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ABSTRACT

NEUTRON STARS IN COMPACT BINARY
SYSTEMS: FROM THE EQUATION OF STATE
TO GRAVITATIONAL RADIATION

by
Jocelyn S. Read

The University of Wisconsin-Milwaukee, 2008
Under the Supervision of Professor John Friedman

and Professor Jolien Creighton

Neutron stars are incredibly dense astrophysical objects that give a unique glimpse
of physics at extreme scales. This thesis examines computational and mathematical
methods of translating our theoretical understanding of neutron star physics, from the
properties of matter to the relativistic behaviour of binary systems, into observable
characteristics of astrophysical neutron stars.

The properties of neutron star matter are encoded in the equation of state, which
has substantial uncertainty. Many equations of state have been proposed based on
different models of the underlying physics. These predict various quantities, such
as the maximum stable mass, which allow them to be ruled out by astronomical
measurements. This thesis presents a natural way to write a general equation of
state that can approximate many different candidate equations of state with a few
parameters. Astronomical observations are then used to systematically constrain

parameter values, instead of ruling out models on a case-by-case basis.
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Orbiting pairs of neutron stars will release gravitational radiation and spiral in
toward each other. The radiation may be observable with ground-based detectors.
Until the stars get very close to each other the rate of inspiral is slow, and the orbits
are approximately circular. One can numerically find spacetime solutions that satisfy
the full set of Einstein equations by imposing an exact helical symmetry. However, we
find that the helically-symmetric solution must be matched to a waveless boundary
region to achieve convergence. Work with toy models suggests this lack of convergence
is intractable, but the agreement of waveless and helical codes validates the use of
either approximation to construct state-of-the-art initial data for fully dynamic binary
neutron star simulations.

The parameterized equation of state can be used with such numerical simulations
to systematically explore how the emitted gravitational waves depend on the prop-
erties of neutron star matter. Late-time waveforms from numerical simulations with
varying equation of state are matched onto early-time post-Newtonian waveforms
to generate hybrid waveforms for data analysis. The variation in waveforms from
changing the EOS is compared to the noise properties of the tunable Advanced LIGO

detector to determine measurability of neutron star and equation of state parameters.

John Friedman Date

Jolien Creighton Date

v



to
Mom and Dad,
Grandma and Granddad



Contents

[Prefacel

[Acknowledgements|

[Conventions|

[List of Tables|

[List of Figures|

Introductionl

(I Equations of state for neutron stars|

(1 Properties of cold dense matter]

(1.1 Thermodynamics of neutron star matter| . . . . . .. ... ... ...

(1.2 Equationofstate] . . . . . .. ... ... ... ...

(1.3 Physics on the femtometre scale| . . . . . . ... ... ... ... ...

2 Neutron star structurel

vi

ix

xi

xii

Xiv

10

11
12
13
14

17
17
23
25

30



[3.3  Piecewise Polytropes| . . . . . .. ... ... ..o 32
[3.4 Constraining EOS parameters with astrophysical observations . . . . 40
II  Quasiequilibrium and helical symmetry| 54
[4  Quasiequilibrium approximations| 55
4.1 Quasiequilibrium sequences and initial data| . . . . . ... ... ... 55
4.2 341 decomposition| . . . . . . ... 56
4.3 Conformally flat mitial data] . . . . .. .. ... ... ... ... ... 57
4.4  Helical symmetry: beyond conformal flatness| . . . . . . ... ... .. 59
[ Toy model of helical symmetry] 66
B.1  Introductionl . . . . . . . . ... 66
0.2 Scalar Field Modell . . . . . . .. .. oo 67
[>.3 Problem specification| . . . . . . . ... oo 67
[>.4 Methods used in model problems| . . . . ... ... ... ....... 69
[>.5 Estimating numerical accuracy|. . . . . . ... ... 73
[5.6  Measuring range of convergence| . . . . . . . ... ... 74
[>.7 Boundary and convergence| . . . . . . .. ... 78
H.8  Conclusions . . . . . . . .. 79

(III Gravitational radiation and the equation of state] 80

[6 Wave production and analysis| 81
6.1 Post-Newtonian approximations| . . . . . . . . . . .. ... ... ... 81
6.2 Detectionl . . . . . . .. . 86
6.3 Parameter estimationl . . . . . . . . . ... 88
6.4 Advanced LIGO noise and tuningf . . . . . . .. ... ... ... ... 89
6.5  FOS constraint with NS-NSI . . . .. .. ... ... 0L 90

[7  Constraints from binary inspiral on the equation of state] 94
[[.1 Parameter variation in numerical simulation| . . . . . . . . . ... .. 95
(7.2 Numerical Simulation|. . . . . . . . . ... oo 96

vil



(7.3 Wavetorm analysis methods . . . . . ... ... ... ... .. .... 97
[7.4  Post-Newtonian matchingl . . . .. ... ... ... ... ....... 98
[7.5 Discrete Fourier transtorm and comparison with Advanced LIGO noise] 101
[7.6  Detectabilityl. . . . . . . . .. ... 105
|Conclusions| 109
[Appendices| 112
(A Equation of state tables| 112
[B Accuracy of best-fit parameterizations| 117
[Bibliography 122

viil



Preface

Chapters [2] and [3] contain material from

“A parametrized equation of state for neutron-star matter.” Jocelyn S. Read, Ben-

jamin D. Lackey, John L. Friedman, Benjamin J. Owen.
Chapters [4] and [5] contain material from

“Models of helically symmetric binary systems.” Shin’ichirou Yoshida, Benjamin C.
Bromley, Jocelyn S. Read, Koji Uryu, John L. Friedman. Class. Quantum Grav. 23
(2006) S599-S613.

Chapter [7] is based on

“Constraints from binary inspiral on the equation of state above nuclear density.” Jo-
celyn S. Read, Charalampos Markakis, Masaru Shibata, Koji Uryu, Jolien Creighton,
John L. Friedman.

X



Acknowledgements

I first thank my collaborators on the work presented in this thesis. I am delighted to
have worked with so many wonderful people. For the work in Part |I[[on astrophysical
constraints for piecewise polytropes, I thank Ben Lackey for successfully producing
understandable plots of his constraint calculations. I thank Ben Owen for contributing
his analysis of the astrophysical observations we base our constraints on. I thank my
collaborators on the helical toy model comparison work in Part [[I, Shin Yoshida
and Ben Bromley. I also thank Koji Uryu for the computational inspiration of my
toy model implementation, as well as the use of his codes for the initial data of the
numerical simulations for different EOS in Part [[TI] I thank Harris Markakis, for
constructing that initial data, and Masaru Shibata, for running his state-of-the-art
code for neutron star numerical evolution and gravitational wave extraction with our
EOS. I particularly thank my dissertation co-chairs: John Friedman, for invaluable
guidance throughout my graduate career, many interesting problems to work on,
and eventually-imparted understanding in nigh-uncountable areas of physics. Jolien
Creighton, for help this last year in navigating many perilous seas including those of
data analysis, LIGO conventions, and typesetting.

The physics department at UWM is the kind of community I’d like to spend my
life working in. My fellow grad students, especially, helped balance working hard
with hanging out in people’s offices making dorky jokes. It’s hard to overstate my
satisfaction. Dissertation-related thanks especially to Nick for proofreading and Ben
for last minute checks of research results.

I also thank my family, particularly Mom, for showing me never to be afraid to
jump into an entirely new field of study, and Dad, for encouraging pride in nerdiness
and good communication skills despite introversion. And I thank my husband, Uwe,

for thinking I kick ass and being awesomely supportive.



Conventions

In the discussion of neutron star equation of state thermodynamics, n will refer to
number density and € to total energy density. The mass per baryon, m;, = 1.66 X

102" kg, of the matter dispersed to infinity is used define a rest mass density p ~ n.
Nuclear density is taken to be ppu,. = 2.7 x 101 g/cm?.

Factors of ¢ are suppressed (setting ¢ = 1) in thermodynamic discussions, and the

pressure p is generally reported as p/c®. Note p/c?, €, and p share units of g/cm?.
The enthalpy per rest mass is h, the pseudo-enthalpy is H = log(h).

Spacetime indices will be Greek, as in «, (3, 7, ..., while spatial indices will be Latin,
as in a, b, ¢, .... Indices early in the alphabet can be regarded as abstract indices,
and those later in the alphabet, such as u, v, A, and 4, j, k, can be regarded as

concrete indices taking values such as p=0,1,2,3 and « = 1,2, 3.

The Fourier transform conventions are
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Introduction

We begin with the death of a star.

When the star is young, although the gravity of the star pulls matter inward, the
nuclear fusion reactions radiate energy outward, supplying enough pressure to keep
the star at the size we see. Eventually, however, the raw materials in the core are
used up. The fusion halts, and the outward pressure drops. Without this pressure,
the core collapses in on itself until something else provides support.

For most stars, those around one to eight times the mass of the sun, this comes
from the gas of electrons surrounding the nuclei. The pressure from degenerate elec-
trons, unable to drop to already-filled lower energy states, is enough to support the
core. The result is a white dwarf.

But for larger stars, the pull of gravity will overcome the electron pressure in the
core of the star. The electrons are pushed in to merge with protons in the nuclei and
make neutrons. Nuclei with extra neutrons are more unstable, and neutrons start to
drip out of the nuclei and mix with the gas of electrons that surrounds them.

As gravity pulls the matter of the star tighter, the overall density reaches the
density of the atomic nuclei, leaving no division between each nucleus and its sur-
roundings. The pressure that supports the star against collapse now comes from the
degeneracy of the neutrons themselves. The resulting fluid of mostly neutrons may

form the core of a neutron star.

Dense matter and neutron star astrophysics

The matter of neutron stars is at extreme densities, ranging up to central densities

3

that likely exceed 10'° g/cm?® and may reach 109 g/cm3. This is up to a hundred

times the density of an atomic nucleus; the mass of a sun or two is packed into a



Table 1 : Example particles in the classes relevant to neutron stars and ground states. No two
fermions can occupy the same state, by the Pauli Exclusion Principle, which results in a degeneracy
pressure that supports fermionic matter against collapse.

Fundamental Particles

Fermions Bosons
Leptons Quarks force mediators:
neutrinos (v), up, down, strange, ...  photons, gluons, ...

electrons (e), muons

(1), ...

Hadrons (quark/gluon composite particles)

Baryons (fermionic) Mesons (bosonic)
Nucleons Hyperons paired quarks: pions
the lightest baryons:  baryons that include (7), kaons (K), ...
neutrons (n) and strange quarks:
protons (p) Lambda (A), Sigma

(%), Xi (2), ...

sphere of 20 to 30km in diameter. And yet, for most of the star’s existence, the
matter is effectively cold: it is in its lowest possible energy configuration.

We do not know exactly how this cold dense matter behaves. It does not exist on
earth. We can create comparably dense matter in experiments like the Relativistic
Heavy Ion Collider (RHIC) by smashing gold nuclei together, but it is very hot and
out of equilibrium. The extrapolation back to the equilibrium ground state is both
difficult and model-dependent.

The uncertainty is not a question of unknown fundamental physics—the standard
model, particularly the theory of quantum chromodynamics (QCD), which describes
the interactions of the colour-charged quarks and gluons that make up protons and
neutrons and other particles described in Table [T} is valid at these scales. However,
it is difficult to determine the residual interactions of colour-neutral hadrons, and the

many-body problem is computationally intractable.



Figure 1 : A schematic diagram of the phases of matter described by quantum chromodynamics,
over a range of temperatures T and chemical potentials p. The matter we ordinarily observe is a
two-phase mixture of vacuum and nuclear matter. In neutron star cores a single phase of nucleon-
based matter forms, which may also incorporate mesons and hyperons as density increases. At high
pressures, the T" = 0 ground state may not involve hadrons at all, but transition to some form of
quark-gluon gas or liquid.
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Instead, the ground state must be modelled by hypothesizing the particular com-
position of particles and the forms of their interaction potentials, and by approx-
imating the many-body problem with a few levels of multi-particle interactions or
mean field approximations. While neutrons and protons are the known constituents
of nuclei, additional types of particles, hyperons and mesons, can come into play as
densities increase. At very high densities the equilibrium ground state of matter may
not even contain composite particles like neutrons and protons at all, but rather be
a soup of the fundamental quarks themselves. A QCD phase diagram is shown in
Fig. [1]

Unable to measure the properties of the QCD ground state on earth, we look to
observe their signatures on neutron stars in outer space. Most observed neutron stars
are pulsars, spinning neutron stars with relativistic electrons emitting radiation in
cones from their magnetic poles as sketched in Fig. 2l Whenever the spin brings a cone
in line with the earth, we see a pulse of radio and/or x-ray emissions. Observations
of these pulses tell us how fast the star spins. In some cases, further information can
be deciphered.

If the neutron star is in a binary system with another star, the orbital motion



Figure 2 : A diagram of the lighthouse model of pulsar emission. Charged particles accelerated
along magnetic field lines create beams of radiation, which sweep around with the rotation of the
star. When the beam points toward the earth, a pulse of radiation is observed.
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modulates the pulse frequency. This redshifting and blueshifting gives limits on the
mass of the stars. If the companion is optically visible and eclipsed by the neutron
star, modulation of the optical signal combined with its spectral shifting allows an
estimate of both masses. A neutron star may also accrete layers of matter from a large
companion, leading to bursts of x-rays believed to come from thermonuclear reactions
over the full surface of the neutron star. Modelling this burst gives an estimate of
the radius of the x-ray emission if the mass can also be measured.

When the companion star in a binary is also a neutron star, the orbital dynamics
can become highly relativistic. Observations of redshift, period, and the advance over
time of the orbital periastron—similar to the advance of the periastron of Mercury—
allow precise determination of the two neutron star masses as shown in Fig. 3] A
double-pulsar system, where pulses from both of the neutron stars in the binary are
measured, yields additional information about the orbital dynamics which may allow

an estimate of a neutron star’s moment of inertia. The first double-pulsar system,
PSR J0737—3039, was discovered in 2004.



Figure 3 : Determination of neutron star masses in the Hulse-Taylor binary, a pulsar with a neutron
star companion. The solid lines correspond to mass values compatible with measured orbital param-
eters w, Py, and ~. The parameter ~y characterizes the time delays in pulse arrival from redshifting
and time dilation as the pulsar orbits. The parameter w is the rate of periastron advance. The
parameter B, is the rate of change of the orbital period, which both confirms the masses determined
by the first two parameters and the prediction of general relativity that the binary pulsar emits
energy through gravitational waves. The additional orbital parameters s and r also confirm the
predictions of general relativity. Figure from [I].

The signature of the behaviour of matter at the highest densities lies in the ob-
servations that depend on the core structure of the neutron star: properties like the
star’s mass, spin, and size. By observing dynamical neutron star behaviour we can
also infer neutron star properties like tidal deformability and the resistance to changes
in spin (moment of inertia), which depend on the internal structure of a particular
neutron star. All these properties can be traced back to one function: the equation
of state (EOS) of the neutron star matter, which describes the relationship between
pressure and energy density in the neutron star.

If we observe large neutron star masses, we know that cold dense matter provides
enough pressure to support them against collapse to a black hole. We can look at
the fastest spinning stars and learn that the core must be dense enough to bind
matter at the equator moving at the speed such rotation requires. The radius and

interior structure of a particular neutron star are determined by the precise way the



pressure of cold dense matter varies with increasing density. Thus, by observing such
properties, we begin to be able to rule out hypotheses about the ground state at
various densities.

A new observational tool for neutron star astrophysics is the detection of gravi-
tational waves. Orbiting compact objects emit gravitational radiation and spiral in
toward each other, eventually colliding. As two neutron stars approach each other
at the end of the inspiral, the tidal deformation modifies their orbits, changing the
gravitational waveform.

On earth, gravitational wave detectors like the Laser Interferometer Gravitational-
wave Observatory (LIGO) are capable of measuring the ripples in space-time that
radiate from inspiralling neutron stars. Upgrades to the detectors, such as Advanced
LIGO, may improve the sensitivity enough to measure effects of the EOS of neutron

stars on the gravitational waves measured on earth.

Levels of approximations

To learn about the nature of matter above nuclear density from astrophysical obser-
vations, we must link the femtometre (107! m) scale interaction of hadrons to the
behaviour of neutron stars tens of kilometres across, or even to gravitational waves
hundreds of kilometres (10° m) long. This involves chaining together many levels of
physically reasonable approximations.

For example, the structure of a neutron star requires the full equations of general
relativity to calculate. Yet the matter within it can be modelled using flat-space
quantum field theory—or, at moderate densities, nonrelativistic theory—from the
perspective of a comoving, instantaneously inertial observer. The spacetime curva-
ture is significant only over distances much larger than those relevant to particle
interactions.

In turn, the input into the structure equations is the equation of state, a single
function of pressure versus density that characterizes the behaviour of a piece of
neutron star matter. Details of nuclear structure and mixed phases are averaged.

Large-scale neutron star structure is well approximated in most cases by that
of a spherical, stationary star. Imposing such symmetries simplifies the usually-

complicated Einstein equations, allowing them to be written as a system of first-order



differential equations. A small rotational perturbation on the static solution is suf-
ficient to calculate the moment of inertia for the more quickly spinning member the
double-pulsar system J0737—3039A. The simplified equations allow efficient calcu-
lation of predicted moments of inertia for a wide range of EOS. It is only in the
calculations of maximum allowed rotation that we must resort to considering neutron
stars with arbitrary spin.

Different levels of approximation are used for the orbital dynamics of binary neu-
tron stars over the course of their evolution. For most of their lifetimes, the neutron
stars are far apart and slowly inspiralling. They can be approximated as point parti-
cles, with the first order relativistic corrections of the post-Newtonian approximation
sufficient to model their gravitational interaction. One models the particle dynamics
by closed orbits, neglecting the small infall due to gravitational radiation. The secular
evolution of orbital characteristics, such as the change in period with time, is then
calculated on longer timescales by balancing the gravitational-wave luminosity of the
system against the change in binding energy with orbital separation.

This is the approximation used to calculate neutron star masses, and moments
of inertia, from binary pulsar observations. It is also used to generate waveform
templates for gravitational wave detection searches.

A similar approximation can be made to calculate the full fluid profile of two
neutron stars instantaneously following circular orbits. A series of such snapshots
with decreasing orbital separation can be pieced together to form a quasiequilibrium
sequence, modelling the hydrodynamic-dependent properties of the binary.

For the final inspiral and merger of two neutron stars, however, the requirements
for the above approximations break down. The stars are moving very quickly, they
are very close, and they have complicated hydrodynamics. The physics in such a
situation can only be modelled with the full four-dimensional simulations of Einstein’s
equations including relativistic hydrodynamics. Such simulations are computationally
expensive; fortunately the approximate methods suffice until near the end of the
evolution.

Results using one approximation often feed into models using different approxima-
tions. The perfect fluid equation of state is an ingredient for the general relativistic
calculation of neutron star properties. Quasiequilibrium data are used as initial con-

ditions for full numerical simulations. The neutron star mass and moment of inertia,



calculated for slowly rotating isolated stars in full general relativity, can be used to
characterize stars through dynamic orbital motion in a binary system. This dynam-
ical motion can itself be calculated in the entirely different approximation that the
stars are point particles, with gravitational effects calculated using a post-Newtonian

expansion.

Questions of this thesis

We have discussed how the observable properties of cold dense matter in neutron
star cores are determined by the equation of state, and how the composition and
interactions of cold matter at high densities are not fully known.

It is desirable to parameterize our lack of knowledge, ideally with some set of
natural parameters for the theory which can be systematically constrained by ob-
servations. But this has not been done for high density nuclear equations of state.
Instead a set of candidate equations of state is considered, with the choice of ele-
ments changing on a timescale of half decades, and individual candidates are allowed
or ruled out by a given astrophysical observation.

The reason for this is that the natural parameters are tied to the models used to
generate the equation of state, and the models used to describe cold dense matter
vary so much that there is no generic natural choice of parameters. Yet, the candidate
equations of state that span many different classes of models show reasonably simple
forms over a limited swathe of possible pressures.

In Part I} I answer the following question: Can we find a systematic way to char-
acterize the neutron star equation of state by varying a small number of parameters
that are independent of the particular microphysical model, such that astrophysical

observations can be used to limit the values of these parameters?

¥

We have also outlined varying levels of approximation used to describe the physics
of neutron star binaries. When one considers certain characteristic properties, such

as the binding energy of the system, there is a conflict between a common method



of constructing quasiequilibrium data and the known higher-order post-Newtonian
approximation.

The conformally flat approximation assumes that several of the degrees of freedom
in the spacetime metric are zero; specifically, the departure of the spatial part of the
metric from conformal flatness. This is accurate to first post-Newtonian order, but
describes a spacetime with no radiation.

Imposing exact helical symmetry on the binary system provides equations for these
additional components, resulting in a spacetime that satisfies the full set of Einstein
equations. This may give more accurate characteristics of the binary properties and
better initial data for numerical simulations.

In Part[IT, T answer the following question: Can a full helical symmetry assumption
be used to construct convergent numerical solutions for quasiequilibrium neutron stars

which go beyond conformal flatness?

¥

Finally, we have discussed how gravitational-wave detectors such as LIGO and Ad-
vanced LIGO may open a new window on the astrophysics of neutron stars. For
most of the frequencies that the detector is sensitive to, neutron star binary wave-
forms are expected to be well-described by point particle post-Newtonian waveforms.
Quasiequilibrium simulations seem to show fluid-dynamic-dependent properties at
the edges of Advanced LIGO’s frequency band, but these are difficult to translate
into gravitational wave effects.

Masaru Shibata at the University of Tokyo has started running simulations of
binary neutron stars with parameterized equations of state, using initial data created
by Koji Uryu and Charalampos Markakis. These are the first fully relativistic binary
neutron star simulations that start several orbits before merger. This allows them
to be matched onto post-Newtonian point-particle inspirals to yield full waveforms
suitable for work on data analysis and parameter extraction.

In Part [[TI} T answer the following question: Will the effects of the neutron star
equation of state be visible with Advanced LIGO, and, if so, how accurately might
an observation of a binary neutron star inspiral characteristics in Advanced LIGO

constrain equation of state properties?



Part 1

Equations of state for neutron stars

10



Chapter 1
Properties of cold dense matter

The structure and dynamics of neutron stars are determined by the behaviour of mat-
ter within it. For most of the lifetime of a neutron star, the bulk of its matter is cold
and degenerate: that is, the matter is at temperatures below the Fermi temperatures
of its constituent particles, so they are in their ground states.

The Fermi temperature can be estimated as follows: Let py be the Fermi energy
or chemical potential at a temperature 7' = 0, and s the radius of the Fermi sphere
in momentum space scaled by h. Then py = (hxr)?/2m for a particle of mass m. In
a spatial volume V| the number of states N in the Fermi sphere is 2(27) 3V (%W/@F?’)
for particles of spin % . At T = 0 this N is equal to the total number of particles in
the volume V.

The Fermi temperature, T, where kTr = pg, is

2
o h2 2 h,2 QN 3
T. =2 — = — 1.1
T T ok T o T (1.1)

and at temperatures below this the particles are degenerate[2], and their energy and
chemical potential will be approximately equal to those calculated at zero tempera-
ture. For nucleons above nuclear density, Tp = 101 K.

