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Abstract

Gravitational waves are predicted by general relativity theory. Their ex-
istence could be confirmed by astronomical observations, but until today
they have not yet been measured directly. A measurement would not only
confirm general relativity, but also allow for interesting astronomical ob-
servations. Great effort is currently being expended to facilitate gravita-
tional radiation measurement, most notably through earth-bound inter-
ferometers (such as LIGO and Virgo), and the planned space-based LISA
interferometer. Earth-bound interferometers have recently taken up oper-
ation, so that a detection might be made at any time, while the space-borne
LISA interferometer is scheduled to be launched within the next decade.
Among the most promising signals for a detection are the waves emitted
by the inspiral of a binary system of stars or black holes. The observable
gravitational-wave signature of such an event is determined by proper-
ties of the inspiralling system, which may in turn be inferred from the
observed data.

A Bayesian inference framework for the estimation of parameters of bi-
nary inspiral events as measured by ground- and space-based interferom-
eters is described here. Furthermore, appropriate computational methods
are developed that are necessary for its application in practice. Starting
with a simplified model considering only 5 parameters and data from a
single earth-bound interferometer, the model is subsequently refined by
extending it to 9 parameters, measurements from several interferometers,
and more accurate signal waveform approximations. A realistic joint prior
density for the 9 parameters is set up. For the LISA application the model
is generalised so that the noise spectrum is treated as unknown as well
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and can be inferred along with the signal parameters. Inference through
the posterior distribution is facilitated by the implementation of Markov
chain Monte Carlo (MCMC) methods. The posterior distribution exhibits
many local modes, and there is only a small “attraction region” around
the global mode(s), making it hard, if not impossible, for basic MCMC al-
gorithms to find the relevant region in parameter space. This problem is
solved by introducing a parallel tempering algorithm. Closer investiga-
tion of its internal functionality yields some insight into a proper setup of
this algorithm, which in turn also enables the efficient implementation for
the LISA problem with its vastly enlarged parameter space. Parallel pro-
gramming was used to implement this computationally expensive MCMC
algorithm, so that the code can be run efficiently on a computer cluster. In
this thesis, a Bayesian approach to gravitational wave astronomy is shown
to be feasible and promising.
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Chapter 1

Introduction

The disciplines of astronomy and statistics have always been fields of fer-
tile interaction. Astronomical research on the one hand usually covers
both the gathering and interpretation of numerical data. On the other
hand, important contributions to statistical methodology originated from
astronomical applications, the most famous one probably being the the-
ory of least squares that was developed by C. F. Gauß as a ‘spin-off’ in
the context of the determination of an asteroid’s orbit based on observa-
tions that are subject to measurement errors [1]. Much of early astronomi-
cal statistics was actually done in a ‘Bayesian spirit’, although the distinc-
tion between the ‘Bayesian’ and the ‘long-run frequency’ approaches was
usually not made in those days, until the advent of statistical testing and
the accompanying theory around the late 19th century [2]. Some issues
around Bayesian theory that formerly were unresolved have been clari-
fied in the meantime; especially the alleged arbitrariness or subjectivity
in the definition of prior distributions has been ameliorated by relating it
to information theory and the concept of entropy. In particular, (Bayesian)
probability theory is meanwhile established as the extension of logic when
faced with incomplete information. In this sense, logic covers the theory of
concluding from certain facts, while probability theory constitutes the ex-
tension that is able to deal with (and return) information that comes with
degrees of certainty attached, and at the heart of which Bayes’ theorem
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2 1. INTRODUCTION

gives the technical description of how to update a given state of informa-
tion when provided with additional information (or data) [3].

As in any science, for about the last century the so-called ‘orthodox’ or
‘frequentist’ statistical theory has had the ‘home field advantage’ in astron-
omy, being taught and practiced as the standard procedure for any data
analysis. The lack of popularity of Bayesian methods may be explained by
the (naturally) limited interest in the underlying statistical theory on the
part of the standard user, and by communication problems on the part of
the experts [4].

Bayesian methods have a lot to offer in astronomical applications, in
particular because astronomical problems are often well-posed, in the sense
that the involved parameters are usually related to ‘physical’ counterparts,
for which states of (especially prior-) information are easily formulated or
interpreted [5]. In the context of gravitational wave measurements, where
any analysis is essentially a time series analysis (see also the following
chapter 2), Bayesian methods show great promise, as here these have al-
ready proven extremely useful and often superior to ‘frequentist’ practices
[6]. The somewhat odd reasoning inherent in frequentist methods (where
e.g. confidence levels refer to the average performance of a test procedure,
and—strictly speaking—only indirectly refer to the investigated param-
eter itself) is once again exposed when viewed in the context of gravi-
tational waves, as in many other astronomical applications. A Bayesian
approach will be more suitable when faced with the question of what can
be concluded from the one observation at hand, which is in particular not
to be viewed as one in a potentially infinite series of observations [7].

The Bayesian approach has already proven useful for estimating sig-
nal parameters in gravitational wave measurements, for example for the
parameters of spinning neutron stars, in resolving the number and param-
eters of superimposed sinusoidal signals [8], or for binary inspiral signals
[9, 10, 11]. The aim of this thesis is to extend the work on the latter type
of ‘chirp’ signal (see also the following chapter 2). In previous studies,
simplified models were used, especially fixing certain parameters at their
(known) true values. These will need to be taken into account, which es-
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pecially means that simultaneous measurements from several instruments
will also need to be considered in the analysis, as otherwise certain param-
eters cannot be estimated. Along with the extension of the model, appro-
priate computational methods need to be developed in order to facilitate
inference within the model framework. In particular, Markov chain Monte
Carlo (MCMC) methods are required to perform integration of the result-
ing posterior distributions of the parameters. Testing of the developed
procedures is done using simulated data, partly because there is no ‘real’
data available yet.

When starting this work in mid-2004, there was initially a lot of back-
ground knowledge to acquire, including the physical background, C pro-
gramming, signal processing techniques, and the theory of Fourier trans-
formations. A first version of an analysis framework considered 5 param-
eters, data from a single (earth-bound) interferometer, and was based on
the ‘2.0 PN stationary-phase approximation’ of the gravitational wave sig-
nal, that is given in the frequency domain. First results were presented
at the 2nd ASBA Bayesian retreat “Bayesian Topics in the Tropics” (Bris-
bane, Australia, September 28–30, 2005), and were eventually published in
[12]. This approach was then extended to incorporate 9 parameters, and
to consider data from several separate interferometers, in particular allow-
ing the determination of the source direction of the passing gravitational
wave signal. This also required the implementation of advanced (parallel
tempering) MCMC methods in order to reliably find the relevant region
in the enlarged parameter space. The accuracy of the modelled signal was
increased by using the ‘2.5 PN phase / 2.0 PN amplitude approximation’
(given in the time domain), and a realistic and proper prior was specified
for all parameters. These results were presented at the ISBA Eighth World
Meeting on Bayesian Statistics (Valencia, Spain, June 1–6, 2006), as well as
Statistical Challenges in Modern Astronomy IV (State College, PA, USA,
June 12–15, 2006), and published in [13]. The approach was later upgraded
further by introducing the ‘3.5 PN phase / 2.5 PN amplitude approxima-
tion’ for the signal, and by further refinement of the prior definition; these
results were presented at the 11th Gravitational wave data analysis work-
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shop (GWDAW-11) (Potsdam, Germany, December 18–21, 2006), as well
as the 2007 Joint Statistical Meetings (Salt Lake City, UT, USA, July 29–
August 2, 2007), and are described in [14].

Beginning in mid-2006, a similar approach was developed for signals
as observed by the planned space-borne Laser Interferometer Space An-
tenna (LISA) [15]; this work was done within the ‘Global LISA Inference
Group (GLIG)’ that was set up in order to jointly work on analysis meth-
ods for data obtained by LISA. A major difference is in the size and mode
of operation of this instrument, which will be sensitive to signals in a dif-
ferent frequency range, and which (in contrast to the modeling of earth-
bound signals) requires the response to a binary inspiral’s ‘chirp’ signal to
be numerically derived (at least for now). A basic algorithm for inference
on inspiral signals modeled by 9 parameters and the ‘restricted PN ap-
proximation’ was implemented by the end of the year, and first results
were presented at the 11th Gravitational wave data analysis workshop
(GWDAW-11) (Potsdam, Germany, December 18–21, 2006) [16]. In order
to be applicable in a more realistic setting, the model was lacking par-
ticular features, which were developed and implemented by mid-2007,
and the resulting inference framework was presented at the 7th Edoardo
Amaldi conference on gravitational waves (Sydney, Australia, July 8–14,
2007).

Both applications to ground-based as well as space-based gravitational
wave measurements benefited from the implementation of advanced MC-
MC methods taylored to the particular issues in each case. Along the way,
some insight into the background of some methods was gained, which
lead to the derivation of some universal algorithm characteristics that might
also allow for more efficient implementations in any general applications.
The joint prior for the signal parameters was properly defined in a general
way that should also be transferable to similar applications. The applica-
tion to LISA measurements, with its particularly complex expected back-
ground noise, led to the development of a very general Bayesian formula-
tion of a noise model that might also find applications in other contexts.

The organisation of this thesis is as follows. Chapter 2 introduces some
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general background on the physics of gravitational waves and gravita-
tional wave astronomy. Chapter 3 introduces the methods that are used
later, and also contains some recommendations on their effective imple-
mentations. In chapter 4, details of the applied statistical models are de-
scribed. In chapter 5, the previous elements are assembled to inference
frameworks for binary inspiral signals measured by earth-bound and space-
bound interferometers, and example applications are illustrated for both
cases. Chapter 6 finally gives some conclusions. The appendix contains
some more details that are too lengthy or not necessarily vital to be in-
cluded in the main part. In general, the descriptions of methods or back-
ground given here are intended to be sufficiently detailed to point out the
relevant concepts (and further references), and to introduce consistent no-
tation conventions that can later be referred back to; they are in partic-
ular not supposed to constitute an ‘ultimate’ reference. For example, all
defintions related to Fourier transforms are restricted to real-valued in-
puts, which are all that is relevant here. Also, the exact definitions of the
modeled waveforms are mostly skipped, since they would be extremely
lengthy, are probably not enlightening beyond what can already be seen
from the given simplified form, and in any case anyone trying to repro-
duce these would probably be better advised to consult the original refer-
ences.
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Chapter 2

Gravitational wave astronomy

2.1 Gravitational radiation

General relativity theory introduced the idea of a space-time that is curved
by the presence of mass, energy and momentum within it. It implies the
existence of gravitational waves, which can be thought of as distortions
or ‘ripples’ in space-time, caused especially by rapidly moving heavy ob-
jects, and propagating at the speed of light [17]. Until now this effect has
only been observed indirectly, when the observed slight change in the or-
bital period of binary neutron star system PSR 1913+16 matched exactly
with the predicted amount due to the loss of energy through gravitational
radiation [18]. The direct measurement of gravitational radiation would
not only confirm General Relativity Theory, but would also complement
‘traditional’ observations in the electromagnetic spectrum by opening up
an additional completely new ‘window’ for a wide range of astronomi-
cal observations. Gravitational waves will encode interesting information
about the processes causing them, and they are emitted by events that are
otherwise ‘invisible’, as they may include black holes, and may also be
measurable to great distances [19, 20].

A gravitational wave’s effect acts in directions orthogonal to its direc-
tion of travel. It is a quadrupole wave, which implies that the waveform
can be decomposed into two orthogonal components that are offset by a

7
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Figure 2.1: Illustration of the effect that a gravitational wave would have
on a set of free falling test masses arranged in a circle. The wave’s direction
of travel here is orthogonal to the plane of the test masses. The wave’s two
orthogonal plus- (‘+’) and cross- (‘×’) components each cause an alter-
nating ‘squeezing’ and ‘stretching’ into orthogonal directions, which are
offset by 45◦ between plus- and cross-polarisation. The overall effect is
shown in the bottom panel, and it would have different appearances for
different plus- and cross-amplitudes.

rotation of 45◦ (along the direction of travel). This is illustrated in fig-
ure 2.1: imagine a set of free falling masses that are arranged in a circle. A
gravitational wave travelling orthogonal to the circle’s plane would then
cause the ring of masses to be alternatingly stretched and squeezed. The
waveform can be decomposed into its “plus” (+) and “cross” (×) compo-
nents, and the overall effect gives the ring of masses a periodically ‘wob-
bling’ appearance. A rotation by 90◦ inverts the waveform, and a 180◦

rotation again yields the original wave.
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2.2 Measuring gravitational waves

The effect of gravitational radiation is very weak, and so it takes very sen-
sitive instruments to detect and measure it. In order to measure gravita-
tional waves, one needs to measure the tiny relative motions of masses
(as illustrated in figure 2.1) as a wave passes by. The most prominent ap-
proach towards the measurement of gravitational waves is currently by
means of laser interferometers.

In earth-bound interferometers, the free falling masses are replaced by
carefully suspended pendulums that are placed in the corners of a right-
angled triangle, and a gravitational wave’s squeezing/stretching effect in
orthogonal directions is then measured by monitoring their motion over
time using laser interferometry. Two test masses are placed in the oppo-
site corners of a right-angled triangle. Originating from the third corner,
laser beams are passed along the two right-angled sides, reflected at the
masses, and matched as they return to the corner station. Monitoring the
two lasers’ interference then allows the detection of movements of the test
masses in the direction of the laser beams that are well below the laser’s
wavelength. Several such interferometers have already been built, the two
LIGO instruments in Hanford and Livingston (USA) [21], Virgo near Pisa
(Italy) [22], Tama in Tokyo (Japan) [23], and GEO600 near Hanover (Ger-
many) [24]. Another interferometer, AIGO, is planned to be built in Aus-
tralia.

A variation of the same principle is going to be implemented in the
Laser Interferometer Space Antenna (LISA), which is a joint NASA/ESA
project for a space-borne interferometer. This instrument is planned to be
launched in about 10 years time, and will consist of three satellites forming
an equilateral triangle of several million kilometres is size. Here, six laser
beams will be passed between the satellites, again allowing the monitoring
of the relative motions of test masses within each satellite [15].

The functional principle of these two kinds of laser interferometers is
illustrated in figure 2.2. In the top panel, the black dots represent the test
masses (pendulums), and the black square is the corner station. Laser
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Figure 2.2: A sketch of how earth- and space-based laser interferometers
‘perceive’ a passing gravitational wave (in analogy to figure 2.1). In both
cases the geometry of the test masses (shown in black) changes over time,
which is monitored via the laser beams (shown as grey lines).

beams are directed from the corner station to the test masses, where they
are reflected and return to the corner station. The passing gravitational
wave changes the distances the beams have to cover, which is picked up
through the resulting interference of the beams as they return to the corner
station. The space-based interferometer works similarly, but is has three
test masses (satellites) that emit and receive two laser beams each. The dis-
tortion of the triangle again is measured by matching the lasers’ phases.
The size of an earth-bound interferometer is of the order of kilometres,
while that of the space-based interferometer is of the order of millions of
kilometres. Pictures of existing interferometers and of the planned LISA
instrument are shown in figure 2.3.

In any case, the data output of such measurements is one or more time
series. A laser interferometer is not ‘pointed’ in any direction like a tele-
scope, but will measure waves coming from (more or less) any direction,
although with varying sensitivity. It will be most sensitive to gravitational
waves passing the interferometer’s plane orthogonally (as in figure 2.1),
and less sensitive otherwise. Consequently, one might rather think of it as
an ‘antenna’ that is ‘listening’ for passing gravitational waves [19].
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Figure 2.3: Pictures of actual interferometers. The left one is the LIGO in-
terferometer in Livingston (LA, USA) with 4-km-arms. The interferometer
in the middle is the Virgo instrument near Pisa (Italy) that has 3-km-arms.
The picture on the right is a sketch of the planned LISA interferometer
consisting of three satellites at distances of 5 million kilometres [25].

2.3 Binary inspirals

Gravitational radiation is emitted by many kinds of objects and processes,
but one of these that is best understood and is also expected to be de-
tected first is the binary inspiral. A binary inspiral event develops as a
pair of heavy objects (neutron stars or black holes) rapidly orbit around
their centre of mass. Due to the radiation of energy in the form of gravita-
tional waves, the orbital distance between the objects decreases while the
orbital frequency increases, until the system eventually collapses and the
two companions merge.

The gravitational wave signal emitted by such an event is a ‘chirp’,
an oscillation of increasing frequency and amplitude, whose evolution is
primarily determined by the masses of the two involved objects. The sig-
nal in general is shorter and more violent for greater masses (i.e. follows
a steeper frequency and amplitude increase), and is of longer duration
for lower masses. The waveform that is measured at an interferometer
is then further affected by the relative orientations of interferometer and
inspiral event with respect to each other. If the two inspiralling compan-
ions have roughly similar masses, it is predicted that their orbits will have
circularised over time, which simplifies the waveform that needs to be
modeled. Otherwise, further parameters that might need to be taken into
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account are eccentricities of the orbit, or spins that the companions may
have. Estimates of rates by which events happen within the sensitivity
range of today’s earth-bound interferometers are of the order of several
per year, but vary by orders of magnitude. With the upgrades to ‘second
generation’ detectors that are planned to be installed in the near future, the
sensitivity will be significantly increased. Also, the sensitivity of current
detectors already is steadily being improved, and is expected to be signifi-
cantly greater within a few years. The planned space-based interferometer
LISA will be sensitive enough to be certain to measure numerous signals
up to the limit of confusion [26, 27]. Due to their different layout, ground-
based and space-based interferometers are sensitive to signals in different
frequency bands, and will each only perceive a certain selection of all sig-
nals present [20, 28, 29].

2.4 Inference on gravitational waves

2.4.1 The statistical problem
Besides binary inspirals, there are more sources of gravitational waves that
are expected to be detected by gravitational wave measurements. These
include bursts, which are signals of short duration that are expected e.g.
from supernovae, in conjunction with gamma ray bursts, or at the end of a
binary inspiral when the two companions merge. Spinning neutron stars
and binary systems (that are yet far from their eventual inspiral) are ex-
pected to emit periodic, sinusoidal signals. The merger of black holes is
expected to be followed by a ringdown signal, a damped pulsation emit-
ted by the resulting newly formed black hole. Eventually, studying prop-
erties of the stochastic background noise may be of interest, as it may shed
light on properties of the early universe [20].

When studying these different kinds of sources, the aims may be very
different, ranging from parameter estimation for known waveforms to ex-
ploration or classification of unknown waveforms, or the characterisation
of the noise. The statistical problem will—at least initially—be a time se-
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ries analysis problem. In this respect, gravitational wave astronomy is
probably primarily comparable to radioastronomy, in particular in the
sense that there are no ‘pictures’ being shot, but one is rather ‘listening’
for signals.

The data one is dealing with are a single time series for a single interfer-
ometer, or more for several interferometers or for the planned space-based
LISA instrument. In any case, the data will need to be seen in conjunction
with the instrument’s location and earth’s orbital parameters, in order to
be able to account for orientation or Doppler effects.

The kind of noise one is faced with depends on the problem at hand.
There will always be instrument noise, but depending on what particular
‘signal’ one is studying (which might be the background noise itself), all
other ‘signals’ will need to be considered as ‘noise’.

2.4.2 Some common approaches

With respect to problems of estimating parameters of signals where the
waveform is (assumed) known, there are several different general approach-
es being followed. A template bank search (e.g. [30]) is, roughly speaking,
a ‘brute force’ or ‘grid’ search, where the data are matched against a bank
of signal templates and the optimal match with respect to a certain match
criterion is sought. The match between data and a signal waveform (that
corresponds to a certain parameter setting) is usually evaluated by the
likelihood, and such methods are then, statistically speaking, maximum-
likelihood (ML) methods. Bayesian estimation methods (in conjuction
with MCMC methods) have been implemented as well (e.g. [9]). Other
parameter estimation techniques that are being used include the Hough
transform (e.g. [31]), the Radon transform, or the Hilbert-Huang trans-
form (e.g. [32]).

When searching for signals in the data, and data from more than one
instrument are involved, methods can usually be categorised as either co-
incidence methods or coherent methods. In a coincidence search, the data
sets are searched (e.g. for inspiral event signals) individually, and the re-
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sulting lists of event candidates are matched for entries that are close in
time for further investigation. Coherent methods on the other hand con-
sider all the data simultaneously. Coincidence searches are in general com-
putationally less expensive, while coherent methods are in general more
sensitive.

However, up to now, parameter estimation techniques have only been
tested on simulated data (or at least simulated signals), since a ‘real’ signal
has not been detected yet. Applications to real data have by now mostly
resulted in upper limits on event rates and/or signal amplitudes, based
on the observation that no signal was detected [33].

2.4.3 Dealing with noise

When measuring gravitational waves, the measurement errors are a com-
position of instrumental noise and background noise. Instrumental noise
here refers to what the instrument would still measure if there were no
gravitational waves, which would for example be due to vibrations within
the instrument, or random fluctuations in the laser beam. If the instrument
was able to ‘perfectly’ measure gravitational radiation, then it would still
measure many signals that are simultaneously present, but that are not
the signal(s) actually aimed for. The resulting noise is a non-white back-
ground that is made up of ‘random’ and ‘deterministic’ (but unaccounted
for) contributions [19, 26, 27, 34].

In the context of ground-based measurements of inspiral signals, the
assumption of Gaussian and stationary noise with a fixed spectrum might
be justified, since the relevant observation times are relatively short (of the
order of seconds to minutes). In particular, the noise spectrum may be
assumed roughly constant over such short times, and may be estimated
from immediately preceding or following measurements; also, the signals
concerned are so rare that the probability of one inspiral signal ‘contami-
nating’ another’s measurement is negligible. However, when dealing with
space-based measurements, this approach is less appropriate. The neces-
sary observation periods are significantly longer (of the order of months
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or years, if not the mission’s complete lifetime), and the spectrum cannot
be assumed constant, since the background signals may evolve over time,
and in any case are modulated over time by the instrument’s orbital mo-
tion.

An ad hoc “solution” to this problem that has been proposed, is to de-
rive estimates for the parameters of the unaccounted for signals, and then
‘subtract’ these from the data one by one (e.g. [35, 36]). However, there are
some concerns about this approach. Firstly, the parameter estimation will
always result in a mismatch between the true parameters and their esti-
mates, plus there might be a mismatch between the simplified model and
the actual signal, and hence each subtraction will in turn add a ‘residual
signal’ to the noise (although this residual will probably be of far less mag-
nitude than the original signal). One question is whether it is more harm-
ful to have background signals in the data, which one then can account
for, or to have those residuals in the data, which are probably harder to
account for, if they are not supposed to be ignored in the following. Due
to the large number of background signals, the ‘residual signals’ might
accumulate to be quite large, especially considering that (due to the law
of large numbers) there will be cases of bad mismatch among these. An-
other question is whether the background signals actually interfere with
the signal of primary interest, i.e. whether there is some similarity between
background and foreground signals, or whether the background signals’
presence affects the foreground signal’s parameter estimates. If it does
not, one may as well leave them in the data. But if it does, their removal
might actually remove parts of the sought for signal as well—which might
be worse than leaving them where they are. In any event, as soon as sig-
nals get too close to each other in frequency (which they will in certain
frequency bands), their individual parameters will not be resolvable any
more [37], and so the subtraction will have to stop at some point anyway.
Also, if in the signal subtraction phase the algorithm is not faced with the
proper alternative of the signal actually sought for, it might consequently
(also due to their relatively general form) attribute parts of it to be due to
background noise. Since the signal subtraction is effectively a maximum-
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likelihood (or maximum-a-posteriori) approach that does not account for
uncertainty in parameter estimates, it would strictly speaking prevent an
end-to-end Bayesian analysis of the resulting data. In the end, the noise
was not Gaussian before subtraction, but whether the actual signal is ‘un-
harmed’, and whether the noise is easier to handle afterwards is not cer-
tain.

Note that the associated background signal parameter estimation al-
gorithms that have been developed are very sophisticated and effective
(e.g. [38]), and that a Bayesian approach to the same problem requires
complex and time-consuming MCMC methods. Due to the nature of the
problem, the derivation of Bayesian parameter estimates also is far from
trivial [37]. It is just that there are reasonable concerns with the practice
of the point estimation and ‘subtraction’ of the background noise signals
that should be given serious consideration. It might actually turn out to
be an effective and harmless way of dealing with background noise, but it
might also turn out to be unnecessary.

Alternatively, considering that the background noise’s parameters are
not of primary interest, and in appreciation of the fact that there will be
unexpected and unmodeled signals within the background noise anyway,
one can try to set up a robust model that introduces minimum assump-
tions and still accounts for noise with unknown spectrum, including un-
accounted for ‘noise signals’. This is attempted later in section 4.5. The
model is supposed to reflect the randomness in the noise, as well as igno-
rance about deterministic, but unaccounted for signals. The only explicit
assumption being made is that the noise spectrum is finite, but otherwise
it is inferred along with the signal parameters based on the data and prior
information.



Chapter 3

Methods

3.1 Bayesian modeling

The main characteristic of Bayesian procedures, that distinguishes them
from ‘frequentist’ or ‘orthodox’ methods, is the concept of probability.
Here, probability is understood in a general sense. Probabilities are as-
sociated with any kind of event (and in particular not restricted to ‘re-
peated trials’), and probability calculus is applied as a generalisation of
logic, allowing one to process and infer states of incomplete information
[3]. Bayes’ theorem comes into play as it then turns out to be the natural
way to update a state of information given some observation, or data. In
the end, this leads to unique ways to approach and solve statistical prob-
lems.

