency noise.

5.3.2.2 Phasemeter data

The behavior of the arm-locking system at higher frequencies was studied using the

software PM described in Section 4.5.4. The L2 − L0 beat signal from the out-of-loop

photodiode was demodulated with a local oscillator to a frequency of ∼ 10 kHz. This

signal was digitized at a rate of 80 kHz. The recorded data was then processed o�ine in

the software PM, producing the phase timeseries shown in Figure 5-13. The reduction in

phase noise in the locked case is clear.

The linear spectral densities of the PM signals are shown in the right-hand side of

Figure 5-14. On the left-hand side of Figure 5-14 are the equivalent phase-noise spectra

obtained from a scaling of the frequency noise spectra in Figure 5-12. Although the two

data sets do not overlap, they are clearly consistent with one another.
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Figure 5-13. Timeseries of beat note phase for unlocked and locked cases
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Figure 5-14. Phase noise spectra for the unlocked and locked cases. The spectra on the
right-hand side are from the PM data. The spectra on the left-hand side are
the frequency noise spectra from Figure 5-12 scaled to phase noise.

An estimate of the closed-loop noise suppression of the arm-locking loop can be made

by dividing the locked spectral density by the unlocked spectral density, as shown in

148



Figure 5-15. Also shown in Figure 5-15 is the theoretical closed-loop suppression that was

calculated using the measured open-loop transfer functions of the interferometer, control

�lter, and VCO. The measured closed-loop suppression generally follows the shape of the

predicted transfer function, but deviates at both the upper and lower frequencies. The

deviation at the upper frequencies is likely a result of limitations in the software PM,

which has a limited resolution above ∼ 1 kHz (see Section 4.5.4). At lower frequencies, the

suppression appears to hit a noise �oor around −40 dB.

10
0

10
1

10
2

10
3

10
4

−40

−20

0

20

Frequency (Hz)

dB

measured

predicted

Figure 5-15. Closed-loop noise suppression for optical arm-locking

5.3.2.3 Error-point noise

As mentioned above, the response of the software PM degrades above ∼ 1 kHz,

making it di�cult to estimate fUG from Figure 5-15. A prediction based on the measured

transfer functions of the system components estimates fUG ≈ 12 kHz. Figure 5-16 contains

a measurement of the error point noise, recorded as the voltage out of the mixer in Figure

5-5, for the locked and unlocked cases. The error-point noise for the locked case is clearly

lower than the unlocked case at low-frequencies. At higher frequencies, there is a broad
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peak in the locked error-point noise. The peak is centered around 12 kHz, consistent with

the predicted unity-gain frequency.
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Figure 5-16. Error-point (mixer output) noise for locked and unlocked cases

5.3.3 Discussion

The results described above demonstrate that it is possible to incorporate optical

signals with LISA-like noise into an EPD-based model of arm-locking. The primary

limitation of this system is the small linear range of the interferometer coupled with the

relatively large laser phase noise. Unlike the situation in LISA, there is no frequency o�set

between the two paths of the interferometer, resulting in a �beat note� at zero frequency.

When coupled with the large laser phase noise, this distorts the error signal so that the

measured signal is [φ(t)− φ(t− τ)] modulo 2π rather than [φ(t)− φ(t− τ)]. This causes

the fringe-slips, which prevent the system from being stable over long measurement times.

The closed-loop noise suppression could be increased by increasing the bandwidth of

the control �lter. For this particular �lter implementation, the bandwidth is limited by

latency in the digital portion of the loop.
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5.4 Improved Optical Model

The development of the 3rd-generation EPD unit with the capability of providing

frequency shifts (see Section 4.6) allows for an improvement on the optical model

described above. The optical con�guration remains the same as in Figure 5-5 while

the electronics are modi�ed as shown in Figure 5-17.

Figure 5-17. Modi�cation of electronics for improved optical arm-locking

As in the original experiment, the L2 − L0 beat note is divided into two portions,

one of which enters the EPD unit. The EPD unit delays the signal by an amount τ

while also imparting a �xed frequency shift of ∆ν. The output of the EPD unit is mixed

with the original beat note and the output is low-pass �ltered, producing a signal with a

frequency ∆ν and a phase φ20(t) − φ20(t − τ). This is a direct analogue of the beat signal

for single-arm locking in LISA, which will have a nearly constant frequency given by the

Doppler shifts and any o�set in the PLL at the far SC.

As in LISA, the phase of the mixer output signal can be read-out with a real-time

PM set with an o�set frequency equal to ∆ν. This provides an error signal proportional

to φ20(t) − φ20(t − τ) so long as the phase di�erence remains in the linear range of the
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PM. Consequently, the system is less susceptible to fringe-slips and the time delay can be

increased to more LISA-like values.

5.4.1 System Characterization

To demonstrate the viability of the model in Figure 5-17, a measurement of the

system transfer function was made. The L1 − L2 beat note was phase-locked to a 10MHz

LO signal using an analog PLL. This placed the L2 − L0 beat note at approximately

98MHz, with an amplitude of −41 dBm. The L2 − L0 beat note was demodulated with

a �xed 90MHz LO signal and ampli�ed using two RF ampli�ers with amplitude gains

of ≈ ×10 each. The ampli�ed signal was split into three equal portions, each with an

amplitude of roughly −4 dB.

One portion of the signal was fed into the EPD unit, which was set with a delay of

1 s and a Doppler shift of 4MHz. The second portion of the signal was ampli�ed by a

third RF ampli�er and fed into the LO port of an RF mixer. The other port of the mixer

was connected to the output of the EPD unit, which had an amplitude of approximately

−10 dBm. The mixer output was �ltered with a 5MHz corner frequency and ampli�ed,

producing a 4MHz signal with an amplitude of roughly 0 dBm. This signal corresponds to

the output of the mixer in Figure 5-17.