Although neutron stars are born with temperatures of ~ 10 K, they cool to
~ 10® K in a month and to ~ 10° K in less than a million years [3]. The temperature-
dependent region for an isolated neutron star is a layer of thickness ~ 1m, containing
only a tiny fraction of the matter. The structure of neutron stars will be almost

entirely determined by the zero temperature equation of state.
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We will also be considering nonmagnetic neutron star matter, an appropriate
approximation for B < 10'® G as the magnetic energy density is much smaller than

the pressure density.

1.1 Thermodynamics of neutron star matter

Consider a piece of matter small on the scale of hydrodynamic motions and variations
in gravitational potential in neutron stars. This is on the scale of centimetres or
metres, still large compared to the scale of the particles and nuclear structures that
comprise the matter. Its properties can be described statistically.

Within the considered piece, we model the physics entirely from the perspective
of a local Lorentz frame comoving with the fluid element, thereby separating the local
behaviour of particle physics from large-scale general relativistic effects. The change
in the metric of the neutron star will be small over centimetre- to metre- length
regions.

At scales larger than this, the structure of the neutron star will depend only on
properties averaged over the small piece of matter, i.e. the thermodynamic variables.
For degenerate or ground-state matter, these properties are entirely determined by
n, the average number density of baryons measured in the comoving frame.

If € is the total energy density measured in the frame, we have the first law of

thermodynamics for the heat gained per baryon, dQ, of

- 1
40 = d (5) +pd <—) (1.2)
n n
with pressure p, volume per baryon 1/n, and energy per baryon €/n.

In a reversible process, dQ = T ds, with s the entropy per baryon and T the

temperature, and the second law of thermodynamics becomes
de = pTds + " Pan (1.3)
n

where I have used the average rest mass per baryon of the neutron star matter dis-

persed to infinity, my, to define a rest mass density

p = Mmyn. (1.4)
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The enthalpy h per unit rest mass is

h="F (1.5)

in units where ¢ = 1.

Since the neutron star matter is almost entirely in the ground state, at tempera-
tures below the Fermi temperature, the entropy per baryon is nearly uniform over the
star. Thus the increase in pressure and density will be be approximated as isentropic,
with ds = 0, and thus both adiabatic and reversible. Then Eq. becomes

€E+Dp
p

de =

dp, (1.6)

which can be rearranged to give

dlog(p) ¢ —l—p@ B
dlog(p) ~ p de

defining I, the adiabatic index, characterizing the change in pressure per change in

T (1.7)

comoving volume at constant entropy. The adiabatic index also characterizes the

response of matter to density perturbations as long as the perturbations are slow

enough to maintain equilibrium. The speed of sound in the fluid is given by
dp

v, = —. 1.8

= (18)

1.2 Equation of state

The equation of state of matter in neutron stars is usually described using p(¢), the
pressure as a function of energy density, which is required to solve the equations
for stellar structure that will be discussed in Chapter 2] However, e itself can be
considered a function of the baryon density n or rest mass density p.

The microscopic stability of matter requires a monotonically increasing equation
of state, dp/dp > 0, or else small bits of matter are prone to spontaneously collapse.
For the matter to satisfy causality, the speed of sound given by Eq. must be less
than one.

For neutron stars, the matter will be in an equilibrium under reactions involving
both nuclear and electromagnetic interactions. The timescales of achieving chemical

and nuclear equilibrium are all short compared to the lifetime of neutron stars. The
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ground state of the matter can thus be calculated at a fixed number density by finding
the minimum energy achievable through varying the composition. In a nuclear physics
context, the equation of state is usually constructed to minimize the internal energy
per baryon as a function of number density.

This ground state energy density ¢(n) then determines the pressure of the matter

via the first law of thermodynamics, as

_ nzd(e/”) (1.9)

dn

The question thus becomes: what is the ground state energy of matter at a given
number density? Although at zero temperature this is in theory entirely determined
by the standard model, in practise the complex many-body interactions of the system
are difficult to calculate. The fundamental interactions of particles will determine

these properties.

1.3 Physics on the femtometre scale

Various methods are used to describe the dependence of energy density on rest mass
density.

The equation of state is known fairly well up to neutron drip, at an energy den-
sity of about 10! gecm™3. Below this density, reasonable variations in models up to
neutron drip have negligible effect on the equation of state [4].

At low densities the balance of nuclear and electromagnetic forces gives a mini-
mum energy density for nuclei at the composition of iron. While the energy density
is dominated by the baryons, the pressure is dominated by the surrounding gas of
nonrelativistic and degenerate electrons, which gives an equation of state in the ideal
noninteracting nonrelativistic limit of p oc p%/3.

As the density increases, the electrons providing the pressure becomes relativistic,
p o p*3 in the ideal relativistic limit. The nuclei become more neutron-rich, as

protons undergo inverse beta decay,
pt+e —n+r, (1.10)

absorbing some of the high-energy electrons. The neutrinos produced diffuse to the

edge of the star and escape. At around 4.3 x 10 gem™3, the neutron-rich nuclei
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become unstable and neutrons begin to “drip” out of the nuclei, forming a superfluid
neutron gas [5] around the nuclei.

One method of modelling the EOS in this region is the Compressible Liquid Drop
Model [6], which calculates energy density contributions from the bulk of nucleons
in a nucleus, the surface of the nucleus, and coulomb contributions from nuclei and
nuclear structures, plus a uniform electron gas contribution. This method generates
the crust EOS of the sLy4 EOS table, which is the basis of the fixed crust EOS in
Chapter [3] and Part [[T]] of this thesis.

The saturation density of symmetric nuclear matter, matter with equal numbers
of protons and neutrons, is py ~ 2.5 x 10 gem 3. This is the zero-pressure density
of the ground state of nuclear matter, and due to the short distance repulsion of the
strong force, the nucleons remain at roughly this density as the size of a nucleus grows
[3].

After neutron drip, as neutron star matter approaches the saturation density, the
spacing of the nuclei in the equilibrium configuration decreases, and the inverse beta
decay continues, until the matter is uniform fluid of neutron matter, containing a
small dissolved fraction of protons and electrons. Muons appear when the electron
chemical potential y, surpasses m,c¢* = 105.7 MeV [6].

Computation of the energy at higher density is a many-body problem with an ar-
ray of possible computational techniques. EOS calculations may use realistic nucleon-
nucleon potentials, developed through scattering, and/or phenomenological descrip-
tions with effective three-body or higher corrections. Variational, Bruekner-Bethe-
Goldstone, and relativistic mean field calculations are used to determine the ground
state energy.

As densities increase, new reactions may become energetically favourable, allowing
the production of hyperons, mesons, and quarks. This requires additional terms in
the Hamiltonians or Lagrangians of the above theories. The density of appearance for
these particles is uncertain; few experiments constrain hyperon-nucleon interactions,
which must be calculated from QCD.

At very high energies, the equilibrium state of nuclear matter may not be well
described in terms of baryons and hyperons, but rather in terms of the fundamental
quarks. The asymptotic behaviour of QCD suggest that quark interactions become

weak at sufficiently high densities, transitioning from bound hadrons to a liquid quark
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phase. Hybrid models of the EOS mix quark and hadron phases in an intermediate

region.

16



Chapter 2
Neutron star structure

The cold equation of state above nuclear density determines the macroscopic proper-
ties of neutron stars, which are potentially extractable from astrophysical observation.
Unlike white dwarfs, all neutron stars are expected to be described by the same one-
parameter equation of state, so multiple neutron star observations can be used to
constrain the properties of the single neutron-star EOS. Isolated neutron stars are
generally characterized by their mass, radius, and spin frequency. In binary pulsars,
the spin-orbit coupling can also give information about the stars’ moments of inertia.
Atmospheric and crust properties are required to determine the behaviour of bursts,
glitches, and other behaviour, and observations of such processes are more sensitive
to aspects of neutron-star physics beyond the cold equation of state. Here we will
focus instead on the properties that derive from the core equation of state, specifi-
cally those which are well-described by perfect fluid behaviour of cold high-density

equilibrium matter.

2.1 Static, spherical stars

The simplest model of a neutron star is a spherically symmetric, nonrotating perfect
fluid, supported against gravitational collapse by its pressure.

With a metric of the form
ds* = —e**Mdt? 1 2 dr? 4 r2d0?, (2.1)

matter described by a perfect fluid stress energy tensor with four-velocity u# =
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T = —pg" + (p + e)uiu”, (2.2)
and a given equation of state
e = €(p), (2.3)
the stellar structure is determined by the Einstein equations in the form
d
d—T: = 4mrie (2.4)
dp  (m+ 47r3p) (p + €) (2.5)
dr r2(1 —2m/r) '

o 4grr3
4@ _ m+tdar'p (2.6)
dr  r2(1—2m/r)
Here m(r) is defined via

e = (1 - Z—m) B (2.7)

r

and is interpreted as the mass (including potential energy contributions) inside the cir-
cumferential radius r. These are known as the Tolman-Oppenheimer-Volkoff (TOV)
equations [7].

A neutron star model can be defined by the choice of the central energy density,
€c, which for a one-parameter equation of state fixes the central pressure p. = p(e.).

The remaining boundary condition at the centre is
m(r=0)=0. (2.8)

The surface is defined at the radius r = R where p = 0, and we define a boundary

condition on ® via

m(r=R) =M (2.9)
O(r=R) = %ln (1 - %) (2.10)

completing the specification of boundary conditions for m and ® given a central p(e..).

Outside the surface, the metric is the vacuum Schwartzchild metric of mass M,

e*? = (1 - ﬂ) (r > R) (2.11)

e = (1 — %> B (r > R). (2.12)
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The baryon mass A of the star is found by integrating the rest mass density p

over the proper volume of the star

A / AV =4 / fo_ A (2.13)
= = i —— . .
g 0 p\/1—2m/r

2.1.1 Enthalpy

There are numerical challenges when solving the TOV equations in the form specified
above. The radius at the edge of the star, R, is not known until the equations are
solved, so some iteration procedure is required to seek the edge of the star, where p
and € become zero. Integrating in terms of pseudo-enthalpy H, instead of the radius,
will have the advantage that the surface is at a known value H = 0 and the equations
are nonsingular at this point [§].
A neutron star, at zero temperature, can be described by a one-parameter equation
of state
c=c(n),  p=pn) (2.14)
of energy density € and pressure p in terms of baryon number density n or rest mass
density p = myn. Recall that the first law of thermodynamics in the zero-temperature

case is

de=Pyq, (2.15)
p
and that
h— P (2.16)
P
is the comoving enthalpy per unit rest mass. The pseudo-enthalpy
H =1In(h) (2.17)
satisfies p
14
— = 2.1
and using (e + p)/p — 1 as p — 0 we obtain
Py
H= | L (2.19)
o €()+p

For positive energy density and pressure, h is monotonically increasing with pres-

sure, so we can convert an equation of state into the form

e =€(h), p=p(h). (2.20)
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Following Lindblom [§], we re-express Eq. (2.5)), using Eq. (2.18) as

dH  m+dmr’p(H)

— = 2.21
dr r(r —2m) (221)
which, by comparison with equation (2.6)), shows that
dd dH
—_— = 2.22
dr dr ( )
Using the conditions H = 0 and ¢ = %ln( — %) at the surface we have
1 2M

The equations of stellar structure, (2.4) and (2.5, can then be written in terms of
the pseudo-enthalpy as

dr r(r —2m)

_— = — 2.24
dH m + 4mr3p(H) (224)
dm o, dr

ﬁ = 4rxr Eﬁ’ (225)

with r = R and m = M at H = 0; and the metric within the star is [recall H = In(h)]

1 2M om(r)\
2 _ _ 2 _ 2 2702
ds® = )2 <1 )dt + (1 . ) dr® 4 redQ”. (2.26)

The rest mass of the matter making up the neutron star, which is proportional to

the number of the constituent baryons, is again determined by integrating the rest
mass density in a comoving Lorentz frame, which can be written in terms of enthalpy

as

p+e
= 2.2

over the volume of the star.

2.1.2 Stability and maximum mass

A sequence of nonrotating models can be constructed for a given equation of state by
varying central energy density €.. Although these solutions will satisfy hydrodynamic
equilibrium, there is no guarantee that they will be stable solutions. The onset of

instability determines the maximum mass possible for a given equation of state.
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The stability to radial perturbations can be expressed in terms of the radial com-
ponent of a Lagrangian displacement of the fluid (x,t). These radial perturbations
are decomposed into a set of orthonormal modes of oscillation with time depen-
dence ~ exp(iw;t). The eigenvalues w]? of these modes are real, forming a sequence
wi < w? < wi-- -, with the eigenfunction &; of each mode having j nodes for 0 < r < R
[4].

Overall stability is governed by the fundamental mode &y, which has no nodes

within 0 < 7 < R. If this mode is stable, with w2 > 0, then all modes are stable
2

as their w; must be larger than a positive quantity. If it is unstable, it is the fastest
growing unstable mode, as w? is the most negative.

We evaluate stability along a sequence of models characterized by ¢e.. Assume
stability is known at some low density. Consider a critical point where dM /de. = 0
is a local extremum. Then there exist two nearby equilibrium models which have the
same energy M but different configurations. Let £ be the Lagrangian displacement
from the lower e& model to the higher ¢ model. Using the equations of motion for
the &;, one can show that dM/de. = 0 implies the existence of some & with w? = 0
linking the two equilibrium models [4].

Start with a low central energy density where a model is known to be stable, so all
modes have positive w?. As the central energy density . increases, the first critical
point must indicate where the smallest eigenvalue w? crosses zero. This is the onset of
instability, as the the lowest fundamental mode &, is then unstable. However, further
critical points may indicate either a return to stability, as w3 becomes positive again,
or an extended set of unstable equilibrium models as higher normal modes become
unstable.

The variation of the radius over the same €.-parameterized sequence of models de-
termines whether stability to radial perturbations will change at later critical points.
This can be shown as follows: As the central energy density is increasing, the mode
¢ connecting the two models will be negative near the centre of the star (fluid ele-
ments contract). Then, if £ is a mode with an even number of nodes, £ will also be
negative near the radius of the star, and the radius will decrease across the critical
point. Conversely, if £ has an odd number of nodes the radius will increase across the
critical point.

Thus, after a stable region, a series of critical points with dR/de. < 0 will indicate
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Figure 4 : Gravitational mass M, plotted vs central energy density ¢ as well as versus radius R.
Critical points are labelled with letters in order of increasing central energy density.

Top panels: An equation of state with a phase transition, parameterized according to to Chapter
by po =13.85, 'y =3, '3 = 1.2, '3 = 3. A is a first maximum mass, B a minimum in mass, and C
a second maximum mass. The change in radius over the critical points shows that there is a second

stable sequence from B to C.
Bottom panels: In this EOS, a minimum mass at E indicates the onset of £&; mode instability, rather
than a second stable sequence, as seen by the change in radius R.
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alternating regions of stability and instability the as fundamental mode, with zero
nodes, crosses zero. The first critical point with dR/de. > 0, however, indicates the
onset of instability of the & mode.

This condition can be seen in the curve parameterized by €. in the M-R plane,
rather than by considering M vs €, as demonstrated in Fig. [4

For the equation of state of cold degenerate matter, the first critical point is a
maximum white dwarf mass, and the second critical point corresponds to the min-

imum neutron star mass. For most npeu-only equations of state, the third critical
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point is the maximum neutron star mass, and further critical points indicate addi-
tional unstable modes. However, equations of state with phase transitions to exotic
forms of matter above nuclear density may have two stable branches of neutron stars
[9].

To determine the absolute maximum stable mass for a given equation of state,
a sequence of models must be constructed through possible regions of fundamental
mode instability until higher modes also become unstable. For the set of realistic and
parameterized equations of state considered, the onset of &; instability appears to be

irrecoverable.

2.2 Slow Rotation

A formalism for slowly rotating neutron stars, with quantities expressed in orders of
the angular velocity 2, was developed by Hartle [I0, [IT]. It is valid for Q < Q,
where Qf is the Kepler velocity of a particle in a circular orbit at the equator,
Q ~ (GM/R3)Y/2.

For the purposes of characterizing neutron star structure, we will consider the
moment of inertia calculated for slowly rotating neutron stars at first order. This
is reviewed nicely in [I2]. Another equation of state dependent property of slowly
rotating neutron stars is the quadrupole moment induced by the rotation, but this
requires terms to second order in €2 and will not be considered in this thesis.

For slowly and uniformly rotating stars, the metric can be written in spherical
coordinates as
2m(r)

r

—1
ds? = —e**ar? 4 (1 - > dr? = 2w(r, 0)r” sin® fdtdg + r* (d6” + sin® 0dp?) .
(2.28)
For a uniformly rotating configuration of angular velocity €2, an observer falling
freely from infinity gains an angular velocity w(r,#). The difference w(r,0) = Q —
w(r, 0) is the coordinate angular velocity of the fluid element at (r,0). The Einstein
equations with the additional component in require @ to be a function of r
alone, obeying the differential equation.

1d [, do 4dj _
el (S e I U 2.2
rtdr (r‘]dr>+rdrw 0 (2.29)
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with
j(r) =/1=2m(r)/r (2.30)

and dw/dr = 0 at r = 0. This equation for @ is the only addition, at order €, to
Egs. (2.6) and (2.5)) of the spherical case.

Matching the interior solution to the metric outside the star, where w = 2.J/r% or

_ 2J
gives the condition
1 diw
J=-R*|l—Z 2.32
6 (dr)rR ( )

which supplies the second boundary condition on the differential equation ([2.29) for

w:
w R (d(w/Q)
— =1—-—=|—-" . 2.

Q r=R 3 ( dr )r:R ( 33)
The moment of inertia is then I = J/Q, a quantity independent of € in the slow-

rotation approximation.

2.2.1 Moment of inertia using enthalpy

In terms of enthalpy, j can be rewritten using Eqs. (2.30) and (2.23)) as
1—2m/r 1z H
(r) = | ——=——= 2.34
i = (1)« (2.34)
so that, after substituting in dm/dr and dh/dr, we find that j satisfies

4 Arr3(p +€)

ar -7 r(r —2m) (2:85)

We can then rewrite (2.29) in terms of H as a pair of first order equations, defining

dw

o=
and then substituting « for dw/dr and using for dj/dr in (2.29), then solving
for da/dr, we find

o (2.36)

4 —

— = . 2.
dr r r’1—2m/r (2.37)
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The boundary condition dw/dr = 0 becomes o = 0 at the central value of the
enthalpy h., where r = 0. The boundary condition at the surface, (2.33)), becomes

S(R) = O — ?a(R). (2.38)

The angular momentum J and angular velocity €) of the solution will be

J = %R"‘a(R) (2.39)
Q=w(R)+ %‘g, (2.40)

which determines the Q-independent the moment of inertia I, for any w(R) in the
slow-rotation approximation, via

I= (2.41)

J
a-

This formalism allows the characterizing properties of mass, baryon mass, radius,
and slowly-rotating moment of inertia to all be written in terms of a system of first
order differential equations in h, which can be simultaneously solved using standard

numerical routines for a given equation of state p(h), e(h):

j_;f B _mzsrél;ri;rz;[) (2:42)
Z—Z = 47TT’265—; (2.43)
ins Tt o
Z—f = aj—;[ (2.45)
b (o ey e

This system can be solved numerically, after specifying boundary conditions at

the centre via a small uniform-density ball.

2.3 Fast Rotation

As () increases, a rotating neutron star eventually reaches a mass-shed limit. This is
the point at which the neutron star is rotating sufficiently rapidly that matter at the

surface becomes gravitationally unbound. It can be found by calculating the Kepler
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velocity (i of an equatorial particle and comparing it to the angular velocity §2 of
the star; the two are equal at the mass-shed limit.

Although most neutron stars rotate slowly enough that the slow rotation approx-
imation is valid, some nascent neutron stars, and some in x-ray binaries spun up by
accreting matter from the companion star, may rotate with angular velocities near
Q. For these maximal rotations, the approximation of slow rotation, by its defi-
nition, breaks down. However, we can still consider uniform rotation to be a good
approximation for long-lived but quickly rotating neutron stars.

To determine the properties of uniformly rotating stars of arbitrary rotation, nu-
merical solutions must be calculated. For work discussed in this thesis, the open-
source code rns [13] was used, in the updated form rns2.0 [14]. Other methods are
reviewed in [15] [16], [17].

The rns code sets up central conditions for a stellar model based on €., and uses a
nonrotating solution as an initial model. Rotating models are specified using the axis
ratio vt between equatorial and polar axes. Models are restricted to axisymmetric,
uniformly rotating neutron stars.

The Einstein equations are solved using the method of Komatsu, Eriguchi, and
Hachisu (KEH) [I8], where one splits off a flat-space Laplacian operator iterating
over the remaining nonlinearities. A similar method will be discussed in Part[l] for
the construction of binary neutron star initial data.

Given a model specified by €. and t, a convergent solution of the Einstein equa-
tions is characterized by various equilibrium properties calculated in rns, including:
gravitational mass, baryonic mass, equatorial radius, angular momentum, moment of

inertia, angular velocity, and Kepler velocity.

2.3.1 Stability and maximum rotation

The equilibrium rotating models for a given cold equation of state form a two-
parameter family, which can be specified by the central energy density €. and the
axis ratio t, as in the base rns routine, or equivalently by €. and the angular velocity
Q. In the limit that 2 — 0 and thus v — 1, we recover the one-parameter family of
nonrotating spherical models.

The mass-shed limit gives a maximally rotating equilibrium model for each central

energy density €., but, as in the spherical case, these equilibrium models are not
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Figure 5 : Two families of equilibrium rotating neutron stars, plotted as surfaces of baryon mass
M, for a given central energy density € and angular momentum J. A maximum angular momentum
model is reached, for a given ¢, at the mass-shed limit. Stability can be determined by considering
critical points of M; along sequences of constant J, as in the spherical, or J = 0, limit. For the EOS
on the left, there is one stable limit, and the maximum rotation model is very close to the maximum
mass model on the mass-shed limit sequence. For the EOS on the right, there are two stable regions
along each line of constant J, comparable to the two stable regions of the first EOS in Fig. As
frequency of rotation increases along the mass-shed limit, the maximum rotation model will lie in
the second stable region, which has higher central density than the maximum mass model in the
first stable region.

guaranteed to be stable to perturbations.

Overall stability in uniformly rotating models is governed, as in the nonrotating
limit, by the stability of the model to radial perturbations. As in the spherical 2 =0
case, there can exist alternating regions of stable and unstable rotating models along a
sequence of fixed €2. A criterion for the onset of instability is developed by Friedman,
Ipser and Sorkin in [19].

The critical points that potentially indicate a change in stability are extrema of
mass-energy M under variation in both baryon mass M, and angular momentum .J.

The model of maximum rotation is the fastest-spinning stable member of the
mass-shed limit models. For most npep-only equations of state, this is close to the

point on the mass-shed limit with maximal mass-energy. However, especially in cases
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with phase transitions or two stable branches of neutron stars, this is not necessarily
true. An example is in EOS L of [15], or the parameterized EOS of Fig.

Universally valid searches for limiting stability, as in for example [15], have re-
quired covering the set of models with sequences of constant rest mass M, and ex-
tremizing J on each one, or vice versa. However it is possible to obtain a more general
criteria for critical points.

To obtain a more general stability condition, consider the two-parameter family
of rotating neutron stars as a surface ¥ in M,-J-€, space, like that shown in Fig. [f
The central energy density €. and axis ratio t are suitable parameters for this surface.