A Bayesian data analysis starts with the specification of a model for
the observables y, depending on some model parameters θ. This is done
by defining the sampling distribution that describes how observations
come about given certain parameter values, which is expressed through
the probability density p(y|θ). The introduction ofθ then entails the neces-
sity to formulate the a priori information about the parameters, again, in
terms of a probability distribution, the prior distribution p(θ). The ‘proba-
bility distribution’ here is to be understood as a distribution of probability
across the parameter space, associating parameter values with probabili-
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ties. In particular it does not denote expected frequencies in some sort of
‘repeated draws’ of parameter values. Application of Bayes’ theorem then
yields the posterior distribution p(θ|y), which expresses the ‘updated’ in-
formation (in terms of probability) about the parameters given the obser-
vations y:

p(θ|y) =
p(θ)p(y|θ)

p(y)
(3.1)

[39]. How exactly to proceed from here and how to make use of p(θ|y)

depends on the particular problem at hand. One can just illustrate p(θ|y)

graphically, or record some characterising key figures. If one is interested
in parameter estimates, then the problem is of a decision-theoretic nature.
Decision theory will require the specification of a loss function, and the
determination of an optimal estimate θ̂ then follows via optimisation over
the parameter space. For example, in the special (but common) case of
a quadratic loss, the optimal estimator of a parameter is its posterior ex-
pected value (where ‘optimality’ refers to a minimal expected loss) [40].

Technically, inference usually requires integration of the posterior dis-
tribution over the parameter space (or parts thereof). In general, such in-
tegration is hard to do analytically, and includes functions of the whole
data y. For this reason, Monte Carlo integration is often used to approxi-
mate the desired integrals.

The specification of the parameters’ prior distribution is also crucial
for the eventual analysis. The prior distribution needs to reflect the prior
information about the parameters before the data are taken into account,
but, unfortunately, “the problem of translating prior information uniquely
into a prior probability assignment represents the as yet unfinished half of
probability theory” [3]. There are many approches to the setup of the prior,
and it is hard to give universally applicable advice. However, especially
in problems like the present one where all parameters are of a physical
nature, the range of reasonable choices is often very limited, as is the rele-
vance of differences among these. In general, if there is sufficient evidence
about the parameter values in the data, the prior distribution will be out-
weighed by the likelihood in the resulting posterior distribution. On the
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other hand, if there is little or nothing to learn from the data about the
parameters, the posterior state of information will (almost) equal the prior
information, and consequently the prior specification matters very well.

3.2 Monte Carlo integration

3.2.1 General case
Bayesian analyses generally require the solution of integrals involving the
posterior distribution, which is typically specified in terms of its density
function p(θ|y) (see also equation (3.1)). The posterior density is usually
known only up to a normalising constant, since the value of the denom-
inator p(y) =

∫
p(y|θ)p(θ)dθ (see equation (3.1)), which is independent

of θ and constant for given y, is another unknown integral. One way to
approach the problem is to generate (or rather, simulate) a sample from
the posterior distribution and then approximate the desired integrals by
sample averages—so-called Monte Carlo integration [41]. For example,
consider the case where one is interested in computing the expectation of
a function h of a random variable X that has the probability density func-
tion fX(x):

E[h(X)] =
∫

h(x) d fX =
∫

h(x) fX(x) dx. (3.2)

Instead of doing the integration analytically, an approximation can be com-
puted by obtaining a random sample x1, . . . , xN from the distribution fX,
and estimating the figure by the sample average

h(x) =
1
N

N
∑
i=1

h(xi). (3.3)

Analogously, marginal densities, quantiles, etc. can be estimated from sam-
ples from the distribution of interest.

There are many ways to simulate or approximate such draws from a
given probability distribution using computers and implementations of



20 3. METHODS

(pseudo-) random number generators [41, 42]. In the following sections
some Markov chain Monte Carlo (MCMC) methods are described in de-
tail.

3.2.2 Notation

In the following, a general ‘target ’ distribution of interest is denoted by its
density function f (θ). In the special case of posterior simulation, where
the distribution f (θ) = p(θ|y) is proportional to the product of prior and
likelihood (see equation (3.1)), the prior density is denoted by π(θ), and
the likelihood by L(θ) = p(y|θ) (so that f (θ) = p(θ|y) ∝ π(θ)L(θ)). The
methods described here rely on the availability of basic random number
generators.

3.2.3 MCMC simulation

A Markov chain is a random process assuming different states over a dis-
cretely proceeding time, in which each random step in the sequence only
depends on the previous state of the chain (the Markov property). Markov
chain Monte Carlo (MCMC) methods make use of Markov chains by set-
ting up a random walk through an arbitrary state space, whose stationary
distribution is set to be a certain distribution of interest (and whose state
space is the domain of that distribution). This allows the generation of
random sequences of numbers from an arbitrary target distribution which
can then be used for Monte Carlo integration. In general, subsequent sam-
ples will be more or less correlated, which might turn out to be a problem.
Another problem is that MCMC algorithms often need a ‘burn-in’ time of
indefinite length before they properly sample from their stationary distri-
bution. The most prominent examples of MCMC algorithms are probably
the Metropolis, Metropolis-Hastings, and the Gibbs algorithm [41, 42].



3.2 MONTE CARLO INTEGRATION 21

3.2.4 The Metropolis algorithm

The Metropolis algorithm can be applied when the target distribution is
only known up to a normalising constant. It proceeds as follows:

0. Given: a target distribution f (θ), a starting pointθ0 for which f (θ0) >

0, and a proposal (or jumping-) distribution with density J(θ∗|θt)

that is symmetric in the sense that J(θa|θb) = J(θb|θa) for all θa, θb.
Set t = 0.

1. Increase t by 1.
Propose: draw a candidate point θ∗ from J( · |θt−1).

2. Calculate the ratio of densities (acceptance probability):

r =
f (θ∗)

f (θt−1)
(3.4)

3. Set

θt =

{
θ∗ with probability min(1, r)
θt−1 otherwise

(3.5)

and continue from step 1.

So in each step the current stateθt−1 of the chain is randomly manipulated
using the proposal distribution J, and the proposed new state is either
accepted or rejected according to the ratio of the target densities at current
and proposed state. If f (θ∗) ≥ f (θt−1), the proposal is always accepted,
otherwise acceptance is a matter of chance. A random walk set up in this
way then has the specified target distribution as its stationary distribution
[42, 43].

Note that in equation (3.4) any constant multiplier to the target density
cancels out. Note also that the generated samples are not independent
from each other, and that the efficiency of the sampler heavily depends on
sensible choices of starting point θ0 and proposal distribution J.
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3.2.5 The Metropolis-Hastings algorithm
The Metropolis-Hastings algorithm is a generalisation of the Metropolis
algorithm which does not require the proposal distribution J(θ∗|θt) to sat-
isfy the symmetry condition. This is taken into account when computing
the acceptance probability r (see equation (3.4)), which becomes

r =
f (θ∗) J(θt−1|θ∗)

f (θt−1) J(θ∗|θt−1)
(3.6)

instead [42, 44]. You can see that if the proposal distribution satisfies the
symmetry condition, expression (3.6) again simplifies to (3.4). Note also
that the proposal distribution’s density J only needs to be specified up to
a normalising constant as well.

3.2.6 The Gibbs sampler
The Gibbs sampler works by first dividing the set of parameters into pa-
rameter subsets. Sampling is then done by alternately holding all param-
eters except a certain subset constant, and then drawing from the con-
ditional distribution, conditional on the ‘constant’ parameters. Consider
sampling from a posterior p(θ|y) where the parameter vector θ =

(
~α
~β

)

consists of sub-vectors ~α and ~β.

1. Current state is: θt =
(

~αt
~βt

)
.

2. Drawαt+1 from the conditional distribution p(~α|~βt, y).

3. Draw βt+1 from the conditional distribution p(~β|~αt+1, y).

4. New state is: θt+1 =
(

~αt+1
~βt+1

)
. Repeat from step 1.

[42]. The basic algorithm can be varied in many ways. For example, one
can use an arbitrary number of subvectors. Sometimes it is easy to sample
from some of the conditional distributions when these are known, para-
metric distributions. Otherwise one can for example also use a Metropo-
lis-step to implement sampling from the conditional distribution.
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Note that the Gibbs sampler (as opposed to a Metropolis sampler) in
general does not have an acceptance probability, and it does not require
the explicit computation of likelihoods. In each step, the individual pa-
rameters, or subsets of parameters, are drawn (in an unspecified manner)
from their conditional distributions, conditioning on the values of the re-
maining parameters. If some of these conditional draws happen to be im-
plemented as Metropolis (-Hastings) steps, they will of course (internally)
have an acceptance probability, but in general the sampler moves through
parameter space along those sub-spaces and following the corresponding
conditional distributions.

3.2.7 Enhancing and diagnosing MCMC performance
Convergence and mixing

As already noted above, a Metropolis (-Hastings) algorithm’s performance
depends on the choice of starting point θ0 and proposal distribution J.
Starting points should at best be drawn from the target distribution—
whatever exactly qualifies a given point as such, besides the minimum
requirement that f (θ) > 0. The optimal proposal would be the target dis-
tribution itself (leading to acceptance rate of ≡ 1 and independent steps).

Metropolis- (and related) MCMC algorithms also possess optimization
properties; in fact they happen to behave in a very similar way to e.g. a
Nelder-Mead algorithm which is extended to a simulated annealing algo-
rithm: on its random walk through parameter space it will always accept
an ‘uphill’ step, and sometimes (randomly) a ‘downhill’ step as well [45].
This property often comes in handy since the problem usually is not only
to sample from the posterior, but also to first find the global posterior
mode(s) within a complex posterior surface, and among numerous minor
modes. These convergence properties can also be enhanced through the
implementation of the sampler, while care must be taken to maintain its
ergodicity properties. The phase that the sampler spends ‘converging to-
wards its stationary distribution’ is often called the burn-in phase.

Once the MCMC sampler has converged and is sampling from the tar-
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get distribution, a good ‘mixing’ of the sampler is desirable, which refers
to a desired independence between subsequent samples. If for example
the variance of the proposal distribution is chosen too small, then subse-
quent samplesθt,θt+1 are correlated becauseθt ≈ θt+1, and the chain only
moves very little in each step. If on the other hand the variance is chosen
to be too large they are also highly correlated, because θt = θt+1 for most
iterations, since most proposals get rejected. The trick is then to find a
good balance between the two extremes.

Practical implementation

In practice, a good starting point is one for which f (θ0) is large, the dis-
tribution’s mode for example, if that can easily be determined. On the
other hand, ‘overdispersed ’ starting values are desirable as well, i.e. points
further away from the mode—starting a sampler repeatedly from such
points, one can then see whether chains ‘robustly’ converge towards the
same mode.

When using a proposal distribution centered around the current state,
different variance choices were explored for the case of a Normal distri-
bution for both target and proposal distribution, and were found to be
optimal at a size of ≈ 2.4√

d times the true covariance, where d is the dis-
tribution’s dimension [42]. Looking at the proportion of accepted steps
among all proposed steps in such a setup, an optimal proposal distribu-
tion results in an acceptance rate of ≈ 23% [42]. These figures must be
treated with caution though; not every sampler with 23% acceptance rate
is good, and not every good sampler has 23% acceptance. There may be
good reasons for deviations from that rule-of-thumb.

One can run parallel chains and compute an individual convergence
measure R̂ (‘potential scale reduction factor’) for each parameter, in order
to assess the convergence of the sampler to the same stationary distribu-
tion when starting from different points θ0 [46, 42]. R̂ has also been ex-
tended to the multivariate case R̂p, which also serves as an upper bound
to the individual R̂’s [47].
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The MCMC output is often ‘thinned out’, by keeping only every kth
sample and discarding the remaining ones. The advantage is that it re-
duces the correlation between subsequent samples, and reduces the amount
of data that needs to be stored and handled. If data storage is not a prob-
lem, there would be no advantage in skipping iterations, however [42].

3.2.8 Metropolis-coupled MCMC

Metropolis-coupled MCMC (‘MCMCMC’) is a variation of the Metropo-
lis (-Hastings) sampler in which k MCMC chains with differing stationary
distributions fi are run in parallel, where f1 = f , so that only one chain
samples from the distribution of actual interest. Then additional steps are
introduced, proposing ‘swaps’ between two chains i and j currently be-
ing in states θi and θ j. A swap means that the parameter sets θi and θ j
are exchanged between chains i and j, or equivalently, that the station-
ary distributions fi and f j are switched. These swaps are accepted with
probability rs = min(1,ω), where

ω =
fi(θ j) f j(θi)

fi(θi) f j(θ j)
. (3.7)

The parallel chains are supposed to improve convergence and mixing, and
eventually only the draws from the first chain are used for inference while
the others are in general discarded [41, 48].

The different stationary distributions fi can be different modifications
of the actual target distribution, e.g. using tempering (see following sec-
tions) or cheaper approximations. Note that the individual chains are not
Markov chains any more, but instead the whole set of k chains now forms
a Markov process on the k-fold cartesian product of the original parame-
ter space. Also, the swap acceptance probabilityω is computed assuming
that the involved density expressions actually reflect the frequencies with
which states θ are assumed by the chains—in other words, the whole set
of k chains needs to have converged and completed their burn-in in order
for the first chain’s samples to be valid.
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When using Metropolis-coupled MCMC, another advantage is that to
some extent it already works in the spirit of the ‘parallel chains’ approach
described in the previous section 3.2.7 (or [42, 46]). When interpreting the
‘swapping’ operations as swaps of the stationary distributions (and not
as swaps of parameter sets), then the individual chains still move inde-
pendently of one another. Running several Metropolis-coupled MCMC
algorithms in parallel would not make much sense.

3.2.9 Tempering methods
Simulated annealing and parallel tempering methods both utilise a ‘tem-
pered’ version of the objective function. Tempering is motivated by the ob-
servation that e.g. chemical crystallisation processes behave differently at
different temperatures, and in particular that more regular crystals (corre-
sponding to a globally optimal alignment of molecules) are formed when
a solution is slowly annealed, in contrast to irregular crystals (correspond-
ing to locally optimal molecule alignments) that tend to form when they
have to do so more rapidly. In analogy, an optimisation algorithm treats
the target function differently under different ‘temperatures’ (specified by
a temperature parameter T), the intention being to make it less likely to
get caught in local optima when temperatures are higher.

With a probability distribution as objective function, the tempering can
be defined by replacing the density function f (θ) by its ‘tempered version’

f(T)(θ) = cT f (θ) 1
T ∝ f (θ) 1

T (3.8)

where T ≥ 1 is the temperature, and cT is the corresponding ‘new’ nor-
malising constant. T = 1 yields the initial distribution, and greater values
correspond to tempered distributions. When applied in the context of a
Metropolis sampler, there are (at least) two motivations for this manipula-
tion:

Variance inflation / flattening out: Consider sampling from a univariate Nor-
mal distribution with density f (θ) ∝ exp

(
− 1

2 (θ−µσ )2
)

. Then a chain
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at temperature T will instead be sampling from density

f(T)(θ) ∝ exp
(
−1

2

(
θ−µ
σ

)2) 1
T

= exp
(
−1

2

(
θ−µ√

Tσ

)2)
, (3.9)

so effectively the standard deviation σ is inflated by a factor of
√

T.
Analogous effects apply in higher-dimensional cases, and, hopefully,
for other, more interesting distributions.

Relaxed acceptance / jumping: In the case of a Metropolis algorithm, the ‘reg-
ular’ acceptance probability r (cp. equation (3.4)) changes for the
tempered distribution to

r(T) =
f (θ∗) 1

T

f (θt−1)
1
T

= r 1
T = T√r ≥ r, (3.10)

so the tempering may also be perceived as a modification of the
MCMC algorithm rather than of the target distribution. The MCMC
random walk can thus also be considered to be exploring exactly the
same (‘uninflated’) distribution f , but with ‘extended leeway’.

Implementing tempering as above allows one to control the shape of the
tempered distribution, which is equal to the target distribution for T = 1
and gets increasingly ‘flat’ for greater T.

In the context of posterior simulation where the target distribution
f (θ) = π(θ)L(θ) is the product of prior π and likelihood L, it may make
sense to apply the tempering only to the likelihood part, so that

f(T)(θ) = cT π(θ) L(θ)
1
T ∝ π(θ) L(θ)

1
T . (3.11)

For the two extreme cases T = 1 and T → ∞ the tempered distribu-
tion f(T) then is equal to posterior and prior respectively, so manipulat-
ing T allows to adjust between these two. This usually makes more sense
than instead having a uniform distribution in the extreme case of T →
∞, which would often be improper and would also lead to different be-
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haviours for different parametrisations of the same problem. Another ad-
vantage is that this way the tempered distribution will always be proper,
as long as the prior is proper (for a proof see appendix A.1). Note that if
the likelihood is of a form as in section 4.5.2, then the tempered likelihood
may also be seen as a likelihood that assumes the noise (spectrum) to be
inflated by a factor of T instead. The Metropolis acceptance probability
(cp. equations (3.10) and (3.4)) in this case becomes:

r(T) =
π(θ∗)
π(θt−1)

(
L(θ∗)

L(θt−1)

) 1
T

. (3.12)

3.2.10 Simulated annealing

Simulated annealing is often applied in the context of optimisation. Tem-
pering of the objective function is utilised by starting the optimisation at
a high temperature and then lowering the temperature over time corre-
sponding to some annealing scheme until optimisation is eventually car-
ried out on the actual objective function [45]. The idea is that the algorithm
is able to find the vincinity of the global mode at high temperature, and
then narrows down to the optimum as the temperature is lowered. Here,
sensible choices of starting temperature and annealing scheme are crucial
for an effective implementation. In particular, if the temperature is low-
ered too quickly, the main mode may not yet have been found.

3.2.11 Parallel tempering

Parallel tempering is a special case of Metropolis-coupled MCMC sam-
pling (see section 3.2.8), where the stationary distributions of the MCMC
chains running in parallel are defined by ‘tempering’ the objective density.
Each chain i runs at a different temperature Ti, where T1 = 1 < T2 < . . . <

Tk, so the first chain runs at temperature 1 and thus samples from the ac-
tual distribution of interest. If dealing with a posterior distribution as the
target density, and the tempering is implemented as in equation (3.11),
then a swap between chains i and j that are in states θi and θ j (with i < j
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and so Ti < Tj) is accepted with probability rs = min(1,ω), where the
acceptance probability (see (3.7))

ω =
cTiπ(θ j)L(θ j)

1
Ti cTjπ(θi)L(θi)

1
Tj

cTiπ(θi)L(θi)
1
Ti cTjπ(θ j)L(θ j)

1
Tj

=
L(θ j)

1
Ti

L(θ j)
1

Tj
· L(θi)

1
Tj

L(θi)
1
Ti

= L(θ j)
1
Ti
− 1

Tj ·L(θi)
1
Tj
− 1

Ti

=

(
L(θ j)

L(θi)

) 1
Ti
− 1

Tj
(3.13)

only depends on likelihood values, not on the prior. A swap between
chains means that the states θi and θ j are exchanged between chains, or
equivalently, that temperatures are mutually substituted [41, 49, 50]. From
(3.13) you can see that if the ‘hotter’ chain j comes across greater likeli-
hoods than chain i, a swap is always accepted; otherwise the acceptance
probability ω depends on the ratio of likelihoods and the difference in
(inverse) temperatures. So, while high-temperature chains are allowed
to move more freely, any ‘promising’ parameter sets (with greater likeli-
hoods) are preferably ‘handed down’ to chains with lower temperatures.

Note that from a computational point of view, the swapping steps come
(almost) ‘for free’ (as opposed to the regular proposals), in the sense that
they do not require the computation of new likelihood values, but only
the comparison of previously computed ones. An advantage over simu-
lated annealing is that the global optimum no longer needs to be found
while the temperature is high, but instead the tempered distributions are
sampled from all the time. The tradeoff of course is that several chains are
run simultaneously, and only one of them samples from the actual target
distribution. Also, instead of an annealing schedule the ‘temperature lad-
der’ (number and levels of temperatures) needs to be specified (see also
following section).
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3.2.12 Implementing parallel tempering

Proposal distribution

Due to the ‘variance inflation’ effect of a tempering factor Ti, as sketched
in equation (3.9), it makes sense to choose the proposal variance of each
chain i proportional to

√
Ti, the square root of its temperature. This works

well in practice, leading to roughly the same acceptance rate for all parallel
chains.

Temperature ladders

In the following some advice will be given on choice of ‘temperature lad-
ders’, i.e. how to choose the levels Ti and the total number of tempera-
tures k. In [41], a temperature ladder Ti = 1 + λ(i − 1) for i = 1, . . . , k and
λ > 0 is mentioned, but in the following a different spacing is proposed,
as well as hints on choice of an appropriate number of steps k.

Step widths

From the motivation given in section 3.2.9 (especially equation (3.9)), one
might expect that the parallel chains’ temperatures Ti should be chosen as

Ti = q(i−1) (q > 1, i = 1, . . . , k), (3.14)

so that the stationary distributions of all neighbouring chains (i and i + 1)
differ by the same ‘inflation factor’ √q.

In fact, this strategy has been justified in the case of parallel temper-
ing applications for molecular simulations [51]. There it was argued that
the expected acceptance probability of a swap proposed between neigh-
bouring chains only depends on the ratio of corresponding temperatures.
In the same context it was shown that the optimal expected acceptance
probability for swaps between neighbouring chains is at about 23% [52].

The same property can be motivated for the case of sampling from an
annealed posterior distribution as defined in (3.11) using some asymptotic
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arguments. In the following, an approximate expression for the expected
acceptance probability is derived, which turns out to only depend on the
ratio of the involved chains’ temperatures, and which is also useful to es-
timate the necessary temperature ratio to yield a given swap acceptance
rate.

Consider a swap between two chains i and j, without loss of generality
assuming that i < j, and consequently Ti < Tj. Let d be the dimension of
the parameter space that is sampled from. Then the (marginal) posterior
distribution of the sampled loglikelihood values for chain i is asymptoti-
cally given by

log(L(θi)) = Lmax − TiX (3.15)

where Lmax is the maximum achievable loglikelihood, and X is a random
variable following a Gamma( d

2 , 1)-distribution [53, 54]. In particular, this
implies that

E [log(L(θi))] = Lmax − Ti
d
2 and (3.16)

Var (log(L(θi))) = T2
i

d
2 . (3.17)

The acceptance probability of a swap between chains i and j was given in
equation (3.13) as rs = min(1,ω) where

ω =

(
L(θ j)

L(θi)

) 1
Ti
− 1

Tj

= exp
( [

1
Ti
− 1

Tj

] [
log(L(θ j)) − log(L(θi))

]
︸ ︷︷ ︸

=: Z

)
. (3.18)

Following from the previous asymptotic expression (3.15), the first two
moments of Z are then given by

E[Z] = d
(

1 − 1
2

(Tj
Ti

+
Ti
Tj

))
, (3.19)

Var(Z) = d
(

1 −
(Ti

Tj
+

Tj
Ti

)
+

1
2

((Ti
Tj

)2
+

(Tj
Ti

)2))
, (3.20)
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and, as conjectured, these only depend on the temperature ratio of the
two chains involved. Assuming a Normal distribution for Z, the result-
ing distribution ofωwould be a Log-normal distribution with parameters
µ = E[Z] andσ2 = Var(Z) as given above. Under that assumption, which
should be a good approximation especially for larger values of d, the ex-
pected swap acceptance probability E[rs] is given by:

E[rs] = E[min(1,ω)] = E[min(1, exp(Z))]

= E[ω |ω ≤ 1] + P(ω > 1)

= E[exp(Z) | Z ≤ 0] + P(Z > 0)

=
1√
2π

∫ 1

0
exp

(
− (log(w) −µ)2

2σ2

)
dw

+
1√
2π

∫
∞

1

1
w exp

(
− (log(w) − µ)2

2σ2

)
dw

=
1√
2π

∫ 0

−∞

exp(z) exp
(
− (z −µ)2

2σ2

)
dz

+
1√
2π

∫
∞

0
exp

(
− (z −µ)2

2σ2

)
dz (3.21)

which is relatively easy to compute numerically. Note that the above ex-
pected probability is a long-term average. Due to the correlation of sub-
sequent samples within the actual MCMC there may be longer phases
where every other proposed swap is accepted, and other phases without
any swapping taking place.

This expression now allows one to approximate the expected accep-
tance rate of swaps between chains with a given ratio of temperatures, or
between all neighbouring chains if the temperature ladder is set up with
fixed ratio intervals as defined in equation (3.14). On the other hand, it
also allows the determination of the temperature ratio to be used when
aiming for a given acceptance rate, by (again, numerically) inverting the
function. An example coded in R [55] is shown in Appendix A.2. Table 3.1
shows such approximate temperature ratios q that would lead to an ex-
pected swap acceptance of 25% for a posterior of dimension d. Note that
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Table 3.1: Approximate temperature ratios q leading to a swap acceptance
rate of 25% for a posterior of dimension d. The figure in brackets (√q − 1)
gives the corresponding ‘variance inflation’ (see (3.9)).

d q (√q−1) d q (√q−1) d q (√q−1)
2 6.98 (164%) 16 1.80 (34%) 100 1.26 (12%)
3 4.41 (110%) 18 1.74 (32%) 200 1.18 (8.5%)
4 3.48 (87%) 20 1.69 (30%) 500 1.11 (5.3%)
5 2.99 (73%) 25 1.59 (26%) 1000 1.075 (3.7%)
6 2.69 (64%) 30 1.53 (24%) 2000 1.053 (2.6%)
7 2.48 (58%) 45 1.41 (19%) 5000 1.033 (1.6%)
8 2.33 (53%) 50 1.39 (18%) 10 000 1.023 (1.2%)
9 2.21 (49%) 60 1.35 (16%) 20 000 1.016 (0.82%)

10 2.12 (46%) 70 1.32 (15%) 50 000 1.010 (0.52%)
12 1.98 (41%) 80 1.29 (14%) 100 000 1.0073 (0.36%)
14 1.88 (37%) 90 1.27 (13%) 200 000 1.0051 (0.26%)

the swap acceptance rate may be seen as a measure of the similarity be-
tween the two corresponding distributions. The acceptance rate is equal
to 1 if the two distributions are equal, and gets lower for differing distri-
butions.

