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Abstract

Quantum mechanical fluctuations of the electromagnetid fiapose the ultimate limit to the
precision of interferometric measurements. The first gi@r of long baseline interferometric
gravitational wave detectors see thisantum noise limibver much of their sensitive frequency
band. Second generation detectors, which are planned emhigrtes more sensitive, are expected
to be quantum noise limited over the majority of the audiovii@iional wave detection band
(Fourier frequencies of 10Hz to 10kHz).

This thesis presents research toward breaching the quanrttismlimit in interferometric grav-
itational wave detectors. Specifically, we report the firgtasurement of squeezed states audio
gravitational wave detection band.

A below threshold optical parametric oscillator is used éograte a squeezed vacuum states.
Quantum noise suppression down to sideband frequencie@Hx i8 measured with up to 5.5dB
(72%) of locked suppression measured at higher frequendiezompare the squeezing produced
in optical parametric amplifiers and optical parametridlzors theoretically and experimentally.
We find that classical noise sources, such as laser ampl#ndephase noise, couple into the
squeezed states produced by optical parametric amplifigtsaye negligible effect on squeezing
produced by a below threshold optical parametric osciltat@his makes below threshold optical
parametric oscillators ideal for producing audio frequesgqueezing. We trial Mg:LiNb@and
PPKTP as nonlinear medium and find that PPKTP has advanthgéddégher nonlinearity, broader
phase matching curve, and smaller photothermal effect.

Also presented are two control techniques that were degdlap parallel to the audio fre-
guency squeezing research. These techniques are; quantsenlocking, and phase matching
locking.

Quantum noise locking is used to control the quadraturegobhsqueezed vacuum states for
the long term measurements in this thesis. Quantum noi&ntpés relied upon since standard
readout techniques cannot be used for squeezed vacuum skadetailed theoretical and exper-
imental investigation of quantum noise locking in two expemtal systems is undertaken. The
first system is quantum noise locking of squeezed statessdtund system is the quantum noise
locking of the phase of two coherent fields. This second systdows quantum noise locking is
compared directly to a standard dither locking technigue:faond to have inferior noise perfor-
mance. The quantum noise locking expriments operate witiisefloor of about 1nm/Hz.

Phase matching locking technique is a new technique deseltp readout the phase mis-
match of second order nonlinear interactions interferocadly. We describe the technique the-
oretically and demonstrated it experimentally in a doulggonant optical parametric amplifier.
Phase matching locking is found to be useful to negate sfisgthase matching condition and to
reduce the phase matching jitter compared to a system withdlfe achieve relatively fast tem-
perature feedback to the phase matching condition usinghbtothermal effect, by modulating
the amplitude of pump beam of the optical parametric amplifie
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Chapter 1

Introduction

A global array of kilometer-scale interferometers has beenstructed to detect gravitational
waves signals of astronomical origin. These interferonsetperate with remarkable precision
and are expected to make the first direct gravitational wateation. The first detection will mark
the dawn of a new era of gravitational wave astronomy.

Just as first generation interferometric detectors reaeh thesign sensitivities [28], tech-
nology and techniques for the second and third generati@nfémometric detectors are nearing
maturity. Ideally, second generation detectors will opeergith an order-of-magnitude better sen-
sitivity than first generation interferometers, which vinitrease the detection rate a thousandfold,
and improve the detail of detected signals.

The sensitivity of second generation detectors, such aarabd LIGO [29, 30], is expected to
be limited byquantum nois@cross the majority of the audio gravitational wave detedtiand - at
Fourier frequencies from 10Hz to 10kHz. Quantum noise iuhdamental limit of interferom-
etry, imposed by the quantum mechanical fluctuations ofitfe [31, 32]. To improve sensitivity
beyond the quantum noise limitgquantum non-demolisiofQND) technique is required [33]. A
promising QND techniques for interferometric gravitabmave detectors usesjueezed states
of light to breach the quantum noise limit [34—40].

This thesis is concerned with the generation of squeezéesstd light suitable for use in
interferometric gravitational wave detectors. Thoughrimivation for this research is specific,
it is relevant for other quantum noise limited applicatiossch as: atomic force microscopy [41];

spectroscopy [42]; and QND techniques of Bose-Einsteindéngation [43].
This thesis has two central themes:

1. The production of squeezing in the audio gravitational wae detection band While quantum
fluctuations can never be removed from a laser field, they eamdmipulated. A squeezed
state of light has reduced fluctuations in one of its obsdéevphrameters (for example, its
phase), whilst the conjugate parameter (the amplitude)ntasased fluctuations. The key
difference between the squeezing reported here and thabpsty reported is the sideband
frequency. Before this work squeezing was typically praduat sideband frequencies of
1MHz and above, whereas for gravitational wave detectaysire squeezed states between
10Hz and 10kHz.

2. Control techniques in guantum and nonlinear optics The second part of this thesis is con-
cerned with control techniques developed in parallel wite squeezing research. Two
concepts are presented. First, guantum noise locking haitaee to control the quadrature
phase of a vacuum squeezed state, and second, a technigaedotrand control the phase
matching condition of nonlinear materials interferornstty.



Introduction

Overview of this thesis

The structure of the thesis is shown in figure 1.1 and conptisee major parts. The first part,
chapters 3, 2, and 4, is intended to provide the necessakgtmamd information for, and give
context to, the research presented. The second part, chap® 7, and 8, detail the development
of audio-frequency squeezing - the core component of thgighdn the final part, chapters 9
and 10, control techniques in quantum and nonlinear optEsleveloped. These techniques are
related to the development of audio-frequency squeezidgtanmplementation in gravitational
wave detectors, but have wider implications for nonlingatias and quantum measurement.

1. Introduction

2. The detection of gravitational waves
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11. Conclusions

Figure 1.1 Structure of this thesis.

In detail, chapter 2 provides an introduction into grawitaal waves and their detection. An
overview of detectable sources, interferometric graiaitesl wave detector configurations, current
and future detectors, and an overview into limiting noiserses in terrestrial interferometric de-
tectors is presented
Chapter 3 contains background into quantum optics and timealgsm required to model the ex-
periments in this thesis. It also contains an introductiory® nonlinearity, which is used to
produce squeezed states of light.
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Chapter 4 gives a detailed description of the quantum noiseih interferometric detectors
and possible squeezing enhancements. This chapter foentsm#is of the theoretical investiga-
tions of chapter 8, where squeezing enhancements are eoegiith a more realistic interferometer.

Chapter 5 presents a theoretical model of the productiomuéezed states from an optical
parametric down-conversion process. This model shows iffieyehces between optical paramet-
ric oscillators and optical parametric amplifiers. Suleifrold optical parametric oscillation is
shown to be an ideal means of producing low frequency squgezi

In chapter 6 an experimental comparison of squeezed statdgqed in optical parametric os-
cillators and optical parametric amplifiers is made. A vitifflerence in classical noise coupling is
found: the classical noise sources that degrades squdeain@n optical parametric amplifier do
not couple to the squeezing from an optical parametric laszil This property allows squeezing
to be produced from optical parametric oscillators at afidiquencies.

Chapter 7 details another audio-frequency squeezing iexpet. This experiment addresses
the main inadequacy of the experiment in chapter 6, nanteflphg term stability. The squeezing
produced was also of larger magnitude and measured at loedrand frequencies. In the second
part of the chapter, experimental limitations of homodyreasurements at low audio-frequencies
are investigated.

Chapter 8 contains a calculation of the squeezing enhamdsriet can be made to a realistic
detector. This calculation includes classical noise ssiaf the interferometer and optical losses.
The Advanced LIGO detector is taken as a quantitative exangpld the enhancements that can
be made for different levels of laser power, squeezing, assl&re considered.

Chapter 9 presents an investigation into qguantum noiserigcla technique based on deter-
mining the relative phase of an optical field from its quantumise. Quantum noise locking of a
squeezed vacuum state is demonstrated experimentallypt@unanoise locking is compared with
a standard dither locking technique.

Chapter 10 describes a new interferometric technique dpedlto readout the phase match-
ing condition of ax(? nonlinear process. The technique is described theorgtigsing quantum
optics formalism, and is demonstrated experimentally.

Chapter 11 concludes the thesis. It includes a summary efdile contained in the thesis and
discussion of possible extensions to this research.

Publications

Some of the work presented in this thesis, and other work angpteted during my time as a
PhD student, has been published in, or submitted to, pemwed journals. Papers published,
accepted for publication, or submitted are listed below:

¢ DC Readout experiment at the Caltech 40m prototype intarieter
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Chapter 2

The detection of gravitational waves

In Einstein’s General Theory of Relativity [44], the forcEgravity is described by the the cur-
vature of space-time. A profound consequence of this theotlie prediction of gravitational
waves [45], which are perturbations in space-time thatagape at the speed of light.

Indirect evidence for the existence of gravitational wawes provided by the discoveries of
Hulse and Taylor, who were awarded in the Nobel Prize in 1998y studied a binary neutron
star system, PSR B19336 [46] in which one was a pulsar. Using pulsar timing meanergs, it
was found that orbital period of the binary system shiftegravne, in a manner consistent with the
system emitting quadrupole gravitational radiation [4], 4'he direct detection of gravitational
waves, however, is yet to be made.

This chapter provides an introduction to gravitational @sand their detection. Section 2.1
introduces gravitational waves and some of the most prognisources for detection. Section 2.2
provides an overview of gravitational wave detectors. iBac2.3 introduces current terrestrial
interferometric detectors. In section 2.4 of terrestmdkiferometric gravitational wave detectors
are introduced. Limits come from classical displacemeantgces, such as seismic noise; from
thermal noise; and from quantum noise of the electromagigtid. The predicted values for
the Advanced LIGO detector of these noise sources are piegsan a quantitative example. A
detailed study of the quantum noise limit in interferometietectors is reserved for chapter 4. In
section 2.5, we briefly introduce space-based detectors.

2.1 Gravitational waves

Gravitational waves are oscillatioris space-time, fundamentally different to electromagnetic
waves, which propagatrough space-time. In this sense, gravitational waves are sintlar
pressure waves of sound propagating through air. Grawitatiwaves are emitted when a mass
distribution changes in a non-spherically symmetric maranad the lowest order mode of oscilla-
tion is quadrupole. They interact very weakly with mattegking them difficult to detect. It also
means they propagate through space-time relatively wmbed, offering a window on dynamics
that are hidden to electromagnetic observations, suclela sbre collapse in supernovae, or the
workings of our galactic center.

The effect of a gravitational wave as it passes though amegfigpace can be visualised by
considering its effect on a ring of particles in free fallugtrated in figure 2.1. The effect of
the two polarizationsh, andh,, are shown over the wave periofl, As the gravitational wave
passes perpendicular to the plane of the ring (i.e. into #lgepthe ring is stretched and squeezed
in orthogonal directions. At the half period of the wave thésaf stretching and squeezing is
reversed.

The amplitude of a gravitational wave can be characteriaethé fractional length change it
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The detection of gravitational waves

Increasing Time

Figure 2.1: The distortion that a gravitation wave causes as it pass&sttie page) through a ring freely
falling particles. The two polarizations, andh,, are shown at different intervals of the gravitational wave
period,T. The strain amplitude in the figurelis= 0.25.

induces and is callestrain, h, which is given by
h=— (2.1)

whereAL is a change in length over a given length, Even for astronomical scale events,
is expected to be very small. For example, the gravitatioveales emitted by the coalescence
of a binary neutron star system at a distance of a 100 Mpc grected to havér ~ 1021 —
1022 1/v/Hz [49]. In figure 2.1 the strain amplitude has been vasthggeeated for illustrative
purposes, withh = 0.25.

2.1.1 Gravitational wave sources

The strongest emitters of gravitational waves are astracadnobjects which have strong non-
spherical dynamics. Examples of promising sources of twtkegravitational radiation are [50]:

Binary inspirals The coalescence of binary systems which contain high masgact objects,
such as neutron stars and black holes. Gravitational waeesmaitted as the compact ob-
jects orbit, extracting energy and angular momentum froenktimary system, causing the
orbit to decay. As the orbital distance shrinks, the stiteragtd frequency of the gravita-
tional waves emitted increases, causing a chirp signaleaslifects fall ever closer before
they finally collide.

Supernovae If the stellar core collapse in a supernova is non-sphdyicgimmetric, a burst of
gravitational waves will be released. This is a potentiallyy interesting source to study,
alongside electromagnetic and neutrino observationsheasnternal dynamics of super-
novae are poorly understood [49].

Pulsars Pulsars are born out of supernovae. If the pulsar is nornpauieetric, then gravitational
waves will be emitted as it spins. The amplitude of the geastdhal waves emmitted from a
pulsar are proportional to the equatorial ellipticity ahd square of the rotational frequency.

Stochastic background Analogous to the cosmic microwave background, the stochbatk-
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Figure 2.2: (a) Layout of the Michelson interferometer. (b) Layout oftayer- and signal-recycled Michel-
son interferometer with Fabry-Perot arm cavities.

ground of gravitational waves is expected to originate ftom dynamics in the early uni-
verse.

2.2 Gravitational wave detectors

There have been two technologies developed to detect giavial waves directly. These are
resonant masses and interferometers.

2.2.1 Resonant mass detectors

Half a century ago, Joseph Weber devised and built an insimtto detect gravitational waves
directly [51]. Weber used metal cylinders, sometimes dalbars’, whose vibrational modes can
be excited by gravitational radiation. Bar detectors dfigh sensitivity to continuos wave sources
at the resonance frequency of the bar (typicalikHz), as the signal is resonantly enhanced. Bar
detectors were the dominant gravitational wave antenngaéoiollowing four decades and offered
strain sensitivity of up to 10?* 1/v/Hz near 1kHz [52].

2.2.2 Inteferometric Detectors

Interferometric detectors were proposed by Gertsensht@inPustovoit [53] in the 1960's. The
first interferometric detector was built in the early 197sa group led by Robert Forward [54].
At the same time, Rainer Weiss from Massachusetts Instifufechnology conceived long base-
line interferometers and determined their noise limitghimlate 1990'’s construction of these long
baseline interferometers began. They have reached nyatuttie last couple of years.
Interferometric detectors are based on sensing the mofidreely falling bodies, such as

the suspended end mirrors of a Michelson interferometee Nitthelson inteferometer, shown
schematically in figure 2.2 (a), is the basic configuratioalbfround based interferometric detec-
tors. Typically, the Michelson interferometer is set to igpe on ‘dark fringe’, which means the
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The detection of gravitational waves

arm length difference is controlled so that the laser fieldrieres destructively towards the pho-
todetector port and constructively to laser port. A pasghayitational wave will modulate the arm
lengths differentially, thereby changing the interfererondition at the beamsplitter, resulting a
signal that can be sensed on the photodetector.

There are two key advantages of interferometers that haaretsem supersede bar detectors.
Firstly, interferometers are inherently broadband desjie¢hereas the resonant nature of bar de-
tectors means they are narrowbartypically tens of Hertz [52]) devices. Secondly, the strai
sensitivity of interferometers improves proportional be interferometer length,, up untilL is
greater than a quarter of the gravitational wave wavelengtius, increasing the arm length ‘di-
lutes’ the amplitude of displacement noise sources withaeisto the gravitational wave signal.
This scaling factor with arm length means that long baseletectors are desired. Ground based
interferometric detectors have arm lengthd.ef1 km. Space based detectors will have lengths
of L ~ 10° km.

2.2.3 Interferometer configurations

Figure 2.2 (b) shows an advanced Michelson interferometefiguration. This is the configura-
tion that the second generation detectors Advanced LIGP4R8 Advanced VIRGO [56] will
use, and elements of it are used in the first generation dese@htroduced in section 2.3). This
interferometer has Fabry-Perot cavities in the arms, stingi of the input test mass and the end
test mass, and extra mirrors: one in the laser port, callegtiwer recycling mirror and one in
the photodetector port, called the signal recycling mirrArm cavities enhance the sensitivity
by optimizing the gravitational wave signal storage timd atreasing the power incident on the
test masses. The power recycled mirror forms a cavity wighMiichelson interferometer, called
the power recycling cavity, which recycles the light thaitexhe laser port of the Michelson in-
teferometer, resonantly enhancing the laser power at tam$litter. The signal recycled mirror
forms a cavity with the Michelson interferometer called #ignal recycling cavity. Analogous
to power recycling, signal recycling resonantly enhanbesgravitational wave signal at the sig-
nal recycling cavity resonance frequency. Signal recgcéitso enables the interferometer’s peak
sensitivity to be tuned by adjusting the microscopic positf the signal recycling mirror.

2.3 Current Interferometric Gravitational Wave Detectors

There are currently six long baseline interferometric cietes:

e LIGO [57-59], the Laser Interferometer Gravitational-wa®bservatory, consists of three
interferometers located at two sites separated by 3002 kossithe United States of Amer-
ica. The sites are located: in Washington state, which hasiriterferometers with arm
lengths of 4km and 2km; and in Louisiana, which has a 4kmfietemeter. All three inter-
ferometers are power-recycled Michelson interferometgtis arm cavities. In September
2007, LIGO finished its fifth science run (S5) which entaile86%b days worth of triple
coincidence from the interferometers.

¢ VIRGO [60, 61] is a French-Italian collaboration which ha8kam interferometer in Italy
near Pisa. VIRGO is also a power-recycled Michelson interfeeter with arm cavities.
VIRGO has lower optimal strain sensitivity than LIGO, dueitte shorter arms, but has a
better projected low frequency sensitivity due to more aded seismic isolation.

Iplanned resonant mass such as DUAL [55] have a sensitivevidthdapproaching hundreds of Hertz.
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Figure 2.3 Design strain sensitivity of LIGO, VIRGO, GEO, and AdvadddGO.

e GEO [62,63] is a 600m interferometer located near Hannavé&armany, run by a Ger-
man and British team. The GEO interferometer is a once-fbkignal and power recycled
Michelson inteferometer which does not employ arm cavities the only first generation
detector to use signal recycling, allowing the signal reseao be tuned.

e TAMA [64, 65] is a 300m interferometer located near Tokygpala TAMA is a power-
recycled Michelson interferometer with arm cavities. TANMas operational before the
other detectors, and was responsible for setting earlyrdppis on the strength of gravi-
tational radiation [64].

The design strain sensitivity of the LIGO, VIRGO, and GECeiferometers is shown in fig-
ure 2.3. Also shown is the design sensitivity of Advanced QlQ he sensitivity of all first gen-
eration detectors is limited by the same noise sourcesmgeimise at low frequencies; thermal
noise of the mirrors and suspension wires and in the mid &eqy band; and quantum noise at
high frequencies. These noise sources are shown in figur®r2tde 4km LIGO detector as an
example.

2.3.1 Second generation detectors

First generation detectors will be upgraded to improveiieitg and increase the likelihood, rate
and detail of detections. These second generation dedeateidesigned to improve sensitivity by
an order of magnitude and broaden the measurement bandwighupgrades include: updating
the mirror suspensions and mirror substrates, adding Isigogcling; increasing the laser power
to reduce shot noise; and changing the detection schemedrbeterodyne based technique to
a homodyne technique. The LIGO detectors will be upgradefidianced LIGO, and VIRGO
will become Advanced VIRGO. The GEO detector will be upgchtte GEO HF [66], with HF
standing for high frequency. There are also plans to build @gvanced ground based detectors:
In Japan, LCGT [67]; and in Australia, AIGO [68], but thesejpcts are yet to be funded.
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Figure 2.4: Design strain sensitivity of LIGO with the three limiting ise sources seismic noise, suspen-
sion thermal noise and quantum noise.

2.4 Noise sources in terrestrial interferometric detectos

To detect the incredibly small strain induced by gravitaglowaves, the differential or anti-
symmetric motion of the test masses needs to be kept to a onimiand the arm length must
be long. For the kilometer scale interferometers curreofigrating, the required displacement
sensitivity is of order 10*°m/+/Hz [50]. This is an incredible challenge in the audio graidtaal
wave detection band (10Hz to 10kHz) which is why it has takecades to design, build, and
optimise long baseline interferometers. There are mangensdurces that can prevent the mea-

surement of such a small displacement. The expected cotidrils from various noise sources of
the Advanced LIGO detector are plotted in figure 2.5 as an pl&am

2.4.1 Noise sources

Interferometric detectors have sources of displacemeisenehich fall into three main cater-
gories: facility noise, hardware noise, and quantum Roielow is a short introduction to the
different noise sources that are expected to limit Advand&D.

Gravity gradient Fluctuations in the local gravitational field near the teasses cause uncorre-
lated displacement noise of the test masses [69, 70], irgpitgravity gradient noise. This
is caused by fluctuating densities of medium, such as atredispgbressure fluctuations and
seismic waves; and by moving masses, such as cars, aempatepeople. Gravity gradi-
ent noise represents the low frequency limit for terrelstiéectors. To detect gravitational
waves at frequencies lower than a few Hertz, space basetenmeters are needed, since
this noise source cannot be mitigated in a terrestrial ttmatec

2There are other technical noise sources such as photastetéettronic noise and feedback control noise that are
not included in this analysis.
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Figure 2.5: Expected displacement contributions of various noise lier Advanced LIGO detector in
wideband operation. Plot made using Bench, Version 6.2 [1].

Residual gas The interferometers operate in an ultra high vacuum eneelophere is always
some residual gas (the LIGO Facilities have a pressure of Torr [49]) which, as it passes
though the beam path, gives a small refractive index chaegalting in displacement noise.

Stray light Light that scatters from the core mirrors or input and oufgutics can be scattered
back into interferometer field. This process adds uncdedlphase noise [71]. To minimize
stray light the gravitational wave detection facilitie ditted with light baffles, and great
effort is taken when absorbing (or dumping) beams from uthgpecular reflections.

Stray light, gravity gradient, and residual gas noises éoeto form Facility noise [49].

Seismic noiseThe ground motion at the LIGO inteferometer sites is appnately 108 m/\/Hz
at 1Hz, and reduces at higher frequencies [72]. To obtairetipgired displacement, the test
masses must be isolated from the seismic motion. Most detegse some combination of
active isolation at low frequencies and multi stage penagldior passive isolation. Even
S0, seismic noise limits low frequency sensitivity.

Thermal noise The term ‘thermal noise’ refers to displacement noise iedugy the statistical
thermodynamic fluctuations of an object. Thermal noise camtderstood through the
fluctuation - dissipation theorem [73, 74], which describhew thermal fluctuations couple
to a localised area of a material via the mechanical loss @fntlaterial. These thermal
fluctuations cause expansion or contraction of the matedsllting in displacement noise.
The amplitude of the off-resonance thermal noise is progaat to the intrinsic loss of the
medium, thus low loss, high Q (quality factor) materials desirable. Two manifestations
of thermal noise are plotted in figure 2.5
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1) Suspension Thermal Noise: The suspension wires thattheltest masses expand and
contract due to thermodynamic fluctuations [74], genegatiisplacement noise. Suspen-
sion thermal noise represents a low frequency limit to theahded LIGO displacement
sensitivity.

2) Mirror Thermal Noise: Mirror thermal noise describes tamurces of thermal noise -
That from the coating (see, for example [75]), which is cotlse expected to be the pri-
mary contributer, and the thermal noise of the mirror salbstf50]. Coating thermal noise
is of particular importance, since it represents the exgoktitnit to sensitivity across the
mid-frequency band - a few tens of Hertz to few hundred Hertz.

Quantum noise The origin of quantum noise in interferometric detectoithésquantum mechan-
ical fluctuations of the electromagnetic field used to sensglatement. Quantum noise
enters interferometric measurements in two ways:

1) shot noise. The measurement of the gravitational wavekig a phase quadrature mea-
surement. The quantum mechanical phase fluctuations oigttieprovide a fundamental
limit to this measurement. The sensitivity of first and setgeneration detectors are shot
noise limited above a few hundred Hertz. The shot noisediditignal-to-noise ratio scales
inversely with square root of power at the beamsplitter infiws shot noise can be reduced
by increasing the laser power or power recycling factor. tStwise is the limiting noise
above a few hundred Hertz.

2) Radiation pressure noise. The quantum mechanical amdelftuctuations do not directly
couple to the measurement. Instead, they drive fluctuatiotise test mass positions via
radiation pressure. These fluctuations are anti-coreelatehe two arms, causing anti-
correlated displacement of the mirrors. This results inaspmoise. The radiation pressure
limited signal-to-noise scales with the square root of thevgr at the beamsplitter, Thus
radiation pressure noise becomes significant when high isaave used. Second generation
detectors operating at high laser powers are expected tonited by radiation pressure
noise at frequencies between about 10Hz and 70Hz.

Quantum noise in interferometric detectors, and methodsréomvent it are detailed in
chapter 4.

There are many other hardware and facility noise sourcesneotioned here, such as pho-
tothermal [76] and photo-refractive noise [77] sourcest tire expected to be smaller than the
noise sources presented here and beyond the scope of thissim.

2.5 Space based interferometric gravitational wave deteots

The laser interferometer space antenna (LISA) is a joint NASA mission planned to launch in
2018 [78]. The LISA constellation, shown in figure 2.6, cetsf three spacecraft arranged in an
equilateral triangle with 5 million km sides. The LISA coeliition will orbit the sun at the same
distance as the Earth, but will lag the Earth’s orbit by 20rdes.

LISA will detect gravitational waves by measuring the dista between the spacecraft us-
ing interferometry and looking for tiny length perturbatso There are two lasers located on
each spacecraft which send a laser beam to each of the othepareecraft. By making precise
phase measurements of the incoming laser fields, LISA exgeateach a strain sensitivity of
h=10201/\/Hz and be sensitive enough to detect gravitational wavessaa frequency band
from 10QuHz to 1Hz. The design sensitivity of LISA is shown in figure .2This frequency band
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Figure 2.6: The LISA constellation. LISA will have 5,000,000 km long a&nThe constellation is inclined
to the ecliptic by 60 and orbits the Sun 2Mehind the Earth. Adapted from [2]
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Figure 2.7: The designed LISA strain sensitivity. From [3]

is fundamentally inaccessible for terrestrial detectors @ gravity gradient noise, and is expected
to contain an abundance of measurable sources.

LISA also has a planned upgrade, the big bang observatorD§gB9], with an expected
launch date of 2030.

2.6 Chapter summary
This chapter has presented an overview into the conceptawatational waves and their detection.

The basic configurations and noise sources of ground basadierometric detectors have been
introduced and current operational detectors have beteal lis
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Chapter 3

Quantum optics and nonlinear devices

The beginning of the twentieth century saw the works of MatRIland Albert Einstein transform
the understanding of the mechanics of electromagnetism #o infinitely devisable, classical
description of James Maxwell, to the understanding of digclight quanta. The revolution of
guantum mechanics that followed was one of the profounddesies of the 20th century.

The quantised nature of light means that it must be treatgdtitally for high precision mea-
surements. Repeated measurements of the electromageddiarplitude, for example, yield
different results, and the measurement results obey thres&dan distribution. This uncertainty
limits the accuracy that interferometric measurementsbeamade, and results in what is termed
guantum noise. This thesis is concerned with the quantuitslivhlaser interferometric displace-
ment measurements and producing modified quantum statagptass these quantum limits.

This chapter provides background into the quantum mechbnéture of the electromagnetic
field and introduces the mathematical framework to repteisehe second part of the chapter
introduces second ordex®) nonlinearity, which is the mechanism used to create siugez

The chapter is laid out as follows: In section 3.1 the quadtislectromagnetic field is in-
troduced using standard quantum optics formalism founen books such as Walls and Mil-
burn [80]. We then introduce the Heisenberg uncertaintyigipie [81] for the electromagnetic
field and the properties of sorseates of lighfound in quantum optics experiments. In section 3.2
and section 3.3 devices and processes typical in quantlios @xperiments are introduced. These
are: the photodetection of optical fields; the effects ofagtoss; and the Fabry-Perot interferom-
eter. The second part of this background chapter introdteebasics of nonlinear interactions.
Section 3.4 focusses on th¢? nonlinear interaction in dielectric media. Parametric apd
down-conversion are introduced, along with conservatovsland phasematching. In section 3.5
the equations of motion of an optical cavity withx& nonlinear medium are presented. These
equations are used to examine the classical and quanturaitehaf an optical parametric am-
plifier (OPA) using a semi-classical approach.

3.1 The quantised electromagnetic field

Properties of the quantised electromagnetic field aredotred in the context of an optical cavity
mode with angular frequenay. The positive and negative component of the electric fiefdm
written in terms of the boson creation and annihilation a[ms,al anday, and the spatial mode
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function,u(r)

EF(rt) = iZ(Z%)zaku(r)e‘W, (3.1)
0
EC(rt) = —izg—g)ia;u(r)*e“% (3.2)

whereh'is the reduced Plank constant agnigis the Permittivity of free space. The sum of the
positive and negative components give the total electrid [80]

1

) R\ 2 . .

B0 =13 (%) (e —gu(rye]. (3.3)
0

The creation and annihilation operators are dimensiordadssatisfy the boson commutation re-

lations

A, a] = [a, 8] =0, [acab] = du. (3.4)

These commutation relations illustrate an important wiisitbn between classical and quantum
optics. The classical optics equivalent of equation 3.3lmfound by replacing the annihilation
and creation operators with complex field amplitudes. Thapex field amplitudes in classical
optics commute, avoiding the Heisenberg uncertaintyicgland its consequences.

In quantum mechanics, operators must be Hermitian to reptesservable quantities. The
annihilation and creation operators are not Hermitian angugh are not observables. They can
be written in terms of the Hermitian operator pair for dmaplitude quadratureX;, and thephase
quadrature Xy,

a = S(utiXo) (3.5)
al = Z0u-iXo) (3.6)

the quadrature operators for the amplitude and phase are

X, = a+a, (3.7)
X, = —i(a—a"). (3.8)

The amplitude and phase quadratures represent non-congnulitservable parameters. A opera-
tor for an arbitrary quadraturé, can be defined using a linear combinatiorXgfand X,

X; = X1€08L + X sind. (3.9)

3.1.1 The Heisenberg uncertainty principle

The Heisenberg uncertainty principle (HUP) [81] quantiffesultimate precision of simultaneous
measurement of non-commuting observable parameters. nllath example of the HUP is the
measurement of the position and momentum of a particle §ample, see Griffiths [82]). The

HUP states that if any two observable paramet®@isandO,, satisfy the commutation relation

[01,07] =&, (3.10)
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then they are bounded by the HUP
AO1AO, > %’, (3.11)
whereAQ is standard deviation of the operafr The standard deviation is defined,

AO = /(0?) — (0)2. (3.12)
The variance of the operator is the square of the standaidtibey
V = (AO)2. (3.13)
The commutator relation of the amplitude and phase quadraftithe electromagnetic field is
[X1,Xo] = 2i, (3.14)

and thus the HUP is
AX1AXo > 1. (3.15)

This relation shows that simultaneous measurements ofpdnas amplitude quadratures of the
electromagnetic field cannot be done to arbitrary accurabys has widespread implications in
guantum optics and quantum noise limited interferometrghsas in interferometric gravitational

wave detectors. Simply put, it means that no matter how a mneaent device is built, the signal

to noise ratio of the measurement is ultimately limited bpmum noise of the electromagnetic
field.

3.1.2 Important states of light

Experiments performed as part of this thesis, and in mosttquaoptics laboratories, use a com-
bination of only a few states of light. Here we present somscbproperties of only four: the
coherent state, the vacuum state, the squeezed state,eadidgbically noisy state. Representa-
tions of these states are shown in the ‘ball on stick’ reprag®rt in figure 3.1 (a)-(d). Important
properties of these four states of light are introduced énftfiowing sections.

The coherent state

The coherent state has non-zero coherent amplitude andugudimited fluctuations, equally
distributed in the amplitude and phase quadratures,

AXq = DX = 1. (3.16)

The coherent state, and the vacuum state described bekwexamples ominimum uncertainty
stateswhich have the minimum allowable product of quadrature €latbns. The quadrature
fluctuations of the coherent state are constant amplituddl &equencies and obey Poissonian
statistics [80]. Note that, at high photon numbers, suchhase emitted by continuous wave
lasers, the Poissonian distribution of photons is well apjpnated by a Gaussian distribution.
A frequency domain picture of a coherent state is shown inrdi@u2 (a). Here the carrier, at
frequencyQ. is surrounded by a continuum of quantum sidebands eachhy®renergy. For

1This representation of the complex amplitude of each sthlight is similar to the phasor diagram for classical
fields. The amplitude of the vector represents the steatly ataplitude of the field and the fuzzy ball represents time
dependent fluctuations in the amplitude and phase quadsatur
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Figure 3.1: Ball and stick picture for four states of light: (a) The codrtrstate, (b) The vacuum state, (c)
The amplitude squeezed states, and (d) The classically atzite.

the coherent state, the sidebands are randomly distriliteldase, so equal noise is seen in the
amplitude and phase quadrature.

The coherent state is particularly relevant to quantumenliisited interferometry because a
well stabilised laser field is well approximated by the caméistate. When making interferometric
measurements using a coherent state, the quantum noiseitiest due to the fluctuations of the
quadratures is called the quantum noise limit. For interfestric measurements, without the
use of nonlinear devices or nonlinear interactions, thentyuima noise limit represents the optimal
sensitivity that can be obtained.

The vacuum state

The vacuum state has the same noise statistics as the costatenbut it has no coherent ampli-
tude @= (a(t)) = 0). Asits name suggests, the vacuum state exists in theabpsicuum, which is
any region unoccupied by another state. It occupies alufsaqy, spatial, and polarization modes.

The vacuum state is extremely important in quantum optipggments as it enters into optical
systems in any unfilled ports of beamsplitters, cavitiesl partially transmissive mirrors. Also,
when an optical field experiences losses due to absorptignattering events, the vacuum field
replaces the fraction of optical field that is lost. As theicgdtlosses of a field approach unity, its
noise statistics approach that of the vacuum state. Thisepins quantified in section 3.2.4 and
is referred to throughout this thesis.
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Figure 3.2: The frequency domain phasor diagram, or sideband pictui tiie coherent state, and (b) the
amplitude squeezed state. The coherent state has whitedisigbuted equally in all quadratures whereas
the amplitude squeezed state has increased noise in theequredrature and reduced noise in the amplitude
qguadrature.

The squeezed state

A squeezed state of light is a freely propagating field thatdtandard deviation in one quadrature
less than the quantum noise lifitIn order to satisfy the HUP, the standard deviation of the
orthogonal quadrature must be greater than the quanture hwig and the product of the two
guadratures greater than or equal to unity. Thus the miniaooertainty amplitude squeezed
state, for example, has

AX, = 1/z (3.17)
Ao, = z (3.18)

wherez is a real and positive number. The largeis, the larger the magnitude of squeezing.
A squeezed state with= 2 is shown in figure 3.1 (c). A squeezed state which has no eaher
amplitude is called sacuum squeezed stat® squeezed state with a coherent amplituaig Q) is
called abright squeezed stat@ he squeezed state is characterised by how far it is belewdrse
statistics of the quantum noise limit. In this thesis, thearece of the squeezed state is compared
with the variance of the coherent or vacuum state, and isesgpd in decibels (dB) (relative
to the quantum noise limit). For example, the amplitude sged state witte = 2 is written

V1 = —6dB. Sometimes the amplitude of the squeezed state is egorby the paramet&where

V = exp(—2R). For the amplitude squeezed state vrith 2, (V1 = ), R= —3log,(V1) = 0.6931.

2A squashed statalso has standard deviation less than the quantum noigeiimne quadrature, though it exists
only in loop and therefore does not need satisfy the HUP [83].
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The frequency domain picture of a bright squeezed statedwrslin figure 3.2 (b). In a
squeezed state, the quantum mechanical sidebands onsitbexf the carrier (aQ) are corre-
lated. Here the sidebands are correlated so that there dstir noise sideband beat terms in the
amplitude quadrature but only in the phase qaudrature.

In theory, squeezed states can be minimum uncertaintysst&eperimentally, a minimum
uncertainty squeezed state cannot be produced or measasiffgtte optical loss replaces a fraction
of the squeezed state statistics with those of the vacuum Sthis changes the squeezed state to a
non-minimum uncertainty state. Optical losses to the szpabetate limit the achievable quantum
noise suppression.

Classically noisy states

Most lasers produce optical fields not represented by anphefabove states, but have excess
noise of classical classical origin at sideband frequenbi&low a few MHz. The amplitude and
frequency dependence of the technical noise depends oypbet laser. Solid state monolithic
lasers, such as the Neodymium type non-planer ring oswil[84], typically become quantum
noise limited at sideband frequencies~afOMHz, where as diode lasers, for example have tech-
nical noise to much higher sideband frequencies. The fltiongof a classically noisy state are
often many times greater than quantum noise and generabigtmquadratures

AXp > 1, AXp>1 (3.19)

The excess noise of such a state can be reduced via: passgesnppression using mode cleaner
cavities (for example [85]); actively noise suppressioimgiseedback to the laser (see for exam-
ple [86]); or both. In this way the standard laser fields capiepared for quantum noise limited
inteferometry and quantum optics experiments.

3.2 Mirrors, photodetection, and losses

This section gives an overview into the basic theory of theration of mirrors and the detection
of optical fields. The focus here is homodyne detection tieghas that are used in experiments
presented in this thesis.

3.2.1 A partially transmissive mirror

Figure 3.3 (a) shows two fieldsandb incident on a partially transmissive (lossless) mirrorhwit
transmissiore. The fields at the outputs of the mirr@randd, can be related to the inputs by

c\ (Vi-g & a (3.20)

d /) VE  —V1-¢ b )’ '
where the phase relations of the ports of the beamsplitemaintained by setting the reflectivity
of the mirror to be—1 x +/1— € on the port on the right hand side (indicated by a minus sign).
Another convention often used to maintain the phase relgid the four ports multiplies the field

by i on each transmission. The output relations of the mirrooatal incidence also hold for the
fields at with non-normal incidence, shown in figure 3.3 (b).
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(@) (b)
C
+ _ +
a d a - d
C b ' /
b

Figure 3.3: A partially transmissive mirror at normal incidence has imputs and two outputs. The fields
a,b,c,d are labeled for a partially transmissive mirror with field¢ad normal incidence incident and (b) at
45°. The+ and- signs indicates the side where the amplitude reflectivitgirees a minus sign. Note that
we have only considered half of the inputs and outputs of &ghy.

3.2.2 Direct photodetection

An ideal photodetector produces a photocurrent directhpgrtional to the power in the opti-
cal field. A field incident on an ideal photodetector with fieqcyw and powerP(t) gives the
photocurrent [4]

i(t) = %. (3.22)

The power in the field is simply the number of photons per seédiones the energy of each photon
P(t) = hw(a'a), (3.22)

where the traveling fielda'a), has units of 1second. The photon number of an optical field is
given by

n=a'a (3.23)
We will be interested in the average and time dependent phoent
i(t) =i+3i(t) (3.24)

wherei = (i(t)) anddi(t) = i(t) —i. To determine the average and fluctuating components of the
photocurrent we need to determine the average and fluaguedimponents of the optical power.
We start by writing the annihilation and creation operaiargerms of a steady state and a time
varying component

a = a+o0a, (3.25)
a = a-+aa, (3.26)
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where

a = (a, a = <aT>> (3.27)
da = a—a da =a-a (3.28)

The quadrature fluctuations of the amplitude and phase are th

3%, = da+da, (3.29)
X, = —i(da—2aa). (3.30)

These quadrature operators satisfy the HUP. The HUP forubdrgture operators defined here
can be found by replacingX; with dX; and AX, with X5 in equation 3.15. Choosing= a*,
without the loss of generality, the power in the optical fiedoh be written in terms of the average
power and power fluctuations

P(t) = P+3P(t), (3.31)

where
P = hwd, (3.32)
SP(t) = hw(@X.? +sa'sa). (3.33)

If the fluctuations of the field are much smaller than the stestdte amplitudeg(>> da) the
linearisation approximation can be used [87]. The lingdids is performed by reconising that
the second order fluctuating term is insignificant in congmrito terms containing the carrier
beat fa’da < %Xl(a)). The linearised fluctuations of the field are

SP(t) = hadX Y. (3.34)

The average and time dependent components of the phototaree

S
i = Py~ (3.35)
i) — PO _ mx@
oi(t) = o =eadX;" . (3.36)
The variance of the photocurrent is
vO(t) = (8i)) - (@it)? (3.37)
= (@), (3.38)

This shows that direct detection of the optical field giveseasurement of the amplitude quadra-
ture and no phase information is obtained.