This surface has folds, the tops of which are the maxima of baryon mass M, along
sequences of constant J (or of J along sequences of constant M,). If projected onto
the M,-J plane, these folds give the boundaries of a family of equilibrium models.
These are the analogs of the dM = 0 critical points in the J = 0 spherical case.

The set of models with limiting stability, the “critical line”, is thus the set where a
vector in the e, direction, €., is tangent to the surface of equilibrium models. Equiv-
alently, this is where the normal vector to the surface is perpendicular to €.

Given the parameterization of the surface in terms of €. and ¢, the normal vector
to the surface ¥ = {M,, J, €.} is along

oY 0X%
— = 2.47
"0 " o (2.47)
with component along é..
M, M,
n,, = IMy0J _ 0J OMy (2.48)

© e, Ot e, Ot
which is zero at the critical line between stable and unstable equilibriums on the
surface 3.

This condition could also be described as point where M, and .J as functions over
e. and t have parallel gradients; this means that the condition of [19], that d.J/d\ =0
along a sequence of constant M, will hold; nearby models have the same properties at
the critical line. As in the spherical case, there may be multiple stable and unstable
regions of the equilibrium fluid configurations.

The maximally rotating model for a given equation of state may be found by
considering a sequence of central energy densities €.. First, increase the axis ratio t

until the Kepler limit is found, as in the example program main. c of rnsv2.0. Second,
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vary €. and v around this point to estimate the partial derivatives of Eq. The
sign of n., will change as the Kepler limit sequence crosses the stability limit.

A critical point along a constant J sequence may indicate not a new stable region,
but the onset of higher mode instability (as in the spherical case of Fig. . One can
generalize the radial change condition of spherically symmetric stars to differentiate
two-branch EOS from the onset of further instabilities, as pseudo-radial perturbations
do characterize this stability, but this has not been shown in detail.

For equations of state with two stable regions, the Kepler limit models may show
a maximum mass near the first critical point, but a maximum rotation near a second
critical point with smaller mass but substantially larger angular velocity; this is the
behaviour of EOS L in [15] and the parameterized EOS in Fig. [5|

An empirical formula, developed by Haensel and Zdunik in [20], predicts maximum
stable rotation for a given EOS from the maximum-mass spherically symmetric model
for that EOS of mass M, and radius R:

1 3

Qmax MS 2 RS 2
~ 2.4
<1o4s1) “(MQ) (10km) (249)

The original calculation of Haensel and Zdunik gave x = 0.77. An overview of

subsequent calculations is given by Haensel et al. in [21], reporting values of K = 0.76—
0.79 for a range of EOS sets and calculation methods including those of [22 23| 15].
If we calculate maximum rotations with rns as described above, over a the full range
of parameters considered for the parameterized EOS of Chapter 3 we find k = 0.79 £
0.03.
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Chapter 3

Piecewise polytrope

parameterization

3.1 Introduction

Studies of astrophysical constraints (see, for example, [24 25| 26] 27 28] and references
therein) present constraints by dividing the EOS candidates into an allowed and a
ruled-out list.

Our goal is to find a parameterized EOS for which the number of parameters
is smaller than the number of astrophysical observables that might constrain them.
At the same time, the number of parameters must be large enough that a point in
parameter space can accurately characterize the true EOS of neutron star matter.
We test such a parametrization by finding the accuracy with which it can fit a large,
representative collection of tabulated candidate EOS. An accurate parameterization
will reproduce the neutron star characteristics of the candidate EOS, such as allowed
neutron star masses, to an accuracy comparable with, or better than, astrophysical
measurement.

With the parameterization fixed, each observational constraint becomes a restric-
tion to a subset of the parameter space. The work reported here shows the regions
of our parameter space allowed by causality and by current astrophysical observa-
tions; it also shows the implied restrictions on the parameter space of possible future
observations.

The parameterization developed is based on a few polytropic regions of constant
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adiabatic index. Similar piecewise-polytropic equation of state have been considered

by Vuille and Ipser [29]; and, with different motivation, several other authors [30] 3]

32}, 133] have used piecewise polytropes to approximate neutron star EOS.

3.2

Candidates

We consider a wide array of equations of state, covering many different generation

methods and potential species. For plain npep nuclear matter, we include

two potential method EOS (PAL[34] and sLy4[6]),

eight variational method (four APR variants[35], FPsS[36], and three WFF

variants[37]),

one relativistic (BBB2[38]) and three relativistic ( BPAL12[39], ENGVIK[40] and
MPA1[41]), Brueckner-Hartree-Fock EOS, and

four relativistic mean field theory EOS (3 Ms variants[42] and PRAKDAT[43]).

We also consider models with exotica such as hyperons, mesons, and quarks,
collectively referred to as K/m/H/q EOS.

one neutron-only EOS with pion condensates (ps]d4]),
two relativistic mean field theory EOS with kaons (two SCHAF variants [45]),
one effective potential EOS including hyperons (BALBN1H1 [40]),

four relativistic mean field theory EOS with hyperons (GLENDNH3[47] and three
GM.NPH variants[43]),

one relativistic mean field theory EOS with hyperons and quarks (PCL_NPHQ
[48]), and

four hybrid EOS with mixed APR nuclear matter and colour-flavor-locked quark
matter (ALF* [49]).

These candidate EOS are described in more detail in Appendix [A] The tables are

plotted in Fig. [6] to give an idea of the range of equations of state considered for this

parameterization.
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Figure 6 : Pressure versus rest mass density for the set of candidate equation of state tables
considered in the parameterization
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3.3 Piecewise Polytropes
A polytropic EOS has the form
r
p(p) = Kp (3.1)

for pressure p as a function of the rest-mass density p, in terms of the two constants
K and I'. The constant I' is the adiabatic index. The energy density € is fixed by the
first law of thermodynamics,

1
d—=—pd-. (3.2)
P P

For p of the form (3.1)), Eq. (3.2]), has the immediate integral when I' > 1 of

€ 1 p
-=(1 _—= 3.3
L=+t (33)
where a is a constant; and the requirement liII(l) - 1 implies @ = 0 and the standard

p—0 p
relation
1

= —0D. 3.4
€E=p—+ 1 p (3.4)

A polytropic index N is defined by N = 1/(I" — 1).
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The parameterized EOS we consider are piecewise continuous polytropes above
a density pg, satisfying Eqgs. and on a sequence of density intervals, each
with its own K; and I';: An EOS is piecewise polytropic for p > py if, for a set of
dividing densities pg < p; < p2 < ---, the pressure and energy density are everywhere

continuous and satisfy
I € 1
plp) =Kip'', d—=—pd—, p;<p<pijr (3.5)
p P
Then, for I # 1,

K; .
e(p) = (L+a)p+ —=p" (3.6)

with

i Pi ST, -1
In each region p; < p < p;41, the enthalpy h is defined as (e + p)/p and is given by

i K; -
o €<p> 1 pFl 1‘ (37)

I ,
hi(p) =14 a; + i 1Kipffl (3.8)

The internal energy e = €¢/p — 1 is then

K; I;—1
Ir,—1

ei(p) = a; +

and the sound velocity vs = dp/de is

wnilp) = \| (3.10)

In general, each region of a piecewise polytrope equation of state is specified by
three parameters: the initial density p;, the coefficient K;, and the adiabatic index
[';. However, when the equation of state at lower density has already been specified

up to the chosen p;, continuity of pressure restricts K; to be

K, = p(pi) (3.11)

piti

Thus each additional region requires only two additional parameters, p; and I';. Fur-
thermore, if the initial density of a region is chosen to be a fixed value for the param-

eterization, the region requires only a single additional parameter.
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3.3.1 Fitting methods

We assume a fixed crust equation of state that can be extended arbitrarily to a fitted
initial density p; where the core stiffening begins. The low-density EOS used is a
piecewise-polytrope fit to the SLY4 equation of state. If the low density equation of
state is based on a fit to a table other than SLY4, best fit parameters for the EOS
change slightly, but much less than the typical difference in best-fit parameters for
different candidates.

Fits to the high-density equation of state are done using points above p =
10*3g/cm® = 0.74ppue. If the best fit core EOS is of sufficiently high pressure that
it lies above the low density equation of state at 0.74py,c, the lowest polytropic piece
is extended back towards lower densities until it intersects the low density equation
of state, where the two are matched together. Similarly, if the best fit core EOS has
smaller pressure than the crust EOS at 0.74py,¢, the crust EOS is extend forward until
it intersects the first matched polytrope piece. This gives monotonically increasing
equations of state, with no additional parameters required for matching.

For each tabled equation of state, the central rest mass density of the maximum
mass TOV star is used as an upper limit on the points considered for the fit. This
ignores tabled points which will not be realized in physical neutron stars.

The MINPACK nonlinear least-squares routine LMDIF, based on the Levenberg-
Marquardt algorithm, is used to minimize the sum of squares of the difference between
the logarithm of the pressure-density points in the specified density range and the
logarithm of the piecewise polytrope formula, which is a linear fit in each region after
the logarithms have been taken.

Even with a robust algorithm, the nonlinear fitting with varying dividing densi-
ties is sensitive to initial conditions. Multiple initial parameters for free fits are con-
structed using fixed-region fits of several possible dividing densities, and the global
minimum of the resulting residuals is taken to indicate the best fit for the candidate
equation of state.

For the set or parameters {p;, K;,I';} which define a piecewise polytrope model
p(p), we report the root mean square or RMS residual of the fit to m tabled points
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Pj,Pj-

m

residual = | 3" {log (p,/p(p) (3.12)

j=1

We begin with a single polytropic region in the core, specified by the two param-
eters p; and I'y, with K; fixed as in Eq. . This is referred to as a one free piece
fit. We consider also two polytropic regions within the core, which are specified with
the four parameters {p;,1'1, p2, 2}, as well three polytropic regions specified by the
six parameters {p1,1'1, p2, [, p3,['3}. While some equations of state are well approx-
imated with a single high-density polytrope, others require three pieces to accurately
capture the behaviour of phase transitions at high density.

The six parameters required to specify three free polytrope pieces seems to push
the bounds of what may be reasonably constrained by a small set of astrophysical
measurements. We can reduce the number of parameters by fixing the densities
which delimit the polytropic regions within the core. A three fixed piece fit, using
three polytropic regions but with fixed p, = 10'% g/cm? and p3 = 10'5% g/cm3,
is specified by the four parameters p;, I'1, I's, and I's. The choice of p; and p3 is
discussed in Sec. [3.3.3] Note that the density p; of departure from the fixed low-
density equation of state is still fitted by this scheme, although we later re-express

this degree of freedom as py, the pressure at ps, using

Iy
P2 = pcrust(pl) (&) (313)
P1

Below nuclear density

The equation of state below nuclear density is well-approximated (residual < 0.03
between p = 103 g/cm? and p = 10 g/cm?) by four polytrope pieces, as given in Table
2l Roughly, the four regions correspond to nonrelativistic electron gas, relativistic
electron gas, neutron drip, and from neutron drip to nuclear density. We will fix the
crust EOS to this parameterization. Modelling a neutron star with a different crust,
from realistic tables or fits to these tables, leads to changes in neutron-star properties

such as radius of a few percent.
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Table 2 : Crust EOS fit from sLy4 table below nuclear density. Polytropes from these tables

3. K, does not have consistent units, T'; is

yield p/c? in units of g/cm?, given p in units ofg/cm
dimensionless, and p; is in g/cm®. Figures are given to accuracy used in the neutron star structure

calculations.

K; L Pi
6.80109613e—09 1.58424999 0
1.06186086e—06 1.28732904 2.44033979e+-07
5.32696797e+01 0.62223344 3.78358138e+11
3.99873692e—08 1.35692395 2.62780487e+12

3.3.2 Best fits to candidate EOS

Table [3| shows average and maximum RMS residuals over the set of 31 candidate
equations of state for the three types of fit discussed in Sec. [3.3.1]

The hybrid quark EOS ALFC, which incorporates a QCD correction parameter
for quark interaction, is the worst-fit table for the one piece fit, three piece fixed
region fit, and three piece varying region fit. It has a residual from the two piece fit
of 0.0438, somewhat less than the worst fit EOS, BALBN1HI1, an effective potential
EOS which includes all possible hyperons and has a two piece fit residual of 0.0555.

For equations of state without exotica such as hyperons, kaons, or quark matter,
the four-parameter fit of two free polytrope pieces models the behaviour of candidates
well. However, equations of state with exotica are not well fit by this type of analytic
equation of state. Many require three polytrope pieces to capture the stiffening
around nuclear density, a softer phase transition, and then final stiffening. The six
parameters required to specify three free polytrope pieces seems to push the bounds
of what may be reasonably constrained by a small set of astrophysical measurements.
However, another four parameter fit can be made to all equations of state if the
transition densities are held fixed for all candidate equations of state. The choice of
fixed transition densities, and the advantages of such a parameterization over the two

free piece fit, are discussed in the next section.



Table 3 : Average residuals resulting from fitting the set of candidate EOS with various types of
piecewise polytropes. Free fits allow dividing densities between pieces to vary. The fixed three piece
fit uses 10147 g/cm? or roughly 1.85p,uc and 101° g/cm3 or 3.70py,, for all EOS. Tabled are the RMS
residuals of the best fits averaged over the set of candidates. The set of 31 candidates includes 18
candidates containing only npeu matter and 13 candidates with exotica such as hyperons, mesons,
and/or quark matter. Fits are made to tabled points in the high density region between 10143 g/cm3
or 0.74pn,c and the central density of a maximum mass TOV star calculated using that table.

Type of fit All npep  K/m/h/q
Mean RMS residual

One free piece 0.0388 0.0285  0.0538
Two free pieces 0.0156 0.0087  0.0258
Three fixed pieces 0.0134 0.0096  0.0189
Three free pieces  0.0076 0.0054  0.0107

Standard deviation of RMS residual

One free piece 0.0224 0.0157  0.0223
Two free pieces 0.0153 0.0059  0.0187
Three fixed pieces 0.0108 0.0062  0.0134
Three free pieces  0.0084 0.0039  0.0116

3.3.3 Fixed region fit

A good fit with minimal number of parameters is found for three regions with a
division between first and second piece fixed at p, = 107 g/cm?® and a division
between second and third piece fixed at p3 = 10'*?g/cm®. The equation of state is
specified by choosing the adiabatic indices {I'1,T's, '} in each region, and the density
of departure from the fixed crust equation of state p;.

With this scheme, best fit parameters for each considered equation of state tables
give a residual of 0.04 or better, with the average residual over 31 candidate EOS of
0.013.

For a range of candidate dividing density choices varying both the lower dividing
point ps and the higher dividing point ps, three fixed region four-parameter fits were
made to each of a set of 31 equation of state tables, and the RMS residuals of the
fits calculated. The dividing densities were chosen to minimize the average RMS

residuals over the set of candidate equations of state, as plotted in Fig. [7] For two

37



Figure 7 : Considering subsets of EOS with and without exotica shows a fairly robust choice of
dividing densities. A mean of residuals over a set of candidate EOS are plotted for variations in
dividing density. The left three curves show mean residual for varying ps, as p3 is fixed at 10*® g/cm?3.
The right three curves show mean residual for varying dividing ps3, as po is fixed at 107 g/cm?.
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dividing densities, this is a two-dimensional minimization problem, which was solved
by alternating between minimizing average RMS residual for upper or lower density
while holding the other density fixed. The location of the best dividing points is fairly
robust over the subclasses of equations of state.

For fixed crust equation of state, the parameter p; can be reinterpreted as spec-
ifying an overall pressure shift for an equation of state with given I'y, I'y, and I's.
Instead of pp, pressure at any given density can be used to specify the fixed region
piecewise polytrope in the core.

In this case, the pressure at p; = 1.85p,,c was chosen to anchor the high-density
equation of state, as empirical work by Lattimer and Prakash [25] indicates that
pressure near this density determines the radius of 1.4M. neutron stars, and thus
may have a more direct relation to astrophysical properties and inspiral dynamics
of neutron-stars near this mass. As this is the pressure at the start of the second
interval, we refer to it as py. It is given in terms of fit parameters in Eq. .

The following considerations dictate our choice of the four-parameter space associ-

ated with three polytropic pieces with two fixed dividing densities. First, as mentioned

38



above, we regard the additional two parameters needed for three free pieces as too
great a price to pay for the moderate increase in accuracy. The comparison, then, is
between two four-parameter spaces: polytropes with two free pieces and polytropes
with three pieces and fixed dividing densities.

Here there are two key differences. Observations of pulsars that are not accreting
are observations of stars with masses below 1.45 M, and the central density of these
stars is below py for almost all equations of state; then only the three parameters
{p2, 1,2} of the fixed piece parameterization are required to specify the equation
of state for moderate mass neutron stars. This class of observations can then be
treated as a set of constraints on a 3-dimensional parameter space. Similarly, because
maximum-mass neutron stars ordinarily have most matter in regions with densities
greater than the first dividing density, their structure is insensitive to the first adi-
abatic index. The three piece parametrization does a significantly better job above
p2 because phase transitions above that density require a third polytropic index I's;
if the remaining three parameters can be determined by pulsar observations, then
observations of more massive, accreting stars can constrain I's.

The best fit parameter values are shown in Fig.[8] The worst fits of the fixed region
fit are the hybrid quark EOS ALFC and ALF1, and the hyperon-incorporating EOS
BALBN1H1. For BALBN1H1, the relatively large residual is due to the fact that the
best fit dividing densities of BALBN1H1 differ strongly from the average best dividing
densities. Although BALBN1HI is well fit by three pieces with floating densities, the
reduction to a four-parameter fit limits the resolution of equations of state with such
structure. The hybrid quark equations of state, however, have more complex structure
that is difficult to resolve accurately with a small number of polytropic pieces. Still,
the best-fit polytrope EOS is able to reproduce the neutron star properties predicted
by the hybrid quark EOS.

In Appendix [B] Table [13|shows the various neutron star structure characteristics,
calculated according to Chapter [2| compared to the values of the best-fit piecewise
polytrope parameterization for the core. Table |4] below lists average differences be-
tween observables for models computed with a candidate EOS and for models com-

puted with the corresponding best-fit three-fixed-region EOS.
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Table 4 : Average % difference between observables calculated using tabulated EOS and with the
corresponding parameterized EOS. My, is the maximum nonrotating mass configuration. zp.y is
the corresponding maximum gravitational redshift. fiax is the maximum rotation frequency from
the Haensel-Zdunik empirical formula with updated coefficient. Rj 4 is the radius of a 1.4 My star
in units of km. I 335 is the moment of inertia for a 1.338 Mg, star in units of 10%° gem?. v ax
is the maximum adiabatic speed of sound below the central density of the maximum mass neutron
star.

Mmax Zmax fmax R1.4 [1.338 Vs, max
0.99 2.01 198 1.25 1.63 5.58

Figure 8 : Parameterized EOS fits to the set of 31 candidate EOS tables. I'y < 3.5 and I's < 2.5
for all equations of state with exotica. As discussed in the text, the shaded region corresponds to
core equations of which do not match continuously onto the fixed crust.
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3.4 Constraining EOS parameters with astrophysical obser-

vations

Given this fixed-region parameterization, we can whittle down the allowed parameter
space with constraints from neutron-star observations. We will examine constraints
related to the mass configuration: causality below the central density of the maxi-
mum mass star, maximum mass, maximum gravitational redshift, and maximum spin
frequency respectively. We will then examine constraints from possible future obser-
vations: the simultaneous measurement of mass and moment of inertia, and mass and
radius. Finally we will combine the constraints from causality, maximum mass, and
a future moment of inertia measurement.

In the discussion below we consider a range of parameters that includes the best

40



fits to all 31 tabulated equations of state considered above: 10235 g/cm? < p, <
1049 g/em3, 1.4 < Ty < 5.0, 1.0 < 'y < 5.0, and 1.0 < I'; < 5.0. This parameter
space is the region displayed in Fig. [§

The shaded region corresponds to parameter values that generate a core EOS
which does not connect with the fixed crust equation of state. This occurs when the
adiabatic index I'y is small and the pressure ps is large, so that the pressure in the
parameterized core EOS, when extended back to low densities, is always greater than
that of the fixed crust equation of state specified in Sec. [3.3.1]

Equations of state with large variation in adiabatic index can lead to the existence
of a separate sequence of stable stars above the maximum central density for the
normal neutron star sequence but overlapping in mass range. This behaviour is
seen in models considered by Glendenning and Kettner [9], and similar behaviour
is exhibited in work by Bejger et al. [31] and Zdunik et al. [30] in models based on
piecewise polytrope equations of state used to model phase transitions. A discussion
of the stability of such sequences is given in Sec. [2.1.2]

With the fixed-region parameterized EOS, two stable neutron-star sequences can
exist when I's is less than ~ 2 and I'y and I's are greater than ~ 2, mimicking a phase
transition through a mixed-phase state. A slice of the four-dimensional parameter
space with constant I'; and T's is displayed in Fig.[9] The shaded region corresponds
to EOS that have two stable sequences. Contours giving constant maximum mass for
1.7Mg and 2.0M, are also shown. In the shaded region there are two contours in the
parameter space for each value of maximum mass, one attaining the given value at
the first maximum and the other at the second maximum of a given EOS.

We pick out six EOS on the contours of constant maximum mass and plot the
corresponding mass-radius curves in the right panel of Fig.[9] EOS A, D, and F lie on
the boundary between EOS with one maximum mass and EOS with two maximum
masses. On the lower boundary (containing EOS A and D), the lower density max-
imum mass first appears. On the upper boundary (containing EOS F), the higher
density sequence becomes stable. EOS E, at the intersection of the upper density
and lower density maximum mass contours, has two local maximum masses with the

same mass.
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Figure 9 : A region in parameter space where two stable neutron-star sequences can occur is shaded
in the left figure. Contours of constant maximum mass are also shown for each of the two local
maxima. The higher central density maximum mass contour is solid while the lower central density
maximum mass contour is dashed. Mass-radius curves are plotted for several EOS in the right panel,
with stable maxima shown using solid dots. A, D, and F have a single maximum mass, while B and
E have two stable regions.
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3.4.1 Causality

For an equation of state to be physically reasonable, the adiabatic speed of sound
cannot exceed the speed of light. An EOS is ruled out by causality if vy > 1 for
densities below the central density ppax of the maximum-mass neutron star for that
equation of state. An equation of state that becomes acausal only at densities p >
Pmax can always be altered to a causal EOS; because the original and altered EOS
yield identical sequences of neutron stars, causality should not be used to rule out
parameters that give formally acausal EOS above pyax.

We note from the table of best-fit accuracy in Appendix [B] that none of the fits
to the candidate EOS mispredict whether the candidate EOS is causal or acausal by
more than 11% of the candidate’s v max. We also note that for the tabled EOS with
a difference in v, max between the fit and candidate EOS of more than 11% (at worst
18.6% for ALFC), the maximum speed of sound is significantly smaller than the speed
of light. We therefore consider v q, < 1+ 20 = 1.12 a sufficient constraint.

The causality constraint is shown in Fig. [L0| projected into I's-I'3-py space. We use
both a surface of vs max = 1 as well as a surface of v yax = 14+20 = 1.12 corresponding
to 2 standard deviations in the error between v, max of a tabled EOS candidates its

best fit parameterization. The surface has two distinct regions, corresponding to po
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below and above ~ 10 g/cm3.