Ladder height

Given that one has decided to use a temperature ladder Ti = q(i−1) and
chosen a temperature ratio q > 1, the only detail left to define is k, the
total number of temperature levels or chains, and with that the level of the
highest temperature Tk. Two questions may give some guidance on the
choice of k:

Multiple modes: Parallel tempering is supposed to prevent the sampler from
getting stuck in local modes. How ‘deep’ does one expect the ‘val-
leys’ to be that need to be crossed between local modes?

Prior sampling: The coolest chain (sampling at temperature T1 = 1) is sam-
pling from the posterior, while the hottest chain is supposed to ap-
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proximately sample from the prior (cp. equation (3.11)). How high
does Tk need to be in order to leave the sampler ‘sufficiently unim-
pressed’ by the likelihood contribution to the (tempered) stationary
distribution of chain k?

In both cases one needs to ensure that the sampler, when sampling at tem-
perature Tk, is able to advance below a certain level of posterior density,
either to traverse to another mode, or to descend from the posterior mode
down to the remainder of the prior domain. Having one chain basically
sampling from the prior is supposed to ensure a realistic best possible
chance of any point in parameter space being reached, regardless of the
posterior’s shape or the starting values.

Neglecting the influence of the prior (or assuming the prior density
to be constant), and again resorting to the approximation (3.15), this is
equivalent to deciding on how far below Lmax the (log-) likelihoods from
which the ‘hottest’ chain k is sampling are supposed to be. This range de-
pends on the shape of the posterior distribution itself, and in particular
on the value of Lmax, which in general is not known beforehand. Assum-
ing one knew the value of the maximum achievable loglikelihood Lmax,
the problem remains to either define a ‘minimum likelihood’ value Llow
that should be within the range of the ‘hottest’ chain at temperature Tk,
or to define parameters θ∅, for which L(θ∅) = Llow. The most sensible
definition of such parameters depends very much on the statistical prob-
lem at hand; in the case of (gravitational wave) signal detection it may
make sense to consider the loglikelihood that is achieved for a parameter
value θ∅, indicating the presence of no signal. In practice, this is also the
level around which the sampler keeps sampling when it has not yet started
to converge, or the level that most arbitary parameter sets yield which do
not imply a very large signal-to-noise ratio. In the same context, a value
of Llow = Lmax − 4(Lmax − L(θ∅)) might be sensible, since this would be
about the level that a signal with an inverted sign but otherwise correct pa-
rameters should yield. For other contexts, other values might make sense,
e.g. in a regression problem the likelihood one gets when only fitting a
constant term.
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Given that one has chosen aθ∅, one can then try to aim chain k’s station-
ary distribution at least down at the level for θ∅. Constraining its expected
sampled likelihood (and with that its median, which is similar) leads to
the following requirement depending on θ̌, the true parameter value:

EPTk
[log(L(θ))] = E[Lmax − Tk

d
2 ] (3.22)

= E[Lmax]− Tk
d
2 (3.23)

= log(L(θ̌)) + d
2 − Tk

d
2 (3.24)

= log(L(θ̌)) − (Tk − 1) d
2

!
≤ log(L(θ∅)) (3.25)

so that
Tk = qk−1 ≥ 2

d

(
log(L(θ̌)) − log(L(θ∅))

)
+ 1 (3.26)

is a function of the (logarithmic) likelihood ratio log
(

L(θ̌)

L(θ∅)

)
for true and

‘null’ parameters. This likelihood ratio again is a random variable that
depends on the actual noise realisation in the data, but is constant for a
given data set. The figure D = 2 log

(
L(θ̌)

L(θ∅)

)
is also known as the deviance

with respect to the ‘null’ and ‘alternative’ point hypotheses θ∅ and θ̌, and
is related to the evidence in favour of θ̌ (against θ∅) in the data [56, 57].
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Transforming that (log-) likelihood ratio allows for some insight into
its nature:

log
(

L(θ̌)

L(θ∅)

)
(3.27)

= log
( p(y|θ̌)

p(y|θ∅)

)
(3.28)

= log




p(θ̌|y)

p(θ̌)
p(y)

p(θ∅|y)

p(θ∅)
p(y)


 (3.29)

= log
( p(θ̌|y)

p(θ∅|y)

)
− log

( p(θ̌)

p(θ∅)

)
(3.30)

= log
( p(θ̌|y)

p(θ̌)

)
− log

( p(θ∅|y)

p(θ∅)

)
(3.31)

≈ EP(θ|y)

[
log

( p(θ|y)

p(θ)

)]

︸ ︷︷ ︸
=D(p(θ|y)‖p(θ))

− log
(

p(θ∅|y)

p(θ∅)

)
. (3.32)

Thus the required ladder height depends on the ratios in (3.30) and (3.31),
which are related to the relative entropy (or Kullback-Leibler distance)
D(p(θ|y)‖p(θ)) between prior and posterior [42, 58].

In the special (but common) case where the data are assumed to be the
sum of a model term s and noise

yi = si(θ) +εi (3.33)

where i = 1, . . . , N, and εi i.i.d. with E[εi] = 0 and Var(εi) = σ2
i , and the

likelihood is of the form

L(θ) = exp
(
−

N
∑
i=1

(yi − si(θ))2

2σ2
i

)
, (3.34)
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the above likelihood ratio term can be decomposed further:

log(L(θ̌)) − log(L(θ∅)) (3.35)

= −
N
∑
i=1

(yi − si(θ̌))
2

2σ2
i

+
N
∑
i=1

(yi − si(θ
∅))2

2σ2
i

(3.36)

= −
N
∑
i=1

(si(θ̌) +εi − si(θ̌))
2

2σ2
i

+
N
∑
i=1

(si(θ̌) +εi − si(θ
∅))2

2σ2
i

(3.37)

= −
N
∑
i=1

ε2
i

2σ2
i

+
N
∑
i=1

(si(θ̌) − si(θ
∅) +εi)

2

2σ2
i

(3.38)

= −
N
∑
i=1

ε2
i

2σ2
i

+
N
∑
i=1

(si(θ̌) − si(θ
∅))2 + 2εi(si(θ̌) − si(θ

∅)) + ε2
i

2σ2
i

(3.39)

=
N
∑
i=1

(si(θ̌) − si(θ
∅))2

2σ2
i︸ ︷︷ ︸

=:A

− 2
N
∑
i=1

εi(si(θ̌) − si(θ
∅))

2σ2
i︸ ︷︷ ︸

=:B

(3.40)

where A is constant (for given θ̌), and B is a random variable (depending
on the noise realisation) with

E[B] = 0 and (3.41)

Var(B) = 2
N
∑
i=1

(
si(θ̌) − si(θ∅)

)2

2σ2
i

= 2 A. (3.42)

So the likelihood ratio depends completely on the noise, which splits up
into ‘deterministic’ and ‘random’ contributions A and B: A depends on
the noise parameters, and B depends on the actual noise realisation. The
required ‘ladder height’ A + B then is a random variable with

E[A + B] = A and Var(A + B) = 2 A. (3.43)

In anticipation of section 4.6.3, one can see that A actually is closely related
to the signal-to-noise ratio (SNR). If the likelihood is of the form as in (3.34)
(or (4.28)), and θ∅ was defined so that si(θ

∅) ≡ 0 for all i, as suggested
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previously, then
A ∝ ρ(θ̌)2, (3.44)

that is, the expectation and variance of the required ladder height are pro-
portional to the (squared) SNR of the signal present in the data.

Conclusion

In conclusion, since the appropriate choice of k depends on properties of
the data (especially the unknown true parameters) that usually are not
known beforehand, one can choose k

• based on worst-case considerations,

• based on integration over the prior, or

• adaptively, i.e. add higher temperature chains as the MCMC keeps
coming across greater likelihood values.

As long as there is no universally practical value for k available, the latter
method should be a good choice, because once the sampler has converged,
k should not need to be increased any more, and so the sampler’s ergodic-
ity properties would not be affected for the eventual posterior sample.

The step widths were derived based on the approximation in equa-
tion (3.15), which does not consider the prior’s contribution to the poste-
rior. However, for sufficiently large values of T, any neighbouring chains
should both be roughly sampling from the prior, and so the acceptance
probability should then be close to 1 as the distributions get increasingly
similar. The approximate acceptance rate associated with a ladder setup as
in (3.14) may consequently serve as a lower bound, and one should expect
the actual acceptance rates to be larger as T increases.

Parallel tempering is supposed to improve both mixing and conver-
gence. Suppose one has decided to use a temperature laddder as in (3.14).
If one does not worry about convergence, but is only interested in im-
proved mixing, the best choice of k might not depend on the likelihood
ratio as argued in the previous section, as there might not be a need for
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the sampler to reach down to certain likelihood levels, and consequently
a lower value of k could be chosen. If on the other hand convergence is
the primary concern, then the exact value of the temperature ratio might
be less relevant. If, due to limited resources, one is only able to run a cer-
tain number of parallel chains, it might make more sense to ‘stretch’ the
ladder (so that it still reaches down to the same level, but with larger steps
sizes), than to use a ladder that has ‘optimal’ step sizes, but is too short. A
swap acceptance rate that is constant across different neighbouring pairs
of chains, and significantly � 0 should probably still be beneficial.

3.2.13 Evolutionary MCMC

The evolutionary MCMC algorithm [59] is an extension of parallel tem-
pering, implementing additional proposals that are motivated by Genetic
Algorithms [60]. ‘Recombinations’ of parameter samples from different
MCMC chains are used as proposals in order to improve convergence and
mixing.

Genetic algorithms are motivated by evolutionary principles, and in
this context such terms as ‘population’, ‘parents’, ‘crossover’ and ‘offspring’
are frequently used. Applying this terminology to the parallel temper-
ing algorithm, the set of MCMC chains running at different temperatures
constitute the population, within which the individuals differ by their
genomes (parameter values), and evolve over time t. Randomly, muta-
tions (proposals) are formed, that are subject to the principle of survival
of the fittest (acceptance/rejection). Evolutionary MCMC then introduces
additional proposals in analogy to the recombination common in evolu-
tion. Two parental individuals are selected to ‘mate’, i.e. have their genes
(parameters) recombined in order to form new offsprings.

Recombination of two parameter sets is implemented in two ways: the
‘real crossover’, in which single elements of the two parental parameter
sets are swapped in order to form two new offsprings, and the ‘snooker
crossover’, in which a single ‘offspring’ parameter set is proposed that
lies on the line passing through the two ‘parental’ points in the parameter
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space (see also [61]).
Note that with the introduction of crossovers the ‘parallel sampling’

property that was outlined in the last paragraph of section 3.2.8 is com-
promised.

3.2.14 Importance sampling

Importance sampling is another Monte Carlo method to approximate in-
tegrals. Consider the case where one wants to compute an expectation
like the one in equation (3.2). Instead of obtaining a sample from den-
sity f (θ) as in the general case of Monte Carlo integration, one can also use
a sample θ1, . . . ,θN from a distribution g ≈ f similar to the one actually
sought. An estimate of the desired integral is then obtained by computing
the weighted average

h(θ) =
1

∑N
j=1 w j

N
∑
i=1

wi h(θi), (3.45)

where
wi =

f (θi)
g(θi)

(3.46)

are the importance ratios or importance weights. Both densities f and g
do not need to be normalised here. The accuracy of this approximation
depends heavily on the similarity of g and f . At best, all importance ratios
would be of roughly the same size, at worst there are few wi concentrating
most of the total weight, or there are rare but important cases with f (θ) �
g(θ) completely missed in the sample. Note that if the densities f and g
are given in normalised form, the estimate in (3.45) can be simplified to
1
N ∑N

i=1 wi h(θi) [42].

3.2.15 Importance sampling and parallel tempering

When using parallel tempering, the ‘hot’ chains are also sampling from a
distribution similar to the actual target distribution, so instead of dispos-
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ing of these samples, one can also use them for importance sampling. The
resulting importance weights then are:

wi =
π(θi)L(θi)

π(θi)L(θi)
1
T

= L(θ)(1− 1
T ). (3.47)

The magnitudes of these weights are ideally close to one, which they are
especially for T → 1. From equation (3.15) one can see that for greater
values of T, Var(log(wi)) ≈ d

2 (1 − 1
T )2 ∝ T. Note that since the normalis-

ing constants to the tempered distributions are (in general) unknown and
depend on the temperature T, the average needs to be normalised by the
sum of all weights as in (3.45) and does not simplify.

3.2.16 Importance resampling

Importance resampling is closely related to importance sampling. It is a
method for generating a sample that approximately follows a given distri-
bution f (θ) when sampling from f directly is not possible, but an approx-
imation g to f is available. One starts off by drawing a (comparatively
large) sample θ1, . . . ,θN from the approximate target distribution g(θ).
Then for each element θi the importance ratio wi =

f (θi)
g(θi)

is computed and
the eventual sample of size n � N is drawn out of {θ1, . . . ,θN} without
replacement and with probabilities proportional to the weights wi [42].

3.2.17 Implementing importance resampling

Sampling distributions

When importance resampling is used to generate starting points for MCMC
chains, it might be desirable for these to be rather slightly ‘overdispersed’.
This can be procured by chosing an overdispersed approximation g(θ)

[42, 46].
The best available approximation to the posterior will in general be the

prior distribution (as long as one does not yet consider the data). However,
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it might not necessarily be the best choice from which to draw starting val-
ues. When using importance resampling for MCMC starting values, the
reasoning behind the method is not necessarily to get that initial guess as
close to the true values as possible, but rather to draw starting values such
that the probability of convergence to the correct mode is highest. There
may be parts of the parameter space where only a very rough guess is suf-
ficient for reliable convergence, while in other parts the posterior mode
must be targetted very accurately in order to be eventually found. Con-
sequently, the sampling should be denser in the latter regions and may
be coarser in the former regions in order to have uniformly good chances
of convergence—which may well lead to a sampling distribution different
from the prior distribution.

Minimising memory usage

If the approximation g has a much wider mode than the target distribu-
tion f , the initial sample {θ1, . . . ,θN} will be made up of a large majority
of elements that have a very low importance ratio wi (since f (θi) � g(θi)),
while only a small minority actually have a significant chance of eventu-
ally being drawn. In order to save memory and simplify management of
the initial sample, it is of interest to sort out such samples and keep only
those that have a reasonable chance of getting into the eventual sample.

One idea to achieve this is to restrict to those samples θ j for which:

f (θ j) ≥
(

max
i

f (θi)

)
exp(−δ) (3.48)

⇔ log( f (θ j)) ≥
(

max
i

log( f (θi))

)
− δ (3.49)

for some δ > 0. That is, one only considers samples whose density dif-
fers by less than a factor of exp(δ) from the maximum density so far, or
equivalently, whose log-density is within a certain range δ of the greatest
log-density reached so far. Since the maximum (log-) density in the sample
can only increase while sampling, this allows to sort out samples imme-
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diately while sampling and manage only a handful of samples while the
effective sample size N is much larger.

The question of course is how to choose such a threshold δ. The ap-
proximate posterior distribution of log-likelihood values (equation (3.15))
provides a clue to what range of values below the maximum log-likeli-
hood Lmax one should expect for a distribution over a d-dimensional pa-
rameter space. Assuming that the posterior distribution of log( f (θ)) be-
haves similarly to that of log(L(θ)), one can then e.g. set δ to at least 3 stan-
dard deviations above the mean difference from Lmax:

δ &
d
2 + 3

√
d
2 , (3.50)

which in practice yields the desired effect of identifying a small number
of more or less reasonable samples from the vast majority of virtually im-
possible draws.

Technically, what happens when setting a limit δ is that (assuming con-
tinuity of the density f (θ)) parameter values θ that concentrate less than
exp(−δ) times as much probability within the immediate neighbourhood
around themselves, when compared to the ‘best’ so far, are identified.

3.3 Reparametrisation: transformation
of random variables

In order to improve the efficiency of an MCMC sampler it is often sen-
sible to use reparametrisations. Parameters may be highly correlated in
their original form, and re-expressing them in different scales may yield a
posterior distribution that is then easier to sample from [42]. When mov-
ing over from one domain to another, the transformation’s effect on the
(prior/posterior) density function needs to be accounted for as follows.

Let X be a continuous random variable with density fX(x) and do-
main A = {x : fX(x) > 0}. Let y = g(x) be a one-to-one mapping from A

to B. If the derivative of x = g−1(y) is continuous and non-zero for all
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y ∈ B, then the distribution of Y = g(X) has the density

fY(y) =

∣∣∣∣
∂

∂y g−1(y)

∣∣∣∣ fX(g−1(y)) (3.51)

More generally, if X and Y are d-dimensional, the density of Y is given by

fY(~y) = | det(J(~y))| fX(g−1(~y)). (3.52)

where | det(J(~y))| is the absolute determinant of J(~y), the Jacobian of the
inverse transformation ~x = g−1(~y) as a function of ~y:

J(~y) =




∂x1
∂y1

· · · ∂x1
∂yd... . . . ...

∂xd
∂y1

· · · ∂xd
∂yd


 (3.53)

[40, 42].
Note that for the special case of a 2 × 2-matrix the determinant is:

det
(

a b
c d

)
= ad − bc. (3.54)

The corresponding terms required for transformations used here are de-
rived in appendix A.3.

In some cases assuming certain priors for parameters is equivalent to
assuming a certain transformation of the parameter as the actual param-
eter which then has a uniform prior. Consider for example a parame-
ter θ ∈ [0, π ] that has a prior that is proportional to sin(θ). When instead
one uses its cosine, cos(θ), as the actual parameter, then the necessary
transformation coefficient (see appendix A.3) cancels with the prior den-
sity; so in this case using θ in conjunction with the sine prior is equivalent
to using cos(θ) with a uniform prior.
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3.4 Fourier transformation in theory
and application

3.4.1 Fourier transform

The Fourier transform (FT) allows the transformation of a function back
and forth between time and frequency domains. Let h be a real-valued
function h : R → R; then its Fourier transform h̃ : R → C is given by:

h̃( f ) =
∫

∞

−∞

h(t) exp(−2π i f t)dt (3.55)

where h is considered a function of time while h̃ is a function of frequency.
Since h is a real-valued function, h̃ is symmetric (h̃(− f ) = h̃( f )), allowing
attention to be restricted to (non-redundant) positive frequencies and to
consider h̃ as h̃ : R+ → C. The back-transformation from h̃ to h is given by:

h(t) =
∫

∞

−∞

h̃( f ) exp(2π i f t)d f . (3.56)

In view of applications in later sections, the relationships decribed in the
following are of interest. Let ‘
’ denote a transform pair, let

h(t) 
 h̃( f ) and g(t) 
 g̃( f ) (3.57)

and let
(g ∗ h)(t) =

∫
∞

−∞

g(t − τ) h(τ)dτ (3.58)

define the convolution of g and h, where g ∗ h = h ∗ g. Then the following
properties apply:

ag(t) + h(t) 
 ag̃( f ) + h̃( f ) (linearity) (3.59)
(g ∗ h)(t) 
 g̃( f ) h̃( f ) (convolution theorem) (3.60)

for a ∈ R [45, 62]. Convolutions will be important especially in the follow-
ing section. Note that there are several different definitions of the Fourier
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transform, varying in signs or normalising constants.

3.4.2 Discrete Fourier transform

The analogue to the Fourier transform for functions that are sampled at
discrete time points is the Discrete Fourier Transform (DFT), which re-
places the integral (3.55) by a sum. The input is a time series of length N
(even) and sampling rate 1

∆t
(or resolution / sampling interval ∆t):

{h(t) ∈ R : t = 0,∆t, 2∆t, . . . , (N − 1)∆t} (3.61)

which the transform then maps to

{h̃( f ) ∈ C : f = 0,∆ f , 2∆ f , . . . , (N − 1)∆ f }, (3.62)

where ∆ f = 1
N∆t

and

h̃( f ) = ∆t
N−1
∑
j=0

h( j∆t) exp(−2π i j f ). (3.63)

Since h is real-valued, for j = 1, . . . , N
2 − 1 the elements of h̃ are symmet-

ric (and with that redundant) in the sense that h̃(i∆ f ) = h̃((N − i)∆ f ).
The elements h̃(0) and h̃( N

2 ∆ f ) of the DFT are always purely real, i.e.
Im
(
h̃(0)

)
= Im

(
h̃( N

2 ∆ f )
)

= 0. The back-transformation to the time do-
main, the inverse DFT, is given by

h(t) = ∆ f
N−1
∑
j=0

h̃( j∆ f ) exp(2π i jt) (3.64)

[63]. The actual transforms are most commonly carried out using the Fast
Fourier Transform (FFT) algorithm [45, 62]. Note that the ‘FFTW ’ imple-
mentation [64] returns the unnormalised transforms (not including the fac-
tors of ∆t or ∆ f , i.e., one gets 1

∆t
h̃( f ) instead of h̃( f ) as defined in (3.63)).
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3.4.3 Windowing and convolution

Several problems arise when approximating the FT of a continuous func-
tion by the DFT of samples from that function. The DFT can only resolve
frequencies below the Nyquist (critical) frequency fc = 1

2∆t
. If the FT of

the actual function is non-zero for frequencies above fc, this will still have
an effect on the DFT. Also, any contribution of frequencies that do not ex-
actly coincide with one of the fn will result in leakage into neighbouring
frequency bins [45].

The first problem may not appear if the examined function is known to
be bandwidth-limited to frequencies below the Nyquist frequency, which
might e.g. be the case when dealing with a signal that has passed a low-
pass filter. For the second problem there are (at least) two motivations:

Discontinuity: When applying the DFT, it is implicitly assumed that the
transformed points constitute a periodic function with period N∆t.
Any frequency contribution that does not coincide with one of the fn
(i.e. whose period is not a divisor of N∆t) contributes to a disconti-
nuity between the ‘endpoints’ of the function; this discontinuity then
is the cause of the leakage [65].

Convolution: Transforming only a finite stretch of a function with infinite
support is equivalent to transforming the product of the actual func-
tion and a ‘rectangular’ windowing function that is equal to 1 for the
analysed interval and 0 otherwise. This ‘windowing’ in the time do-
main is equivalent to a convolution in the frequency domain, causing
the spectral leakage [62].

The leakage effect can be reduced by clever choice of a (non-rectangular)
windowing function that—following the former motivation—‘matches as
many orders of derivative (of the weighted data) as possible at the bound-
ary’, or—following the latter motivation—a window whose Fourier Trans-
form behaves (in some sense) favourably, so that the convolution has the
smallest possible undesirable effect [65].
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Much of the literature that deals with optimal choice of windowing
functions is primarily concerned with its effects when estimating spectral
densities, or when trying to detect/resolve isolated sinusoidal signals (of
constant amplitude) within noise. Directions given there may not nec-
essarily be applicable for the case of the Fourier transformation of a GW
signal, which evolves over time and for which time and phase information
(real and imaginary components of the transformed signal) matter. This
becomes especially important when one is matching numerically FT’d
data with analytically FT’d waveform templates (and less important when
both FTs are performed numerically).

The rectangular window, which is implicitly applied when ‘no’ win-
dow is used, applies the following weights

wN(i) =

{
1 for 0 ≤ i ≤ N − 1
0 otherwise

(3.65)

to the individual observations h(i) in the time domain. This is also known
as the ‘square’ or ‘boxcar’ window.

For spectral density estimation purposes the Hann window is used,
which is defined as:

wN(i) =

{
1
2 (1 − cos( i

N 2π)) for 0 ≤ i ≤ N − 1
0 otherwise

(3.66)

[65].
When Fourier-transforming the actual GW data (or signal templates),

a window is used which is called the Tukey window (or cosine-tapered
window or split cosine bell window). It possesses an additional parameter
α ∈ [0, 1] and is defined as:

wN(i) =





1
2

(
1 − cos(π i

α
2 N )

)
for 0 ≤ i ≤ α

2 N
1 for α

2 N ≤ i ≤ (1 − α
2 )N

1
2

(
1 − cos(π N−i

α
2 N )

)
for (1 − α

2 )N ≤ i ≤ N − 1
0 otherwise.

(3.67)
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The parameterα denotes the fraction of the window in which it behaves si-
nusoidally; forα = 0 it is equal to the rectangular window, and forα = 1 it
equals the Hann window [65, 66, 67]. Its specific advantage is that it leaves
the middle (1 −α) fraction of the data unaltered while ‘mending’ the dis-
continuity at the ends. (Note that there is another—different—window
which is sometimes also referred to as the Tukey window.)

3.4.4 Power spectral density
The (one-sided) power spectral density Sh( f ) of a (real-valued) function h(t)
is defined as

Sh( f ) = 2 |h̃( f )|2 for f ≥ 0. (3.68)

Note that there are a range of differing definitions of the spectral density,
most notably, the two-sided spectrum is usually defined as above, but
without the factor of 2 (which is due to the fact that more generally one
can compute the spectrum by summing over positive and negative fre-
quencies, which happen to be symmetric for real-valued h(t), and hence is
equivalent to summing over positive frequencies only and then multiply-
ing by 2) [45].

3.4.5 Power spectral density estimation via the DFT
The power spectral density (PSD) of a time series can be estimated from
its empirical discrete Fourier transform. The discrete analogue of the PSD
for a discrete, real-valued function h as in (3.61) is

Sh( f ) =

{
2
N |h̃( f )|2 for f = ∆ f , 2∆ f , . . . , ( N

2 − 1)∆ f
1
N |h̃( f )|2 for f = 0 or f = N

2 ∆ f .
(3.69)

When dealing with larger amounts of data, it makes sense not to transform
the complete data at once but to divide it into smaller segments, trans-
form these, and average over the individual results. This may speed up
computations, save memory, and result in less variance in the resulting
estimate. The tradeoff on the other hand is a lower frequency resolution,
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although this should not be a problem if the spectrum is assumed to be
rather smooth.