The mixer output signal and the third portion of the L2 − L0 beat note were each fed

into the hardware PM described in Section 4.5.5. Figure 5-18 shows the raw timeseries of

the phase data for both signals. The L2 − L0 beat note follows a quadratic trend

φ20(t) = at2 + bt− c (5�4)

with a = 25.1 cycles/s2, b = 1622 cycles/s, and c = −941 cycles. The quadratic term is

equivalent to a linear frequency drift of 25.1Hz/s, caused by a drift between the L1 and L0

reference cavities, as discussed in 4.3.2. It happened that these measurements were taken

during a time small drifts between the cavities, which allowed the PM to remained locked

for long time periods.
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Figure 5-18. Raw phase timeseries of arm-locking system characterization data. Blue curve
is L2 − L0 beat note, red is interferometer output, S(t).

For an input with a quadratic trend in phase, the interferometer output, S(t), will

have a linear trend in phase. Using (5�4),

S(t) ≡ φ20(t)− φ20(t− τ) = (2aτ)t+ (bτ − aτ 2). (5�5)

This corresponds to a frequency o�set of 2aτ or ∼ 50Hz in the case of the data in

Figure 5-18 . S(t) does indeed show a linear trend, although the slope is 1092Hz rather

than 50Hz. Part of the discrepancy can be traced to a rounding error in the frequency

o�set register of the PM, which uses a U16.16 binary fraction to represent νoff . The

rounding error for a 4MHz signal is approximately 671Hz. The additional 370Hz trend is

unaccounted for.

Removing the quadratic trend from φ20(t) and the linear trend from S(t) yields

the timeseries in Figure 5-19. Over long time periods, S(t) is quieter than φ20(t) since

variations with periods longer than ∼ 1 s are common to both the prompt and delayed

signals.

Figure 5-20 shows the linear spectral densities φ̃20(f) and S̃(f). Clearly visible in

S̃(f) is a �attening at low frequencies as well as nulls at multiples of 1/τ = 1Hz. An
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estimate of the magnitude of the interferometer transfer function can be made by dividing

the two curves in Figure 5-20, as shown in Figure 5-21.
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Figure 5-19. Detrended timeseries of arm-locking system characterization data. Blue curve
is the quadratically-detrended L2 − L0 beat note, red is the linearly-detrended
interferometer output, S(t).
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Figure 5-20. Linear spectral density of arm-locking system characterization data

154



Also shown in Figure 5-21 is a the theoretical single-arm transfer function given in

(3�20). The magnitude is given by

∣∣1− e−sτ
∣∣ = 2 |sin (πfτ)| (5�6)

The best �t using (5�6) for the data in Figure 5-21 obtained a delay of τ = 1.039 s.

The additional 39ms of delay is consistent with the additional delay observed in the

3rd-generation EPD experiments described in 4.6.2. The additional roll-o� in the

measured response at low frequencies may only be due to a scarcity of points in the

spectra in Figure 5-21. The measured depth of the interferometer nulls is a�ected by the

frequency-resolution of the spectra. A longer measurement time would reduce both of

these e�ects.
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Figure 5-21. Magnitude of transfer function for arm-locking system. Fitted system has a
delay of τ = 1.039 s.

5.4.2 Filter Design

The presence of the PM in the loop as shown in Figure 5-17 greatly reduces the

requirements on the arm-locking �lter. Unlike the system described in Section 5.3, the

error signal will be present regardless of the amount of noise in the system. Consequently,
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the arm-locking loop does not have to suppress the noise in φ20(t) to less than a cycle in

order to avoid fringe slips.

Another advantage of the PM is that it can be used as a frequency-measurement

device by using the νcorr signal from the PM front-end as the frequency output. The

measurement of frequency rather than phase introduces an additional factor of s in the

arm-locking transfer function which can be balanced by a factor of 1/s in the control �lter.

This allows the control �lter magnitude to decrease with increasing frequency, a situation

that is generally more stable.

The phase error introduced in using νcorr rather than the full IQν signals is equivalent

to the residual phase, φr = atan(Q/I). So long as the PM remains locked, the rms value of

φr will be less than 0.5 cycles. In the LISA band, φr should lie below the digitization noise

in νcorr.

For the system described in Section 5.4.1 above, a control �lter with poles at 1Hz,

10Hz, 100Hz, and 1 kHz and zeros at 3.163Hz, 31.63Hz, 316.3Hz, and 3.163 kHz was

designed using the bilinear transform method (Section A.4.3.2). This produces a transfer

function that approximates s−1/2 between 1Hz and 10 kHz. The �lter was implemented as

a two-stage, second-order-section, direct-form II �lter in the FPGA on-board the model

6256 downconverter2 .

Figure 5-22 shows a timeseries of �ltered and un�ltered frequency noise for a VCO

input. This data was used to generate a measurement of the magnitude of the �lter

transfer function by computing the linear spectral density for each signal and dividing

the two spectra. This produces the measured result shown in Figure 5-23. It is clearly

consistent with the predicted result, indicating that the �lter is behaving as expected.

2 For more information on �lter structures see Section A.4.4.1. For an overview of the
Pentek hardware, see Section 4.4.
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Figure 5-22. Timeseries of �ltered and un�ltered frequency noise from VCO input
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Figure 5-23. Measured and designed transfer functions of arm-locking control �lter

As mentioned in Section 4.4, the DAC outputs on the 6228 upconverter are

transformer-coupled with a −3 dB point at 400 kHz. Therefore they cannot be used to

generate a DC control signal to pass to a VCO. To avoid this problem, the �lter output

can be used as a frequency input to an NCO running on the FPGA in the 6228. The NCO

can then replace the VCO as the oscillator in the PLL between L1 and L2 in Figure 5-5.

This should be similar to the situation in LISA, where the PM, control electronics, and

NCO will all be part of a common avionics system.
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Unfortunately, a problem with the Pentek system prevented the �lter system

from being completed. Although the PM/�lter combination and the NCO can operate

separately, there is a con�ict in running them together which prevents the �ltered output

signal from reaching the NCO. The problem appears to result in the interrupt controller

for the PCI bus on the model 4205 baseboard, but this has yet to be con�rmed. A possible

work-around involving bypassing the PCI bus has been conceptualized, and is currently in

the implementation stage.