For py < 10 g/cm? the surface is almost completely independent of the value of
[';. The small pressure at ps limits the speed of sound in the region p; < p < ps to
causal values, no matter how the adiabatic index I'; in that region is varied. In this
low py region, I's is restricted to be less than roughly 3.

In addition, for large I's and small I's, there is a section of parameter space ruled
out because this combination of parameters causes a large discontinuity in the speed
of sound at the transition p3 between I's and I's. In this density region the speed of
sound jumps above the speed of light and then drops down.

Jumps in the speed of sound are partly an artifact of using a piecewise polytrope
parameterization, as the EOS has a discontinuous first derivative at the dividing
densities. However, even with more realistic smoothing, such a large change in the
adiabatic index will produce a spike in the speed of sound. We argue that using
a surface of Vg max = 1 + 20 instead of vy max = 1 is sufficient to account for the
unrealistic jumps in the sound speed.

Finally for this lower py region, we note that for small I'y and moderate values of
po (the extreme right of Fig. two stable sequences are allowed. We require v a4
to satisfy the constraint for both stable regions, to ensure that all stable neutron stars
allowed by the EOS will be causal. This rules out EOS that are causal for maxima
at a low value of p., but become acausal before the central density of a second stable
maximum.

For py > 10 g/cm?, the central density of the maximum mass star is below ps,
so I's becomes irrelevant. However with larger pressure at ps the larger values of 'y
are able to produce acausal sound velocities. We show constraint surfaces for two
values of I';. For the smaller fixed I'; = 2.1, a larger p, leads to even smaller p, for
the maximum mass, and all values of 'y are allowed. If I'y is larger, there exists a
maximum p, above which all EOS become acausal before the central density of the

maximum mass.

3.4.2 Maximum mass

The most stringent observational constraint on the EOS parameter space is set by

the largest observed neutron-star mass. Unfortunately, the highest claimed masses
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Figure 10 : Causality constraints are shown for two values of I';. The shaded surface separates
the EOS parameter space into a region behind the surface allowed by causality (labelled vy < ¢)
and a region in which corresponding equations of state violate causality (labelled vy > ¢). A
second, outlined surface shows a weaker constraint to accommodate the expected error in matching
a parametrized EOS to a candidate EOS. With o the standard deviation in v; between an EOS and
its parameterized representation, the outlined surface depicts vy = 1 + 20 = 1.116 constraint.

log (p; in g/cm’)

are also subject to the highest uncertainties and systematic errors. The most re-
liable measurements come from observations of radio pulsars in binaries. For dou-
ble neutron-star systems these cluster around 1.4 Mg, with typical uncertainties a
few times 0.01 My and small systematic errors [50]. Recent observations of mil-
lisecond pulsars in globular clusters with non-neutron star companions have yielded
higher masses: With 95% confidence either Ter 51 or Ter 5J was found to be above
1.68 M, [51], and more recently 95% confidence limits were obtained for M5B and
NGC 6440B of 1.72 M, and 2.36 M, respectively [52, 53]. However these systems
are more prone to systematic errors: The pulsar mass is obtained from assuming that
the periastron advance of the orbit is due to general relativity. Periastron advance
can also arise from rotational deformation of the companion, which is negligible for a
neutron star but could be much greater for the latter pulsars which have white dwarf
or main sequence star companions. Of the massive globular cluster pulsars, M5B is
probably the most reliable due to the optical faintness of the companion. We will
constrain the EOS using the interpretation that 1.7 Mg neutron stars almost cer-
tainly exist, so that is a minimal constraint on the maximum mass. We also consider
2.0 Mg and 2.3 M, as possible constraints to be confirmed by future observations.

Since all of the candidate high-mass pulsars are spinning significantly more slowly
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than the fastest known pulsar (at 716 Hz), considering the maximum mass for non-
rotating neutron stars is sufficient. Corresponding to each point in the parameter
space is a sequence of neutron stars based on the associated parametrized EOS; and
a point of parameter space is ruled out if the corresponding sequence has maximum
mass below the largest observed mass. We exhibit here the division of parameter
space into regions allowed and forbidden by given values of an largest observed mass.

We plot contours of constant maximum mass in Fig. [11} Because equations of
state below a maximum mass contour produce stars with lower maximum masses, the
parameter space below these surfaces is ruled out. The error in the maximum mass
between the candidate and best fit equations of state is, to one standard deviation,
1.0%, so the parameters that best fit the true equation of state are unlikely to be
below this surface.

The surfaces of Fig. [L1| have minimal dependence on I'y, indicating that the max-
imum mass is determined mostly by features of the equation of state above ps. In
Fig. [L1|we have set I'; to the least constraining value, i.e., that which gives the largest
maximum mass, at each point in {ps, 'y, '3} space. Varying I'; causes the contours
to shift up, constraining the parameter space further, by a maximum of 10%? g/cm3.
The dependence of the contour on I'y is largest for I'y < 2 and decreases significantly
for larger T's.

We note that the dependence of the maximum mass on I's decreases as the max-
imum mass increases. This happens because the central density of the maximum
mass star decreases with increasing ps, so the fraction of matter above the transition
density ps decreases. In Fig. [I1] contours of constant maximum mass vary less with
['; for higher maximum masses. Note also that, for 'y < 2 and I's < 3 or 4, the
maximum mass is almost purely a function of ps.

As discussed above, some of the equations of state produce two stable neutron-
star sequences resulting in two local maximum masses. As shown in Fig. [0] this
causes a contour in parameter space of constant maximum mass to split into two
surfaces, one surface of parameters which has this maximum mass at the lower p.
local maximum and another surface of parameters which has this maximum mass at
higher p. branches. Since such equations of state allow stable models up to the largest
of their local maxima, we use the least constraining surface (representing the globally

maximum mass) when ruling out points in parameter space. This is usually, but not
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Figure 11 : The above surfaces represent the subset of {p2,I'2, '3} that produce the given maximum
mass. 'y is set to the least constraining value, which gives the largest possible maximum mass at
each point in the space. The lower solid surface represents My.x = 1.7 Mg, the middle outlined
surface represents Mp,.x = 2.0 M, and the upper outlined surface represents My,,x = 2.3 My. The
observation of, for example, a 2.3 M mass neutron star constrains the EOS to lie above the surface

in parameter space for which M.« = 2.0Mg

=
w

log (p> in g/cm3)

always, the surface containing EOS which reach the constant maximum mass at the
higher central density (see EOS along the segment CE in Fig. [J] for examples where

the lower density maximum mass is larger than the higher density maximum mass).

3.4.3 Gravitational redshift

Another observation that can constrain the parameter space is the gravitational red-
shift of spectral lines from the surface of a neutron star.

Cottam, Paerels, and Mendez [54] claim to have observed spectral lines from
EXO 0748-676 with a gravitational redshift of z = 0.35. This is a difficult measure-
ment, involving stacking (incoherently adding power) of spectra across several x-ray
bursts, and thus subject to systematic errors. With three spectral lines agreeing on
the redshift this measurement is more reliable than other claims involving only one
line. However, doubt is cast by the fact that the claimed lines have not been seen in
subsequent bursts [55].

There is a claim of a simultaneous mass-radius measurement of this system us-

ing Eddington-limited photospheric expansion x-ray bursts [56] which would rule out
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many equations of state. This claim is controversial because the 95% confidence inter-
val is too wide to rule out much and the potential for systematic errors is understated.
However, the gravitational redshift is consistent with the earlier claim of 0.35. Thus
we treat z = 0.35 as a tentative constraint, and also consider z = 0.45 to get a feel for
how high a redshift is required to greatly constrain equations of state (in the absence
of separate mass and radius measurements).

Our parameterization can reproduce the maximum redshift of tabulated equations
of state to 2.0% (1o). Fig. |12 displays surfaces of constant redshift z = 0.35 and
z = 0.45 for the least constraining value of I'y = 5, which yields the largest redshift
for fixed values of the other parameters. Surfaces with different values of I'; are
virtually identical for py < 10 g/cm?, but diverge for higher pressures. Equations
of state with parameters in front of the z = 0.35 surface are allowed by the potential
z = 0.35 measurement. The z = 0.45 surface shows that, without an upper limit on
I'y, significantly higher redshifts are needed to constrain the parameter space. The
majority of the parameter space ruled out by z = 0.35 is already ruled out by the
Minax = 1.7 Mg, constraint displayed in Fig. [11]

Figure 12 : The above surfaces represent the set of parameters that result in a maximum redshift
of z = 0.35 for the solid surface and z = 0.45 for the outlined surface. I'y is fixed at the least
constraining value of 5.0.

log (p; in g/cm3)

3.4.4 Maximum Spin

Observations of rapidly rotating neutron stars can also constrain the equation of

state. The highest uncontroversial spin frequency is observed in pulsar Ter 5ad at
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716 Hz [57). There is a claim of 1122 Hz inferred from oscillations in x-ray bursts from
XTE J1239—285 [58], but this is controversial: the statistical significance is relatively
low, the signal could be contaminated by the details of the burst mechanism such as
fallback of burning material, and the observation has not been repeated. Thus we use
716 Hz as a hard constraint, and ask what would happen if 1122 Hz were verified.

Currently, maximum rotation is estimated from the maximum spherical mass
spherical model parameters according to the empirical formula of Haensel and Zdunik
[20], with the updated coefficient discussed in Sec. [2.3.1] Preliminary work using rns
over the full parameter space, using the methods of the same section, yields very
similar constraint surfaces.

As with the maximum mass, the maximum frequency is most dependent on the
parameter py. However, the frequency constraint complements the maximum mass
constraint by placing an upper limit on py over the parameter space, rather than a
lower limit.

We plot surfaces of parameters giving maximum rotation frequencies of 1500 Hz
and 1300 Hz in Fig.[13] The region of parameter space above the maximum observed
spin surface is excluded; the least constraining value of I'y = 5 is fixed. The surface
corresponding a rotation of 716 Hz does not constrain the parameter values shown.
The minimum observed rotation rate necessary to place a firm upper limit on ps is
roughly 1300 Hz. A surface of fi,.x = 1500 Hz for I'3 = 5 is also displayed in Fig.
to demonstrate that much higher rotation frequencies must to be observed in order

to place strong limits on the parameter space.

3.4.5 Moment of inertia of a 1.338 M neutron star

The moment of inertia of the double pulsar system PSR J0737—3039A may be de-
termined to an accuracy of 10% within the next few years [59]. The mass of this
star is also known to be precisely M = 1.338 M. This is significant because unlike
observations of a star’s mass, redshift, or frequency alone, we will not need to com-
pare the measured value against the full range of stable models predicted by a given
EOS. Instead, a single value of I 335 is predicted by each EOS. The set of allowed
parameters will be constrained to lie on the surface of constant Iy 335 itself (within
the measured error) rather than to one side of the surface. Our parameterized EOS

reproduces the moment of inertia of the 31 candidate equations of state to within
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Figure 13 : The above surfaces represent the set of parameters that result in a maximum spin
frequency of 1300 Hz for the outlined surface and 1500 Hz for the solid surface. For these surfaces
I'y = 5, the least constraining choice.

1.3% (1o), so parametrization error will not contribute significantly to the thickness
of the surface. Effectively the dimension of the possible parameter space is reduced
from from 4 to 3.

As examples we plot surfaces of constant moment of inertia in Fig. which
span the range of moments of inertia predicted by the tabulated equations of state
considered in this paper. For almost all equations of state in our parameter space, the
central density of a 1.338 M, star is below the transition density p3. Thus the surfaces
of constant moment of inertia have negligible dependence on I's, the adiabatic index
above ps. The lower solid surface of Fig. [L4| represents I 335 = 1.0 x 10% gcm?. This
surface has very little dependence on I'; because it represents more compact stars,
with most of the mass at higher densities p > p;. Such compact stars do depend
slightly on T's, shown by the slightly higher surface in Fig[l4l The middle outlined

2 and is almost a surface of constant p..

surface represents I; 335 = 1.5 x 10* gcem
The top outlined surface represents I;.333 = 2.0 x 10* gcm?. This surface has very
little dependence on I'y, because it contains larger stars with most of the mass in a

lower density state with p < ps.

3.4.6 Simultaneous determination of radius and mass

If the mass of a neutron star is already known, a measurement of the radius will

constrain the equation of state to a surface of constant radius in the 4-dimensional
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Figure 14 : The above surfaces represent sets of parameters that result in a star with a mass of
1.338 Mg, and a fixed moment of inertia. I 335 = 1.0 x 10% gcm? for the lower solid surface and

0%° gcm?

slightly higher outlined surface showing the extent of the I's dependence. I; 333 = 1.5 x 1
for the middle outlined surface. I 335 = 2.0 x 10%° gcm? for the top outlined surface. The wedge
at the back right is the region where the parameterized core EOS does not connect with the fixed

crust EOS, as shaded in Fig.

parameter space. The thickness of the surface will be dominated by the uncertainty in
the radius and mass measurements, as our parameterization produces the same radius
as the candidate equations of state to within 1.6% (1o). We plot surfaces of constant
radius for a 1.4 M, star which span the entire of radii predicted by the candidate
equations of state in Fig.[I5] As with moment of inertia, the radius depends negligibly
on I'3 for all but the most compact stars of radius < 10km. For the smallest radius
example, the variation over I's is shown by the slightly higher outlined surface with
I's = 5 above shaded surface with I's = 1.2.

The constraints from the radius of a M = 1.4 M, star have similar behaviour to

the constraints from the moment of inertia of a M = 1.338 M, star.

3.4.7 Combining constraints

We can combine several of the above constraints to obtain tighter restrictions of
the parameter space. In this section we focus on the constraints from maximum
mass, causality, and moment of inertia of JO737—3039A, which will be most useful in
constraining the parameter space.

To find the allowed region in our parameter space we tabulate all sets of parameters

that produce neutron stars that satisfy causality, have a mass less than some choice of
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Figure 15 : The above surfaces represent the set of parameters that result in a star with a mass
of 1.4 Mg and a fixed radius. R = 9 km for the lower solid surface and a slightly higher outlined
surface showing the limits I'3 = 1.2 and I'3 = 5 respectively. R = 12 km for the middle outlined
surface. R = 16 km for the top outlined surface. The wedge on the back right is the region region
where the parameterized core EOS does not connect with the known crust EOS, as shaded in Fig.
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maximum mass (we consider M., = 1.7M, as well as possible future constraints of
M ax = 2.0M and 2.3M,) and have a given moment of inertia for a 1.338 M, star.
This gives us a volume in I'y-T'3-py space (see Fig. . The thickness of the volume
corresponds to the dependence of the moment of inertia on I'y: For small moments
of inertia there is negligible dependence on I'y so the allowed volume in Fig. is
thin. As the moment of inertia increases, the thickness of the allowed volume in the
parameter space increases due to possible variation of I'y.

In Fig. [17] we show projections of this volume into the I';-I'3 plane for three values
of the moment of inertia which span the range predicted by the candidate equations
of state. We also show the constraints from three different mass observations to show
the allowed region in parameter space if higher mass stars are confirmed.

If I 338 = 1.0 x 10 gcm? for J0373-3039A and the maximum mass is known to be
at least 1.7 Mg, I's is restricted to lie within a small range, while I's is unconstrained.
For larger observed masses, the constraint is even more stringent; stars with a mass
greater than roughly 1.9 M, are incompatible with a moment of inertia of I 333 =
1.0 x 10*® gem? for JO737—3039A, unless the parameter space is widened to include
implausibly large values of T',.

For a moderate moment of inertia, I; 335 = 1.5 x 10* gem?, both I's and T'y are

constrained. If higher mass stars are confirmed, then the allowed region in parameter
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Figure 16 : The allowed volume in I's-I'3-ps space for two different values of the moment of inertia
of J0737—3039A combined with the maximum mass constraint from a 1.7 Mg star and causality
(Vs,maz = 1 + 20). The thickness of the allowed region comes from the possible range of I';.

space is restricted further for this value of I. In particular, a 2.3 M, star would
roughly require that 3 < I'y < 4 and I's < 3.

A large moment of inertia, I35 = 2.0 x 10* gcm?, requires EOS with large
maximum masses, so the parameters are additionally restricted only by the causality
constraint. The maximum mass constraint cannot rule out small values of I'y and I';
unless masses greater than 2.3 M are observed.

The allowed range for p, as a function of the moment of inertia of JO737—3039A
is shown in Fig.[18 It should be noted that for small moments of inertia, as shown in
Fig.|16], the allowed volume in I's-I'3-py space is nearly two dimensional. If the moment
of inertia is measured to be this small, then the EOS would be better parameterized

with a linear combination alog;y(p2) + SI'2 instead of two separate parameters I'y
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Figure 17 : The allowed values of I's and I's for given values of moment of inertia for the double
pulsar member J0737—3039A. I = 1.0 x 10%* gcm? in the top left figure. I = 1.5 x 10*® gcm? in
the top right figure. I = 2.0 x 10*® gcm? in the bottom figure. In each figure the upper curves are
the vy = 1 and vy = 1 4+ 20 = 1.11 causality constraints. The largest value of I requires parameters
compatible with maximum mass over 2.3Mg); the smallest value is only compatible with maximum
masses below roughly 1.9Mg.
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Figure 18 : The allowed range of ps as a function of the moment of inertia of J0737—3039A when
combined with causality (vsmaz = 1 + 20) and observed mass constraints. The entire shaded range
is allowed by a 1.7 Mg star observation. The medium and dark shades are allowed if a 2.0 Mg, star

is confirmed. Only the darkest shade is allowed if a 2.3 Mg star is confirmed.
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Part 11

Quasiequilibrium and helical
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Chapter 4

Quasiequilibrium approximations

4.1 Quasiequilibrium sequences and initial data

For numerical simulations, it is most common to consider a Cauchy problem in general
relativity, where initial data on a spacelike slice is numerically evolved along a timelike
coordinate. In the initial value problem of general relativity, as in electromagnetism,
there are constraints that the initial fields must satisfy to be consistent with the
Einstein equations on the full spacetime. Furthermore, to gain physical insight from
the simulations, one wishes to specify an astrophysically realistic configuration of
matter and fields on the slice.

Methods of specifying astrophysically realistic initial data generally rely on
a quasiequilibrium approximation to the radiating problem: when the radiation
timescale is small compared to orbital timescales and, as in the post-Newtonian
equations of motion for binary systems, the motion is assumed to be instantaneously
circular.

When used as initial data for numerical simulations, the circular orbit approxima-
tion leads to an unphysical eccentricity in the evolving orbits as it neglects the infall
of the two masses. Various groups currently use an empirically tuned radial velocity,
modifying the circular-orbit initial data, to minimize this issue.

An expanded recent treatment of quasiequilibrium initial data is in Gourgoulhon’s
review [60], with notation chosen to align with the upcoming treatment of helically
symmetric initial data beyond conformal flatness in Sec. [4.4] which will follow that
of [61], 62, 63]. We refer also to notes of Friedman and Uryu [64], 65].
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4.2 3+1 decomposition

We consider a globally hyperbolic spacetime {M, g,5}, foliated by a family (X;):cr of
spacelike Cauchy hypersurfaces parametrized by the coordinate t. At each point, the
generator of time translations t* = J, can be written in terms of the future pointing
normal n® to the slice >, as

t* = an® + % (4.1)

with lapse « and shift 5, %n, = 0.
The spatial metric 74, on each slice ¥, is the restriction to ¥; of the projection

tensor 7,3 orthogonal to ng,,

Yap = Gap + nang, (42)

and has an associated covariant derivative D,. The extrinsic curvature of each ¥; is

1
Kab = _§£n7aba (43)

where the Lie derivative £, with respect to n® operating on spatial tensors such as

Yab has the meaning

1 1
£ Yab = aaﬂab - aoﬁﬁ%b, (4.4)

with 0;v4 the pullback of £,7,4 to X. K will refer to the trace K = vinij.
We can specify the full metric g, in terms of the fixed coordinate ¢, the spatial
metric v;;(), and the lapse a(t) and shift 3°(¢). In the chart {¢,z'} where %, is a

surface of constant ¢, the metric is
ds? = —a’dt* + v,;(da' + B'dt)(da? + Fdt). (4.5)

The Einstein equations G5 = 8771,3 are decomposed with respect to the foliation
by projecting onto or perpendicular to the slices ¥;. The projection perpendicular
to the slices with n®n? is the Hamiltonian constraint. The projections with n‘”’yﬁ are
the three momentum constraints. The projections onto to the slices with 73‘7? are
the six evolution equations.

Initial data on a slice is generally specified by the spatial metric 7;; and the
extrinsic curvature K;;. Note that the extrinsic curvature can be determined, for a
given foliation, by 7;;, 0yyij, the lapse a, and the shift §* using Eq. .
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Arbitrary initial data that satisfies the four constraint equations can be consis-
tently evolved using the six evolution equations. The challenge becomes choosing
which components to fix by solving constraint equations and which to otherwise

specify to give astrophysically realistic data.

4.3 Conformally flat initial data

A common approximation used for initial data is that the initial slice has a spatial
metric v, conformal with a flat metric. Initial data calculated in this way is referred
to as conformally flat initial data. Conformally flat initial data agrees with first
order post-Newtonian calculations, but one recovers full GR results only in static and
spherically symmetric cases. In a spatially conformally flat spacetime, there is no
radiation.

In the conformal decomposition, we introduce a conformal metric 7,;, and confor-

mal factor ¥ satisfying
Yab = qj4:)/ab (46)

with the condition that detd,, = detf,, with f, a flat background metric on the
spatial slice ¥;. 74 contains five degrees of freedom. The flat background reference
metric allows use of arbitrary coordinate types including Cartesian and spherical.

The method of finding conformally flat initial data with the Isenberg-Wilson-
Matthews formulation (using K = 0) will be described in a way that will be general-
ized to waveless and helically symmetric formulations in Sec. [4.4]

The approximation of conformal flatness restricts to the case Y., = fap-
ds® = —a?dt* + * fi;(da’ + B'dt)(da? + Fdt), (4.7)

We must solve for five metric functions {«, 3%,1}, which can be done using the Hamil-
tonian constraint and the three momentum constraints, with the remaining degree of
freedom specified to satisfy trace of the projection of G,5 = 87T,3 onto ¥; with y**

Let A be the Laplacian of the flat metric f,;, defined by A= lo?clo?c, where D is

the conformal derivative compatible with f,;. The vacuum part of the equations used
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can be written

0 o 2
Gagnanﬁ =0 : A¢ -+ ? (AabAab + §K2> = 0, (48)
8 o ~ lo o ~b be ¢6 4 o
Gagvan” =0 @ AB, + gDanﬁ + 20A, Dy In — — gaDaK =0, (4.9)
a
0 7 5
Gapy™? =0 Ala)) +¢°£, 3K — ay)® (gAabA“b + EK2> =0. (4.10)
in terms of the trace free part of the extrinsic curvature K,g:
1
Aab = Kab — g’yabK (411)

We also specify K =0 = 9, K, the maximal slicing gauge condition.

When the spatial metric is conformally flat, the above equations do not contain
time derivatives of the spatial metric. Then Egs. are a system of elliptic
equations that can be solved iteratively, using Green’s functions for A to impose
boundary conditions accurate far from the sources. These equations are the basis for
the numerical initial data codes described in [66), [67].