The data segments can be chosen so that these overlap, with each data
segment individually windowed before transformation. Figure 3.1 illus-

· · ·
· · ·

1

2

3

4

K − 2

K − 1

K

Figure 3.1: Dividing a time series into K overlapping segments.

trates such a segmentation. Let {x(t) : t = 0, . . . , N − 1} be the original
time series, which is subdivided in K segments of length L (L even), such
that (K + 1) L

2 = N. Then {y j(t) : t = 0, . . . , L − 1}, where y j(t) =

wL(t)x(( j − 1)L + t), is the windowed jth segment ( j = 1, . . . , K). Define
wss = ∑L−1

i=0 (wL(i))2 as the sum of squared windowing coefficients (Note:
wss = L for ‘no’ windowing, i.e. the rectangular window). Then

Ŝn( f ) =
2

K wss

K
∑
j=1

|ỹ j( f )|2 (3.70)

is an estimator for the (one-sided) Power Spectral Density at the dicscrete
set of frequencies { f = ∆′

f , 2∆′
f , . . . , L−1

2 ∆′
f }, where ∆′

f = 1
L∆t

. In analogy
to (3.69), the factor of 2 again drops out for f = 0 and f = L

2∆
′
f [68, 69, 45].

3.5 Downsampling and filtering
When working with (noiseless) discretely sampled data containing a band-
width-limited signal, where the upper frequency limit is below the Nyquist
frequency fc, the data can be downsampled without loss of information. If
the data is noisy, downsampling would move noise in the part of the spec-
trum between ‘old’ and ‘new’ Nyquist frequency below the new Nyquist
frequency. In such a case, it makes sense to low-pass filter the data before
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downsampling, because it will reduce noise in the downsampled data,
and will not affect the signal. A general algorithm to do this is given in
[70]. Procedures to design filters satisfying certain optimality criteria are
described in [71].

3.6 Density estimation and confidence regions
The estimated densities shown in later sections (e.g. figure 5.10) are kernel
density estimates [72]. Kernel density estimates are similar to histograms,
but they return a continuous estimate of the density function (and not a
step function). As with histograms, these can also be generalised to the
2-dimensional case.

Kernel density estimates are also used to derive 2-dimensional confi-
dence regions (e.g. figure 5.11). In order to construct these, first a 2D his-
togram based on k× k bins was constructed, with ni, j giving the number of
samples in the bin indexed by i, j ∈ {1, . . . , k}. In order to construct a 1−α
confidence region (whereα denotes the confidence level; e.g.α = 0.05 for
a 95% confidence region), one could then use a contour line at a level nα ,
enclosing the highest histogram bars that accumulate (1 −α) of observa-
tions. This would be defined as:

nα = max{n ∈ R
+ : 1

N ∑
i, j:ni, j>n

ni, j > 1 −α}. (3.71)

Since the heights of the histogram bars have a large variance, the resulting
confidence region would have a very frayed appearance. Hence, in order
to have a smoother contour, it is better to use a kernel density estimate
as a smoothed version of the histogram. The kernel density estimate is
computed and evaluated at each histogram bin’s mid-point, with fi, j giv-
ing the estimated density at the (i, j)th bin. The confidence region is then
constructed by determining a threshold density value fα as

fα = max{ f ∈ R
+ : 1

N ∑
i, j: fi, j> f

ni, j > 1 −α} (3.72)
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and drawing the corresponding contour line at fα into the kernel density
plot. The shape of the contour line is then based on the kernel density es-
timate, while its level is based on the histogram. So its shape is smoothed,
but still it always includes the desired fraction of samples. The resulting
credibility region is then (an estimate of) a (1−α) highest posterior density
region [42].

3.7 Recursive mean and covariance estimation

When trying to estimate variances or covariances of MCMC samples, these
samples will in general not be available all at once in the computer mem-
ory. Furthermore, it might be desirable to have an intermediate estimate of
variances/covariances available at any time while sampling is still going
on. Both these motivations suggest not to use the straightforward formu-
las (the so-called ‘textbook algorithm’), but to rather compute these ‘on-
the-fly’, updating the estimate recursively with every new sample coming
in. Formulas for estimating variances and covariances in a recursive man-
ner are given in [73, 74].

3.8 Spherical statistics

When trying to characterise data that can be interpreted as locations on
spheres or circles, the usual descriptive measures like mean or variance
do not in general make sense, or only make sense if the distribution is con-
fined to a very small region on the sphere so that the exact topology does
not significantly differ from a linear manifold. Generalisations of these
measures for ‘spherical data’ are derived in [75]; the analogues to mean
and variance (mean direction and spherical variance) are reproduced in
appendix A.4.
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3.9 Parallel programming
Parallel programming means the simultaneous use of several processors
(or processes) for computation, as opposed to a strictly sequential compu-
tation. A general introduction to parallel programming is given in [76].
The implemention of parallel tempering in a parallel fashion, so that dif-
ferent chains are running as different processes, can be done using mes-
sage passing methods. This means that every single process manages a
single chain, just as in a simple Metropolis-Hastings implementation, but
that every iteration ‘messages’ are exchanged between processes to carry
out the exchange of parameters or temperatures. A common protocol for
message passing is the Message Passing Interface (MPI) [77].
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Chapter 4

Model components

4.1 Data

In both cases of earth-bound or space-bound GW measurements, the re-
trieved data are first of all time series. In a network of earth-bound in-
terferometers, each individual interferometer produces a data stream in-
dicating the measured phase difference of the laser beams that went along
its two arms. The planned space-based LISA interferometer will produce
several data streams for each of its 3 satellites, which will probably usu-
ally be combined into 3 time series, the so-called Time Delay Interferome-
try (TDI) variables [78]. Sampling frequencies are of the order of 16 384–
20 000 Hz for ground-based interferometers, and expected to be approxi-
mately 1

15 Hz for LISA.
Since the sensitivity and the way different signals are modulated varies

with the relative orientation of the interferometer and the passing gravi-
tational wave, information about the exact time of measurement is vital.
Together with the geographical location of earth-bound interferometers,
or the orbital parameters for space-bound observations, this determines
the instruments’ locations and orientations during measurement.

A ground-based interferometer measures a passing gravitational wave
‘instantaneously’, and its output is basically a linear combination of the
passing wave’s plus- and cross-polarisations, depending on the interfer-

55
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ometer’s orientation with respect to the wave. The space-based LISA in-
terferometer on the other hand is so large that it will take a photon roughly
15 seconds to travel from one satellite to another, and so the output will not
(except in the limit of very low frequencies) be such a simple ‘1:1’ mapping
of the waveform. In fact, the TDI variables mentioned above will have an
eight-pulse-response to a passing delta function shaped wave [78]. More
details on TDI are given in section 4.4 below.

4.2 Parameters and parametrisations

4.2.1 General
The gravitational waves that are emitted from an inspiralling binary sys-
tem depend on certain properties of the system, like masses of involved
objects etc. The signal that is measured at a given point in space then
also depends on the distance and orientation of inspiral and interferome-
ter with respect to each other. Waves originating from the same event will
result in different signals when observed from different directions. Due
to the great distances in which such events generally happen, the signals
measurable at different point within the solar system will not differ sig-
nificantly, except for delays in the arrival time (or Doppler effects, if the
receiver is in motion).

In the context of the models referred to in the following, the nine pa-
rameters determining the form of the wave originating from a binary in-
spiral event that passes a point in the solar system are

• the individual masses (m1, m2 ∈ R+; m1 ≤ m2),

• luminosity distance (dL ∈ R+),

• inclination angle (ι ∈ [0, π ]),

• coalescence phase (φ0 ∈ [0, 2π ]),

• coalescence time at geocentre (t⊕c ∈ R)
or coalescence time at solar system barycentre (t�c ∈ R),
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• declination (δ⊕ ∈ [−π
2 , π2 ])

or ecliptic latitude (β� ∈ [−π
2 , π2 ]),

• right ascension (α⊕ ∈ [0, 2π ]))
or ecliptic longitude (λ� ∈ [−π , π ]) and

• polarisation angle w.r.t. earth frame (ψ⊕ ∈ [0, π ])
or w.r.t. ecliptic frame (ψ� ∈ [0, π ]).

The evolution of the inspiral event over time (orbits, velocities, etc.) is
determined by the masses m1 and m2 of the two inspiralling compact ob-
jects. The event’s gravitational wave ‘signature’ then is different when
perceived from different directions, and in particular it makes a difference
whether it is viewed from above, within, or below its orbital plane. The
direction of the line-of-sight with respect to the event is denoted by the in-
clination angle ι (its angle relative to the orbital plane) and the coalescence
phaseφ0 (its angle relative to the two objects within the orbital plane). The
luminosity distance dL only affects the signal’s overall amplitude. The in-
terferometric measurement of the signal depends on the orientation of the
instrument relative to the passing wave. The direction towards the event’s
sky location (relative to the instrument) is given either in terms of dec-
lination and right ascension (δ⊕, α⊕), or in terms of ecliptic latitude and
longitude (β�, λ�). The polarisation angle ψ indicates the orientation of
the event’s orbital plane relative to the sky coordinate system, and the co-
alescence time tc defines the signal’s arrival time.

Note that the coalescence time tc here does not denote the instant of
coalescence, but it is rather an ‘un-physical’ or ‘virtual’ figure. The wave-
form models used here are only valid until shortly before coalescence, and
do not account for what exactly happens when or immediately before the
two companion masses merge (see also section 4.3 later in this chapter).
The instant tc denotes the point in the signal’s evolution where the expres-
sion for its frequency would become infinite. For more detailed parameter
definitions and conventions see also [79].

For ground-based interferometry, the observed signal at a particular
detector depends on its location and orientation. The response of a cer-
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tain detector I depends on the above (‘global’) parameters via the ‘local
parameters’

• local coalescence time (t(I)
c ∈ R),

• altitude (ϑ(I) ∈ [0, π ]),

• azimuth (ϕ(I) ∈ [0, 2π ]) and

• polarisation (ψ(I) ∈ [0, π2 ]).

How exactly to derive these from the ‘global’ parameters for a given de-
tector is described in section 4.2.3 later in this chapter. Figure 5.5 in sec-
tion 5.1.4 shows an example of a chirp signal that is received with differing
amplitudes and time delays at different interferometer sites. For applica-
tions to space-based measurements, the response to a given gravitational
wave signal is more complex and is here derived numerically, using the
LISA Simulator [80, 81].

4.2.2 Reparametrisations
The mass parameters (m1, m2) may be re-expressed in terms of

• total mass (mt = m1 + m2),

• reduced mass (µ = m1m2
mt

),

• chirp mass (mc = (m1m2)3/5

m1/5
t

) or

• mass ratio (η = m1m2
m2

t
).

Noteworthy relationships between these are mc = µ
3
5 m

2
5
t , η = µ

mt
= m1

mt
m2
mt

,
and µ = mtη. Note also that the mass ratio (0 < η ≤ 1

4 ) is dimension-
less and that the chirp mass is positively homogeneous in the sense that
f (m1, m2) = mc ⇔ f (am1 , am2) = amc for a ≥ 0. The mapping from
(m1,m2) to (mc,η) is illustrated in figure 4.1. Formulas necessary for repa-
rameterising between some of these expressions (see section 3.3) are given
in appendix A.3.
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Figure 4.1: Illustration of the mapping between the two parametrisations
in terms of individual masses (m1, m2) or chirp mass and mass ratio (mc,
η).

4.2.3 Deriving ‘local’ parameters

Preliminary definitions

The following section is only relevant to ground-based interferometry, since
for LISA data the interferometer response to a given signal here is derived
numerically, resorting to ‘black box’ code that only needs to be supplied
with the signal waveform as well as location and orientation parameters
β�, λ� andψ�.

Locations and orientations of ground-based interferometers are given
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in [82]. In order to derive the ‘local’ coordinates (with respect to a certain
interferometer I), it is convenient to transform the polar coordinates (lat-
itude, longitude) into a 3-dimensional cartesian coordinate system. The
mapping from the celestial coordinates (declination, right ascension) to
geographical coordinates (latitude, longitude) reduces to a shift in longi-
tude / right ascension depending on the current Greenwich mean sidereal
time (GMST) [83]. Vectors with respect to the (3-dimensional) cartesian
earth frame are, in the following, defined by

• the ‘Greenwich’ vector (1, 0, 0)T pointing from the geocentre towards
the intersection of the 0◦ ‘Greenwich’ meridian with the equator plane,

• the ‘Ganges’ vector (0, 1, 0)T pointing towards the intersection of the
90◦ E ‘Ganges’ meridian with the equator plane, and

• the ‘North Pole’ vector (0, 0, 1)T pointing towards the North Pole.

Note that earth coordinates (latitude, longitude) need to take into account
the ellipsoidal earth model [84], while celestial coordinates (declination,
right ascension) do not.

In the following, several more or less basic vector operations will be
used, namely dot product, cross product, scalar triple product, orthogonal
projections, rotations etc, which are explicitly defined in appendix A.6.
‘ANGLE(~x,~y)’ denotes the angle between two vectors ~x and ~y, ‘RH(~x,~y,~z)’
means that the three vectors ~x, ~y and ~z constitute a right-handed system,
‘OP(~a,~x,~y)’ denotes the orthogonal projection of~a into the plane spanned
by ~x and ~y, and Rα~a is the matrix that, when multiplied to a vector, rotates
it around~a by an angle ofα. The following conventions are used (roughly
following [79] and [85]):

• ~a(I) is the vector pointing from the geocentre to interferometer I’s
corner station, defined in units of metres.

• ~n is the unit vector pointing from the geocentre along the line-of-
sight to the event’s sky location.
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• ~x(I), ~y(I) and~z(I) are the unit vectors that are parallel to interferome-
ter I’s right arm, left arm and the normal vector of the latter two, re-
spectively, pointing into the interferometer’s zenithal direction. ~x(I),
~y(I) and~z(I) are orthonormal and right-handed.

Coalescence time

The local coalescence time t(I)
c is derived from the global coalescence time

at the geocentre t⊕c and the event’s sky location (δ⊕, α⊕) by projecting the
line-of-sight ~n onto the vector ~a(I) that points from the geocentre to the
interferometer location. The time delay ∆(I)

t (in seconds) with which the
signal arrives at the interferometer relative to the geocentre is given by

∆
(I)
t = −~a(I) ·~n

c , (4.1)

and the resulting local coalescence time is: t(I)
c = t⊕c +∆

(I)
t .

Altitude, azimuth

The altitude is the angle between line-of-sight and the interferometer’s
normal vector:

θ(I) = ANGLE(~z(I),~n). (4.2)

The azimuth is the (directed) angle between the right interferometer arm
and the vertical plane (as seen from the interferometer) that contains the
source. It may be derived by first determining the orthogonal projection
of the line-of-sight into the interferometer plane:

~n⊥ = OP(~n,~x(I),~y(I)) (4.3)

and then determining the angle between right interferometer arm and the
projection ~n⊥:

ϕ(I) =

{
ANGLE(~x(I),~n⊥) if RH(~x(I),~n⊥,~z(I))

2π − ANGLE(~x(I),~n⊥) otherwise.
(4.4)
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a(I)

x(I)

y(I)

z(I)

ϕ(I) n (I)

nθ(I)

v(I)

p
ψ(I)

Figure 4.2: Illustration of some of the ‘local’ parameters, with respect to a
certain interferometer I. The (orthonormal) vectors ~x(I), ~y(I) and~z(I) point
along the interferometer’s arms and to its zenith, and~n points towards the
source’s sky location. ~v(I) is orthogonal to ~n and~z(I).

Polarisation

The local polarisation angle ψ(I) is defined by the angle between the ‘po-
larisation plane’ and the vertical plane (as seen from the interferometer)
that contains the source. The global polarisation ψ⊕ defines the angle be-
tween the polarisation plane and the vertical plane (relative to the earth
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x

y

z

φ0

n

ι

p

Figure 4.3: Illustration of some of the ‘global’ parameters; note the com-
mon vectors ~n and ~p also appearing in figure 4.2. The (orthonormal) vec-
tors ~x, ~y and~z here define the binary system’s orbital plane and its normal
direction. The ‘polarisation vector’ ~p lies within the plane spanned by ~n
and~z.

frame) containing the sky location’s meridian. An angle of ψ⊕ = 0 means
that both planes coincide, and increasing it turns the polarisation plane
counterclockwise (looking towards the event’s sky location).

The local polarisation with respect to an interferometer I may be de-
rived via the following steps. First, determine a (global) ‘polarisation vec-
tor’ ~p that is the normal vector to the polarisation plane:

~p = R(ψ⊕− π
2 )

~n

(
(0, 0, 1)T − (~n · (0, 0, 1)T)~n

)
(4.5)

Then determine the local polarisation as the angle between the above po-
larisation plane and the interferometer’s vertical ‘constant azimuth’ plane
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containing the event’s sky location. The latter is given by its normal vector

~v(I) = R
π
2

~z(I) OP(~n,~x(I),~y(I)) (4.6)

which is the line-of-sight, projected into the interferometer’s plane and
rotated around ~z(I) by 90◦. ~n, ~z(I) and ~v(I) now constitute a right-handed
triplet. The local polarisation then is the angle between the two planes’
normal vectors:

ψ(I) =

{
ANGLE(~p,~v(I)) if RH(~n,~v(I),~p)

π − ANGLE(~p,~v(I)) otherwise.
(4.7)

4.3 Signal waveform templates

4.3.1 The quadrupole wave

As a gravitational wave propagates through space at light speed, its ef-
fect on masses is in directions orthogonal to its direction of travel (see also
chapter 2). A binary inspiral event’s gravitational wave passing a given
point in space is defined by its two +/× polarisation waveforms, the as-
sociated polarisation angle, and the direction to the source (line-of-sight).
A gravitational wave’s effect on the distance between two (free falling) test
masses depends on the orientation of their connecting line with respect to
the line of sight, and may be modulated by their relative motion with re-
spect to the source (Doppler effect).

4.3.2 The general binary inspiral ‘chirp’ signal

In a very simple approximation the +/× polarisation waveforms for a
binary inspiral’s GW signal are given by:

h+ ∝ −2µ
dL

(mtω)
2
3
(
1 + cos2(ι)

)
cos(2Φ) (4.8)

h× ∝ −2µ
dL

(mtω)
2
3
(
2 cos(ι)

)
sin(2Φ) (4.9)
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where µ and mt are the reduced mass and the total mass (see section 4.2.2),
and Φ = Φ(t − tc), is the phase evolution as a function of time, giving
the instantaneous phase for any t < tc. Its time derivative, the instan-
taneous frequency dΦ

dt = ω(t − tc) describes the frequency evolution, in
terms of angular frequency [79]. Phase evolution Φ and frequency ω are
both monotonically increasing, and together with the frequency the sig-
nal’s amplitude also increases over time, making it a so-called chirp sig-
nal. The signal’s (dominant ) frequency is twice the orbital frequency, so a
complete orbit of the binary system corresponds to two oscillations of the
resulting signal.

The chirp waveform (h+ and h×) is not given in terms of an exact an-
alytic expression, but it is only approximated to a certain accuracy, based
on general relativity theory. In situations where gravity is weak, interac-
tions of masses are usually sufficiently accurately described by Newton’s
theory of gravity. But as soon as higher masses or velocities are involved,
relativistic effects become more and more relevant. Starting off from New-
tonian theory, one can then subsequently add higher order corrections to
the model and increase its precision. A common approach to this is via
the post-Newtonian formalism, where the precision of the approximation
is then denoted by its post-Newtonian (PN) order.

The formulas given for h+/h× in general are thus only valid until short-
ly before the binary’s coalescence, and especially do not consider the ef-
fects of coalescence itself. In practice, the h+/h× expressions are used
up to the point where the (Schwarzschild) innermost stable circular orbit
(ISCO) is reached, i.e. when the orbital frequency reaches

ωISCO =
c3

6 3
2 G mt

, (4.10)

or when the approximation obviously fails, e.g. when the approximated
orbital frequency starts decreasing [86].

What accuracy (in terms of PN order) is necessary, depends on the
massed involved; for lower masses (neutron star inspirals), an order of 3.0
or 3.5 might be required [86]. The uncertainty in the underlying physical
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constants might also need to be considered; for example, the current value
of the gravitational constant G is given with an uncertainty of 0.015% [88],
which is close to the order of magnitude of the accuracy by which the
chirp mass mc is expected to be determined by ground-based measure-
ments of binary inspiral signals [29, 13]. Since the estimate of mc is closely
related to G, this extra uncertainty might be relevant, and it would be
rather straightforward to consider it in a Bayesian setup [89].

In the following sections, some specific waveform approximations are
pointed out. Formulas are only given for the two simplest cases, since
these are very complex and not of primary interest here beyond what can
already be seen from the above outline. For some of the inspiral signal
approximations, it is possible to restrict the parameter space. For example,
in the ‘restricted PN approximation’, the signal waveform’s dependence
on the phase parameter φ0 is such that a certain value φ0 leads to exactly
the same waveform asφ0 ± π . Here the parameter space can be narrowed
down to the range of [0, π ] instead of [0, 2π ], while keeping in mind that
any statement about a valueφ0 applies to φ0 + π as well.

4.3.3 The restricted PN approximation

This approximation gives the h+/h× waveforms in the time domain and
was used for mock data generation for the first and second round of the
Mock LISA Data Challenges (MLDC) [90]. The formulas are given in
[91, 92] and are reproduced in appendix A.7. This aproximation was used
in the context of inference on space-based LISA measurements [16]. In
contrast to the definitions in 4.2, the domain of the coalescence phase may
be narrowed down to φ0 ∈ [0, π ] here.

4.3.4 The 2.0 PN stationary phase approximation

This approximation gives the Fourier transforms h̃+/h̃× of the chirp wave-
form, i.e. the signal in the frequency domain. The formulas are given
in [10, 93] and are reproduced in appendix A.8. These were used in the
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first 5-parameter version of the MCMC, where the likelihood computation
took place completely in the frequency domain [12]. In contrast to the def-
initions in 4.2, the domains of coalescence phase and polarisation angle
may be narrowed down to φ0 ∈ [0, π ] and ψ ∈ [0, π2 ] here.

4.3.5 The 2.5 PN phase / 2.0 PN amplitude approximation

This approximation gives templates in the time domain, with 2.5 PN accu-
racy in phase, and 2.0 PN in amplitude. Formulas are given in [79]. These
were used in the coherent version of the MCMC algorithms, where tem-
plates were generated in the time domain, and then numerically Fourier-
transformed to the frequency domain [13].

4.3.6 The 3.5 PN phase / 2.5 PN amplitude approximation

This is a more accurate version of the above templates. The expressions
for the 3.5 PN phase are given in [86] (requiring terms from [94]), and the
formulas for the 2.5 PN amplitude in [95]. For parametrisation in terms of
coalescence phase φ0 instead of ‘a constant phase’ τ0, see appendix A.9.
These templates were used in [14].

4.4 Detector response

4.4.1 Ground-based interferometry

For ground-based interferometry, the detector is assumed to have essen-
tially zero extent and so the interferometer output h simplifies to the sum
of the projections of the passing +/× polarisation waveforms h+ and h×
along the directions of the interferometer arms. Depending on the interfer-
ometer’s location, the wave will pass the interferometer with a slight time
difference ∆(I)

t with respect to the geocentre (within ±0.022 seconds). The
signal h(I)(t,θ) that is eventually measured at a detector I depends on the
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antennae pattern functions F(I)
+ and F(I)

× :

h(I)(t,θ) = F(I)
+ h(I)

+

(
t,θ
)

+ F(I)
× h(I)

×
(
t,θ
)

(4.11)

where

F(I)
+ = + 1

2
(
1 + cos2(ϑ(I))

)
cos(2ϕ(I)) cos(2ψ(I))

− cos(ϑ(I)) sin(2ϕ(I)) sin(2ψ(I)) (4.12)

F(I)
× = − 1

2
(
1 + cos2(ϑ(I))

)
cos(2ϕ(I)) sin(2ψ(I))

− cos(ϑ(I)) sin(2ϕ(I)) cos(2ψ(I)) (4.13)

[79], and the ‘local’ parameters ϑ(I), ϕ(I), ψ(I) and ∆(I)
t are defined as in

section 4.2. For binary inspiral signal analysis the antennae pattern func-
tions as well as the time shift ∆(I)

t are assumed to be constant over the
short time intervals of concern.

4.4.2 Space-based interferometry

The planned space-based LISA observatory will be of a size that is of the
order of the wavelengths it is going to be able to detect. It will be sensitive
to much lower frequencies, and its sampling frequencies will be lower as
well, so any measurement will be significantly affected by the orbital mo-
tion and its change over time. The mapping from the passing gravitational
wave to the output is not a simple ‘1:1’ mapping as in the simplified model
for earth-bound measurements, especially when the signal wavelength is
of the order of LISA’s armlength. The interferometer response to a given
GW signal (specified in terms of its +/× polarisation waveforms h+ and
h×, polarisation angle and source direction) can in general be approxi-
mated numerically [81, 97, 98], or, in the special case of sinusoidal signals
at low wavelengths, analytically [35, 99].

Due to LISA’s layout, the ‘raw’ detector output variables will always
be interspersed with highly correlated noise, originating e.g. from ran-
dom motions of the individual spacecraft that will affect all in- and out-
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going measurements. By clever combination of the different observables,
many such unwanted effects can be made to cancel out again. The data
produced by the spacecraft trio is typically combined to form three time-
delay-interferometry (TDI) variables, denoted by X, Y and Z [78]. These
can be linearly recombined into three stochastically independent compo-
nents (A, E and T), two of which are sensitive to gravitational waves (A
and E) and one component which is a ‘null stream’ that is only noise (T)
(see also appendix A.10) [100]. The derivation of TDI varibles can be mo-
tivated as the signal’s principal components or sufficient statistics, which
concentrate the ‘astronomical’ information in the data [101]. In the follow-
ing we will only be concerned with the former two variables, A and E.