3.2.3 The two-ported homodyne detector

The signals or states measured in quantum optics and predigierferometry experiments are
usually too low in power to be detected directly on a photecketr due to technical noise sources
of the photodetector. Small signal measurements are thgediormed by interfering a relatively

strong local oscillator field with the signal and measuring beat. Homodyne detection, where
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§3.2 Mirrors, photodetection, and losses

Figure 3.4: a) The two-ported homodyne detector. The small sigrialinterfered on a beamsplitter with
the local oscillatorp. The detected photocurrents can be either added or swdatra¢h) A model for
inefficient detection where a mirror represents the logséhiced by a non-ideal photodetector.

the local oscillator is at the same optical frequency as #rder of the signal beam, is a phase
sensitive technique allowing an arbitrary quadrature efdignal to be measured. The two-ported
homodyne detection system, shown in the figure 3.4 (a), ielwidsed because it offers common
mode rejection of the local oscillator classical noise [8Bhe two ported homodyne detector is
used for the detection of squeezed states in the experirpergsnted in this thesis.

In figure 3.4 (a) the two fieldga, andb, are combined on a beamsplitter of transmissipn
and relative phas@. Both beamsplitter outputs are detected. The sum and eliféer of the
photocurrents are then taken electronically. To calculbéesum/difference photocurrents we
begin by calculating the fields at the beamsplitter outputspe, andd, using equation 3.20,
resulting in

= V1—ca+ebe®, (3.39)
_  Jea— VI—ebe®, (3.40)
the photon numbers at each detector are then
c'c = (1—¢)a'a+eb'b+/e(1—¢)(a'be®+b'ae ), (3.41)
did = ea'a+(1—¢)b'b—/e(1—¢)(a'be® +blae®). (3.42)

An electronic gaing, is given to one of the photocurrents before the photocuwmldference is
taken. The difference is given by

c'c—gd'd=[(1—¢)—gela’a+[e—g(1—¢)]b'b+ /e(1—¢)(1+g)(a'be® + b'ae®).(3.43)

The operators can be separated into steady state and tiyiegr@omponentsa = a+ da and
b = b+ db. Because we have explicitly separated the relative phasaidb we note that = a*
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andb = b*. Rewriting the linearised difference photocurrent in temwhthe quadratures gives

i_ = c'c—gd'd

[(1—¢) — ge) (32 + adX\¥) + [e — g(1— &)] (b?+ bOX(™)) +

Ve(l—g)(1+9) (2z§6cose+ a(5%.” cosh — 53X, sinB) + b(dX.? cosd + X sine)) .
(3.44)

Q

Using the local oscillator condition, terms not containﬁg:an be neglected. The difference
photocurrent becomes

~[e—o(1—g)] (0% +baX\”) + \/e(1—€)(1+0) (255cose +b(3X® cos + 85X sine)) .
(3.45)
The two ported detector offers common mode rejection ofalalloscillator intensity noise.
The level of common mode rejection can be maximised by ggttie electronic gain tg =

1=~ Experimentally this can be achieved very precisely, tol¢hel of about 1 part in 10 The
difference photocurrent for a balanced homodyne is

i~/ 1%8 (255 cos0+ b(8X.? cosd + X? sin9)> : (3.46)

therefore providing a measure of the signal beam quadstdepending on the phase of the local
oscillator. The sum photocurrent is approximately equéhéd given by the direct detection of the
local oscillator

L~ 24+ boX". (3.47)

3.2.4 The effect of optical losses

When an optical field encounters loss, a fraction of the figldeplaced by the vacuum field.
Mathematically, a loss of (in power) can be represented by a partially transmissiagniselitter
with transmissiom = 1— L. This is shown schematically in figure 3.4 (b). At the sourtioss,
the vacuum mode is coupled into the outgoing field in exatidysame way as the combination of
two beams on a beamsplitter. For an input figlthe field after the loss i&, given by

a=Ma++1-nv, (3.48)

wherev is the vacuum field coupled by the loss. The photon numbereofighd is

d'd = nala+1- r]vTv+\/ 1—n)( aTv+vTa), (3.49)
= na2+na( \/_6X ++1 6X (3.50)

where the second line here is the linearised photon numberfiist term of the second line shows
that the average power in the figddas been reduced by the amount of loss. The fluctuation term
of the fielda shows a similar result, the detecté)dl(a) component is scaled by the amount of loss.
The last term is the amount of vacuum fluctuations that emosthe measurement at the point
of loss. This can be seen more explicitly in the variance effgthoton number (relative to the
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guantum noise limit)
Vi =nvi® + (1), (3.51)

sincevl(") = 1. Itis clear from this equation that the noise statisticghef field after a lossy
element are modified to approach the quantum noise limits $imple expression has implica-
tions for making measurements at the quantum noise limitgsoing that is done routinely when
measuring and characterising squeezed states.

3.3 Fabry-Perot interferometers

Fabry-Perot interferometers, often referred to as cavitiee based on two or more partially trans-
missive mirrors arranged to allow the electromagnetic fieltesonate. An understanding of the
workings of cavities is required for many of the experimearid concepts contained in this thesis.
In this section the equation of motion for a cavity is introdd then used to solve for the reflected
and transmitted fields.

K.

Ain\ \
A »
A

ref

Figure 3.5: Layout of a ring cavity. The cavity is made from three mircdtse input coupler, with decay
rate,Kin; the output coupler, with decay ratesyt; and a mirror to represent intra-cavity loss, with decay
rate,k|. The cavity mode is labeleal The extra-cavity fields aréin, Aret, Atrans, @Pout, Aloss, aNAOA;.

3.3.1 Equation of motion for an optical resonator

Consider the empty cavity shown schematically figure 3.5 ddwity is made of three partially
transmissive optics labeléd, out, andl referring to the input coupler, the output coupler, and the
partially transmissive mirror used to simulate lossegeetvely. The equation of motion for the
cavity modea is [80]

a=—(K+iwp)a+ v/2KinAine "M + /2K oot + V2K A, (3.52)

where the driving fieldh, has coherent amplitude at frequeny, and the other field$,: and
A, are assumed to be in the vacuum state. The cavity mode lmmrgdrequencyy.
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Note that the (lower case) cavity modgeand the (uppercase) driving fiedg for j = in,out,
and| have different units. The units afare/photons, thus the photon number in the cavity can
be given by

n=a'a [photon$, (3.53)

whereas the units of the driving fields ag@hotons/s. Thus the number of photons per second in
the driving field is

nn = Al A, [photons/s (3.54)

The equation of motion can be written in the rotating frameeférence by setting — ad“' and
similarly for the driving fields

a= —(K+iA)a+ v/2KinAin + v/ 2KoutPout + /2K 1A, (3.55)

whereA = wy — wy is the cavity detuning. In the mean field approximation [89 decay rates for
each mirror are given by the (amplitude) transmissivityidiéd by the round trip time; = wpp/c,
wherep is the perimeter of the cavity. That is,

VIn T
Kin = ~ A
T 2t
I
Kout ~ %7
1- LR
Ki =~ 51 T,

(3.56)

whereLrt is the cavity round trip loss which for convenience we carteviii=1—1— Lry. The
total decay rate is a sum of the decay rates

K = Kin -+ Kout + K. (3.57)

3.3.2 Compact matrix formalism for the equations of motion

In this section we introduce a matrix notation to solve far ¢iguations of motion. This notation is
useful for solving the complex equations of motion of a gawihich contains a nonlinear medium
(see section 3.5 and chapter 5). We can start by writing thetam of motion for the cavity mode
and its Hermitian conjugate as

a = —(K+ih)a+ v/2KinAn + v/ 2KoutAout+ V2K A, (3.58)
al = —(k—iA)a + /26 Al + v/ 2KouAbu + V2K A (3.59)

which can be rewritten in the compact form
a=Maa+ MpAjn +MoutAout + M|A|, (3.60)

with the vectors

(3) o (3) mo () men () A ()
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The matrices are

—K—iA 0
Ma = 0 —K+IiA |’ (3.62)

Min = v 2Kinl,  Mout=v/2Koutl, M| =+/2Kl, (3.63)

wherel is the 2x 2 identity matrix.

The cavity mode in steady state can be found by settirgd and considering the time inde-
pendent componeit Given that the steady state amplitudes of the fidlgds= A = 0, the steady
state cavity mode is

a=—M;MinAi, (3.64)
thus
a= KV—{—iAAm' (3.65)

This result will be used to determine the reflected and tréttesanfields as a function of detuing
in the following section. We will also be interested in thauRer components of the cavity mode.
These can be found by Fourier transfrom of the operators

QQ) = [ 0:0 Q(t)edt, (3.66)
for Q = a,Ain, Aout, andA;. The equation of motion in the Fourier domain is
108(Q) = Maa(Q) +MinAin(Q) + MowAou(Q) +MiA (Q), (3.67)
whereQ is the sideband frequency. The cavity mode in the Fourieraiois

a(Q) = (iQl — Ma)_l MinAin(Q) + MouAout(Q) + MIA|(Q)]. (3.68)

3.3.3 Reflected and transmitted fields

Using the cavity input-output relations [80], the reflecfedd Are¢, transmitted fieldAans, and
the field lost to scatter and absorptidpss can be determined

Aret +Ain = Mina, (3.69)
Atrans T Aot = Moud, (3.70)
ApsstAr = Mja, (3.71)

which can be solved with some linear algebra. For the mongensider the steady state reflected
and transmitted fields

Atrans = I\/louta_'aouh (3-72)
At = Mina—Aina (3-73)

29



Quantum optics and nonlinear devices

which give
— 2 /KinK _
Arans = %mout in, (3-74)
— _ (XKip—k—id) -
Aet = KTiD Ain. (3.75)

The (amplitude) transmissivity and reflectivity of the a¢gwdan be defined by the parameters

- A—\trans ~ 2\/KinKout

T(D) = “An =" in (3.76)
o Aet (Kip—k—iD)

R(D) = Ay PR . (3.77)

The functions|7 (A)|2 and | R (A)|? are shown in figure 3.6 (a), and their phase responses, given
by /7T (A) and ZR (A) respectively, are shown in figure 3.6 (b). In quantum optiggeements

1 4
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= }
208l _ In Reflection
2 2 2+
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c kel ~ -
o S 1f b
F~ 0.6f o
g &
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Detuning (A/2xt) [MHz] Detuning (A/2xt) [MHz]
@) (b)

Figure 3.6: (a) The reflectivity and transmissivity and (b) the phasé éhreflection and transmission of
an overcoupled cavity as a function of detuning. Parametets2m, A = 1um, Tiy = 0.11, Ty = 0.10,
and‘noss: 0.

control techniques are typically used to force the laseguemcy to match the cavity resonance
frequency, or vice versa. The detuning parameter is thuedfbto zero4 = 0). In this case we
find

Aref(Q) _ [ZKin —K— iQ]Ain(Q) + Z\K/ K_r:(g;utAout(Q) + 2. /KinKI A (Q) , (3.78)
Avand(@) = 2\/KoutKinAin(Q) + [2Kout —KK;ig]Aout(Q) +2/KoutKI A (Q), (3.79)
Aloss(Q) _ 2\/K| KinAin(Q) + 2/K| KOLI,(tioiugtz(Q) + [2K| —K— iQ]A| (Q) . (3.80)

The power at each port is then
Pl = RoaALA (3.81)
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wherek = ref,trans andloss

3.3.4 Noise variances of the reflected and transmitted fields

The fieldsAx can be represented in terms of their steady state and fluguatmponents
Adt) = Ac+BAL), (3.82)
whereA, = (A(t)) and(3A(t)) = 0. The quadratures operators relative to the frequencare

XM (Q) = dA(Q)+B8A(-Q), (3.83)
XP(Q) = —i(dA(Q) — A (-Q)). (3.84)

The amplitude and phase quadratures are then

Sx(trang 2,/Kin Koutéx(in) + (2Kout —1Q — K)6X(OUt) +2\/K| Koutéx(l)
B iQ+kK ’
sxlen (2in —iQ — k)X 4+ 2, /KouKindX (O 4 2, /KiKindX ()
B iQ+kK ’
where
K (i)
X, OX,

again withk = re f,trans andlossandj = in,out, andl. The notation used here does not explicitly
denote the dependence on the sideband frequ@néyr notational ease.

The variances of the fields are defined B = (|8X[2). The transmitted and reflected
variances are

AkinKoutV ™ + ((2Kout — K)2 + Q) + 4K Kout

y/ (trans) 3.86

Q2+ k2 (3.86)

yren _ (in—Kk)?+ Q2)V I 4 AkinKout + 4K Kin ’ (3.87)
Q2+ k?

where the substitutiowl(%“t) = Vl('z) =1 has been made given that these fields are in the vacuum
state. Figure 3.7 shows the am7plitude guadrature variasfabe transmitted and reflected fields
for an input field variance otfl('”) = 10, relative to the quantum noise limit. This was plotted for
the cavity with parameters given in the caption of figure Jl6e sideband frequency dependence
of the variances in figure 3.7 shows that the cavity acts aw @#&ss filter on transmission and as

a high pass filter on reflection.
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Figure 3.7: The amplitude quadrature noise variances of the reflectédransmitted fields relative to the
shot noise limit (SNL) with 10dB of excess amplitude noisetloa input field. Cavity parameters are the
same as described in the caption of figure 3.6.

3.3.5 Useful cavity parameters

TheFree Spectral Rang@-SR) is a measure of the frequency separation betweeneadjeavity
modes. The FSR is given by

C
Vigr = B (3.88)

wherec is the speed of light ang the round trip optical path length. Thimesseof a cavity is
given by

g TRRuR)E  2m
1— VRoRowR T+ Tou+ T

The Full Width at Half Maximumhight (FWHM) is a measure of the linewidth of the cavity can
be found from the FSR and the finesse

(3.89)

Visr
ov = . 3.90
7 (3.90)
The cavity quality factor, 0@, analogous to the quality factor of LC circuits is
wF
= . 3.91
Q Ve (3.91)

3The equations of motion for the Fabry-Perot resonator piteséhere only considers one cavity mode (not adjacent
FSRs).

4These equations for finesse are accurate for moderate toréiigictivity mirrors withR > 0.9. See p 428 of
Lasers [90] for further information.
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The circulating power in a cavity is given by

hwa'a 4T,
circ — =

Pin,
T (Tin ‘|‘Tout‘|‘TI)2 "

(3.92)

whereP,, is the input power. Theouplingof the cavity is determined by the transmissivity of the
mirror at the input port in relation to the total round tri$ The three possible scenarios are

2Kkin > K  Overcoupled
2Kin = K Critically coupled
2Kkin < K Undercoupled

For the cavity parameters used in figure 3.6

Visr = 150 MHz
F = 30

ov = 5MHz,
Q = 56x10,

and the cavity is overcoupled.

3.4 Nonlinear interactions

As electromagnetic radiation passes though a dielectriiume it induces a macroscopic polar-
ization in the medium. The induced polarization is due to yrlansely bound valence electrons
being displaced by the electric field [4]. The polarized medre-radiates the energy as an electric
field. Linear dielectric media have a polarizability potential that isgetric, so the polarization
induced is directly proportional to the electric field inthgit. The re-radiated field is then a copy
of the inducing field. Nonlinear media differ in that the piability potential is asymmetric
and therefore the induced polarization is no longer diygatbportional to the electric field. The
polarization of the media can be written as the polynomigh@inducing electric field

P =go(XVE+xPE2+xOE3+..), (3.93)

wheregg is the permittivity of free space angd’) represent the polarizability parameter for the ith
order. In linear dielectricg? is the only non zero order of polarizability.

The experiments in this thesis ugé? nonlinear media to produce squeezed states. Here
thex@ polarizability is the dominant higher order nonlinear dmént. Thex® nonlinearity is
responsible for three wave mixing effects like sum freqyegeneration and parametric down-
conversion.

Thex® nonlinearity, also called the Kerr effect, includes sudeas as intensity-dependent
phase shifts. The mechanical Kerr effect is seen in intenfietric gravitational wave detectors
from the interaction of the laser field and the mirrors positvia radiation pressure on the mir-
rors. The radiation pressure effects play a significant imkghaping the quantum noise limited
sensitivity of gravitational wave detectors.
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3.4.1 x@ nonlinear interactions

x@ nonlinear interactions can be separated into two regimpsouversion and down-conversion.
Diagrams for the general up- and down-conversion processeshown in figure 3.8. In up-
conversion, two low energy photons are converted into ogle éhergy photon. Down conversion
is the complimentary process, a high energy photon is ctedénto two lower energy photons.
For three interacting fields at frequencieg w, andws the conservation of energy requires that

W3 =1+ Wy [up-conversion] (3.94)
w1+ 0wy =w3 [down-conversion] (3.95)

Perhaps the simplest up-conversion process is second h@argeneration (SHG). In SHG the

Up-conversion Down-conversion

w1 w1

— E— —> ——)
=2 o | 2| (@) | ——
LP — CU3— E—

Figure 3.8: A representation of different'? nonlinear interactions. Left: Up-conversion; Two low eqer
photons (aty; andwy) are converted into one higher photon ¢&). Right: Down-conversion; One high
energy photon (abg) is converted into two lower energy photons¢atandwy).

low energy photons have the same frequenwy =€ w, = ws), which is often called the funda-
mental frequency. The up-converted field then is at the skbamrmonic frequency,&;. Second
harmonic generation is widely used in research and comaigrobducts to access optical fre-
quencies where laser transitions may not be available oretient. The complimentary process
to SHG is degenerate optical parametric amplification (OPAXdegenerate OPA, a photon at
frequency & is converted into two photons at frequenoy Degenerate OPA and SHG are the
degenerate cases of tg€) nonlinear interaction. In the non degenerate cases, suneney
generation and non-degenerate OPA, the interacting fields the frequency relations given in
equations 3.94 and 3.95 as well as

W =W3/24Y, p=wz/2-Y, (3.96)

wherey is a frequency offset.

3.4.2 Coupled wave equations and phase matching

Consider three fields with complex amplitudag A,, and Az propagating through a nonlinear
medium. The field amplitudes will evolve as a function of digte. If this evolution is slow
enough for the field amplitude to change little over the disgaof an optical wavelength, the
slowly varying envelope approximation can be invoked [9is simplifies the (classical) three-
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wave mixing coupled equations to [91]

dA

- = —irAgAse Bk (3.97)
dA . -
d—22 = —iFAATe 12k (3.98)
dA . |
d—; = —iFAAEN? (3.99)

whererl is proportional to the strength of the nonlinearity aliklis called the phase matching
parameter, given by

Ak = kg — ko — kg, (3.100)

where the wave vectors are given ky= win(ws)/co andn(wy) is the refractive index at the
frequencywy, andk, andks are defined similarly. Consider the interaction over a leigin the
degenerate case whang = wy,. The fields amplitudes can be found by integrating from0 to L

Ai(L) = A(0)—iLIg(AKL)A3(0)A;(0), (3.101)
As(L) = A3(0)+iLIg*(AKL)AZ(0), (3.102)

where the functiorg(AkL)[4] is a complex function of the phase matching parameter
g(Akz) = sing(Akz/2)e 242, (3.103)

The real and imaginary components of the phase matchingidmnare shown in figure 3.9. The
phase matching is crucial in determining the efficiency efribnlinear interaction. The field evo-

9(kz)

Imaginary

-3 -2 -1 0 1 2 3
Phase mismatch Akz
Figure 3.9 Real and imaginary components of the phase matching péeam@kL).

lutions depends on the initial field amplitudes and relapkiases as well as their phase velocities
(the phase matching). It can be seen that, because thectineraf the fields depends on the
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relative phase of the interacting waves, a phase mismatehgels the interaction as a function
of length. In SHG, for example, a phase mismatch causes thetidin of power flow from the
fundamental to harmonic field to reverse at an interactiogtle called theoherence lengthThe
coherence length is defined by

| — Tt
© T kg —2k;

(3.104)

The net power flow returns to zero over an interaction len@t®l 0. This is shown as a phasor
diagram in figure 3.10 (a) and by curve (i) in figure 3.11. Thagun diagram show incremental
components of produced second harmonic field adding up ghlgoEach incremental compo-
nent represents the produced second harmonic field over lalength dl. As there is a phase
mismatch in the process, the component of second harmofdgpfieduced betweedl| and 2l
has a phase shift with respect to the field produced betweenl @la As the process continues,
the power flow into the second harmonic field becomes cyclical

Second harmonic generation which is phase matched is shbasopally in figure 3.10 (c)
and by curve (iii) in figure 3.11. The power in the second hariméeld grows quadratically. Here
the power flow is only one way (from the fundamental frequeinelg to the harmonic frequency
field) as the interacting fields start in phase and maintaibghase relation.

Most dielectric materials are dispersive so the phase rmagtatondition is not naturally sat-
isfied. Techniques must be employed to enable phase matthiogcur. There are two main
techniques used in the field of dielectric nonlinear mediubn®fringent phase matching (BPM)
(see for example [92, 93]) and quasi phase matching (QPMPE4 Both techniques were used
(in different nonlinear media) in experiments presentetiigmthesis. In magnesium doped lithium
niobate (Mg:LiNbQ) we used type | BPM, and in periodically poled potassiummiitgphosphate
(KTiIOPO4), or PPKTP for short, we used QPM.

(a) (b) ()

E(2(1))(Z)

- N
L

Figure 3.10: Phasor representation of the resultant second harmordc(Eé¥(z)) for: (a) a phase mis-
matched material, (b) a quasi phase matched material, gral fhase matched material. (reproduced
from [4] and [5])
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83.4 Nonlinear interactions

7

Power in Second Harmonic [arb.]

31, 4]

Interaction Length [z]

Figure 3.11: The power in the second harmonic vs the interaction lengtirvé&(i) shows a phase mis-
matched material witl\kz = 1t/2. Curve (ii) is the quasi phase matched material wikz = 1/2 and
domain period\ = ;. Curve (iii) represents the phase matched cAge£ 0).

Birefringent phase matching

Phase matching can be achieved in birefringent media byipiolg the interacting waves along
different axes of the medium. There are predominantly twgsata satisfy the phase matching
condition using BPM called type | and type Il phase matching.

Type | BPM

In type | phase matching in a uniaxial crystal, the high epndigld is polarized along the extraor-
dinary ) axis of the crystal and low energy modes along the ordinairy @ ory ) (Tw,=—w,
+ —w,)- Type | phase matching is often used in LINB@hich is a uniaxial crystal. The low
energy modes can be polarized along eitherxttoe y axes and maintain nonlinear interaction.
This is called non-critical phase matching.

The temperature and wavelength dependence of the phashingatondition for MgO:LiNbQ
is described by the Sellmeier equation [96], which can beagmated around the optimum tem-
peraturely and wavelengtig to

Ak:(I)(T—To)—l]J(l—%O), (3.105)

whered andy are constants whose value depends on the crystal’'s pregértis the crystal’s
temperature, and is the fundamental wavelength.

Type Il BPM

In type Il phase matching the high energy mode and one of theeteergy modes are polarized
along the extraordinary axis of the crystal, and the othwrdoergy mode is polarised along the

37



Quantum optics and nonlinear devices

ordinary axis. {w,=Tw, + —w,)- Type Il phase matching is often used in nonlinear medi& sisc
potassium titanyl phosphate (KTiOPO4 or KTP for short).

Quasi-phase matching

Quasi-phase matching (QPM) is fundamentally different Bk quasipart of the name refers
to the fact that the phase velocities of the interacting ware not matched, rather the phase of
the already generated field is approximately matched witiynereated field. This is achieved by
periodically modulating the nonlinear medium with an apiate structure. The most common
technique is periodic poling. A periodically poled crystals the sign of the nonlinear suscepti-
bility inverted periodically at a distanaatimes the coherence length, which is called the grating
period

An = ml, (3.106)

wherem is called the QPM order. The diagram in figure 3.10 (b) showespiasor representa-
tion of QPM in SHG. At the coherence length (where destrediterference starts in non-QPM
materials), the sign of the nonlinear susceptibility of thedium is flipped so the newly created
fields constructively interfere with the already generdiettls. The power converted to second
harmonic as a function of nonlinear medium length is plottefigure 3.11 (ii). It can be seen
that the power generated in the first coherence length natbhaeof the non phase matched case,
curve (i).

For the same nonlinear susceptibility, QPM is not as efficeana non-QPM systems. The
efficiency formth order QPM system relative to perfect phase matching is

14
Nopm(M) = e (3.107)

thus for first order QPM, the efficiency is reduced by?4/

The use of QPM materials, which have advantages over BPMrialatehas increased in the
last two decades as the crystal production technologiesowap In QPM, the interacting modes
can share the same polarization, thus nonlinear coefficieaticcessible to BPM can be used.
Some of these nonlinear coefficients are much greater tlese tvhere different polarizations are
used. QPM can also be used in isotropic media such as GaAkjch BPM is not possible. Inter-
estingly, the invention of QPM preceded BPM [94, 95], tho&fM was the dominant technique
until mid 1980’s [97].

3.5 %@ nonlinearity in an optical cavity

The efficiency of nonlinear interaction can be greatly ekdrby placing the nonlinear medium in
an optical resonator. In this section the equations of mdto a cavity withx (2 nonlinearity are
presented and the classical and quantum properties of@abpérametric amplifier are introduced.

3.5.1 Equations of motion

The Hamiltonian for a degeneragé? nonlinear interaction describes the swapping of photons
between the fundamental and harmonic modes. The intenadtmiltonian is [80]

Hint - 5

> (a™b—a’b'), (3.108)
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ab ab
DC Ki" out
Ain 0 Ain/Bin \ Atrans,Btrans
(Seed) 1\ > /\ / >
. »
(Pump) Bm S8Aout,0Bout
Avef,Bref

=

Figure 3.12: A schematic of an OPA. The fundamental and harmonic cavitden@rea andb. Extra-
cavity fields are denoted with capital letters. DC is a dighrirror.

where the interacting fielda andb are at the fundamental frequency and harmonic frequency,
respectively. The nonlinear coupling rate is givengbyhich depends on the magnitude of the
X@ nonlinearity as well as experimental parameters such a® vesist, phase matching, and
medium length.

Consider a cavity which contains)@? nonlinearity and resonates baghandb. The x(?
nonlinearity couples the cavity fields. The equations ofiamoare [98]

a = —(K34id¥a+ea'b+ /263 An + /263 Aout + /2KPA, (3.109)
* A2

: . ga

b = —(Kb—i—IAb)b—T—l—\/ZKi?]Bin—i— 2KBBout + 1/ 2«PBy, (3.110)

where the terms proportional tare responsible of the nonlinear dynamics. The parameters i
equations 3.109 and 3.110 are defined similarly to the paesamim the empty cavity in section 3.3
and are shown in the schematic of the cavity in figure 3.12.petameters ara? andk® are the
total resonator decay rates for each fiedg;, Aout, Ay and Bin, Bout, Bl are the driving fields with
the respective coupling rates a@ k3 ,,k? andkP kB, kP for the input, output, and roundtrip
loss; and the detunings of the fundamental and harmonitiesware given byA? andAP.

3.5.2 Optical parametric amplification: a semiclassical aproach

In degenerate OPA, energy from the second harmonic fieldghwisi referred to as thpump

field, provides a phase dependent amplification of the fundargelidy which is referred to as
the seed field In this section, degenerate OPA is introduced using a stamsical approach,
where the pump field is taken to be a non-depletable cladsibal Using this approximation, the
underlying dynamics of the OPA process can be illuminateti gimple equations. In chapter 5
a more complex analysis is presented and the noise coudliogsthe pump field, and other
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sources, are studied. 3
The cavity fields can be calculated in the same manner as fioge3.1. Withqg = €b the
equation of motion is

a = —(K3+iA%a+qga + /23 An + /2K Aout + /2K3A. (3.111)
In compact form we have
a= Maa+MijnAin +MoutAout + MIA|, (3.112)
where the vectora,a andA; are given in equation 3.61 and the matrices are

—K2—iA q

Ma= .
a q —K2+iA |’

(3.113)

Min = 1/2k21,  Mou= /234, Min=/2k2I (3.114)

n"» n"»

wherel is the 2x 2 identity matrix.

3.5.3 Classical parametric gain

Using the equation of motion (equation 3.112) and the imquiput relations (equations 3.69,3.70
and 3.71), the OPA dynamics can be calculated. The paranggiin of the seed field is given by
the ratio

Prans(@) _ ((K*)?+ IQI2+ZIQIKaCOSCP))(Ka)27 (3.115)

Ptrans(q = O) ((Ka)Z - |Q|2)2

whereq = |q|€® with @ the relative phase of the pump and seed fields, we have chgsenA;,
and the the cavity detuning is set to zero.

Optical parametric threshold occurs when the round triginear gain equals the round trip
loss (g| = k®). At this point, the parametric gain goes to infinity (in timit of no pump deple-
tion). If the cavity is vacuum seeded, the light is produdét. can rewrite the parametric gain in

with the substitutior(% — @)
P

P
Prans(Q) - 1+ Rhresh +2cosp Pihresh (3.116)
_ - 2 ) '
Prans(q = 0) (1 P )

Pehres

whereP is the pump power anBreshis the pump power required to reach the optical parametric
oscillation threshold.

Equation 3.116 shows the phase dependence of the paramettess. The seed field can
be amplified or de-amplifed, depending on the phase relatidhe pump and seed fields. The
parametric gain is plotted in figure 3.13 for @)= 0 and (ii)@= 1, corresponding to amplification
and deamplification of the seed field, respectively. Neasttwld the gain approaches infinity for
¢=0and 1/4 forp=TL

Here we have only considered the below threshold daseRiesy). There are many interest-
ing dynamics seen in both threshold and above thresholagtipey though they are not studied in
this thesis. Below threshold operation offers favorableditions for generating squeezed vacuum
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Figure 3.13: Parametric gain of the seed field given by equation 3.116. lficgtion (¢ = 0) and deam-
plification (@ = 1) are shown in curves (i) and (ii).

states, which is done in experiments performed throughusithesis.

3.5.4 Noise variances in parametric down-conversion

The quantum mechanical dynamics of the OPA mimic the clakdimamics. The phase sensitive
amplification of OPA leads to the simultaneous squeezindheffiuctuations in one quadrature
and anti-squeezing the fluctuations in the orthogonal qadk. In this section the transmitted
quadrature amplitude3X"7"9, and the corresponding variandg$®™, are determined to study
the squeezing and anti-équeezing. Using equations 3.168, and 3.84 the transmitted field

amplitudes are given by

Atrans = Mouwa—Aout,
= Mout(iQI - Ma)_l [M inAin(Q) + MoutAout(Q) +MA| (Q)] - Aout(Q)-
(3.117)
To start with, consider the simplest case: a single porigd= 0), losslessT? = 0), cavity on

resonance/? = 0) with a real gain parameteq & q*). Using equations 3.117, 3.68, and 3.84 the
transmitted amplitude and phase quadratures are found to be

(trang K2+q—iQ (out)

Xy = 7Ka—q—|—iQ6X1 , (3.118)
(trang K8 —q—iQ (out)

oX, = 7Ka+q—|—iQ6X2 . (3.119)
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Figure 3.14: Variances of the transmitted field from an OPA plotted re&atdb the shot noise limit (SNL).
Figure (a) is plotted as a function of pump power, and figuy@ag¢a function of sideband frequency. Curves
(i) and (ii) show the variances neglecting intra-cavitysies and curves (iii) and (iv) show the variances
calculated with intra-cavity losses. In both figures theiarazes of the input fields have been set in the
vacuum stateV,’s) = Vi3 =V,) = 1. Cavity parameterd: = 2m, A = 1um, T&; = 0.10,q = k?/2. In

the lossless cas@? = T2 = 0, with lossed2 = 0.001, T2 = 0.01.

In general the extra-cavity fieldloy, is the vacuum state. Thd° = 1, and the variances are
simply

vires L (3.120)
G
v =g, (3.121)
where
2
a_m2.02 (1—y/50—] +Q?/(k?)?
g: (K Q) ‘|‘Q _ ( Pthresh) (3122)

(k2+0q)2+0Q% (

Pthresh

1+ P )2+QZ/(Ka)2.

In this idealised case, the OPA produces a minimum uncegytatjueezed state. &f is positive

this is an amplitude squeezed stateq I§ negative this is a phase squeezed state. Curves (i) and
(ii) in figure 3.14 (a) show, ™" andV,"™" plotted as a function of pump power with positive
qandQ = 0. In figure 3.14 (b)/,"™" andV,"™™ are plotted in curves (i) and (ii), respectively,
with and P = 0.25Pesh @s a function of sideband frequency. This is a minimum uaasst
amplitude squeezed state. The noise amplification (defio#pilon) is constant below the cavity
pole and rolls-off above the cavity pole. Well above the tsagble the noise variances approach
the vacuum state.

Next we calculate the OPA output including intra-cavitydes. If we continue to assume
A? = 0 andq = g*, the amplitude and phase quadratures can be found using@twuad.68 and
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3.84
2. /KAK2 6X(in) KA 0 — KA 5X(0Ut) 2. /KaKa 5X(|)
(trans) KinKoutOA1 +( Kout — ! K™+ CI) 1 + v/ K KoutOA1
&%, = TopaPCIr: . (3.123)
i : t |
sty 2y/MEREDX" (25— 10—k q)aX 4 2 kfkGudXy)
2 - iQ+ka+q - (3.124)
and the variances are
yltrany _ ABKEN" + (2K — K2+ 0) 4 Q2) + AKfKEy (3.125)
ltrany AR, + (2K~ K*— 0)2 4 Q2) + AKfiBy (3.126)
2 Q2+ (Ka_|_q)2 : '
If the seed field is in the coherent state equations 3.125 dr &an be written as
(trans) 4Kaq
Vl = 1+ nescm, (3127)
(trans) 4Kaq
V. = 1l Nesces—F—— 3.128
2 r]eSCQZ+ (Ka+q)27 ( )
wherenescis the cavity escape efficiency given by
a
Mese= Fowt = Tout (3.129)

Ka  Tow+Tn+T

The escape efficiency is a measure of the maximum obtainaialetgm noise suppression from
the OPA cavity. At the optical parametric oscillation threkl (q = k?) the maximum squeezing
is found and given by

Vs(tqrmzx = 1-nNesc (3.130)

Curves (jii) and (iv) in figures 3.14 (a) and (b) sho{y"®™ andV,"" calculated with losses. The
figures show that the intra-cavity loss limits the magnitofi¢he squeezed that exits the cavity.
This is a result of a fraction of the squeezed field being by the vacuum field due to loss.

3.5.5 Optical parametric amplification verses optical paranetric oscillation

In chapters 5, 6, and 7 an investigation into squeezing extifrom parametric down conversion
processes of optical parametric amplification and optieahmetric oscillation is presented. Al-
though the difference between the two modes of operatiaubites the difference in the squeezing
produced from the two processes is substantial. This shkotios is written to clarify the defini-
tion of optical parametric amplification and optical parariceoscillation used here.

e The seed field of an OPA contains optical povv(e!{[{Am # 0). Thus the seed field can be
amplified and it can be used as a classical device. The sqlistztes produced from a OPA
are bright squeezed states.

e The seed field an OPO containgoptical power (AI-LAW = 0). That is, the seed field is the
vacuum field. When operated below threshold, an OPO produsgseezed vacuum state
and has no classical output.
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(a) OPA (b) OPO
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Figure 3.15: (a) Schematic of the OPA process. In OPA the seed field haserenhamplitude and the
squeezed state produced is a bright squeezed state. (nh&ohef the OPO process operated below
threshold. The seed field in OPO is the vacuum state and tleezqd state produced is a squeezed vacuum
state.

These two processes are shown schematically in figure 3 Ha¢a(b). The definitions used here
is used widely in the literature (for example, see [15, 2]),98ut is not the exclusive definition.
In references [100-105] a single pass parametric interacth is referred to as an ‘OPA and a
parametric interaction in a cavity is called a ‘OPQ’, withtlb@enerally consider to be vacuum
seeded.

3.6 Chapter summary

This chapter has introduced some quantum optics notatione slevices used in quantum optics,
and introduced thg @ nonlinearity. We have introduced

e states of light

e detection

e losses

e cavities

o thex? nonlinearity

e phasematching

e optical parametric amplification

These are the basics needed to understand the theory amareqs in this thesis.
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Chapter 4

Quantum noise and squeezing in
Interferometric gravitational wave
detectors

This chapter provides background into the quantum noisg iiminterferometric detectors and
introduces possible squeezing enhancements. This peog@dext and motivation for the devel-
opment of audio-frequency squeezed states. We show the¢zed states can improve the quan-
tum noise limited strain (or displacement) sensitivity lpyta 1/v e-2R, whereR is the squeezing
factor. For example, for a 10dB squeezed staté{ = 0.1), the strain sensitivity can be improved
by a factor of 3.16 in the ideal lossless case.

4.1 Overview

In section 4.2 the quantum noise of a simple Michelson iaterfieter is introduced using the
description and formalism of Kimble, Levin, Matsko, Thorrand Levin from reference [38].
This calculation verifies that it is the vacuum fluctuatiohattenter the photodetector port, or
antisymmetric port, of the Michelson interferometer thegise to the quantum noise limit. In
section 4.3 the discussion is then extended to include fhetion of squeezed vacuum into anti-
symmetric port of the Michelson interferometer to illustréhe enhancement that squeezed states
can provide. Following this, the quantum noise for the catie@al interferometer, a power recy-
cled Michelson interferometer with Fabry-Perot arm cagitiand the power and signal recycled
interferometer with arm cavities are presented, along thighpossible qguantum noise enhance-
ments that can be obtained using squeezed states.

4.2 Quantum noise limits

The Michelson interferometer is a natural choice for gatiohal wave detectidn A perpendicu-
lar arm interferometer is ideal for detecting the quadrasainal of gravitational waves. Operating
the interferometer on a dark fringe, the Michelson intenfieeter offers considerable immunity to
classical laser noise, reduces the power on the primanogdiuates, and offers the optimal shot
noise performance [50]. For a lossless, ideal interferemaperating at a dark fringe, all of the
laser light that enters the symmetric port reflects back tdsv¢éhe laseér. The same situation is

1sagnac interferometers also offer many of the advantaggedfichelson interferometer, see for example [106],
in addition they are naturally ‘speedmeter’ interferome{@07]
2Except for a very small component that couples to the asyninirt due to the gravitational-wave signal.
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true with the vacuum field that enters from the antisymmaedar - it too returns back towards
the antisymmetric port photodetector with a phase shifl,vaith the electric field induced by the
gravitational wave signal. Of course, if the laser cladsizaplitude and phase noise couple to
the dark port only very weakly, so too does the guantum mecabnoise on the laser field. It
can thus be seen that the quantum noise in gravitational deteztors does not come from the
laser. Caves published the first complete conceptual exfitamof the origin of the quantum noise
in interferometric gravitational wave detection [31], gegting that the quantum noise (radiation
pressure noise and shot noise) originates from the vaculohtti@ enters the inteferometer from
the antisymmetric port. More recently, Bragingdyal. confirmed that the quantum noise limits in
gravitational wave detectors lislely in the quantum noise of the electromagnetic f&ld not

in the test mass quantization [32].