All terms except for the flat Laplacian A are collected in the source, writing the
equations in the general form ﬁgﬁ = Sy, Aa = Sa, .... Then the integral form of

each PDE is written, using a Green’s function G(z, ") of the flat Laplacian,

W(x) = ! G(z,2")S(2")d*z’

_EV

+% - (G (2,2 )Vip(a") — (2 )\V'G(x, o)) P2 (4.12)

To solve the nonlinear problem, one iterates from an initial approximate solution,
updating the effective sources Sy, San, -..at each step with the solutions ,_1,
Qp_1, ..., of the previous iteration.

The source is assumed to be stationary in the rotating frame. While this condition
is simplest for perfect fluid sources co-rotating with the orbital motion, it allows
nonzero velocity of fluid elements if the overall fluid profile remains stationary in the
rotating frame. Irrotational neutron stars can thus be constructed by specifying a

irrotational velocity potential.
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4.4 Helical symmetry: beyond conformal flatness

A way to go beyond spatial conformal flatness is to construct an analog in full GR
of Newtonian binaries that are stationary in a rotating frame. In general relativity,
these models are helically symmetric spacetimes [68, 69], with stationarity enforced
using equal amounts of ingoing and outgoing radiation. Binary black holes of this
kind were first discussed by Blackburn and Detweiler [70], and models involving non-
linear scalar wave equations have been studied by a group of researchers organized
by Price [71l, [72), (73, [74] [75], [76]. Because the power radiated by a helically sym-
metric binary is constant in time, the spacetime cannot be asymptotically flat. At
distances large compared to 1/, however, the spacetime of a binary system with a
helical Killing vector approximates asymptotic flatness—until, at a radius of about
10*M for neutron-star models of mass M, the enclosed energy in gravitational waves
becomes comparable to the mass of the binary components.

The helical symmetry approximation is similar to a 3rd post-Newtonian approx-
imation in which the 2.5 post-Newtonian radiation is omitted. It is designed to
improve the accuracy of initial data in the near zone, where the Coulomb part of the
fields dominates the radiative part, by including terms that ignored when assuming

spatial conformal flatness.

4.4.1 Formulation

We extend the metric to allow departures h;; from the flat spatial metric f;;
ds® = —a?dt* + P (fij + hyj)(dz' + B'dt)(da? + Fdt). (4.13)

maintaining the conformal conditions 74, = 1)*74, and dety = det f, so that deth = 0.

We also introduce the departures h® with raised indices such that

’?ab - fab = hab7 ’?ab - fab = hab' (414)

Note that hgph?® # 6¢.
We now solve for {«, 5% 1, hap}. We use the Hamiltonian and momentum con-

straints, which are elliptic equations as expressed in the conformally flat case in
Egs. (4.8H4.10). We then add the remaining components of the spatial projections of
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the Einstein equations, the trace-free parts

1
(Gap — 87 Tug) (%f‘%[’ — gvawaﬁ) =0. (4.15)

We again choose maximal slicing K = 0, and for the non-flat spatial metric specify
the generalized Dirac gauge
D = 0. (4.16)

While Eq. (4.10)) is elliptic [61], Eq. (4.15)) has the form

1 1
(Gaﬁ - 87TT0¢5) (r}/aa’)/bﬁ - g'Yab’Yaﬁ) = gab — ngabWCdgcd = 0, (417)
with
1
Eap = — £, Koy +Rap + KKy — 2K, K, — — Do Dy — 87 Sy, (4.18)
(0

where Ry is the Ricci tensor on Y associated with 745, and Sy, is the projection of
the energy stress tensor, Sy := Thgy7”. Two derivatives of the timelike coordinate
appear in —£,, K, coming from two applications of the Lie derivative with respect to
the normal vector n®*—the first of which is seen in Eq. . Thus this equation has
a principle part which is hyperbolic in character. To solve on a single initial slice, we
impose a condition on the time derivative: the spacetime must be (instantaneously)

helically symmetric.

4.4.2 Helical symmetry

A helical symmetry vector k% = t* 4+ Q¢® is defined. It is related to the usual 341
slicing by
kE* = an® + w*, (4.19)

where w® is a shift vector which is rotating from the perspective of observers along
tOL

w® = %+ Qo”. (4.20)

Helical symmetry, £,9.3 = 0, leads to conditions on the 3-metric and the extrinsic

curvature,

£k7ab = O, £kKab =0. (421)
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which, from Eq. (4.19)), imply
1 1
£n’7ab = __£w7ab7 and £nKab = __£wKab- (422)
a Q@

The use of these relations in Eq. (4.15]) translates it into a form which is mixed
hyperbolic-elliptic. The principle part of the equation has the form of a Helmholtz
equation. The mixed character, by itself, is not a barrier to convergent solutions using

elliptical methods, as will be seen in Chapter [5]

4.4.3 Waveless approximation: elliptic equations for A,

Successful initial data codes of Uryu et al. [63] use a modified condition on the spatial
metric to convert Eq. to a fully elliptic equation. This waveless code differs from
the helically symmetric code by the requirement that 7,, have vanishing derivative
along t®, rather than vanishing derivative along k“. However, the source motion is
still required to be helically symmetric.

These requirements result in elliptic equations for the field variables, including
the non-conformal part of the 3-metric hep = Fup — fap- As the time derivative of the

conformal metric vanishes, the extrinsic curvature is associated with the non-rotating

shift 52,
1

1
Ko=—£Y = —£57w, 4.23
b 5 Yab 2% BYab ( )

instead of the rotating shift w® as in (4.22)).
4.4.4 Fully helical: Helmholtz equation for h,,

By isolating the terms, Ohgy := (—0? +lo)alo)a)hab, that occur in & in Eq. 1' one
can rewrite Eq. (4.17) in the form

Uhay = Sab, (4.24)

where [J is the flat d’Alembertian operator and D= f “blo)b. Then helical symmetry

of the conformal metric, £,5., = £1hep = 0, results in the operator

Ohay = =Phay + D Dehgy = (A — Q2£2)hy, (4.25)

C

where the flat Laplacian is again defined by A=D D..
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Even when one uses the Cartesian components h;; of hgp, however, A—Q? £§, does
not coincide with the Helmholtz operator, because dyh;; is a Cartesian component
of ¢ - ﬁhdb, not of £4h.. To isolate the Helmholtz operator £ = A - QQQ?) =
A = Q%(¢ - D)2, we write 0, := ¢ - D and find

£35§/ab = a;’?ab + (aqb:yac + £¢:yac) ﬁb¢c + (8¢§/cb + £¢§/cb) lo)a¢c7 (426)

where a relation (bclo)c(lo)a¢b) = 0 is used. Moving all terms in Eq. (4.26) except 9574
from the LHS to the RHS of Eq. (4.24]), we obtain the Helmholtz form

_ _ 1 _
Lhay = Sgp 1= 2 (gab - 5%1)7Cd5cd)
1 oe o 1
=3 9aD h*"Dehea + ZHar¥ 0h ™ Dyhea; (4.27)
where the barred expression &, is defined by

_ - 1 L.
Ea = RN +°RY, — =D, Dya — 200* Ao Ay — 8784y
«

2 \ o?

P - NN . N
+ ﬁ Q2 |:(a¢7ac + £¢/yac) Db¢ + (adﬂ/cb + £¢7€b)Da¢ ]

1 4 4 ~ 1 ~
+= (¢— — 1) Q28£hab + % Q (£¢£5’Yab + §£[57¢]%b)

4 8

4 ~
+ @ £/3£,87ab + %Aab £w In E (428)

In this expression for &, the coordinate conditions K = 0 and lo)b’yab = 0, mentioned
above, are imposed; and the trace-free part A,, of the extrinsic curvature, A, =
Ky — %%bK , is introduced in the rescaled form flab =1 *As. The terms RaNbL and
SRY, arise from the conformal decomposition of the Ricci tensor, given in Ref. [61].
The source can be written concisely without separating the second deriva-
tive term 8£hab explicitly as above. Applying the helical symmetry condition (4.22])

to Eq. (4.18) and subtracting 93hg, term from both sides of Eq. (4.17), the source
term of Eq. (4.27) can be rewritten

. 1. 4+ 1
Eup = = £, Aur) = 50 har

- 1 J
+RY 4+ 3RY — Z D, Dyor — 201 A Ay — 81S (4.29)
(6

which is equivalent to the above source term (4.28)).
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The nonlinear Helmholtz equation (4.27)) can be solved with an iterative Green’s
function method for the Helmholtz operator £ similar to that described for the Lapla-
cian A in Sec. . Decomposing the fields into spherical harmonics gives an elliptic

equation for each harmonic, as will be seen explicitly for a toy scalar field model in
Chapter [5

4.4.5 Helical/Waveless: elliptic equation for h,,

Instead of isolating the Helmholtz operator for iteration, one can formally isolate the
elliptic A operator and solve the equation iteratively using the elliptic solver of the
waveless approximation code. With this grouping of terms, the helical symmetry
condition is applied to Eq. . This the term £,K,, as part of the effective
source, and the Laplacian of h,, is separated out from °R,,. With gauge conditions
K =0 and ZODb’y‘Zb = 0, as before, we have

o ~ 1 ~ 1 o€ o
Ahab =2 (5(117 - §':)//ab5/0dgcd> - gﬁabD thDeth> (43())
where é\ab is given by
~ 1 - - 1 L
Eap = —£,(*Ay) + RN +3RY, — — D, Dy — 20* A, Ay — 878, (4.31)
«Q «

In Eq. , the first term appears instead of the last three lines in Eq. .

We find that the helically symmetric code does not converge in this method when
we solve the above set of equations on ¥ with a boundary that extends several wave-
lengths (or more) beyond the source. We were, however, able to obtain a converged
solution when exact helical symmetry is imposed only in the near zone, within about
a wavelength from the source, and the waveless approximation is used for larger r,
effectively setting boundary conditions at the boundary of the helically symmetric
inner zone.

For the near-zone helically symmetric solution, the change from helical symmetry
to the waveless formulation at about one wavelength from the source implies the
condition for K

1

1 s
_£wa:_£ a QL a 7f Ry
5oy L Yab 2a(ﬁ7b+ ¢Vab) , for r<fg

Kab =
1

T
£ ab) f > >
20 BVab or 7”_fQ

63



where 7/ is the approximate wavelength of the [ = m = 2 gravitational wave mode.
The constant f, the coordinate radius of the helically symmetric zone in units of 7 /€2,

is restricted to f < 1 for convergence.

4.4.6 Numerical solutions

The numerical code is based on the finite difference code developed in Refs. [66), [63].
The code extends a KEH iteration scheme, introduced for quickly rotating stars in
Chapter [2| to the binary neutron star computation. Cartesian components of the
field equations are solved numerically on spherical coordinate grids, r, 6, and ¢. An
equally spaced grid is used from the centre of orbital motion to 5Ry where there
are 16 or 24 grid points per Ry; from bRy to the outer boundary of computational
region a logarithmically spaced grid has 60 or 90, where R, is the coordinate radius
of a compact star along a line passing through the centre of orbit to the centre of
a star. Accordingly, for 6 and ¢ there are 32 or 48 grid points each from 0 to /2.
The Green’s function method is applied to a spherical harmonic decomposition of the
fields, with multipoles summed up to [ = 32 [60].

The source is modelled by a perfect fluid having polytropic equation of state, p =
Kp", with p the baryon density. We display results for the choices I' = 2, appropriate
to neutron star matter; for compactness of a star in isolation (M/R)« = 0.14; and
for half the binary separation d/Ry = 1.375.

In solving the Einstein equation with full helical symmetry, however, convergence
is achieved only in the near zone, and we impose boundary conditions by matching
to an exterior waveless solution outside a coordinate radius r = fr /.

For f < 1, the code converges, yielding a helically symmetric solution in the
near zone r < fr/€2. As shown in Fig. the solution is nearly identical to the
waveless solution. The right panel shows a difference larger than 1% only when
the metric component itself is smaller than 0.03; as a percentage of h;;(r = 0), the
difference is everywhere less than 1%. The threshold of the value of f for convergence
is 0.7 < f < 1 depending on the binary separation, compactness and resolution of
finite differencing.

We may expect from the result that, with boundary conditions that minimize

the amplitude of gravitational waves, the exact helical solution will be close to the



waveless solution near the source. This is a hopeful outcome: The waveless and he-
lically symmetric formalisms are each intended to give a solution whose inaccuracy
arises from neglecting gravitational waves, and they should give nearly identical re-
sults in the near zone where the gravitational wave amplitude is small compared to

the Coulomb fields.
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Figure 19 : Left panel: Plot of components h;; along the z-axis normalized by 7/Q, the wavelength
of the [ = m = 2 mode. The solution to Eq. with the mixed helical and waveless source of
Egs. and , and the h,, component of the waveless solution are shown. Right panel: The
fractional difference of these two solutions is plotted for selected components of h;; for r < 107 /€.
The fractional errors increase for larger r because the values of the components h;; are themselves
small. A compact star extends from z/(w/Q) = 0.0125 to 0.079, the boundary of computational
region is set to 10*Ry ~ 3327/, and the cutoff constant f in Eq. is set to f =0.7.

The comparison of helical/waveless and waveless results suggests that, in mod-
elling binary neutron stars, comparable accuracy will result from codes that match
a helically symmetric solution to a waveless solution, from a purely waveless code,
and from a helically symmetric code. From a more mathematical perspective, how-
ever, finding a solution that has exact helical symmetry on the full spacetime is an
appealing goal. However, the helically symmetric code fails to converge if we extend
the outer radius beyond a few wavelengths. In the next chapter, I will discuss the
use of toy models to isolate terms that appear responsible for divergence outside the
near zone, in an attempt to find methods which can expand the convergence of the

helically symmetric binary neutron star code.
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Chapter 5

Toy model of helical symmetry

5.1 Introduction

The approximation of full helical symmetry is designed to improve the accuracy of
initial data in the near zone, where the coulomb part of the fields is much larger than
the radiative part, by including terms ignored in assuming spatial conformal flatness.
Solutions with exact helical symmetry and waveless solutions should each be accurate
in the near zone, and the work described in Chapter 4| finds that they coincide.

We present results from a number of related nonlinear scalar field models in which
convergence requires either a small coefficient of the nonlinear term or a boundary
close to the source. The results of these toy models are surprising in two ways. First,
convergence of the scalar-field models is most strongly affected by the sign of the
source term, with one choice of sign yielding a convergent solution for remarkably
large values of the nonlinear terms we examined. For the other sign, convergence
requirements set an upper limit on the coefficient of the nonlinear term.

Second, convergence does not depend strongly on the iterative method used to
solve the equation, on whether one uses, for example, a Newton-Raphson iteration
or an iteration based on a Green function that inverts only a convenient part of the

second-order nonlinear operator.
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5.2 Scalar Field Model

Can we improve convergence of helically symmetric code through a modification of
the algorithm? Is the KEH iteration insufficient? In this section we turn to toy scalar
field models for helically symmetric spacetimes, with the addition of nonlinear terms
that mimic those found in Uryu’s formulation of the Einstein equations. We compare
the iteration method used in the Uryu code to more sophisticated methods developed
by Andrade et al. [74] and further by Bromley, Owen, and Price [76].

The Uryu code uses the KEH method of splitting off the flat-space operator for
direct iteration. Similar KEH codes were developed at UWM for the scalar field
with this method, which is the same as the ‘direct iteration’ of [74] and [76], although
implemented with spherical harmonic instead of Fourier decomposition. As mentioned
n [74], this method is expected to break down for very strong nonlinearities. The
alternate numerical methods we compare use a Newton-Raphson type of iteration
instead of direct iteration. The finite difference code linearizes the full operation
at each iteration as a more robust but computationally intensive method, and the
eigenspectral method of [76] uses coordinates adapted to the particular problem for
a similar, but less computationally intensive, iteration procedure.

By determining the range of convergence for representative nonlinear terms, we
identify problematic nonlinearities in the full Einstein equations and possible methods

for accommodating them.

5.3 Problem specification

We consider a scalar field ¢ on Minkowski space, satisfying a wave equation with a
source s that mimics two objects in circular orbit and with a nonlinear term N/[¢],

whose strength is adjusted by a coefficient \:
Oy — M) = s. (5.1)

We use three different nonlinear terms: N'[¢)] = 3, M| = |Vy)|> with V the spatial
gradient, and N[¢)] = ¥y, chosen to represent the types of nonlinear terms that

appear in dynamical components of the field equations.
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The source s is a sum of two 3-dimensional Gaussian distributions,

s(t,r,0,¢) = Z \/((217)3 exp <_(riUL2(t))> , (5.2)

centred about points £R, R(t) = a [cos(Qt)x + sin(Qt)y], each a distance a from the

origin and each having spread o2 and total charge q. The source s is stationary in a

frame moving with angular velocity €2; that is, it is Lie-derived by the helical Killing
vector

kK =t + Q¢ (5.3)

of Minkowski space, where t* and ¢* (equivalently 0; and 0,) are generators of time-
translations and of rotations in the plane of the binary source.

One can regard the scalar-field models as toy models of neutron stars of mass M,
if the charge ¢ of each Gaussian source is identified with 47 M. In gravitational units
(G=c=1), all quantities of a binary star system can be specified in terms of M. In
the models presented below, we set ¢ =1, a = 1, 0 = 0.5, and €2 = 0.3, corresponding
to a binary system of mass M, stellar separation 2a = 8w M, stellar radius o = 27 M,
and velocity v = af2 = 0.3.

A helically symmetric solution, like a genuinely stationary solution, is given by its
value on a spacelike slice and the field equation (5.1)) can be written in a form that

involves only spatial derivatives. That is, using the symmetry relation
£40 = (0 +Q0y)1p =0 (5.4)

to replace time derivatives by ¢ derivatives, one can rewrite Eq. (5.1) at ¢ = 0 in the

spatial form,

(V2 = Q%05 — AN[¥] = 5, (5.5)

where
U(r,0,¢) =9t =0,r0,90), S(r,0,¢0)=s(t=0,r0,0). (5.6)

Then
W(t,r,0,0) =Y(r,0,¢ — Qt). (5.7)

The operator
L=V’ -Q%; (5.8)
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has a mixed character, elliptic inside the light cylinder Q\/m = 1, hyperbolic
outside. Some difficulties in finding numerical solutions stem from this behaviour. In
finding an iterative solution, one inverts the operator £, but L is not negative, and
it lacks the contraction property that underlies the convergence of iterative schemes

used to invert nonlinear elliptic equations and to prove existence of exact solutions.

5.4 Methods used in model problems

5.4.1 KEH method

In the KEH method one splits off the linear, flat-space operator £ and inverts it by
a choice £7! of Green function. The iterative solution, beginning with ¥, = £718,
is then given by

U1 = Vo + ALTINT,] (5.9)

Although L is not elliptic, the operator associated with each spherical harmonic

is the elliptic Helmholtz operator:
LW, (r)Yim) = [VZ 4+ m* Q%[ W1 (r) Vi) - (5.10)
The corresponding radial operator

dr?  rdr 72

2 2d I(l+1
(+1) +m?*Q? (5.11)

has as its eigenfunctions the spherical Bessel functions, from which a Green function

is constructed. We choose as £7! the form that, for a bounded source, yields the

half-advanced+half-retarded solution, namely

L7185 := Z/dr’Slm(r’)glm(r, Y (6, ¢), (5.12)
Im
with . l
r .
gio = QZ—H?'?“ Gim = My (mQr <)y (mrs.), m # 0. (5.13)

Here ro = min(r, '), r~ = max(r,7’), and j;(z) and n;(x) are the spherical Bessel
functions of the first and second kinds.
At each iteration, the nonlinear term N[V, ] serves as an effective source. The

polynomial nonlinear function ¥3 is most easily computed by shifting from ¥y, (r)
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back into W(r,f,¢) and cubing at each point, while the derivative-based nonlinear
terms, |V¥|? and WOV, are calculated using the properties of the spherical harmonics.

Finally, as is usual in codes to solve nonlinear elliptic equations, we use softening
and continuation to extend the range of convergence to larger values of A. That is,
instead of using ¥, . as defined in Eq. , we can use a softened Wy, defined by

U =wV + (1 —w)¥,. (5.14)

where the softening parameter w typically ranges from 1 (no softening) to 0.1. Given a
converged field solution for some nonlinearity with small A, it is sometimes possible to
use continuation to obtain a solution for larger A: The converged solution to Eq.
with small A is used as the initial field ¥, for the iteration of Eq. for larger A.
In this way one moves along a sequence of solutions with increasing values of X\. The

effectiveness of softening and convergence is explored in Sec. [5.6]

5.4.2 Finite difference and eigenspectral methods

The finite difference code uses an iteration based on the Newton-Raphson method,
with numerical approximations that reduce it in part to a secant method. Write the

equation to be solved as
F =LV - ) N[Y]-5=0. (5.15)

Numerically, ¥ is given by a set of values ¥, on the three-dimensional spatial slice.
Given an initial field value W;, each iterative step generates a modification 6W¥; by
inverting

JijoV,; = —F; (5.16)
where J;; is the Jacobian
OF;
ov;
The Helmholtz operator has the form (LV); = L;; U; where L;; is constructed from

iy =

(5.17)

finite difference operations and incorporates boundary conditions. The corresponding

part of J;; is simple.

Jij = ai\p] [Lir¥s — ANT[P]); — Si] (5.18)
_ 1, — 2OV (5.19)
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The nonlinear piece of the Jacobian is evaluated numerically by varying local field
values to estimate derivatives.

The eigenspectral code [76] uses the same iterative scheme as the finite difference
method, but it employs adapted coordinates and a discretized spectral decomposi-
tion. To specify the adapted coordinate system, we begin with rotating Cartesian
coordinates (Z, 7, Z) where the Z-axis is the axis of rotation. The axes are rotated to

a set

X=§ Y=3 Z=%7 (5.20)

for which the Z-axis is a line through the centre of each source. The adapted coordi-
nates are chosen to approach spherical polar coordinates, with © measured from the
Z axis, far from the sources. For each point (X Y.,z ), let r; and 75 be the distances

from the source centres, 6; and 6, corresponding angles from the Z axis. Then,

r= \/(Z —a)?+ X2 +Y?, (5.21)

ro=\(Z 40P+ X2 472, (5.22)

The adapted coordinates are

X = \/T1T2 (5.23)
1 1 2ZvX2+Y?
@ = 5(91+92):§tan (Z?_GQ_XQ_Y/2> (524)
® = tan"H(X/Y). (5.25)
The spectral decomposition involves the angular Laplacian of © and &,
1 0 0 1 0?
DV = — [sinO— |V + ———VU. 5.26
Sin© 00 [sm a@] T 5n o) 03? (5.26)

Note that D? is not the angular part of V? in adapted coordinates, but it agrees
asymptotically with the usual angular Laplacian far from the source. Instead of the
spherical harmonics of the continuum Laplacian D?, the eigenspectral code uses the
exact eigenvectors of the matrix L obtained by discretizing D? on the adapted coordi-
nate grid {©;, ®;}, labelling points by ¢ and j. Angular derivatives are represented in
L by second order finite differencing. With [sin © D*¥] (0, ®;) ~ i Labi ¥ (05, @),

the k-labelled normalized eigenvectors Y;gk) of the matrix L, ;; satisfy

S Lani Vi = —AW sin0, Y., (5.27)
ij
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ZY““ ) 5in ©,A0AP = . (5.28)

We expand the field in terms of the eigenvectors Y;E ),

W(x,0:,®;) =Y a® ()", (5.29)
k

and write the operator £ in terms of adapted coordinates (Egs. (8-17) of [76]). LW
is expressed in terms of eigenvectors Y( ) (Eq. (31) of [76]),

2 (k k
Xk: (ak/,k% + B ra® (x) + Wk%;@d) = Sy, (5.30)
where the ay g, Bi k, and v ; involve angular derivatives of the Y®) computed by
finite differencing (Eqs. (41-43) of [76]). This equation for a*) is iterated in the same
fashion as in the finite difference method to find the solution with nonlinear terms.
If all harmonics were retained, the eigenspectral method would be the equivalent of
the finite difference method in adapted coordinates, although in a different basis. The
advantage of the adapted coordinates is that the distribution of points encodes most
of the physically relevant information in the low-order harmonics. Its disadvantage
is that higher order harmonics require an increasingly cumbersome formalism. The
code is consequently limited to harmonics < 2, saving enough memory to allow high

resolution in the radial coordinate.