4.5 Model

4.5.1 The data

In both cases of ground-based and space-based interferometers, the data
are time series, in general several of them, denoting the measured gravita-
tional wave, and also noise affecting the measurement for different inter-
ferometers or TDI variables. The noise may have individual characteristics
for the different data streams, and in any case the streams are assumed
to be stochastically independent. In the following two subsections, two
models for these individual time series (corresponding to different inter-
ferometers or TDI variables) are introduced.

4.5.2 Known noise spectrum

The detector output {z(ti)}i=1,...,N is a time series, a data set of size N
corresponding to a set of equidistant time points ti. It is assumed to be
the sum of the response to a gravity wave signal s(t,θ) depending on an
(unknown) parameter vector θ, and noise n(t), which is assumed to be
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Normal and stationary with given power spectral density Sn( f ):

z(ti) = s(ti ,θ) + n(ti) for i = 1, . . . , N. (4.14)

Data from different detectors or TDI variables then are assumed to be
stochastically independent. The noise’s Normal distribution is not neces-
sarily only a property of the actual noise, but may also express uncertainty
in the noise level (and sources) or its distribution itself; the Normal distri-
bution is the maximum entropy distribution for a given second (and first)
moment of the noise [102, 103, 3].

The signal waveforms s(t,θ) describing the detector response to a pass-
ing gravitational wave with parameters θ were defined in sections 4.3
and 4.4. For ground-based interferometers these are of a functional form,
while for space-based applications these are derived numerically from the
given +/× polarisation waveforms.

4.5.3 Unknown noise spectrum

Model specification

When the noise spectrum is not known in advance, it can also be incor-
porated into the inference in terms of a set of unknown parameters. The
model setup is then similar to the above, the difference being the addi-
tional parameter vector σ = (σ0, . . . ,σN/2) in the noise term:

z(ti) = s(ti ,θ) + n(ti ,σ) for i = 1, . . . , N, (4.15)
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where the noise (-residuals) n(ti ,σ) are modeled as:

n(ti ,σ) =
N/2

∑
j=0

a j cos(2π f jti) + b j sin(2π f jti) (4.16)

=
N/2

∑
j=0

√
a2

j + b2
j sin(2π f jti +ϕ j), (4.17)

whereϕ j =





arctan
( b j

a j

)
if a j > 0

arctan
( b j

a j
± π

)
if a j < 0,

the f j are the Fourier frequencies f j = j∆ f =
j

N∆t
, and the a j and b j corre-

sponding to frequency f j are random variables following a Normal distri-
bution N(0,σ2

j ) with zero mean and variance σ2
j (except for b0 = bN/2 =

0). This means that the resulting noise n(ti ,σ) is Normal with zero mean
(being a linear combination of Normally distributed random variables for
each ti). For given variance parametersσ0, . . . ,σN/2 the noise’s (one-sided)
spectral density at a frequency f j is

Sn( f j) = N ∆2
t σ

2
j =

1
N ∆2

f
σ2

j for j = 1, . . . , N
2 − 1, (4.18)

and half as much for j = 0 and j = N
2 . If all theσ j were known, this model

would be exactly equivalent to the model from the previous section 4.5.2.
Treating the variance parameters σ j as unknown adds a set of N

2 + 1 ad-
ditional parameters to the model. The noise realisations a0, . . . , aN/2 and
b0, . . . , bN/2 can be derived from the time-domain noise n(t) by a discrete
Fourier transform (for details see appendix A.11.1), and every σ j can be
estimated based on a j and b j (and prior information, of course). If the data
consists of more than one time series and a common spectrum is assumed
for these, the estimation of the σ j can be based on more than two samples
each.
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Some remarks

At first glance, the above model might seem a bit odd, seemingly imply-
ing that the noise came about by randomly drawing amplitudes for each
frequency, and then adding up the resulting sinusoids. But if one assumes
all the variance parameters to be known, then the model turns out to be
exactly equivalent to the more common model from the previous section.
Models for non-white (or ‘coloured’) noise are commonly characterised ei-
ther by their spectrum or (equivalently) by their autocorrelation function.
Following the above reasoning, a definition in terms of an autocorrelation
function might seem just as odd, since it would imply that the noise sam-
ples at each instance came about as linear combinations of all previous
samples, plus an added error term. Still, these models are common and
useful.

More insight into the model introduced above may be gained by con-
sidering the following motivations. Firstly, the set of trigonometric func-
tions in (4.16) constitute an orthonormal basis of R

N . This implies that
there is a unique one-to-one mapping (via Fourier transformation) be-
tween the time-domain and frequency-domain representations of the noise.
Looking at the relation between noise spectrum and noise parameters in
equation (4.18), one can see that (for given noise parameters σ) this noise
parametrisation is equivalent to the model for given noise spectrum, and
that allowing σ to be unknown leads to a somewhat ‘natural’ generali-
sation. Implementation of the model is simplified by the availability of
a conjugate prior distribution for σ j (see the following section). Using
this prior, all σ j are independent in their conditional posterior distribu-
tion (conditional on a given vector of residual noise), and only depend
on the corresponding a j and b j, which is very convenient for practical
implementation. In fact, if one used the noise model for spectrum esti-
mation of a given ‘fixed’ noise sample (instead of looking at conditional
spectra, conditional on the current signal parameters within a Metropolis-
algorithm, as in the following), the complete posterior distribution of the
noise parameters σ j, and with that the posterior distribution of the spec-
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trum, would be given in a rather simple, closed form.
As stated earlier, the resulting noise is Normal with zero mean. Prob-

ably most importantly, the use of the Normal distribution does not neces-
sarily mean that the noise actually was sampled from a Normal distribu-
tion, but it is also the maximum entropy distribution for given first and
second moments (mean and variance) of the noise. This means that when
specifying the noise in terms of a Normal distribution, the only assump-
tions entering the model are about its mean (which is fixed at zero), and
its variance parameters (σ j), for which prior information needs to be sup-
plied, but which are otherwise inferred from the data. In particular, with
this specification the model is also able to handle ‘deterministic’ but un-
accounted for signals that may be present within the noise. This property
is exposed in far more detail in [103]. This will be particularly useful in
the application to gravitational-wave measurements where the ‘noise’ is
assumed to be in significant part due to unaccounted for signals.

The great number of parameters in the noise model make it very gen-
eral, nonrestrictive and flexible. This is a particularly desirable property
when dealing with space-based ‘LISA’ data, where the noise spectrum is
known to exhibit many narrow ‘emission lines’. Restrictions may be in-
troduced through the prior, or, if for example the spectrum is assumed to
be somewhat smooth, via a hierarchical model and hyperparameters for
the σ j.

Implementation implications

The variance parameters σ j are estimated from the observed values of a j
and b j. Specifying the prior for eachσ j ( j = 0, . . . , N

2 ) in terms of their con-
jugate prior distribution makes inference for these very straightforward.
For a given, fixed noise vector n(·), the posterior distribution of the noise
parametersσ0, . . . ,σN/2 then has a rather simple, closed form. When using
MCMC methods for inference using the models introduced above, the ad-
ditional noise parameters that appear in the ‘unknown spectrum’ model
(4.15) can be drawn in a simple Gibbs step, conditional on the remaining
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signal parameters θ, on which the noise parameters depend via the im-
plied vector of residual noise. The conjugate prior distribution forσ j is the
scaled inverse χ2-distribution :

p(σ2
j ) = Inv-χ2(ν j, s2

j ) (4.19)

with degrees-of-freedom parameter ν j and scale parameter s2
j [42]. Speci-

fying ν j and s2
j as independent from j would lead to a priori white noise.

Varying s2
j with j on the other hand leads to a priori coloured noise, while

a specification of ν j dependent on j would indicate varying prior certainty
over different parts of the spectrum.

For simplicity and clarity, in the following the running index j of the
noise parameters σ j is mostly assumed to be j > 0 and j < N

2 . This ex-
cludes the two extreme cases j = 0 and j = N

2 which need to be treated
slightly differently but analogously. For a given sample (n(t0), . . . , n(tN−1)),
a discrete Fourier transformation (ñ( f0), . . . , ñ( fN−1)) yields the two real-
isations a j and b j for each j = 0, . . . , N

2 from which the value of σ2
j (corre-

sponding to frequency f j) can be inferred; see appendix A.11.1 for an exact
derivation. The (conditional) posterior distribution of σ 2

j (conditional on
the remaining parameters θ, on which it depends via the implied vector of
residual noise) is then again a scaled inverse χ2-distribution:

σ2
j
∣∣{n(t1), . . . , n(tN)} ∼ Inv-χ2

(
ν j + 2,

ν js2
j + a2

j + b2
j

ν j + 2

)
(4.20)

for j = 1, . . . , N − 1 [42]. The sum of the squared ‘empirical’ amplitudes
a2

j + b2
j = 4∆2

f |ñ( f j)|2 here is the sufficient statistic for σ j. More generally,
if one has several independent time series with a common unknown spec-
trum that is to be estimated, then the corresponding conditional posterior
distribution is

σ2
j
∣∣n1(·), . . . , nk(·) ∼ Inv-χ2

(
ν j + 2k,

ν js2
j + v j

ν j + 2k

)
(4.21)
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for j = 1, . . . , N − 1, where k is the number of time series, and v j =

4∆2
f ∑k

i=1 |ñi( f j)|2 is the total sum of squared amplitudes corresponding
to frequency f j.

When setting up an MCMC sampler for this model that uses parallel
tempering, one also needs to be able to sample from the ‘tempered’ condi-
tional posterior. If the tempering is only applied to the likelihood part of
the posterior (as in (3.11)), the resulting tempered distribution is again an
Inv-χ2-distribution:

Inv-χ2
(
ν0 + 2k

T ,
ν js2

j + 1
T v j

ν j +
2k
T

)
(4.22)

for j = 1, . . . , N − 1 (see also appendix A.12).

Given the sum of squared amplitudes v j, one can also easily derive
the (conditional) expected spectrum, via the expected values of the σ j’s
(4.21) and their (linear) relationship to the spectrum (4.18). This is useful,
because this way one can estimate the posterior expected spectrum within
an MCMC algorithm as E[Sn( f )|y] = E

[
E[Sn( f )|θ]|y

]
without having to

integrate over the noise parameters (by sampling) as well. First of all, the
expectation of σ2

j is:

E[σ2
j |n1(·), . . . , nk(·)] = E[σ2

j |v2
j ] =

ν js2
j + v j

ν j + 2k − 2 (4.23)

[42], and consequently the expected spectrum is

E[Sn( f j)|n1(·), . . . , nk(·)] = N∆2
t
ν js2

j + v j

ν j + 2k − 2 . (4.24)

Note that when doing the likelihood computation as described in the
following section, the computation of the v j = 4∆2

f ∑k
i=1 |ñi( f j)|2 do not

require any additional Fourier transformations to those that are already
done in the ‘known spectrum’ case; due to the linearity of the Fourier
transform (3.59), the transform of the difference of data and signal tem-
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plate is identical to the difference in the transforms of data and signal tem-
plate: z̃−s = z̃ − s̃.

4.6 Likelihood

4.6.1 Overall likelihood

When processing data from different detectors or TDI variables, in both
cases their noises are assumed to be detector/variable-specific and inde-
pendent. Thus, the joint likelihood L(θ) = p(θ|y) is a product of the indi-
vidual likelihoods, indexed by I:

L(θ) = ∏
I

L
(I)(θ) (4.25)

⇔ log(L(θ)) = ∑
I

log(L(I)(θ)). (4.26)

The exact forms of the individual likelihoods are given in the following
section.

4.6.2 Individual likelihood

‘Known spectrum’ model

Since the noise is defined as coloured and specified in terms of its spectral
density, it is most convenient to perform likelihood computations in the
frequency domain, based on Fourier transforms of data (z̃) and modeled
waveform (s̃(θ)). The likelihood for the I-th detector/variable is given by
the following expression

L
(I)(θ) = p(I)(z|θ) = K × exp

(
−2

∫
∞

0

|z̃( f ) − s̃( f ,θ)|2
Sn( f ) d f

)
(4.27)

[104], which for discretised data corresponds to the sum of the squared
differences between (discrete) Fourier transforms of observed signal and
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signal template over the discrete set of Fourier frequencies { fi = i∆ f :
iL ≤ i ≤ iU}:

L
(I)(θ) = K × exp

(
− 2

N
iU
∑

i=iL

|z̃( fi) − s̃( fi ,θ)|2
Sn( fi)

)
(4.28)

where fiL and fiU are the lower and upper bounds of the examined fre-
quency range, ∆ f is the resolution of the (discrete) Fourier transformed
data, | · | denotes the absolute value of the (complex-valued) difference,
Sn(·) is the (one-sided) noise power spectral density, and K is a normal-
ising constant. Note that (although not labeled as such) z, s, S, iL, iU , δt
and ∆ f are specific for the Ith set of data (detector or TDI variable). For
simplicity, it is here assumed that iL > 0 and iU < N

2 , since this means the
special cases of i = 0 and i = N

2 drop out (see section 3.4.2, (4.18), and
appendix A.11.1).

The restriction to a limited frequency range in (4.28) may be interpreted
as the assumption that the noise spectrum was infinite outside that range,
or that s̃ was bandwidth-limited to within that range, or at least that a
change inθ does not change s̃ outside the range. In either case the dropped
terms are considered part of the normalising constant K.

‘Unknown spectrum’ model

The likelihood function for the model that does not assume the spectrum
to be known beforehand is very similar to the above (4.28), but takes into
account the noise parameters (σ 2

1 , . . . ,σ2
N/2) as unknowns:

L
(I)(θ) = K × exp

(
iU
∑

i=iL

[
− 2

N
|z̃( fi) − s̃( fi,θ)|2

Sn( fi)
− log

(
Sn( fi)

)]
)

(4.29)

where the relation between the idividual parameters σ 2
i (i = 0, . . . , N

2 ) and
the implied (one-sided) spectrum Sn( fi) was given in equation (4.18). A
more detailed derivation of the likelihood from the noise model is shown
in appendix A.11.2.



78 4. MODEL COMPONENTS

4.6.3 Signal-to-noise ratio
An expression closely related to the likelihood is the signal-to-noise ratio
(SNR). The SNR of a certain signal s(θ) received at interferometer I and
embedded in noise with spectral density Sn is defined as:

ρ(I)(s(θ)) =

√
4
∫

∞

0

|s̃( f ,θ(I))|2
Sn( f ) d f (4.30)

[11]. In analogy to equation (4.28) it is in practice computed over the same
frequency range that is relevant for the likelihood:

ρ(I)(s(θ)) =

√√√√ 4
N

iU
∑

i=iL

|s̃(i ×∆ f ,θ(I))|2
Sn(i ×∆ f )

. (4.31)

The overall network SNR then is defined as

ρ(s(θ)) =

√
∑

I

(
ρ(I)(s(θ))

)2 (4.32)

[29].
Note that ρ(s) ≥ 0, and ρ(a · s) = |a| · ρ(s) for a ∈ R (i.e. the SNR is

positively homogeneous).

4.7 Prior definition

4.7.1 A priori information
The prior distribution of the parameters expresses the information about
the signal’s parameter values before considering the data. In the follow-
ing, one obvious prerequisite will be taken advantage of, namely that the
signal present in the data is strong enough to be detected. The algorithm
developed here is intended for use after the data has been preprocessed
by a signal detection algorithm, and not for detection itself. So, once the
signal has been picked up by the detection algorithm, it clearly must have
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a certain intensity. Ruling out those parts of parameter space that imply
signals that could not be detected anyway allows the definition of a proper
and otherwise uninformative prior distribution for all parameters. First an
(improper) distribution describing the occurrence of inspiral events will be
derived, which is then constrained by considering the detectability for any
given parameter combination.

4.7.2 Occurrence
Assuming that an inspiral event is equally likely to happen in any direc-
tion and orientation (or there is none a priori ‘preferred’) leads to indepen-
dent prior distributions that are uniform across their domains for coales-
cence phaseφ0, right ascensionα⊕, and polarisationψ⊕. The prior density
for the declination δ⊕ is

f (δ⊕) = 1
2 cos(δ⊕), (4.33)

proportional to the circumference of the corresponding parallel (circle of
latitude). Analogously, the prior density for the inclination ι is

f (ι) = 1
2 sin(ι). (4.34)

For parametrisation in terms of (ecliptic) latitude β�, longitude λ� and
polarisation ψ� the prior is defined accordingly.

The coalescence time (tc) is assumed to be known in advance with a
certain precision through preprocessing of the data. For ground-based ap-
plications this is implemented as a uniform distribution across ±10 ms
around the true value (which of course is known for simulated data sets).
For space-based (LISA) applications an (improper) unbounded uniform
prior distribution is used. In realistic applications, a uniform prior, ei-
ther across a conservatively wide range, or an unbounded (improper) one,
might be appropriate as well.

The prior for the masses (m1, m2), reflecting the distribution of the
masses among binary inspirals, could be based on observational evidence
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[105, 106] as well as theoretical considerations [107, 108]. For testing pur-
poses with simulated data in ground-based applications (as well as for the
plots shown later in this section) a uniform prior across 1–10 M� (solar
masses: M� ≈ 2×1030 kg) was used. For the LISA application, the prior
also was defined to be uniform over the parameter range specified for the
corresponding application [92], which was defined by m1 ∈ [106M�, 5×
106M�] and m2/m1 ∈ [1, 4].

Assuming that inspirals happen uniformly across space leads to a prior
for the luminosity distance dL with

P(dL ≤ y) ∝ y3. (4.35)

Without explicitly specifying any upper bound for dL, so far this is an im-
proper prior (that has an infinite integral), seemingly implying that there
was an ‘infinite’ probability for ‘infinitely remote’ inspiral events. For
some useful formulas for a bounded, proper version of this distance ‘oc-
currence’ prior see appendix A.14.

4.7.3 Detectability

The above definitions alone lead to a prior that is not only improper, but
also unrealistic—obviously, signals cannot originate from arbitrarily great
distances, since beyond a certain point they would be too faint to be no-
ticeable at all. Rather, they need to happen within a certain range in order
to be detected. This restriction is incorporated into the prior definition
by considering the detection probability for any point in parameter space.
The detection probability D(θ) of a signal with parameters θ is defined to
depend on the signal’s signal-to-noise ratio (SNR) ρ(θ):

D(θ) ∝ ρ(θ). (4.36)

The SNR is computationally expensive to determine, so for the prior def-
inition a ‘cheap’ approximation to the SNR is sought. Due to the SNR’s
homogeneity property (see section 4.6.3) one can simplify and only con-
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sider those parameters that affect the wave’s amplitude A, assuming that

ρ(θ) ∝∼ A(θ), (4.37)

i.e. the SNR ρ(θ) is approximated using the overall signal amplitude A(θ),
which is then defined as

A(m1, m2, dL, ι) = log
(√

η m
5
6
t

dL

√(
1 + cos2(ι)

)2
+
(
2 cos(ι)

)2

︸ ︷︷ ︸
≥1 and ≤

√
8 ≈ 2.8

)
(4.38)

= 1
2
(
log(m1) + log(m2)

)
− 1

6 log(m1 + m2)

− log(dL) + 1
2 log

(
1 + 6 cos(ι)2 + cos(ι)4) (4.39)

[12, 14]. A here actually denotes the logarithmic amplitude (see (A.28),
(4.8), (4.9), [12]). This simplification only considers the properties of the
arriving wave (at a given point in space), neglecting any detector prop-
erties like its relative orientation or noise. From equation (4.38) one can
see how the amplitude is affected by different parameters: it grows with
the mass ratio (more similar masses mean a greater amplitude), it grows
with the total mass (twice the total mass mt yields 2 5

6 ≈ 1.78 times the
amplitude), it decreases with the distance (twice the distance dL—half the
amplitude), and depending on the inclination angle ι, it may vary by a
factor of almost 3 (and is lowest at the most likely value ι = π

2 ).
The detection probability for certain parameter values θ then is mod-

eled in dependence on the logarithmic SNR (approximated by A):

D(θ) = D
(
log(ρ(θ))

)
≈ D

(
A(θ)

)
. (4.40)

Due to the random noise contribution to the measured signal, detectabil-
ity of a given signal in general is a matter of chance. While detectability is
certain for strong signals and impossible for weak signals, there is a transi-
tion region in between; the same effect was found to be present in a similar
context (long-term observations of pulsar’s gravitational wave signals) [8].
The dependence between a given amplitude x and detection probability D
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is modeled using a (sigmoidal) logistic function of the form:

Da,b(x) =
1

1 + exp(− x−a
b )

(4.41)

where a and b are set so that Da,b(xL) = p and Da,b(xU) = 1 − p for some
0 < p < 0.5 and lower and upper thresholds xL and xU. So xL denotes the
amplitude at which the detection probability reaches p, and xU is the am-
plitude where the probability falls below (1 − p). In order to fit d through
these points, its parameters are then set to:

a =
xL + xU

2 and b =
xL − xU

2 log( p
1−p )

. (4.42)

For example, one could set p = 0.1, xU = A(2M�, 2M�, 50Mpc, π2 ) and
xL = A(2M�, 2M�, 60Mpc, π2 ), assuming that a 2-2-M� inspiral with an
inclination of π

2 is detectable out to 50 and 60 Mpc with probabilities of
90% and 10%, respectively.

Fitting the logistic function (4.41) also yields the interpretation that
there is a linear relationship between logarithmic detection-odds and the
(logarithmic) signal amplitude A. Odds are derived from probabilities as:

odds(p) =
p

1 − p . (4.43)

The parameter a then defines the amplitude value A where detection chanc-
es are “50:50” (i.e. the probability is p = 1

2 ), and b determines how much
the (logarithmic) odds change with an increasing (logarithmic) amplitude.
A value of b = 1 would mean that an amplitude change by a certain factor
changes the detection odds by the same factor.

Instead of approximating the SNR ρ(θ) by the amplitude exp(A(θ)),
one could directly use the SNR to model the detection probability. Com-
puting an SNR is in general about as computationally expensive as a likeli-
hood computation. But within an Metropolis algorithm, where one would
compute the likelihood for each proposed step anyway (except if the prior
is already zero), it would simplify to some extent. Due to their similar-
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ity, SNR and likelihood computation could share common intermediate
stages, and an additional SNR computation might come at little additional
computational cost. The shape of the prior distribution would then de-
pend on properties of the instrument(s) used to obtain the measurement,
e.g. instrument noise, or its orientation at the time of observation.

4.7.4 Prior
Given the above occurrence and detection probabilities, the joint prior for
parameters θ is:

p(θ) = p(occurrence |θ) × p(detection |θ, occurrence), (4.44)

so the detection probability enters the prior definition as an extra factor in
addition to the independent components of the ‘occurrence’ prior defini-
tion. The resulting prior distribution is proper, i.e. it has a finite integral
(see appendix A.15 for a proof).

The dependence on the signal’s amplitude implies that greater masses
are (a priori) more likely even if initially any mass is assumed to be equally
likely to occur: signals involving greater masses may originate from greater
distances, while low-mass inspirals need to be close to be noticeable at all.
Masses, distance and inclination angle are not stochastically independent
any more. Figure 4.4 shows some marginal prior densities resulting from
the above definitions (and a uniform prior across 1–10 M� for the individ-
ual masses m1, m2). A similar, analogous effect is known in astronomy as
the Malmquist effect. Considering it in the prior definition will compen-
sate for selection bias that would otherwise also affect parameter estimates
and other inference [109, 110].

4.7.5 Noise prior
When using the model that does not assume the noise spectrum to be
known beforehand (see section 4.5.3), the prior for the additional noise
parameters σ0, . . . ,σN/2 needs to be specified as well. If available, one can
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Figure 4.4: Marginal prior densities for two pairs of parameters.

derive a rough spectrum estimate from an (independent) sample of the
noise, by first determining its empirical spectrum Ŝn (as described in sec-
tion 3.4.5 for example) and then defining the prior scale s2

j for each of the
parameters σ j by inverting equation (4.18) and setting

s2
j =

Ŝn( f j)

N∆2
t

. (4.45)

Alternatively, theoretical predictions of the spectrum (e.g. [34, 26, 27]) could
be used instead. The certainty in this estimate then also needs to be spec-
ified via the prior degrees-of-freedom ν0. Setting ν0 to zero yields a non-
informative, but also improper prior for the σ j that does not depend on
the prior scale s2

j (see also appendix A.12).



Chapter 5

Application

5.1 Inference on inspiral signals
using ground-based detectors

5.1.1 Introduction

In the following, applications of a Bayesian inference framework to the
analysis of inspiral signals are illustrated. The (simulated) data come from
earth-bound interferometers, and the parameters determining the mea-
sured waveform are inferred.