4.2.1 Input-output relations of a Michelson interferomete

A derivation of the the input-output relation of a losslesghlson interferometer is presented in
Appendix A, following the derivation presented in the ApdienB of reference [38] and in the
diploma thesis of Harms [108]. In this chapter we simply préghe results. For the Michelson

[— —
(a) (b)

Laser Laser
R ] = . )

T lb" a M|\ b

, L} J i Circulator
|

Photodetector g

Photodetector g

Figure 4.1: (a) A Michelson interferometer. The asymmetric port inpod @utput fields are denotexl
andb;. The laser power at the symmetric portds (b) A Michelson interferometer with a squeezed state
injected into the asymmetric port.

interferometer shown in figure 4.1 (a), and the more detdilgute A.1, the outgoing field of
the asymmetric porth, can be written terms of the ingoing field, and the gravitational wave
strain,h. The formalism in this chapter uses the two photon formalisd®, 110]. The amplitude
quadraturebs, and phase quadratut, of the outgoing fields are [38]

b1 = Abl, Abl = aleZiB, (4.1)

b, = Aby++/ ZK%QLeiB, Aby = (a-Z - Kal)ezma (42)

whereAb; andAb, are the fluctuating terms of the outgoing quadratures whiiske @ue to quan-
tum noise andy; anday are the amplitude and phase quadratures of the field that thetelark
port. The single pass phase shift that the field at sidebagiéncyQ experience relative to the
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carrier frequency, is given byp = QL /c, with L the arm length. Here

4ot
mcQ?2’

is the radiation pressure coupling parameter, which hasrdigmce on the input laser power at the
beamsplitter]g, and the massn, of the cavity mirrors, which are considered as free masEes.
(single sided) strain sensitivity standard quantum lir8iQ() of a Michelson interferometer is

[ 4h

The standard quantum limit is the optimal sensitivity acalde without the use of quantum non
demolition (QND) techniques [33]. HellgsqL is v/2 larger than the SQL for an individual test
mass [33] because the difference of the Michelson intemfeter test masses behaves like a free
particle with reduced mass — m/2 (see footnote 3 in reference [38]).

The outgoing amplitude quadratul®, (equation 4.1) is simply the ingoing amplitude quadra-
ture,a;, with an uninteresting phase shift due to propagation. Thgaing phase quadrature;,
(equation 4.2) contains a term due to quantum noise plusrtwitgtional wave signal. The quan-
tum noise termAb,, has two components: one originating from the ingoing plasedratures
fluctuations,ap, which gives rise to shot noise; and one from the ingoing @og# quadratures
fluctuations,a;, which gives rise to radiation pressure fluctuations. Tluateon pressure noise
is driven by the amplitude quadrature fluctuations thatrefnten the dark porta;, and scaled
by — % . Note that the amplitude quadrature fluctuations from tkerlgport are common in both
arms (see equation A.21 and A.22 in the Appendix A) and as dughs a common-mode ra-
diation pressure which does not couple to the photodet@ttdr The shot noise contribution is
frequency independent whereas the radiation pressuresiates as 02 due to the mechanical
susceptibility of the mirror suspensions.

K= (4.3)

INPUT TO DARK PORT OUTPUT IN RPNL REGIME OUTPUT IN SNL REGIME
Vacuum a by by
State
SIGNAL SIGNAL
»> >
ay bl b]

Figure 4.2: Phasor representation of the input-output relations of ehilson interferometer. The input

field is shown in the leftmost column, and the outputs in thédig column and the rightmost column. The
output contains a classical gravitational wave signal aedltictuations of the outgoing field. In the radia-
tion pressure noise limited (RPNL) regime, the output phese is dominated by the amplitude induced
phase fluctuations, whereas in the shot noise limited (SBgiyme, it is simply the phase fluctuations of the
vacuum input field.

The transfer function from input vacuum fiell,to output field b, of the Michelson interfer-
ometer is illustrated in figure 4.2. This shows the vacuund figbut to the dark port (leftmost col-
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umn) and the output in two frequency bands correspondingetoadiation pressure noise limited
(RPNL) frequency band (middle column) and the shot noisé@didn(SNL) frequency band (right
column). The output shows a classical (gravitational waignal vector in the phase quadrature
and the superimposed noise ellipse. The relative size digmal to the noise ellipse in the mea-
sured quadrature is proportional to the quantum-limitgdaito noise ratio of the interferometer.
The ball on stick representation is figure 4.2 shows that thgmtude of the fluctuations in the
amplitude quadrature remains unchanged from the input ipubiequation 4.1). However, in
the RPNL regime, the magnitude of the phase quadrature #itiohs is increased due to radi-
ation pressure noise (equation 4.2). In the SNL regime, thgnitude of the phase quadrature
fluctuations is unchanged from the input.

4.2.2 Quantum noise limited sensitivity
The quantum noise limited sensitivity of the interferometan be found by looking at the signal

to noise ratio, given by

hsqL |
h=—2Ab,e ? 4.5
V2K ¢ (48)

whereAb; = Ab; sin{ + Ab; cos(, with  the detection phase. The power spectral density for the
phase quadrature measuremeént(1/2) is then [38],

h%QL 1
and the strain sensitivity ig/S,.
107 107
A=11/2
~ A=0
Total Quantum g?, “
100 < 109 *
_______________________ %’ )\.=>\op‘[(9)\\ NO SQZ
Shot *.
saL *

Radiation Pressure‘“\ }\;_31/4

10°1 . 10 SQL
10" 10 1072 10

10 10
Frequency [Q/Qgq] Frequency [Q/Qgq, ]

(@) (b)

Figure 4.3: (a) Quantum noise limited strain sensitivity of a Micheldaterferometer. (b) Michelson
interferometer strain sensitivity with 10dB of squeezingcted into the dark port, with different squeezing
angles.

The strain sensitivity normalized to the SQigqL(QsqL), is plotted in figure 4.3 (a). Shot
noise and radiation pressure noise are shown as well as tdlegt@antum noise and the SQL.
Modifying the input laser power affects the sensitivitylie shot noise and radiation pressure noise
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84.3 Gravitational wave detectors with quantum correlations

regimes inversely. The shot noise limited sensitivity ioy@s as square root of the power, whereas
radiation pressure noise limited sensitivity degradebasduare root of the power. Without QND
schemes, the optimal sensitivity for each sideband freguenreached when the shot noise and
radiation pressure noise are equal - the SQL. Raising orriogi¢he laser power maps out the
SQL at different sideband frequencies.

4.3 Gravitational wave detectors with quantum correlatiors

The quantum noise limited sensitivity of gravitational wauterferometers can be improved by
using QND schemes. Examples are speed-meter designs [i3]1-vhriational output detec-

tion [38, 114], and the injection of squeezed states intariterferometer’s dark port, first pro-

posed by Caves [34]. Caves showed that the shot noise (@timadipressure noise) could be
reduced by the replacement of vacuum state that enters yhareetric port by a phase (or am-
plitude) squeezed state. Unruh [35], and later Jaekel ayddre [36], built on this proposal,

showing that a squeezed state with an intermediate quaer@either phase nor amplitude) could
reduce the quantum noise below the SQL.

The injection of a squeezed state into the asymmetric partbeaacheived using a optical
circulator (for example, see [115, 116]) as illustrated gufe 4.1 (b). The spectral density of the
guantum noise of a simple Michelson with squeezing is giwe[BB]

2
Ssqz= hSTQL<71( + 7() [cosh R—cog 2\ + 2d)|sinh R, 4.7)
whereR is the squeeze factok, the squeeze angle, add= arccot X). The quantum noise of a
simple Michelson inteferometer with 10dB of squeezieg?f = 0.1) at various squeeze angles
is shown in figure 4.3 (b). A phase squeezed state (1/2) offers quantum noise reduction in
the shot noise limited regime and increased noise in thatiadi pressure noise limited regime.
An amplitude squeezed state £ 0) has the opposite effect, radiation pressure noise icestiu
whereas shot noise is increased. The input-output trafsfetions of the squeezed states is
illustrated in figure 4.4.

In the lossless case, injecting a phase squeezed state'with= x into the asymmetric port
gives the same quantum noise performance improvement asi@ase in the laser power Qyx.
Similarly, an amplitude squeezed state improves nois@paence by the same factor a reduction
in the laser power by/Xx.

Orienting the squeeze ellipse a43 = —11/4) correlates the amplitude and phase quadratures
and enables sub-SQL performance to be achieved [35, 36Hldanades performance in the shot
noise and amplitude noise limited regimes. It can be sedridhan interferometer that is limited
by radiation pressure at low frequencies and shot noisghtftequencies, a frequency dependent
squeezed state is required to give the optimal noise remtuctier all sideband frequencies. For
a simple Michelson the optimal frequency dependent squaestz¢e would have a phase rotation
such that it would be amplitude squeezed at low frequengibgre radiation pressure noise is
dominant, squeezed at 48egrees at the SQL, and phase squeezed at high frequenbies w
shot noise is dominant. The optimal phase rotation of theezgd state is given by [38]

Aopt(Q) = —arccotk (Q). (4.8)
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Figure 4.4: Phasor representation of the input-output relations ofehklson interferometer with (a) phase
squeezing and (b) amplitude squeezing. For comparisoplg-output relations are also plotted for the
vacuum state, indicated by the circle and ellipses with éddihes.

With A = Aot(Q) equation 4.7 reduces to

h3 1

QL —2R

== 4,
SsqzoPT 5 (K-F‘K)e : (4.9)
which is equivalent to equation 4.6 multiplied &yR. Thus, with an optimal frequency dependent
squeezed state, the quantum noise limited strain sehgitivan interferometer is shifted down by
e R. This result is also shown in figure 4.3 (b).

The reader may wonder if there is something suspect aboubuimg the quantum noise
limited sensitivity in the amplitude and phase quadratsigsiltaneously. There is no violation
of Heisenberg uncertainty relation since frequency depensijueezed states satisfies the HUP at
each frequency.

4.3.1 Quantum noise of conventional interferometers

‘Conventional interferometers’ are Michelson interfeetars with arm cavities (without squeezed
states), the configuration of TAMA, LIGO and VIRGOThe input-output relations of a conven-
tional interferometer are identical to equations 4.1 aq @xcept the radiation pressure coupling
parameter and standard quantum limit are different. In aemtional inteferometer the radiation

SRecall that GEO has signal recycling and no arm cavities.
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Figure 4.5: (a) Strain sensitivity of a conventional interferometdr) $train sensitivity of a conventional
inteferometer with 10dB of squeezing injected into the gaok, with different squeezing anglas.—= 40kg
L =3995m,T = 0.033,u = 1.77 x 10*rads ando = IsqL.

pressure coupling parameter is

~ 2(lo/1squy*

= Qo

(4.10)
where the arm cavity half bandwidth ys= Tc/(4L) andT is the transmission of the input test

mass mirror.lsq is the input laser power required for a conventional intfegter to reach the
standard quantum limit.

L2
lsoL= m%y‘l. (4.11)

The (single sided) SQL of a conventional interferometer is

/ 8h

The guantum noise limited strain sensitivity of a (losslesmventional inteferometer is given

by the square root of equation 4.6, with the radiation pressoupling constant and SQL strain
replaced by equations 4.10 and 4.1 & %, hsqL — thL). Figure 4.5 (a) shows the strain

sensitivity of the conventional interferometer with= 11/2. With the parameters used in the figure
(listed in the figure caption), below 100Hz, the sensitiviyimited by radiation pressure noise,
whereas above 200Hz it is limited by shot noise. The shotenaisited sensitivity is shaped by

the frequency response of the arm cavities. Above the aritydanewidth the signal response

decreases, and so the shot noise limited strain sensisvitggraded.

Figure 4.5 (b) shows the sensitivity modification to quantunise of a the conventional inte-
ferometer when injecting 10dB of squeeing at various scueegles. The improvement is iden-
tical to the simple Michelson case and the optimal frequetapendent squeeze angle is given by
equation 4.8 with the radiation pressure couplikigsubstituted fork.
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Table 4.1 Signal recycled Michelson interferometer parameters

Parameter Symbol Value Units
Laser frequency W 1.77x 10" | radians/s
Mirror mass m 40 kg
Laser power at beamsplittér lo 2100 W
ITM transmittance (power) T 0.005 -
Arm length L 3995 m
Transmission of signal recycling mirror (amplitudg) T v0.07 —
Reflectivity of signal recycling mirror (amplitude) p 1-1° —
Sideband frequency Q

Signal recycling cavity length I 10 m
Signal recycling cavity detuning [0} (m—0.08)/2 | radians
Signal recycling cavity single pass phase shift ] mod(1Q/c) | radians

4.3.2 Signal recycled gravitational wave detectors

Buonanno and Chen [117] showed that the quantum noise ofieétsignal recycled interferom-
eters could be lower than the free mass SQL without additimmat or output optics. This is
because the correlations in the quantum noise of the ardplénd phase quadratures created by
radiation pressure coupling are recycled in the signaldlewy cavity. The free mass SQL no
longer applies to this system and sub SQL sensitivity cantit@ieed. An additional sensitivity
peak to the optical resonance is created, called the optitanéal resonance, in reference to its
origin from radiation pressure couplihg

The quantum noise power spectral density of a (losslesaaksigcycled Michelson interfer-
ometer with arm cavities is given by [117]

é‘ B héQL (Cill) sing +C§ll> cos)? + (Cglg sin{ +C§? cos()?

_ , (4.13)
SR2%¢ 12|D{Y sing + DY cosz |2
with
c = (1+p? %e sinap) — 20c092B+ 20 4.14
= p*) ( cos2p+ =7 sin2p | —2pcog2B +20), (4.14)
c — (4.15)
cl) = —t¥sin2p+ Ksirtg), (4.16)
cl) = t(sin2p— K.cod ), (4.17)
Dgl> _ _(l+ peZi(B+O))3in(p’ (418)
D(zl) _ _(_1_|_ pez'(B+O)) COSp, (419)

whereT and p are the (amplitude) reflectivity and transmission of thenalgecycling mirror,
respectively, an@ and® are the microscopic signal recycling cavity detuning ananoscopic
single pass phase shift of the signal recycling cavity. g6 (a) shows the quantum noise
limited sensitivity of a lossless SR interferometer withrgraeters similar to those expected in

4Another way of looking at this is the optical spring effec1§]
5This number is derived using 125W laser power times the fexygain of 16.8.
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Figure 4.6: (a) Quantum noise of a signal recycled Michelson interfextanwith arm cavities. (b) Quan-
tum noise with 10dBR = 1.15) and{ = 1/2 for differentA. Interferometer parameters can be found in
Table 8.1

Advanced LIGO, as detailed in Table 4.1. Both the amplitude ghase quadrature sensitivities
are shown, labeled Quadratureandby,, respectively, along with the quantum noise of a conven-
tional interferometer and the free mass SQL. Unlike conigeat interferometers the gravitational
wave signal is not entirely in a single quadrature in a sigeeycled inteferometer.

4.3.3 Squeezing in a signal recycled interferometer

The QND schemes such as variational readout and squeezesl céa also be applied to signal
recycled inteterferometers. The use of squeezed statagptove the quantum noise limited sen-
sitivity of signal recycled interferometers has been exaiin [37, 39, 40]. The lossless spectral
density of a quantum noise limited signal recycled intenfieeter is given by [40]

g - 2%?: e R(C);sing + 20%1( (l:)ozth)2 + ez(z(cﬁzsinz +Ch,cos0)? | (4.20)
12|D;” sin{ + D, cos( |2
with
ch = cWcosh+Clsin, (4.21)
ch, = Cg) COSA — c§11> sinA, (4.22)
A = Ccosh+ClYsina, (4.23)
>\2 = Cg) COSA — Céll) SinA, (4.24)

recall R is the squeeze factor arddthe squeeze angle. Figure 4.6 (b) shows the quantum noise
limited strain sensitivity of a signal recycled interfererar with squeezing at different, frequency
independent squeeze angleand the readout quadrature seb$o({ = 11/2). Like conventional
interferometers the optimal squeeze angle is a functiomegfuency. The frequency dependence
of the signal recycled interferometer is more complex thendonventional interferometer. If a
squeezed state with the optimal frequency dependeneeXy(Q)) is injected into a lossless
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signal recycled interferometer, the spectral density ésuthsqueezed spectral density multiplied
by a factore 2R [39].

4.4 Chapter summary

We have discussed the origin of quantum noise and how it esupl interferometric measure-
ments. The possible improvements obtainable with the tiojeof squeezed states has been pre-
sented assuming a lossless interferometer.

This chapter concludes the background materials of thsgh&lext, we describe the devel-
opment of audio-frequency squeezed states.
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Overview: Audio frequency squeezing for gravitational wae detectors

A short history of squeezed states

The first measurement of squeezed light was in 1985 by Slethalr [6]. Using a four wave
mixing experiment they observed 0.3dB (or 7%) of quantuns@oeduction. Since then, many
processes have been used to generate squeezed states; DEWaSHG; and Kerr media. Tech-
nology advancements and new nonlinear materials meanttisabhdw routine to measure more
than 3dB (50%) of quantum noise suppression. Figure 4.7 skimsvprogression to larger amounts
of quantum noise suppression since 1985. Points denotedddyralicate experiments where the
squeezed quadrature is controlled or locked for the meammetime (o’ indicate uncontrolled
squeezed quadrature measurements). The largest amourardfin noise suppression observed
in 2007 is 10dB (90%), achieved by Valhbruetal. [18] using a monolithic LiINb@ cavity OPO
with a Nd:YAG laser operating at 1064nm. The largest loclepeeezing measurement reported to
date is 9dB (87%) by Takeret al. [20] who used a PPKTP based OPO system of using a Nd:YAG
laser at 860nm.
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® Uncontrolled Measurement
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Figure 4.7: Reported squeezing level over the last two decades in eantsiwave experiments (except for
Bergmanret al. which was pulsed). All results except for Sluske¢rl. and Bergmaret al. were produced
by parametric down-conversion processes. Thelénotes experiments where the noise contribution of
electronic noise was not subtracted from the data. Refeseam@: Slusheat al.[6]; Wu et al. [7]; Grang-

ier et al.[8]; Xiao et al.[9]; Polzik et al.[10]; Breitenbactet al.[11]; Schneideet al. (1) [12] and (2) [13];
Lam et al.[14]; Buchleret al. [15]; Suzukiet al.[16]; McKenzieet al. (1) [this thesis]; Valhbruclet al.

(1) [17] and (2) [18]; Godat al.[19]; and Takenaet al.[20].

In terms of generating large amounts of quantum noise sapiore the most successful pro-
cesses have been OPO and OPA processes. As pointed out gk since the first demon-

stration of OPO squeezing in 1986 by Wtial. [7], either OPA or OPO experiments have con-
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tinually held the record for the largest amount of quanturis@oeduction, except for a period
between 1991-1992. In the period 1991-1992 the record washlyeBergman and Haus [120]
who produced 5dB (68%) noise suppression from a put$&chonlinearity experiment in optical
fibre. OPO or OPA are natural choices for producing large sggienagnitude because, in theory,
they can produce perfect quantum noise suppression (shiiich and produces a minimum un-
certainty state. This is unlike singly resonant SHG, fomegke, which produces a non-minimum
uncertainty state and is limited in theory to 9.5dB (89%) o&atum noise suppression [89]. In
this thesis an OPO operated below threshold is used to gersfracezed states.

The point labeled McKenziet al. (1) in Figure 4.7 is the quantum noise reduction demon-
strated in this thesis. The measured noise suppressioBdi §72%$ can be compared with other
the locked squeezing of similar magnitude at 1064nm of 6 &@B6) by Vahlbructet al.[17] and
7.4dB (82%) by Godat al.[19].

The development of audio frequency squeezed states

In 1981 Caves [34] proposed the use of squeezed states tovenghre quantum noise limited
noise performance of gravitational wave detectors. Tor @fentum noise reduction at the grav-
itational wave signal frequencies (10Hz-10kHz), as Cawessaged, squeezing is required at the
same sideband frequencies. The task of producing squetated at these frequencies differs
significantly from producing it at RF frequencies, whereesging was initially produced. The
reason for the difference between producing squeezingdid and RF frequencies is purely tech-
nical, there is no fundamental reason to expect nonlineazesses, such as tig€ processes,

to not produce squeezed states in the audio band. Geneattadiydio frequencies, classical noise
sources are large enough to obscure the quantum noise fespard squeezing is ‘buried’. For
this reason, until recently, squeezed states were gepenahsured at sideband frequencies of a
few MHz or higher. Figure 4.8 shows the lowest reported saddbfrequency of squeezed states
as a function of time. It shows that only in the last few yeagehsqueezed states been measured
in the audio gravitational wave detection band.

The noise sources that limit the production of squeezedsstatRF sideband frequencies are:
the classical amplitude and phase fluctuations of the lds¥, [L03, 104]; acousto-mechanical
noise coupled via cavity length fluctuations; and photattamoise [121]. There were thought to
be two solutions to overcome these classical noise liroitaito enable production of squeezed
states at low sideband frequencies [89]. These were:

e Reduce the limiting noise sources. This is the brute forcthateof working to eliminate
any noise sources that limits the production of a squeezdd. sfThis means stabilizing
the laser amplitude and phase fluctuations to near the quantise limit and reducing
environmental noise sources.

e Recover buried squeezing. The underlying squeezed stditstist are recovered by cancel-
ing the classical noise by either optical or electronic nsean

Reduction of the limiting noise sources to produce squeehas not yet been attempted at
audio sideband frequencies, perhaps due to the enormitedésk. It has been proven to be suc-
cessful in the MHz regime. For example, in an SHG squeezipgraxent by Whiteet al. [122],
the lowest sideband frequency squeezing was observed adrfoym ~ 15MHz without any

Swithout electronic noise subtraction. If the effect of ¢tenic noise is taken into account 6.5dB of quantum noise
reduction could be inferred.
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Figure 4.8: Reported sideband frequency vs time. (Left) is a depictfariassical laser noise as a function
of frequency. References (some are given in the caption ofdig.7.), Boweret al. [21], Schnabekt
al. [22] Lauratet al.[23] McKenzieet al. (2) [24],(3) [25], Vahlbructet al. (3) [26].

noise reduction, te- 5MHz by using a mode cleaner cavity for passive noise redaaf pump
field.

Recovery of buried squeezing was proposed and proven igéféot 1991 by Bergman and
Haus [120], who recovered pulsed squeezing down to 35kHthersame experiment that held
the record for squeezing amplitude at that time. They geegrsqueezed states in the counter-
propagating directions of a Sagnac interferometer. The vdes that the common classical noise
of the squeezed states would interfere destructively e dark port, leaving only squeezed
vacuum to exit the dark port. They commented that below 35KHe laser noise no longer
cancelled. It is hard to know why the laser noise did not chackw frequencies, but it would
seem likely to be due to one of two reasons: either the levehn€ellation was not sufficient to
cancel the noise at those frequencies or other uncorretetiseé sources were present which did
not cancel. After this experimental demonstration, a psapto recover buried squeezing was
made by Laiet al. [123] from bright amplitude squeezed states produced bgedlasers and a
similar one by Ralph and White [124] from squeezed statagusie SHG process.

Recovery of buried squeezing was extended to bright sqdestates produced from two near
identical OPA's by Boweret al. [21]. They recovered continuous wave squeezing at 220kHz.
When measured individually, the spectra of the two squestates showed classical intensity
noise (much greater than the quantum noise limt) at freqastelow a few MHz, and squeezing
only above 1.9 MHz. The technique to obtain low frequencyegging was to combine the two
states on a beamsplitter, cancel the correlated classiisé sources in one output, and leave a
squeezed vacuum state in the other. In 2004, a similar cigsbise cancellation experiment by
Schnabekt al. [22] resulted in squeezing to 80kHz. The main difference thas only one OPA
was used.

The concept of the recovering buried squeezing seemed tk well down to a few tens
of kHz. The two apparent limitations to this technique arestlff, only the correlated classical

59



noise in the squeezed beam could be cancelled, so uncedelatse would always remain; and
secondly, the level of cancellation of correlated noisénitéd by experimental parameters such
as mode-matching, usually to about a factor of 100. To predlow frequency) vacuum squeez-
ing from intensity dependent processes such as Kerr medi&HitG classical noise cancellation
seems like the only option. However, optical parametric miaanversion has an important differ-
ence: vacuum squeezing can be produced readily, withouirieg) any post processing. An OPO
operated below threshold produces a squeezed vacuunvgtith, as we detail over the next few
chapters, is naturally immune to classical noise sources.

Sub-threshold OPO for low frequency squeezing

In a 2004 paper [24] we presented the first measurement oésipgein the audio gravitational
wave detection band using an alternate technigue to the éatritbed above. Our techniqywe-
vents classical noise sources from coupling to the squeigdddThis was achieved by operating
the parametric down-converter as a vacuum seeded sulirtiidle@PO. It was shown that the vac-
uum squeezed state produced from a sub-threshold OPO wasmiento classical noise sources
to first-order, enabling broadband vacuum squeezing to tesumed from 280Hz to 100kHz.
Also shown was that, in OPA experiments, it was the beatirth thie coherent amplitude of the
intra-cavity field at the fundamental frequency which cedpihe classical noise sources into the
squeezed state, thereby obscuring the squeezing. By pethé parametric down-conversion
as a sub-threshold OPO, the coupling mechanism in the dowvecsion process was removed,
and low frequency squeezing could be obtained. We note tiratvork was not the first time
that below threshold OPO has been used to produce squearesl dt is therefore possible that
squeezing has been produced at low frequencies before wewjfdt wasn't measured.

In an experiment also performed in 2004, Laueatal. [23] measured squeezing down to
50kHz from a type Il OPO system operating below thresholde &tthors of the paper do not
mention if they knew of the cause of the the low frequencytlimi

Since this first demonstration of low frequency squeeziamfan OPO, this mode of operation
has been the standard of all low frequency squeezing expetitOPO [17, 25, 26, 125, 126]

Current status of audio frequency squeezing

The first report of locked audio frequency squeezed stateshyavicKenzieet al. [25] using
a doubly resonant OPOSqueezing was measured down to 100Hz. The low frequendy lim
was thought to be imposed by excess noise in the homodynetidetsystem. Since then the
Valhbruchet al. measured locked squeezing down to 10Hz [26] . More recevifliglbruchet
al. were able to identify and mitigate the low frequency limitinoise source in their homodyne
detection system and measure squeezing at 1 Hz [17]. This isurrent low frequency record.

In 2007, Godaet al.[128] measured squeezing enhancement in a suspended;rsigyeed
Michelson at the Caltech 40m prototype interferometer [129is was the first measurement of

"Recently McCormiclet al.[127] produced squeezing down to 5kHz from a four wave mixirgeriment.

8In this thesis ‘singly resonant’ is defined to mean the na@aimmedium is placed in an optical cavity for the
fundamental frequency field (lower frequency mode), bufoiothe harmonic frequency field (higher frequency mode),
which is single passed or double passed through the noniinedium. A doubly resonant OPO then would have both
the the nonlinear medium in a cavity where both the fieldseafuhdamental and harmonic frequencies are resonant. In
this thesis only degenerate OPO considered, hence we oe8R®PO and DROPO. In a non degenerate OPO, where
signal and idler frequencies have the relatibg= fo + A, fj = fg — A singly resonant may mean resonant for only the
signal, idler or pump, doubly resonant for two of the thred arriply resonant optical parametric oscillator (TROPO)
would be resonant for all three different frequencies.
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squeezing enhancement of a suspended interferometergpresents a significant step toward
squeezing enhancement in a long baseline interferomedtectbr.
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Chapter 5

Noise couplings in parametric
down-conversion

In this chapter noise couplings in the optical parametrizmri@onversion processes of optical
parametric oscillation and optical parametric amplificatare analysed theoretically. Transfer
functions for different noise sources are derived with awie understanding how they couple
into the squeezed field produced in the parametric downearsion processes. The calculation in
this chapter is similar to that in the journal article

Photothermal Fluctuations as a Fundamental Limit to Lovedtrency Squeezing in a
Degenerate Optical Parametric Amplifier

K. Goda, K. McKenzie, E. E. Mikhailov, P. K. Lam, D. E. McClafld and N. Mavalvala,
Phys. Rev. A72, 043819 (2005)

5.1 Introduction

Though the production of squeezed states using OPO or @PAow standard practice in many
quantum optics laboratories, there have been relativelyifgestigations into the coupling of
noise sources that can limit the production of squeezinge rEason is partially because exper-
imentalists have often chosen to operate at RF sidebandeinetgs, where lasers are quantum
noise limited and there is negligible environmental noi§éere have been theoretical investi-
gations into the limits imposed by fluctuations of the pumjdfien single pass parametric am-
plifiers [100-103] and in OPO’s [104, 105] These investigations show that both amplitude and
phase fluctuations provide a limit to the level of vacuum squeg, and that the effect of amplitude
fluctuations is generally small compared to those of phastufitions [103-105]. In both single
pass and resonant systems, amplitude fluctuations of the fietd impose a limit to squeezing
because they modulate the nonlinear gain. The simplestfestetion of pump phase noise is
to cause the squeezed quadrature to fluctuate. If the detgutiase were to be held constant,
the apparent squeezing will be reduced as the detectedajueawill be a time dependent mix-
ture of the squeezed and anti-squeezed quadratures. Téui$ edn be negated if the detected
quadrature is locked to the squeezed quadrature, whichnis shomost squeezing experiments.
Gea-Banachloche and Zubairy [104] pointed out that whemtminear medium is placed in a
cavity, the quadrature mixing due to pump phase noise hagpehe cavity and this effect cannot

IRecall the subtle difference of the OPO and OPA processésistte OPA has a coherent seed field, whereas the
OPO process has only a vacuum field as a seed field.

2Note that references [100—105] call a single pass paramigteraction an ‘OPA and a parametric interaction in a
cavity an ‘OPO’ and generally consider both to be vacuumeged
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be negated by controlling the detected quadrature. Thesgdtical investigations ([100-105])
show that pump noise represents a fundamental limit to vacaueezing, but, in practice, itis a
second order effect. To the best of our knowledge, pump r@senot limited vacuum squeezing
in any OPO experiment. Instead the limit to the amount of guannoise reduction has been
linear absorption and nonlinear absorption, such as bfjiet induced infrared absorption (BLI-
IRA) [130]; the green light counterpart, GRIIRA [131]; ancky tracking [132, 133].

In OPA experiments, squeezing has often been limited to tn@uencies by first order cou-
pling of classical noise sources. An example of a first oraésencoupling is seed noise, which
couples to the squeezed beam via a simple cavity transfetidn(cf. equations 3.125, 3.126).
There exists a similar transfer function for the pump ncésel other environmental noise sources.
The aim in this chapter is to derive these transfer functinran effort to understand how to min-
imise or decouple these noise sources from the squeezedNtise sources that are important at
low frequencies are: amplitude and phase noise in the puchpead fields; the fluctuations in the
nonlinearity; and cavity detuning. It is shown that nois¢hie pump field, the nonlinear coupling,
and the cavity detuning all couple to the squeezed field vieeawith the mean intra-cavity field at
the fundamental wavelength, It follows that, by operating a below threshold OPO, whete0,
there is no first order coupling of these noise sources. §hia important result, which provides a
path to produce squeezed states at low frequencies witbquiring laser or environmental noise
stabilization, or noise cancellation techniques. Thisiltés contained in the standard equations
of motion and, perhaps surprisingly, has not been studidisrcontext prior to this work.

The calculation in this chapter follows the framework laigt in reference [121]. In sec-
tion 5.2, the linerarized equations of motion are used toutale the fluctuations of the intra-cavity
fields in terms of: the extra-cavity fields; the fluctuationghie cavity detuning; and fluctuations
in the nonlinear coupling. In section 5.3 the amplitude ahdse quadrature fluctuations of the
transmitted field are determined. These quadratures coatgi squeezing and anti-squeezing,
plus classical noise sources. In section 5.4 the varianictge dransmitted fields are calculated.
Finally, in section 5.5, noise budgets of the for the squédizdd are presented using parameters
similar to those in experiments detailed in later chapters.

5.2 Equations of motion and cavity fields

For convenience, the equations of motion for degeneg&enonlinear interactions presented in
section 3.5 are rewritten here. The cavity modes at the fuedéal frequencya, and harmonic
frequencyb, are

a = —(K4ir%atea'b+ /263 An 4 /2K3Aout + /2KPA, (5.1)
- . e a?
b = —(Kb+|Ab)b—T+ 2kP Bin + 1/ 2k8Bout + 1/ 2kPBy, (5.2)

wherek? andk® are the total resonator decay rates for each fieldeasdhe nonlinear coupling
parameterAi,, Aout, A andBin, Boyt, Bl are the driving fields with the respective coupling rates are
K2 ,K3,,K? andk® kB, kP for the input, output and roundtrip loss (see figure 5.1). @heular
frequency detuning of the fundamental and harmonic cavitigh respect to the driving field
frequencies are given b2 andAP. The equations of motion can be solved using a linearized
approach [87]. Each operator can be separated into avenddéuatuating parts. That is

S=5+3s, st =& 455, (5.3)
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§5.2 Equations of motion and cavity fields

for s=a,b, An, Aout, Al, Bin, Bout, Bl, A%, A, €. 3

The fluctuations of the extra-cavity fields can be of claggicajuantum mechanical origin.
Fluctuations in cavity detuning are often due to such s@mseacousto-mechanical noise and pho-
tothermal noise and fluctuations of the nonlinearity maybe to fluctuations in the phase match-
ing condition. Unlike the calculation in [121], the photetimal noise is not explicitly included,
though the fluctuations in cavity detuing and nonlinearitgrsgth could be from photothermal
noise.

Equations 5.1 and 5.2 with expanded operators become

gt(a+6a) = —(Ka+i(0%+3A%)(a+ da) + (£+ 8¢)(a" +da’) (b+ 3b)
/2K (Ain + 8Ain) + /2<8 Aot + /2K3SA (5.4)
(;jt(b+6b) = —(Kb+i(5b+6Ab))(6+6b)—%(E*Jras*)(ﬂaa)z
+\/ﬁ(|3—m+68m)+ 2B 1OBout + 1/ 2kP3B}, (5.5)

where we have made the assumption that the cavity loss apdtqadrts have vacuum state inputs
SOAout = AI Bout BI =0.
The classical amplitudes of equations 5.4 and 5.5 are giyen b

%‘ = —(Ka+iDda+ea b—{—«/ZKm in, (5.6)
db -G
e —(Kb+|5b)|o—7 2P By, (5.7)

In the experiments performed as part of this thesis, thenpatréc process is operated below thresh-
old in a regime where the pump field is not significantly degdeby down-conversion?é?/z <

ZKE]B_in). The steady state intra-cavity field amplitudes are fow\debting =0, ?j‘f 0,

\/2K2 (K& — A2+ gb) A. b \/ 2K|b —

A= (k@2 + ()2~ [ebP2 ey Rt

(5.8)

where, without the loss of generalits(:n has been chosen to be real.

The linearised fluctuating components of equations 5.4 ahdalong with their Hermitian
conjugates are given by

54 = —Kaaa—i(5a6a+ma)+§65a*+§5“5b+e?65s+z\/27<?6A,-, (5.9)

dal = —ku0a' +i(A%a +a*8A) +&"h*da+ £ adb + ab*de* +Z\/§5A*r (5.10)

5 — —kpdb—i(APSb+bdAY) —E aaa—— 25¢" +Z\/§55,, (5.11)

3T = —kydb' +i(APSb + b*3A°) — earda — E5‘=Za‘>e+ 3 /<538, (5.12)
J

where the equations and the fluctuating components of tha-eavity fields have been denoted

3Note: the detuning parameters? andAP, are real numbers arais a complex number.
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' A fB . dAout,dBout
A refsDre

Figure 5.1: A schematic of the parametric down-converter. The funddat@md harmonic cavity modes
area andb, respectively. Cavity inputs and output are denoted withitahletters.

by the sum ovejj, with {j = in,out, andl }. That is

Z \ /2K?6Aj = /2K&0AIn + \/2KFOA + v/ 2K5 1 OPout; (5.13)
J
> \/2kP3B) = \/2kD,8Bin+ 1/ 2k OBy + 1/ 25 BBout. (5.14)
J

The system of four differential equations 5.9-5.12 can beitien in a more succinct form

).Cc:Mc)Cc+Min)Gn+Moutxout+MI)Q +XA+xs7 (5-15)

which will allow a solution for the fluctuations of the cavifiglds to be found with relative ease.
The vectors for the fluctuating terms in equation 5.15 are

6A|Tn 6Ac;ut 6A|T
- OA, _ | %Aou _ | OA
'X]n - 6B|n 9 )Q)Ut - 6Bout 9 ‘X] - 6B| 9 (516)
5Bl 3B B!
5a —iadA? abde
dal ia* oA ab* d¢*
db’ ib*dAP — %5*258
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§5.3 Quadratures of the transmitted fields

and the matrices are

— . _ 1/2K?
—K—_IAa eb a* 0 -
&b —Ka4iAd 0 &a . 2K
Mc = 55 0 _kb_iab o | M; = diag b , (5.18)
0 & 0 _kb 4 iab :
2K

where “diag” represents the diagonal matrix. Equation £drbbe solved for the cavity fields by
taking the Fourier transform and rearranging. The Four@rsform of equation 5.15 is

iQ-5((::Mc-j’(c‘i‘|V|in5Gn‘|‘|V|out)~(1)ut‘|‘Ml-jh +5(A+5(87 (5-19)

whereQ is the sideband frequency and the tildes on the vectorsdtelfcequency domain opera-
tors (Xc = X, etc.). The solution for the fluctuations on the intra-cafiglds is

Xe = (iQ1 =Me) ™t (MinXin + MouXout + MiXi + Xa + Xe) , (5.20)

wherel is the 4x 4 identity matrix. We now have the fluctuations of the intesty fields in terms
of the fluctuations of the extra-cavity fields, the cavityusetg, and the nonlinear coupling.

5.3 Quadratures of the transmitted fields

The fluctuations of the transmitted fields are found by apiythe cavity boundary conditions to
equation 5.20. The transmitted field is

j}irans = M outjcc - 5C0ut7
= Mout(iQ| - Mc)ilM inXin + [M out(iQI - Mc)ilM out — |} Xout +
Mout(iQ1 —Mc) "M X +Mow(iQ —Me) " Xa +Mow(iQl — M) ~tX;,

(5.21)
where
A
Firans = g’gtz:z . (5.22)
8B ans

The amplitude and phase quadratures of the transmittectBelthe calculated from equation 5.21
in the standard way. This can be done by conveniently byngriti

Strans

oX = Aj’ﬁrans, (5-23)
where
6)2]E-A(rans; 1 1 0 0
. S rans i —i 0 0
5K = 2 A= (5.24)
7 (Btrans ’
e 001
6X2 rans | —I1

67



Noise couplings in parametric down-conversion

Similarly, the quadratures of the other extra-cavity fiedda be found by

S out

X" = AXn, SX=AXow, OX =AX, (5.25)
where
6>"<](_Am) B)Z:EAOUI) 6)21(_A| )
6)2"1 _ 6)22(Am) 6>~(Out _ 6)22(Aom) 6>2I _ 6)22(A|)
5)2](_8"1) ’ X (Bout) ) 5>~(](_Bl )
6)22(Bin) 6)22( Bout) 6)22(BI )
(5.26)

The solution for the quadratures of the transmitted fields is

s out

53X — ©,5X™ + OpudX " + 015X’ + Op + O, (5.27)

where®j,, Oqyt, © are given by the following 4 4 matrices

On = AMuu(iQ—M¢) MjpAL (5.28)
Oout = A[Mou(iQ—M¢) Moy — 1A, (5.29)
O = AMuu(iQ—-Mc)MAL (5.30)

©p and©; are 1x 4 column vectors given by

O = AMou(iQ—Mc) Xy, (5.31)

The equation 5.27 is a complete solution for the quadratirtee transmitted fields from an OPO
or OPA.