5.4.3 Results

Without a fully-operational �lter, the improved optical model could not be locked.

Nevertheless, the results from the transfer function measurements in 5.4.1 indicate that

the system is capable of producing error signals with LISA-like noise and LISA-scale time

delays. As potential PM/�lter systems are developed at UF and elsewhere, the EPD-based

optical arm-locking model will be available to evaluate them.
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CHAPTER 6
CONCLUSION

Gravitational wave astronomy promises to be a major contributor to our understanding

of the universe in the 21st century. It will provide a new method for gathering information

that will compliment our existing ability for electromagnetic observations. GWs will be

particularly important to our understanding of gravity, the dominant force over large

distance scales.

Space-based detectors such as LISA will play an important role in GW astronomy.

They are the only type of detectors currently under study that can access the low-frequency

regime between ∼ 10−6 Hz and ∼ 1Hz. This band is rich with interesting sources such

as galactic binaries, SMBH mergers, and EMRIs. In order to reach its design sensitivity,

LISA relies on the precision and dynamic range of its phasemeters (PMs) as well as novel

interferometric techniques such as time-delay interferometry (TDI) and arm-locking.

The UF LISA interferometry simulator provides an opportunity to study both

technologies such as PMs and techniques such as arm-locking in a LISA-like environment.

Realistic noise sources are generated using pre-stabilized lasers and other components

similar to those in LISA. The electronic phase delay (EPD) technique allows the

simulator to model the large optical path lengths in LISA, which is essential for studying

system-level technologies such as TDI and arm-locking.

This dissertation has described the author's work in developing the simulator,

especially the electronic subsystems that are critical to its success. It has also described a

series of arm-locking experiments that gradually grew more sophisticated as the simulator

improved. The results of these two e�orts are summarized below.

6.1 Phasemeters and EPD Units

The success of the simulator hinges on the performance of the electronic subsystems,

namely the EPD unit and the PM. Both of these technologies have been developed

over several iterations. The current EPD unit is capable of delaying signals with carrier

frequencies up to ∼ 25MHz for more than 300 s. It can also be used to shift the frequency
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of the delayed signal, which can be used to model the Doppler shifts in the LISA arms.

This is an essential feature for generating signals that are precise analogues of the LISA

photodiode signals.

The current hardware PM is capable of measuring signals with LISA-like phase

noise. The noise �oor of the PM appears to be limited by digitization noise to a level of

approximately (
10−7 cycles√

Hz

) √
1 +

(
100Hz
f

)2

(6�1)

where f is the Fourier frequency. While this noise does not meet the LISA requirements

over the entire LISA band, the digitization noise could be brought below the LISA

requirement by increasing the number of bits in the frequency-correction signal from 32 to

42. This should not be a major obstacle, but it will require some modi�cations to the PM

software.

6.2 Arm-Locking

The experimental studies of arm-locking (Chapter 5) have demonstrated that the

EPD technique can be used to create valid models of LISA interferometry. The results

of the initial optical experiment with a ≈ 1ms delay produced a beat note with a

frequency noise of ∼ 200mHz/
√
Hz between 10mHz and 250mHz. This represents

an improvement over the pre-stabilized lasers of more than three orders of magnitude.

At higher frequencies, the noise suppression was consistent with the predictions of a

Laplace-domain model of arm-locking. Based on measurements of the out-of-loop noise

suppression and the in-loop error signal, the unity gain frequency was estimated to be

≈ 12 kHz. This demonstrates that the arm-locking loop was stable even though roughly

ten interferometer nulls were included in the feedback bandwidth.

The improved optical model can produce a LISA-like error signal with delays up

to the full LISA round-trip of 33 s. The magnitude of the model's transfer function was

measured for a 1 s delay and found to be consistent with that of a single-arm error signal

in LISA. A controller for locking the model was designed and built using the hardware PM
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and a digital �lter on an FPGA. While the controller is able to produce a signal with the

correct transfer function, a problem with the digital signal processing hardware prevented

the loop from being closed. Despite this drawback, the improved model stands as the �rst

realistic model of a LISA arm. As potential controllers are developed at UF and elsewhere,

it will be available to evaluate them.
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APPENDIX A
DIGITAL SIGNAL PROCESSING

A.1 Introduction

Digital signals di�er from analog signals in two fundamental ways1 . They are

discrete-time signals, meaning that they are only de�ned at particular times, typically

multiples of a �xed clock period. The properties of discrete-time signals are discussed

in Section A.2. Digital signals are also quantized in amplitude, they can only take on a

limited number of values. The consequences of amplitude quantization are discussed in

Section A.3.

Section A.4 provides an introduction to digital �ltering, an extremely �exible and

powerful technique for manipulating digital signals. Emphasis is placed on the types of

digital �lters used in developing the simulator electronics.

A.2 Sampling

Consider the continuous-time signal, x(t), shown schematically in Figure A-1(a). By

de�nition as a continuous signal, the value of x(t) is speci�ed for all values of t. The signal

can be described in frequency space by the spectrum x̃(f) shown in Figure A-1(b), which

is related to the time series via the Fourier transform:

x̃(f) = F [x(t)] , (A�1)

F [x(t)] ≡ 1√
2π

∫ ∞

−∞
e2πift′x(t′)dt′. (A�2)

Sampling the signal amounts to measuring x(t) at speci�c values of t separated by the

sample period T . The sampled signal can be represented as

S(t) =





x(t) t = kT

0 t 6= kT
(A�3)

1 For a more thorough treatment of digital signal processing, see Smith [67]
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where k is an integer. This is equivalent to multiplying x(t) by a comb of delta functions

spaced by T ,

S(t) = x(t)× C(t), (A�4)

C(t) =
∞∑

k=−∞
δ(t− kT ). (A�5)

(a) original signal (b) original signal

(c) sampling function (d) sampling spectrum

(e) sampled signal (f) sampled spectrum

Figure A-1. An overview of the sampling process
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This signal is shown in Figure A-1(c). The resulting signal, S(t), shown in Figure

A-1(e) is sometimes called an impulse train. The spectrum of the sampled signal can be

determined using the fact that the Fourier transform of a product of two signals is equal to

the convolution of the Fourier transforms of the two signals. In this case,

S̃(f) = x̃(f)⊗ C̃(f). (A�6)

The Fourier transform of comb of delta functions is another comb of delta functions.