The model and methods used here originate from a longer evolution
process (see also chapter 1). A first version of the approach used a sim-
plified model considering only 5 parameters and data from a single in-
terferometer. The 4 neglected parameters were altitude, azimuth, polari-
sation and inclination angle; it was then assumed that the inspiral event
was ‘optimally oriented’, having zero inclination and being located in the
interferometer’s zenith. The resulting posterior distributions exhibit mul-
tiple modes, so that a basic MCMC algorithm usually would end up and
be stuck in one of the many local modes. Reliable convergence was then
ensured by using importance resampling to generate some approximate
posterior draws from a large sample covering the whole parameter space.
This approach was no longer feasible with the enlarged parameter space
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(9 parameters) when going over to analyse data from several interferom-
eters. Starting values were still generated the same way, but convergence
and mixing of the MCMC chains are ensured by the use of parallel temper-
ing (and its extension, evolutionary MCMC). In the simplified problem,
the Metropolis-algorithm’s proposal distribution was adaptively fitted to
the distribution of some initial few thousand samples (see also section 3.7).
This was possible because the sampler was certain to have correctly con-
verged after a few thousand iterations. Since the sampler spends an in-
definite amount of time searching for and converging towards the main
posterior mode in the enlarged, 9-dimensional parameter space, it is now
working with fixed covariance settings. While initially the 2.0 PN station-
ary phase model was used to derive inspiral waveforms directly in the
frequency domain (see section 4.3.4), these were meanwhile replaced by
higher PN time-domain models, where the resulting waveforms are then
numerically Fourier-transformed. When working with signal templates
that are analytically Fourier-transformed waveforms, these are of course
still matched with numerically Fourier-transformed data. This may actu-
ally introduce some discrepancies, because the analytically Fourier-trans-
formed templates may consider features of the waveform that actually fall
outside the observed time stretch of data, while the numerically Fourier-
transformed data will be affected by leakage effects that are not reflected
in the template. Having both data and matched waveform in the time
domain, and only doing the matching (likelihood computation) in the fre-
quency domain, based on numerical transforms, should circumvent these
potential pitfalls.

In the following sections, examples are shown for an application of the
5-parameter model using data from a single interferometer, as well as ap-
plications of the code developed for the 9-parameter problem, considering
data from a network of detectors.
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5.1.2 Model and code details

The MCMC sampler was coded in C, and any post-processing, plots etc.
of the MCMC output were undertaken in R [55]. The data used was
given in the Frame format and ported into C using the freely available
Frame library [111]. This ‘data’ here was either a file containing sepa-
rate noise and signal channels which needed to be combined internally,
or only the noise, if the simulated signal was generated and injected by
the MCMC code. The inspiral signal waveform was modeled using either
the 2.0 PN stationary-phase approximation (see section 4.3.4), the 2.5 PN
phase / 2.0 PN amplitude approximation (see section 4.3.5), or the 3.5 PN
phase / 2.5 PN amplitude approximation (see section 4.3.6). Because the
signal is known to be bandwidth-limited well below the data’s sampling
rate, it was possible to filter and downsample the original data by a factor
of 4 (for details see section 3.5), which was done after the signal injec-
tion. The necessary low-pass filter was designed using a freely available
implementation of the ‘Parks-McClellan’ (or ‘Remez exchange’) algorithm
[112]. For all numerical Fourier transforms the FFTW library was used
[64]. The noise was modeled as stationary and Gaussian, with a known
spectral density (see the description in section 4.5.2). The noise spectrum
that goes into the likelihood computations was estimated from a separate
section of data that is disjoint from the actually analysed data set, as de-
scribed in section 3.4.5. In order to reduce leakage effects, windowing was
applied to the data; a ‘Hann’ window was used for spectrum estimation,
and a ‘Tukey’ window was used for the actual data (see section 3.4.3). The
Tukey window’s parameter was set to α = 5%, and the data segment to
be analysed was selected such that the windowing only interfered with
the ‘left’ end (the beginning) of the signal, while the endpoint was set so
that the downweighing of data points only set in well after coalescence
time. Some of the parameters were reparameterised to allow for easier
sampling from the posterior distribution (see also section 3.3). Instead of
the individual masses m1 and m2, chirp mass mc and mass ratio η were
used (see section 4.2.2), greatly reducing correlations between these pa-
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rameters. Instead of the luminosity distance dL, its logarithm was used,
which implicitly leads to an unbounded parameter space, and proposal
step widths that are proportional to the distance itself. Inclination an-
gle ι and declination δ were tranformed to cos(ι) and sin(δ). The ‘local’
parameters determining the signal observed at a specific interferometer
were derived as described in section 4.2.3. The necessary specifications
of the interferometers’ locations and orientations are given in [82]. In or-
der to determine the eventually relevant coordinates, the Greenwich mean
sidereal time (GMST) needs to be derived [83], and the geographical co-
ordinate system needs to be considered [84]. Random number generation
within the MCMC sampler was implemented using Randlib [113]. The
proposal distribution used in the sampler was a multivariate t-distribution
with 3 degrees of freedom [42]. This distribution has ‘heavier tails’ than
a Normal distribution, which means that extreme values are more likely
to occur; this property makes it a more robust choice as a proposal distri-
bution [42]. In addition to the ‘regular’ proposals, sometimes (randomly)
draws from the prior or moves to ‘related’ parts of the parameter space
were proposed for some parameters, in order to improve convergence and
mixing. ‘Related’ parts of the parameter space could e.g. be a move from
inclination ι to π − ι, or from phase φ0 to φ0 ± π , both leading to simi-
lar waveforms. If care is taken that the proposal distribution’s symmetry
property is maintained, the resulting sampler is still a simple Metropo-
lis (not a Metropolis-Hastings) sampler, so that the proposal distribution’s
density does not need to be considered. For the case of 9 parameters and
data from a network of interferometers, the sampler was extended to a
parallel tempering algorithm, and then further to an evolutionary MCMC
(see section 3.2.9 and following). The evolutionary MCMC algorithm was
set up such that 75% of all proposals still were ‘regular’ Metropolis (‘mu-
tation’) steps; half of the remaining (‘recombination’) proposals then were
‘real’ crossovers, while the other half were ‘snooker’ crossovers. Due to
the high computational costs and the great variability in the output, tuning
and evaluation of algorithm parameters is hard or would require a greater
systematical effort, and so the setup remained at these ad-hoc settings.
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The tempering was implemented so that it only affects the likelihood part
of the posterior (and not the prior), as defined in equation (3.11). The
temperature ladder was defined through a constant temperature ratio, as
described in section 3.2.12. The sampler eventually was set to log every
25th or 50th sample to a text file that was then read into R for eventual
analysis.

5.1.3 Single interferometer example
Example setup

The 5 parameters considered here are the two companions’ masses m1 and
m2, coalescence time tc, coalescence phase φ0 and distance dE. In this ex-
ample the distance parameter is denoted by dE, the effectice distance, in-
stead of the luminosity distance dL. This is owed to the fact that certain
parameters are assumed known or fixed here, which otherwise would also
affect the signal’s amplitude. Since in a realistic setting those parameters
(sky location etc.) cannot be known, they would also affect the overall
signal amplitude, and with that the distance estimate, which would then
not give the “physical” distance, but rather the “apparent” distance. The
signal waveform is modeled using the 2.0 PN stationary-phase approxi-
mation (see section 4.3.4).

The signal analysed had an effective distance of 25 Mpc, and was em-
bedded in Gaussian and stationary noise that had its noise power spec-
tral density match that of LIGO’s target sensitivity [21]. The embedded
signal had a signal-to-noise ratio of 10. The true parameter values are
given in table 5.1. Approximate posterior samples as starting values for
the MCMC chains are generated using importance resampling (see sec-
tion 3.2.16). The frequency range over which the likelihood is computed
was set to 40–1800 Hz. The prior for the 5 parameters was defined as de-
scribed in section 4.7, the prior range for the masses was defined to be
between 0.6 M� and 3 M�, and the coalescence time’s range was within
±5 ms of the true value.

Six parallel chains were run; the starting points of the chains were gen-
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erated by importance resampling of 100 000 draws, a number that proved
to yield enough eventual draws that were sufficiently close to the main
posterior mode to ensure reliable and fast convergence of the Metropo-
lis algorithm. The first 30 000 iterations of each chain were considered
the burn-in-phase, during which the iterations 15 000–30 000 were used to
tune the proposal covariance. The code was then run for 2 million itera-
tions in total, which after thinning out of the samples and discarding the
burn-in yielded a sample of size 236 400 from the posterior. The ‘multi-
variate potential scale reduction factor’ R̂p was close to 1 (R̂p = 1.0034),
indicating convergence of all chains [47].

Posterior inference

Figures 5.1–5.4 illustrate estimates of marginal posterior densities. Firstly,
figure 5.1 shows posterior densities for the five individual parameters.
Most of them exhibit a mode near the true parameter value (indicated by
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Figure 5.1: Marginal posterior densities of the five parameters. Dashed
lines indicate the true values.

dashed lines). One can see that the relative precision of parameter estima-
tion varies significantly between different parameters. For example, the
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posterior of the chirp mass covers a range of about 0.006 M�, while the
prior range initially was some 2.1 M�. The coalescence phase’s posterior,
on the other hand, still covers the complete prior domain.

Figure 5.2 allows for some insight into joint distributions of some of the
parameters. The joint density of chirp mass and mass ratio (5.2a) shows a
positive correlation between the two parameters. Figure 5.2b shows inter-
action between two parameters (φ0 and η), and in particular demonstrates
that although the marginal density of φ0 alone is almost uniform (see fig-
ure 5.1), this does not imply that its effect on the posterior was negligible.
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a)  chirp mass (mc) vs. mass ratio (η)
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Figure 5.2: Bivariate marginal posterior densities for two pairs of param-
eters. Dashed lines indicate the true values, the true coalescence phase
is φ0 = 0 (Histograms, the greyscale plots show relative densities nor-
malised to the mode).

The MCMC sampler internally works with chirp mass (mc) and mass
ratio (η) instead of individual masses (m1, m2). A posterior sample of the
individual masses still can easily be obtained by back-transforming each
pair of (mc, η) samples. Figure 5.3 shows these two marginal densities
combined into one plot.

Analogously, other functions of the parameters can be derived and
distributional features investigated; if e.g. one was interested in whether
the masses differ ‘significantly’ or are ‘almost equal’, we can estimate:
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Figure 5.3: Combined plot of marginal posterior densities of the two com-
panions’ individual masses. Dashed lines indicate true values.

P(m2 > 3m1) = 0.11% or P(m2 < 1.5m1) = 4.84%. Figure 5.4 shows the
posterior density of the logarithmic amplitude A(m1, m2, dE) (4.38). Com-
paring it to the prior density you can see that, since it is significantly above
the reference points xU and xL, the particular specification of the lower
bound of the parameter space does not affect our conclusions. Table 5.1
shows summary statistics of the posterior distributions of the inspiral’s
parameters.
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Figure 5.4: Posterior density of the signal’s logarithmic amplitude
A(m1, m2, dE); the dashed line indicates the true value. The prior density
(dotted line) and xU and xL are shown as well.
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Table 5.1: Posterior estimates: Means, medians and 95% central credible
intervals for several parameters.

parameter mean median 95% c.c.i. true unit
chirp mass (mc) 1.2161 1.2159 [1.2145, 1.2186] 1.2167 M�
mass ratio (η) 0.2174 0.2162 [0.1987, 0.2457] 0.2222

coalescence time (tc) 84.6174 84.6174 [84.6160, 84.6189] 84.6167 s
coalescence phase (φ0) — not meaningful — 0.0 radian
effective distance (dE) 26.28 25.99 [21.55, 32.68] 25.00 Mpc

mass 1 (m1) 0.980 0.964 [0.876, 1.229] 1.0 M�
mass 2 (m2) 2.062 2.085 [1.600, 2.327] 2.0 M�
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5.1.4 Coherent network inference example
Example setup

The simulated data in this example represent an inspiral event that is mea-
sured at three interferometers, namely the two LIGO sites Hanford (WA,
USA) and Livingston (LA, USA), and the Virgo detector near Pisa (Italy).
The simulated inspiral event is an inspiral of two companions with masses
of 2 M� and 5 M�, taking place at a distance of 30 Mpc from Earth; the val-
ues of the remaining parameters are given in table 5.2. Figure 5.5 shows
the different waveforms that are measured at each site, without noise and
for the very last orbits before coalescence.

Hanford

Livingston

Pisa

(seconds)
−0.15 −0.10 −0.05      0.00 = tc

Figure 5.5: The signal waveforms (without noise) measured at the 3 differ-
ent interferometer sites and modeled with 3.5PN phase and 2.5PN ampli-
tude accuracy. Note especially the slightly differing arrival times and am-
plitudes due to the interferometers’ locations and orientations. The time
axis refers to the coalescence time at the geocentre (t⊕c ); the local coales-
cence times are marked by crosses.

The simulated signals were embedded in (synthetic, Gaussian) coloured
noise with noise spectral densities matching those expected for the instru-
ments at their target sensitivities [21, 22]. The noise curves are shown in
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Figure 5.6: Noise spectra for the different interferometers. The spectra
are (virtually) the same for the two LIGO interferometers (Hanford, Liv-
ingston), but different for the Virgo interferometer (Pisa). The operational
ranges (frequency ranges considered for inference) are indicated as well.

figure 5.6. The resulting signal-to-noise ratios at the individual interfer-
ometers were: Hanford 7.05, Livingston 9.04, Pisa 5.51, and in total 12.72.

The original time resolution of the data (before downsampling) was
16 384 Hz sampling rate for LIGO data, and 20 000 Hz for Virgo measure-
ments. The frequency range to be considered for likelihood computations
was set to 40–1600 Hz for LIGO and 30–1600 Hz for Virgo. The amount of
data to be considered for inference was 12 s for LIGO, and 23 s for Virgo.
This reflects the time an inspiral of this kind would spend radiating in the
corresponding interferometers’ sensitivity bands, and could in a realistic
setting be defined either with respect to rough estimates from the detec-
tion pipeline, or to worst-case considerations.

The prior was defined as described in section 4.7, and in particular the
prior distribution for the masses was set to be uniform across 1–10 M�,
and the coalescence time prior was defined as uniform across ±10 ms
around the true value. The settings for an inspiral event’s detectability
were (the same as in the example in section 4.7.3) such that an inspiral of
two masses of 2 M� each is assumed to be detectable out to 50 Mpc and
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Figure 5.7: Kernel density estimates of some marginal prior densities.
Dashed lines indicate the parameter values of the injected signal. The two
dotted lines in the lower right plot indicate the values of xL and xU.

60 Mpc distance with 90% and 10% probabiliy, respectively (that is, xU =

A(2M�, 2M�, 50Mpc, π2 ), xL = A(2M�, 2M�, 60Mpc, π2 ), and p = 0.1).

These settings also correspond to what was shown in figure 4.4 (sec-
tion 4.7.3). The resulting 1-dimensional marginal prior densities for some
of the parameters and for the (logarithmic) signal amplitude A are shown
in figure 5.7. The values of xL and xU defining the lower bound for the
amplitude, and consequently affecting the shape of the other involved pa-
rameters’ distributions are shown as well. Larger values of A are less likely
because they occur too rarely, and lower values of A are less likely because
the resulting signals become too faint to be noticeable. The parameter val-
ues of the simulated signal are not very centrally located, compared to
the prior densities as shown in figure 5.7. That should not be a problem
though, because it is the ‘local’ shape of the prior density that is more
important for the shape of the posterior (if the parameters are well deter-
mined by the data, i.e. if posterior distribution is narrow). It might how-
ever become a problem if the parameters are not well determined through
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Figure 5.8: Trace plots of the 9 parameters of the first chain in a run with
four chains, dashed lines indicate the true parameter values. The bot-
tom right plot shows the corresponding (unnormalised) logarithmic like-
lihood values for all four chains, higher temperatures are indicated by
ligher shades of grey. The dashed line here indicates the value of L(θ∅),
the “null” likelihood for θ∅ indicating no signal.

the data—if there is little to be learned from the data, then the prior knowl-
edge becomes of greater relevance. What places the parameter values at
the margin of the prior distribution (especially with respect to dL and A)
is the conservative (low) choice of the prior’s boundary (xL and xU).

Posterior inference

Different runs of the MCMC code on the simulated data were started, one
starting from the true parameter values, and all eventually agreed and
converged towards the same region of the parameter space. Figure 5.8
shows trace plots for one of the chains, together with a trace plot of the
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Figure 5.9: Autocorrelation functions for two of the parameters, corre-
sponding to the MCMC run illustrated in figure 5.8.

corresponding (unnormalised) likelihood values. Here, the first chain (at
temperature T1 = 1) converged after about 250 000 iterations. In the bot-
tom right plot you can see how good parameter sets are “handed down”
to lower-temperature chains, e.g. at around the 200 000th iteration, from
2nd to 1st chain. The 3rd chain briefly visits a mode, but returns to re-
gions of lower likelihood, while the 4th chain keeps sampling at about the
prior. The dashed line in the likelihood plot indicates the value of L(θ∅),
the “null” likelihood for θ∅ indicating no signal (see also section 3.2.12).
Chains at high temperatures obviously keep sampling at around this level
of likelihood. Relative to L(θ∅), the (unnormalised) log-likelihood val-
ues are directly proportional to the deviance D(θ) = 2 log

(
L(θ)

L(θ∅)

)
with

respect to θ∅, indicating the evidence against θ∅ in the data (see also sec-
tion 3.2.12). Note also the increasing variance and decreasing mean in
the sampled posterior values for higher-temperature chains as predicted
by (3.15). Acceptance rates for these four chains were at 26, 29, 60 and 63
percent, with greater acceptance rates at higher temperatures. The result-
ing MCMC chain exhibits a great amount of correlation between subse-
quent samples. Figure 5.9 shows estimated autocorrelation functions ρ̂(k)
for two of the parameters: autocorrelations here decay to near zero only
after a lag of some 10 000 iterations. The integrated autocorrelation time
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(IACT) gives an idea of the time lag to be expected between two “effec-
tively independent samples”:

IACT = 1 + 2
∞

∑
k=1

ρ(k) (5.1)

[114]. Estimated IACTs (derived by substituting the autocorrelation ρ by
its estimate ρ̂ in 5.1 and truncating the sum at k = 20 000) corresponding
to the trace plots in figure 5.8 are mc : 4200, η : 5000, tc : 7000, δ : 760,
α : 2600, ψ : 10 000, ι : 3800, φ0 : 6800 and dL : 3500 (note that these
figures, just as the axis labels in figures 5.8 and 5.9, refer to the individual
MCMC iterations before any thinning out of samples).

Figure 5.10 shows kernel density estimates of the marginal posterior
distributions of each of the 9 individual parameters. All the marginal
distributions cover the corresponding true parameter values of the in-

chirp mass mc (Msun)
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mass ratio η
0.18 0.20 0.22 0.24

coalescence phase φ0 (rad)
0 π 2π

coalescence time tc (s)
9012.340 9012.350

declination δ (rad)
−0.55 −0.50 −0.45

right ascension α (rad)
4.65 4.70 4.76

luminosity distance dL (Mpc)
20 30 40 50

polarisation angle ψ (rad)
0 π 2 π

inclination angle ι (rad)
0 π 2 π

Figure 5.10: Kernel density estimates of the (marginal) posterior densities
for each of the 9 parameters. Dashed lines indicate the true parameter
values.
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jected signal, but there are great differences in the accuracies with which
these can be inferred from the data. The chirp mass mc for example is
determined with great accuracy (the posterior standard deviation is only
0.125% of the true value), while on the other hand the posterior distribu-
tion of the coalescence phaseφ0 still covers the complete prior range [0, 2π ].

More detailed insight into the posterior distribution is gained by look-
ing at joint (marginal) distributions of pairs of parameters. Some estimates
of such densities are shown in figure 5.11. Although correlation between
the mass parameters was greatly reduced through the reparametrisation,
some correlation still remains between the new parameters chirp mass mc
and mass ratio η. From the marginal density of phase φ0 and coalescence
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Figure 5.11: Estimates of 2-dimensional (marginal) joint posterior densi-
ties for 4 pairs of parameters, and 95% confidence regions. Dashed lines
indicate the true parameter values.
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time tc one can see that while the marginal distribution of the phase alone
appears rather undetermined when considered alone (see figure 5.10), the
value of this parameter is important when seen in conjuction with other
parameters. The lower left plot shows that the uncertainty in the dis-
tance dL is tied to the uncertainty in the inclination ι. Both parameters
affect the signal’s amplitude (see (4.8) and (4.9) in section 4.3.2); the dis-
tance only affects the overall scale, and the inclination also shifts weight
between ‘+’ and ‘×’ terms. Looking at the posterior distribution of A, the
(approximate) logarithmic overall amplitude (see table 5.2), one can see
that this is determined with greater accuracy than the distance—the pos-
terior standard deviation of the amplitude is 7.7% of the true value, while
the distance varies by 23% of the true value, three times as much. So the
variation of ι and dL that can be seen in figure 5.11 is mostly along values
implying similar total amplitudes.

Table 5.2 finally lists some numerical estimates for the signal parame-
ters or derived quantities. The posterior distribution of the (approximate)
logarithmic amplitude A, a function of masses, distance and inclination,
is shown as well. Compared to its prior distribution (shown in figure 5.7)
one can see that the posterior is far from the prior’s boundary specified
by xL and xU, suggesting that the exact settings for these do not affect the
shape of the posterior distribution. Looking at the corresponding poste-
rior means, chirp mass and luminosity distance are slightly overestimated,
while the amplitude is slightly underestimated; this is probably due to the
prior definition (i.e., the Malmquist effect). The true amplitude here is at
about the posterior’s 84% quantile.

Effects of varying signal characteristics

In order to check how the posterior distribution is affected by different
signal properties, additional MCMC runs were performed with varying
settings of the true parameter values of the simulated signal. The follow-
ing simulations were undertaken using slightly different signal templates
(2.5 PN phase, 2.0 PN amplitude approximation), and a prior that does not
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Table 5.2: Some key figures summarising the marginal posterior distribu-
tions of individual parameters, where meaningful. Mean and standard
deviation indicate location and spread, and the 95% central credible inter-
val gives a range that contains the true parameter with 95% probability,
given the data at hand.

mean st.dev. 95% c.c.i. true unit
chirp mass (mc) 2.6987 0.0036 (2.6922, 2.7062) 2.6976 M�

mass ratio (η) 0.2062 0.0076 (0.1931, 0.2224) 0.2041
coalescence time (tc) 12.3453 0.0016 (12.3424, 12.3485) 12.3450 s

luminosity distance (dL) 31.6 7.0 (17.7, 43.6) 30.0 Mpc
inclination (ι) 0.722 0.356 (0.154, 1.465) 0.700 rad

declination (δ) −0.496a (−0.537, −0.455) −0.506 rad
right ascension (α) 4.659a

}
0.025a

(4.633, 4.692) 4.647 rad
coalescence phase (φ0) 1.878a 1.235a 2.0 rad

polarisation (ψ) 1.602a 1.0 rad
mass 1 (m1) 2.028 0.089 (1.888, 2.227) 2.0 M�
mass 2 (m2) 4.936 0.232 (4.441, 5.334) 5.0 M�

total mass (mt) 6.964 0.144 (6.668, 7.222) 7.0 M�
log-amplitude (A) −1.866 0.084 (−2.050, −1.715) −1.785

a mean direction and spherical standard deviation

yet take into account the inclination angle’s effect on the signal amplitude
[13].

As one would expect, the precision of parameter estimation is propor-
tional to the signal’s strength; table 5.3 shows the standard deviations of
some of the parameters’ posterior distributions. Here the mass and dis-
tance parameters were varied while the other parameters were held con-
stant. The posterior is narrowest for a close-by inspiral of high masses,
and gets wider for both lower mass or greater distance.

These results are in agreement with earlier estimates of the accuracy
to be expected from such parameter estimates [29]. The great difference
in relative accuracies of parameters related to phase evolution (like chirp
mass mc and reduced mass µ = m1m2

m1+m2
= mtη) versus those affecting the

signal’s amplitude (like distance dL) is confirmed, and the correlation be-
tween mc and µ is verified as well.

At decreasing SNRs, certain parameters cannot be determined unam-
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Table 5.3: Individual and total SNRs for different signals, and some char-
acteristics of the resulting posterior distributions. The accuracy of some
of the parameters is illustrated by the posterior standard deviations for
(δ,α), tc, dL, mc and µ (percentages refer to the true value). The corre-
lation coefficient for mc and µ shows the (posterior) interdependence be-
tween the two parameters. These results are consistent with those pre-
sented in [29].

masses distance network posterior standard deviations
m1-m2 dL SNR (δ,α)a tc dL mc µ Cor(mc,µ)

1.5-2.0 M� 10 Mpc 29.6 0.011 rad 0.26 ms 20 % 0.016 % 0.35 % 0.95
1.5-2.0 M� 20 Mpc 14.8 0.030 rad 0.49 ms 25 % 0.031 % 0.69 % 0.94
1.5-2.0 M� 30 Mpc 9.9 0.207 rad 1.04 ms 25 % 0.074 % 1.33 % 0.91
2.0-2.0 M� 10 Mpc 33.3 0.008 rad 0.14 ms 14 % 0.009 % 0.14 % 0.80
2.0-2.0 M� 20 Mpc 16.7 0.017 rad 0.28 ms 18 % 0.014 % 0.23 % 0.73
2.0-2.0 M� 30 Mpc 11.1 0.026 rad 0.42 ms 21 % 0.021 % 0.37 % 0.78
a spherical standard deviation

biguously any more. One example is the inclination angle ι, which still has
a ‘well-behaving’ posterior distribution at 10 Mpc distance (similar to that
shown in figure 5.11). For a weaker signal originating from 30 Mpc dis-
tance, the distribution then turns bimodal (figure 5.12). The ‘orientation’
of the inclination angle is not clear any more, the result being two roughly
equally likely ‘mirror image’ solutions with P(ι < π

2 ) ≈ 1
2 ≈ P(ι > π

2 ).
Note that the two solutions ι and π − ι correspond to opposite orbital di-
rections (clockwise/counterclockwise), as seen from Earth, which might
be of minor interest anyway.

The sky location’s posterior also exhibits multiple modes for this weaker
signal (figure 5.12). This illustrates some potential pitfalls of maximum-
likelihood (ML) or maximum-a-posteriori (MAP) methods; these would
advise picking the highest of the several modes, which might just be the
narrowest one, but not necessarily the most likely. If one then proceeded
by extrapolating the curvature at that mode and deriving error bounds
from the Fisher Information matrix, the resulting estimates might not only
be far off, but also associated with overestimated accuracies.