5.4 Variances of the transmitted fields

The variances of the transmitted fields are given by,
~ ~ 2 ~ ~
(o) _ <‘ 5% Auand > Puans) _ <‘ 55 uand

~ ~ 2 ~ ~
(Buans) _ <‘ 5% Buand > (Brans) _ <‘ 5 {Buand

Here, we consider all fluctuating components to be of inddeetnorigirf, thus, all cross terms of
fluctuating components vanish. The variances of the trateafields are then

y

2>. (5.33)

~trans _

VI = 1040 |2V + |Oout 2+ |12+ |04 + |©¢)?, (5.34)

4The noise terms of the detuning and nonlinear coupling carobelated if the same mechanism is driving them
both, as is the case is photothermal noise in the nonlingatadr see reference [121].
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§5.4 Variances of the transmitted fields

where
(A{rans) "'(Ain)
1
\7trans_ ( rans) \7in - ~2(Am) 535
= ( ) | = e | (5.35)
(Btrans) ~ (Bin)
2

and we have sety/A) — o) — 7 Bow) _ 7 {Bow) _ (&) _ GIA) B _GIB) — 1 since

the fields due to intra-cavity loss and from the output poe @cuum states. The variances
of the transmitted fundamental field (first and second colimhequation 5.34) contain the
squeezing/anti-squeezing plus any classical noise. Tdresgiven by

v = |e“ A 41007 P 0 PO+ ey V20,

+z 10112+ 106 2] + 18 P+ 10l 2, (5.36)
V. \Gi(f 2780 4 102227 An) 402327 Bn) 4 o242 Bn)

n ng 162+ 1020 ] + [0 -+ [0 . (5.37)

Here, the\@}")yz are the transfer functions of the noise terms. The transthguadratures of the
harmonic field (third and fourth columns of equation 5.34) ot of interest here, though they too
can be squeezed, and even entangled with the fundamendiglifs4].

5.4.1 A simplified case

The dynamics of equations 5.36 and 5.37 are hidden i@thmtrix elements, which are too large
to write in full here. To provide some insight to the dynamisimplified case can be considered.
In section 5.5.3 the case without simplifying assumpti@soinsidered.

The first assumption made is that the fundamental and hacnfihil cavities are held on
resonance. Thatis

Aa

el

=0, (5.38)

Secondly, the nonlinear coupling is assumed to be real

¥ |

: (5.39)

which corresponds to operating at the phase matched comdEinally, the interacting field are
assumed to be real

a=a b'=h (5.40)

If the first two assumptions are met and the relative phas@efrput fieldsAin, Bin locked to
amplify or deamplify the coherent seed field, settBg = i\B_in\ (+ for amplification, — for
deamplification) the fielda andb will be real.

With the three above assumptions, the calculation for thianees is vastly simplified. As the
fluctuations well within the cavity linewidth are of intetage assume& < k2. The coefficients
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for the ©; for the amplitude quadrature are then
=y b
o1y _ 2 /K5utK 02 _go ol _ 22\ / KGutKin
in . g232) in ’ in )
—eb+ E5 Kb<Ka sb+5a)
@(()]:P _ 2Kgut — K&+ S_b— SK—'?} , @(():h? _ O, 9(13) . 255\/ KgutKgut

—. | £232 out — — -
—eb+E2 b (ka—8b+ £F )

— b
o _ 2, /K5uKf' 01 _o. o3 _ 288/ KguiK|
| - b _2—2 I | - | - b - 5252 ’
—€ + K <Ka —eb+ W)

ol =0, (5.41)

, el =0, (5.42)

o =0, (5.43)

and there is no coupling of fluctuations in the detuning odinearity to the amplitude quadrature

zKouta(th - 5%2) [1[5€]
K2 — b+ %2

oy =0, o= ~0, (5.44)

where[J[d¢] is the real part obe, which is negligible wher = €*.
The coefficients for th@®; for the phase quadrature are

2, /K2 KE 288, / K3k,
ot o, o= AR g g g AV

a in (5.45)
K +£b+ Kb (Ka+£b+ >
o2 _o @ea_ 2Mou—K e e 02 _o o2y _ _ ZaVKuKow g 46
out 2. ol 82& ) out } out — oo\ .
2, /K3, K3 2eay /K ykP
21 22 t 23 24
o =0, 6= Ka+st_>oié52’ o —0, o - | (5.47)

KP (Ka+s_t_>+ %‘2)

and the coupling of fluctuations in the detuning and nonlitgdnto the phase quadrature are
given by

2 2a_(6Aa n %5@ V2K o VA (zb+ 5252) 0[]
OA = - g232 ) OS - 5 (548)
K&+ eb+ 55~ Ka+sb+W

where[J[d€] is the imaginary part obe.
The features to note from this simplified case are:

1. Noise from the seed field couples to the squeezed beamevartiple cavity transfer func-
tions: \G)i(nll) |2 for the amplitude quadratur&)i(nzz)\2 for the phase quadrature.

2. There is no cross quadrature coupling. eélz) 6214) = G)EZl) = 6223) = 0. This means

that phase noise does not couple to the amplitude quadranudevice versa.

3. Fluctuations in the cavity detuning do not couple to thelitode quadrature to first order

(OAl) = 0). This is because the amplitude response of a cavity goesgh a turning point
at resonance.

4. Fluctuations in the nonlinear coupling do not couple toamplitude quadratur@él) =0).
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§5.5 Noise budget of a OPA

At the phase matched condition the real part of the phasehingtcurve is a turning point
(see figure 3.9).

5. The fluctuations of the pump field, cavity detuning, andrtbelinearity all couple to the
squeezed state proportionaladin variancé.

Points 3,4 and 5 indicate that amplitude quadrature sgugefiers advantages over phase squeez-
ing in terms of noise performance. The amplitude quadrairet sensitive to fluctuations in
cavity detuning and nonlinearity (points 3 and 4). Also, imgditude squeezing, the coherent part
of the seed field is de-amplified, $3 is less than in the case of phase squeezing, where it is
amplified.

Point 5 is the most important for the work in this thesis. tiwh that vacuum squeezing, where
a=0, is optimal in terms of minimising noise coupling. Wah= 0 all classical noise sources do
not couple to first order, which is a remarkable result. Temghasize the dependenceadfon
the coupling of noise sources, equations 5.36 and 5.37 caewpréten with the assumptions in
equations 5.38, 5.39, and 5.40. They are

rans (11) 207 (A (11) 192G Bn) 1919
vt = el P 4 e P+ 0 P+ |0 120 4 19" 12+ o 1
R ()
(5.49)
rans, 2 n 22
A ol ST Gl < i e

(%)
2 B,n 24
101291275 1 102924 102 2+ |02 2+ |02 .
(x%)

(5.50)

where, the terms which have no dependencea@me denoted byx) and the terms that scale
proportional toa® are denoted byx). Thus, the £x) noise couplings (pump noise, detuning, and
nonlinear coupling fluctuations) can be switched off byisgta = 0.

5.5 Noise budget of a OPA

In this section the variances of the transmitted fields avtiqad as a function of seed power with
model parameters similar to those found in experimentsearfahowing two chapters. The total
noise of the squeezed field is plotted along with the indigidwise sources that make a noise
budget.

5.5.1 Model parameters

Before the noise budgets are plotted, it is useful to exathiegparameters used in the model.

5The termsg%2 are much smaller than the rest of the parameters at the typeedf powers used here, and can be
ignored.
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Cavity parameters

The parameters used in the models here were chosen to bardionihe experimental values of
the experiments presented in chapter 7. The cavity is a yoabbnant cavity with mirror reflec-
tivities, nonlinear gain, and cavity losses were choseretolbse as possible to the experimental
parameters.

Cavity detuning

The variance of the cavity detuning can be written in termsadtyg length changedX, via a
conversion factor [90]

887 = (%) (vl () = (2% (o (550

wherel; is the wavelength of the fundamental field,the wavelength of the harmonic field, and
L the cavity optical path length. Here, the assumpbgg) = ) Is made since the fundamental
and harmonic cavities share the same physical path.

Nonlinear coupling

The noise in the nonlinear coupling strength considered bames from deviation from the phase
matching condition due to temperature fluctuations of th@inear medium. To derivée we first
write the nonlinear coupling constaist,as a function of the phase mismatch paraméier,

e . Ak
€= yozé% schZ, (5.52)

whereyp is a constant depending on the crystal properties, the bessit, \tc., and s the crystal
length. Around the optimal phase matching temperaflizghe phase matching parameter can be
written as

Ak = (T - To), (5.53)

whereT is the crystal's temperature afdis a constant whose value depends on the crystal’s
properties. Fluctuations in the crystal's temperatdiig,cause fluctuations in the nonlinearibg,
via the photo-refractive effect

_ oe

68 - W(Mk,

os dAk
= (aTkﬁ> o,

_ (aa§k> O3T, (5.54)

where the substitutio3 = ¢ has been made. In reference [13£]8A@, anddA® are consid-
ered to originate only due to the photothermal effect andregeefore correlated with each other
and with the intra-cavity fields. Here, a more general cas®iisidered, wherée is not corre-
lated with the detuning parameters. This is the case in&ypxperiments, becasue the fluctuating
detuning will be dominated by acousto-mechanical sources.
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Figure 5.2: The noise budget of an amplitude squeezed state, plottefuaston seed power. (a) shows
the amplitude quadrature, and (b) the phase quadrature.

Variable seed power

To vary the seed power in the model (and in the experimentajiable transmission optic is used
which has transmissiona, as shown in figure 5.1. The seed powey,, and the variance of the

seed field71(g”) vary according to

Pa, = NattPho, (5.55)

\71(,/3”) = natt\71(,A20) +1—nNat. (5.56)
The variance of the input seed field is set?‘_@)) = 103 (relative to the quantum noise limit) for
Pa, = 0.1mW.

Other parameters

In general, the variances of the fieldé*) V(Bn) and (|6A?)2),(|5A%|2), (|5E[2) will have fre-
quency dependence. For simplicity, a single sideband &ecy (sayQ /2= 100Hz) is consid-
ered with typical values of the parameters for this freqyenc

Also set isV,®") =B — 5 10P (relative to the quantum noise limigx = 10~12m, &T =
10-°K, and a parametric gain of 12dP & 0.35Pnes). All parameters used in the model are listed

in table 5.1.

5.5.2 A simplified case

To begin with, consider the noise budget of the amplitude@rabe quadratures with the assump-
tions used for equations 5.49 and 5.50. Figure 5.2 showsdise mudget of (a) the amplitude
guadrature and (b) the phase quadrature as a function ofpesestr for an amplitude squeezed
state. The solid black curve indicates the variance of thesmitted field, whereas the coloured
dashed curves indicate the noise contributions of indaliderms of equations 5.49 and 5.50.

For seed power less than 1, the squeezing level (figure (a)) is limited by intra-cgvit
losses (dashed blue curve). At higher seed powers the spiepadrature becomes degraded
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Figure 5.3: Noise budget of an phase squeezed state, plotted as a fuisettal power. (a) shows the
amplitude quadrature, and (b), the phase quadrature.

by classical noise on the seed field (dashed red curve, thddim in equation 5.49) and the
pump field (dot-dashed red line, the fourth term in equatig®p With the assumptions made in
equations 5.49 and 5.50 there is no coupling of detuningermisionlinear coupling noise into the
amplitude quadrature.

At very low seed powers (less than#6W) the anti-squeezed quadrature, figure 5.2 (b), is
limited by the quantum noise from the output port. At these fmwers the squeezed state is a
near minimum uncertainty state. At larger seed powers, #tenihg noise (dotted pink curve)
dominates all other noise sources in the phase quadratinitst wthe amplitude quadrature re-
mains squeezed. Large anti-squeezing is not desirablecagduirements for the locking and
measurement stability are increased.

Figure 5.3 (a) and (b) shows the amplitude and phase quaglratth the pump set to squeeze
the phase quadrature. The phase quadrature is below thaahketlimit for only very low seed
powers as the detuning noise (dotted pink curve) degragesgbeezing as the seed power in-
creases. A comparison of the noise budgets figures 5.2 arghbvs that producing amplitude
squeezing rather than phase squeezing has advantages. védgdow seed power is optimal
because the coupling of classical noise sources into theezed beam is minimised.

5.5.3 Including cavity detuning

Amplitude squeezing is now studied without the simplifyamgsumptions from the previous sec-
tion. That is we consider the case where

A0, AP £ 0,
€ #£ €
TA£a b*£b

Figure 5.4 (a) and (b) shows the noise budget of an amplitgdeezed state with a constant
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Figure 5.4: The noise budget of an amplitude squeezed state plottediastzoin seed power with different
cavity detunings. In (ad?/(2m) = AP/(2m) = 0.05%FWHM, in (b)A2/(2m) = AP/ (21) = 0.5%FWHM.

offset in the cavity detuning at both frequencies. The valuged were

A%/ (2m) = AP/(2m) = 0.05% FWHM ([in figure 5.4 (a)]
A*/(2m) =AP/(2m) =05% FWHM [in figure 5.4 (b)]

These are typical values that might be expected in a labgrdtee to residual offsets in the cavity
error signal. Also included is an offset from phase matctipgetting

AT =10mK

Figures 5.4 (a) and (b) show that a constant offset in deguoauses the detuning noise to cou-
ple to the amplitude (squeezed) quadrature. The phaseajuesl are not plotted here but they
closely resemble the noise budget of figure 5.2. With thetiegvdetuned by 0.05% of their re-
spective FWHM’s, the detuning noise (dotted pink curvejrgilar magnitude to noise due to the
input fields (solid red curve). With the cavity detuned by%.5f their respective FWHMs, the
cavity detuning fluctuations increase to become the domiclassical noise source, limiting the
squeezing at seed powers above 8. Thus, although amplitude quadrature squeezing offers
some immunity to detuning fluctuations, they can be signitiead may still limit squeezing.

5.6 Discussion of the squeezing from a parametric down-convter

The noise budgets in figures 5.2 and 5.3 show that amplituddrgture squeezing is easier to
obtain in the presence of classical noise than phase quagisqueezing, but given realistic con-
ditions, amplitude quadrature squeezing can still be disgtdy laser noise in the seed field, and
pump field (figure 5.4). More importantly, the coupling of tblassical noise sources into the
squeezed beam can tened offby settinga? to 0. a2 = 0 can be readily achieved experimentally
by ensuring the input seed field has zero coherent ampliw_ﬂe:(O) and operating below the

6Note that, in this chapter we consider the effect of cavitywdimg and phase mismatch separately. In chapter 10
phase mismatch is considered to be a source of detuning.
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OPO threshold. Below threshold OPO quadrature varianees@n equations 5.36 and 5.37 re-
duce to those given by the semi-classical analysis of an @&#epted in the background chapter,
i.e. equations 3.125 and 3.126. In this case, the only fltionmthat enter the squeezed field are
from the input port, the intra-cavity loss, and the outputtp&ince these three fields are all the
vacuum fluctations witwl("z) = 1, the quadrature variances become much simpler

Vit = e P+ o o+ 19,
= 00?2+ 0GR P+ 1872,

(5.57)

Viaeh (5.58)

The result that the classical noise sources can be previntactoupling into the squeezed state,
to first order, is important. It essentially means that tlassical noise sources such as pump noise
and cavity detuning, which are typically large at low freqcies, do not need to be reduced in
order to produce low frequency squeezed states as loag-a® is maintained. In the following
chapters experimental evidence is presented that confiimeesult.

In this simple study, relatively small values for cavity uleihgs were chosen and only very low
seed powers were plotted. In many experiments seed powermahe order of 10-60mW (e.g.
[22, 135<]). It can be seen that for 10mW seed power, and theesathosen fode, 5A@, 5A®)|
Vl(f'z“'”),vlgi”), there will be no squeezing produced at 100Hz. One othet pwivote from the noise
budgets is that often more than one noise source degradegukezed state. This may be why
the classical noise cancellation techniques in experisngit, 22, 120] were not able to recover
squeezing below 10kHz.

Table 5.1 Parametric down converter parameters
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Parameter | Symbol | Value | Units
Fundamental Wavelength Aa 1064 nm
Harmonic Wavelength Ab 532 nm
Input mirror Transmission (&) Ta 0.0005 -
Input mirror Transmission (&tp) TR 0.025 -
Output mirror Transmission (&t,) T 0.1 -
Output mirror Transmission (&) TR, 0.0005 -
Round Trip Loss (ady) T2 0.0085 -
Round Trip Loss (akp) TP 0.022 -
Average detuning (at;) A%/(2m) | 0—0.5% | FWHM,
Average detuning (atp) AP/(2m) | 0—0.5% | FWHM,
Seed power Piao) 0.1 mw
Pump power (Bin) 0.35Phres W
Transmission of Attenuator Natt 1-108 -
Variance of seed field before att. Vl(é") 10° rel SNL
Variance of pump field Vl(z"‘) 5x10° | rel SNL
Nonlinear coupling parameter 3 150 1/s
Optical Path Length L 0.67 m
Cavity length Fluctuation Ox 10712 m
Phase mismatch constant ¢ 150 1/m/K
Offset From phase matched temp AT 0-10 mK
Crystal Temperature Fluctuationg  oT 10 MK




85.7 Summary

5.7 Summary

A calculation of noise sources that can limit the productibsqueezing has been presented. The
calculation showed that noise on the pump field; the cavityrdeg; and the nonlinear coupling
are all coupled to the squeezed field via a beat term with teeage intra-cavity field, and as
such can be decoupled from the squeezed beam by satfin@. Thus, vacuum squeezing in an
OPO is decoupled from these major noise sources.
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Chapter 6

Sqgueezing in the audio gravitational
wave detection band

In this chapter presents an experimental comparison ofgheezing produced from an optical
parametric amplifier, and from an optical parametric oattll operated below threshold. The
results confirm the linear dependence of noise coupling erirtra-cavity power of the funda-
mental field and that sub-threshold OPO offers advantagesrirs of producing squeezing at low
frequencies. This chapter culminates with the demonstraif squeezing measured over much of
the audio gravitational wave detection band. This chaptérased on the work presented in the
paper:

Squeezing in the audio gravitational wave detection band

K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. GERyE. McClelland and
P. K. Lam.

Phys. Rev. Lett93, 161105 (2004).

6.1 Introduction

Many previous experiments and proposals to produce sqdetaes at low sideband frequencies
were based on cancellation of classical noise to recovéedsgueezing [21-23, 120, 123, 124].
In this chapter an alternate technique, the suppressidreafdupling of classical noise sources, is
shown to be extremely effective. We compare OPO and OPA tiperaf the parametric down-
converter and confirm that the presence of a coherent seéd@ B operation) leads to dramatic
degradation of the squeezing at low sideband frequenciesodtlassical noise coupling. The sys-
tem operating as a sub-threshold OPO displays immunityetedime technical noise that degrades
OPA squeezing. This result is the experimental demongstraif the theory described in chap-
ter 5. We report the generation of high purity broad-bandesging from a sub-threshold OPO
at sideband frequencies from 280Hz to well above 100kHzertog a large fraction of the audio
gravitational wave detection band. The squeezing levelsored at 11kHz was 4.0dB).6dB
below the shot noise limit.

This chapters is laid out as follows: section 6.2 detailsekgerimental setup; sections 6.3
and 6.4 present and compare measurements of squeezedrstat€A and sub-threshold OPO;
and section 6.5 presents the conclusions drawn from thisrimpnt.

6.2 Experiment Details

The experimental setup is shown in figure 6.1. The laser was @/att continuous-wave Nd:YAG
Non planar ring oscillator operating at 1064nm. This is di@s type of laser and wavelength cur-
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Figure 6.1: Schematic of the experiment. The parametric down-conv@ateeled OPA/OPQO) was pumped
with light from the SHG and was seeded with a bright field/vaaufield. The squeezed state (SQZ) was
detected on a homodyne detection by interfering it with theal oscillator (LO). The control electron-
ics are indicated with dashed lines. VA-variable attenyd#tC-Modecleaner cavity, PZT-Peizo-electric
transducer, BPF-band pass filter, ED-envelope detectggistage, PM-phase modulator, M-mixer, DC-
dichroric mirror, PD-Photodetector, SPD-Spit photodited-1-Faraday isolator.

rently used in all gravitational wave detectors, thougly thee amplified versions to give higher
power. The majority of the laser power was frequency doubleal second harmonic generator
(SHG) to produce a pump beam of up to 350 mW for the parametsadconversion processes.
The SHG was constructed from a type-| phase-matched, 5%dddp®:LiNbO; hemilithic crys-
tal and an external mirror of reflectivifg, = 96% at 1064nm anB, < 4% at 532nm. The curved
surface of the crystal was coated for high reflectivity (HRY dhe flat surface coated for anti-
reflectivity (AR) at both 532nm and 1064nm. A small fractidrtloe laser field was split-off and
spatially filtered using a mode-cleaner cavity [85], to jideva local oscillator field for the homo-
dyne detection system, and to use as a seed beam when redthdyh the laser, modecleaner
and SHG are essential components, the details of theseedavare not critical for the success of
this experiment. Further details on the SHG can be found3a][1

The cavity of the parametric down-converter had similarstarction to the SHG. The nonlin-
ear medium was a type-l phase-matched, 5% doped MgO:LiNtednilithic crystal. The curved
surface of the crystal was coated for HR and the flat surfaced&®ed at both 532nm and 1064nm.
A singly resonant standing-wave cavity was formed at 1064etmveen the HR surface of the
crystal and an external mirror of reflectivifi? = 4%, T.2 = 96%. The parametric down-converter
was pumped with 200mW of 532nm light that double passed dirdlie crystal, resulting in para-
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Table 6.1 Experimental parameters of the parametric down-conwerte

Parameter | Value | Parameter | Value

Aa 1064nm Seed power 1-6000nW
Ab 532nm Pump power 100mw
Cavity type Linear - Standing Wave T&; 4%
Resonance conditioh Singly Resonant L&t 0.7%
Nonlinear medium | MgO:LiNbO3 5% Nesc 85%
Crystal dimensions | 7.5x2.5x5 mm Nhom 93%
Crystal geometry Hemilithic Ndet 93(+-2)%
Finesse (at 1064nm) 133 Ntot (Without FI) | 73(+2)%
FSR 3718MHz Ntot (With FI) 66(+2)%

metric gain of 7dB. Results were taken in OPA operation wétldspowers varying between 1nW
and W and in sub-threshold (unseeded) OPO operation. The cagisynot actively controlled
during the measurements presented in this chapter. Thd bawéty linewidth and stability of the
laboratory environment was such that, once tuned to resenaanually, the cavity would stay on
resonance for approximately 10 seconds, which was suffitirae to take results.

The squeezed state was detected using a balanced homodgeéotesystem which had
a common mode rejection of 55dB. The homodyne photodeteetere built around ETX 500
photodiodes with quantum efficiencyer = 93(+2)%!. The cavity escape efficiency wagsc=
85%. The homodyne fringe visibility wags = 96.5%, giving Nnom = Vis’> = 93%. The total
detection efficiency was thereforgo: = NesdlhomNdet = 73(£2)%. Whilst in OPO operation,
a Faraday isolator (FI) was inserted between the OPO caniliytlae photodetectors to reduce
local oscillator backscattered light. The Faraday isolatoduced an additional 9% loss and so
the total detection efficiency with the Faraday isolator was = 66(1+-2%). A summary of the
parameters used in the experiment is contained in table 6.1.

The control electronics in the experiment are indicated aghed lines in figure 6.1. The
Tilt Locking technique [136] was used to lock the modecleazavity, and transmission dither
locking to lock the SHG. The dither for the SHG control loopsviaposed by applying electro-
optic modulation to the SHG nonlinear crystal. Quantum exddgking (see chapter 9) was used
to lock the homodyne detection phase. The quantum noisénpakror signal was generated
by dithering the local oscillator phase and demodulatirgdifference photocurrent noise power.
The noise power was detected using a spectrum analyzere(hg#4407B, zero span at 2MHz,
RBW=300kHz, VBW=30kHz) then demodulated with a lock-in difigr (Stanford Research Sys-
tems (SRS)-SR830) and filtered before being fed back to PZh&. stability of the homodyne
detection phase enabled results to be taken without lodkimgarametric down-converter cavity.
All spectra were taken on a SRS SR785 signal analyser anddiinmain data were taken on an
Agilent-E4407B spectrum analyser.

LErrors for the detection efficiency were estimated from tioevgr meter calibration uncertainty. Recently,
Vahlbruchet al. [18] inferred the detection efficiency of the ETX500 photmtbs to be 952% using a measurement
of squeezing. In the the Vahlbru@t al. measurement the protective window of the photodiode had bemoved,
unlike this experiment.
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Figure 6.2: (Best viewed in colour) The OPA spectrum 2kHz-100kHz witfiedlent seed powers. The
variance of the seed beam with powgiVé was less than 4dB above the SNL across the spectrum.
RBW=128Hz. Electronic noise (at -12dB) was subtracted fadirtraces.

6.3 Squeezing from an OPA

Spectra of the squeezed states generated from the expedpenated as an OPA are shown in
figure 6.2. Spectra were taken for six different seed poweta/den 1nW and |8V, and are
plotted relative to the shot noise limit (SNL). At seed powé&fdnW the spectrum is essentially
flat at -3.5dB with the exception of a feature at 34kHz and & p¢&20kHz which was due to the
guantum noise locking modulation. At the seed power of 80thé/,spectrum shows the feature
at 34kHz has increased in amplitude and additional noiseesept below 15kHz, degrading the
squeezing amplitude to modest levels below 10kHz. The natufe in the spectrum at 8kHz
was also present in the pump intensity noise spectrum aneéxyescted to have coupled into the
squeezed field via the nonlinear interaction with the icteity fundamental field. As the seed
power was increased further, the noise floor and featurdgispectra continued to increase. By
6UW of seed power, squeezing below 40kHz was no longer obdervabese results clearly show
contamination of the squeezed state by classical noisee®at high seed power. Whilst this data
was taken, no experimental parameters other than the iepdtgower were varied, indicating it
was the noise coupling that was changing with seed powéaer#an the noise sources.

The noise power increase of the squeezed state in propaditive seed power is evident in
figure 6.3, which shows the integrated noise power of the idafigure 6.2 between 5-6kHz as
a function of seed power. The experimental points indicdtgdx’ can be compared with: a
fitted line which is the sum of classical and quantum noisevec((i); squeezed quantum noise,
curve (i), and a classical noise source which has lineaendgnce on seed power, curve (iii).
Large uncertainties in the experimental data were expdotea number of reasons. Firstly, the
OPA cavity length was not actively controlled because theal gower was insufficient to obtain
a cavity error signal. Instead the cavity was simply tunedesonance manually, and left there
whilst data was taken. Secondly, the seed power had unuigtai The seed power was inferred
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Figure 6.3: The average noise power from 5-6kHz as a function of seed pewgerimental data indicated
by ‘x’, model fit given by curve (i). Electronic noise (at -1Bpiwas subtracted from all data.

by attenuating a beam of known power (measurable on a powrmesing a neutral density

filter wheel (New Focus 5214-B). As the neutral density fiterere changed, misalignment of the
seed beam to the cavity could occur, which changes the ansdsetd light that is coupled into

the cavity. Finally, the relative phase of the seed and pueig firas not controlled. This meant
that the intra-cavity power of the fundamental field couldnsignificantly depending if the seed

field was amplified or deamplified. Even with the large undeties expected, the data roughly
follows the linear trend predicted by the theory in equatiém9 and 5.50.

Further evidence of the seed field enabling contaminatichefkqueezed state can be seen
from the data in figure 6.4. Curve (i) was taken with the sedd fikocked in an attempt to operate
the experiment as a sub-threshold OPO, to produce vacuupesgg. Large peaks between
300Hz and 700Hz were observed. This low frequency containmavas attributed to light from
the local oscillator field backscattered from the phototters and seeding the OPO cavity. Note
that even with the photodetectors tilted at an angle to ptenagro-reflection, the scattering from
the front face of the detectors, which was estimated to béxeftder of 1pW, was sufficient
to seed the parametric process and cause parametric aatfifi@nd interaction with classical
noise sources. A Faraday isolator was placed between thity ead the detection system to
reduce the backscattered light. With the isolator in plheenoise coupling via in the parametric
amplification process was reduced to an immeasurable Evashown by curve (ii). The residual
peaks at 150Hz and 250Hz in both the detection system noisedital the squeezed spectra were
due to pick up from the electronic mains (not shown in thisrigyu

In figure 6.3, a single red ‘X’ has been placed to indicate #ia goint where the OPA cav-

2The power of the backscattered light could be quantified Imjnithe OPO cavity off resonance, so it acted
like a HR mirror reflecting the backscattered seed to the liyme detection system, then measuring the interference
of the backscattered seed with the local oscillator. Froenftinge visibility and known local oscillator power the
backscattered seed power could be obtained.

83



Squeezing in the audio gravitational wave detection band

N
o

—_
a1

—_
o

(i) Without Isolafor

Power Relative to the SNL [dB]
)]

yhe

— 3 : 73
Frequency[Hz] 10 3.2x10

Figure 6.4: The OPO spectrum from 100Hz to 3.2kHz without (i) and withttie Faraday isolator between
the OPO cavity and homodyne detector. RBW=8Hz. Electrooisasn(not shown) was not subtracted

ity was (unintentionally) seeded through the output caupjebackscattered light from the pho-
todetector of order 1pW. The power value of the red x has bealed to accommodate for the
difference in coupling from the HR side of the cavity (blacg)>and the output coupler (red x).

6.4 Squeezing from an OPO

The spectrum of the squeezed state produced using an OPOas §ly curve (ii) in figure 6.5.
Squeezing continues to tens of MHz, as reported in [135].v€ () shows the spectrum of the
homodyne detection systémwithout squeezed input. This indicates that the measureimishot
noise limited at frequencies above 1kHz and is contaminatdcequencies below 1kHz. Curve
(iii) is the electronic noise of the detection system. Biwatd squeezing was measured from
280Hz to 100kHz, with the exception of a locking signal peaR@kHz. Squeezing could not
be measured at 150Hz and 250Hz due to power supply harm@ceezing data at frequencies
lower than 100Hz could not be taken since the stability ofsfpgeezing was insuffient for mea-
surements on the required time scale (because the OPO ity was not actively controlled)
and because the homodyne detection noise floor was abovdhadse limit. The roll-up in
noise power in the homodyne and squeezed light traces bedble Was due to excess noise in
the homodyne detector system. This is likely due to noisecesusuch as scattered light [17]. A
detailed investigation into these noise sources is predentsection 7.5.

Evidence that classical noise is not coupling to the squbeeaeuum state can be obtained by
comparing the measured purity to the purity calculatedntalinto account the parametric gain
and the losses. If no classical noise sources are presantiibesqueezed and anti-squeezed

3In this thesis we have chosen to use the term 'homodyne démtendise floor’ or 'detection noise’ rather than
the more common ’shot noise’ for describing the noise powenaasured by the homodyne detector. This is because
although at high frequencies the detection system is indbetinoise limited, at low frequencies the noise deviates
away from the calculated shot noise.
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Figure 6.5: Measured noise spectra for the homodyne, curve (i), theezmaelight, curve (ii), and the
electronic noise of the homodyne detection system, cuileTtie traces are pieced together from three
FFT frequency windows: 100Hz-3.2kHz, 1.6kHz-12.8kHz, 8r8kHz-100kHz. Each pointis the averaged
RMS value of 500, 1000 and 2000 measurements made in thectegpenges. The RBW of the three
windows was 8Hz, 32Hz and 128Hz, respectively. The ele@tmrise was -12dB below the quantum noise
from 10kHz-100kHz. The 20kHz peak arises from the homodyadutation locking signal and is labeled
(m). Peaks at 50Hz harmonics are due to electrical maindysualpeled (e).

guadratures are given by

Vsqz = M‘i‘]—_ntoh (6-1)

G
Vasiz = NtotG +1—Ntot, (6.2)

where the gain parameteg, is given in equation 3.122. The purity of the squeezed sajaven
by the product

1
G

Figure 6.6 shows the OPO squeezed state at 11.2kHz as tratialetghase was varied. This
data was taken without the Faraday Isolator between the GRITy @nd detection system. The
measured and calculated squeezed state purities are

VsgVasqz = [( +§>—2} Ntot(1—Ntot) + 1, (6.3)

which agree, confirming that there is no excess noise at teagsarement frequency.

For the above measured value we have 0&gg= 0.43(1-0.04), Vasq,= 4.55(4-0.04) (with
errors due to standard deviation of noise), and calculaafitbwve used; =5 (i.e. 7dB),Ntot =
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Figure 6.6: The squeezed state at 11.2kHz as the phase of the homodymeiés.v RBW=1kHz,
VBW=30Hz. Electronic noise (9dB below SNL) was subtracteahf the data.

73(+£2)%.

6.5 Chapter summary

In this chapter the parametric down conversion process & @Rl sub-threshold OPO were
compared experimentally. It was shown that excess noispl@duo the squeezed field in direct
proportion to the seed field power, agreeing with the resedivdd in chapter 5. By eliminating
the seed field from the parametric down conversion procesg;dupling of the excess noise could
be ‘switched off’. This resulted in broadband squeezing mitov280Hz.

The experiment presented here was not suited to producimgezing at very low sideband
frequencies, or over long time scales, because the OPQ ¢denith was not actively controlled.
In the following chapter we introduce an experiment thatpieed stable squeezed states.
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Chapter 7

Stable audio frequency squeezing from
a doubly resonant OPO

This chapter documents the production of stable, low fraquesqueezing from a doubly reso-
nant OPO experiment, and examines the limitations of sdougeneasurement imposed by the
detection system. Much of the work presented in this chapésrpublished in the journal articles:

Squeezed State Generation for Interferometric GravitatiéVave Detection
K. McKenzie, M. B. Gray, S. GoR3ler, P. K. Lam, and D. E. McCleld,
Class. Quant. Grak3, S245 (2006)

Technical limitations to homodyne detection at audio fragties
K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland,
Appl. Opt. 46, 3389 (2007)

7.1 Introduction

The first experimental demonstration of squeezing in thécagidvitational wave detection band
was presented in the previous chapter. That work showedhb@PO intra-cavity power at the
fundamental frequency was the coupling mechanism for mamersources into the squeezed
field. By eliminating the seed field, vacuum squeezing at l@etsand frequencies could be
obtained. That simple insight has been the cornerstonel subkequent low frequency OPO
squeezing experiments [17, 25, 26, 125, 126].

Elimination of the intra-cavity power at the fundamentaduency meant removing the co-
herent seed field and reducing backscattered light, whiakdcact as a spurious seed field. By
removing the coherent seed field, the only coherent phasecrafe for the singly resonant OPO
cavity resonance was also removed and therefore no camiggHeontrol signal could be obtained.
Without active cavity length control, the squeezing wablstfor only tens of seconds, insufficient
length of time for low frequency applications. Two solusowere proposed to allow stable, low
frequency squeezing to be produced from OPO’s without arevhieeed fieltl These are:

1. Add a frequency shifted sub-carrier field to sense thdysimegonant OPO cavity resonance
condition.

2. Use a doubly resonant OPO cavity and the pump field to seeseatity resonance condi-
tion.

1The quantum noise locking technique could also be used tiroatcavity error signal, however it may be difficult
to obtain the required stability using this technique.
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Both of the above techniques have proven successful. Thefdissuency shifted subcarrier
field for cavity control in singly resonant OPO has been destrated by Vahlbruckt al.[26, 137]
and Godeet al. [19]. Using the pump field in a doubly resonant OPO to obtaimatg control
signal has also been successfully demonstrated previbyslyaurat [23]. This was the method
chosen for the experiment described here.

7.2 OPO design considerations

7.2.1 Doubly resonant OPO vs. singly resonant OPO

The primary advantage of doubly resonant OPOs over singlynant OPOs for producing (low
frequency) vacuum squeezing is the simplicity of obtairéncavity error signal. The pump field
can be used to readout the cavity length error signal andmeauier field is required. There are
also other advantages of doubly resonant OPOs, three iampanbes are:

e The pump field amplitude is resonantly enhanced, giving &adrigionlinear gain for the
same input pump power. This allows the possibility of insieg the transmission of the
output coupler at the fundamental frequency to increasegbape efficiency.

e The doubly resonant cavity naturally assures perfect maehing of the interacting fields.
Since the harmonic and fundamental fields share the sameabpévity, the ratio of the
waist sizes isy/2 (the fundamental waist is larger than the harmonic) whicexactly the
optimal relative waist sizes fort® nonlinear interaction [138].

e Any spatial component of the pump field that is not matchechéodavity mode will be
rejected from the cavity. This means photothermal effeutsiced by the pump light and
nonlinear effects like GRIIRA [131] are minimised becauséydnteracting light enters.

There are also disadvantages associated with doubly nesO®R0O, which require mitigation
to operate effectively. These are:

e The intra-cavity dispersion of the fundamental and harmdields causes the resonance
frequencies to be offset. In this case, when co-resonace mlmteoccur, nonlinear inter-
action is interferometrically suppressed. There are twocas of dispersion that need to
be considered: dispersion from the dichroic mirror coatiagd dispersion introduced from
phase mismatch in the nonlinear medium. Dispersion fromamaoatings has a static value
and can be negated using a tunable dispersive element,\an shappendix C.2. The dis-
persion introduced by phase mismatch is the more problemAtidoubly resonant cavity
modifies the temperature dependence of the phase matchivegfoom the single pass non-
linearity, significantly narrowing the phase matching FWH&mperature, see chapter 10
and figure 10.2. This means there are more stringent tenuperstability requirements

e The photothermal effect [76] associated with absorptiothefpump field in the nonlinear
crystal. This can cause length instabilities such as dtiestability.

2Dispersion of the interacting fields is also seen in singdprant systems where the pump field makes double pass
through the nonlinear medium and dispersion is presentdetadled in Andrew White’s thesis [89], however this effect
is generally much smaller.
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7.2.2 Traveling-wave vs. standing-wave cavity

Another design consideration is whether to use a travetingtanding-wave cavity. A traveling-
wave cavity offered an advantage for producing low freqyesquieezed states: the traveling-wave
OPO has inherent isolation to backscattered light fromaballoscillator of the detection system
(or light from the gravitational wave detector dark port)high can spuriously seed the OPO.
The isolation of the traveling-wave cavity to backscatidight occurs as the backscattered light
occupies the mode which propagates in the opposite dire¢tiche squeezed beam. In low
frequency squeezing experiments that use standing waiteesa¥araday isolators were required
to reduce backscatter and prevent spurious seeding of tkie(6d2 section 6.3 and also [24, 26,
128]). The use of Faraday isolators can add considerableabpss, typically 5-10% single
pass [139]. With some effort, considerably less les$%) should be achievable [140].

With the above design considerations in mind, a bow-tiecliag-wave doubly resonant OPO
cavity was chosen for this experiment. Details of the experit are presented in section 7.3.
In section 7.4 we present measurements of stable, audiogney] vacuum squeezing with up to
5.5+0.2dB of quantum noise reduction. In section 7.5 an invatitig into excess low frequency
noise in homodyne detection systems is presented.

7.3 The experiment

The experimental setup is shown in figure 7.1. The basic detupe experiment was similar to
that presented in chapter 6, although details of the las¢G,%nd mode-cleaner were different.
Details of these three devices can be found in appendix Cddhbly resonant OPO was a bow-
tie cavity with an optical path length of 756mm. The geomeétighown in detail in figure 7.2. The
cavity was formed from a flat input/output mirror, a flat HR/H& 532nm/1064nm) mirror and
two concave HR/HR mirrors with ROC = -150mm. The two cavityistewere located midway
between the flat mirrors and midway between the concave miwith sizes at 532nm ab;, =
15Qum andow, = 50um, respectively. The nonlinear medium was a periodicalliegpdquasi-
phase matched) potassium titanyl phosphate (KTiOPO4etc&PKTP hereafter) crystal from
Raicol Crystals [141] which was placed at the smaller of the waists. This was a rectangular
prism 10mm in length with end faces polished and AR coatedtt twavelengths. The crystal
was housed in custom built peltier (thermo-elecrtic coaleiven oven, which was held at 3830
using a commercial temperature controller (Newport 3040).