5.4.3 Boundary conditions

The KEH method at each iteration finds a solution which has standing wave behaviour
for the flat space piece, imposing boundary conditions by the choice of Green’s func-
tion. It is assumed that the flat-space boundary conditions are an adequate approxi-
mation to those of the full problem with nonlinearities added. There remains freedom
to add a homogeneous solution at each iteration. This can be used to impose a stricter
boundary condition, and estimate the effect an improper boundary condition has on
the behaviour of the solution near the sources.

The eigenspectral and finite difference methods include boundary conditions in
the finite difference matrix for the linear [J operator. Outgoing wave conditions

are imposed on the edges of the grid by enforcing the Sommerfeld condition (9,1 +
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) r=r,... = 0, which becomes, after imposing helical symmetry and transforming to

adapted coordinates,

AT = —Q) <Za)~{\1/ - Xa?\p) , (5.31)

for r > a where x — .
A solution for ingoing radiation can then be generated by a spatial inversion across
the plane through the sources and perpendicular to their rotation. At each step, a

periodic solution is constructed by superposing the ingoing and outgoing solutions.

5.5 Estimating numerical accuracy

Several types of numerical approximation in the KEH code produce inaccuracies that
can be estimated by convergence testing. Most obvious is the choice of spatial grid
in (r,0,¢) on which numerical integration is performed. Very high resolution in 6
and ¢ is easily obtained. The number of radial points is more problematic with our
simple equally spaced grids. A Richardson extrapolation error estimate from varying
radial grid spacing shows that a precision of 107° is estimated for runs comparing
code results. Estimation of the range of A giving convergent solutions is done at
lower radial precision.

As the KEH method rests on the decomposition of the field into spherical har-
monics, accuracy will depend on the number of harmonics retained in the numerical
calculation. Examining the difference between results with an increasing number of
harmonics retained shows that a good approximation is to use up to [ = 12 in the
code. The fractional difference between the field calculated with (.« = 12 and the
field including higher harmonics is less than 107% at each point.

In the toy models presented below, a solution is computed at each iteration using
the half-advanced+half-retarded Green function (5.12)). Because the linear field ¥
of a perpetually radiating source falls off like 7~ the nonlinear terms N = (V)2
and A/ = WO that serve as effective sources for each iteration do not fall off fast
enough for the integrals to converge, if the outer boundary extends to infinity. One
can, however, pick out a solution that is independent of the outer boundary by fixing
the value of ¥ at a finite radius R. That is, one can, at each iteration, add the homo-
geneous solution that maintains the specified value of ¥ at R. This has remarkably

little effect on the field in the region close to the sources, with less that a 1% change

73



in field strength for points with » < 6. This insensitivity of the near-zone field to
the amplitude of the waves, when the source dominates the solution, is the reason a
helically symmetric solution makes sense as an approximation to an outgoing solution.

The finite difference code is iterated to a 10~ RMS difference in field between
subsequent iterations. Analysis of errors and comparison to the eigenspectral code is
found in [74].

5.5.1 Comparing codes

With different 3D grid patterns for the codes, it was most straightforward to compare
results on rays through the volume of interest. We compared the results extrapolated
to three axes: the x-axis through the centres of the two sources, the z-axis of rotation,
and the third y-axis perpendicular to the x-axis in the plane of rotation. Both x and
y axes show wave behaviour away from the sources; along the z axis ¢ shows only
Coulomb type effects Coulomb-type behaviour, because Y}, vanishes on the axis when
m # 0, and for m = 0, £ = V%). Some sample comparison plots are shown in Fig.
201

The field values on the rays were interpolated for comparison. Differences between
fields were divided by the average field value of the three codes to find relative error,
as plotted in the insets of Fig. 200 We computed the RMS of this relative error for
the grid points along each ray. These RMS values are expressed as percentages in
Table [l In the worst case, the RMS difference is 3% between codes.

We note that a smaller RMS difference on the rotation axis than on the source
and perpendicular axes indicates that discrepancies in the wave region dominate, as
in the FD-KEH comparison with N'[¥] = ¥3 X\ = 100. In other cases, the error on
all three axes is comparable, and there is some shift between codes seen even on the
rotation axis, as in the FD-KEH comparison with N [¥] = [V¥[?, X\ =3

5.6 Measuring range of convergence

For each code, a series of runs varying the nonlinear amplitude A determined the
range of A for which the code gave a convergent solution. The source distribution and
boundary location were fixed.

Softening and continuation are used to extend the maximum absolute value of A
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Table 5 : A comparison of code output for scalar models. The values in the table give the percent
RMS difference between W-values from three numerical methods as in Fig. 1. The RMS differences
were computed from the points along each principal axis.

Source axis | Perp. axis | Rotation axis
Linear (N[¥] = 0)
FD to KEH 0.25 0.24 0.10
FD to ES 1.02 1.09 1.08
ES to KEH 1.07 1.15 1.11
NP =03 \ =100
FD to KEH 3.56 3.44 0.21
FD to ES 1.22 1.67 1.14
ES to KEH 3.28 2.86 1.19
NP =3 N\ =-22
FD to KEH 0.35 0.36 0.21
FD to ES 1.96 2.02 2.08
ES to KEH 1.77 1.99 1.92
N¥] = |[VU|?, A =3
FD to KEH 1.73 1.47 1.33
FD to ES 1.39 1.80 1.44
ES to KEH 2.69 2.76 2.77
N[¥] = |[VT|?, A = —100
ES to KEH 1.96 2.20 1.65
N =90V, A =—-0.7
FD to KEH 0.53 0.48 0.20
FD to ES 1.06 1.13 1.13
ES to KEH 0.99 1.23 1.00
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Figure 20 : The scalar field ¥ as a function of distance r from the origin in units of the orbital radii
along the source axis. Each of the four panels corresponds to a unique model, as specified by the form
of the nonlinear term, N, written above it. In all cases, the angular frequency of rotation is Q = 0.3
and the source strengths are unity. The plots show results from the KEH method (solid curves), the
eigenspectral method (dashed) and the finite difference code (dotted). The insets give more detailed
comparisons between these results; the curves are the difference between pairs of solutions relative
to the average field. Note that the eigenspectral method gives a periodic modulation relative to the

other methods, as a result of the use of only low-order harmonics.

that allows convergence. For each nonlinear term, strikingly different behaviour is
found for opposite signs of . That is, denoting by A.x and Ay, the largest positive
value and the smallest negative value of A for which a code converges, we find for each
nonlinear term that Apax and |[Ayia| differ by at least a factor of 100. In each case,
the sign of A\ that yields greatest convergence is opposite to the sign of the source
term, where the source is large. The ‘favourable’ sign damps the effect of the source

distribution on the field, while the ‘unfavourable’ sign gives an amplified effective
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Table 6 : The range of nonlinear amplitude A in scalar models for which codes converged. The first
column gives the type of nonlinearity, while the second column indicates the numerical method, as
discussed in the text. The third and fourth columns, showing Apin and Apax, give the range of A for
which convergence was achieved. Where an inequality is given, no limiting value was found.

N[¥] | Code Amin Amax
3 KEH —-2.3 11
A KEH, softened/continued —2.3 | >10000
3 FD —2.5| >1000
& ES —2.41| >1000
IVU|? | KEH 30 7.7
|V |? | KEH, softened/continued | < —1000 7.7
IVU[? | FD Y 5.6
Ve | ES ~360 7.3
IVW|? | ES, continued < 1000 7.3
Vv | KEH —0.96 1.3
VOV | KEH, softened/continued —0.96 10
vLw | FD —-1.8 | >1000
v | ES —1.7 | >1000

source. For N U] = U3 |VU ]2 WOV, the favourable signs of lambda are +, —, +,
respectively.

Softening and continuation improved the range of convergence in the direction of
the favourable sign, but had no effect on the limit of the unfavourable signed A. Fig.
shows the effect of softening, parameterized by w, and of using continuation on
the limiting favourable-sign values of .

Convergence is attained, if softening and continuation are allowed, for all at-
tempted favourable sign values for A, except when using the KEH method with the
WOV nonlinear term or when using the finite difference method with the |V¥|? non-
linear term.

The range of convergence results are given in Table[6] If softening and continuation
maintain convergence to the largest tested value of A, the uncertainty in the true

maximum value or minimum value of A is indicated by > or <.
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Figure 21 : The effect of a softening parameter w and continuation on range of A. The plots indicate
the limiting value of A for convergence of the KEH code. Each panel corresponds to a different
nonlinear model, with N[¥] set to U3 (panel a), |[V¥|? (panel b), and YO (panel ¢). In each case,
the limiting A\ value of the opposite sign was unaffected by softening or continuation.

5.7 Boundary and convergence

As described in Sec. [£.4.6] Uryu has obtained a convergent helically symmetric BNS
code within a region that extends about one wavelength of the source, by using a
waveless formulation outside that radius. Led by this result, we explored the effects
of the outer boundary placement on the range of converging A for the fully helical
code.

While bringing the boundary in had little effect on the limits of the favourably
signed A, it did allow for a larger magnitude unfavourable A, as shown in Fig. 22h.
However, these runs also exposed a danger in the unfavourable sign of A, as seen
in Fig. 22b. Previous tests had shown that linear field solution and the A = 100

solution were fairly insensitive to boundary placement, showing convergence of the
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nonlinear solutions as the outer boundary was increased. However, the unfavourable
A = —2.2 did not show this behaviour, diverging as the maximum grid radius was
moved outwards. A moderate A = —1.0 run showed that convergence with respect to

outer boundary was possible for unfavourable sign A of smaller magnitude.
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|“|JR - llJ2R|max
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R R
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Figure 22 : (a) The effect of the outer boundary R on convergence in the cubic nonlinear model
(N[¥] = ¥3). The limiting value of A for which the KEH method converges as a function of outer
boundary location, R, in units of orbital radii a. (b) Effect of outer boundary R on the field solution.
For both, he nonlinear term is N[¥] = W3, For A = —2.2, divergence of iterations when R = 120
prevents evaluating W — Wop at R = 60.

5.8 Conclusions

The work done with toy models suggests that the lack of convergence of fully heli-
cally symmetric initial data is intractable—one cannot change the sign of the diverging
terms in the Einstein equations cannot be controlled. However, as discussed in Chap-
ter [4], solutions with full helical symmetry in the near zone agree well with solutions
using the waveless approximation. This implies that the two methods can be used
interchangeably to generate improved quasiequilibrium sequences or initial data. The
waveless approximation has the additional advantage that a nonzero radial velocity
can be accommodated, leading to initial data which minimizes eccentricity in full

numerical simulations.
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Chapter 6

Wave production and analysis

6.1 Post-Newtonian approximations

Post-Newtonian calculations of waveforms make use of expanded expressions for the
orbital energy and luminosity of two orbiting point particles. A useful overview is
given in [77]. As in the quasiequilibria of Chapter {4} the binary is modelled at each
instant via a secular evolution of a quasi-circular orbit. For quasi-circular orbits, the
parameter of the post-Newtonian (PN) expansion can be chosen in terms of coordinate
separation or frequency. In terms of orbital frequency €2, as observed at infinity, the

PN parameter is

GMO\*?
T = ( = ) , (6.1)
where M is total mass. To first post-Newtonian order,
GM
T~ , (6.2)

cAr
where 7 is the orbital radius.

The orbital energy and luminosity have been calculated to 3.5 PN order. With m,
and my the masses of the individual components, 7 = mimsy/M? is the dimensionless
reduced mass, taking values between 0 in the test particle limit and 1/4 in the equal
mass case. From [7§]:

1 31 27 19 1
E:__MQ 1_ e o o = =7 2 2
2 C”x[ <4+12")x (8 87”2477)”5

6.3
{675 (34445 205 2> 155 , 35 3} 3} (6:3)
— —_— = — n+-—n"+_——mnrx

64 \ 576 96 " 96 5184
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Here v = 0.5772 ... is Euler’s constant.
The time evolution of x can be calculated by equating the change in orbital energy

to the amount of energy radiated

dE
i —L, (6.5)
to give
dz L
dt — (dE/dz) (6:6)

while the orbital phase ® is then evolved using the orbital frequency Q = d®/dt in
Eq. (6.1): f
dd o
p— €T
dat  GM
Various PN approximants can use different methods of solving these equations at

3/2, (6.7)

the same post-Newtonian order; these lead to different orbital evolutions depending
on how higher-order terms are truncated. The Taylor-expansions Taylor'T1, TaylorT2,
and TaylorT3 of [79] were augmented by TaylorT4 in [77]. TaylorT1 is direct numer-
ical integration. TaylorT2 and TaylorT3 are term-by-term analytical evaluations of
integrals for {t(x), ®(z)} and {z(t), ()} respectively. TaylorT4 truncates Egs.
and at the desired post-Newtonian order before integrating. TaylorT4 is shown
empirically [77] to agree closely with fully relativistic binary black hole simulations
over tens of cycles, until roughly the last orbit before merger. This agreement is coin-
cidental, as Taylor T4 departs from the numerical simulations in other characteristic
behaviours [80], but it allows the use of TaylorT4 as a waveform closely representative

of full binary black hole evolutions up to just before merger.

82



The 3.5PN truncated form of Eq. is
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(6.8)

6.1.1 Time-domain waveform

Given the orbital evolution equations, one can determine the gravitational radiation
emitted by the system. The amplitude of these waves can be calculated from the
multipole moments of the post-Newtonian source to successive post-Newtonian orders.
The phase of the dominant m = 2 quadrupole-moment gravitational waves ¢ can be
written as twice the orbital phase ®, plus corrections from high-order imaginary parts
in the amplitude terms.

The gravitational waves emitted in all directions can be encoded by decomposing
the waves themselves in terms of spin-weighted spherical harmonics. For near-equal
mass binaries, the (I,m) = (2,2) mode is much larger than other modes [81]. This
component can be calculated for point particles in terms of x and ® above, after

absorbing frequency scale terms into the phase at 4PN order, to be at 3PN order [82]:
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where D is the distance to the observer.
When combined with some solution for z(¢) and ®(), this specifies the quadrupole
mode of the waveform. Along the rotation axis, the optimal orientation of the binary,

this mode gives the polarization waveforms h, and hy

S (s 1 /5

which, in the restricted PN approximation with quadrupole formula amplitude, are

» (s GM e
hsr) — zh(x) = —46—2?771’6 2id

(6.11)
The amplitude of the (2,2) mode is the absolute value of the complex h(s 2y above,
which is independent of the phase, and the frequency is defined at a time ¢ before the

coalescence t. by

C Lla(t,—t)¥?
fgpN(t,tc) == ;W (612)

6.1.2 Other multipoles

Higher multipole contributions to the gravitational radiation are proportional to

OM = mqi—ms or of higher post-Newtonian order. BH-NS systems can have 6 M ~ M,



adding at next highest amplitude and half the frequency

8i [TGMy _ 17 5 i
h21) = —S\VEz p ¢ 372 (1 — (2_8 — ?77) T+ <7r 5= 221n2> z3/?

43509 79 L\ 4
(126 126" 168" ) v+ 0@
(6.13)

However for NS-NS, 0M < .5M, and = ~ 0.01-0.1 in the relevant frequency range
of 50-1000 Hz, so higher multipole radiation will have much smaller amplitude than

quadrupole radiation.

6.1.3 Stationary phase approximation

The stationary phase approximation can be used to determine the amplitude of the
gravitational waveform’s Fourier transform directly from the amplitude of Eq.
and the time derivative of x given by Eq. . We require a waveform of the general

form
B(t) = A(t) cos[o(t)] (6.14)
in the limit where dln(A) i
n
T < a (6.15)
and , )
d“¢ d¢
P < (%> ) (6.16)

Note that ¢ is the phase of the wave, not the orbital phase ®. We use the stationary

phase approximation[83] to obtain, in terms of an instantaneous frequency

_1dé
ft) =g~ (6.17)
the Fourier transform of the waveform
) N ﬁ ~1/2 - B o
B =AW () ew(i(2nrt—o)- 7)) (6.18)

Since z is related to the gravitational wave frequency f (which is twice the orbital
frequency, or Q /7, for the m = 2 mode) by Eq. (6.1]), we have

df 1 & 3 1242
aof L ¢ 3 apdr 1
i TGM2' at (6.19)
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and the amplitude of the Fourier transform can be written entirely in terms of known
functions dz/dt of Eq. and the amplitude of the polarization waveforms in

Eq. (6.10):
1[5
A==4/2|h 2
Q\E\ 22)] (6.20)

§Z§ = arg h(272) ~ 2® (621)

The phasing of the Fourier transform requires solving for ¢(f), which can be done

numerically in TaylorT4 style using the 3.5PN expression of

dp  do/dt

rilrr (6.22)

6.2 Detection

Consider some polarization waveform h, (t), hy(t) incident on a detector. The de-
tection and parameter estimation methods from such a waveform are outlined below
following [83], [84] [85].
The strain produced in a detector, given polarization waveforms h, and h, inci-
dent upon it, is
h(t) = Fihi(t) + Fxhy(t) (6.23)

where F,, Fy are the antenna patterns which depend on the type and orientation of
the detector; they are known functions.

For noise described by a one-sided spectral density S, (f)

Sa(f) = 2/00 n(t + 7)n(t)e ™7 dr, f <0, (6.24)

[e.o]

an optimal matched filter output p can be calculated for a known signal A(t) in the
detector output s(t) = n(t) + h(t) by filtering for it after weighting by the inverse of
the noise spectrum.

Given two different signals h; and ho, define an inner product for a particular

noise spectrum S, (f) by
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This inner product yields a natural metric on a space of waveforms with distance
between waveforms weighted by the inverse of the noise. We filter the detector output

against an expected waveform h using (s|h). Then

(6.26)

is the optimal statistic to detect a waveform of known form h in the signal s [84].

Note that I do not use normalized waveforms in this presentation.

Pure noise has an expectation value of zero, N = (n|h) = 0, filtered against some
waveform h(t). The expectation value of a signal s(t) = n(t) + h(t) containing the

waveform h(t) is therefore

S = (s|h) = (h|h). (6.27)

The average response of filtering with waveform h(t) to random noise is charac-

terized by
N2 = (n|h)(n|h) = (h|h) (6.28)

where the second equality follows from Eqs. (6.24]) and (6.25)).
The expectation value of p is the signal-to-noise ratio or SNR

(]i_l =7 (6.29)

and the expected SNR of a particular waveform h in the detector, when filtered
against an exact template, is

p=+/(h|h). (6.30)

For detection one usually wishes to consider a continuous family of related wave-

forms with shifts in start time 7y and phase ¢, but marginalize/optimize over such

possible shifts. A nice way to simultaneously search over all possible start times 7 is

to note that the Fourier transform of a time shifted waveform h(t — 1) is
h(f)e*mim (6.31)

in terms of the transform A(f) of h(t), and this itself acts as an inverse Fourier

transformation from f to 7y, such that one can construct p as a function of 7y via

X(70) = 2Re /_ Z —nggf(‘{ ) it g (6.32)
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o) = ) (6.33)

V{nlh)

One can generalize further [85] to search over all phase shifts ¢y by constructing the

sum of the above output, with template h(t — 79;¢9 = 0), with a similar output
for a template with a an orthogonal phase shift h(t — 7;¢9 = 7/2), which Fourier
transforms as

h(t — 705 ¢o = 7/2) — h(f)e* i fm0eim/2, (6.34)

This yields the quantity

Z(7) = X(70) +iY (7o) = 4 / ) Me%”mdf, (6.35)

0 Sn(f)

with absolute value |Z(7y)| which is the filter output optimized over all template

phases, so that

p(T(), ¢mam) - (636)

6.3 Parameter estimation

Generally one considers a waveform dependent on a set of M physical parameters 4,
forming an M-dimensional subspace of gravitational waveforms in a N-dimensional
space of possible signals. For a given signal, a perfect detector would find a measured
signal lying in this sub-space at the physical parameters. However, one really measures
h 4+ n, where n is random noise. In the case of Gaussian noise, various realizations
of n form a N — 1 dimensional Gaussian distribution of measured signals s centred
around the true waveform h. Parameter estimation consists of finding the 6 which
give the best fit to the signal s.

The maximum likelihood criterion is a standard method of choosing best param-
eters. The probability of measuring s, given that the real waveform is h(04), is
proportional to exp(—(s — h|s — h)/2), where s — h = n. The best estimate h(64) is
value of h at the point 64 that maximizes this probability. It thus satisfies

0

g (s —h(OYls —h(eh)| =0, (6.37)

gi=i

for all 4 = 1..M, which can be reduced to the set of equations

(s — h(0™)|9y:h(64)) = 0, (6.38)
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which imply that s — h is orthogonal to variations in all parameters in the surface of
h(6)—it is the point in h(6) closest to s using the metric defined in Eq. [6.25]

In the limit of large p, one can determine how well the parameters are estimated
using the Fisher matrix (for other cases and caveats see [36]). Let h(64) be the actual
waveform, assuming it itself lies on our subspace of parameterized waveforms. An
inaccuracy in the measured parameters 964 = 64 — A corresponds approximately to

an estimate i that differs from h by
h~ h— d,hd0", (6.39)
where 04 is a vector of 9/06's. Then Eq. becomes
(8ah|05R)66" = (n|dgh), (6.40)
and, to first order in 964,
(04h|0Bh)60* = (n|Ogh). (6.41)

The Fisher matrix is the M x M matrix ['yp = (94h|0gh). Its inverse, (I'"1)45
yields
604608 = (1148 (6.42)

so that the expected error in a given parameter 64 is

(604)* = (D144 (6.43)

and the cross terms of the inverse Fisher matrix yield correlations between different
parameters.

This analysis is valid to first order in 1/p or, equivalently, in §64.

6.4 Advanced LIGO noise and tuning

A noise spectrum of coloured Gaussian noise is a useful first approximation to the
sensitivity of LIGO type detectors. Advanced LIGO, in particular will be able to
be tuned to measure high frequency signals, such as those from binary neutron stars
near merger. A starting point for investigating sensitivity to the EOS is the 1150 Hz
narrowband tuning, although other detector configurations allow for observation of

frequency up to several kilohertz, as seen in Fig. [23|
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There are additional broadband and standard tunings for the interferometers, with
less sensitivity at high frequency. The reference broadband tuning has been optimized
for the burst search, whereas the standard Advanced LIGO configuration is optimized
for binary neutron star detection.