Expressing all terms as positive frequencies, the spectrum of C(t) is

C̃(f) =
fs√
2π

{
δ(f) +

∞∑

k=1

[δ (f − kfs) + δ (−f − kfs)]

}
, (A�7)

where fs ≡ 1/T , is the sampling frequency. The spectrum C̃(f) is plotted in Figure

A-1(d). The convolution in (A�6) will contain three terms. The �rst term, from the δ(f)

in C̃(f), places a copy of x̃(f) at DC. The second term, from the δ(f − kfs), places

copies of x̃(f) at each multiple of kfs. The �nal term, from the δ(−f − kfs), places

frequency-reversed copies of x̃(f) at each multiple of kfs. The overall spectrum of the

sampled signal, s̃(f), is shown in Figure A-1(f).

A.2.1 Aliasing

With the exception of the spectral �images� in Figure A-1(f), the sampled signal is an

exact replica of the time-domain signal. If the bandwidth of x̃(f) is limited to ≤ fs/2, as

show in Figure A-1, then the images do not e�ect the signal. If however, the bandwidth

of ˜x(f) exceeds fs/2, then the frequency-reversed image from 1/T will begin to overlap

with the original spectrum. When this occurs, the contributions from the DC and the 1/T

image overlap, as shown in Figure A-2.

This phenomenon is known as aliasing and is generally undesirable because

high-frequency noise components in the original signal can map into lower frequencies

in the sampled signal. To prevent aliasing, the input signal must be band-limited below
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the Nyquist frequency,

fNyq ≡ fs/2. (A�8)

If the input signal is not naturally band-limited, it is commonly �ltered with an

�anti-aliasing� �lter before being sampled. Aliasing can also occur during the process of

downsampling, the process of reducing the sample rate from a high rate to a lower rate in

a multi-rate discrete-time system. The Nyquist sampling theorem applies in this case as

well, although the anti-aliasing �lters can be digital �lters running at the high sample rate.

In multi-rate �lters, such as the CIC �lters discussed in Section A.4.5, the anti-aliasing

and downsampling functions can be combined into one operation, improving e�ciency.

Figure A-2. The phenomenon of aliasing. The original spectrum (solid blue line) and the
imaged spectrum (dashed blue line) overlap. The contributions from each
cannot be separated in the resulting spectrum (red).

A.2.2 Upconversion

In some cases, it is necessary to convert a discrete-time signal to a continuous-time

signal, a process known as upconversion. An example would be when using a digital

�lter to drive a PZT actuator on a laser. One way to do this would be to insert zeros

between the known samples, re-creating the impulse train in Figure A-1(e). The resulting

output spectra would contain the desired spectra plus the images, and could be �ltered to

eliminate the images.

This technique is often used in the related process of upsampling, increasing the

sample rate from a low rate to a higher rate in a multi-rate discrete-time system. In
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digital-to-analog converters (DACs), this is usually not practical, because it requires fast

response in the analog components. Instead, most DACs utilize a technique known as

zero-order hold (ZOH).

In a ZOH upconversion, the output is held constant between samples, producing a

terraced e�ect. This can be described mathematically as a convolution in the time-domain

of the impulse train and a rectangular impulse of width T

u(t) = s(t)⊗R(t), (A�9)

R(t) ≡





1 0 ≤ t < T

0 otherwise
. (A�10)

This is shown in the left three panels of Figure A-3. In the frequency domain, the

convolution implies a multiplication of the spectra

ũ(f) = s̃(f)R̃(f). (A�11)

The Fourier transform of a rectangular impulse is a sinc function,
∣∣∣R̃(f)

∣∣∣ = T sinc(fT ), (A�12)

where sinc(x) ≡ sin(πx)/πx. This is shown in Figure A-3(d). The spectrum of the

upconverted signal, shown in Figure A-3(f) tracks s̃(f) at low frequencies, but begins to

fall o� at higher frequencies due to the sinc response of R̃(f). In theory, this passband

droop can be corrected by a �reconstruction �lter� with a sinc−1 frequency response. Such

a �lter is di�cult to build in the analog domain, especially since for f ≥ fNyq, the response

of the �lter should be zero to eliminate the spectral images at higher frequencies. In most

systems the reconstruction �lter is similar to the anti-aliasing �lter, with a �at response in

the pass-band. The e�ect of the sinc response can be reduced at a particular frequency by

increasing the upsampling rate.
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(a) impulse train (b) sampled spectrum

(c) rectangular impulse (d) spectrum of (c)

(e) ZOH signal (f) ZOH spectrum

Figure A-3. An overview of the upconversion process

Associated with the sinc response in the magnitude of R̃(f) is a linear phase response,

∠R(f) = −πfT. (A�13)

This linear phase loss is equivalent to a delay of T/2 in the output. Graphically, it

corresponds to the fact that the best-�t curve through the ZOH output is shifted from

the original curve by T/2. This �delay� can be an important consideration when designing

digital �lters for real-time control systems.
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A.3 Digital Signals

As mentioned in the introduction, digital signals are quantized in amplitude as well as

in time. Each piece of information in a digital system is contained in a two-state system.

Examples include two voltage levels, two current levels, or two magnetic states. The

information can be represented by a binary digit, or bit, that can take on the values 0 or 1.

Digital signal processing refers to manipulating a bit or group of bits. For a single bit,

the only operation is logical negation, abbreviated as NOT. For pairs of bits, the Boolean

operations AND, OR, XOR (exclusive or), and their negated counterparts can be de�ned

as well. These operations can be easily extended to groups of bits known as words.