Both MgO:LiNbO; and PPKTP crystals were trialed in the doubly resonant OPGTIP was
chosen for these experiments due to the higher nonlinglritader phase matching temperature,
and smaller photothermal effect. A comparison of the perforce of the doubly resonant OPO
with two nonlinear media is presented in appendix B.

The cavity input/output coupling mirror (input coupler foe pump field,output coupler for the
squeezed field) had transmissifii= 3%, T2, = 10%. Transmissivities were chosen to: maximise
the circulating pump power, by matching the transmissicdhe@pump wavelength to the expected
round trip loss and impedance match the pump cavity; andvolggh escape efficiency for the
squeezed field. The round trip losses of the cavity ise= 0.9(+0.1)%, L% = 2.2(+0.1)%
determined by measurements of the cavity linewidths. Theali loss at 1064nm is consistent with
the losses expected from the AR coatings and non unity riftées of the HR mirrors, plus the
linear absorption of PPKTP measured in previous experisn@1-0.3% per cm) [19]. The round
trip losses with output coupler transmission gave the gastape efficiency afesc= 92(+1)%.

An additional optic was placed in the cavity to compensatedfspersion introduced by the
dichroic mirror and crystal coatings, labeled DCW for dispen compensation window. This

89



Stable audio frequency squeezing from a doubly resonant OPO

Lock-in
102kHz ™M

Signal
Analyser

Figure 7.1: Schematic of the experiment. The OPO was pumped with the ShtBaas seeded with
vacuum. The bow-tie OPO cavity was resonant for both funadahand harmonic frequencies, containing
a PPKTP crystal and a dispersion compensation window (D@Wintrol electronics are indicated with
dashed lines. SQZ- squeezed state, LO-local oscillatorNldecleaner, PZT-peizo-electric transducer,
BPF-band pass filter, ED-envelope detector, G-gain stabi€3-Second harmonic generator, PM-phase
modulator, PZT-piezo electric transducer, DC-dichroicrori PD-Photodetector, M-mixer. Modematching
optics are not shown.

was a 1/4 inch thick, flat-flat AR/AR coated BK7 optic. The rdumip cavity dispersion was
nulled (to the nearestrRinteger) by varying the angle of the DCW, which due to the elisn

in glass, gives a differential phase shift between the foratdal and harmonic frequencies. This
ensured both fundamental and harmonic cavities were rasemaultaneously, giving the optimal
nonlinear gain. See appendix C.2 for additional details.

The cavity was locked using the PDH technique [142, 143 wie error signal derived from
the reflected pump field. The error signal was fed back to a Pa@¥déd to a cavity mirror,
to stabilize the cavity length. The PZT was single layer @etrwhich was glued on a custom
built mount and reaction mass. The primary piston-modenasce frequency was approximately
200kHz, enabling a unity gain frequency of approximateli 38 in the length control loop. The
design and characteristics of the PZT mounted mirror aralddtin section C.3. The OPO was
pumped with approximately 75mW of 532nm light which, duehe tavity enhancement, gave
an effective pump power o£2.8W, resulting in a parametric gain of 15dB. The OPO caviagw
vacuum seeded and operated below threshold for reasonsusiyvdescribed, thus a squeezed
vacuum field was produced.

The squeezed vacuum was steered to a balanced homodyni®desang four dichroic beam-
splitters which separated it from the reflected pump field. asemate the small loss(1%)
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Figure 7.2 OPO cavity design. Length dimension are millimeters, asagh degrees.

from the dichroic beamsplitters to give a transmission igfficy of nope = 99(+0.5)%. The lo-
cal oscillator power was 380V and fringe visibility was 98.5(0.5)%. The photodetectors used
ETX500T photodiodes which had the protective windows remaov he common mode rejection
of the homodyne detector was over 60dB. The detection phaseantrolled using the quantum
noise locking technique, with the error signal generatedithering the local oscillator phase and
demodulating the homodyne photocurrent noise power. Thig signal was fed back to PZT2.
The values of the experimental efficienciggssc = 92(+1)%, Nopt = 99(40.5)%, Nhom =
97(+1)%, andnge: = 93(+2)%, give an estimate for the total efficienayi: = 84(+2)%.

Table 7.1 Experimental parameters of the doubly resonant OPO

Parameter | Value | Parameter | Value
Nonlinear medium | PPKTP Cavity type Traveling-wave
Aa 1064nm Ab 532nm

Seed power - Pump power <70mwW

T2, 10% TR 3%

Finesse (at 1064nml) 55 Finesse (at 532nm)|) 117

L&; 0.9¢0.1)% || FSR 397MHz

Nesc 92(x2)% Nhom 97(x1) %

Ndet 93(*2) Ntot 84(+£2)%

7.4 Squeezed state measurements

Curve (i) in figure 7.3 is a measurement of the squeezed vagpatira. Curve (i) shows the
noise power of the homodyne detection system, which ca@scigith the calculated shot noise
limit (curve (iii)) at high frequencies and has additionalige below 1kHz. Curve (iv) is the
measured electronic noise floor of the detection systemad®rand quantum noise reduction can
be seen, with the maximum reduction of 5:8(3)dB in the 2kHz-100kHz band. The squeezed
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Figure 7.3: Measured noise spectra for the homodyne noise limit; theeszpd light; the electronic noise

of the homodyne detection system; and the calculated slsx himit (SNL).The curves are pieced together
from three FFT frequency windows 100kHz-1.024kHz, 3.2KH0DHz, and 200Hz-10Hz. The RBW of the

three windows was 128Hz, 4Hz, and 1/2Hz, respectively. aalb0Hz harmonics are due to electrical
mains supply.

vacuum curve is below the calculated shot noise limit atlsde frequencies above 70Hz, with
the exception of the power supply harmonics in the eleatrowise (at 50Hz multiples). The
roll-up in noise power in the detection and squeezed spbelmv 1kHz is partly attributable the
increase of the electronic noise at these frequenciesstalgd a result of excess noise sources in
the detection system. Noise sources in the homodyne datesststem are discussed in section 7.5.

Figure 7.4 shows spectra of the squeezed state, curve dih@modyne detector, curve (ii),
with electronic noise subtracted and plotted relative éodficulated shot noise limit. At frequen-
cies above 1kHz, the squeezed curve is8BR)dB below the shot noise limit, and below 1kHz
the squeezed amplitude reduces with reducing frequencg. siheezed curve is below the cal-
culated shot noise limit at frequencies above 50Hz. Oveetttiee measurement band, the noise
power of the squeezed curve is lower than that of the detestietem, though the separation be-
tween the two curves reduces at low frequencies. It may begtitathat this is a measurement
of squeezing across this entire frequency band. This is eao¢ssarily the case, since classical
correlations or a reduction in the excess noise of the hommdtector could be responsible for
a reduction in the noise power. Thus we consider the measmteoh squeezing to be below the
calculated shot noise limit, not the noise limit of the détatsystem.

The high frequency spectra of squeezed and anti-squeezmitaqures are shown in fig-
ure 7.5 (a). The magnitude of the squeezed and anti-squegeaedatures reduces at high frequen-
cies due to the cavity pole (FWHM=7.2MHz). At frequenciepraching 10MHz, the quadra-
tures tend to the vacuum state. This data shows that thavedyaliow OPO cavity linewidth does
not suit high frequency squeezing measurements. In thetafiamal wave detection band the
attenuation due to the cavity pole is negligible (less th&i®).

Figure 7.5 (b) shows a measurement of the squeezed stat@ldiA@s a function of time.
Here the shot noise, curve (i), the locked squeezed noisee €ii), and the electronic noise, curve
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Figure 7.4: Measured noise spectra for: (i) the squeezed state; (iintmeodyne detection noise limit;
(iii) the calculated shot noise limit; and (iv) the electionoise of the detection system. The curves are
pieced together from three FFT frequency windows 100kH24kHz, 3.2kHz-160Hz, and 200Hz-10Hz.
The RBW of the three windows was 128Hz, 4Hz, and 1/2Hz, rdsbye

(iii), have been averaged 10 times. The locked squeezeedsusvan average of 540.2)dB
below the shot noise limit. Curve (iv) shows the noise povi¢he squeezed state as the detection
phase was varied. This shows that the anti-squeezed quealimiapproximately 14dB above the
shot noise limit, and the squeezed quadrature atfB)dB below the shot noise limit. The
difference between the magnitude of the squeezed quadrattine locked and unlocked curves
may be due to phase noise added to the system when using ouaaise locking, or statistical
variation.

With the electronic noise floor subtracted from all of thevas; the measured magnitude of
squeezing can be compared with that expected from the mamligain and the total detection
efficiency. The measured squeezing (taken from the lockt) dad calculated values are

6.5+0.2dB, (Measured) (7.1
7.3+0.4dB, (Calculated) (7.2)

where the calculated value was obtained from equation ég.difference in these values could
be explained by an either an extra 3% loss. or by an rms phgegdrji the detection phase of 0.035
radians, which couples a fraction of the anti-squeezedratia@ noise into the measurement [20].
The measured and calculated (equation 6.3) squeezed stitevyas

VsqNaqu — 4.7 j: 0.3. (Calculated) (7.4)

The squeezing at the output of the OPO can be inferred bygdkio account the photodetec-
tion and homodyne efficiencies and optics loss. The infemadnitude of the squeezing out of
the OPO is of interest when modeling the squeezing enhamteshinterferometers, such as in
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Figure 7.5: (a) The frequency dependence of the squeezed and antizegligeadratures from the OPO.
This show the reduction of squeezing and anti-squeezinditamp outside the cavity linewidth. Also
shown are theory curves with parametric gain of 12dB, aral tistection efficiency ofiiot = 0.74. Exper-
imental parametersjnom= 0.89, RBW = 100kHz, VBW = 1kHz. (b) The time domain measuremakei

at 100kHz of: (i) the shot noise limit, (ii) the squeezedestaith detection phase locked, (iii) the electonic
noise of the detection system, and (iv) the squeezed st#itetiné detection phase varied. RBW=1kHz,
VBW=30Hz.

chapter 8, since this is the value that would be injected tiiointerferometer and the losses of
the interferometer and detection can be taken into accoqnticily. The inferred squeezing out
of the OPO cavity can be found from

Ving = Vimeast+ r]optnhomr]det—l, (7.5)
NoptNhomdet

= 9.2(+0.4)dB, (7.6)

whereVmeasis the measured squeezing level (with electronic noiseracietd).

The long term stability of the production of squeezing isc@lfor application to gravitational
wave detectors. Squeezing data taken over 34 minutes isnsinofigure 7.6 to demonstrate the
stability of the experiment. The data was taken at 100kHze d¥erage noise power level was
5.5+0.2)dB below the shot noise floor (curve (i)) over this time, nddrg into account data at
the 18 minute mark, where the PZT used to lock the detecti@sehan out of range, requiring
re-locking to an adjacent fringe. The OPO cavity, and alrdeg of freedom except the detection
phase, maintained lock for many hours at a time. Although amjuarter of an hour of continuous
measurement was obtained, the squeezing magnitude wasteanslt is thought that an actuator
with larger range and/or a more accurately temperatureated environment would yield lock
times on the order of many hours.

7.5 Limits to balanced homodyne detection at low frequence

The low frequency measurements of squeezing in this thesie impeded by excess noise in the
homodyne detection system. This excess noise can be sdenantfrequency end of the spectra
in figures 7.3 and 7.4. In this sections seven potential ciatel$ of the excess noise are discussed
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Figure 7.6: Measurement of squeezing at 100kHz, curve (ii), as a funafaime. Also shown: (i) the
average value of the shot noise and (iii) the average valtteeoglectronic noise. RBW = 10kHz, VBW =
30Hz.

in an attempt to understand the mechanisms responsiblecaFiutdates for excess noise are:
1. Local oscillator intensity noise
2. Beam jitter noise

Photodetector electronic noise

> W

Scattered light
5. 1/f photodiode noise
6. Temperature noise of the photodiode

7. Non-stationary noise

7.5.1 Balanced homodyne detector noise budget

The contribution of some of the noise sources in the abov#olihe homodyne detection spectra
could be measured directly or inferred. Figure 7.7 showsrtegred contribution of three noise
sources: curve (i) is derived from the local oscillator ity noise; curve (ii) from beam jitter
noise; and curve (iii) from electronic noise of the homodylatection system. Also shown is
the measured homodyne spectrum, curve (iv), and the suneadbdal oscillator intensity noise,
electronic noise, beam jitter noise and shot noise, curyewpich is labeled ‘total’.

The total noise curve is significantly lower than the meadsectrum at frequencies below
100Hz. This indicates the three noise sources includedemdise budget are not sufficient to
explain the measured spectrum. Thus, an additional noiseeoor noise sources, need to be
taken into account to understand the measured spectruyn lfulihe following sections we detalil
each noise source, starting with the three that could betifjean

1. Local oscillator intensity noise

The balanced homodyne detector delivers immunity to loseillator intensity noise to the level
of the common mode rejection. The local oscillator intgneibise and common mode rejection
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Figure 7.7: An incomplete noise budget for the homodyne detector. Shamgncontributions due to:
(i) local oscillator intensity noise, (i) beam jitter neis(iii) photodetector electronic noise, and (iv) the
measured homodyne spectrum. The ‘total’ noise, curve $vihé quadrature sum of curves (i), (ii), (iii)
and the calculated shot noise.

were measured individually (see figures D.2 (a) and (b)) hed product was taken to give the
local oscillator intensity noise curve in the noise bud@édte intensity noise of the local oscillator
field was measured by direct detection and found to-d€dB above the SNL at 100Hz. The
common mode rejection was found by measuring the transfestitn of amplitude modulation

from the local oscillator field to the homodyne photocurretitith the variable electronic gain

optimized we found up to 80dB of common mode rejection. Thés wufficient to require no

intensity noise stabilization.

2. Beam-jitter noise

Beam jitter of the local oscillator beam can couple into thetpcurrent via spatial inhomogenities
of photodiode efficiency. Beam jitter is generally largedbe frequencies due to air currents and
acousto-mechanical coupling. Spatial variations in treqdiode efficiency arise in the manufac-
turing process and also from dust particles that land onitbaedor the protecting window [144].
The spatial variations in efficiency of silicon diodes haeetv previously measured to be between
0.1% rms [144] and B% rms [145]. Up to a 5% deviation from peak sensitivity was measured
and attributed to dust particles on the photodiode windot4]1

The beam jitter curve plotted in figure 7.7 was found by maaguhe beam jitter displacement
spectrum Ax(f), on a quad-photodiode (see figure D.3 (a)) and inferringatgrdoution to the
homodyne detector photocurrent. The beam jitter can beectat/ to equivalent relative intensity
noise (RIN) by

VRINg;(f) = AAX(), (7.7)

where the coupling constan, has units 1/m, andx(f) = \/Axy ()2 + Axy ()2, whereAxy (f),
is the horizontal displacement spectrum dng (f) is the vertical displacement spectrum. The
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constantA was found by fittingRINg; to common features in the measured RIN of the photocur-
rent. This process was done with the laboratory air conditigp on, which increased the low
frequency beam jitter, and gave rise to noise peaks in theodgne photocurrent spectrum that
could be matched to the beam jitter spectrum. For detail&\ppendix D.1.2.

3. Photodetector electronic noise

Photodetector electronic noise typically has the spept@erties of 1/f noise at low frequencies
due to the capacitive nature of PIN photodiodes and broatibalmson noise. The electronic noise
of the detection system came primarily from the photodetsctit was largest at low frequencies,
being 2dB below the calculated shot noise limit at 10Hz ttadimg down to -12dB at 10kHz (for
38QuW local oscillator power). The peaks at 50Hz and harmonicsevpiekup from the mains.
Below 100Hz electronic noise was a significant noise solmatgs figures 7.4 and 7.7 demonstate,
not the major source of excess noise.

4. Scattered light

Recently Vahlbructet al. [17] made a measurement of squeezing across the entirdagi@val
wave detection band and down to 1Hz, the current record ferflequency squeezing. Instru-
mental to this measurement was a homodyne detection sygtérh was shot noise limited down
to 1Hz. They determined that scattered light [71, 146] hazhlthe limiting noise source in their
balanced homodyne detection system below 100Hz in previauk [26]. Scattered light from
beam dumps and dust on the optics was thought to contamimateomodyne measurement by
interfering with the local oscillator at the beamsplitterdathe photodiode. Henning Vahlbruch
suggested that, in their experiment, diffuse scatteriomfdust on the optics was the larger source
of scattered light [147] and that the optics had to be cleaxtidmely well to reduce the scatter.
The frequency dependence of the scattered light noiseesgornes from movement of scattering
centres at audio and sub-audio frequencies, due to therpahsion, seismic motion and acoustic
noise, thus creating modulation sidebands at these fremseand higher harmonics [17].

Similar measures were applied to this experiment. All uddaser beams and reflections from
AR coatings were carefully dumped. Lenses were tilted framal incidence and optics were
carefully cleaned. However, even with this considerablerefno low frequency improvement in
the noise spectrum was obtained. We were unable to verifyaitared light was a source of the
excess low frequency noise seen in the homodyne spectrum.

5. 1/f Photodiode noise

1/f photodiode noise [148] was thought to be a low frequemuit to a measurement near the shot
noise of the laser intensity, in a laser stabilization expent performed by Seifest al. [149].
This noise scales proportional to the photocurrent [13Q]st if the electronic noise of the pho-
todetector is measured (by blocking the incident light)dhibtodiode noise is not seen. Because
the optical power detected, and therefore the photocyrierthe experiment of Seifert al.
(110mW) was vastly different to that detected in this expent (19QW per photodiode) we
expect it to be insignificant in the measurements here.

6. Temperature noise of the photodiode

The quantum efficiency of photodiodes is temperature degendrhus photodiode temperature
fluctuations results in photocurrent noise. A typical terapge dependence of InGaAs photodi-
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odes isANge=0.039% / K [151]. Thus a temperature fluctuationdf ~ %@Nf ~ 10uK would
result in photocurrent noise equivalent to shot noise. ltriknown if this was a limiting noise
source in this experiment.

7. Non-stationarity of the photocurrent

The difference photocurrent behaved in a non-stationamnea resulting in excess noise at low
frequencies. A separate balanced homodyne experimeneigsts characterize the contribution
of the non-stationary noideNon-stationary noise was not included in the noise budgétdoes
not have a spectral distribution in the traditional sense.

A4 N2

Figure 7.8: Schematic of the non-stationary noise characterisatiperxent. PD - photodetector, BD -
beam dump, L - lens

The mechanism driving the non stationarity of the photamntrwas thought to be dust particles
passing though the beam path in the homodyne detector afmswould scatter light out of the
beams in the two arms in an uncorrelated manner, causing pudmsignal to the difference
photocurrent.

A schematic of the experiment setup to characterize thigerisishown figure 7.8. The 300mw
laser was attenuated to provide a local oscillator field wittver of 30QW. The homodyne detec-
tor was similar to that described in section 7.3 and beam dungre used to minimize scattered
light. The entire experiment was enclosed in a sealed blackpex box to reduce air currents
and external stray light. A second, smaller black perspexdmnzlosed the homodyne detector to
isolate it from scattered light from the beam-dumps.

To investigate if dust was a cause of non-stationary noisedgis of measurements of the
homodyne photocurrent were taken and compared. Measuremere taken with the lids of the
boxes open so the experiment was exposed to the laboratarprement. These were compared
with measurements taken with the boxes closed and therolefivb days so that the dust in the
air could settle. The non-stationary events that occumehbé ‘open’ experiment did not occur in
the ‘closed’ experiment. The spectra from the measurenagatshown in figure 7.9. Both spectra

3The author would like to acknowledge Sheon Chua who tooktperémental results in this section as part of his
Honours thesis [152].
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Figure 7.9: Spectra from the balanced homodyne with the experimenpgh to the laboratory environ-
ment; and (ii) sealed in a black perspex box. The large peak@téz and harmonics were due to pick-up
of the mains power.

are the average of 100 curves, each with 20 rms averages.oideeftoor of the open and closed

measurements have the same noise power at frequenciesldifizve, but below 100Hz the open

measurement shows excess noise, thought to be due to niomasta events. The excess noise is
largest at 10Hz and reduces at frequencies approachingzl0dte that, in the closed experiment
spectra, a low frequency roll-up is still present, indiegtthat the non-stationary noise is not the
only excess noise source.

To show the non-stationary nature of the photocurrent inettpgeriment open to the labora-
tory environment, data from the spectra in figure 7.9 werdtgdioas the histograms, shown in
figure 7.10 (a) and (b). Each count in the histograms is theermower of one frequency bin. The
data is made up from 30 different, 1Hz wide frequency binmf@D-90Hz, for the 100 different
curves, resulting in 3000 data points in each histogramhdfghotocurrent were stationary, the
histogram would be expected to follow a Gamma distributibhe histograms for the open and
closed experiments have a Gamma distribution probabiétysiy function fitted to them using a
Matlab [153] distribution fitting tool. A Gamma distributids expected because the noise power
of a gaussian photocurrent is a Rayleigh squared distoibti54], and a sum of independent
Rayleigh squared distributions (taken in the rms averagingess) is a Gamma distribution [155].

The fit of the closed experiment appears to be better thanpgbe experiment. The closed
experiment had smaller standard deviatiog,= 5.3pW, than the open experiment, which had
0o = 6.4pW. The closed experiment also had a lower mean power op22than the open ex-
periment, which had 24.1pW. One clear point of differencth@two histograms is the number of
counts at bin powers above 50pW (shown by the inset in figuds (&) and (b)): O counts in the
closed experiment versus 26 counts in the open experimém.lafge number of counts at high
bin power in the open experiment is an indication of nonistairy noise.

To quantify the excess of counts at high bin power, the péagenof the counts in the wings
of the distribution can be compared to the value expecteu ttee probability density function
of the Gamma distribution. We chose a value at a noise powareain + 4 and compare this
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to the expected value of 0.1%. In the closed experiment tivere 6 counts (0.2%) above the
meanr+ 4oc(43pW) compared to 28 counts (0.9%) above the rgeadco (49pW) in the open
experiment.
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Figure 7.10: Histograms of the homodyne photocurrent with the experini@tlosed to the laboratory
environment and (b) open to the laboratory environment. ibets are a zoomed look at the histogram at
high bin power.

7.5.2 Discussion of candidates for the low frequency excessise

Noise from the local oscillator intensity, photodetecti@caonics, and beam jitter are insufficient
to explain the measured low frequency roll-up of the homedyotocurrent. We expect that non-
stationary noise is likely to partly reconcile the diffecerbetween the ‘measured’ and ‘total’ noise
spectra in the homodyne noise budget presented in figuréldwever, with non-stationary noise
removed (c.f. figure 7.9), the photocurrent spectra stisid excess noise at low frequency. At
least one additional noise source must therefore be present

From the experiment performed by Vahlbruehal,, it seems likely that scattered light is the
excess noise source. Without further research, 1/f phodednoise and photodiode temperature
noise can not be excluded as limiting noise sources.

7.6 Chapter summary

In this chapter we detailed an experiment designed to pedtable low frequency squeezing.
Quantum noise suppression down to sideband frequencie®Hd Was measured with up to
5.5(0.2)dB of locked suppression at higher frequencies. Thel&tabf the experiment was
demonstrated by a measurement of squeezing over a 30 miatitelp The limit to the low
frequency measurement of squeezing was attributed to £xwase in the homodyne detection
system. Measurements of different noise sources in the tgneodetection system were carried
out, including electronic, beam jitter, local oscillatoténsity, and non-stationary noise. Of these
measured noise sources, electronic noise and non-stationase were responsible for a signif-
icant component of the excess noise. We speculate thaemsmhtight was responsible for the
remaining excess noise, as Valhbrathal. found to be the case in a similar system.
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Chapter 8

Squeezing in second generation
gravitational wave detectors

In this chapter a short theoretical investigation is uraden into sensitivity enhancements to the
Advanced LIGO detector with the injection of squeezed stat€urrent best estimates of the
interferometer classical noise sources are used, obt&ioedthe interferometer noise modeling

program Bench 6.2 [1]. Quantum noise of the interferometethén calculated, including the

expected optical losses in the interferometer and phatotieh process.

8.1 Introduction

In chapter 4 squeezing enhanced gravitational wave imtarfeter configurations were introduced.
An idealised case was considered, where the losses in Hréeirtmeter and the detection process
were neglected. Furthermore, the interferometers clssaise sources, which we labeled hard-
ware and facility noise were neglected (see section 2.4Mijh such assumptions, a squeezed
state with optimal frequency dependence was shown to inegito quantum noise limited strain
sensitivity by e R

In this chapter, a more realistic case is considered. Anstigation into the sensitivity en-
hancements that could be made to a second generation intagtic detector with the injection
of squeezed states is presented. Specifically, possibéezing enhancements to Advanced LIGO
are considered quantitativély Included in the investigation are: the hardware and tgailbise
sources; losses in the interferometer; and losses in thegétection process.

A similar type of study has been performed by Buonanno anch@heeference [40]. They
calculated improvements in the signal to noise ratio of jgegravitational wave sources using
squeezed states and a frequency dependent readout schémikewombination of the two called
the ‘fully optimal’ scheme. They included two estimates ofting thermal noise: the coating
thermal noise expected in Advanced LIGO, similar to thadusere; and coating thermal noise
using ‘mesa beams’ [156], instead of TEM>aussian beams, in the arm cavities. The use of mesa
beams offers lower coating thermal noise, but requires gnagie of Advanced LIGOs mirrors to
‘Mexican hat’ shaped mirrors.

Here we analyze the improvement to strain sensitivity tlat lme made using only squeezed
states (i.e. we don't consider a frequency dependent réadtieme or Buonanno and Chen’s
fully optimal scheme [40]). Two operating conditions of Aghced LIGO are considered: the
‘wideband’ configuration [157], where a high input laser govis used and a signal recycling

1Similar analysis would be interesting for the other nextagation detectors: Advanced VIRGO [56], GEO HF [66],
and LCGT [67].
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cavity detuning is chosen to give good broadband senyitiaitd the ‘narrowband’ configuration,
where a low input laser power is used and the signal recyciavity detuning is set to optimize
low frequency sensitivity.

We start by writing down the total strain equivalent nois¢hefinterferometetyo:(Q), which
is given by the quadrature sum of the strain equivalent harevand facility noisehn:(Q), and
the strain equivalent quantum noi$gs(Q). That is

hot(Q) = /2 (Q) +2y(Q). (8.1)

Both hn(Q) andhgn(Q) will be defined shortly. The methodology of the investigatis to con-
sider the improvements taq (Q) by modifying hyn(Q) with the injection of squeezed states.

In section 8.2 models of the hardware and facility noise &edjuantum noise are presented.
In section 8.3 we present results showing squeezing enhmamts. We consider improvements to
the total noise with different squeezing magnitudes anfémint optical losses. Also considered
is the use of squeezed states with an intermediate inputpaseer. In section 8.4 we discuss the
parameters used in the models.

8.2 Models for noise

8.2.1 Hardware and facility noise

The hardware and facility noise is the quadrature sum othallrioise sources presented in sec-
tion 2.4.1, except the quantum noise component. The stopiivadent noise of the hardware and
facility sources is given by

VR(Q) +(Q) +3,(Q) +5&(Q) +E(Q)
hht(Q) = 3 , (8.2)
wherelL is the interferometer arm length. The displacement noigeces arexs(Q) from seismic
origin; Xqq(Q) from gravity gradientx,q(Q) from residual gasxs(Q) from suspension thermal;
andxnt(Q) from mirror thermal. These displacement noise sources wadoeilated using Bench
6.2.

8.2.2 Quantum noise

The quantum noise of the signal-recycled Michelson interfester including losses is similar to
the lossless case (equation 4.13). Included are losses #rith cavities, signal recycling cavity,
and the photodetection process. These are shown schellgatidayure 8.1. The parameters used
to represent the losses are:

e L., Which is the round trip loss in an arm cavity. The model assigquantum noise from
this loss enters from the end test mass mirror. In the belavat&ns, L, iS contained in
the parameteg = 24,./T, whereT is the transmission of the input cavity mirror.

e Asr Which is the loss parameter for the signal recycling cavitye model assumes that all
of the loss, including beamsplitter loss, is all locatedlmmdignal recycling mirror.

e App, Which is the loss parameter for the photodetection process
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Figure 8.1: Layout of a the Advancd LIGO detector with squeezing ingttiAlso shown is the sources of
guantum noise considered in the model. They are labelefto(t) the dark port, which is either a vacuum
state or a squeezed state; (Il) vacuum noise due to loss arigihal recycling mirror; (l1I) vacuum noise

due loss in the arm cavities; and (IV) vacuum noise due toqatetector loss.

The quantum noise spectral density with optical lossesrgeatkin section V of reference [117].
We do not re-derive this here, as it is not the focus of thestigation. The quantum noise limited
strain is given by the square root of the spectral densigityuétion 5.13 in [117])

hen(@) = /. ©.3)

where

“_ G5
2%12| D} sinZ + D5 cost |2

X [|CI1'13inZ +C5,c08{ |° + [Cf,sin + C5,c08L | +
)
|P11SINZ + P31 cOSL|? 4 |Pr2Sing 4 Paacosl % +
(1) ’
|N11SINZ + N1 €OSZ |? + [N128ing + NpacosZ |2 +
(1 ’
[Quaing + Q21008 + |Quzsing + Qzacost 2 .
(V)

(8.4)
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where the parameterg; and thL and are given by equations 4.10 and 4.12 respectively and
inteferometer parameters are summarized in table 8.1. tNat¢he phase gained by the sidebands
in the signal recycling cavity has been set to z&pe0). In equation 8.4, terms of similar origin
have been grouped together. These are: (I) due to the qudliztmtions that enter the dark port
of the interferometer; (1) due to losses in the signal réingccavity; (11l) due to losses in Fabry-
Perot arm cavities; and (IV) due to losses in the photodetegrocess. These noise sources are
also labeled in figure 8.1.

Coefficients in equation 8.4 denoted by capital Iettétﬁ; DiLj,P”',Nij, andQ;; are given by

equations 5.8 to 5.12 in reference [117]. The terms in theak@mator of equation 8.4 are

D} = /1—App {—(1+ pe?P) sinp+ Z[3+ p+ 2pe"P + ?P(1 4 5p)] sing+ %zezmpsin(p} ,
(8.5)

D} = \/l—ApD{(l— pe?®) cosp+ ;1[—3+p+2pe‘“B —e”P(1-5p)]cosp+ %{ezmpcosxp}.
(8.6)

The coefficients for the quantum noise that enters the datiape

ct, = Ch,= \/1—)\pD{(l+ p?) (cosZp+ %sin 2cp> —2pcosP— %s[—2(1+e2i5)2p

+4(1+4 p?) cof Bcos 2p+ (3+ €2P) K (1 + p?) sin 2p)

+Asr [eZin — %(14— p?) <cos 20+ % sin Zp)} }, (8.7)
Ch, = V1—Appt? < — (sin2p+ & Sin? @) + %ssin(p[(3+ e?P) . singp+ 4 cog Bcosy)
1 . .
+§)\SR(sm Xp+ ‘](csmzq))), (8.8)
Ch, = V1—Appt? <(sin 2Ap— K SINP @) + gscosq)[(3+ e?P) % cosp— 4 cog Bsing
1 .
+§)\SR(—stp+ K.cos )>. (8.9)
Coefficients for the vacuum fluctuation that enter the sigaeycled cavity due to loss are
1 i .
Pipy = Pyo= E\/l—)\pD\/)\SRT(—ZDGZIB +2c0s 2p+ K:Sin 2p), (8.10)
Pi2 = —v1—AppVAsrSINQ(2cosp+ X:SiNQ), (8.11)
P1 = v 1—AppVAsrICOSP(2SINQ— %:COSY). (8.12)

Coefficients for the vacuum fluctuation that enter the arnitiemvdue to loss are

Nyg = \/1—Apo\/§r(9<c(1+pez‘ﬁ)sin<p+200$[e“ﬁcoscp—péﬁ(coscp+%sincp)]),
(8.13)

Nz = —v/1—Appv2et(—e P+ pe) cosBcose, (8.14)
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Niz = —/1—Appv2et(e ®+ peP)cosBsing, (8.15)

Ny = \/1—APD\ET<—:7<C(1+p)coscp+2cosB<e“B+péB>COSBsin<p>- (8.16)

Finally, coefficients for the vacuum fluctuation that entethe photodetector due to imperfect
detection efficiency are

Quu=Q2 = \/)E{e‘ziB +p?e?P — p(2cos 2p+ % sin2Ap) + %p[e‘Zchoszp
+e#P(—2p — 2pcos P+ cos 2+ K Sin 2p) + 2 cos 2+ 3K; Sin 2Ap)
—%?)(Zpez‘B —2cos2p— Kcsin Zp)}, (8.17)

Qi2=Qz = 0. (8.18)

The spectral density of quantum noise with squeezing careieedl as it was in section 4.3.2.
The quantum noise with squeeze paramBtand angle\ is given by

g = ole®C;
SQz

|PL1SINZ + P21c0SL |2 4 |Prosing + Paacos|? + [Np1sing 4+ Npg cosZ|? +

Nsinz + 5 cosz 2+ eR|chl sing + 5 cosg 2 +

INp2SINT 4+ Np2 oS |% 4 |Q11.8INZ + Q1 €O, |2 4 | Q128N + Qa2c0s 2|,

(8.19)
with
he 2
— . L( ,SQL) . S, (8.20)
2%:1%|D7 sinl + D3 cos(|
and
M = clYcosh+ClY sin, (8.21)
ctV = clYcosn—clsina, (8.22)
M =l cosh+Cly) sin, (8.23)
CE[ZM = Céé) cosA—CéE)sin)\. (8.24)

With optimal frequency dependence, equation 8.19 reduces t

Slopr = D|(|CE;sing +Chyc0sL|? + [Ch,sing + Ch,yc08 2) e 2R +
|PL1SIN 4 P1€0SL | + |P12Sing + Pocos | 4 |N11Sing + Np1cost | +

INp2SINT 4+ Np2coSC % 4 | Q118N + Qo1 €OS % 4 | Q128N + Qopc0s 2|

(8.25)

105



Squeezing in second generation gravitational wave detecto

8.3 Results

The hardware and facility noisén:(Q), is the dotted line in figure 8.2 (a) and (b), plotted us-
ing values from Bench 6.2. The quantum noiBgy(Q2), and total noiseh(Q), are shown in
figures 8.2 (a) for the ‘wideband’ and in (b) the ‘narrowbangerations of Advanced LIGO re-
spectively. Without squeezed input the quantum noise atadi noise are given birg, and hyo
labeled ‘No Sgz’. The parameters used in this calculatiorevtgken from Bench 6.2. A sum-
mary of the interferometer parameters that relate to thatgunanoise are given in table 8.1. The

Sensitivity [Hz 2]
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Figure 8.2: The hardware and facility noisb,¢, the quantum noisdyy,, and the total noiseyo, for the
unsqueezed case (No Sqgz.) and with squeezed inmit?8f= 0.1,\ = Aopt (10dB Sqgz.). The parameters
used are those expected for Advanced LIGO. (a) Shows AddahikkgO ‘wideband’ operation and (b)
narrowband operation.

wideband and narrowband operations differ in two parareetety: the input laser power and
the signal recycling cavity detuning. Wideband operatisesuhigh input laser power of 125W
and a signal recycling cavity detuning @f= 11/2 — 0.04, set to optimize the broadband response.
The narrowband operation is set to optimize low frequenaogisigity. This is done using a lower
input laser power of 5W (to reduce radiation pressure naise) a detuning ofp = /2 — 0.2.
Figure 8.2 also shows quantum and total noise curves witbestpa state injection. The squeez-
ing injected has optimal frequency dependence=(\opt), 10dB magnitudeg 2R = 0.1), and is
labeled ‘10dB Sqz'.The total noise in both the wideband aadawband operation is reduced
significantly with the squeezed input. The gains are mosifsignt where the quantum noise is a
substantial contributer to the total noise curve. With sgeel input, both the wideband and nar-
rowband operations become dominated by hardware andyauilise below the signal recycling
cavity optical resonance.

The proportion of quantum noise to total noise, the réﬁ@(Q)/htzot(Q)), is plotted in fig-
ure 8.3 for both the unsqueezed case (solid line) and squieaze (dashed line). In the wideband
case, figure 8.3 (a), the quantum noise improvement withesguimput is particularly substantial
between 10Hz and 30Hz, where the proportion of quantum megiges from a maximum of 80%
to less than 40%. The integrated proportion of quantum ri@seeen the sideband frequencies of
Q/2n=5Hz and 1kHz was 47.8% of the total noise for the unsqueezeeband case and 24.0%
of the total noise for the squeezed wideband case. For thewlzeind case, betwedd/2m= 5Hz
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Figure 8.3: The proportion of quantum noise in the total noise for the @wubed LIGO configuration
with unsqueezed input (No Sgz.) and squeezed input (1BeBAopt). (a) Shows is the Advanced LIGO
wideband operation and (b) the narrowband operation.

and 100Hz, the proportion of quantum noise was 30.3% for tisgjueezed case and 11.1% with
squeezed state injection.

A comparison of the sensitivities in figure 8.2 (a) and (b)vehithat the low frequency sen-
sitivity of the squeezed wideband interferometer is venyilsir to the (squeezed or unsqueezed)
narrowband inteferometer, however wideband operati@ingetand enhances the broadband sen-
sitivity. Thus, if Advanced LIGO were to operate widebandhxsqueezed input, the narrowband
operation would become redundant.

Only the wideband case is considered henceforth. Two pdeasare varied: firstly, the am-
plitude of the squeezed input; and secondly, the opticakel® the interferometer and detection
process. Infigure 8.4 (a), the quantum noise and total naises are plotted for the frequency de-
pendent squeezed inputs of: 6dB, 10dB, and 20dB. We seéthtital noise curves for the three
squeeze inputs are very similar below 300Hz, where thetfaeihd hardware noise dominates the
total noise. Above 300Hz, the total noise curves differ a&stttal noise curve is dominated by
guantum noise. The difference between the quantum noisextor the three squeeze magnitude
is less than the difference in squeeze magnitude at the, inpchuse the larger squeeze magnitude
are more sensitive to loss.

Figure 8.4 (b) shows quantum and total noise curves for 1gdBezed input for three different
loss scenarios. The first case, labeled ‘Losses (a)’, theedoare those expected in Advanced
LIGO, as described previously. In the second case, labélesses (b)’, the losses are a more
optimistic set of losses: the same arm cavity and signalctiggy cavity losses, but a loss of 5%
in photodetection instead of 10%. The final case, for corspariis the ‘Lossless’ case, which
has no losses in the interferometer or photodetection psoCEhe total noise curves for the three
different losses are similar below 300Hz, where the hardveard facility noise dominates, and
differ most substantially above 300Hz.

For the final part of this investigation we examine a case lwitrer input laser power. We assume
the input laser power ik = 25W, one fifth of the baseline for Advanced LIGO. It is likelyat
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Figure 8.4: The squeezing enhancement of Advanced LIGO operated irbardemode for: (a) different
squeezed state amplitudes; and (b) different interferenaetd detection losses.

the full baseline laser power will be available for Advandd@&O, given the high laser power
demonstrations from the Hannover University and Laser iemtHannover [158]. However,
difficulties associated with high circulating powers, sastthermal lensing [159] and parametric
instabilities [160, 161], may initially prevent the use aflflaser power. An input ofo = 25W

is similar to that expected in Enhanced LIGO [162, 163]. Fég8.5 shows baseline wideband
Advanced LIGO and wideband Advanced LIGO with lower inpwelapower, with and without
squeezed input. Above 50Hz, the total noise for the squergmd with lower laser power is
slightly higher than baseline wideband Advanced LIGO, whsrbelow 50Hz it is significantly
lower. It seems that with lower input power and squeeze jnpedr baseline sensitivity can be
retained in the mid to high sideband frequencies, and bs#esitivity is obtained in the low
sideband frequencies.