MCMC runs with a modified prior setting were also tried; the prior
for the coalescence time tc was extended from its original range of ±5ms
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Figure 5.12: At greater distance the ‘orientation’ of the inclination angle ι
cannot be resolved any more, both directions are roughly equally likely
(P(ι < π

2 ) ≈ 1
2 ≈ P(ι > π

2 )). At the same time, with the lower SNR the
sky location’s posterior turns multimodal. (Dashed lines indicate the true
values.)

around the true value to ±27ms, allowing for an additional margin of
22ms, which is the time it takes a gravitational wave to travel from Earth’s
surface to its center. This setting reflects the case where the inspiral detec-
tion pipeline received triggers from less than three interferometer sites, so
the signal’s arrival time at the geocenter could not be estimated to greater
accuracy in advance. The MCMC algorithm is still able to find the mode in
the enlarged time parameter range, but takes more iterations to converge.

One scenario in which such an approach would be necessary is when
the SNR for one of the interferometers is almost zero. In such a case the
data from the interferometer under consideration also would not (directly)
contribute to the estimation of phase- and frequency-related parameters,
but would still carry information about amplitude-related parameters—
by implicitly ‘ruling out’ those parameter combinations that would have
resulted in a response at that interferometer. Figure 5.13 shows the sky
location posteriors for such a signal, a 1.5-2.0 M� inspiral at 10 Mpc dis-
tance, where the SNRs at the three interferometer sites are: Hanford 9.6,
Livingston 13.9, Pisa 0.18 (total 16.9). Including the data from the third
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Figure 5.13: Even if the SNR at one of the interferometers is almost zero, it
still contributes to estimates’ accuracies—the posterior is much narrower
if its data is included (left plot) than if it is omitted (right plot). (Dashed
lines indicate the true values.)

interferometer (with almost zero SNR) into the analysis still yields a much
more accurate estimate of the sky location. Table 5.4 compares the result-
ing parameter accuracies of these two settings. The posteriors for sky lo-
cation (δ,α) and coalescence time tc, which are closely related, are much
narrower when the Virgo data is considered in the analysis, while esti-
mates of the rather phase- and frequency-related parameters mc and µ do
not gain from the additional information.

Table 5.4: Relative accuracies of different parameters (in analogy to ta-
ble 5.3) when considering / not considering the Virgo data (where the ex-
ample situation is such that the SNR is nearly zero).

Virgo data... (δ,α) tc dL mc µ

...included 0.071 rad 0.81 ms 21 % 0.023 % 0.33 %
...excluded 0.150 rad 2.38 ms 23 % 0.022 % 0.31 %

On the one hand, not only a high (total) SNR is desirable but also one
that is rather ‘evenly spread’ over different interferometers. On the other
hand, even a near-zero SNR at one of the interferometers does not make its
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measurement useless. Inference on different parameters will be affected to
different degrees by such an unbalanced SNR arrangement.
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5.2 Inference on inspiral signals
using LISA data

5.2.1 Introduction

This section describes an example application of a Bayesian inference frame-
work for the analysis of binary inspiral gravitational wave signals as ob-
served through the Laser Interferometer Space Antenna (LISA). The data
here are taken from the 2nd round of the Mock LISA Data Challenges
(MLDC) [90]. The MLDC were initiated in order to foster the development
of methods related to the analysis of data as produced by LISA. In each
round, data sets are published in order to be analysed by different partic-
ipating groups. At certain deadlines, results are submitted and compared
to the true values that were to be inferred, and between groups [32]. The
types of analysis problems posed so far cover continuous sources forming
a galactic foreground, and different types of chirping sources. On the way
towards more realistic scenarios, the 2nd round in particular included a
single data set containing many different superimposed signals.

The results presented below were produced in collaboration within the
Global LISA Inference Group (GLIG) that was formed in mid-2006 in or-
der to work on different aspects of data analysis for LISA. Very important
in this context, the LISA Simulator [80] was ‘dissected’ and adapted for
our purpose (due in large measure to GLIG member Alexander Stroeer)
in order to use it for numerical derivation of LISA’s response to passing
gravitational waves. This is necessary for likelihood computation, at least
when there is no other approximation available. Resorting to existing code
firstly spared us from having to “re-invent the wheel”, and since the LISA
simulator was also used for data generation, there were in principle no
worries about matching of simulated detector responses. A disadvantage
on the other hand is that the LISA Simulator code runs relatively slowly,
since originally it was never intended to run repeatedly and fast. Parts of
the developed code where then shared and also used in a different MLDC
application [115].
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A simple Metropolis sampler was set up in late 2006, and first results
of an application to data from the 1st round of the MLDC were presented
at the 11th Gravitational Wave Data Analysis Workshop (GWDAW-11) in
December that year [16]. At that point it was obvious that the algorithm
was too slow and too inflexible. Sampling worked fine in principle, but
the sampler was too slow to converge towards the global posterior mode
in time, and it also could not move efficiently in parameter space, due to
the posterior surface exhibiting multiple narrow modes, and due to the
comparably large expected signal-to-noise ratios. Both problems were ap-
proached by extending the code to a parallel tempering algorithm, and
implementing it in a parallel fashion. Due to the nature of the data, where
the noise spectrum is not known beforehand, the model also needed to be
generalised to incorporate the spectrum as an unknown. After these mod-
ifications were implemented, results were presented at the 7th Edoardo
Amaldi conference on gravitational waves (Amaldi7) in July 2007. It is
these results that are illustrated in the following.

5.2.2 Model and code details

The (simulated) data analysed here is taken from the 2nd round of the
Mock LISA Data Challenges (MLDC) [92]. The data sets are published in
XML format (LisaXML, [91]), and they contain the three X, Y and Z ob-
servables recorded over time. The analysis code is written in C, where the
data is imported and then the ‘A’ and ‘E’ TDI variables (see section 4.4.2)
are constructed. The +/× polarisation waveforms are modeled following
the restricted PN inspiral signal description (see section 4.3.3), and the cor-
responding detector response (in terms of A and E TDI variables) is then
numerically derived using code that was extracted and adapted from the
LISA Simulator [80]. Due to the nature of the noise, which is partly made
up of many ‘deterministic’ but unknown signals, and whose spectrum is
not known in advance, the noise spectrum was included as unknown into
the model (see also section 4.5.3). Discrete Fourier transforms within the
algorithm were performed using the FFTW library [64]. The data (as well
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as the corresponding matched signal templates) were windowed using a
Tukey window (with α = 2%; see section 3.4.3). The MCMC algorithm
was then set up as a Metropolis sampler (for the 9 ‘signal’ parameters), in
combination with a Gibbs step (for the remaining ‘noise’ parameters). The
proposal distribution used within the Metropolis sampler was a multivari-
ate Student-t-distribution. Random number generation was done using
the Randlib library [113]. Some of the signal parameters were reparam-
eterised for easier sampling, in particular the masses were expressed in
terms of chirp mass mc and mass ratio η, instead of the inclination angle
its cosine was used, and the luminosity distance was transformed to its
logarithm (see sections 3.3 and 4.2). The ‘basic’ MCMC was extended to a
parallel tempering algorithm, where the tempering is only applied to the
likelihood part of the posterior (as described in section 3.2.9), and conse-
quently included the conditional distributions of the noise parameters (see
section 4.5.3). With the large number of parameters and the large SNR
(and consequently the large number of parallel chains required) it was
essential to have a guideline for the setup of the temperature ladder avail-
able, since this clearly could not be set up through trial-and-error. In order
to gain speed, the parallel tempering was implemented in a parallel fash-
ion [76]. Using the Message Passing Interface (MPI) [77], the algorithm
can be set up so that each of the tempered MCMC chains is handled by a
single process, and for each attempted ‘swap’ (of parameters or, equiva-
lently, of temperatures), messages are passed between processes in order
to compare and possibly swap their current states. Here, the Open MPI
implementation was used [116]. When running such a code on a cluster,
the different processes can then easily be distributed over multiple pro-
cessors, where the number of processes may be larger than the number of
processors.

5.2.3 Example setup

The sampling interval of the data is 15 seconds, and in the following, the
sample size is always N = 217 = 131 072 samples (for each of the two A
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and E variables), which corresponds to ≈ 23 days of measurements. The
simulated data originates from challenge 2.2 of the MLDC, which (besides
the non-white instrumental noise) contains a superposition of signals from
a galactic population of binary systems (≈ 26 million signals at different
frequencies and locations), and about 5 massive black hole inspiral signals
(chirp signals) and extreme mass ratio inspiral signals (modulated chirp
signals) each [92].

Since the two TDI variables can be considered as perceiving the same
noise, a common noise spectrum was assumed for both. The prior for
the noise spectrum was defined by using an empirical spectrum estimate
from a disjoint stretch of data to set the prior scale parameters (see also
section 3.4.5). The prior’s degrees of freedom for each frequency bin were
set to 2, and consequently each bin’s (conditional) posterior distribution
then has 2 + 4 = 6 degrees of freedom. The prior for the remaining signal
parameters was set as described in section 4.7, with its boundary for now
specified by assuming an inspiral event of 2 × 106 M� and π

2 inclination to
be detectable out to distances of 100 000 Mpc and 110 000 Mpc with 90%
and 10% probability, respectively.

With 217 samples (of two variables) in the data, there are 217/2 = 216 ≈
65 000 noise parameters in the model. Since the signal is bandwidth-
limited, the likelihood computation was simplified by restricting it to a
limited frequency band of 0.000 05–0.01 Hz. This way only ≈ 20 000 noise
parameters need to be considered for likelihood computations.

Rough estimates of chirp mass and coalescence time for the massive
black hole inspiral signals were derived [117] using a time-frequency anal-
ysis, i.e. by investigating spectra of short data segments over time. This
way, three inspiral signals were found in the data set, and in the follow-
ing the analysis was aimed at the first of these three triggers. Runs of
the MCMC code from these starting points did not converge in time for
the submission deadline for results, and so the algorithm was then started
from the true parameter values that were announced later.

Based on the number of parameters and the approximation given in
section 3.2.12, a parallel tempering algorithm yielding a swap acceptance
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rate of 25% would need a temperature ladder with a ratio of q = 1.017
between neighbouring temperatures. Due to the large number of paral-
lel chains required, this ratio was increased to q = 1.025, which should
still result in a swap acceptance rate of ≈ 8.4%. When running the al-
gorithm starting from the rough parameter estimates, different numbers
of parallel chains (up to 96) were tried, but due to the limited time and
computing resources the chains would not converge to a unique mode,
although there was some indication of convergence for some of the pa-
rameters. Once the true paramater values were published, the algorithm
was then restarted from there, again, with varying numbers of chains, but
since there was no indication of multiple (relevant) modes in the posterior,
the results presented in the following were then produced using only four
parallel chains.

Every 10th MCMC sample (of the 9 signal parameters) was eventually
stored in a text file for subsequent posterior analysis. The posterior spec-
trum was logged by (internally) computing the conditionally expected
spectrum (as in equation (4.24)) for chain 1 at temperature T = 1 every
10th iteration and then recursively updating an average spectrum (as in
section 3.7) which was then recorded every 5000 iterations in a seperate
file. This way only the posterior mean spectrum can be inferred (over ar-
bitrary segments of the MCMC chain), but only comparably little storage
space is required, although this alone still accounts for a significant share.

5.2.4 Posterior inference

The parallel tempering algorithm was run for 650 000 iterations, starting
from the true parameter values. There was no value given for the coales-
cence phaseφ0, since the data were generated using a different parametri-
sation (initial phase) [92], but that one missing parameter could easily and
unambiguously be inferred. The resulting marginal posterior distributions
for individual parameters are shown in figure 5.14. Some of the parame-
ters are more or less correlated, for example the mass parameters or the
location parameters; the (marginal) bivariate distributions of these two
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chirp mass mc (Msun)
1 156 500 1 156 600 

mass ratio η
0.2495 0.2495 0.2500

coalescence phase φc (rad)
0.70 0.80

coalescence time tc (s)
10 282 780 10 282 800

ecliptic latitude β (rad)
−0.54 −0.52

ecliptic longitude λ (rad)
1.44 1.46

luminosity distance dL (Mpc)
3700 3800 3900

polarisation angle ψ (rad)
1.75 1.80 1.85

inclination angle ι (rad)
2.36 2.40

Figure 5.14: Kernel density estimates of the (marginal) posterior densities
for each of the 9 parameters. Dashed lines indicate the true parameter
values (except for φ0, due to a different parametrisation).

pairs are shown in figure 5.15. Table 5.5 lists some numerical estimates of
the parameters together with their true values; all these estimates were de-
rived from all four (tempered) chains of the parallel tempering algorithm
using importance sampling as described in section 3.2.15.

Along with the 9 signal parameters, the noise parameters (i.e., the spec-
trum) were also inferred within the MCMC algorithm. Figure 5.16 shows
the spectrum’s marginal posterior mean. In figure 5.17, the posterior is
shown for a narrow frequency band; the top half of the plot illustrates the
individual galactic binary background signals contributing to the back-
ground noise within that frequency range, and the bottom half shows how
these are reflected in the posterior spectrum.

The parallel tempering algorithm performed well, and the approxi-
mate results regarding the parallel tempering setup derived in section 3.2.12
in fact do provide a handle on an efficient setup of the algorithm. Fig-
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Figure 5.15: Estimates of 2-dimensional (marginal) joint posterior densi-
ties for 2 pairs of parameters, and 95% confidence regions. Dashed lines
indicate the true parameter values.

ure 5.18 shows the acceptance rates of swaps between neighbouring chains
within the parallel tempering scheme. At low temperatures, the algorithm
behaves as predicted, and for higher temperatures the acceptance rates in-
crease as expected, since, as the likelihood contribution to the posterior is
“melted away”, the tempered distributions become increasingly similar to
the prior and to each other.

The speed of the code is rather slow. The time it takes for each iteration
scales roughly linearly with the amount of data considered, and the ma-
jority (≈ 95%) goes into the numerical derivation of the TDI response to
given +/× polarisation waveforms. With 217 samples (corresponding to
23 days of data) considered, it takes ≈ 3.3 seconds per iteration running
on an AMD Opteron 1000 MHz dual-core processor. Again, the speed also
scales roughly linearly with the number of chains and available proces-
sors: the code using 96 parallel chains took roughly 40 seconds per itera-
tion on a machine with 8 of the above processors. The MCMC algorithm
is working in principle, but it would gain from a faster TDI derivation
(numerically, analytically or approximative) or greater computational re-
sources, as this would then also allow for easier tuning and performance
evaluation.
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Table 5.5: Some key figures of the the marginal posterior distributions
of individual parameters, derived by importance sampling from all tem-
pered chains. Mean and standard deviation indicate location and spread,
and the 95% central credible interval gives a range that contains the true
parameter with 95% probability, given the data at hand. The interval
stated for the mass ratio η is a one-sided interval. No true value was given
for the phaseφ0, due to a differing parametrisation.

mean st.dev. 95% c.c.i. true unit
chirp mass (mc) 1 156 536 33 (1 156 459, 1 156 575) 1 156 574 M�

mass ratio (η) 0.249 78 0.000 26 (0.249 23, 0.250 00) 0.249 99
coalescence time (tc) 10 282 797.9 7.7 (10 282 780.3, 10 282 807.6) 10 282 796.9 s

luminosity distance (dL) 3783 40 (3707, 3868) 3782 Mpc
inclination (ι) 2.390 0.011 (2.370, 2.415) 2.388 rad

ecliptic latitude (β) −0.5214a (−0.5318, −0.5109) −0.5273 rad
ecliptic longitude (λ) 1.4517a

}
0.0071a

(1.4418, 1.4619) 1.4567 rad
coalescence phase (φ0) 0.773 0.036 (0.693, 0.829) rad

polarisation (ψ) 1.780 0.019 (1.744, 1.817) 1.776 rad
mass 1 (m1) 1 298 000 23 000 (1 254 000, 1 328 000) 1 320 976 M�
mass 2 (m2) 1 361 000 25 000 (1 329 000, 1 408 000) 1 336 184 M�

a mean direction and spherical standard deviation

frequency (Hz)

E[
S n

(f)
|y

]

0.000 01 0.0001 0.001 0.01

10−40

10−35

Figure 5.16: The marginal posterior mean spectrum E[Sn( f )|y].
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Figure 5.17: (True) frequencies and amplitudes of individual background
signals within a narrow frequency band (top panel), and how these are
reflected in the posterior spectrum (lower panel).
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Figure 5.18: Acceptance rates of swaps for all neighbouring chains in a par-
allel tempering run with 96 chains (started from the true values). For the
first few chains, at low temperatures, the acceptance rates are near the pre-
dicted level of 8.4%, and after that they are steadily increasing. The over-
all mean is 32%. The acceptance rates for regular proposals were roughly
constant for all chains at 25 (±3) percent.
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Chapter 6

Conclusions

A Bayesian model framework for the analysis of the gravitational-wave
signals of binary inspiral events was developed, and applied in two differ-
ent scenarios of ground-based and space-based laser-interferometric mea-
surements. Computational methods (in particular MCMC methods) that
are vital for practical application were adapted and successfully imple-
mented. The standard model (assuming the noise to have a known spec-
trum) was generalised so that the noise parameters are treated as un-
knowns as well, and are inferred along with the signal parameters. This
model extension also allows to account for a background noise that con-
sists to significant parts of umodeled deterministic signals. In the course
of implementing the parallel tempering MCMC algorithm, some insight
was gained into its internal functionality, which lead to the development
of hints for an efficient setup of such an algorithm.

The implementation developed for ground-based interferometric grav-
itational-wave measurements is running well and would be applicable as
a tool for parameter estimation at the end of a signal-detection pipeline. In
the future, this code could be extended to incorporate additional parame-
ters, or to include the ring-down signal emitted by the newly formed black
hole after the merger of the inspiralling companions. Figure 6.1 shows first
results from the ongoing development of an MCMC algorithm for coher-
ent inference on the 12 parameters that determine the signal of a spinning

117
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Figure 6.1: First results (marginal density estimates) from an MCMC code
that infers the 12 parameters of a spinning binary inspiral from measure-
ments of 2 interferometers [118]. The 3 additional parameters are: spin
magnitude aspin, angle between spin and orbital angular momentum ϑSL,
and precession phaseαc. The paramaters ϑJ0 andϕJ0 correspond to polar-
isation and inclination. Dashed lines indicate the true parameter values.

binary inspiral, based on measurements from several ground-based inter-
ferometers [118].

The implementation for space-based measurements is suffering from
the computationally more expensive numerical derivation of the detec-
tor response to given gravitational-wave signals. Whilst it is working in
principle, it would gain in applicability from a more efficient implemen-
tation, more computational resources, or the development of an analytical
derivation (or approximation) of TDI responses.

The noise model that was developed for the latter application is a very
general and also computationally convenient formulation, and it should
be applicable in a wide range of contexts where time series are involved.
In particular, it is not limited to signal processing applications, but may
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be convenient for Bayesian spectrum estimation in general. A logical step
from here might be to investigate its usefulness for Bayesian inference on
autocorrelation functions, or to try to constrain the model in order to re-
duce its number of parameters. The results concerning the interior func-
tional principles of the parallel tempering algorithm are also very gener-
ally applicable and should be helpful for setting up efficient implementa-
tions.
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Appendix A

Appendix

A.1 Properness of tempered distributions

The properness of the resulting tempered distribution when using tem-
pering as defined in (3.11) is shown by demonstrating that the integral is
bounded above:

∫
f(T)(θ) dθ ∝

∫
π(θ) L(θ)

1
T dθ (A.1)

≤
∫
π(θ) max

(
1, L(θ)

)
dθ (A.2)

≤
∫
π(θ)

(
1 + L(θ)

)
dθ (A.3)

=
∫
π(θ) dθ

︸ ︷︷ ︸
<∞

+
∫
π(θ) L(θ) dθ

︸ ︷︷ ︸
<∞

(A.4)

As long as the prior is proper, the posterior is proper [42], and conse-
quently the tempered posterior is proper as well.

A.2 Parallel tempering setup

R code [55] to determine (approximate) acceptance rates for given temper-
ature T or vice versa as derived in section 3.2.12.
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expectedprob <- function(d=10, q=2)
{
integrand <- function(x, mu=0, sigma=1)
{
return(1/(sqrt(2*pi) * sigma)

* exp(-(log(x)-mu)ˆ2/(2*sigmaˆ2)))
}
Zmean <- d * (1 - 0.5*(q + 1/q))
Zsd <- sqrt(d * (1 - (q+1/q) + 0.5*(qˆ2 + (1/q)ˆ2)))
E <- 1-pnorm(0,Zmean,Zsd)
E <- E+integrate(integrand,0,1,mu=Zmean,sigma=Zsd)$value
return(E)

}

# acceptance rate for 9 parameters and factor 3:
# expectedprob(9,3)

# factor for 9 parameters to yield 20% acceptance:
# uniroot(function(x){expectedprob(9,x)-0.2},c(1.0001,100))

A.3 Random variable transformations

General

In the following, the terms necessary for the variable transformations used
here are given (see also section 3.3). The rather trivial cases are given in
Table A.1, and the more complex formulas for mass reparametrisation are
given in the following subsection.

Chirp mass & mass ratio

Transformation from masses {(m1, m2) : m1, m2 ∈ R+, m1 ≤ m2} to
chirp mass and mass ratio {(mc, η) : mc ∈ R+, η ∈]0, 0.25]} (see also
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Table A.1: Terms necessary for random variable transformations (see also
section 3.3).

domains (x→ y) f (x) f −1(y) J(y)
logarithm R

+→R log(x) exp(y) exp(y) (= x)
sine [− π

2 , π2 ]→[−1, 1] sin(x) arcsin(y) 1√
1−y2

(= 1
cos(x)

)
cosine [0, π ]→[−1, 1] cos(x) arccos(y) − 1√

1−y2 (= − 1
sin(x) )

square root R
+→R

+
√

x y2 2y

section 4.2.2).

f
((m1

m2

))
=




(m1m2)0.6

(m1+m2)0.2
m1m2

(m1+m2)2


 =

(mc
η

)
(A.5)

f−1
((mc

η

))
=




mc

(
1+

1
2 +
√

1
4−η

1
2 −
√

1
4−η

)0.2

(
1
2 +
√

1
4 −η

1
2−
√

1
4 −η

)0.6

mc

(
1+

1
2 −
√

1
4−η

1
2 +
√

1
4−η

)0.2

(
1
2−
√

1
4 −η

1
2 +
√

1
4 −η

)0.6




=

(m1
m2

)
(A.6)

which, substituting g(η) =
1
2 +

√
1
4−η

1
2−

√
1
4−η

and g∗(η) = 1
g(η)

=
1
2−
√

1
4−η

1
2 +
√

1
4−η

, simpli-
fies to:

f−1
((mc

η

))
=


 mc

(1+g(η))0.2

g(η)0.6

mc
(1+g∗(η))0.2

g∗(η)0.6


 =

(m1
m2

)
(A.7)
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det(J(m1 , m2)) =[(
3
5 m− 2

5
1 m

3
5
2 (m1 + m2)

− 1
5 − 1

5 (m1 + m2)
− 6

5 (m1m2)
3
5

)

(
m1(m1 + m2)−2 − 2m1m2(m1 + m2)−3)

−
(

3
5 m

3
5
1 m− 2

5
2 (m1 + m2)

− 1
5 − 1

5 (m1 + m2)
− 6

5 (m1m2)
3
5

)

(
m2(m1 + m2)−2 − 2m1m2(m1 + m2)−3)

]−1

(A.8)

Note that the determinant of J is expressed in terms of m1 and m2. In order
to obtain det(J) in terms of mc and η, use J( f−1(mc, η)).

A.4 Mean direction and spherical variance

The mean direction and the spherical variance are descriptive measures
of location and spread for data representing locations on a sphere (see sec-
tion 3.8). The data are represented as (p-dimensional) unit vectors in a
sphere Sp−1 in p-dimensional space Rp. So for p = 2 one is dealing with a
point on a circle S1, for p = 3 with points on a sphere S2, and so on. Let
x1, . . . , xN be points on Sp−1. Then their sample mean x̄ and their mean
resultant length R̄ are given by

x̄ =
1
N

N
∑
i=1

xi and R̄ = ‖x̄‖, (A.9)

where x̄ ∈ Rp and 0 ≤ R̄ ≤ 1. The unit vector

x̄0 =
1
R̄ x̄ (A.10)

then defines the mean direction, and

s2
0 = 2 (1 − R̄) (A.11)

defines the spherical variance [75].
If the data is axial instead of spherical, i.e. every data point maps to
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a point on a hemisphere (or semicircle: [0, π ]), then at least in the 2-di-
mensional case the mean is still defined and can be derived by doubling
all the angles (mapping the data on the full circle), determining the mean
direction, and again dividing the result by two [75].

A.5 Inverting a covariance matrix
given its Cholesky decomposition

Deriving a covariance matrix’ inverse from its Cholesky decomposition is
useful for determining the proposal distribution’s density within a Metropolis-
Hastings algorithm when using the ‘Randlib’ library [113] to generate pro-
posals. For multivariate Normal (or Student-t) proposals, computing the
density requires the covariance matrix’ inverse, and the Cholesky decom-
position is available as a ‘side effect’ when initialising Randlib.