An N -bit word can have 2N possible values. These 2N values can be chosen to

represent any set of 2N numeric values. For example, an 8-bit word can be used to

describe the integers from 0 to 255 (a total of 28 = 256 values). In this case, the mapping

is simple: the kth bit in the word represents the value of the 2k digit. The word �10001101�

with the most-signi�cant bit (MSB) to the left, would represent 27 + 23 + 22 + 20 = 141.

The Boolean logical operations can be combined to construct other digital operators.

For example, an N -bit adder will generate the sum of two N -bit signals. In general, the

sum of two N -bit signals can take on 2N+1 − 2 di�erent values, which requires N + 1 bits

to represent. Some adders will include this extra bit, but many will express the output as

an N -bit number. For sums larger than 2N − 1, the result will either be �xed at 2N − 1,

known as saturation, or will �wrap� back into the 2N values starting at zero. For example,

10001101

+10001101

00011011
⇔

141

+141

27
. (A�14)

To compute the result using integers, the two integers are summed (141 + 141 = 282) and

the result is expressed modulo 255, (282 mod 255 = 27).

The 2N values in an N -bit word can also be used to represent signed integers. For

example, an 8-bit word could be used to describe the integers from -128 to 127. In this
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case there are several choices of mapping, the most common of which is known as two's

compliment. In the two's compliment representation, the MSB corresponds to the −(2N−1)

digit. The word �10001101� would correspond to -115 in two's compliment. The name

two's compliment refers to the property that the negative of a number can be generated by

negating all of the bits and adding one. Flipping the bits gives �01110010� and adding

one gives �01110011� = 115. E�cient adders can be built using two's compliment

representation to add or subtract signed integers.

A.3.1 Binary Fractions

Digital words can be used to describe non-integer values as well. A common way of

doing so is using binary fractions, where a word is divided into an integer portion and

a fractional portion by a �binary point�. For example, an 8-bit word could be divided

into 4 bits of unsigned integer and 4 bits of fraction by placing the binary point after the

fourth bit. The bit to the left of the binary point represents the 20 place while the bit

immediately to the right represents the 2−1 place. The word �1000.1101� would represent

23 + 2−1 + 2−2 + 2−4 = 8.8125.

Binary fractions can also be used with two's compliment to formed signed values.

In two's compliment, �1000.1101� would represent −23 + 2−1 + 2−2 + 2−4 = −7.1875.

The negation procedure for two's compliment still works with binary fractions. Hence

�0111.0011� represents 22 + 21 + 20 + 2−3 + 2−4 = 7.1875.

The various representations are often abbreviated using the notation TypeN.B. Type

is either �U� for unsigned representations or �S� for signed representations. N is the total

number of bits in the word and B is number of bits to the right side of the binary point.

For example S16.15 refers to a 16-bit signed integer with 15 bits of fraction, which can

represent the values from −1 to 1− 2−15 in increments of 2−15.

A.3.2 Multiplication and Other Operations

The multiplication of two digital words is similar to addition. The product of two

N -bit words can span 22N − 2N+1 + 1 possible values. As with adders, it is either possible
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to use enough bits for the product to cover all possible values or to use a smaller number

of bits and throw away some information. This information can either be taken from

the MSBs by saturation or wrapping or it can be taken from the least-signi�cant bits by

rounding or truncation.

As an example, consider two U4.2 words, each representing the numbers from 0 to

3.75 in increments of 0.25. The product can range from 0 to 14.0625 in increments of

0.0625. The entire range of possible products can be described by a U8.4 word. However,

consider the case when only 4 bits are available to store the output. One choice is to use a

U4.0 word, which ranges from 0 to 16 in increments of 1. This will ensure that the largest

possible values of the product can be represented, but will result in a loss of precision.

Another choice is to use a U4.4 word, which covers the range from 0 to 0.9375 in

increments of 0.0625. This provides all of the precision, but has a limited range and will

over�ow (through saturation or wrapping) for some values. Using a U4.2 word for the

output represents a compromise between these two extremes.

In systems with many additions and multiplications, it is important to carefully

manage the over�ow and rounding conditions of each operator. Undesired over�ows or

rounding errors can cause otherwise well-designed systems to perform poorly or not at all.

Division of two digital words is not easily accomplished. Division by a constant

value can be accomplished by multiplication by the reciprocal value, but division of two

arbitrary words is typically avoided in �xed-point systems.

Nonlinear operations such as log, sin, atan, etc. can be accomplished using look-up

tables (LUTs). A LUT is a list of words stored in memory or hard-coded in digital logic.

A particular word in the list is selected by providing an address word to the input of the

LUT. The depth of the LUT refers to the number of bits in the address word while the

width of the LUT refers to the width of the words at each address. This is sometimes

abbreviated as depth × width. For example, an 8 × 10 LUT could be used to store the

function sin(φ). The address word would correspond to φ from 0 to (2π)(1 − 2−8) rad
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in increments of (2π)2−8 rad. The word at the corresponding address would contain the

function represented as a 10-bit integer, say as S10.8. A LUT will generate errors due to

both the �nite length of the address word and the �nite width of the output.

A.3.3 Floating-point Representations

The binary representations of integers and fractions discussed above are generally

called �xed-point representations, because the binary point is �xed at a particular location

in the word. There are also a set of �oating-point representations, where the binary point

is non-stationary. The most common �oating-point representations use the sign, mantissa,

exponent representation:

x = (±)(mantissa) exp(exponent). (A�15)

One bit, typically the MSB, is used to indicate the sign of the number. A second

sub-word is used to describe a mantissa using an unsigned �xed-point representation.

The remainder of the bits are used to describe the exponent using a signed �xed-point

representation. The IEEE maintains standards for �oating-point representations of

numbers, some of which are summarized in Table A-1. In addition to the numbers

explicity covered, they also have representations for ±∞ and not-a-number (NaN), which

signi�es a mathematical error such as divide by zero.