8.4 Discussion of assumptions and values

8.4.1 Squeezing magnitude and frequency dependence

In the above calculations a 10dB squeezed state input wihoghimal frequency dependent
squeezed quadrature has been assumed. A 10dB squeezedeagiairide seems realistic given 6
to 7dB of noise reduction is routinely measured at audioueegies at 1064nm (see [17,19] and
the results in chapter 7), and up to 10dB has been measurddsid€&band frequencies [18]. Note
that these measured squeezed state levels include the bideast 5% associated with non-unity
quantum efficiency of the photodiode, so the squeezing matmbefore measurement is actually
higher. It seems that less than 5% total injection loss shbalachievable for Advanced LIGO.
Kimble et al. [38] suggest that the loss could conceivably be as low as @dé for the circulator
and for the mode-matching. Fabry-Perot cavities used tly apjpequency dependent phase shift,
as proposed by Kimblet al,, could also be made to have a similar level of loss if the fitarities
were to be long enough.

108



8.4 Discussion of assumptions and values

ror { I=125W
hqn

& h"”{[g:ZSW

w1022} hgn

N

E‘ \‘ I hTUI [(]ZZSW

> ' === h,, L10dB Sqz.

= N,

@ 523

5 10

n

1 0 -24 L

10 100 1000
Frequency [Hz]

Figure 8.5: Quantum and total noise curves for wideband Advanced LIG® baseline input laser power
(I0=125W) and lower input powetd=25W). Also shown is lower input laser power Advanced LIG@hwi
squeezed input of 10dB, optimally frequency dependentesting (,=25W, 10dB).

8.4.2 Levels of optical losses in the interferometer and dettion

In this investigation we have used the interferometer lwesg@ected for Advanced LIGO. These
numbers (recall that we assumgp = 0.1 for the photodetection procesggr= 0.0035 (per pass)

in the SR cavity and.ac = 75x 108 (per round trip)) seem realistic and possibly conservative
Better than 90% detection efficiency is routinely achieveduantum optics laBs One difference
that Advanced LIGO will have is an output modecleaner. InrigBl4 (b), we also looked at the
lower level of photodetector loss of 5%. This may be achivédr Advanced LIGO given that it
can be achieved in benchtop experiments now.

8.4.3 Laser power

This short investigation has included two Advanced LIGOfigurations - wideband and narrow-
band and three laser powers. Wideband configuration asstinaiefill laser power can be used:
resulting in arm cavity circulating power ef 0.5MW (compared with 10kW for initial LIGO).
Initially, this may not be possible due to thermal lensinguiss and parametric instabilities. A
better idea of the operating capabilities should be knowthénupgrade to Enhanced LIGO. Fig-
ure 8.5 showed that with lower laser power and squeezedsstativanced LIGO may reach its
design sensitivity.

8.4.4 Hardware and facility noise

Current hardware and facility noise predictions have besdu More development and testing
will show if these prediction are accurate. Broadly spegkingher hardware and facility noise
would reduce the improvements that squeezed states cdeld whereas lower hardware and
facility noise would increase the improvements. Techrnégsigch as the ‘Mexican Hat’ mirrors
with the ‘Mesa’ beams open the possibility of a reductiondating thermal noise, which would

2|n chapter 7 the product of our homodyne efficiency and pHotte efficiency was 96¢2)%. The authors in
Reference [18] report detection efficiency of 22()%.
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Table 8.1 Advanced LIGO interferometer parameters

Parameter Symbol Value Units
Laser Frequency Wo 1.77x 10" | radians/s
Mirror mass m 40 kg
Laser Power at BS (wideband) lo 2100 W
Laser Power at BS (narrowband) lo 84 w
ITM transmittance (power) T 0.005 -
Transmission of signal recycling mirror (amplitude) T v0.07 —
Reflectivity of signal recycling mirror (amplitude) p 1-1°— LsR —
Sideband frequency Q

Arm Length L 3995 m
Signal recycling cavity length I 10 m
Signal recycling cavity detuning (wideband) (0} (m—0.08)/2 | radians
Signal recycling cavity detuning (narrowband) (0} (m—0.4)/2 | radians
Efficiency of photodetection 1-App 9 —
Round Trip Arm Cavity loss Aac 75%x 107 —
Signal recycling cavity loss LsRr 0.0035 —
Detection phase C /2 radians

allow the more benefits of squeezed states to be obtainedighertsqueeze factors would be
useful.

8.5 Chapter summary

We have presented a simple study into possible improvenierssnsitivity obtainable with the

injection of squeezed states into Advanced LIGO. Reallstrels of classical noise and optical
loss were included in these calculations, which show thatafided LIGO might significantly

improve in sensitivity or power-handling requirementshittie addition of squeezed light.
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Chapter 9

Quantum noise locking

In this chapter we present a detailed analysis of quantuseriocking, a technique that uses the
guantum noise of an optical field to derive a phase referemrceoitrol purposes. This chapter is
based on the work presented in the publication

Quantum Noise Locking

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, Bl.Gray, N. Mavalvala,
and D. E. McClelland.

J. Opt. B7, S421-S428 (2005)

9.1 Introduction

Squeezed states of light can offer quantum noise redudiantdrferometric measurements [34]
and give rise to quantum mechanical phenomena such as kmeery [164, 165]. To be of prac-
tical use in these experiments, the squeeze angle must ieelacontrolled. For example, to
reduce the shot noise of an interferometric measurementdgheezed angle needs to be actively
controlled to coincide with the phase quadrature of the omeasent. Control of the squeeze angle
of ‘bright’ squeezed states has routinely been achievathustandard techniques such as dither
locking or PDH locking [12, 13, 15, 21]. Controlling the sgze angle of a squeezed vacuum state
is more difficult. Standard locking technigues cannot belassthe squeezed vacuum state has no
carrier amplitude that can be used as a phase reference.

Vacuum squeezed states offer considerable advantagedbiigiet squeezed states, particu-
larly at low sideband frequencies; a requirement for apgibms such as interferometric gravita-
tional wave detection (at sideband frequencies of 10HAH¥Pland atomic systems (at sideband
frequencies< 500kHz) [43, 125]. Squeezed vacuum states have inherenuiitynto classical
noise, allowing squeezed states to be created across tluefgaggiency band (see references [24—
26] and chapters 5 and 7), whereas bright squeezed statesltypxhibit squeezing only at high
frequencies{ MHz and above).

One solution to this apparent dichotomy would be to createcawm squeezed state over the
sideband frequency band of interest (say DC-100kHz) whihdh'bright’ frequency shifted side-
band (at say, a few MHz) for use as a phase reference. Vahletwa. [26] and Godaet al. [166]
have successfully demonstrated this type of operation.lbviath et al. used two orthogonally
polarized frequency shifted sidebands; one to control tR®@avity length, the other to control
the squeezed vacuum phase. To control the vacuum squeearedtse phase of the frequency
shifted sideband was first locked to the squeezed quadratthigved by locking the phase of the
frequency shifted sideband and the pump field. It was thekelbdo the local oscillator phase,
thereby enabling stable measurement of the squeezed state.
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Case I Input fields (I
(a) Case BPE ED M LPF nput fields (I)

X = X, :
RN A signal 4
i
W (“L el %

(b) Case I1 Input fields (I1I)

Figure 9.1: Setup of a balanced homodyne detector with input figltt$,ahdb(t), interfering with relative
phasef, on a balanced beamsplitter. Here the local oscillator Uia(a)rpasses through a phase modulator
(PM) with applied sinusoidal modulation at frequerey,. The output fieldscf(t) andcit), are incident
on the photodetectors, Rand PR. To derive the quantum noise locking error signal, the ougfuhe
homodyne is bandpass filtered (BPF) then envelope detee@d The output of the envelope detector is
demodulated and low pass filtered (LPF).

An alternative solution to the frequency shifted sidebattteme is to use thguantum noise
lockingtechnique. To obtain a phase-sensitive readout, quantigsa lozking relies on asymmetry
in the noise of the squeezed and anti-squeezed quadrafusetiematic of a homodyne detector
using the quantum noise locking technique is shown in figut€l9. Here the field(t) represents
a squeezed vacuum state d&@d the local oscillator field for the balanced homodyne detedibe
guantum noise locking error signal can be derived by ditigetive squeeze angle (at a frequency
Q) and demodulating theoise powenf the homodyne detector photocurrent. This is analogous
to the more standard dither locking technique, where tragivel phase of two coherent fields is
modulated and the photocurrent demodulated to obtain ansignal.

Quantum noise locking has been used to enable stable messntseof quantum correlations
by Schoriet al. [167] and Lauratt al. [23], and in the work presented in this thesis (first publishe
in [24] and [25]). Recently, Godat al. [128] used quantum noise locking to lock the squeeze
angle for a squeezing-enhanced signal-recycled Micheétgerferometer at the Caltech 40m pro-
totype gravitational wave detector [129]. Quantum noisxileg is simpler experimentally than
a frequency shifted sideband scheme for two reasons. yinstifrequency shifted sidebands are
required, so the complexity of adding an extra phase loc&eerlor an acoustic optic modulator
is avoided. Secondly, two length degrees of freedom deg@narto one. In quantum noise lock-
ing, the only important degree of freedom is the squeezeeaatgtietection, as there is no other
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phase reference. For a squeezed vacuum state, the squgkzeanbe actuated with either the

pump phase or the detection phase, reducing the quantumlooksng control scheme to a single

degree of freedom. When using a coherent locking technigwsntrol a squeezed state phase,
there are two degrees of freedom that must be controlledphlase between the pump and the
frequency shifted sideband phase, and the detection phase.

Quantum noise locking is appealing due to it's experimesitalplicity. Here it is compared
with standard locking techniques in terms of robustnessramise performance. We show that
guantum noise locking provides a robust and stable lock,elew its noise performance was
found to be inferior to the standard dither locking techeiqu/NVe investigated quantum noise
locking in two different systems shown schematically in f®9.1. The system we investigate
first is case I, shown in figure 9.1 (a). Case | is the controhefrelative phase of two coherent
beams interfered on a beamsplitter. The quantum noisengakiror signal for case | is derived
by demodulation of the noise power of a single photodete@ase | shares quadrature dependent
noise power with case I, since the interference conditibthe fieldsa(t) andb(t) determines
the optical power at each beamsplitter port and the assolcéhiot noise varies accordingly. There
is maximum shot noise at a bright fringe (analogous to thesapteezed quadrature in case Il)
and minimum shot noise at the dark fringe (analogous to theested quadrature in case Il). The
purpose of the ‘coherent’ quantum noise locking experinfease 1) was threefold: to enable the
testing and ‘shaking down’ of electronics that were desgigfe use in quantum noise locking
in a simple experimental system; to provide an out of loogloe& of the noise performance of
guantum noise locking, which was done by using the other qifaittie beamsplitter to readout a
dither locking error signal concurrently; and for a direatrparison of the displacement noise in
guantum noise locking and the standard dither locking tiecin

The chapter is laid out as follows: in section 9.2 the quanhgise locking error signals
for cases | and Il are derived; in section 9.3 an experimetgahonstration of quantum noise
locking in case | and Il is presented; in section 9.4 the quamnioise limited noise performance of
guantum noise locking is calculated; finally, in sectiontBégexperimental limitations of quantum
noise locking are discussed.

9.2 Derivation of the noise locking error signal

In this section an overview of the derivation of the quantusise locking error signal is given.
The general experimental setup is the same for both casesll,drowever the input fielda(f)
andb(t), and the photodetection processes are different. Aftarctien the electronics used to
derive the error signal are identical (see figure 9.1). Thaetquurrent (from either the single
photodetector, or balance detector) is passed through dphas filter (BPF), then sent to an
envelope detector (see, for example [168]) which gives dpubyproportional to the real envelope
of the input photocurrent. In both cases, the BPF low frequeanut-off, Qi¢, is set such that
Qmn < Qif, so that any coherent beats (between the PM sidebands acakttes for example) are
not passed. Figure 9.2 shows a phasor diagram of the fregulstcbution of the optical fields
and the BPF. The envelope detector LPF corner frequency gtdsigher than the modulation
frequency. The output of the envelope detector is demaetililahd low pass filtered to give the
guantum noise locking error signal.

The fieldsa(t) andb(t) have relative phas@, and interfere on a balanced beamsplitter. The
fields at the output ports of the beamsplitter are labeligdiandc(t). The field operators can be
decomposed into average (dc) and fluctuating (time-depghdemponentss(f) = s+ 85(t), for
s=a,b,c,d. The operators satisfy the standard commutation relatsnigid out in chapter 3.
Average components are assumed to be real. The lineariz#gdquinrents of PR and PR are
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09 (a) Case 1

% (b) Case II
|

Figure 9.2: Phasor diagram of the fields incident on the detectors shpthia carrier atlc modulation
sidebands a®n, the quantum noise (small red vectors) and the frequenagigal of the bandpass filter
frequencies (which has bandwidti®). Top figure shows the fields for case I, here the quantum neise
shot noise, and the two carrier fieldsa represent the field amplitudes@fndb with relative (dc) phase

of 8p. The bottom figure shows fields for case Il. Here the quantuiseris squeezed vacuum and the phase
6y determines the measured quadrature.

proportional to (see equation 3.42)
iY@ = %" (52 +b?+ 23bsin®
+8X” (b + asing) + 5X.? (a+ bsing) + (aX.” + bdX?) cose> . (9.1)

where the photocurrerh(%d) (t) is given by the top sign ariéc) (t) the lower sign. We have assumed
unity detection efficiency for simplicity.

9.2.1 Case I: Locking the phase of coherent fields

In case | the quantum noise locking error signal comes franvahniation of shot noise as a function
of 6. In this section, the variance of the detected power is &atied on a single photodetector.
Once demodulated, this is the error signdlhe magnitude of the error signal depends on the BPF

1Either the output voltage or output power of the envelopedatet can be demodulated to obtain a quantum noise
locking error signal. In this section we assume it is the @giewer of the photocurrent which is demodulated. The
variance of the photocurrent is directly proportional te tioise power.
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bandwidth, However, this dependence is neglected heredé&pendence on the BPF bandwidth
is taken into account when the signal to noise ratio is catedl in section 9.4.

The output noise power of the envelope detector is propmtito the variance of the pho-
tocurrent detected at RD

.(d .(d
Vi) = (a1,

h2v2 ()2, 0 (@2 | =2 =
— T(Vl (& + b?sir? 0 + 2absing) +V, ¥ (b* + & sir’ 0 + 2absing),
+(@V + V@) cog e) , (9.2)

whereVl(Z) andVl(f;) are the quadrature variances of the fieddandb. Since these are shot noise

limited the substitution/l(a) = VZ(a> = Vl(b) = z(b) =1 can be used. The variance of the photocur-
rent becomes

2\)2 _ _
V(i) = hTV(_2+b2+Zébsine). (9.3)

In the experimental demonstration of case | presented iioge®.3.1, the fields andb are the
fields in the two arms of a Mach-Zehnder interferometer. @mmghat the input beamsplitter of
the Mach-Zehnder interferometer has amplitude reflegtivjtand amplitude transmissivitt/, In
the lossless case wher@ ¢t = 1)

_p2Pn 2P (9.4)

)
a
hv’ hv’

wherePR,, is the power at the Mach-Zehnder input. Equation 9.3 canustten

Vi) = %hvp.n(lw/sine), 9.5)

where ¥ = 2rt is the Mach-Zehnder fringe visibility. For later calcutats it is convenient to
introduce a dc phase shift of 2 to 8. Thus equation 9.5 becomes

Vi) = %hvpm(l—i-’VCOSG). 9.6)

The generation of noise locking error signals requiredivelghase modulation of the input fields.
This is included by letting the phase difference of the injrltls vary as a function of timé), =
B0+ BsinQmt, wherefg is the average phagéjs the modulation depth, arfd, is the modulation
frequency. For small modulation dept &« 6o) we make the approximatiog®s"@mt ~ Jo(B) +
Ji1(B)€2t — 31 (B)e ', Expanding the phaggand neglecting thé; (B)? terms, we find

. 1 . .
V(i) = 5P (1+ VJo(B) 0SB — 29/J1(B) sin6oSiNQnt) (9.7)
The error signal can be found by demodulation of equation™h@ demodulation process can be
described mathematically by multiplication by a sinusdithe modulation frequency. The error

signal for case | is

& 0 V(i) xsin(Qut + o),
O —:—ZLhVP.n‘VJl(B)sinGo, (9.8)
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Figure 9.3: (i) The power at Py of a Mach-Zehnder interferometer with fringe visibility80and (ii) the
error signal as the relative phase is varied. The error sggrexo crossing points indicate that the homodyne
angle can be locked to either a dark or bright fringe by chagp#ie appropriate feedback sign.

where we have discarded terms at frequefdgyor higher and chosen the demodulation phase
@ = 0. Equation 9.8 reveals that the quantum noise locking sigmal has zero crossingstat=

0 andBy = 1t corresponding to the dark and bright fringes of the Machrdeh interferometer.
Either the dark or bright fringes can be locked to by selgctire appropriate feedback sign. The
lock points are shown on the quantum noise locking erroradigg x’s in figure 9.3, curve (ii).
The magnitude of the error signal depends linearly the é&inigibility, 7/. Of course, if/ =0
there is no quadrature dependent noise and the error signahes.

9.2.2 Case ll: Locking a squeezed vacuum state

The quantum noise locking error signal is calculated in a@lammanner to that of case I. Here
the input fields are considered to be a squeezed vacamaha local oscillator field. The differ-
ence photocurrent from the balanced homodyne detectovés diyig (t) = i(ed) (t)— i(e°> (t). The
fluctuating component is

Sig(t) = v (adx(”sing+ @x}” cosd+b8X(V sind - b&x;V cosh) . (9.9)
The variance of the difference photocurrent is
Viig) = (|3igl?),
nPv? (2(v;” sir? 0+ V4" cog 6) + B?(v{” sirP 0+ ;¥ cos'6) ), (9.10)
The local oscillator condition impliea < b, so the variance in equation 9.10 can be written

V(ig) ~ 22V sir?0+V,® code),

whereP o = hvb? is the power of the local oscillator andg is the variance relative to the shot
noise limit

Vo = V\@site+Vv® code. 9.12)

2pright squeezing can also be locked using quantum noisénigck
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Figure 9.4: The noise variance of a phase squeezed beam relative todheaike limit and the quantum
noise locking error signal as the relative phase is variduke &rror signal’s zero crossing points indicate

that the homodyne angle can be locked to observe both sengeszil anti-squeezing. The scale of the error
signal is arbitrary.

We can writeVp as a function of timef{ — 6(t)) and in a similar form to equation 9.6

Vo = V{¥sir0(t)+V,¥ coat),

_ % (V1 - cosB(t) + V(1 +cos B() )
= VP 4+v¥)/2(14ycost (1)), (9.13)
where
@ _\@
V" —V.
_ Vv 2 1@', (9.14)
V7 +V,

is a parameter which plays a similar roll to the fringe viiipin the Mach-Zehnder interferometer.
Here

o'(t) = 26(t). (9.15)
Expanding®’ (t) = 28 + 2BsinQnt to first order and discarding (28)? terms we find

1

Vo ~ E(Vl(a)+V2(a>)(1+yJo(2|3)cos;Bo—2yJ1(2[3)sin290$iant). (9.16)

Vg can be substituted back into equation 9.11 to find the quantise locking error signal
& = V(ig)xsin(Qmt+@p),
— —%thLo(Vl(a)+V2(a))yJ1(ZB)sin230,
_ _%hvpLo(vﬁ —V{®)3,(28) sin Bo. 9.17)

Again we have chosen the demodulation phase- 0. The quantum noise locking error signal for
squeezed vacuum has zero crossingdat 0 andBy = 11/2 corresponding to the anti-squeezed
and squeezed quadratures. The lock points are shown orrtheignal byx’s in figure 9.4 curve
(i) along with Vi, curve (i), for a minimum uncertainty phase squeezed sEqeation 9.17 also
reveals that the amplitude of the error signal depends tymmgtry of the quadrature variances
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Figure 9.5: An experimental schematic of the setup used to analyze tamiking. In the optics section: Fl

- Faraday isolator; PM - Phase modulafo® - half-wave plate; PBS - Polarizing beam splitter; PZTizpe
electric transducer bonded onto a mirror; D, - photodetectors. In the electronics section; Lock-in -
Lock-in amplifier; BPF - Band pass filter; ED - envelope detecLPF - Low pass filter; and HV amp -
High voltage amplifier.

via the parametey or (Vz(a) —Vl(a)), which plays the same roll as the fringe visibilifyf in case
I. If there is no asymmetry in the quadrature variances, trese reference is lost and the error
signal vanishes.

9.3 Experimental demonstration of quantum noise locking

In this section we present two experimental demonstratadrthe quantum noise locking tech-
nique. Firstly, we demonstrate case I, the locking of twoezeht fields. Secondly, we present
case I, the locking of the detection phase of a squeezesl stat

9.3.1 Experimental analysis of case I: Locking of coherentéids

Figure 9.5 shows a schematic of the quantum noise lockingrarpnt. Approximately 2mw from

a Nd:YAG laser operating at 1064nm was injected into a Maehnder interferometer. Contained
in the lower arm of the Mach-Zehnder was a phase modulatov{Nacus 4004); used to dither
the interference condition of the Mach-Zehnder and a mirrounted on a piezoelectric transducer
(PZT). The dither frequency wd3,/21=100kHz with a modulation depth @~ 0.045 radians.

A variable attenuator consisting oid2 plate and a polarizing beam-splitter (PBS) was placed in
the lower arm to allow the fringe visibility to be adjustea+himic changing the level of squeezing
and anti-squeezing. The fringe visibility was setftb= 0.6 to have 6dB noise power variation
on the fringe. Both output ports of the beamsplitter wereected on matched photodetectors
(PDy and PRR) with ETX500 photodiodes, but only one photodetector {P®as used to derive
the quantum noise locking error signal. A standard dithekilmy error signal was derived from
photodetector (PE).

The quantum noise locking error signal was produced aswsltloThe output of PP was
bandpass filtered, with low frequency cutoff @f; /2t = 2MHz and a high frequency cutoff of
Qnt/21= 20MHz, giving a detection bandwidth AK) = 18MHz. The low frequency corner was
designed to cut out any component of the coherent modulatgmal at 100kHz by employing
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Figure 9.6: (a) The DC voltage on PPas the fringe is scanned (the photodetector is negativelpled,
thus lower voltage corresponds to higher incident powd).(ij The corresponding dither locking error
signal and (ii) the quantum noise locking error signal. (ork acquisition curve showing the quantum
noise locking error signal and the voltage onPmnitially, the control loop is open. At 0.4 seconds the
control loop is closed and the interferometer is locked taighb fringe on PR (dark fringe on PRQ).
Lock-in amplifier settings; LPF Time constant = 10ms, 6dBdwe for the both dither locking techniques.

a low frequency corner with®froll up. Over the BPF frequency range, most of the spectrum
(5MHz - 20MHz) was shot noise limited, however below 5SMHzrtheras some classical intensity
noise present. The BPF output was sent to an envelope detsbioh had a series of amplifying
stages before a diode stage, giving an output voltage piopal to real envelope of the input
below the cut-off frequency, which in our case was 200kHze dhtput of the envelope detector
was then demodulated using a low frequency lock-in ampl8&S-SR830) to give the quantum
noise locking error signal. The error signal was then lowsgdédtered (to remove components at
frequencies of2, and higher) sent to the servo, then to the PZT actuator. Therdbcking error
signal was derived from PDusing an identical lock-in amplifier where it was demodudadamd
low pass filtered.

Demonstration of locking using the quantum noise locking tehnique

Figure 9.6 shows: (a) the detected optical power og @& photodetector is negatively coupled)
and (b) the error signals from (i) the standard dither logkiEchnique and (ii) the quantum noise
locking error signal as the fringe was scanned. Note thatd#modulation phase of the two
techniques has a 180 degree difference to give the erraalsitre same sign in the figure, because
the signals are derived from different beamsplitter pdttsan be seen that both error signals have
zero crossing points at the bright and dark fringes. Theenoighe quantum noise locking error
signal is noticably larger than that of the dither lockingteique, which is not visible on this scale.
Also, the noise on the quantum noise locking error signaksasignificantly over the fringe. The
noise on the quantum noise locking error signal is minimiaethe dark fringe for PP (bright
fringe for PQb) and maximum at the bright fringe for R@dark fringe for PRR).

Lock acquisition using quantum noise locking is shown inrégf.6 (c). The bottom curve
is the optical power on PPand the top curve is the quantum noise locking error sigmétially,
the control loop is open. At 0.4 seconds the control loop wased. Here the quantum noise
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Figure 9.7: (a) Spectral densities of the error signals whilst the fetemeter was locked using the dither
locking technique. Curves (i) and (ii) are the out-of-loamgtum noise locking error signal spectra of the
bright and dark fringes (on Rf). Curves (iii) and (iv) are the in-loop dither locking errgsignal spectra
of the bright and dark fringes (on RP (b) Spectral densities of the error signals whilst therifgrometer
was locked using the quantum noise locking technique. Guiiyand (ii) are the out-of-loop dither locking
error signal spectra of the bright and dark fringes (oryPIZurves (iii) and (iv) are the in-loop quantum
noise locking error signal spectra of the bright and darkgieis (on PB). The excess noise of the quantum
noise locking readout can be seen from the different ang#iuof the dither locking and quantum noise
locking error signal spectra. DF = dark fringe, BF = briglndre.

locking error signal was quickly zeroed and the fringe on. IREaches the maximum value. The
guantum noise locking system was found to provide a robgktdomparable to the dither locking
technique and was able to maintain lock indefinitely.

Noise performance of the quantum noise locking technique

The noise performance of quantum noise locking was able tdssured by, and compared with,
the dither locking technique. This comparison can be sedhdrspectral density of the error
signals recorded on a signal analyzer (SRS-SR785), shottre ifigure 9.7 (a) and (b). The data
in figure 9.7 (a) was taken with the Mach-Zehnder locked ugegdither locking technique, and
in (b) when using the quantum noise locking technique. Tha das calibrated from voltg/Hz
to mA/Hz by using the slope of the error signal in volts/m measureah the data in figure 9.6 (b).
The solid curves in figure 9.7 (a) are the in-loop dither lagkerror signals spectra whilst
locked to the dark (dark solid line) and bright fringes (ligblid line). The dither locking control
loop had a unity gain frequency 40Hz. The dashed curves are the corresponding out-of-loop
quantum noise locking error signal spectra taken for thk filenge (on PR - dark dashed line) and
the bright fringe (on PP- light dashed line). The spectral densities of the in-loipet locking
error signal show little difference for the dark and brighihdge, with a noise of approximately
1.5x 10 m/v/Hz at 100Hz. Many acousto-mechanical noise sources in tegénometer couple
into the readout and can be seen in the structure shown irittier tbcking error signal spectra.
The out-of-loop quantum noise locking error signal showtevimoise approximately 2 orders of
magnitude larger. These spectra bear no resemblance tathiee kbcking error signal spectra,
indicating the quantum noise locking technique has a mughdminoise floor that buries the
interferometer noise source. The noise of the bright friggantum noise locking readout is
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Figure 9.8: An schematic of the experiment to quantum noise lock a segeeacuum state. The box
labeled ‘SQZ’ represents the squeezing apparatus.

approximately a factor of 2 larger than the dark fringe quanhoise locking readout.

Because the dither locking technique was at least two oaferggnitude more sensitive than
the quantum noise locking technique it could be used to mak®feloop measurements of the
displacement noise of the quantum noise locking technifigrire 9.7 (b) shows the spectral den-
sities of the error signals whilst the interferometer waském using quantum noise locking. The
solid curves are the in-loop quantum noise locking erronalig whilst locked to the dark fringe
(dark solid line) and bright fringe (light solid line). Theshed curves are the corresponding out-
of-loop dither locking error signal spectra used to readbetdisplacement noise of the quantum
noise locking technique. Below the unity gain frequensy40Hz) the in-loop error signals show
some suppression of noise, due to the loop gain. The outepf{dither locking) signals at 10Hz
show displacement noise of 2480~°m/v/Hz and 5.5<10~°m/y/Hz for the dark and bright fringe
locking signals, respectively. The displacement noisevaltioe unity gain frequency can be seen
to roll off as 1/f which is the filter shape of the control lodghe origin of the noise peaking in the
dither locking spectra above 2kHz was thought to be a featfitiee digital filters in the lock-in
amplifier.

The difference in the noise whilst locked to the bright anckdenges shown here can also be
seen qualitatively in figure 9.6 (b). The factor of two diface in the noise floor is predicted by
the calculation of the noise performance presented inse6td.

The comparison of the error signal spectra of the ditheritacland quantum noise locking
techniques indicates that, in this bench-top experiméetnbise performance of quantum noise
locking is significantly poorer than dither locking. The gtian noise locking error signal had
broadband white noise which increased the inteferometsemver the frequency band measured
here. The white noise of the quantum noise locking technégigigests that low control bandwidth
would be desirable, to limit the amount of displacement edimposed by the quantum noise
locking control loop into the system. The white noise of thmmfum noise locking technique
is analogous to the shot noise limit of dither locking teciuais, however it is many orders of
magnitude larger.

123



Quantum noise locking

9.3.2 Experimental analysis of case Il: Locking of a squeedevacuum state

Figure 9.8 shows a simplified schematic of experimental destnation of quantum noise locking
of a squeezed vacuum state. Here the box labeled ‘SQZ'’ ingperuarm of the Mach-Zehnder
indicates the experiment used to generate the squeezedhwatate (SHG, doubly resonant OPO,
etc.) described in detail in chapter 7. Up to 6.5dB of squeprias detected on a balanced homo-
dyne detector with a local oscillator power of 380. The photocurrent of the balanced homodyne
detector was demodulated to provide the quantum noiserigakiror signal and was simultane-
ously monitored on a signal or spectrum analyzer to measua®@tgm noise properties. The
electronics and processes used to derive the quantum polgad error signal in this experiment
were identical to those in case I.

Demonstration of locking a squeezed vacuum state using theugntum noise locking tech-
nique

Figure 9.9 (a) shows the noise power out of the homodyne wetas the local oscillator phase
was scanned. The corresponding quantum noise locking signal can seen figure 9.9 ¢b)
The error signal has zero crossings coinciding with the sge and anti-squeezed quadratures.
Figure 9.9 (c) shows curves of the locked squeezed and gumiezed quadratures as well as the
shot noise limit and electronic noise.
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Figure 9.9: (a) The noise power of squeezed field (i) and noise power dfrabige (ii). The noise power
units here are arbitrary, however the squeezed quadrataggproximately 3dB below the shot noise limit
and the anti-squeezed quadrature is approximately 9dBedath@shot noise limit. (b) The corresponding
quantum noise locking error signal and PZT ramp. (c) Noisggyof the squeezed and anti-squeezed
quadratures using quantum noise locking. The measurechsie® and electronic noise are also shown.
Measurements taken with zero span at 1IMHz, RBW = 100kHz, VB3¥Hz.

3The quantum noise locking signal here was viewed with a logsfiter (with corner frequency. = .5Hz )
immediately before the oscilloscope. This reduces the sigmal amplitude and offsets the zero crossing point of the
error signal. In the calibration of the spectra of the ing@aror signal in figure 9.9, the low pass filter was accounted
for.
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The noise performance of quantum noise locking a squeezedaam on a homodyne detec-
tor

Figure 9.10 (a) shows the in-loop quantum noise lockingresignal spectrum when the detection
phase was locked to the squeezed quadrature (solid lingdharahti-squeezed quadrature (dashed
line). The unity gain frequency of the control loop was apimately 20Hz. Though an out-
of-loop measurement for the displacement noise was notdedpit is reasonable to expect that
displacement noise spectrum of locked the squeeze anglklwebave in the same fashion as
the coherent field quantum noise locking shown in figure 9h& displacement noise is expected
to be 13 x 10-°m/y/Hz for the squeezed quadrature and:2 10-°m/v/Hz for the anti-squeezed
guadrature, at frequencies below the unity gain frequeaag, to roll off as 1f above the unity
gain frequency.

The displacement noise difference for squeezed quadramgranti-squeezed quadrature lock-
ing was a factor of two, as it was in case |. However, as showigime 9.9 (c), the noise power
variation (at 1LMHz) on the fringe is 12dB, compared to 6dBase . If the displacement noise
limit scales in the same way for both cases (proportionah&gguare root of the noise power
difference), one may expect a factor of four difference sptiicement on the squeezed and anti
squeezed quadratures. The displacement noise sensdalitulation presented in section 9.4,
shows that the displacement noise does indeed scale por@diio the square root of noise power,
so there seems to be a discrepancy in the displacement ne&sired in figure 9.10 (a). This dis-
crepancy can be accounted for by the frequency dependetice wfagnitude of the squeezed and
anti-squeezed quadratures over the detection band, amshdigure 7.5 (a). The difference of
the squeezed and anti-squeezed quadratures averageti@detdction band was6dB.
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Figure 9.10: (a) The quantum noise locking error signal spectra whilskéal to the squeezed quadrature,
curve (ii) and anti squeezed quadrature, curve (i). (b) Meament of the squeezed quadrature over 34
minutes. The electronic noise at -11dB was not subtractedsuvrements taken with zero span at 100kHz,
RBW = 10kHz, VBW = 30Hz. ASQZ = anti-squeezed quadrature, S@dueezed.
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Long term measurement

Squeezing data taken over 34 minutes is shown in figure 9)1® @emonstrate the stability of
the apparatus and the quantum noise locking techfiqlibe figure shows the measured noise
power at 100kHz over 34 minutes. The average measured noiger evel was 5.5dB below the
measured homodyne noise floor over this time, except for & pedod starting at the 18 minute
mark, where the PZT actuator for the homodyne phase ran gahge, and was re-locked to an
adjacent fringe.

9.4 Analysis of the noise performance of quantum noise lockg

In this section a theoretical calculation of the noise pannce of quantum noise locking is
presented.

9.4.1 Case ll: A squeezed vacuum state

Since it is the variance, or noise power of the detected ggaestate which is used to derive the
error signal, the noise performance of the lock depends ervainiance of the variance, or the
noise on the noisef the state. This can be found by taking the kurtysighich we labelAV?.

For the amplitude quadrature of the fiel,in the squeezed vacuum state, with variance in the
squeezed quadrature ®f?R and in the anti-squeezed quadraturedt, the kurtosis is given by

AN \/< (5Xl(a) _ <6X1(a)>>4> _ <(6x1(a) _ <5X1(a)>>2>2’

= V@, (9.18)

and similarly for the phase quadratudwz(a> = \/_2\/2(a>. Note that the kurtosis is a factor of
V2 larger than the variance. As a measure of locking noiseoprence, the kurtosis of the
photocurrentAVp is expressed in terms of phase fluctuatiak®, The kurtosis is equated with the
variance due to phase fluctuation.Using a Taylor expans‘i&éa&to second order arourii= 6p

7 (a)

7 (@) dVy
AV, (0g) ~ —2—

0 ( 0) de

1d274”
o0 2 de?

(06)2. (9.19)
6o

Expanding both sides, the equation becomes

V2V sin? 8y + V2 cos 6p) = ((\71("’0 — ) sin D00+ (V¥ —V[?) cos By(88)?|, (9.20)

4This data is reproduced from chapter 7 for convenience.
5The kurtosis is the fourth order moment of the distribution.
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Figure 9.11: Squeezing angle stability vs squeezing fad®for the cases of quantum noise locking to the

squeezed and anti-squeezed quadrature, for various Evidtection lossL.

which can be solved for the phase fluctuatioh8, at the two lock points@y = 0,11/2). We find
the phase fluctuations are

\/—2\7(‘3)

MOlors = 1| —ol (9.21)
Vz(a)_vfa)
- (@)

Moo = | 122 (9.22)
VY

Equations 9.21 and 9.22 can be rewritten in terms of squegdantor, R, detection loss.; and
detection bandwidthAQ. With detection loss included the variance is degraded audivm
fluctuations are introduced, i.¥ (2), — (1- L)Vl(z) + L. The dependence on detection bandwidth
can be included by noting that the variance, which provitlesstgnal for quantum noise locking,
is proportional to the detection bandwidtkQ. The associated noise, which is proportional to the
kurtosis, is proportional to the square root of the detectiandwidth,(AQ)%/2. The phase noise

of the squeezed and anti-squeezed quadratures are given by

1+ 5 eR 2\ V4

DOly_ryz ~ ﬁ(E) | (9.23)
14-LegR/ o \V4

ABlgy—0 ~ ﬁ(@) ) (9.24)

where we have taken the case of amplitude quadrature sqge€khe stability of the two lock

points are plotted as a function of squeezing factor in fiqudd (the detection bandwidth has
been normalised out). The noise performance of the squesmzadanti-squeezed quadratures
improves as the squeezing factor is increased. This is imptising since it is from the quadrature
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asymmetry that the error signal is derived. Perhaps mogising is the different behavior of

the two quadratures. The noise performance of the squeemattajure lock becomes perfect in
the limit of perfect squeezing, since the noise of the vagadnecomes infinitely small. Note that
losses and detector inefficiency mean that this will nevearbduced experimentally. The residual
phase noise of the anti-squeezed quadrature lock poinbagipes ¥* at high squeezing factor,

and is always worse than the squeezed quadrature lockitstafiihe noise performance of the
lock for both quadratures improves as the detection bartbwadincreased, albeit with a weak
dependenceNQ(1/4).

To compare the predictions of equations 9.23 and 9.24 toxgperenental measurements, we
converted the phase noise to displacement noise with unitgtdz!/2. This is done using

JA\S) 21
& —_— A—/Z’ (9.25)
o)
AX = AAe (9.26)
A '

Using the experimental valueR £ 0.46, L = 1—not = 0.26, AQ/211= 18MHz, and\ = 1064nm)
the displacement noise is predicted to be

MXlgp—ryz ~ 1.2nm/HZ/2 (9.27)
MXjgo—o ~ 2.3nm/HZ/?, (9.28)
which are very close to the measured values.8frim/HZ/? and 26 nm/HZ/? for the squeezed

and anti-squeezed quadrature, respectively. Here we lsakthie average squeeze factor over the
detection band.

9.4.2 Case I: Locking coherent fields

The calculation of the noise performance of the locking dierent fields can be calculated in
similar fashion to case Il. The phase fluctuations when lagho the dark §o = ) and bright
(60 = 0) fringes are

V2(a—b)2 / 1 \Y*

Ae‘eo:n“’ % <m> ) (9.29)
V2(a+b)2 /[ 1\ Y4

Ae|9020 ~ 7(ab ) <E)> . (930)

Note that kurtosis in this case has the same dependenceianoeas in case of squeezed state.
Equations 9.29 and 9.30 can be rewritten in terms of fringéiity of the Mach-Zehnder.

1-v [ 1\
Ae|e_n~,/W<m> , (9.31)

1+9 1\
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89.5 Discussion

The functional form is the same for the dark fringe stabiitd the squeezed quadrature stability,
equations 9.31 and 9.23, respectively. Similarly for thighirfringe and anti-squeezed quadrature
stabilities, equations 9.30 and 9.24 respectively. Theddence on detection bandwidth is found
to be identical in the two cases.

Again, to compare the predictions of equations 9.31 and &x3Be experimental measure-
ments, we convert the phase noise to displacement noiseuwith of m/HZ/2. This is done
using

A8 21
XN (9.33)
SO
Ax= 2 no (9.34)
om '

Note the factor of two difference between equations 9.26 @8d. This factor two difference
arises because the required change in optical path lengtiek® dark and bright fringes Bsx = A,
whereas the change in path length required to cycle squermt@nti-squeezed quadratures is
Ax = A/2. Using the experimental value§’/(= 0.6, AQ/2m = 18MHz, and\ = 1064nm) we
predict

AX|o_x ~ 2.3nm/HZ/?, (9.35)
Ax|o—g ~ 4.6 nm/HZ/?, (9.36)

which is again close to the measured values.5frfm/HZ/? and 55 nm/HZ/? of the dark and
bright fringes.