It is expected that the implementation of narrow banding will happen after an
initial period of Advanced LIGO observation with all three detectors. One of the
three detectors may then be tuned to a given high frequency for some period of
observation; the other detectors will be left in the standard configuration. However,
the exact mode of operation of Advanced LIGO is still under discussion, and the
scientific case for various configurations will be made on the basis of investigations

such as the one we will present in Chapter [7]

6.5 EOS constraint with NS-NS

Existing literature on the possible use of LIGO-style interferometers to constrain
neutron star properties has reached mixed conclusions.

A common assumption in considering the potential effects of EOS effect is that
the waveform will be essentially point particle up to some sharply-defined innermost
stable circular orbit, or ISCO, which may depend on the EOS. The spectrum of such
a waveform would follow that of point particles up to a maximum cutoff frequency,
that of the ISCO, and then fall off rapidly. This frequency can be considered as the
measurable quantity (as in [88], [89]).

Point particle approximations are expected to hold up approximately r = 4R,
where r is binary separation and R is stellar radius[61]. We approximate the orbital
frequency by 2 = \/W, for total mass M, to estimate for two 1.35M. stars with

radius between 8 and 16 km

1 [My
fa =y /2 ~ 400-1000 Hz. (6.44)
AR

Lai and Wiseman [90] compute corrections to orbital dynamics from tidal effects
and relativistic radiation. Comparing point mass calculations to I' = 3, R/M = 5
ellipsoids, in both relativistic and non-relativistic cases, they show a finite size effect
on gravitational energy emitted near a given frequency starting at roughly 300-500
Hz.
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Quasiequilibrium simulations with realistic equations of state show orbital insta-
bility that is dependant on equation of state close to the LIGO-observable band.
For example, Gondek-Rosiniska et al. [91] estimate a 1100-1460 Hz ISCO for strange
stars, due to orbital instability, and 800-1230 Hz for neutron stars, from Roche lobe
overflow. Numerical evolutions of quasiequilibrium initial data with polytrope equa-
tion of state by Marronetti, Duez, and Shapiro [92] show orbital instability at 15%
smaller frequency than the quasiequilibrium-estimated ISCO. As the EOS become
stiffer, simulations show a transition from an ISCO-limited orbit to a merger prior to
the expected ISCO frequency.

Faber et al. [93], using polytropic EOS, calculate energy spectra from the
quasiequilibrium sequences which show a slow fall-off from the point mass spectrum,
starting between 500Hz and 1050Hz. Bejger et al. [94] show similar results with
realistic EOS.

Given these results of quasiequilibrium simulation, it seems reasonable to expect
waveforms to hold equation of state information at frequencies as low as 400-500 Hz.

Work on merger waveforms from binary neutron stars with realistic equation of
state has focused only on the last orbit, giving meaningful spectra only for frequencies
greater than 1 kilohertz. The waveforms estimated, for example from fully relativistic
simulations by Shibata et al. [33] and from conformally flat simulations by Oechslin
and Janka [95] show distinctions between different equations of state. Both groups
estimate late merger waveform dependence on total mass, mass ratio, spin, and EOS,
and find that the frequency spectrum from the merger and post-merger is most sen-

sitive to EOS and total mass.

6.5.1 Post-Newtonian with finite size effects

Orbital energy calculations following [96], [97] show first order tidal corrections to
orbital energy overwhelming all PN effects at the high end of LIGO-observable fre-
quencies. These corrections first appear in PN expressions in terms ~ z°ky(R/M)?,
where ks is an apsidal constant characterizing the internal structure and z ~ M/r
with r the radius of an orbit. They are explicitly fifth post-Newtonian order, how-
ever they are also proportional to the fifth power of radius of the star R, so become
significant when the two radii are comparable.

The same first-order tidal correction terms are derived by Flanagan and Hinderer
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[98], and are used to estimate internal structure measurability of polytropic neutron
stars using early inspiral in LIGO-type detectors. They estimate that such observa-
tions could constrain radii of 1.4M neutron stars to < 13-15km depending on the
polytropic index.

Hinderer [99] calculates the internal structure corrections ky, which modify the
R-dependence of the post-Newtonian effects for a given mass, using polytropic EOS.
For polytropes with similar characteristics as realistic EOS, varying k5 shifts the effect

of radius R in the tidal correction terms by ~ 10%.
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Figure 23 : Possible noise spectra of Advanced LIGO in different modes of operation. The three
most sensitive noise curves at 2 500 Hz are the NS-NS optimized curve, the Zero Detune high power
curve (a broadband configuration), and the narrowband tuned High Freq curve. Figure from [87].
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Chapter 7

Constraints from binary inspiral on

the equation of state

This chapter reports the results of a first study that uses numerical simulations of
binary inspiral to estimate the accuracy with which one can extract parameters of
the neutron-star equation of state from gravitational wave observations.

We would like to estimate whether interferometers with the sensitivity of Ad-
vanced LIGO can detect the effects of the equation of state on the late inspiral to
merger waveforms, and study the potential constraints placed on the EOS parameters
from such observations. To do this, we use a set of numerical simulation waveforms
produced by varying the equation of state used to model the neutron star matter.
These simulations of binary neutron star inspiral and merger, the first to compute
several orbits before merger, were provided by Masaru Shibata using initial data pro-
duced by Charalampos Markakis and Koji Uryu. The signal analysis focuses on the
late inspiral, as the radius of the orbit r approaches the neutron star radius R. The
orbital dynamics in this region will depend on the radius and internal structure of
the neutron star, which in turn depend on the equation of state.

As Lattimer and Prakash observed, neutron-star radius is closely tied to the pres-
sure at at density one to two times nuclear density, and our results suggest that
gravitational wave observations will be able to place stringent constraints on a re-

lated equation of state parameter, the ps of Chapter [3]
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7.1 Parameter variation in numerical simulation

We will assume that equation of state effects on the waveform impact the late inspiral
and merger waveform only. For simplicity, we assume that orbital parameters, such as
M n,t., and ¢., are determined from the observations of the inspiral waveform, with
sufficient accuracy that their measurement uncertainty will not affect the accuracy to
which the late inspiral effects determine the EOS parameters.

The initial model EOS are very simple: we vary the core equation of state with
an overall pressure shift po, specified at the fiducial density p, = 5.011872336 x
10" g cm ™2, while holding the adiabatic indices in all regions of the core fixed at I' = 3.
The crust equation of state modelled by a single polytrope, fitted to tabulated crust
EQOS, for the region above neutron drip, as the simulations do not resolve densities
below roughly 102 gecm™3. The crust polytrope has Iy = 1.35692395 and py/c? =
1.745557593 x 10*° gem™3 at py = 10 gem 3.

Figure 24 : Initial choices of EOS for numerical evolution (left) compared to a set of candidate
equations of state (right). Candidates are labelled in order of increasing softness: 2H, HB, B, 2B.
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We expect the structure of ~ 1.4M, neutron stars to depend most strongly on
the value of py, based on both the empirical formula of Lattimer and Prakash [25]
describing radius as a function of pressure at a fiducial density at some p ~ 2.7 to
5 x 10'4gem™3, and the piecewise polytrope equation of state study described in
Chapter |3 showing moment of inertia of 1.388M, neutron stars is largely dependent
on ps.

The first models were chosen with EOS that “bracket” the range of existing can-
didates, seen in Fig. [24] The models HB with log,, p» = 13.45, a standard equation of
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state, H2 with log,, p2 = 13.95, a stiff equation of state; and B2 with log;, p2 = 13.15,
a soft equation of state. An additional model, B, with log,, p2 = 13.35 was chosen
with a small shift in parameter from HB to better estimate local parameter depen-
dence of the waveform. We measure p, in units of gcm =3, dividing pressure measured

in ergcm ™ by 2.

Table 7 : Properties of initial EOS. These range from the “softest” equation of state at the top,
which results in a prompt collapse to a black hole upon merger, to the “hardest” (or “stiffest”) at
the bottom. Model HB is considered a typical EOS. Radius is that of an isolated TOV star, in
Schwartzchild-like coordinates. All candidates have I' = 3 in the core.

Model log;ypelgem™@] R[km] M/R

2B 13.15 9.7 0.21
B 13.35 10.9 0.18
HB 13.45 11.6 0.17
2H 13.95 15.2 0.13

Although the set of models is explicitly constructed by varying the single param-
eter po, the resulting neutron star models also have systematic variation in the radius
R, as seen in Table[7] They can also be considered a one-parameter family of varying
R, and the parameter estimation analysis is done for both ps and R.

Future work could involve additional models of varying adiabatic indices around
a fixed po, or varying multiple equation of state parameters to construct models of

the same R but different internal structure.

7.2 Numerical Simulation

The method of numerical simulation of binary neutron stars with these EOS follows
methods of previous work by Masaru Shibata and collaborators [811, 100, 101].
Initial data is constructed by Koji Uryu and Charalampos Markakis in the con-
formally flat approximation from these two equations of state. The initial data is
constructed by taking two stars which have gravitational mass 1.35M; when far
apart, and bringing them together while preserving baryon number. The initial data

are irrotational. Quasiequilibrium sequences are used to estimate a initial separation
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roughly three orbits before merger.

The initial data are evolved using the code of Masaru Shibata. The Einstein equa-
tions are solved with a version of the BSSN formulation, using approximately maximal
slicing. Hydrodynamics are calculated with a high-resolution shock-capturing scheme.
The simulations use the cold equation of state specified in Sec. [7.1] along with a ther-
mal effective adiabatic index I'; as described in [102]. The cold approximation is valid
for the bulk of the neutron star matter until the merger, where thermal energy can
increase from shock heating to up to ~ 25% of the total energy [81], and determines
EOS effects on late inspiral properties.

Gravitational radiation is extracted via a method of splitting the wave-zone metric
into a flat background and linear perturbation, and decomposing the latter with
tensor spherical harmonics. A gauge invariant Moncrief variable is constructed for
each mode. For equal or near-equal mass binary neutron stars the quadrupole (2,2)
mode is much larger than other modes, and is the only the (2,2) mode reported for
this analysis. The polarization waveforms h, and hy can then written in terms of

the quadrupole modes and the spherical angles to the observer.

7.3 Waveform analysis methods

The waveforms output from the simulation, using the procedure outlined in Sec. [7.2]
are the cross and plus amplitudes hy D/M and hy D /M of the quadrupole waveform,
as would be measured far along the z axis perpendicular to the plane of rotation,
versus the retarded time ¢t. Here M is the sum of the two neutron star masses when
they are far apart, 2.7M. The strain is specified at discrete values evenly spaced in
t.

We construct the complex quantity h = hy, — thy from this data. The amplitude
and phase of this quantity define the instantaneous amplitude |h| and phase ¢ =
arg(h) of the numerical waveform. The instantaneous frequency f is then estimated

by
i@ ~ i?bi-i-l — ¢

f:27l'dt _27T ti—i—l_ti

(7.1)

The time marking the end of of the inspiral (and onset of merger) is defined by
the peak of the waveform amplitude |h|. However, the amplitude of the waveforms

oscillates over the course of an orbit. A moving average over 0.0005 s segments is used
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to (roughly) average over the last orbit; the end of the inspiral is defines as a time
0.00025 s after the maximum of the moving average. The resulting merger time ¢y, is
marked by solid lines in the plots to follow.

The numerical data can be shifted in phase and time by adding a time shift 7 to
the time series points and multiplying the complex h by €' to shift the overall wave
phase by ¢,.

Working in terms of discretized quantities, waveform comparison will sometimes
require resampling of one waveform to the time step of another. We use cubic in-
terpolation of the coarser waveform onto a time series with the same time step as
the finer waveform. The resolution At of the numerical waveforms decreases with
increasing stiffness, as the starting frequency (estimated three orbits before merger
by quasiequilibrium sequences) is lower and the time for the full simulation is larger.

Windowing of the discrete time series is used to

1. smoothly truncate waveforms to isolate inspiral behaviour,
2. join a matched PN inspiral onto the numerical waveform, and

3. decrease side-band effects in the discrete Fourier transform (DFT) from the

sharp start and stop of a finite time series.

One-sided Hann-like windows are used to smoothly turn on

wn) = - :1 — cos <N7m ) (7.2)

-1

or turn off

wn) = - :1 + cos (Nﬂf 1) (7.3)

a signal over a range of N points (or over a time N At).
A butterfly of windows is used to join PN fit to numerical data by turning on the
numerical waveform as the PN is turned off, such that the sum of the two window

functions is 1 over the whole range. The choice of range is discussed in Sec. [7.4]

7.4 Post-Newtonian matching

The numerical waveforms are started at different frequencies. To align them for
comparison, they are each matched in the early inspiral region to the same post-

Newtonian point particle, or PP, waveform.
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The particular post-Newtonian waveform chosen follows the Taylor T4 of [77],
where it was found that this particular version had excellent agreement in both am-
plitude and phase with the long-term numerical binary black hole inspiral. It is thus
taken to be representative of the full GR behaviour of the (point-particle-like) bi-
nary black hole inspiral. The post-Newtonian waveform agrees with binary black
hole inspiral up to the last cycle before merger; we will show that the binary neutron
star waveforms depart from the point-particle evolution 3-7 cycles before the point
particle merger.

To match the numerical data, both a time shift and phase shift must be specified.
The complex numerical quadrupole waveform is convolved with the complex post-

Newtonian quadrupole waveform, g = hip —ihEP.

2(r) = / " ht)g* (¢ — )t (7.4)

- / "l (1) — i ()] g (¢ — 7) + ign (¢ — 7)) dt (7.5)
- / e (D)9 (t —7) + h(B)g (t — 7)) dt
i / e (Dgu(t = 7) — he(t)gs (t — 7)) dt (7.6)

Here the integrals are taken over a matching region Ty < ¢t < Tt before the end of the
numerical inspiral.

This quantity is similar to the complex matched filter output of the FINDCHIRP
algorithm [85]. The real part of z(7) corresponds to the correlation of the two wave-
forms as a function of the time shift 7. The absolute value |z(7)| is the correlation
maximized over a constant overall phase shift, and the argument is the overall phase
shift required to so maximize.

The match time 7 maximizing PP and numerical correlations is sensitive to the
portion of the numerical waveform matched, T5-7T%. Some truncation of the numerical
waveform is required to eliminate residual effects of initial data, and one would also
like to truncate the waveform at some point before the peak amplitude, at the end of
the region without significant finite size effects.

As the region without significant finite size effects is itself determined by com-

parison with point particle post-Newtonian waveforms, this procedure is somewhat
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self-referential. The variation in the best time shift can be calculated as the match
region is varied, truncating at various times Ty = t5; — 1" before the end of numerical

inspiral ;.

Figure 25 : Best time shift 7 between numerical waveform and post-Newtonian waveform, matching
to a segment Ty < t < Ty = tpr — T of the numerical waveform truncated starting a time 7" before
the end of numerical inspiral ¢,;.
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Fig. shows that truncating the numerical waveform just at the end of inspi-
ral leads to a larger time shift 7: the waveform is matched to point-particle post-
Newtonian closer to the point particle merger. As late-inspiral regions are windowed
out, and T increases, the matching time shift 7 is smaller. Ideally, there would be
convergence of the time shift as finite-size effects are eliminated from the numerical
waveform. As can be seen in Fig. [25] this does not happen, i.e., the curves do not level
off as T  increases. The reason is that for large T' few waveform cycles are available for
matching after the early-stage inaccuracies are windowed out, degrading the ability

to estimate the matching PP coalescence time.
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Varying these choices can change the best match 7 by up to ~ 0.001s. By com-
parison, one waveform cycle takes between 0.0005 and 0.002s in the inspiral region,
so this will be a significant source of uncertainty in SNR estimates. Longer duration
simulations are required to more accurately choose 7. Of course, in a real data anal-
ysis application, the PP coalescence time will be found to accuracies of better than
~ 1ms even for relatively weak detections (p ~ 10) [83].

We choose to take a larger matching region truncated to between 0.0015s after
the start of the waveform and 0.001 s before merger. Varying these choices can change
the best match 7 by up to ~ 0.001s. By comparison, one waveform cycle takes be-
tween 0.0005 and 0.002s in the inspiral region, so this will be a significant source
of uncertainty in SNR estimates. Longer duration simulations are required to more
accurately choose 7. Of course, in a real data analysis application, the PP coales-
cence time will be found to accuracies of better than ~ 1 ms even for relatively weak
detections (p ~ 10) [83].

Unlike the case of matching binary black hole simulations to point particle post-
Newtonian, the binary neutron star simulations show departure from point particle
many cycles before the post-Newtonian merger time. Fig. shows the four wave-
forms. As the stiffness of the equation of state, and thus the radius of the neutron
stars, increases, the end of inspiral for the binary neutron stars is shifted away from
the end of inspiral for point particle post-Newtonian.

This can also be seen by plotting the instantaneous frequency of the numerical
simulation waveform with the same time shifts, as in Fig. Fig. [27] also shows more
clearly the difference in the post-merger oscillation frequencies of the hyper-massive
remnants, when present: the larger neutron star produced by the stiff EOS 2H has a

lower frequency than that from the medium EOS HB.

7.5 Discrete Fourier transform and comparison with Ad-

vanced LIGO noise

Given h, or hy, one can construct the Fourier transform f~z+ or hy. Both polarizations
yield the same DFT spectrum |ﬁ|, with phase shifted by 7 /2, if one neglects discretiza-
tion, windowing, and numerical effects (including eccentricity). The spectrum |A| is

independent of phase and time shifts of the waveform.
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Figure 26 : Plus (left) and cross (right) amplitudes of numerical waveforms, scaled by D/M, and
aligned in time and phase to the same point-particle post-Newtonian inspiral (dashed line), using
the method described in Sec. [L4l The two dashed vertical bars indicate the limits of the waveform
used for matching; the last vertical bar indicates the peak amplitude of the numerical waveform.
The top three simulations, 2H, HB, and B, show the start of post-merger oscillations from a hyper-
massive NS remnant in the simulation. The bottom simulation 2B shows quasinormal ringdown
from a prompt collapse to a black hole following merger.
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The stationary phase approximation of Sec. is valid for the post-Newtonian
waveform in the frequency ranges considered, so it is used to generate the point
particle spectrum.

To compare to detector noise, the spectra are converted into equivalent strains in a
one-Hz bandwidth, based on a given effective distance D to the system. Fig. |28 shows
the result for the numerical simulations only, scaled for a system at 100 Mpc, compared
to the burst-optimized Advanced LIGO equivalent strain noise. The quantity plotted

FIA(f)|2, rescaling from the previously plotted numerical output h(t)D /M using
M = 2.7M, and D = 100 Mpc. Fig. compares similar 100 Mpc spectra from
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Figure 27 : Instantaneous frequency of numerical simulation, averaged over 0.001s, as a function
of time. Stars mark the time of peak numerical waveform amplitude. Results from each numerical
simulation are shifted in time to match a common point particle early inspiral; this is the only degree
of freedom available to improve the agreement in frequency. The waveforms of 2H and HB show a
roughly constant frequency post-merger from a hyper-massive neutron star bar mode; the simulation
of B was halted shortly after the formation of such a hyper-massive object. Waveform 2B collapses

promptly to a black hole.

7000[ | | 7000} | |
5000 1 5000} 1 1
| | | |
| | | |
3000} } } 3000} } }
—~ I I —~ | |
T 2000f ! T 2000} ! !
= 1500} ! ! = 1500} ! !
| | | |
1000} ! ! 1000} ! ‘
700} | ‘ 700} ; |
500 \1 L 1 L L L 500 L 1 L \1 L L
~0.012 -0.008 -0.004 0. 0.004 -0.012 -0.008 -0.004 0. 0.004
t —teen) (S) t—teen) (S)
7000} B | | 7000’25 | |
5000 1 1 5000 1 1
| | | |
| | | |
3000} } } 3000} } }
— I I ) I I
T 2000} ; ; T 2000} ; !
= 1500} ! ! = 1500} ! !
| | |
1000} ! i 10001 ! ‘
700} | 700} ‘ |
500 ‘ ‘ : 500 1 1

20012 -0008 -0004 O 0.004 20012 -0008 -0004 O 0.004
t —tepn) (S) t —tepn) (S)

waveforms truncated after inspiral.

The full spectra of models 2H, HB, and B, seen in Fig. [28] show peaks at post-
merger oscillation frequencies; those of B are weaker as the waveform is truncated
shortly after the formation of the hyper-massive remnant. Waveforms of 2H and HB
are also truncated while the post-merger oscillation is ongoing; if the simulations were
allowed to continue, these peaks would presumably grow further. The simulation of
2B, in contrast, collapses to a black hole and has only a short lived (and relatively
small-amplitude) quasinormal mode ringdown post merger.

Although such post-merger oscillations are an interesting source of potentially
measurable strains, the dependence on the cold equation of state is less straight-

forward as temperature effects become significant during the the merger. We focus
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Figure 28 : DFT of numerical waveforms windowed by 0.001s at edges, at an effective distance
D = 100 Mpc, compared to the noise spectrum for Advanced LIGO in a broadband configuration
optimized for burst detection. Curves are shown, for each numerical simulation, from both the +
and X polarizations.
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Figure 29 : Left panel is DFT of numerical waveforms truncated after peak waveform amplitude to
show spectrum of inspiral only. Right panel shows DFT of same waveforms smoothly merged in the
time domain with the point particle PN waveforms shown in Fig. 26]. The distance D = 100 Mpc.
Curves are shown, for each numerical simulation, from both the + and x polarizations. The lumps
in the spectrum, for example around 1100Hz for HB, may be due to eccentricity in the numerical

waveform.
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instead on the spectra from the waveforms during the inspiral region only. Fig.
shows how these change as the equation of state is varied.

Note that time-frequency plots like the ones shown Fig. show that numerical
waveforms match the PP waveform at instantaneous frequencies of up to roughly
750-1150 Hz, depending on the EOS. The disagreement in the spectra from the PP
stationary-phase approximation waveform at frequencies below this is primarily due

to the finite starting time of the numerical waveforms.

7.6 Detectability

In general signal detection, one finds the best fit parameters of the system including
the best fit phase and time shifts for a given signal. In our case, we assume that the
two masses, the distance, as well as the phase and time shift have been fixed by a
strong inspiral measurement in the frequency range 10 to 500 Hz, where the NS-NS
inspiral is assumed to be well modelled by a post-Newtonian point particle binary.

We then attempt to measure a single parameter, either p, or R, which generates a
one-dimensional family when all other parameters are fixed. This family is discretely
sampled by the waveforms from the numerical simulations above.

After the numerical waveforms have been matched to the same post-Newtonian
point-particle inspiral, the signals will be aligned in time and phase. We can then
then compare the resulting waveforms to each other using different Advanced LIGO
noise spectra. A stationary phase approximation can be used to calculate the Fourier
transform of the signals at low frequencies.

We first consider the “distinguishability” of a pair of waveforms (hg, hy) with a

given noise spectrum as estimated by calculating the SNR of the difference between

them, pgg = \/ (ha — hy|ha — hy). We consider two waveforms distinguishable in a
given noise spectrum if pgg > 1 using the inner product defined with that spectrum.