Table A-1. IEEE standard �oating point representations

type total bits mantissa exponent range

�oat 32 23 8 ±1038.53,±∞,NaN

double 64 52 11 ±10308.25,±∞,NaN

For numbers of roughly the same magnitude, the precision of the representation is

constant. As the size of the number increases or decreases, the precision is correspondingly

decreased or increased. This happens in discrete steps, which can sometimes produce

strange results.
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It is much more di�cult to build �oating-point adders and multipliers using basic

logic gates. As a result, �oating-point representation is typically employed only on

microprocessors or specialized DSP platforms. With these platforms, it becomes possible

to perform a wide variety of operations including non-linear operations, with minimal

error.

A.3.4 Digitization Noise

The combined e�ects of amplitude quantization and sampling lead to a noise source

known as digitization noise. The quantization error can be de�ned as the di�erence

between the true value of a sample and the quantized value. In most situations it is a

reasonable assumption that the quantization error for a particular point is equally likely to

lie between ULSB/2 and −ULSB/2, where ULSB is the level of the most signi�cant bit. This

probability distribution function (PDF) is pictured in Figure A-4.

Figure A-4. Assumed PDF for quantization error

In general, the energy contained in the quantization error is equal to the second

moment of the PDF,

Edig =

∫∞
−∞ e

2 (p(e)− p) de∫∞
−∞ p(e)de

(A�16)

where p(e) is the probability for a particular error e and p is the mean of p(e). For the

uniform PDF in Figure A-4, (A�16) can be evaluated as

Edig =

∫ ULSB/2

−ULSB/2
e2de

∫ ULSB/2

−ULSB/2
de

=
U2

LSB

12
(A�17)
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The spectral distribution of the quantization error is assumed to be white. For white

noise sampled with a sampling frequency fs, the total energy can be written as

Edig = Ũ2
dig

fs

2
(A�18)

where Ũdig is the spectral amplitude of the white noise. For white noise with a constant

energy, Ũdig will decrease as fs is increased because the energy can spread over more

frequency bands. Substituting U2
LSB/12 for Edig in (A�18) and solving for Ũdig gives

Ũdig =
ULSB√

6fs

. (A�19)

This formula for digitization noise makes two assumptions: the PDF for the quantization

error is the one in Figure A-4 and the spectrum of the noise is white. For signals with a

random noise component on the order of ULSB, this is a reasonable assumption.

For signals with lower noise (or fewer bits), one or both of these assumptions can

break down. Figure A-5(a) shows the PDF of the quantization error for a pure sinusoidal

signal with unit amplitude and frequency f = fs/10 quantized as a S6.5 binary fraction.
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Figure A-5. Non-uniform, non-white quantization error from a sinusoid with unit
amplitude and f = fs/10 quantized as a S6.5 binary fraction
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The quantization error in Figure A-5(a) falls into a limited range of bins and is no

longer uniform. The linear spectral density (LSD) of the quantization error is shown in

Figure A-5(b). The peaks at fs/10 and 2fs/10 result from the fact that the timeseries of

the quantization error is a repetitive sequence.

A.4 Digital Filtering

In the language of signal processing, a �lter is a device with a speci�c transfer

function. Typically �lters refer to devices which are designed to alter the overall transfer

function of a physical system. In the case of closed-loop systems, the transfer function of

the feedback element is often divided into a control �lter, which can be speci�ed, and an

actuator, which is a �xed attribute of the system.

Digital �lters2 are operators which convert a set of sampled input values into a set of

sampled output values. A generic digital �lter is speci�ed by a recursion relation relating

inputs and outputs at di�erent sample times. For an input x[n] and output y[n] where n

denotes the nth sample, a generic recursion relation for a digital �lter is

y[n] =
N∑

i=0

bix[n− i] +
M∑

j=1

ajy[n− j]. (A�20)

The recursion coe�cients aj and bi specify the behavior of the �lter. The form in (A�20)

is known as a causal �lter, since the output only depends on previous outputs and the

current and previous input. Filters that operate in real-time, such as control �lters must

be causal. Filters used for o�ine data processing can be acausal, including negative

indicies for i that amount to knowledge of future samples.

2 See Jackson [68] for a more complete treatment of digital �ltering
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A.4.1 Time-domain Response

In the continuous-time domain, �lters can be described by their impulse response

function, h(s). The impulse response function describes the time-series output of the �lter

for an impulsive input, x(t) = δ(t).

Discrete-time �lters can also be described by an impulse response function, h[n].

The discrete-time impulse response is the output of the �lter for a unit impulse in the

input, x[n] = δn0. Digital �lters are divided into two types according to their impulse

response functions. For �nite-impulse response (FIR) �lters, h[n] goes to zero after a

certain number of samples. Referring to (A�20), an FIR is a �lter with aj = 0, or no

feedback. For an FIR,

h[n] =





bn 0 ≤ n ≤ N

0 otherwise
. (A�21)

By contrast, for an in�nite impulse response (IIR) �lter, h[n] never reaches zero. This

occurs when the �lter uses feedback, aj 6= 0 for some j.

A.4.2 Frequency Response

The frequency response of a continuous-time �lter is often expressed in the Laplace

domain, which is related to the continuous time-domain by the Laplace transform,

x(s) = L{x(t)} , (A�22)

L{x(t)} ≡
∫ ∞

0

est′x(t′)dt′, (A�23)

The transfer function of a �lter with input x(t) and output y(t) can be written in the

Laplace domain as

H(s) ≡ y(s)

x(s)
. (A�24)

The transfer function is also the Laplace transform of the impulse response function,

L{h(t)} = H(s). In general, H(s) can be described using zeros (locations in the s-plane

where |H(s)| = 0) and poles (locations in the s-plane where |H(s)| = ∞). In equation
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form,

H(s) = K

∏N
i (s− ζi)∏M
j (s− ρj)

, (A�25)

where K is a constant, ζi is the location of the ith zero, and ρj is the location of the jth

pole in the complex s-plane.

The Laplace variable, s is related to the Fourier frequency by the relation

s = σ + 2πif, (A�26)

where σ is a real constant. The frequency response of a �lter with Laplace-domain transfer

function H(s) can be determined by evaluating H(s) along the imaginary s-axis, as shown

in Figure A-6(a).