9.5 Discussion

Although the noise performance of quantum noise lockingfaasd to be inferior to dither lock-
ing in this experiment, in the absence of coherent fields,gtemtum noise locking technique
remains a good candidate for extracting error signals ttrabgquadrature phases. With moderate
detection bandwidthQ /2= 18MHz and fringe visibility (/ = 0.6), the noise performance of
guantum noise locking was on the order of 100 times worse ditaer locking technique. The
noise floor for locking squeezed vacuum had similar perfoiwea From a theoretical point of
view, the noise performance of quantum noise locking a stpeegacuum can be improved by
two avenues. The first is to increase the detection bandwtitttrsecond is to increase the squeez-
ing amplitude. The detection bandwidth dependence of tligererformance is weak, it goes
as(1/AQ)Y4. The detection bandwidth used here /2= 18MHz, it would be difficult to
make this significantly larger. The best way to improve this@performance of this experiment
would be to increase the squeeze factor. The squeeze faetagad over the detection band was
just R=0.46 (4dB). This was low because the squeezing/anti-squgemnegnitude reduced as
a function of frequency due to the cavity pole. An OPO with rgda linewidth would translate
readily into an increase the squeeze factor and stabildy.ekample if the squeeze factor was to
increase the value measured at 1MRiz 1.15 (10dB) the stability would improve by a factor of
2.6.
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9.6 Chapter summary

In this chapter we have analyzed the quantum noise lockaimtgue and compared it with dither
locking. Quantum noise locking was found to have inferioisa@erformance to dither locking.
The stability of quantum noise locking was analyzed and & feaind the stability improves with
squeezing amplitude and detection bandwidth and the sgdepmdrature lock stability is always
superior to the anti-squeezed quadrature lock stabilitgteEtor inefficiencies and losses were
found to degrade the stability of quantum noise lockingesiancorrelated vacuum fluctuations
are coupled into the signal.
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Chapter 10

Phase matching locking via optical
readout

In this chapter a technique developed to readout the phasehimg condition of a nonlinear

medium is introduced. In this technique, the phase matatdamglition is readout interferometri-

cally using the interacting fields. We describe this techaitheoretically and demonstrated it in
an experiment. This research is based on the publication:

Nonlinear phase matching locking via optical readout.
K. McKenzie, M. B. Gray, P. K. Lam, and D. E. McClelland
Optics Expresd4, 11256-11264 (2006).

10.1 Introduction

An elementary requirement for efficieqt? nonlinear interaction is the conservation of momen-
tum, also referred to as the phase matching condition (sgmie3.4). In birefringent materials
phase matching can be achieved ugipg | type Il or quasiphase matching (see section 3.4.2).
Consider the example of a SHG or degenerate OPA that is tyhadepmatched. In SHG or de-
generate OPA’s the low energy interacting fields have theesgptical frequencyw, = wy, and
the high energy interacting field has twice that frequemgy= 2w,. Henceforth, we shall refer to
the field with frequencyw, as the fundamental field, and ¢® as the harmonic field. The phase
matching condition in this type | degenerate system is aeldidy matching the refractive indices
for the two frequenciesn, = n;. To match these indices the polarization of the fundamental
field is set to the crystal’s ordinary axis, the harmonic t® éxtraordinary axis, and the crystal
temperature is tuned. Temperature tuning changes theapydamd extraordinary refractive in-
dices differentially according to the Sellmeier equati®][ until they become equal at the phase
matched temperature.

In most experiments that use type | phase matched media,otfi;@ar medium must be
temperature controlled to maintain the phase matchingitond Typically, the temperature of
the nonlinear medium is sensed by a nearby thermister andtadtby a peltier (thermo-electric)
element or resistive heater. Stabilizing the phase magabdmdition using a temperature sensor
on the exterior of the nonlinear medium has inherent disatdgges. An external sensor reads out
the external temperature, rather than temperature of ttieabpath through the crystal where the
nonlinear interaction occurs. Therefore, temperaturenghan the nonlinear interaction region,
say due to absorbed laser power, will not necessarily beedasrssuppressed by the temperature
control loop. Instead a temperature gradient will arisevieen the interaction region and the
boundary of the nonlinear medium. Thus, if an external temtpee readout and control system
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Pump PDH Error Signal

» PML
error signal

Seed PDH Error Signal

SHG |----8---5;

Figure 10.1: Schematic of an experiment to derive phase matching lockingr signal from a doubly-
resonant optical parametric amplifier (DROPA). The red (okbn) lines indicate the fundamental (seed)
field and the green (dashed) lines indicate the harmonic fpdield. PDH error signals are derived for
both cavities and differenced to give the phase-matchiokitg error signal. SHG - second harmonic
generator, PM - phase modulator, DC1 & DC2- dichroic mirnesed to separate the fundamental and
harmonic frequenciex? indicates the nonlinear medium.

is used, the temperature may require manual adjustmentédr laser power. This is a problem
because lasers have inherent power fluctuations over bothasid long time scales.

Here we present an alternative to a temperature sensorueaddch we call phase matching
locking. The phase-matching locking technique works indically different way to standard
temperature sensors. Phase-matching locking uses tlealdftids that interact in the nonlinear
medium in a doubly-resonant OPA to derive an error signalttier phase matching condition
of the nonlinear medium. Using the optical fields enables f@adout of the phase matching
condition, exactly where the nonlinear process is occgrrirhe phase-matching readout involves
monitoring the cavity resonance conditions at both the dumental and harmonic frequencies of
the doubly-resonant OPA using a standard locking techniiguexample the Pound-Drever-Hall
(PDH) technique [142]. A schematic of an experiment to dedvphase-matching error signal
is shown in figure 10.1. The doubly-resonant OPA has inputldiet the harmonic (the pump
field) and fundamental frequencies (the seed field). Bothtifiplds receive phase modulation, at
different modulation frequencies, and the reflected fietdsdatected and demodulated to derive
the PDH error signals for each cavity. The phase-matchiray signal is obtained by differencing
the PDH error signals. Mathematically, this can be repiteskby

Eme =5 — %, (10.1)

where &, is the cavity error signal of the harmonic fieldy is the is the cavity error signal of
the fundamental field, anfl, is the phase-matching error signal. The mathematical lchtdi
derivation of the phase-matching error signal is in secfiOr8. For now, consider a doubly-
resonant OPA that is phase matched € ny). If the doubly-resonant OPA cavity is held on
resonance for the harmonic frequency, then because the élds fhave the same optical path
length, the fundamental field will also be resorfar/ith both cavities on resonance, both PDH

1Actually, having the harmonic cavity on resonance does natantee co-resonance, only every second FSR re-
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§10.2 Nonlinear gain in a doubly-resonant OPA

error signals, and subsequently, the phase-matching sigoal, will read zero. If a phase mis-
match is introduced, the refractive indices in the nonlimaadium are no longer equaiy# ny)
for the two fields and so the optical path length of the cawitidll be different, and co-resonance
no longer occurs. The fundamental field will still be on remuee, since the control system is
forcing it to be so, but the harmonic field will no longer be esasnance. The PDH error signal of
the harmonic field will have a non-zero value, and thereforevitl the phase-matching signal.

In this chapter we describe the phase-matching lockingnigale theoretically and demon-
strate it experimentally. We start by deriving the nonlingain of a doubly-resonant OPA as a
function of temperature offset from phase matching in secfi0.2. Our model shows that the
FWHM temperature of the nonlinear gain is significantly derathan in the singly-resonant- or
single-pass OPA, motivating the requirement for precigibase matching control. In section 10.3
we derive a phase-matching error signal, starting withresignals from the PDH technique. In
section 10.4, an experimental demonstration of phasehimgtdocking is presented. Readout of
the phase-matching error signal is shown and the activeaaritthe phase matching tempera-
ture is implemented. Fast actuation of the crystal tempegas achieved using the photothermal
effect [76,121, 169, 170]. The phase matching error sigred used to modulate the harmonic
(pump) field amplitude, which is partially absorbed in thenliveear medium. This actuation
can be extremely fast(100kHz) compared to using an external temperature actuabich has
bandwidth limitations due to the time delay associated tigrmal conductivity of the nonlinear
medium.

10.2 Nonlinear gain in a doubly-resonant OPA

In this section we derive the nonlinear gain in a doubly-nest OPA as a function of phase
mismatch. This gives the reader some insight into the effigghase mismatch in doubly-resonant
OPA. The results show the enhanced nonlinearity of a dorgggnant system and the narrowing
of the phase matching condition, motivating better phasemitag control.

The classicak? nonlinear optic equations of motion are (see section 3.5)

a = —(k*+iAPa+e'ab+ /2«3 Ap, (10.2)
. 2
b — —(Kb+iAb)b—%+ 24P B, (10.3)

wherea andb are proportional to the the intra-cavity fundamental antbed harmonic fields,
respectivelyk? andkP are the total resonator decay rates for each fieisithe nonlinear coupling
parameter; and, andBj, are the driving fields with the respective input couplingesat?, and
kP The angular frequency detuning of the fundamental and daicrcavities with respect to the
driving field frequencies are given @ andAP. In this calculation we consider all of the optical
fields to be classical fields, in contrast to most of the worthia thesis where the quantum noise
properties are important.

The nonlinear coupling parameter dependence on tempernatdue to the phase mismatch,
Ak, in the following form [4]

ke . AKL
g = goloe 2" sinG 2°, (10.4)

sults in co-resonance. Also this is only the case if we assundifferential phase shift between the harmonic and
fundamental frequencies on the mirror coatings. In practiee use the dispersion compensation window to null the
effect of a differential phase shift, as described in appe@d3.
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wheregg is a constant. The Sellmeier equation at the fundamentgliémrcy isAk = &(8T ), where

¢ is a constant whose value depends on the crystal's propeatiedT is the crystal's temperature
offset from the phase matched temperature. We limit theutation to the non-pump depleted
regime wherega?/2 < \/;,?] Bin. The steady state intra-cavity field amplitudes are found by
settinga=b=0

/2B AN((KE— D7) +£'b) 2P, Bin

a N

(10.5)

As described in equation 10.4, deviation from the phase mragccondition results in reduced
nonlinear gain. In a doubly-resonant OPA, where the intargdields share the same optical
cavity, a phase mismatch also results in relative detunitigeotwo cavity resonances. The cavity
detunings are due to change in the optical path length atutm@aimental frequencgp?, and at
the harmonic frequencyp®, are given by the following equations [90],

Aa == —ZTNfer, (106)
op°
AP = —2MW s (10.7)

wherevys; = Co/p is the cavity FSR with the total optical path length= L 4 niL., with L the
round trip length in free spackg the length of the crystal, ard is the speed of light in vacuum.
The refractive index of the crystal ig for j = {a,b} and wavelengths of the fields in vacuum are
Al. 3p can come from change to the free space optical path ledts, and from change in the
crystal optical path lengtiLL;. The crystal optical path length is a function of crystal pemature
changepT, arising from two mechanisms, thermal expansion and riéfeandex change

dp) = BLss+5LL,

1dn;

wherednl /dT are the crystal’s photorefractive constants andre the crystal’'s thermal expansion
constants. Since the operation point is close to the phasehed condition, the refractive indices
are set ta? = n® = n. Using equation 10.8, the total cavity detuning can be emitis a sum of

detuning due to change in free space optical path Iemgjg),and detuning due to a change in

crystal optical path Iengthl\(j;r
A = A+ AL, (10.9)

The next case considered here assumes that the harmorticisaagtively controlled by a feed-

back loop, which actuates on the free space length of théyc/suppress any cavity detuning
(AP — 0). If the crystal is at the phase matched temperature, agre @re no other forms of
dispersion, the fundamental cavity will also be on resoeaand optimal nonlinear interaction
will occur. If the temperature of the crystal is changed frphase matching, the optical path
length in the crystal will change for both the harmonic anad@amental fields according to equa-
tion 10.8. The control system will then change the free spgutizal path length to compensate
for the change in crystal optical path length by an amdlﬁgt: —AEr(E)T) in order to maintain

cavity resonance. The resulting detuning of the fundanheataty can be found by substituting
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Figure 10.2: Examples of nonlinear gain (equation 10.14) vs temperatffeet from phase matching.
Curve (i) is a doubly resonant (DR) OPA with the harmonic takield on resonancéP = 0) and the fun-
damental detuning given by equation 10.11. Curve (ii) isxglgiresonant (SR) OPA with the fundamental
cavity held on resonancA{ = 0). The dashed curve (iii) gives the nonlinear gain envelrfghe DROPA
found when both fundamental and harmonic cavities are hetésonance’ = A2 = 0). Parameters used
areP? = .1W, gy = 60 1/s, and® = 0.

this into the total detuning of the fundamental cavity

At = AR+ DE(3T), (10.10)

= N2(3T)—2AR(3T), (10.11)

where we have usefff, = ZA?S. Thus the detuning for the fundamental cavity is propo#gldo
the change in crystal optical path length at the fundametdlharmonic frequencies, which is
caused by temperature tuning of the crystal. Equation 1€ahlbe extended to include more than

one longitudinal mode of the fundamental cavity; and anteatyi differential phase shift between
the fundamental and harmonic fields,The total detuning then becomes

wherel is the longitudinal cavity mode number. The intra-cavitypditade of anlth mode is

2R A3 IAR) + b |€9)
N (k)2+(BF)>—[eb? 7

(10.13)

where the phasg is the combined anglé(g*b*), which can be varied by choosing the pump/seed
phase to control the sign of the parametric gain. Experiaigntl control loop can be used to set
the anglep = 7/ (k®+iA}) which maximizes ) or minimizes ¢) the parametric gain.
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Table 10.1 Doubly-resonant OPA Cavity/Mg:LiNb§&Parameters

Parameter Symbol Value Units
Fundamental Wavelength Aa 1064 nm
Second-Harmonic Wavelength Ab 532 nm
Reflectivity of Input Coupler ak, R 99.99 %
Reflectivity of Output Coupler at, Rt 90 %
Reflectivity of Input Coupler akp, R 97 %
Absorption Rate ak, - 0.1 %,/cm
Absorption Rate akp, — 2.0 %/cm
Crystal Length Lc 0.0065 m
Cavity Free Space Length L 0.65 m
Phase-Matched Refractive Index n 2.233 -
Phase Mismatch Constant 3 749 1/m/K
Nonlinear Coupling Parameter € 60 1/s
Intracavity pump field amplitude b 2x10° v/photons
Thermal Expansion Const. of Ordinary Axis Oa 14%x 1076 1/K
Thermal Expansion Const. of Extraordinary AXis ap 4x10°° 1/K
Photo-refractive Const. of Ordinary Axis dny/dT | 3.3x10° K

Photo-refractive Const. of Extraordinary Axis | dn,/dT | 37.0x 10°° 1/K

The parametric gain is calculated from the ratio of the tngitted power with and without the
pump field

Prans _ |a| |2
Ptrans|b:0 |a|\b:0|2

(10.14)

The parametric gain is plotted in figure 10.2 as a functioreofgerature offset from phase match-
ing, with parameters similar to those in our experimentegivn table 10.1. The compromise
between nonlinear gain and temperature stability requérdsncan be seen in the comparison be-
tween the doubly-resonant OPA with a high reflectivity inpatipler at the harmonic frequency
of 97%, curve (i), compared to the singly-resonant OPA, e\{iiy which has 0% reflectivity. The
resonant enhancement of the nonlinearity gives the dadsignant OPA additional nonlinear gain
over the singly-resonant OPA, however the FWHM of the na@amgain is significantly smaller
than for the singly-resonant OPA. The doubly-resonant OR&lepe, curve (iii), shows the enve-
lope of the possible nonlinear gains as the differentiakbphahiftd is varied. Changin® moves
the ‘comb’ of longitudinal cavity modes along the temperataxis, and the gain is scaled by
The doubly-resonant OPA envelope trace can also be readigeerimentally using individually
tunable cavities for the fundamental and harmonic fieldsloag by Longchamboet. al[171].

10.3 Derivation of a phase matching locking error signal

Near the phase matching temperature, the cavity resonamzétions can be monitored using
standard cavity readout techniques, and this readout carsdm to produce a phase matching
error signal. Here we derive the phase-matching error kigsiag the PDH technique for the
harmonic cavity and transmission dither locking for thedamental cavity. In the experimental
demonstration presented in the following section, we @ettie PDH error signal in reflection for
the harmonic field, and use transmission dither locking Hierfundamental field. This provides
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Figure 10.3: (a) The reflected power of the harmonic field as a function witgaetuning; (b) the corre-
sponding PDH error signal (equation 10.15) derived fromr#flected light; (c) the transmitted power of
the fundamental field as a function of detunings; and (d) tireesponding PDH error signal derived on
transmission.

optimal shot noise limited performance for the harmonicdfievhich ‘sees’ a near impedance
matched cavity. The fundamental field is injected througighli reflective mirror, and is highly
undercoupled. The PDH error signal for the harmonic cagify 43]

Ty = —2y/PEPRIM(R(A%)R (AP + om)* — R (A°)* R (A° — ), (10.15)

where R (A) is the cavity reflectivity parameter given by equation 3;7@,, is the modulation
frequency chosen to be much greater than the cavity IinhveiddPE and Pg are the powers in the
carrier and modulation sideband fields. These are given by

Pl = Jo(B)R, (10.16)
Pl = J(B)%R,, (10.17)
whereP(’; is the input power in theth field andJ(j,(Bj) andJ{(Bj) are Bessel functions of the first

kind. By using the coefficien® (A), pump depletion has (again) been neglected. The errorlsigna
for the fundamental field is given by

Ta = —2/P2PERETG(A%)T6(A%+wn)" — T6(A%) I6(A% —wn)),  (10.18)

wherew, is the modulation frequency, chosen to be much less tharattiy inewidth andZs (A?)
is a modified version of the cavity transmission param&tek?) (equation 3.77), which includes

Note that the coefficien® (A) corresponds tdF (w) in reference [143]. These coefficients have different forms
because of the difference in formalism used here. We notent@a cavity resonanc® (w) = ¥ (w).
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Figure 10.4: (a) The transmitted power of the fundamental field as a fonctif detuning; and (b) the
corresponding phase-matching error signal derived orstnéssion. Hergeb| = 0.28k .
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The error signals of equations 10.15 and 10.18 are shownunefij0.3 as a function of cavity
detuning. As described in section 10.2, the harmonic eiggras is used to control the cavity
length, therefore the detuning at the harmonic frequenayriien to zero. In this case, if we
assume no other forms of cavity dispersion, the detuningn@ffindamental cavity is given by
eqguation 10.11. The phase matching error signal can thesada®ut from the fundamental field

Epml = —2+/PePERE( TG (A%) T6(A + wn)" — T(A7)" T6 (A% — tn)). (10.20)

Figure 10.4 shows the modeled transmitted power at the foadtal frequency and the phase-
matching error signal as a function of crystal temperattitee form of the phase-matching error
signal is exactly the same as the error signal in figure 10,&kaept the error signal is plotted as
a function of temperature deviation from phase matching ffénsmitted power and error signal
have been plotted for three different cases; amplificatieamplification and with no parametric

gain.
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Pump Error Sig. ’ CL Servo
Seed Error Sig. ®
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DROPA  PZT1

SHG

Figure 10.5: A schematic of the experimental layout. Most of the laser goig used to produce the
harmonic beam for the OPA. The harmonic beam is passed treobgiadband amplitude modulator (AM)
and a resonant (7OMHz) phase modulator (PM) before reachm@PA. The cavity length error signal
is derived from the reflected harmonic field, and is fed bacRZd1. The phase matching error signal is
derived from the transmitted fundamental field, and is fezklta the amplitude modulator on the harmonic
field. The temperature of the crystal oven is actively cdieoto 63C.

10.4 An experimental demonstration of phase matching lockig

10.4.1 Experimental setup

A schematic of the experimental setup is shown in figure IDhis doubly resonant OPA and core
optics were similar to those used in chapter 7. A 1.2W Nd:YAEel operating at 1064nm was
used to provide the fundamental (seed) field and to drive H® @hich provided the OPA pump
beam at 532nm. The nonlinear medium was a 6.5mm long, typadgmatched MgO:LiNb
crystal with 7% doping. The optical surfaces were flat andambdor anti-reflection at both
wavelengths. The crystal was placed in a peltier driven dweld at~63°C, with approxi-
mately 5mK accuracy, using a Newport 3040 temperature albetr The doubly-resonant bow-
tie cavity configuration consisted of three dichroic higfieetivity mirrors (R> 99.95@532nm,
R>99.98@1064nm) and the input/output coupler had transwitissif 10% and 3% at 1064nm
and 532nm, respectively. The intra-cavity loss at both vemgths was dominated by the absorp-
tion in the crystal, which was 2%/cm at 532nm and 0.1%/cm &#hén. The incident harmonic
(pump) power was 100mW, resulting in a circulating pump pogfe~2.7W, corresponding to a
parametric gain of just under 3dB. The harmonic cavity esignal was derived using the PDH
technique from the reflected harmonic field with modulatie@gtiency of 70MHz. This error sig-
nal was fed back to a piezo-electric tranducer (PZT1) bortdedcavity mirror. PZT1 was also
modulated at 30kHz to produce phase modulation on the davdy fields. The incident fun-
damental (seed) field was injected through a highly refleatirror and had- 10mW of power.
The transmission of the fundamental field was detected amddelated (at 30kHz) to produce the
phase matching error signal. The phase matching errorlsigrsasent to an amplitude-modulator
in the pump field’s path to actuate on the crystal temperatizréhe photothermal effect. Pho-
tothermal actuation on the region of nonlinear interacpooved very effective, since most of the
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Figure 10.6: (a) The transmitted power from the OPA as the temperaturbettystal was varied by
sweeping the oven temperature. The nonlinear gain wasrditeg approximately 1kHz, which showed
the nonlinear gain envelope (amplification and de-amptificd. (b) The corresponding error signal of the
phase matching condition. The dither signal of the nonliigaén was filtered out of the error signal.

harmonic field was absorbed in the crystal.

10.4.2 Results

Figure 10.6 shows the transmission of the cavity at the foneddal frequency, plot (a), and the
associated phase-matching error signal, plot (b), as thedeature of the crystal was swept across
the phase matching temperature. This data was taken withaimonic cavity locked on reso-
nance. The relative phase of the harmonic and fundamemaldéncies was swept rapidly by
dithering PZT2 at 1kHz in order to sample amplification aneadwlification, to show the para-
metric gain envelope. The error signal here has been lowfiigsed to remove any component
associated with the nonlinear gain at 1RHz

With the harmonic field locked and the crystal's oven tempgeaset to the phase matched
temperature, the parametric gain was found to wander. Thibnear gain wander is evident from
the transmitted power and phase-matching error signalsiofigure 10.7. Again, this measure-
ment was taken whilst the phase of the nonlinear gain waerdithto display the nonlinear gain
envelope. Up until 12.6 seconds into the measurement, ylséatwas temperature controlled by
the oven with temperature sensor on the crystal extericenfvwough a high precision temperature
controller was used, the nonlinear gain and the error sigreakeen to drift significantly over a
fairly short time scale. This drift may be a result of air @mnts or photothermal fluctuations of
the crystal temperature. At 12.6 seconds the phase mattdrimgerature control loop was closed

SWhen using this technique for applications the phase diffee of the fundamental and harmonic fields would be
locked to either amplification or deamplification, rathearttscanned rapidly, as is done here.
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Figure 10.7: (a) The transmitted power of the OPA as a function of time. Tih® phase matching error
signal. At 12.5 seconds the control loop is closed and théimear gain is optimized.

and the parametric gain moved to its maximum value. The phegehing control loop provided
a stable lock, however it had limited dynamic range due tolith@ations of the photothermal
actuator.

A comparison of the temperature stability with and witholédge matching control was made
by comparing the phase-matching error signal with the obfdop active and inactive. Without
phase-matching control, the mean temperature offset wads &md the standard deviation was
0.7mK, whereas, with phase-matching control, the mean ¢eatyre offset was 0.5mK and the
standard deviation was 0.3mK. These data were calculatdeoy second interval with the error
signal slope calibrated (to Kelvins/\Volt) using the a meadwalue of the FWHM in temperature
space.

Figure 10.8 shows the phase matching locking error signettsp calibrated as a function
of temperature fluctuation. Curve (i) shows the spectrunh wie control loop open and curve
(if) shows the spectrum with the control loop closed. Cloksxp operation shows significant
low frequency gain below 10Hz and suppression of tempezgitter. Also, shown is the noise
amplification frequency near 10Hz.

10.4.3 Discussion

The phase-matching locking demonstration showed a smiadlléar improvement in the nonlin-
ear gain stability. The phase-matching control loop pentorce was limited by the phase delay
inherent in photothermal actuation. The photothermal @hikeday limited the control bandwidth
to a unity gain frequency of 10 Hz, since the controller wasdesigned to compensate for this
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Figure 10.8: The calibrated spectra of the phase matching locking ergmas (i) with the control loop
open, and (ii) with the control loop closed.

delay. The measured photothermal response of the crysthbign in figure 10.9. The measured
trace (solid line) was fitted with a theoretical responsenfiegjuation 24 given in reference [170]
(dashed line), which has a corner frequency of 140Hz. This\was taken by measuring the trans-
fer function from the amplitude modulator in the harmoniddfito the fundamental error signal.
This was done whilst the harmonic field was locked to the gaeisonance and the crystal temper-
ature set so that the fundamental field was also on resonamiogetuned 8 Kelvin from the phase
matching temperature to eliminate axiy) effects. We expect that a high bandwidth1(00kHz),
high gain, control loop could be implemented if the phototted response was considered and
appropriate controller electronics designed. Also, aagrdator would be useful to increase low
frequency gain and drive residual phase mismatch (and tetype deviation) lower.

Using the photothermal feedback via the harmonic (pump) feetonvenient and potentially
very fast. Anissue that may arise using this type of actuatttrat the phase matching error signal
changes the pump power, which is coupled to the amount ofdhknear gain. This was a second
order effect with phase mismatch error. To limit this effgdtotothermal actuation could be used
in parallel with a slow feedback to the crystal oven tempeeaso any low frequency temperature
variation could be nulled and the average pump power couttbhstant.

Another noteworthy noise source is residual cavity lockargor coupling into the phase-
matching error signal. The experimental demonstratiosgared here relies on the cavity being
locked with sufficiently small error so that the phase-miaiglerror signal is dominated by phase
matching error. In general, the residual cavity fluctuaiare likely to be much smaller than the
effect of thermal fluctuations. If cavity locking error wadimiting noise source, a degree of
isolation could be achieved by differencing the cavity egignals (with appropriate gain) before
feeding back to the phase matching condition as per the fifuide
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Figure 10.9: Measured (solid line) and theoretical (dashed line) plmngioshal response of the nonlinear
crystal. (a) the amplitude response, and (b) the phasemsspo

10.5 Chapter summary

We have introduced a technique to interferometrically oesadhe phase matching condition in
a doubly-resonant OPA. High precision readout of the phastehing condition is obtained by
differencing cavity error signals of the fundamental anthi@nic frequencies. An experimental
demonstration of phase matching locking was performedystgotemperature control to a mean
value of 0.5mK from the phase matching temperature, witlaadstrd deviation of 0.3mK. With
the phase matching locked, a substantial improvementstmrmmnlinear gain and the nonlinear
gain stability were obtained. The temperature of the nealirinteraction region was controlled by
amplitude modulation of the harmonic field, thereby chagdhre photothermal absorption. This
enabled a unity gain bandwidth of the phase matching colttopl of approximately 10Hz. With
a more sophisticated servo design taking the phototherhedepresponse into account, a unity
gain bandwidth of~100kHz is achievable using photothermal actuation. Phagehimg locking
may have applications in nonlinear experiments where sirattiong term conversion efficiency
stability are important.
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Chapter 11

Conclusions and further work

11.1 Summary of audio frequency squeezing research

e A theoretical investigation into the coupling of classinaise sources into squeezed states
generated in optical parametric down-conversion processundertaken. This investigation
showed that:

— Squeezed vacuum states produced from a sub-thresholalopgiametric oscillator
are, to first order, immune to classical noise sources sucteas noise, pump noise,
and cavity detuning noise. This property makes sub-thitdssiical parametric oscil-
lation ideal for generating squeezed states at low sidefvagdencies, where classical
noise sources are large.

— Squeezed states produced from an optical parametric aenplit degraded by classi-
cal noise sources. The coupling of the classical noise ssuncan optical parametric
amplifier is directly proportional to the intra-cavity pokvat the fundamental field
frequency.

¢ An experimental investigation of squeezed states produrcegtical parametric amplifiers
and optical parametric oscillators was presented. Thiareh highlighted the differences
of the coupling of classical noise sources to squeezedsgtabdeluced in the two processes.
In optical parametric amplifiers, classical noise sourcesevghown to degrade the squeezed
state in direct proportion to the seed power. In the measiiesgiency band of 1kHz to
10kHz, quantum noise reduction was measured only for se@drsof 20nW and below.
Squeezed states produced in a sub-threshold optical pai@wecillator displayed immu-
nity to the same classical noise that degraded squeezingdptical parametric amplifier,
in agreement with theoretical predictions. Broadband tmwramoise reduction, from 280Hz
to 100kHz, was measured from the squeezed states produasdlinthreshold optical para-
metric oscillator. Squeezing had not previously been ttepan this frequency band.

e An experiment focused on producing stable audio-frequesggyeezing was presented. In
this experiment stable, high magnitude, audio-frequemmeszing was produced from a
doubly-resonant optical parametric oscillator. The ditgtf the system was demonstrated
by measuring the squeezed state for 30 minutes. Stablewmardise suppression of up
to 5.5dB (72%) was measured. Squeezing was measured aamsiéequencies down
to 70Hz. Low frequency measurements of squeezing were ftwie contaminated by
excess noise in the detection system. Candidates for tlesgxoise were investigated, and
it was speculated that scattered light was the source ofxtese noise, as was found by
Vahlbruchet al.[17] in a similar experiment.
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e A brief theoretical investigation into squeezing enhanests of Advanced LIGO was pre-
sented. This investigation included the classical noiseces and optical losses of the
inteferometer. This calculation showed that for Advancé@Q in wideband operation
with 10dB of optimally rotated frequency dependent squegzihe contribution of quan-
tum noise to the total noise over the frequency window of 3Kz is reduced from 48%
to 24%.

11.2 Summary of locking techniques

e A theoretical and experimental investigation into the duannoise locking technique was
presented. The noise performance of quantum noise lockasy measured out-of-loop
using a standard dither locking technique. A comparisonuaintum noise locking with
dither locking showed that quantum noise locking was twoemf magnitude poorer
in noise performance. The lock stability was found to be cigiffit to lock for indefinite
periods. A theoretical calculation of the noise perforneaot quantum noise locking was
found to agree closely with the measured noise performance.

e A new technigue called phase matching locking was develtpéterferometrically read-
out the phase matching condition of a second order nonlinederial. Phase matching
locking was demonstrated experimentally in a doubly-rasbroptical parametric ampli-
fier and analysed theoretically. Phase matching lockingskas/n to improve the stability
and accuracy of phase matching when compared with stanelamgetature control of the
medium.

11.3 Further work

11.3.1 Shot noise limited measurement of squeezing acrosgtaudio band

One shortcoming of the squeezing measurements presentkis ithesis was caused by excess
noise in the homodyne detection system at low frequenciesobtain a shot noise limited mea-
surement of squeezing across the audio band and confirmdtegtion of squeezing to very low
frequencies two methods could be attempted:

e Build the homodyne detector in a cleaner environment tocedlust settling on the optics
and therefore scattering centers due to dust. A vacuum teaduated to moderate level
vacuum might be ideal to reduce the dust in the air and wosll @move acoustic noise.

e Perform heterodyne detection of the squeezed vacuum sGaasider a heterodyne de-
tection scheme shown in figure 11.1. Here the local oscilliétd contains only two RF
sidebands, i.e. the power of the field at the carrier frequénzero. This detection scheme
would provide a level of immunity to scattered light becaater demodulation the primary
scattered light noise is located in the frequency bardgfvhereas the squeezed signal has
been converted to baseband. Note that, because most heterdetection schemes , such
as this one, allow two quadratures to be measured simuliahedhere is excess quan-
tum noise that couples into the measurement [172]. The medsgueezing magnitude is
therefore less than that of a homodyne measurement.
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Figure 11.1: (a) A layout for a hertrodyne detection system, and (b) a@haiagram of the local oscillator
field.

11.3.2 Considerations for a squeezer to use in an interferoatric gravitational wave
detector

Successful integration of a squeezed state generator feeser) into long baseline detectors re-
quires careful design and engineering. The research pezsdere, along with the concurrent
experiments from the groups of Roman Schnabel at Hannovimetstiy and Nergis Mavalvala
at MIT, provides a stepping stone towards the injection aiesged states into long baseline in-
terferometers. Important issues for the design of such eesr are considered in the following
list.

Coherent control of the squeezed vacuum stat®uantum noise locking was used in this thesis
and the work of Godet al. for phase control of the squeezing ellipse. Although thengua
tum noise locking works well and with sufficient phase sigbfor locking the homodyne
detection phase, it may not be suitable for use in smore amipterferometers. A co-
herent control technique of squeezed vacuum, such as tipgefney shifted sideband used
by Vahlbruchet al, would provide a higher possible stability and versatitiign quantum
noise locking.

The frequency shifted sideband locked to the squeezed waphase could be used to con-
trol both the squeezed state phase with respect to thegrmenkter field and the alignment
of the squeezed state relative to the interferometer.

Type of crystal Mg:LiINbO3 and PPKTP have been successfully used to generate largd-magn
tudes of quantum noise reduction and similar magnitudegudezing. In the experiments
performed here, PPKTP produced better results and was tolreleasier to work with for
the following reasons

e PPKTP has significantly higher nonlinear gain. The opticalametric oscillation
threshold power was 14 times less than with Mg:LiNbO

e The FWHM temperature of the phase matching curve of PPKTRauasimes broader
than that of Mg:LiNbQ.

e The photothermal effect seen in PPKTP was significantly kmtidan in Mg:LiINbQ;
making it much easier to operate at high pump powers.

From these reasons PPKTP was the crystal of choice. An adistaquestion about both
crystals is how they age when operated continuously ovéogenf months. For example,
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gray tracking may become a problem for a PPKTP based systamgh ‘gray tracking
resistant’ PPKTP can now be purchased), or GRIIRA for a Likllb@sed system. Long
term measurements will be needed to evaluate the perfosraribese two crystals.

Cavity configuration To generate large magnitude squeezed states, high esiafmey is re-
quired. High escape efficiency is achieved by reducing {oéndty loss and increasing
output coupler transmissivity at the squeezing wavelengtie intrinsic linear loss of the
crystal is difficult to modify, (crystal engineering is neel] but the intra-cavity losses due
to scatter and absorption on interfaces can be reduced lgingdthe number of inter-
faces. The minimum number of interfaces (two reflectiondpisid in monolithic stand-
ing wave resonators (see e.g. [14, 18]). Monolithic squeseaee not readily applicable to
gravitational wave detectors since their resonance fremyueannot be tuned to follow the
interferometer laser wavelength. Temperature tuningehgth can’t be used because the
temperature is set to phase-match the nonlinear process.

The hemilithic design (such as that in chapter 6) or bow-éigEghs (such as that in chapter 7)
are tunable configurations. In terms of intra-cavity lossgbcond best configuration is the
hemilithic design since it has two reflections and two traigsians per round trip. The
bow-tie cavity has four reflections and two transmissionise ¢aveat that puts the bow-tie
configuration ahead of the hemilithic cavity is its relatimemunity to backscattered light
from the gravitational wave detector dark port.

For the experiments that have used standing wave resonatoaslditional Faraday isolator
was required to prevent back-scattered light seeding the GRity [24, 26, 128]) whereas
the bow-tie cavity didn't require this.

So to consider the total loss a standing-wave hemilithidgtgaxust also include the extra
loss devices of a single pass through a Faraday isolatorthEdypical losses of Faraday
isolators (a few percent), the bow-tie cavity without Faadsolator would have less total
loss than a hemilithic cavity with Faraday isolator.

Singly resonant verses doubly resonant cavitie§he advantages and disadvantages of singly
and doubly resonant cavities were discussed in chapter ferfns of producing stable
squeezing over long time periods singly- and doubly-resbegstems offer different pos-
sibilities. Doubly resonant systems require more strihgemperature control, but these
requirements can be met using phase matching locking. ySiegbnant systems require
less temperature stability but cannot use phase matchikintp

We have neglected to discuss the integration of the squéspethe control and diagnostics
system as well as the significant task of delivering a frequelependent phase shift to optimize
the quantum noise reduction.

Design of a second generation audio frequency squeezer

Taking into account the design considerations above, aguldsr a next generation audio fre-
quency squeezer can be developed. Figure 11.2 shows ameooitisuch a design. The architec-
ture of this design is essentially the same as the experipresented in chapter 7 however with
some minor changes and additional fields.

The design is a doubly resonant, bow-tie cavity. The noalimeedium is a wedged PPKTP
crystal. The wedged PPKTP crystal can be used to compensatad round trip dispersion
introduced by the mirror coatings by tuning the path lendff3]. A frequency shifted sideband
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Figure 11.2 Schematic of a next generation squeezer.

field is injected into the cavity to be used to control the ghakthe squeezed vacuum relative
to the interferometer. This is achieved by locking the sighebfield to the pump phase, a signal
which can be detected from a pick off of the cavity. The calatygth error signal could be readout
from the pump field.

The frequency shifted sideband field could also be usedgaidti the reflected pump field to
generate a phase matching locking error signal. This coeilfiddb back to the crystal temperature
to maintain long term stability.

149



Conclusions and further work

150



Appendix A

Quantum Noise in a Michelson
Interferometer

This appendix presents a calculation of quantum noise implsiMichelson interferometer. This
calculation follows the derivation presented in the Apperigl of Kimble et al. [38]. Here we
perform the quantum noise limited sensitivity for a simpléchlson, whereas Kimblet al.
includes Fabry-Perot cavities in the Michelson arms. A lsim¢alculation is presented for a
signal recycling Michelson without arm cavities [108] anithaboth signal recycling and arm
cavities [117, 118].

The figure A.1 shows the fields in the Michelson interferomatée are interested in calculat-
ing the output signal and noise of the interferometer as eatim of the input fieldsP +d from
the laser port, and from the dark port. The positive component of the electrildfentering the
laser port, in two photon formalism [109, 110], is given bgyation B1 of reference [38]);

(+) _ (2100 e /°° —iot igr, dQ
Ep = ac 2 [D+ A (dye "' +d-e )211 (A.1)

So the total electric field entering the laser port is given by

_ [ Amhay ® ot |t arior, dQ
Ep= A [ coSugt <\/§D+/O (die " 1+ dje )ZT[ +

daQ

= (A.2)

sinoot / (dpe ' 4+ dleti)
0

The convention used here is the fi€lds the classical amplitude of the laser field of frequeasy
with units of \/photons/sec. The amplitude and phase quadrature flugtaadiche laser field at
sideband frequencie® are given bydi,d,. The power incident on the beamsplitter is given by

lo = hwD?. (A.3)

The total electric field entering the dark port is

4mthy ® : o dQ ® : o, dQ
Epp = coswgt | (e +alem) 27 1 sin t/ ae A 1 gleti) 222 | (A 4
DP ac { S000/0(1 +a; )21'[+ o 0(2 +a, )2]_[( )

151



Quantum Noise in a Michelson Interferometer

The beamsplitter relation give the following fields.