The result is given in Tables for noise curve tuning optimized for 1.4 Solar
Mass NS-NS inspiral (“Standard”), bursts (“Broadband”), and pulsars at 1150Hz
(“Narrowband”), at a reference effective distance of 100 Mpc. For h, and hy as
measured, the signal to noise ratio will be proportional to 1/D.

The difference between waveforms due to finite size effects is not detectable in the
NS-NS detection optimized configuration of Advanced LIGO for ~ 100 Mpc effective
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Table 8 : pqig in standard (NS-NS detection optimized) noise X (100Mpc/Deg)

PP 2B B HB H
PP | 0 030 047 042 0.61
2B 0 042 033 0.55
B 0 023 0.52
HB 0 0.50
2H 0

Table 9 : pqig in broadband (burst-optimized) noise x (100Mpc/Deg)

PP 2B B HB H
PP | O 1.77 233 221 2.62
2B 0 1.97 1.81 224
B 0 0.89 2.06
HB 0 2.05
2H 0

Table 10 : paig in narrowband 1150 Hz noise x (100Mpc/Deg)

PP 2B B HB H
PP | O 078 275 199 191
2B 0 2.08 1.30 141
B 0 0.89 2.24
HB 0 1.68
2H 0

distances. However, in both narrowband and broadband they are. Note that this
implies that even if the details of the NS-NS late inspiral signal are not known,
the difference between it and a point particle waveform should be measurable. The
quantity pqig between a NS-NS waveform and a point particle waveform may be useful

in itself to constrain possible equations of state without reference to waveform details.
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To give a first estimate the accuracy of parameter estimation, we require an esti-
mate of 0h/0py and Oh/OR from the sampled waveforms. We use

% ~ h(P2,a) - h(p2,b)
Opa p2=(p2,a+P2.6)/2 DP2,a — P2,b

(7.7)

and then, for our one-parameter family and neglecting correlations with other param-

eters, we have to first order

W ~ P20 — P2 ‘
(h(p2,a) — h(p2,b)|h(p2,a) — h(pap))

Similar equations hold for the estimation of R.

(7.8)

Using adjacent pairs of models to estimate waveform dependence at an average
parameter value, we then find estimates of radius measurability as shown in Table

and py measurability as shown in Table [12| for various noise configurations.

Table 11 : Estimate of measurement error d R for given R in different Advanced LIGO configurations,
using adjacent models 2B-B (9.7 km - 10.9 km), B-HB (10.9 km - 11.6 km) , and HB-2H (11.6 km
- 15.2 km).

Broadband 1150 Hz
R=103 +0.61km =40.57 km
R=1125 +0.78km =+0.78 km
R=134 +1.75km =+2.13 km

Table 12 :  Estimate of §log;(p2) for given log;,(p2) in different Advanced LIGO configurations,
using adjacent models 2B-B (13.15 - 13.35), B-HB (13.35 - 13.45), and HB-2H (13.45 - 13.94). The
parameter p, measures pressure/c? in g/cm?, at a fiducial density of ps ~ 5 x 10 g/cm?.

Broadband 1150 Hz
logo(p2) = 1325  £0.10 +0.10
log,o(p2) = 13.4 +0.11 +0.11
log,(p2) = 13.7 +0.24 +0.30

These results are first estimates of the accuracy with which the EOS might be

constrained by gravitational wave estimates; they do not take into account multiple
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detectors or observations nor parameter correlations. A more accurate estimation of
EOS parameter measurability will require more detailed analysis, with a larger set
of inspiral simulations sampling a broader region of parameter space, e.g. with mass

ratios departing from 1, and with several more orbits prior to merger.



Conclusions

Part |I| was aimed at the following question: Can we find a systematic way to char-
acterize the neutron star equation of state by a small number of parameters that are
independent of the particular microphysical model, such that astrophysical observa-
tions can be used to limit the values of these parameters?

My work shows that a diverse array of EOS candidates can be well-modelled above
nuclear density by a few polytropic regions of constant adiabatic index. Equations
of state with exotic matter can require up to three regions, requiring six parameters.
However, we can reduce the number of parameters by fixing the boundary density
between polytropic regions, without reference to any individual equation of state.
Unexpectedly, the optimal choices for fitting the universe of candidates are robustly
picked out.

The result is a tractable four-parameter equation of state. It matches each of
31 tabled equations of state to better than 10% accuracy, including examples incor-
porating the appearance of hyperons, kaons, and quark matter. This allows us to
use observations to constrain a parameter space, rather than individually allowing or
ruling out an ever-changing set of proposed candidates.

Furthermore, the parameterization allows construction of systematically varying
EOS to explore effects on the physics of neutron stars in numerical simulations. The
effect of an overall core EOS pressure shift, our parameter p;, on the inspiral of
neutron stars was explored in Chapter [7] The equation of state parameters can also,
for example, be varied to create a set of neutron stars with the same mass and radius

but different internal structure.

¥
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Part [[I| was aimed at the following question: Can a full helical symmetry assumption
be used to construct convergent numerical solutions for quasiequilibrium neutron stars
which go beyond conformal flatness?

Full helical symmetry with half-ingoing half-outgoing radiation only converges
when matched in the wave zone to a waveless solution. The toy model work showed
that the convergence of iterative solutions to helically symmetric wave equations
was critically dependent on the sign of their nonlinear terms. One choice of sign
gives robust convergence, while for the other, convergence sets an upper limit on the
coefficient of the nonlinear terms. This suggests that the lack of convergence for the
helical code is intractable, given the fixed sign of the nonlinear terms in the Einstein
equations.

However, the agreement of the helically symmetric solution with the fully waveless
solution in the near zone validates the assumption that more accurate initial data is
insensitive to the details of the wave region. This implies that the waveless and helical
formulations can be used interchangeably to create quasiequilibrium sequences with
improved accuracy. Waveless initial data also allows the addition of a nonzero radial

velocity, minimizing orbital eccentricity in full numerical simulations.

¥

Finally, Part [[T]] was aimed at following question: Will the effects of the neutron star
equation of state be visible with Advanced LIGO, and, if so, how accurately might an
observation of a binary neutron star inspiral in Advanced LIGO constrain equation
of state properties?

The results of numerical simulation show that the tidal disruption of finite-size
neutron stars leads to departure from the point-particle waveform at frequencies as
low as 700 Hz, yielding detectable differences for waveforms from neutron stars as far
away as 200 Mpc. This translates to measurements of neutron star radius, ignoring
internal structure corrections, to roughly +1km (100 Mpc/Deg), where Deg is the

effective distance to the observed neutron star binary.

%k
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This thesis has touched on several areas of active research in relativistic neutron star
astrophysics. The combination of many observational tools—such as electromagnetic
wave astronomy, gravitational wave astronomy, and heavy ion experiments—with an
arsenal of analytic, approximate, and numerical methods in many areas of physics,
is required to finally nail down the composition and equation of state of cold dense

matter, and the properties of stars after they die.
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Appendix A
Equation of state tables

J. Lattimer and M. Alford generously provided EOS tables from [25] and [49]. Other
tables are from from the LORENE C++ library (http://www.lorene.obspm.fr).

Av18 Via Lattimer, AP1 in[25]; a variational EOS with np composition. Akmal et
al. [35] use the Argonne two-nucleon interaction AV18. The model valid in
liquid core only, and appended onto a separate crust table. See akmalpr for

general discussion.

AV18D Via Lattimer, AP2 in[25]; a variational EOS with np composition. Similar to

Av18 [35], with relativistic boost corrections.

AV18U Via Lattimer, AP3 in[25]; a variational EOS with np composition. Similar to
Av18 [35], with the Urbana model of the three-nucleon interaction.

AV18UD Via Lattimer, AP4 in[25]; a variational EOS with np composition. Similar
to Av18 [35], with both the relativistic boost corrections and the three-nucleon

interaction. This EOS is also referred to in the literature as APR.
AKMALPR Via LORENE; a variational EOS with np composition. Another version
of Av18UD, from Akmal et al. [35], but with the LORENE style SLY4 crust.

Haensel [103] calculates: M., = 2.21My, R = 10.0km, n. = 1.15fm ™3, €. =
2.73 x 10 gem 3.

All Av18-based equations of state use variational chain summation methods

using the Argonne v;g model of two-body nuclear interactions, which is fit to
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nucleon-nucleon scattering data at energies below 350 MeV. The Urbana Model
IX, (UIX) estimates the effect of three-nucleon interactions, and the vy, (DVB) is
a relativistic boost correction. A nonrelativistic Hamiltonian is calculated from

kinetic energies, Av18 interactions, and UIX interactions.

Configurations above roughly 2.1Mg, €, > 1.73 x 10'g/cm? have vypuna > c[0].

BBB2 Via LORENE; a DBHF EOS with np composition. Baldo et al. [38] calcu-
late the EOS using Brueckner-Bethe-Goldstone many-body theory with explicit
three-body forces: uses the Argonne v15 two-body force and the Urbana Model
IX three-body force. The crust is SLY4, matched (at n = 0.0957, ¢ = 1.60E'14).

Haensel [103] calculates: M., = 1.92My, R = 9.49km, n. = 1.35fm ™3, €. =
3.20 x 10 gem 3.

BPAL12 Via LORENE; a DBHF EOS with np composition. EOS supplied by Bom-
baci in August 1999, referencing Zuo, Bombaci, and Lombardo [39], where
the EOS is calculated from an extended Brueckner-Hartree-Fock approxima-

tion, using the Argonne v14 two-body interaction. Matched to SLY4 crust at
n = 0.095,¢ = 1.60E£'14.

Haensel [103] calculates: M., = 1.46My, R = 9.00km, n. = 1.76 fm 3, €. =
3.94 x 10 gem 3.

ENGVIK Via Lattimer, ENG in [25]; a DBHF EOS with np composition. Engvik et
al. 1996 40, [104] construct this EOS using Dirac-Brueckner-Hartree-Fock many-
body theory, and the table is made causal above n = 0.7 through unspecified

means.

FPS Via LORENE; a variational EOS with np composition. EOS supplied by Ster-
gioulas in 1998 via Haensel. The EOS follows BPS below neutron drip, then
mimics FPS using a Skyrme-type energy density fitted to the Friedman and
Panharipande [36] (FP in [25]) equation of state. This method is described by
Lorenz, Ravenhall, and Pethick[105]. Crust bottom at n = 0.0957,¢ = 1.60E£14.

Haensel [103] calculates: M., = 1.79My, R = 9.66km, n. = 1.37fm ™3, ¢, =
3.09 x 10" gem 3.



MPA1l Via Lattimer, MPA1 in [25]; a DBHF EOS with np composition. Miither,
Prakash, and Ainsworth [41] extend the relativistic Brueckner-Hartree-Fock ap-
proach for nuclear matter to dense neutron matter, including contributions from
the exchange of m and p mesons and the dependence upon neutron-proton asym-

metry.

MS00 Via Lattimer, MS1 in [25]; a field theoretical EOS with np composition. Miiller
and Serot [42] calculated with relativistic mean field theory. This table uses
¢ =0,¢ =0, where £ and ( are parameters determining the strength of nonlinear

vector and isovector interaction (o,w, and p mesons).

MS1506 Via Lattimer, MS2 in [25]; a field theoretical EOS with np composition.
Similar to Ms00, from Miiller and Serot [42], but with & = 1.5,¢ = 0.06

MS2 Via Lattimer; a field theoretical EOS with np composition. Similar to Ms00,
from Miiller and Serot [42] with £ = 0,( = 0 and Egym = 25MeV, a variant of
MS1.

PAL2 Via Lattimer; a schematic potential EOS with np composition. From Prakash,
Ainsworth and Lattimer [34], using a parameterization of E(n) in terms of
symmetry energy at saturation density, density dependence of symmetry energy,
and bulk nuclear matter incompressibility K. A soft version, possibly PAL6 in
[25].

PRAKDAT Via Lattimer; a field theoretical EOS with np composition. Glendenning
and Moskowski [43] calculate a relativistic mean field theory EOS, suppressing

hyperons.

PS Via Lattimer, PS in [25]; an effective potential EOS with n7® composition. Pand-
haripande and Smith [44] calculate an EOS based on neutrons and a pion con-

densate, with no charged particles.

sty4 Via LORENE, an effective potential EOS with np composition. sry4, from
Douchin and Haensel [6], is a unified crust-core equation of state, calculated
using an effective S(kyrme-)Ly(on) nuclear interaction for both crust (in nucleus

bulk energy) and core (in nucleon-nucleon energy).
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Haensel [103] calculates: M., = 2.05My, R = 9.99km, n. = 1.21fm ™3, ¢, =
2.86 x 10° gem 3.

The outer crust EOS is calculated assuming T=0 and ground state composition
with a Compressible Liquid Drop Model (CLDM) for nuclei and nuclear struc-
tures. Similar to the CLDM ignores shell effects and pairing within the nuclei,
it is replaced for p < 4.3 x 10 gem™3 by the crust EOS of Haensel & Pichon
[106].

This EOS leads to minimum mass 0.094M,, maximum mass 2.05M, (2.42M,
with rigid rotation), and maximum rotation at P,;, = 0.55ms, neglecting the
envelope p < 10°gem ™3 of mass ~ 10719M,,. Stars of 1.4M, have central energy
density roughly 10g/cm?. Beneath the central density of maximum mass stars,
SLY4 has vspung < ¢. Near 1.4M,), the radius is slightly below 12km. Surface
redshift, binding energy, moment of inertia and crustal moment of inertia, other

rotational effects, apparent radii, are also discussed in [6].

A sLy4-based crust is used in all EOS except fps.

WFF1 Via Lattimer, WFF1 in [25]; a variational EOS with np composition. This EOS

uses the Argonne v14 (an earlier version of AV18) nucleon-nucleon interaction
plus the Urbana VII three nucleon interaction model, calculated by Wiringa,
Fiks, and Fabrocini [37] using variational chain summation. The maximum mass
is 2.19M. There is a kink in the total energy of this model that is interpreted

as evidence for a phase transition to a neutral pion condensate.

WFF2 Via Lattimer, WFF2 in [25]; a variational EOS with np composition. From

Wiringa, Fiks, and Fabrocini, as WrF1 [37]. The maximum mass of this variant
is 2.13M,.

WFF3 Via Lattimer, WFF1 in [25]; a variational EOS with np composition. From

Wiringa, Fiks, and Fabrocini, similar to wrr1. [37].

BALBN1H1 Via LORENE; an effective potential EOS with npH composition. EOS

supplied by Balberg in January 2000, from Balberg and Gal [46]. Uses a local
effective potential, including nucleons and hyperons (all eight species of (s=1/2)
baryons). Table matches EOS in Fig. 7 labelled npAZ + 3. Matched to sLy4
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crust at n = 0.0957,¢ = 1.60F14. Haensel [103] calculates: M4, = 1.64M),
R =19.38km, n, = 1.60fm=3, e, = 3.72 x 10 gcm 3.

GLENDENH Via LORENE; a field theoretical EOS with npH composition. Glenden-
ning [47] case 3. EOS incorporating both nucleons and hyperons, calculated

with mean field theory.

GMINPH-GM3NPH Via Lattimer, GM1-GM3 in [25]; a field theoretical EOS with

npH composition. From Glendenning and Moszkowski [43].

PCL_NPHQ Via Lattimer, PCL2 in [25]; a field theoretical EOS with npHQ composi-
tion. From Prakash, Cooke, and Lattimer [4§].

SCHAF1—2 Via Lattimer, GS1-GS2 in [25]; a field theoretical EOS with npK com-
position. From Glendenning and Schaffner-Bielich[45].

ALF* Via Alford, in [I07]. A generic parameterization of a quark matter equation
of state is generalized to a charged phase, as is nuclear matter based on the
equation of state from Akmal, Pandharipande, and Ravenhall. Mixed phases
are then allowed in intermediate density regions based on energetics. ALFC

incorporates QCD corrections to the quark chemical potential.
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Appendix B

Accuracy of best-fit

parameterizations

Table 13: Values for observables calculated using tab-
ulated equations of state as well as the correspond-
ing parameterized equation of state using the best fit
parameters. My, is the maximum nonrotating mass
configuration. zy,.x is the corresponding maximum grav-
itational redshift. f.c is the maximum rotation fre-
quency as calculated using the rotating neutron-star code
rns. Ry 4 is the radius of a 1.4 M, star in units of km.
I 335 is the moment of inertia for a 1.338 M, star in units
of 10% gem?. v max is the maximum adiabatic speed of
sound below the central density of the maximum mass
neutron star. The difference in calculated values for each
observable when using the tabulated equation of state

(Otap) versus the best fit parameterized equation of state

(Oyit) is calculated with (Oit/Otap — 1)100%.

EOS Mmax Zmax fmax R1.4 ]1.338 Vs, max
AV18 1.683 0.581 1970 9.361  0.908 0.924
fit 1.656 0.597 2043 9.188 0.884 1.016

Continued on next page. . .




EOS Muax  Zmax Jmax R4 I1338 Vs max
% -1.60  2.79 3.68 -1.85 -2.57 9.94
AV18D 1.808 0.605 1890 10.179  1.024 1.032
fit 1.781 0.607 1923 10.019  1.000 1.0359
% -1.50  0.33 1.76 -1.57 -2.34 0.42
AV18U 2.390 0.704 1585 12.094 1.375 1.134
fit 2.366  0.708 1607 11.978  1.353 1.165

% -1.00  0.57 1.39 -0.96 -1.59 2.72
AV18UD 2.213 0.696 1699 11.428 1.243 1.160
fit 2.189 0.697 1720 11.326  1.226  1.177

% -1.08  0.22 1.24 -0.90 -1.36 1.45
BPAL12 1.452 0.382 1616 10.024  0.974  0.708
fit 1.449 0.381 1614 10.091 0.976 0.716

% -0.18  -0.29  -0.09 0.67 0.20 1.03
BBB2 1.918 0.574 1713 11.139 1.188 0.914
fit 1.920 0.579 1724 11.107  1.190  0.985

% 0.10 0.97 0.61 -0.29 0.17 7.75
FPS 1.799 0.530 1719 10.850  1.137  0.883
fit 1.799 0.533 1729 10.863  1.137  0.903
% -0.03  0.67 0.55 0.12 0.03 2.29
ENGVIK  2.240 0.654 1611 12.059  1.372  1.000
fit 2.239 0.657 1616 11.975 1.359  1.107

% -0.05  0.39 0.31 -0.69 -0.97  10.71
MPA1 2.461 0.670 1491 12.473  1.455 0.994
fit 2.457 0.670 1497 12.440 1.449 1.043

% -0.16  -0.05 0.13 -0.26 -0.41 4.91
MS00 2.767 0.606 1236 14.918 1.944 0.888
fit 2.752  0.603 1238 14.927  1.942  0.998

% -0.54  -0.52 0.16 0.06 -0.09 12.44
Ms1506 1.806 0.343 1176 14.464  1.658  0.582
fit 1.798 0.352 1210 14.074  1.666  0.605

Continued on next page. . .
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EOS Max  Zmax Jmax R4 I 338 Vs, max
% -0.42 257 2.86 -2.69 0.46 3.96
MS2 2.776  0.614 1244 14.583  1.888  0.889
fit 2.747 0.611 1252 14.535 1.876  0.990

% -1.03  -0.56 0.64 -0.32 -0.64 11.38
PAL2 1.477 0.374 1559 10.547 1.051 0.693
fit 1.470 0.372 1559 10.490  1.030  0.702

% -0.47 -0.51 0.01 -0.54 -2.03 1.37
PRAKDAT 1.788 0.366 1263 13.954 1.715 0.641
fit 1777 0.365 1266 14.080 1.698 0.673

% -0.60 -0.37 0.26 0.90 -0.98 5.11
SLy4 2.049 0.592 1641 11.736  1.288  0.989
fit 2.049 0.597 1650 11.712  1.287  1.003

% 0.02 0.81 0.57 -0.21 -0.08 1.41
WFF1 2.133 0.739 1832 10.414  1.085 1.185
fit 2.127 0.755 1863 10.416  1.086  1.279

% -0.29 221 1.67 0.02 0.10 7.86
WFF2 2.198 0.717 1745 11.159 1.204 1.139
fit 2.195 0.723 1756 11.128  1.196  1.230

% -0.14  0.71 0.59 -0.28 -0.59 7.93
WFF3 1.844  0.530 1678 10.926  1.160 0.835
fit 1.835 0.542 1715 10.913  1.157  0.903

% -0.48  2.26 2.22 -0.12  -0.253 8.11
BALBN1HI 1.628 0.437 1625 12.901 1.504 0.878
fit 1.634 0.422 1569 12.648 1.512 0.813

% 0.39 -3.55 -3.45 -1.96 0.56 -7.42
GLENDNH3 1.962 0.427 1321 14.203  1.713  0.750
fit 1.964 0.429 1323 14.163  1.720  0.765

% 0.13 0.37 0.19 -0.28 0.38 2.04

GMINPH  1.788 0.343 10.091 0.976 0.716

fit 1.798 0.352 1210 0.67 0.20 1.03

Continued on next page. . .
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EOS Muax  Zmax Jmax R4 I1338 Vs max

% -0.79  1.07 1.82 0.31 -1.18 7.05
GM2NPH  1.666 0.322 11.107 1.190 0.985

fit 1.653 0.320 1201 13.518 1.610 0.573

% -0.77  -0.55 0.24 0.29 -0.82 1.38

GM3NPH  1.555 0.311 1244 12.861 1.488 0.561

fit 1.540 0.307 1237 12.857  1.467  0.577

% -0.92 -147 -0.54 -0.03 -1.45 2.81

SCHAF1! 1.382  0.395 1752 - 0.766  0.695

fit 1.368 0.393 1760 - 0.742  0.698

% -1.00 -0.64 0.43 - -3.13 0.49

SCHAF2! 1.653 0.339 1269 14.299  1.795  0.592

fit 1.648 0.365 1365 14.308 1.736  0.687

% -0.30 7.71 7.59 0.07 -3.33  16.10

PS 1.755  0.355 1250 15.472  2.067  0.691

fit 1.728 0.350 1252 16.048  2.004 0.742

% -1.53  -1.45 0.17 3.72 -3.06 7.36

PCL_NPHQ 1.482 0.326 1366.14 11.761 1.291 0.600

fit 1.470 0.319 1347 11.625  1.249  0.610

% -0.79  -2.25 -1.42 -1.15 -3.27 1.74

ALF1 1.495 0.386 1585 9.896 0.987  0.565

fit 1.488 0.400 1644 9.875 0.983 0.670

% -0.53  3.52 3.71 -0.22 -0.40  18.59

ALFC 2.086 0.436 1264 13.188  1.638 0.642

fit 1.976 0.433 1327 12.7058 1.524  0.652

% -5.26  -0.62 4.99 -3.66 -6.94 1.50

ALF2 1.473 0.358 1501 10.314  1.041  0.565

fit 1.472  0.367 1536 10.288 1.049  0.629

% -0.06  2.46 2.35 -0.25 0.76 11.29

ALF3 1.943 0.454 1407 11.667  1.297  0.685

fit 1.925 0.457 1427 11.527  1.266  0.786

% -0.93  0.59 1.44 -1.20 -2.38 14.78

Continued on next page. ..
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EOS Mmax Zmax fmax R1.4 11.338 Us,max

o 0.99 2.01 1.98 1.25 1.63 2.58

!Tabled EOS does not extend to central density of maximum mass star with this crust; maximum

sound velocity cannot be accurately estimated.
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