The frequency response of a digital �lter can be computed using the z-transform, a

discrete analogue of the Laplace transform.

x(z) = Z {x[n]} , (A�27)

Z {x[n]} ≡
∞∑

k=0

zkx[k]. (A�28)

The z-transform has the property that Z{x[n− k]} = z−kZ{x[n]}. Using this relationship,

the recursion relation in (A�20) can be expressed in the z-domain as

y(z) = x(z)
N∑

i=0

biz
−i + y(z)

M∑
j=1

ajz
−j. (A�29)

This can be rearranged to de�ne the z-domain transfer function of the digital �lter as

H(z) ≡ y(z)

x(z)
=

∑N
i=0 biz

−i

1−∑M
j=1 ajz−j

. (A�30)

It can be shown that the z-domain transfer function is the z-transform of the impulse

response function, H(z) = Z{h[z]}. An alternative expression for H(z) can be obtained by

factoring the numerator and denominator of (A�30). The pole-zero representation of H(z)

is
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H(z) = K

∏N
i=0(z − ζz,i)∏M
j=0(z − ρz,j)

, (A�31)

where K is a constant, ζz,i the ith zero and ρz,j is the jth pole in the complex z-plane.

It is important to note that the z-domain poles and zeros are not generally the same as

the Laplace domain poles and zeros given in (A�25). The two can be related using the

relationship between the z-transform variable is related to the Laplace variable,

z = esT , (A�32)

where T is the sampling period of discrete-time system. The z-transform variable can also

be related to the Fourier frequency by combining (A�26) with (A�32),

z = e2πifT . (A�33)

Geometrically, the frequency axis in the Fourier domain is mapped onto a unit circle

centered at the origin in the z-plane, as shown in Figure A-6(b). The frequencies k/T

where k = 0, 1, 2, 3... all map to the point (1, 0) on the z-plane. For a �lter with a known

H(z), the frequency response can be computed using (A�33). In addition, the left-hand

side of the complex s-plane, where poles must be located in order for a system to be

stable, maps to the region inside the unit circle in the z-plane.

(a) s-plane (b) z-plane

Figure A-6. Comparison of Laplace and z domains. The red line represents the frequency
axis.
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A.4.3 Design Methods

The previous Section described how to compute the frequency response of a given

digital �lter. The task of the �lter designer is to invert this problem: determine the

digital �lter for a desired frequency response. A number of standard methods for �lter

design exist. The following Sections describe a few used by the author. A more thorough

treatment can be found in references on the subject such as Jackson [68].

A.4.3.1 FIR Filters - windowed impulse response method

A useful method for designing FIR �lters is the windowed transfer function method.

This method takes advantage of the relationship between the �lter transfer function in

the frequency domain and the impulse response function in the time domain. The starting

point for the design is the magnitude response of the �lter at a series of discrete points in

the frequency domain. For example, an ideal low-pass �lter will have the transfer function

in Figure A-7(a),

|H(f)| =





1 0 ≤ f < fc

0 fc ≤ f ≤ fNyq

(A�34)

where fc is the cut-o� frequency. The impulse response of the �lter can be computed by

performing a discrete inverse Fourier transform on the magnitude response. In general,

the impulse response function will be an in�nite series. For the ideal low-pass in Figure

A-7(a), the impulse response is given by,

h[n] = sinc (2fcn/fs) −∞ ≤ n ≤ ∞, (A�35)

where fs is the sampling frequency and sinc(x) ≡ sin(πx)/πx. The impulse response

is plotted for −30 ≤ n ≤ 30 in Figure A-7(b). This in�nite impulse response can be

approximated by truncating the series after a total of N points. The edge e�ects caused

by the truncation can be mitigated by multiplying the in�nite impulse response with a

window function that goes to zero at the end points. For example, the in�nite impulse

response in Figure A-7(b) can be truncated to a 31-point response using the Hamming
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window

h[n] = w[n]sinc (2fcn/fs) − 15 ≤ n ≤ 15, (A�36)

w[n] = 0.54 + 0.46 cos

(
2πn

31

)
(A�37)

This is shown in Figure A-7(d). The frequency response of this windowed �lter can be

determined by performing a discrete Fourier transform of the windowed impulse response

function. The frequency-response of the 31-point Hanning-windowed sinc is shown in

Figure A-7 (c).
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Figure A-7. Windowed impulse response method for designing FIR �lters

The actual �lter response in Figure A-7(c) exhibits similar low-pass characteristics as

the ideal response in Figure A-7(a). It di�ers from the ideal response in several important

ways: the slope of the magnitude response for f ≈ fc is �nite, the passband (0 ≤ f < fc)
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does not have a perfectly �at magnitude response, and the stopband (fc ≤ f ≤ fNyq)

response is not zero. As the number of points used in the �lter is increased, each of these

di�erences decrease. Tradeo�s between the di�erent e�ects can also be made by adjusting

the window function. In general, window functions which produce low ripple (�at response

in the passband and stopband) will have shallower slopes while window functions which

lead to steep slopes will produce larger ripple.

For an FIR �lter, the impulse response function gives the �lter coe�cients, via

(A�21). The windowed impulse response will generally include negative values of n,

corresponding to an acausal �lter. An equivalent causal �lter can be constructed by

shifting h[n] to positive values of n. This will produce a �lter with the same magnitude

response but a linear phase response corresponding to a delay equal to the number of

points shifted. For example, the 31-point �lter in (A�36) will be shifted to the right

by 15 points, corresponding to a delay of 15/fs. This will produce a phase response of

−2πf(15/fs).

A.4.3.2 IIR Filters - bilinear transform method

Oftentimes a desired �lter response is known in the Laplace domain. One technique

for converting from a Laplace domain representation, such as the pole-zero form in (A�25),

to a set of recursion coe�cients for an IIR digital �lter is the bilinear transform method.