The Cholesky decomposition of a symmetric positive definite (p × p)-
matrix A is a (unique) factorisation A = UTU where U is an upper trian-
gular matrix with positive entries on its main diagonal. Given this factori-
sation, in order to derive the inverse A−1 of A, such that AA−1 = A−1 A =

I(p) (where I(p) is the (p × p) unity matrix) one can then substitute:

AA−1 = I(p) (A.12)
⇔ UT UA−1

︸ ︷︷ ︸
=:Y

= UTY = I(p) (A.13)

which can be solved for Y straightforwardly, since U is upper diagonal.
Now, given matrices U and Y and their relationship

UA−1 = Y (A.14)

one can then solve for the inverse A−1 [119].
More specifically, equation (A.13) leads to the following elements of Y,

that can be computed successively column-wise for a fixed i and for j
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from 1 up to p:

y1,i =
I(p)1,i

u1,1
(A.15)

y j,i =
I(p) j,i − ∑ j−1

k=1 uk, jyk,i
u j, j

(A.16)

Following equation (A.14), the elementsα·,· of A−1 can again be computed
column-wise for fixed i, and for j from p down to 1:

αp,i =
yp,i
up,p

(A.17)

α j,i =
y j,i − ∑p

k= j+1 u j,kαk,i

u j, j
. (A.18)

A.6 Some vector operations

A.6.1 Vector products

The dot product of two vectors ~x and ~y of equal dimension d is defined by

~x · ~y = ~xT~y =
d
∑
i=1

xi yi ∈ R. (A.19)

The dot product also defines a vector’s norm through ‖~x‖ =
√

~x ·~x.
The cross product of two 3-dimensional vectors ~x and ~y is defined by

~x ×~y =




x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1


 ∈ R

3. (A.20)

The scalar triple product of three 3-dimensional vectors ~x, ~y and ~z is de-
fined as ~x · (~y ×~z) ∈ R. It is also equal to the determinant of the 3 × 3 ma-
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trix having the three vectors as rows.
A triplet (~x, ~y,~z) of vectors is referred to as right-handed if and only if

its triple product is positive:

RH(~x,~y,~z) ⇔ ~x · (~y ×~z) ≥ 0. (A.21)

A.6.2 Angles between vectors

The angle between two vectors ~x and ~y is given by:

ANGLE(~x,~y) = arccos
(

~x ·~y
‖~x‖ ‖~y‖

)
. (A.22)

A.6.3 Orthogonal projection

The orthogonal projection of a vector~a into the plane spanned by the two
orthonormal vectors ~x and ~y is given by:

OP(~a,~x,~y) = (~a ·~x)~x + (~a ·~y)~y. (A.23)

A.6.4 Vector rotations

A vector ~x is rotated around an ‘axis’ unit vector ~n = (n1 , n2, n3)
T by an

angle ofα by multiplying it with the rotation matrix

Rα~n =




c + n2
1(1 − c) n1n2(1 − c) + n3s n1n3(1 − c) − n2s

n2n1(1 − c) − n3s c + n2
2(1 − c) n2n3(1 − c) + n1s

n3n1(1 − c) + n2s n3n2(1 − c) − n1s c + n2
3(1 − c)




(A.24)
where s = sinα and c = cosα. The rotation ~y = Rα~n~x is then clockwise
when looking along ~n while it is pointing towards the observer [120].
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A.7 The restricted PN approximation

The restricted PN approximation gives the inspiral gravitational wave sig-
nal in the time domain. The formulas given here are taken from [91, 92].
The general idea was sketched in section 4.3.2, but expressions for the in-
stantaneous phaseΦ and frequencyωwere omitted. These depend on the
time t (in seconds) via the dimensionless time variable

τ =
η

5 mt
(tc − t). (A.25)

The instantaneous frequencyω (multiplied by the total mass) then is given
by

mtω =
1
8τ

−3/8
(

1 +

(
11
32η+

743
2688

)
τ−1/4 − 3

10πτ
−3/8

+

(
1855 099

14 450 688 +
56 975

258 048η+
371

2048η
2
)
τ−1/2

)
(A.26)

and the instantaneous phase is given by

Φ = − 1
32η (mtω)−5/3

(
1 +

(
3715
1008 +

55
12η

)
(mtω)2/3 − 10π(mtω)

+

(
15 293 365
1016 064 +

27 145
1008 η+

3085
144 η

2
)

(mtω)4/3
)

. (A.27)

A.8 The 2.5 PN (and 2.0 PN) stationary-phase
waveform approximation

This approximation was introduced in section 4.3.4 and models the inspi-
ral signal in the frequency domain. The Fourier-transformed signal s̃θ( f )
is a function of the frequency f and depends on the (‘local’) parameters as
described in section 4.2. Depending on the orientation of binary and in-
terferometer with respect to each other, it is a linear combination of cosine
chirp h̃c( f ,θ) and sine chirp h̃s( f ,θ). The (Fourier-transformed) cosine
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chirp is defined as:

h̃c( f ,θ) =

√
η m

5
6
t

dL

√
5 G 5

6

2
√

6 π 2
3 c 3

2
f− 7

6 exp
(
−i
(
ψ( f ) +φ0 + 2π f t(I)

c︸ ︷︷ ︸
phase evolution

))

(A.28)
where

ψ( f ) =
5
∑
i=1

aiζi( f ), (A.29)

a1 =
3

128ηq− 5
3 , (A.30)

a2 =
1

384η

(
3715

84 + 55η
)

q−1, (A.31)

a3 = − 1
128η48πq− 2

3 , (A.32)

a4 =
3

128η

(
15 293 365

508 032 +
27 145

504 η+
3085

72 η2
)

q− 1
3 , (A.33)

a5 =
π

128η

(
38 645

252 + 5η
)

, (A.34)

ζ1( f ) = f− 5
3 , ζ2( f ) = f−1, ζ3( f ) = f− 2

3 , ζ4( f ) = f− 1
3 , ζ5( f ) = log( f ), and

q = πGmtc−3.

The sine chirp as the orthogonal waveform to the cosine chirp is:

h̃s( f ,θ) = i h̃c( f ,θ). (A.35)

From sine and cosine chirp the plus- and cross-waveforms are derived:

h̃+( f ,θ) = − 1
2 (1 + cos2(ι)) h̃c( f ,θ) (A.36)

h̃×( f ,θ) = − cos(ι) h̃s( f ,θ) (A.37)

And finally the actual chirp signal h̃( f ,θ) measured at the detector de-
pends on the antennae pattern functions F+ and F× that were defined in
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equations (4.12) and (4.13) in section 4.4:

h̃( f ,θ) = F+h̃+( f ,θ) + F×h̃×( f ,θ) (A.38)

[10, 93].
The 2.0 PN approximation can be derived from this 2.5 PN formula by

simply leaving out the factors a5 and ζ5, i.e., by only summing from i = 1
to 4 in equation (A.29).

A.9 The 3.5 PN / 2.5 PN waveform parametrisa-
tion

In [79], the (2.5 PN) chirp waveform’s phase is parameterised in terms
of the coalescence phase φ0, which is convenient for our purposes. In
the more recent publications [86, 87], the (3.5 PN) phase is (equivalently)
expressed in terms of ‘a constant phase τ0’ instead. The following shows
how these two expressions relate to each other, and how to re-express the
3.5 PN phase in terms of φ0 instead of τ0.

In [87], equation (13), the 3.5 PN instantaneous phase Φ is defined as:

Φ = − 1
η

(
f1(τ , η) +

(
− 38 645

172 032 +
65

2048η
)
π log

(
τ

τ0

)
+ f2(τ , η)

)

= − 1
η

(
− 38 645

172 032 +
65

2048η
)
π log

(
τ

τ0

)
− 1
η

(
f1(τ , η) + f2(τ , η)

)

= − 1
η

(
− 38 645

172 032 +
65

2048η
)
π (log(τ) − log(τ0))

− 1
η

(
f1(τ , η) + f2(τ , η)

)

= − 1
η

(
− 38 645

172 032 +
65

2048η
)
π log(τ)

+
1
η

(
− 38 645

172 032 +
65

2048η
)
π log(τ0) −

1
η

(
f1(τ , η) + f2(τ , η)

)
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= − 1
η

(
− 38 645

172 032 − 15
2048η+

80
2048η

)
π log(τ)

+
1
η

(
− 38 645

172 032 +
65

2048η
)
π log(τ0) −

1
η

(
f1(τ , η) + f2(τ , η)

)

= − 1
η

(
− 38 645

172 032 − 15
2048η

)
π log(τ) − 1

η

(
80

2048η
)
π log(τ)

+
1
η

(
− 38 645

172 032 +
65

2048η
)
π log(τ0) −

1
η

(
f1(τ , η) + f2(τ , η)

)

=
1
η

(
− 38 645

172 032 +
65

2048η
)
π log(τ0)

︸ ︷︷ ︸
‘φ0 substitute’ term

− 1
η

(
f1(τ , η) +

(
− 38 645

172 032 − 15
2048η

)
π log(τ)

︸ ︷︷ ︸
2.5 PN terms as in [79]

+

(
80

2048η
)
π log(τ) + f2(τ , η)

︸ ︷︷ ︸
extra 3.5 PN terms

)
(A.39)

(cp. equation (6.13) in [79]). So, by defining

φ0 =
1
η

(
− 38 645

172 032 +
65

2048η
)
π log(τ0) (A.40)

⇔ τ0 = exp
(

φ0
1
η

(
− 38 645

172 032 + 65
2048η

)
π

)
, (A.41)

the instantaneous phase Φ can be expressed in terms of φ0 instead of τ0
by substituting the corresponding term. In this way one can use the same
parametrisation (and prior specification) as for the 2.5 PN model.
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A.10 TDI variables

The TDI variables (see section 4.4.2) are defined in terms of the observables
X, Y and Z as [100]:

A =
1√
2
(Z − X) (A.42)

∧ E =
1√
6
(X − 2Y + Z) (A.43)

∧ T =
1√
3
(X + Y + Z), (A.44)

and the back-transformation is then given by:

⇔ X = −
√

2
2 A +

√
6

6 E +

√
3

3 T (A.45)

∧ Y = −2
√

6
6 E +

√
3

3 T (A.46)

∧ Z = +

√
2

2 A +

√
6

6 E +

√
3

3 T. (A.47)

A.11 The ‘unknown spectrum’ noise model

A.11.1 Noise model and DFT

Here the exact relationship between the noise model that includes the
noise spectrum as an unknown (as described in section 4.5.3) and the out-
put of a discrete Fourier transform (as described in section 3.4.2) is de-
rived. Let

α j = Re
(
h̃( f j)

)
and β j = Im

(
h̃( f j)

)
, (A.48)
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i.e.: h̃( f j) = α j +β ji. The inverse DFT was defined as (3.64):

h(t) = ∆ f
N−1
∑
j=0

h̃( f j) exp(2π i f jt) (A.49)

= ∆ f

N
2 −1

∑
j=1

[
h̃( f j) exp(2π i f jt) + h̃( f j) exp(2π i fN− jt)

]

+∆ f h̃( f0) exp(2π i f0t) + ∆ f h̃( fN/2) exp(2π i fN/2t) (A.50)

= ∆ f

N
2 −1

∑
j=1

[
(α j +β ji)

(
cos(−2π f jt) − sin(−2π f jt)i

)

+(α j −β ji)
(
cos(−2π fN− jt) − sin(−2π fN− jt)i

)]

+∆ fα0 cos(−2π i f0t) + ∆ fαN/2 cos(−2π i fN/2t) (A.51)

= ∆ f

N
2 −1

∑
j=1

[
(α j +β ji)

(
cos(−2π f jt) − sin(−2π f jt)i

)

+(α j −β ji)
(
cos(−2π f jt) + sin(−2π f jt)i

)]

+∆ fα0 + ∆ fαN/2 cos(−2π i fN/2t) (A.52)

= ∆ f

N
2 −1

∑
j=1

[(
α j cos(. . .) +β j sin(. . .)

)
+
(
−α j sin(. . .) +β j cos(. . .)

)
i

+
(
α j cos(. . .) +β j sin(. . .)

)
+
(
α j sin(. . .) −β j cos(. . .)

)
i
]

+∆ fα0 + ∆ fαN/2 cos(−2π i fN/2t) (A.53)

= ∆ f

N
2 −1

∑
j=1

[(
2α j cos(−2π f jt) + 2β j sin(−2π f jt)

)]

+∆ fα0 + ∆ fαN/2 cos(−2π i fN/2t) (A.54)

= ∆ f

N
2 −1

∑
j=1

[(
2α j cos(2π f jt) + 2(−β j) sin(2π f jt)

)]

+∆ fα0 + ∆ fαN/2 cos(2π i fN/2t) (A.55)
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where t ∈ {0,∆t, 2∆t, . . . , (N − 1)∆t}, and f j = j∆ f = j
N∆t

are the Fourier
frequencies. So, comparing to (4.16), one can see that the realisations of
a0, . . . , aN/2 and b0, . . . , bN/2 are derived from a given noise vector (in the
time domain) by Fourier-transforming and then setting

a j = 2∆ fα j and b j = −2∆ fβ j for j = 1, . . . , N
2 − 1, (A.56)

which especially implies that

a2
j + b2

j = 4∆2
f (α2

j +β2
j ) = 4∆2

f
∣∣h̃( f j)

∣∣2 for j = 1, . . . , N
2 − 1, (A.57)

and analogously, but without the factor of 2, for j = 0 and j = N
2 . Note

that when working with unnormalised Fourier transforms, the factor of
2∆ f in (A.56) and (A.57) changes to 2

N .

A.11.2 Likelihood

In the following, the likelihood function for the noise model that includes
the noise spectrum as an unknown (as described in section 4.5.3) that was
stated in section 4.6.2 is explicitly derived, up to a normalising constant:

L(θ) ∝
iU
∏
i=iL

[
1
σi

exp
(
− a2

i
2σ2

i

)
1
σi

exp
(
− b2

i
2σ2

i

)]
(A.58)

= exp
(

iU
∑

i=iL

[
−a2

i + b2
i

2σ2
i

− log
(
σ2

i
)
])

(4.18)
= exp

(
iU
∑

i=iL

[
− a2

i + b2
i

2N∆2
f Sn( fi)

− log
(

N∆2
f Sn( fi)

)
])

(A.57)
= exp




iU
∑

i=iL


−

4∆2
f
∣∣h̃( fi)

∣∣2

2N∆2
f Sn( fi)

− log
(

N∆2
f Sn( fi)

)





∝ exp
(

iU
∑

i=iL

[
− 2

N

∣∣h̃( fi)
∣∣2

Sn( fi)
− log

(
Sn( fi)

)
])

(A.59)
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Note that if the Fourier transform h̃ is not normalised, the factor of 2
N in

front of the sum-of-squares term changes to 2∆2
t

N .

A.12 Properties of the Inv-χ2(ν, s2) distribution
The scaled inverse-chi-square (Inv-χ2(ν, s2)) distribution is the conjugate
prior distribution for the variance parameter(s) in section 4.5.3. In order
to be able to judge the implications of parameter choices when defining
a prior, some properties of the distribution are derived here. The density
function for σ2 is defined as:

fν,s(σ
2) =

(ν/2)ν/2

Γ(ν/2)
sν
(
σ2)−(ν/2+1) exp

(
−νs2

2σ2

)
(A.60)

for ν ∈ R+ and s ∈ R+ [42]. The density function for σ =
√
σ2 can be

derived by reparametrisation as described in section 3.3:

fν,s(σ) =
2(ν/2)ν/2

Γ(ν/2)
sνσ−(ν+1) exp

(
−νs2

2σ2

)
, (A.61)

where s now is a scale parameter, in the sense that fν,s(σ) = 1
s fν,1(

σ
s ). So

setting the prior distribution’s parameter s defines the a priori ‘order of
magnitude’ of σ (corresponding to the square root of the spectrum). The
degrees-of-freedom parameter ν on the other hand defines the a priori
certainty about σ , where greater values of ν indicate greater certainty. The
variance of σ is only finite for ν > 2. Table A.2 shows some quantiles of
σ ’s distribution for varying values of ν. Due to the relationship to the χ2-
distribution [42], the Inv-χ2(ν, s2) distribution’s α-quantile is s

√
ν/χ2

ν;α

where χ2
ν;α is the α-quantile of the χ2

ν-distribution. Note that due to the
expression for the resulting posterior (equation (4.21)) one can also view
the settings of ν and s as “providing the information equivalent to ν ob-
servations with average squared deviation s2” [42]. Note that ν does not
need to be an integer, and that setting ν to zero yields the standard non-
informative (and improper) prior f (σ2) = 1

σ2 for σ2, independent from s2.



136 A. APPENDIX

Table A.2: Some quantiles of σ ’s distribution assuming a scaled inverse
Chi-square distribution forσ2 and varying the degrees-of-freedom param-
eter ν.

ν 1% 5% 25% 50% 75% 95% 99%
1 0.39s 0.51s 0.87s 1.48s 3.14s 15.9s 79.8s
2 0.47s 0.58s 0.85s 1.20s 1.86s 4.42s 9.97s
3 0.51s 0.62s 0.85s 1.13s 1.57s 2.92s 5.11s
4 0.55s 0.65s 0.86s 1.09s 1.44s 2.37s 3.67s
5 0.58s 0.67s 0.87s 1.07s 1.37s 2.09s 3.00s
6 0.60s 0.69s 0.87s 1.06s 1.32s 1.92s 2.62s
8 0.63s 0.72s 0.88s 1.04s 1.26s 1.71s 2.20s

10 0.66s 0.74s 0.89s 1.03s 1.22s 1.59s 1.98s
20 0.73s 0.80s 0.92s 1.02s 1.14s 1.36s 1.56s
50 0.81s 0.86s 0.94s 1.01s 1.08s 1.20s 1.30s

100 0.86s 0.90s 0.96s 1.00s 1.05s 1.13s 1.19s

When implementing a parallel tempering MCMC sampler for a model
where some of the parameters can be drawn in a Gibbs step from an Inv-χ2

(conditional) distribution, then one needs to be able to sample from the
‘tempered’ conditional distribution. If the tempering is applied in the gen-
eral form, to the complete posterior distribution (as in (3.8)), then the tem-
pered Inv-χ2(ν, s2)-distribution again is an Inv-χ2-distribution:

Inv-χ2
(
ν+ 2

T − 2, ν s2

2 + ν− 2T

)
. (A.62)

If the temperring is only applied to the likelihood part of the posterior
(as in (3.11)), the resulting tempered distribution also again is an Inv-χ2-
distribution. If the prior was defined as Inv-χ2(ν0, s2

0), with prior degrees
of freedom ν0 and prior scale s2

0, then the regular (un-tempered) posterior
is an

Inv-χ2
(
ν0 + n,

ν0s2
0 + nv

ν0 + n

)
(A.63)

distribution, where n is the sample size and v is the observed mean squared
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deviation [42]. The tempered version of this is simply

Inv-χ2
(
ν0 + n

T ,
ν0s2

0 + n
T v

ν0 + n
T

)
, (A.64)

so implicitly the ‘weight’ of the observed data in the posterior is down-
weighed by a factor of 1

T from n to n
T .

A.13 Declination- / inclination prior

Density function f , (cumulative) distribution function F, and quantile func-
tion F−1 of the declination (δ ∈ [−π

2 , π2 ]):

f (δ) =

{
1
2 cos(δ) if − π

2 ≤ δ ≤ π
2

0 otherwise
(A.65)

F(δ) =





0 if δ < −π
2

1
2 (sin(δ) + 1) if − π

2 ≤ δ ≤ π
2

1 if δ > π
2

(A.66)

F−1(p) = arcsin(2p − 1) for 0 ≤ p ≤ 1 (A.67)

The prior for the inclination angle (ι ∈ [0, π ]) is defined analogously.

A.14 Luminosity distance (dL) prior

When restricting the ‘occurrence’ probability as defined in section 4.7.2
(particularly equation (4.35)) to a finite range [α,β] (where 0 ≤ α < β),
then the resulting distribution is proper, and its density, distribution func-
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tion and quantile function are given by:

f (y) =

{ 3y2

β3−α3 ifα ≤ y ≤ β

0 otherwise
(A.68)

F(y) =
∫ y

−∞

f (z) dz

=





0 if y < α
y3−α3

β3−α3 if α ≤ y ≤ β

1 if y > β

(A.69)

F−1(p) = 3
√

p(β3 −α3) +α3 for 0 ≤ p ≤ 1. (A.70)

A.15 Properness of the distance prior

In the following it is shown that the introduction of the detection proba-
bility into the prior (section 4.7.3) actually fixes the improperness of the
distance prior as in section 4.7.2. As long as the prior for the all other pa-
rameters is proper, it is sufficient to show that the conditional prior of dL
(conditional on the remaining parameters) is proper, where

p(dL |m1, m2, ι,φ0 , tc, δ,α,ψ) = p(dL |m1, m2, ι), (A.71)

i.e., the conditional prior depends only on masses and inclination angle.
Since in this context normalising constant factors to the prior are not of
interest, it only needs to be shown that the (conditional) density’s integral
is finite. The luminosity distance’s domain is R

+. The integral up to one
∫ 1

0 p(dL|m1, m2, ι)ddL is obviously finite (see also previous section). For
the remaining improper integral (from 1 to ∞) one can can find an upper
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bound for the density, which then has a finite integral:

p(dL|m1, m2, ι) ∝ d2
L × Da,b(A(m1 , m2, dL, ι)) (A.72)

=
d2

L

1 + exp
(

(c−log(dL))−a
b

) (A.73)

=
d2

L

1 + exp
(− log(dL)

b

)
exp

( c−a
b
) (A.74)

<
d2

L

exp
( c−a

b
)

d−
1
b

L

(A.75)

=
1

exp
( c−a

b
) d2+ 1

b
L (A.76)

where

c = A(m1, m2, dL, ι) + log(dL)

= 1
2
(
log(m1) + log(m2)

)
− 1

6 log(m1 + m2)

+ 1
2 log

(
1 + 6 cos(ι)2 + cos(ι)4)

∈ R. (A.77)

The integral
∫

∞

1 d2+ 1
b

L ddL then is finite for

2 +
1
b < −1 (A.78)

⇔ b > −1
3 (A.79)

⇔

>0︷ ︸︸ ︷
xU − xL

2 log
( p

1 − p
)

︸ ︷︷ ︸
<0

<
1
3 (A.80)

⇔ xU − xL︸ ︷︷ ︸
>0

>
2
3 log

( p
1 − p

)

︸ ︷︷ ︸
<0

(A.81)
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(b was defined in (4.42)). So the prior is proper as long as xU > xL and
p < 1

2 , which they are by definition.
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binary inspiral, 11
boxcar window, 48
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chirp waveform, 64
Cholesky decomposition, 125
coalescence phase (φ0), 56
coalescence time (tc), 56, 59, 67
coherent methods, 13
coincidence methods, 13
convergence (MCMC), 23
convolution (Fourier transform), 45,

47
cosine-tapered window, 48
credibility regions, 51
cross product, 126

declination (δ), 56, 137
density estimation, 51
detectability (prior), 80
detector likelihood, 76
deviance, 35, 98
discrete Fourier transform, 45

dot product, 126
downsampling, 50

ecliptic latitude (β), 56
ecliptic longitude (λ), 56
effective distance (dE), 89
evolutionary MCMC, 39

Fourier transform, 45

genetic algorithms, 39
Gibbs sampler, 22
Global LISA Inference Group (GLIG),

4, 107, 110
global parameters, 56
gravitational waves, 7

Hann window, 48

importance resampling, 41
importance sampling, 40
inclination angle (ι), 56, 64, 128, 137
individual masses (m1, m2), 56
instantaneous frequency, 64
instantaneous phase, 64
inverse-chi-square distribution (Inv-χ2(ν, s2)),

74, 135

kernel density estimation, 51

laser interferometer, 9, 55
Laser Interferometer Space Antenna

(LISA), 9
leakage (Fourier transform), 47
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LIGO, 9
likelihood function, 17, 76, 134
local parameters, 56, 59
low-pass filtering, 50
luminosity distance (dL), 56, 64, 128,

137, 138

Malmquist effect, 83, 101
Markov chain, 20
Markov chain Monte Carlo, 20
Markov porperty, 20
mass ratio (η), 58, 122, 128
MCMC, 20
mean direction, 52, 124
message passing interface (MPI), 53,

109
Metropolis algorithm, 21
Metropolis-coupled MCMC, 25
Metropolis-Hastings algorithm, 22
mixing (MCMC), 23
Mock LISA Data Challenge (MLDC),

107
Monte Carlo integration, 19

network likelihood, 76
Nyquist frequency ( fc), 47

occurrence prior, 79
odds, 82
orthogonal projection (vector), 127

parallel programming, 53
parallel tempering, 28, 30
parameters, 17, 56
polarisation angle (ψ), 56, 59, 67
post-Newtonian (PN) formalism, 65
posterior distribution, 17
power spectral density, 49
power spectral density estimation, 49
prior distribution, 17, 78
probability, 17
proposal distribution, 21, 30

rectangular window, 48
reduced mass (µ), 58, 64
reparametrisation, 43, 58, 122
right ascension (α), 56
ringdown, 12
rotation (vector), 127

scalar triple product, 126
scaled inverse-chi-square distribution

(Inv-χ2(ν, s2)), 74, 135
signal-to-noise ratio (SNR), 37, 78, 80
simulated annealing, 28
spherical variance, 52, 124
split cosine bell window, 48
square window, 48
swap, 25, 28, 30
symmetry (proposal distribution), 21

temperature ladder (parallel temper-
ing), 28, 30

tempering, 26, 28
time delay interferometry (TDI), 55,

68, 132
total mass (mt), 58, 64, 128
Tukey window, 48

variance inflation (tempering), 26, 30,
33

Virgo, 9

window (Fourier transform), 47
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[16] C. Röver, A. Stroeer, E. Bloomer, N. Christensen, J. Clark, M. Hendry,
C. Messenger, R. Meyer, M. Pitkin, J. Toher, R. Umstätter, A. Vecchio,
J. Veitch, and G. Woan. Inference on inspiral signals using LISA
MLDC data. Classical and Quantum Gravity, 24(19):S521–S527, Octo-
ber 2007.
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