1 1

fp:;ém+a¢ ff=Z5ldi—aj, (A.5)
1 1

bj = 72[951 -, &= E[QT +df]. (A-6)

wherej = 1,2 for the amplitude and phase quadratures and the supésstapde differentiate
the fields in the North and East arms.

m ‘ X(1)
flexp(i2L/c) Tl k"

L
18 T l
212 gn
Laser E&e g¢ J
| L,
D&d / fe&2D feexp(iQlLic)

S

QT L X(1)

Photodetector g

Figure A.1: The fields in the Michelson interferometer. Capitalisetklst represent classical fields, the
quadrature fields are represented by the lower case letters.

Fields in the arms

As the fields propagate along the arms of lerigthey receive a phase shift. Consider the lergth
to contain an integral number of wavelengths for the cafreguency. The quadrature sidebands
receive a relative phase shift f= QL /c. The relations of the fields at the beamsplitter and the
end test mass’s is

Ki = f; /¢ gj = ke (A7)

Source Term

If the end mirror position fluctuates b¥(t) the field reflecting back towards the beamsplitter
receives a phase shifft) = 2wpX(t)/c. This process imposes phase modulation sidebands on
the field with amplitude proportional to the coherent anuplé of the carrier incident on the end
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mirror, D/v/2. The phase modulation on the coherent f2jd/2

D
Ecarrier = ﬁcoi(ﬂot‘kq)(t)) (A.8)
D . .
= Tz[co&ootcoap(t))+smwotsm(p(t)] (A.9)
D .
~ 72[cosw0t+smoootq)(t)] (A.10)

We consider the carrier amplitude to be unchanged. The gmmdl varying fluctuations in the
mirror position give rise to a source term in the phase quacdsa

2DwoX
=0 dxg= N

(A.11)

whereX is the Fourier transform of(t). Thus field reflected off the end mirror is the field at the
beamsplitter with a phase shift due to the travel time in tine plus the source term.

kj = Kj + 08X} (A.12)

Fluctuating mirror displacement

The position of suspended mirrors in gravitational waveedets fluctuates at some level due to
many sources. In this section only the fluctuations in theanidisplacement due to radiation
pressure noise on the end text massesl the apparent fluctuations due to the gravitational wave
signal are considered.

The force due to radiation pressure for a 100% reflectiveamat normal incidence is given

by

2P,
OF = =< (A.13)
c
whereP is the laser power incident on the mirror. The power incidemthe mirror is
Ac
.
I:)II’IC = %ncE[ (A14)
= PII’]C+6PII’IC (A-15)
where
_ D2
Pne = HU)O? (A.16)
@ . - dO
8Pnc = huwyD / (fle"9t+ffe+'9t)ﬁ. (A.17)
0

The gravitational wave disturbance is a stretching andraotibhg of the orthogonal arms.
This length perturbation is evenly distributed over thererarm length, and does not act as a
force on the mirror. The equation of motion of the mirror okarf the end test masses due to the
gravitational wave disturbance and the radiation presume (assuming it behaves like a free

1Radiation pressure on the beamsplitter is assumed to bigjibégfor simplicity. Radiation pressure effects on the
beamsplitter in the GEO interferometer have been congideyddarmset. al[174].
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mass) is [38]

d2X™(t) n"e d?h(t) 25P"Me(t)
-~ 1 L A.l
dt2 2~ dt? * mc (A.18)
wheren"¢ is the Minkowski metric, which if has values gf' = 1,n® = —1. Taking the Fourier
transform of the equation of motion;

QX — (02 e ., 2P
()X = (iQ)*ZFLh+"— (A.19)
(A.20)
which gives for the north and east arms;
1 2hwoD i
X" — ELh—%(leral)e'B (A.21)
1 v/2honD -
X® = —éLh—imcz(g)z (dl—al)e'B (A'22)

The difference in sign of the first term in the north and eastsashows the quadrapole nature
of gravitational wave moves orthogonal arms anti-symroalisi. The second terms, due to ra-
diation pressureis dependent on the amplitude quadrature fluctuations titat &om the laser
port d; and those form the dark poai. The field measured at the dark (anti-symmetric) port is
proportional to the differential motion of the north andteasn length,

x = X"—x® (A.23)
B 2v/2holo g

Here the radiation pressure fluctuations from the laserqaortel and radiation pressure fluctua-
tions from the vacuum port add. If the common mode displacepie+ X€ were to be measured
the opposite situation is true.

The field at the output of the interferometer we will be ingteel in the difference of the source
fields,

n__ e

8X"—3X® V2D upx (A.25)

V2 c

lo X
= 2—— — A.2
R © (A.26)
The output quadratures are given by the beamsplitter oakijiequation A.6)

bl = aleZiB (A'27)
b, = ae®P+ i(asx” —5x°8)eP (A.28)

V2

2The factor of 2 difference in the radiation pressure termhis tlerivation and that of Kimblet al. is because
we have only one test mass. With arm cavities the radiatiessure on the each of the ETM and ITM increases the
radiation pressure by a factor of 2.
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which goes to

by = ae?? (A.29)
. h .
by = (ap— Ka1)e?P+ /2K —¢&P (A.30)
hsqL
where the coefficient
)
K= 202 (A.31)

is the radiation pressure coupling constant. The (singledji standard quantum limit in strain
sensitivity of a simple Michelson interferometer is

[ 4h

which is+/2 larger than the SQL for an individual test mass becauseitieeehce of the Michel-
son interferometer test masses behaves like a free pastitieeduced mass — m/2 (see foot-
note 3 in Kimbleet al.).
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Appendix B

Comparison of MgO:LINbO 3 and
PPKTP for OPO

The two nonlinear media were used in the doubly resonant Ofp@rienents presented in this
thesis. They were:

(i) Periodically poled potassium titanyl phosphate (KTiORO4) (PPKTP)
A quasi-phase matched crystal from Raicol Crystals [141jisTwas a rectangular prism
with dimensions: 10mm2mmx1mm. The end faces were coated for AR at both wave-
lengths.

(ii) 7% Magnesium doped lithium-niobate (Mg:LiNbO 3)
from Photon LaserOptik [175] which was type-I birefringenghase matched. This was a
rectangular prism with dimensions: 6.5m@mmx2.5mm. The end faces were coated for
AR at both wavelengths

This appendix summarizes some of the properties of the naiacompares measurements
of the squeezing from the doubly resonant OPO with the twoianed

B.1 Phase-matching curves

Phase matching of both mediums were tuned via the crystgddeature. The single pass sec-
ond harmonic nonlinear conversion efficiencies PPKTP ahthOs were measured using a setup
shown schematically in figure B.1. Figure B.2 shows the nreaksingle pass SHG conversion

PD &

x DC

Q/;D

Figure B.1: Experimental Setup used to measure single pass SHG effjcisrtemperature.

OOoOO O

TC

efficiencies measured as a function of temperature for (KTHPand (ii) LINbOG;. The mea-
sured conversion efficiencies are indicated by ‘x’s and tiie $ine is a fitted siné curve. The
phase matched temperature of PPKTP was®&5with FWHM of 5.0°C. The PPKTP conversion
efficiency deviates from a siAshape near the first zero on the lower temperature side. Mie de
ation may be due to random errors in the width of the pollinghdm [176]. The phase matched
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SHG Conversion Efficiency

Comparison of MgO:LiNb@and PPKTP for OPO

temperature for LiNb@ was 63.9C and the FWHM was 1°€. The larger FWHM of PPKTP
was beneficial in the doubly resonant OPO cavity, which Siicanitly reduces the phase matching
FWHM compared to singly resonant or single pass systems.

1 ‘ 1 —
0.9t PPKTP 09 LiNbO,
* Measured * Measured
08F | —sinc2(AT) 0.8 — sinc2(AT)
>
0.7} 207
K]
S
0.6+ ﬁ 0.6
05} 505
4
0.4 2 04
8
0.3F o 0.3
I
0.2+ ® 0.2
0.1 0.1 .
x
1 h O I 2 1 1 1 f I 1
0 20 25 30 35 40 45 50 57 58 59 60 61 62 63 64 65 66 67 68
Temperature [degrees C] Temperature [degrees C]
(i) (i)

Figure B.2: Single pass second harmonic nonlinear conversion effigsras a function of temperature
for: (i) PPKTP and (ii) LINbQ. Note the different temperature scales on the horizonial ax

B.2 Measurement of the parametric gain

The measurements of the parametric gain of the doubly resddBO are plotted verses input
pump power in figure B.3 for LiNb@and PPKTP. The parametric gain was measured for LiNbO
for two input/output couplers and only for one with PPKTPeH®pecifications of the input/ouput
couplers were

Coupler (A)  T2,=0.1/T2, =0.03
Coupler (B)  T2,=0.06/TL, =0.06

The data points can be compared with fitted curves given byatiiu3.116 used to determine
the OPO threshold power. With the coupler (A) the threshoés Rpresh = 85mW for PPKTP
andPiresh = 1200mW for LiINbQ. The threshold power with coupler (B) w&8esh = 700mW
for LINbO3. The much larger pump powers required for LiNp®ere accompanied by a strong
photothermal effect which interacted with the length colltvop making stable operation difficult.
PPKTP had a significantly larger nonlinear gain and also dlenpdotothermal effect which made
it more desirable to work with.

B.3 Squeezing from a doubly resonant OPO

The squeezed states generated from the doubly resonant @RQ@letected by a balanced homo-
dyne detection system. The measured squeezed statesbargldeequency of 100kHz plotted in
Figure B.4 for (a) using Mg:LiNb@with output coupler (A) , in Figure B.4 (b) for the Mg:LiNBO
with output coupler (B) and in Figure B.4 (c) for PPKTP withtput coupler (A). These plots are
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§B.3 Squeezing from a doubly resonant OPO

Table B.1: doubly resonant OPO cavity parameters for (i) PPKTP and/g:LiNbO3

Parameter

| Value at 1064nny Value at 532nm| Units |

Optical Path Length 756 756 mm
FSR 397 397 MHz
Tout(A) 10 3 %
Tout(B) 6 6 %
Round Trip Loss (i) 0.9(ii) 0.6 (i) & (i) 2.2 %
Finesse (Withlow(A)) || (1) 55 (if) 56 () & (i) 117 -
Finesse (Withlow(B) ) || (i) 92 (i) 77 -
FWHM (with Toi(A) ) || ()36 (i1)3.5 () & (i) 1.7 MHz
FWHM (with Tow(B) ) || (i) 2.1 (i) 2.7 MHz
Nesc (With Tow(A) ) (i) 92 (ii)94 - %
Nesc (With Tow(B) ) (i)90 - %
16 T " T T T
¥ v PPKTP, T, =0.1 Py = 85MW
141 /0 MgLiNbO,, T, =0.06 — P00 =700mW |
x  MgLiNbO,, Ty =0.1 =P = 1200mW
E‘ 12 B V 7
E Il
S 10t v 1
o 1
g v
g v
g : o
° of ¥ ]
— c T |
A4 o oo T
- s
2y Q- i
0 : : : :
0 50 100 150 200 250

Figure B.3: Measurements of parametric gain as function of pump poneiffited curves.

Pump power incident [mW]

159



Comparison of MgO:LiNb@and PPKTP for OPO
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Figure B.4: Measured noise relative to the shot noise limit (SNL) ol#difrom (a) LiINbQ with output
coupler (A), (b) LiNbG with output coupler (B) and (c) PPKTP with output coupler.(R)gure (a) was
measured at 50kHz and had RBW=3kHz, VBW=30Hz. Figures (d)ewere measured at 100kHz with
RBW=10kHz, VBW=300Hz.
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§B.3 Squeezing from a doubly resonant OPO

normalised to the shot noise limit. The electronic noiserfigoeater than 11dB below the SNL in
all traces) was subtracted from all of the traces. The lelvstjoeezing for the three traces is

(@) 3.5£05dB, (b) 5.0+05dB, (c) 6.5+0.5dB. (B.1)

There are two reasons for the difference in the squeezinditaag measured in (a), (b) and (c).

Noise Power [dB Relative SNL]

-15
0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Loss (1—1]t0t)

Figure B.5: Expected squeezing level as a function of total loss anduored data points (squares).

Firstly, the parametric gain was not the same for all thraedts. In (a) the parametric gain was just
4.7dB, which was limited by photothermal instability at lhigpnput powers £150mW) required

to get large enough parametric gain. In (b) and (c) the parargains were 12dB and 14dB,
respectively. Secondly, the total detection efficiency natsthe same for each measurement. The
total detection efficencies were

(@ Not=77£2%, (b) nNt=78+£2%, (C) nNtot =84+2%. (B.2)
The total detection efficiency were different because tbas efficiency and the homodyne inter-

ference efficiency were different in all three experimeiiable B.2 summarizes the experimental
efficiencies.

Table B.2 Experimental Efficiencies

Experiment (a)] Experiment (b)| Experiment (c)
Nesc 94+1% 91+1% 92+1%
Nopt 99% 99% 99%
Nhom 88+1% 94+1% 97+1%
Ndet 93+2% 93+2% 93+2%
[N | 7742% | 78:2% | 84+2% |
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Comparison of MgO:LiNb@and PPKTP for OPO

Figure B.5 shows the expected squeezing amplitude as adoraft optical loss (1Rtqt) for
the three different parametric gains in (a), (b) and (c).sTibot shows the effect of loss on on
the amplitude of squeezing measured and what level of siugeepuld be expected given an
particular loss. The measured squeezing levels are imdiday 'w’. The amount of squeezing
which exits the OPO cavity can be inferred by taking into actdhe losses in propagation and
detection. The inferred squeezing out of the OPO cavity eafobnd from

Vimeas— n optr] homNdet + 1
NoptNhomMdet

Vint = (B-3)

whereVeasis the measured squeezing level. The inferred squeezirdslat the output of the
OPO cavity are

(@) 4.2d8 (b) 8.0d8 (c) 9.3dB (B.4)

These data points are indicated in Figure B.5 bxa
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Appendix C

Experimental components and
technigues

In this appendix details core components of the doubly r@so®PO experiment. In section C.1
details of the laser, the second harmonic generator (SH@){tee modecleaner cavity are given.
In section C.2 an overview of the dispersion compensatiainéndoubly resonant cavity is pre-
sented. In section C.3 details of the reaction mass for thigygaeizo-electric transducer (PZT)
are presented.

C.1 The laser, SHG, and modecleaner

C.1.1 The laser

The laser was a CW, Nd:YAG, non-planar ring oscillator (NPR@e [84] operating at 1064nm
(1.2W Mephisto 1200 model from Innolight GmbH [27])..An oview of the lasers properties
are given in Table C.1. The inherent stability of the freening Nd:YAG laser was sufficient to
operate the experiments without requiring frequency arisity stabilization.

Table C.1: Mephisto 1200 Properties. For additional details see [27]

Parameter Value Units
Wavelength 1064 nm
Output Power 1200 mw
Spectral Linewidth ~1 kHz
Frequency Stability ~1 MHz/min
Intensity Noise (10Hz to 2MHz) < 0.1 % rms
Spatial Mode (M <1.1) TEMgg —

The laser field was first passed though a Faraday Isolat@én@&s FR 1060/5), some polariza-
tion and modematching optics, then through a resonant phadalator (New Focus model 4003)
driven at 12MHz and a broadband amplitude modulator (Nevu§awodel 4102, with appropriate
polarization optics). The 12MHz phase modulation sidebamdre used to derive error signals
for the SHG and modecleaner cavities’. The amplitude maduigas used in characterization of
the homodyne detector, as described in Section 7.5. Theitygje 99%) of the laser power was
directed to the SHG to generate the pump field (at 532nm) BORO. Less than 10 mW of the
laser light was directed through the modecleaner to be umethé local oscillator field for the
homodyne detector.
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Experimental components and techniques

C.1.2 The second harmonic generator

The SHG was a singly resonant (at 1064nm) device custom byililnnolight GmbH (Dia-
bolo model [27]). The SHG cavity was constructed out of tyg#tase-matched, 5% doped
MgO:LiNbOs hemilithic crystal, and an external mirror, which was mahbn a peizo elec-
tric transducer (PZT) to allow the cavity length to be aatdatThe curved surface of the crystal
was coated for high reflectivity (HR) at both wavelength=2(a® and 1064nm) and the flat surface
coated for anti-reflectivity (AR) at both wavelengths. Thésenal mirror had R=95% at 1064nm
and was AR coated at 532nm. The crystal was mounted on arpalitiment which was used to
maintain the crystal temperature at the phase matchingaexiyre. Selected parameters of the
SHG can be found in Table C.2.

Table C.2 Diabolo Properties. For details see [27]

Parameter Value Units
Input Wavelength 1064 nm
Input Power <1000 mw
Output Wavelength 532 nm
Output Power < 650 mw
Input/Output Mirror Transmission 5 %@1064nm
Input/Output Mirror Transmission >95 %@532nm
Nonlinear Medium Mg:LiNbO3 —
Phase Matched Temperature 99.85 °C
Free Spectral Range 2 GHz
Spatial Mode Output (M<1.1) TEMoo -

The SHG cavity was locked using dither locking on transroissiThe cavity error signal was
derived by demodulation of the photocurrent of the transdiphotodetector at 122MHz. From
~ 1W input power (at 1064nm) the SHG produced up to 650mW ofukeaqy doubled light,
greater than the amount required as a pump field for the OPO.

C.1.3 The Modecleaner Cavity

The layout of the modecleaner cavity is shown in figure C.% fhinee mirrors were attached to a
invar spacer which had geometry and cavity g-parametergi@dilar to that of the LIGO pre-mode
cleaner [177,178]. Parameters of the modecleaner can bd fourable C.3. The modecleaner’s
primary function was to filter the spatial and polarizatioowda of the laser field, to provide a
high quality TEMyo mode for the local oscillator field. This allowed the locatiiator field to
be matched to the TEM mode of the OPO with high fringe visibility. At the low frequeies of
interest in this thesis the modecleaner offered little imeof intensity and phase noise filtering.

The modecleaner cavity was locked laser frequency usind®id technique. The cavity
error signal was derived by demodulating the the reflectgd it 12MHz. The cavity length was
actuated using the end mirror (M3) which was mounted on a PZT.

Figure C.2 shows the magnitude response of cavity trangmifs the low finesse (p-polarized)
and high finesse (s-polarized) cavity modes. This measuriewss taken by measuring the trans-
fer function from the amplitude modulator located before thodecleaner to a photodetector at
the transmitted port using a network analyzer (HP3598Ag fitted curves indicate FWHM val-
ues of 470kHz and 54kHz for low and high finesse modes. The lueg$éie mode was used in the
experiments here.
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§C.1 The laser, SHG, and modecleaner

19 395,6

TEFLON
END CAP

INVAR BODY

87.88°

TEFLON PZT

RING M3
J
ROC =-2m TOP VIEW

Figure C.1: Top view of the modecleaner cavity design. Lengths are ifimeters, angles in degrees.
modecleanerdesign.

Table C.3 Modecleaner Cavity Parameters

Parameter Value | Units
M1, M3 reflectivity (p-pol) | 99.6 %
M2 reflectivity 99.997| %
Round trip length 840 mm
FSR 357 | MHz

FWHM (measured p-pol) | 470 kHz
FWHM (measured s-pol) 54 kHz
Finesse (measured p-pol)| 760 —
Finesse (measured s-pol)| 6614 —

M2 ROC -2 m
Cavity g parameter .58
Waist Size 525 pm
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Figure C.2: The measured (solid lines) and fitted (dashed lines) freqpuersponses for the modecleaner
in low finesse (LF) and high finesse (HF) modes. The notch &kt in the HF trace is thought to be a
result of interaction of the amplitude modulation sidelsmadd the cavity length servo.

C.2 Dispersion compensation in a doubly resonant cavity

Dispersion from the dichroic mirror coatings causes thaelfumental and harmonic cavity reso-
nances to be offset. This effect can be seen in figure C.3 @ghvehows the transmitted power
as the cavity length was varied of a doubly resonant freeespaeity, with driving fields at both
1064nm and 532nm. This was taken with no nonlinear mediurhénctvity. The transmitted
power was detected on a silicon photodetector, which isithanso both 1064nm and 532nm
light. The broader transmission peak of the fundamental fiah be distinguished from the nar-
rower peak from the harmonic field

If the fundamental and harmonic fields do not co-resonate ttie nonlinear gain is interfero-
metrically suppressed. Often 12 experiments, dispersion of the cavity mirrors is compestbat
by adding a phase mismatch of the nonlinear material to eelte-resonance. This non-ideal op-
eration can be avoided by compensating for the dispersi@dting a tunable dispersive element
into the cavity. This can be done by using a wedged crystd][itira QPM system or a dispersive
optic, as shown in a laser intracavity SHG [179].

We introduced a AR/AR coated BK-7 glass optic into the cawabd angled it so that the
dispersion of the glass cancelled the dispersion of theomgoatings (to the nearest integral
number of wavelengths), see figure C.3 (b). This dispersiompensation optic was used for both
the PPKTP and LiNb@crystals. The dispersion from the doubly resonant OPQO yaptics
was compensated using a angled BK-7 glass optic. The dispdrsthe glass comes from two
terms, firstly, the dispersion of the glass, and secondiyettira path-length the field with higher
refractive index travels.

The differential path length of two fields can be determinsthg geometrical arguments.

IAlthough the FSR's for the two fields are the same (they sHasesame optical cavity), they appear different
because the horizontal axis on this plot has different sdalethe two frequencies (a change in the cavity length by
1pm corresponds to 1 FSR at 1064nm and 2 FSR'’s at 532nm)

2The AR coatings of the glass also add extra dispersion whieldsito be compensated for.
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Figure C.3: Transmission of the doubly resonant bow-tie cavity as tiwitycéength was scanned. (a) was
taken without the dispersion compensation plate in thety,aamd it can be seen that the resonances for the
1064nm and 532nm cavities do not coincide. In (b), the ds@parcompensation plate was in the cavity
and tuned such that the 1064nm and 532nm resonances ovEnkgilicon photo-detector used for these
measurements was sensitive to both the 1064nm and 532nmTigése measurements were taken without
a nonlinear crystal in the cavity, so the dispersion seenavasult of the cavity mirror coatings.

Refer to figure C.4 (a), the angle of refraction for the fielff@yuencyw; is given by
B, (wr) = sin (nysin(81) /ma(wx)), (C.1)
the path length through the BK7 as a function of angle of iacat is simply
AL(wx) = Lrnp(e)/ cog(B2(c))- (C.2)
The difference in path length of the harmonic field and thelamental field is given by
ALpa = AL(6%) — AL (ca), (C.3)

The corresponding extra phase delay of the harmonic fieldcfwias a higher refractive index
for the parameters used in this experiment) as a functiomgleaof incidence is plotted in fig-
ure C.4 (b). It can be seen that an extra phase delay of theoharffireld relative to the fundamen-
tal field by more than & with an angle of incidence between 0-10 degrees. Accorgliwgl had
the BK7 optic AR coated for the range 0-10 degrees.

C.3 High resonance frequency PZT Design

When the doubly resonant OPO was operated with the LiNtréstal as the nonlinear medium, a
strong photothermal effect [76] in the crystal caused artieeth challenge. At high pump power,
the photothermal effect interacted with the cavity lengthtool loop and caused an instability. If
a pump power was greater thart30mW, approximately 1/5 of the power required to reach the
oscillation threshold, the cavity would drop lock.
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Figure C.4: (a) The dispersion compensation plate. (b) differentiagehshift as a function of angle of
incidence. Parameters used match the experimental vaheethicknessl = 6.35mm,n(w,) = 1.50663,
n(wy) = 1.51947.

To overcome the photothermal instability, the cavity logkbandwidth was enhanced. The
unity gain bandwidth of the cavity length was originaihkHz, imposed by the peizo-mechanical
resonance of the PZT, located at 45kHz. A higher bandwidthi ®Wds designed and built The
attempt was to push the first mechanical resonance beyorkH2Q@hereby enabling a larger
unity gain bandwidth for the cavity length loop, to squasé ghotothermal effect. A drawing
of mount is shown in figure C.5. The key components are labielélde diagram. They are; (1)
molybdenum rod, which has ridges on the side to enhance thging of the molyibdium with
the damping material; (2) the damping material was a mixtdirepoxy glue and iron filings; (3)
the stainless steel housing, which had a small hole in theec@ised to attach the molybdenum
rod; (4) the single layer PZT from piezomechanik GmbH (mdl 150 7mnx 7mm) which had
a natural resonance at 500kHz. A 1mm thick, 6.35mm diameiteonwas glued onto the PZT.

The outer diameter of the stainless steel case was set to hldllowing mounting into
standard optical mounts. A transfer function of appliedage to displacement can be seen in
the figure C.6. This measurement was taken by applying a ssiegtvoltage to the pzt mirror,
which was used as one end mirror of a Michelson interferom®&#hilst the michelson was held
at 1/2 fringe the photodetector output at the asymmetric\was recorded. The first mechanical
resonace can be seen tob870kHz. The low pass filter shape was a due to the capacitdnce o
the PZT (220nF) combined with the source resistance (50 @h&iso shown in the figure C.6 is
a model of the response of a LPF with pole frequency.cf 14kHz This capacitance was taken
into account in the design of the servo controller. We reedra unity gain frequency of 50kHz.

3Stefan GoRler designed this PZT reaction mass based oldahsls. The source of the original design is not
known.
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(1) Molybdenum rod

(2) Epoxy with iron fillings

(3) Stainless steel casing

(4) Single element PZT

(5) HR mirror

Stainless steel housing
25.4

Molybdenum rod —

Side view Top view

12.70

6.35 25.0

Figure C.5: Drawings of the high resonance frequency peizo mount.
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Figure C.6: Transfer function of the high resonance frequency PZT. ©lhedass filter shape was caused
by the combination of the capacitance of the PZT and theteesie of the source.
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Appendix D

Homodyne detector noise budget

In chapter 7 a homodyne noise budget is presented. This dixpéetails measurements of the
noise sources in the noise budget.

D.1 Homodyne detector experiment

A schematic of the homodyne detector is shown in figure D.% fiéid used as the local oscillator
for the homodyne detector was passed though the phase rtardthe amplitude modulator, and
the modecleaner cavity. The modecleaner cavity providegtifig of the spatial and polarization
modes of the laser field and stripped the phase modulati@baidis. The local oscillator field
then passed though modematching optics and was steeredhentmmodyne detectors beam-
splitter. A 150mm lens was placed immediately before the dayne beamsplitter in both the
local oscillator and signal paths to reduce the spot sizdeffields on the photodiodes. Each
output of the homodyne beamsplitter was steered onto onepafraf matched photodetectors.
The photodetectors used InGaAs photodiodes (model ETX §080]) which had their protective
windows removed to minimize potential scattering souraesdlass. The photodetector circuits
had high transimpeadance (10kOhms) gain which alloweddoai loscillator powers to be uskd
Refer to the schematic in appendix E.

D.1.1 Local oscillator intensity noise coupling

The contribution of the local oscillator intensity noisendae measured directly. Figure D.2 (a)
shows the measured common mode rejection to intensity rimse 10Hz-100kHz. This was
measured by taking the transfer function from the amplitodelulator to the homodyne output
with gain optimized, then normalising this by the transiandtion from the amplitude modulator
to the a single photodetector. The level was approxima®&dgB from 10Hz - 1kHz (possibly
limited by the noise floor of the instrument) and deteriadai®-55dB at 100kHz. The deviation
from -80dB above 1kHz may be due to a mismatch of the gainseotwlo photodetectors ap-
proaching the pole frequency of the photodetecter800kHz). The dashed line is a curve fitted
to the experimental data.

Figure D.2 (b) curve (i) shows the measured local oscillattemsity noise normalized to the
shot noise limit. The peak near 10kHz coincides with the rolegdaer control loop amplification
frequency, above the unity gain frequency. The peaks atelogviikHz are thought to be intensity
noise induced by beam jitter of the input beam or the modeeleaavity mode. Figure D.2 (b)
curve (i) is the product of the common mode rejection anditiensity noise. This inference

1The effective trans-impeadance gain including the gaihebuffer stage at the output of the circuit was 49kOhms.
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Homodyne detector noise budget

Figure D.1: Schematic of the experimental set up Homodyne detectiaersysThe laser field is passed
though a phase modulator (PM), a broadband amplitude mmdulAM) a modecleaner cavity and is
incident on the fast steering mirror (FSM). The signal beaas &vacuum state. QPD - quad-photodetector

of the contribution of local oscillator intensity noise teethomodyne noise budget is less than;
-30dB relative to the SNL, sufficiently small to suggest taisgensity noise is not the limiting
noise source no active intensity noise stabilization ofldser was required.

D.1.2 Beamjitter noise

Beam jitter noise of the local oscillator beam can couplenteniity noise in the homodyne pho-
tocurrent via spatial variations of photodiode efficiency.

In this section measurements of the local oscillator be#er jare used to estimate the con-
tribution of beam jitter to the homodyne noise budget. We dbmeasure the spatial variations
of the efficiency of the photodiode, rather we infer the coupbf beam jitter to relative intensity
noise (RIN).

The beam jitter spectrum for the local oscillator beam issshin the figure D.3 (a) curve (i)
for the vertical axis and curve (i) for the horizontal axi§his measurement was taken on the
guad-photodetector with a waist size of P50 The beam jitter amplitude is approximately an
order of magnitude smaller across the frequency band wieelalforatory air-conditioning (AC)
unit is switched off. The larger amplitude of the beam jittéth the air-conditioning on assists in
the characterization of the beam jitter noise in the homedjetection system.

The beam jitter coupling to RIN can be inferred by fitting thean jitter displacement to the
homodyne, ie

RINg; = AAX( f) (D.1)

where the beam jitter to RIN coupling constaAf,has units 1/m, and the quadrature sum of the
horizontal and vertical\x(f) = /Axy (f)2+ Axy(f)2 has units m/HZ2. The relative intensity
noise (RIN) of the shot noise in unitgli zis given by

2e
PPopt

RINsnL= (D.2)
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Figure D.2: (a) The common mode rejection of the homodyne detector ascéidun of frequency measured
via a transfer function measurement (solid line) and fitteve (dashed line). The variable electronic gain
was set to optimize the common mode rejection at low fregiesnc(b) Curve (i), the intensity noise
spectrum of the laser relative to the shot noise limit (SNIgasured from 10Hz-100kHz. Curve (i) the
intensity noise contribution to the homodyne detector spetinferred using curve (a) and the measured
common mode rejection.

whereeis the electron charge,the photodetector responsivity in Amps/Watt, &gk the optical
power detected.

Figure D.3 (b) shows the RIN of low frequency homodyne speatrcurve (v), and the inferred
beam jitter noise contribution, curve (vi) inferred fromrEdP.1. HereA has been used as a free
parameter to fit common features in the beam jitter to the liyme spectrum thereby allowing an
estimate of the beam jitter noise contribution to the honmedspectrum. The beam jitter to RIN
coupling has been inferred to have a valué\ef 42 1/m.

The similarities in the curves (v) and (vi) suggest thatdaagnplitude beam jitter noise may
contribute to the homodyne spectrum. Inconsistency inghagufes may arise from a number of
effects. Firstly, the unrepeatable nature of the beanr jitteasurements due to varying acoustic
noise. Secondly, the coupling of beam jitter could changepatial variations in efficiency of the
photodiode can change day to day due to dust on the photodiotkce. Thirdly, the beam jitter
data and the homodyne data have some uncommon beam path #&mhbptics, which means
they have different acoustic excitations, and also diffe@ouy phases [181], meaning different
combinations of near-field beam jitter and far-field beaterjitvere measured. Using the inferred
value ofA and the measured vertical and horizontal beam jitter takéinthe air-conditioning off
the RIN caused by beam jitter was inferred. This is given byevii).

D.1.3 The use of a ‘low’ local oscillator power

The photodetector circuits were designed to operated wiitinrmal local oscillator power (38QV

or below). The limit to low local oscillator power was the @l®nic noise from the photodetector

Op-Amp. Low local oscillator power was desirable becausthefscaling of classical and quan-

tum noise with local oscillator power. As local oscillatasvper, P, decreases the classical noise
sources decrease directly proportionaPtavhereas shot noise decreases/® Thus lower local
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Figure D.3: (a) Beam jitter measurements for the (a) vertical axis andh@bizontal axis using the quad
photodetector. (b) The RIN of the low frequency homodynespen taken with AC on, curve (a) and, the
estimatedRrINg; noise contribution of beam jitter to the homodyne spectraunye (b). Curve (c) is the
calculatedRINsnL for Popt = 380uW andp=0.7 Amps/Watt.

oscillator power gives a higher ratio of quantum to cladsicése. Not using a low local oscillator
power is contratry to most interferomerty measurementg@ijgantum noise limited sensitivirty
that making the homodyne detector quantum noise limited diggulow local oscillator power
is different to achieving good displacement sensitivityniterferometry. An interferometers shot
noise limited displacement sensitivity improves asf
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Appendix E

Photodetector Circuit
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Photodetector Circuit
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Appendix F

The shot noise limit of phase-matching
locking

The shot noise limit in phase-matching locking comes froeghiot noise of the individual cavity
error signals. The shot noise limit of the error signals igveel in this section following the
calculations of Daet al.[182] and Black [143]. However, we do not make the assumptadran
impedance matched cavity, and include non-stationaryrsbiee [183]. The derivation starts with
calculation of the error signal slope (in Watts/m). The smase of the signal is then calculated
(in Wattsh/Hz). These are then combined to give the shot noise limitsplatement sensitivity
(in m/v/Hz). Finally, we combine the shot noise of the two error sigiha realise the shot noise
of phase-matching locking.

The slope of the PDH error signal in reflection

Starting with the cavity reflectivity parameter for a empéyity (equatior??)

2Kin — K —iA
A _— F.1
R(A) PR (F.1)
near resonance, we can write
A
— = 21N+ %, (F.2)
Visr Visr
so equation F.1 becomes
2Kin — K —10A
A —_— F.3
R(B) K+ i0A (F.3)

For a cavity with high reflectivity mirrors (approximateR/> 0.8) we can write the finesse of the
cavity in terms of the total fractional power loss per rourig’t given by the sum of the mirror
transmissivities (equation 3.89),

21

F———.
Tin + Tout + Tioss

(F.4)

1Siegman calls this the "Delta Notation”, see section 1104.[9
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The shot noise limit of phase-matching locking

The total decay rate for the cavity can be rewritten interfith@ cavity FWHM,dv = v/ F,

K = Kin+ Koutt+ Kioss, (F.5)
V§
= % (Tln + Tout + Tloss)7 (F-G)
TV fsr
~ = TOV. F.7
7 (F.7)

Similarly, the decay rate for the input mirror can be written
T.
Kin = gévff (F8)
If we consider the case close to resonari2edv > 8A), then we can write the cavity reflectivity
coefficient as
i0A
R (BA) = (TinF /Tt—1) — v (F.9)

For high modulation frequency (with respect to the cavitgWidth) ® (A+w) = —1 and the error
signal (equatior??) can be rewritten using equation F.9 as

To = 2/RPLIM(R(D) - R(A)), (F10)
—20A
- PR 57 (F11)
4 oA

Rewriting in terms of fluctuating cavity length,p, rather than laser frequency we find the error
signal near resonance

which has the slope
w
@R == 8 PCPS% |:E} . (F'14)

The slope of the dither locking error signal in transmission

The transmission coefficient of the cavity is

T(0)= 2 K":(';"J‘f(AKZ_ 4. (F.15)

In this calculation the parametric gain is neglected forpdioity. The carrier-sideband beat term
in the transmission error signal (equation 10.18) is

—8KinKoutAwn|[(K + ity )? 4 A2]

TAT (Bt on) = THATA =) = (507007 1 (A= o)D) (K2 Bt D)

(F.16)
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Consider the case near resonance (making the substituomdquation F.2), with modulation
frequency much smaller than the cavity linewidth, the esignal on transmission is

\/PCPST.nTouJ ALL (dpp>, (F.17)

where the detuning terms of second order have been negi@f®ek k2, (34 + wy)? < k?). The
slope of the error signal is

16 f w
Dr = — VPR Tou 51 {5] (F.18)

The shot noise of the PDH error signal in reflection

The shot noise on the error signals is now calculated. Fiestaflected power is calculated
Pret = Pe| R (0)[? + 2Ps+ 2y/PPm(R (0) — R (0)*] Sintt — 2PsCOS 2ont. (F.19)

In the shot noise limited case, the variance of the poW&) = (hvP), thus

V(Per) = hv(P|R(0)|*+ 2Ps+2v/PPIM[R (0) — R (0)] sincamt — 2PscOS o)
(F.20)

The variance at the output of the mixer is then given by thelpcoof equation F.20 with sfront,
that is

Mr = hv{(P|R(0)[?+ 2Ps+2\/PPIm|[R (0) — & (0)*] Sinwmt — 2PsCOS 20mt) Sin® comt ) ,

= hv (PR (0)|* + 2Ps) < (1—cos 2ont) > + 2hvy/PePIm[R (0) — R (0)*] (sin® comt ) —
2hvPs <%(1— COS 20mt) (1+ cos 2omt) — (— — 5 COS 20t + coszh)mt) >
= hv (%PC|K(O)|2+ gps> : (F.21)
over the bandwidth of 1Hz. Substituting in the modulatiopttie, the standard deviation is then,

hv Po
2

J3| R (0)|2 + 3% (F.22)

]
VHz|
F.0.4 The shot noise in of the dither locking error signal in tansmission

The shot noise of the error signal in transmission is catedlan the same manner as that in reflec-
tion. Instead of sifwnt) demodulation, cdsont) is used since the error signal is in the orthogonal
guadrature. The reflectivity coefficients are replaced with corresponing transmission coeffi-

cients, and we note théf (w,)|? = |7 (—wn)|2. The variance at the output of the mixer is found
to be

Mr =t (GRITOR+ SPIT (@) (F-23)
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The shot noise limit of phase-matching locking

Substituting in the modulation depths, the standard devias then

VWiT = [T BT (0 + 39717 (w2 {%Z] (F.24)

F.0.5 Shot noise limited displacement sensitivity of PDH

The shot noise limited displacement sensitivity in refattis given by

VMg
I
1 | han J|R(0)]>+3% m
— 8\l 2m 2 3332 [\/H_z]

Optimal sensitivity is reached when the cavity is impedamegched § (0)=0)

1 /3 hch m
é\@\/ JoPoF 2 [\/H_z} (F.26)

This is the (single sided) sensitivityThe shot noise limited displacement sensitivity in traissm
sion is given by

Ssnl =

(F.25)

M
SsnI: \/_T

ZT ’
J2|T(0)|2 + 332 T (oon
_ GTOP BT[] o
169'— TlnTout fn 2P0 JgI1 v Hz

F.0.6 Shot noise in phase matching locking

Phase matching locking uses two error signals to readowtavity length and the phase matching
condition. The shot noise of both error signals needs to beidered to calculate the total shot
noise. The shot noise sources are considered to be un¢edsiaurces of noise

Ss,nI,Tot =1/ inl,a + %Zan. (F28)

In most OPA cases, it will be the shot noise of the fundameiitdd (seed) error signal that
dominates, because the harmonic field (pump) is generalke ithan two orders of magnitude
higher in optical power. For the parameters listed in table e shot noise limit, interms of
differential cavity length is;

Ssnitot = 1.01x 10—17(m/\/H_Z). (F.29)

This error signal can be converted from units of differdrt@vity length (m4/Hz) to temperature
mismatch (K4/Hz) via a conversion factor derived from equation 10.8

c— [LC< <‘;r1‘_° ?jrf)ﬂab—aa)ﬂl(wm). (F.30)

2This result is\/3/2 greater than that in reference [143] because we includestationary shot noise.
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For the parameters used hefes= 2.19x 10~’. So the shot noise limit to reading out the temper-
ature fluctuations is

SoniTot = 4.63x 10 (K /VHz), (F.31)

Much smaller than the noise floor measured here.
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