The bilinear transform method starts with the relationship between s and z, given in

(A�32). This relationship can be inverted to give

sT = ln z. (A�38)

This non-linear relationship makes it di�cult to make an analytic conversion between the

Laplace-domain poles and zeros and the IIR recursion coe�cients. This can be done more

easily if (A�38) is simpli�ed using the bilinear approximation,

s ≈ 2

T

1− z−1

1 + z−1
. (A�39)
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which is valid for |sT | ¿ 1. The steps for generating the recursion coe�cients for an

IIR �lter that will approximate a given Laplace-domain �lter are as follows. Use (A�39)

to replace s in (A�25). Expand all of the terms in the numerator and denominator, and

algebraically manipulate it into the form of (A�30). The recursion coe�cients can then

be extracted using (A�30). For all but the most simple �lters, this manipulation becomes

extremely cumbersome to perform analytically. However, it is easy to perform numerically.

A.4.4 Realization and Practicalities

A.4.4.1 Filter structures

Once the �lter coe�cients are known, a data set can be �ltered using (A�20). One

way to realize this equation in digital logic would be the direct-form I structure in Figure

A-8. This implementation requires N + M multipliers, N + M + 1 adders, and N + M

registers for storing the prior input and output data.

Figure A-8. The direct-form I �lter structure

The same result can be achieved with a number of other �lter structures, some of

which are more computationally e�cient. For example, the direct-form II transposed

(DF2T) �lter structure is shown in Figure A-9. The DF2T structure reduces the number

of registers to max(N,M).

Algebraically, all �lter structures are identical, but because the operations occur in

di�erent order, e�ects such as quantization noise can vary from structure to structure.

This is most pronounced in IIR �lters, which are made more sensitive to quantization
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error by their feedback. An IIR �lter implemented with one �lter structure may perform

well while the same �lter implemented with a di�erent structure may not perform at all.

Figure A-9. The direct-form II transposed (DF2T) �lter structure

A good choice for IIR �lters is a cascade of second-order-sections (SOS). A second-order

section is a �lter with N = M = 2 and can provide up to two pole-zero pairs. Higher-order

�lters can be formed by cascading a series of SOSs. By adjusting which poles and zeros

are placed in which section and the overall order of the sections, tradeo�s can be made

between the stability of the �lter and its dynamic range. This is similar to the process of

designing an analog �lter using multiple operational ampli�er stages.

A.4.4.2 Latency

A given �lter implementation will take a certain amount of time, known as the

latency, to produce an output from a given input. This means that the phase response of

the �lter will have an additional linear phase lag. For �lters used in out-of-loop analysis

this delay is typically not important and it is su�cient to require only that it remain

constant. For �lters used in closed-loop systems, such as control �lters, the phase lag

caused by latency can a�ect the stability of the loop. One source that is often overlooked

is the phase lag due to a ZOH in a system with an analog output. The ZOH phase lag,

(A�13), is equivalent to a delay of T/2.
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A.4.5 CIC Filters

Cascade Integrator-Comb (CIC) �lters, also called Hoghenouer �lters [69], are a

special type of �lter used for making large sample rate changes in DSP systems. They use

no multipliers, which makes them computationally e�cient. An N -stage CIC decimator

consists of N integrators (single pole at DC) followed by a decimation of R and N

di�erentiators (single zero at DC). The transfer function of a CIC �lter in the z-domain is

given by

G(z) =
(1− z−R)N

(1− z−1)N
, (A�40)

where z = exp(s/fs) is the z-variable relative to the fast clock frequency, fs. Mathematically,

a n-stage CIC decimator is equivalent to a cascade of N running averages (boxcar �lters)

of length R. The frequency response of a CIC �lter can be computed from (A�40) with

z → exp(2πif/fs). The magnitude response is

|G(f)| =
∣∣∣∣
sin (πRf/fs)

sin (πf/fs)

∣∣∣∣
N

. (A�41)
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Figure A-10. Magnitude response of a generic two-stage CIC �lter

The CIC magnitude response has nulls at f = (k/R)fs, k = 1, 2, 3 . . ., which are at

the centers of the aliasing bands for resampling at fs/R. A Bode plot for a CIC �lter is
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shown in Figure A-10. The phase of the CIC �lter is linear, with an equivalent group delay

of (R− 1)/fs for N = 2, the case used in the hardware phasemeter.

A.4.6 Fractional-Delay Filters

The ability to interpolate between the data points of a sampled signal is a key

capability for the LISA data analysis systems. In TDI, the phase-noise canceling data

combinations require knowledge of the phasemeter signals at precise times. A ranging

accuracy of 20m in TDI corresponds to a timing accuracy of ∼ 70 ns. Achieving this

accuracy directly by sampling the signal at 15MHz would be impractical, given the

amount of data that would be generated. The alternative is to sample the data at a lower

rate, around 10Hz, and then interpolate between data points to produce the delayed

versions of the phasemeter signals.

Fractional delay �lters [37] are one technique used to interpolate between sampled

data points. The basis for a fractional delay �lter is the ideal low-pass �lter in Figure

A-7(a). As discussed in Section A.4.3.1, the corresponding impulse response for an ideal

low-pass is the sinc function given in (A�35). For the case where the cuto� frequency is

the Nyquist frequency, (A�35) simpli�es to

h[n] = sinc(n) = δn0, (A�42)

where δij is the Kronecker delta function. A convolution with this impulse response

function will result in an exact replica of the input signal. Fractional delay �lters use a

modi�cation of (A�42) to produce a �lter which does not e�ect the magnitude of a signal

but produces a linear phase response which corresponds to a delay. For a delay of D

samples, where −0.5 ≤ D ≤ 0.5, the fractional-delay �lter kernel is given by

h[n] = sinc(n−D). (A�43)

Since fractional delay �lters are FIR �lters, the in�nite series in (A�43) must be truncated

to a �nite length. This is generally accomplished with a window function. The truncation
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and windowing will cause the �lter to a�ect the magnitude of the input signal as well as

the phase. These e�ects can be limited by using a su�ciently-long �lter and employing a

window function with a �at passband, such as the Blackman or Lagrange windows [37].
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