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Preface

This dissertation consists of six chapters including an introduction and two addi-

tional background chapters. Chapter 4 appeared in The Astrophysical Journal as

“Mergers of Stellar-Mass Black Holes in Nuclear Star Clusters” (Miller & Lauburg

2009), and Chapter 5 was published in The Astrophysical Journal as “Binary En-

counters with Supermassive Black Holes: Zero-Eccentricity LISA Events” (Miller

et al. 2005).
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Chapter 1

Introduction

“Galileo, with an opera-glass, discovered a more splendid series of celes-

tial phenomena than anyone since.”

—Ralph Waldo Emerson, from Self-Reliance

1.1 Painting the Big Picture with a New Brush

Galileo, upon turning his spyglass to the night sky, discovered a fundamentally new

way to examine the universe. His telescope not only uncovered a wealth of detail

in objects studied for eons by naked-eye astronomers, but paved the way to the

discovery of new classes of objects that would in turn intrigue future generations.

Now, some 400 years later, gravitational radiation detectors are poised to afford

us another rare opportunity to view the cosmos through a fresh set of eyes. With

these instruments we will expand our knowledge of known sources, and, undoubt-

edly, be surprised by many that we have not yet imagined. We will confirm our

understanding of well-studied processes, such as the decaying orbits of binary pul-

sars, gain insight into elusive aspects of galaxy formation, and, perhaps, find echos
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left over from the formation of the universe itself. In these ways and many others,

the detection and study of gravitational waves will act in concert with electromag-

netic observations, but for one class of object in particular gravitational radiation

provides the only means of direct detection: black holes.

Black holes are at once simple and mysterious. While they can be described

completely by just their mass and spin, understanding the relationship between

black holes and their host environments and even providing conclusive proof of

their existence pose difficult challenges for scientists. Electromagnetic observations

are limited because they only provide information about the ways in which a black

hole interacts with its surroundings, be it the pull of its gravity on nearby stars,

or the vast amounts of energy produced in an accretion disk. While these studies

allow for estimates of a black hole’s properties, the best possible result can still only

provide an incomplete picture. Gravitational waves will soon take us out of the

realm of indirect observation of black holes and allow us to “see” them once and for

all. By forcing black holes out of hiding, detectors such as LISA and LIGO will not

only give us insight into the formation and demographics of these objects, but will

also test Einstein’s theory of general relativity in the limit of very strong gravity.

Through a series of rigorous tests, general relativity has been demonstrated to be

the most robust theory of gravity to date. In an early confirmation, general relativity

was shown to produce correct calculations of the precession of the orbit of Mercury,

for which the Newtonian theory was known to give results that were too small.

This was followed closely by a famous test during a solar eclipse in 1919, in which

Arthur Eddington showed that light is bent by the gravity of the Sun at an angle

that is accurately predicted by Einstein’s theory. More recently, the double pulsar

originally discovered by Hulse and Taylor in 1974, PSR B1913+16, has provided

indirect evidence of gravitational radiation. The orbits of the pulsars not only
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undergo relativistic precession, but are also losing energy by the amount predicted

to result from gravitational wave emission to within 0.05% (Kramer et al. 2006). In a

practical application, global positioning satellites must frequently make corrections

to their internal clocks as a result of general relativistic effects (Ashby 2003). These

tests demonstrate that general relativity gives accurate corrections to Newtonian

gravity in a variety of physical scenarios, but in relatively weak gravitational fields

the divergence between the two theories is not large. It is in the limit of strong

gravity that general relativity separates itself, for in this regime things get truly

bizarre, and neither space nor time behave in the way to which we are accustomed.

Black holes can only be understood in a general relativistic framework. From their

basic nature as the extreme of curved spacetime, to their effect on light, to the way

in which they spiral together and merge, they are excellent laboratories with which

to test relativistic predictions, and the gravitational radiation produced by black

holes is the only means of directly testing relativity in the limit of strong gravity.

While gravitational radiation is produced by extremely energetic events, these

“ripples in spacetime” are incredibly weak. Detection itself constitutes a great

challenge, requiring distance measurements accurate to better than one part in 1021.

In addition, the identification of many sources will rely on comparison of measured

signals to theoretical waveforms derived from detailed source models. Therefore, our

best bet of detecting gravitational radiation is to have a comprehensive knowledge of

its sources in advance. Binaries composed of compact objects, such as white dwarfs

and neutron stars, are abundant potential sources for LIGO and other ground-

based detectors, and a considerable effort has gone into determining their associated

detection rates. Electromagnetic observations of these binaries have provided insight

into their populations and orbital properties, which is invaluable in the calculation

of waveforms. Black holes are not as cooperative. While mergers of black hole
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binaries are among the most promising potential sources of gravitational radiation,

their expected waveforms and detection rates are much more difficult to predict

than those of their white dwarf and neutron star counterparts because black holes

are electromagnetically invisible. Some signals, originating from nearby sources or

resulting from mergers of massive black holes, will register high enough above the

noise to make themselves known with minimal effort on the part of data analysts,

but for many classes of potential black hole sources a theoretical framework is an

essential precursor to signal detection. For this reason, comprehensive study of

possible sources is extremely important for the overall success of detectors. A key

aspect of this study is the identification and analysis of potential host environments.

Compact object binaries form by several mechanisms, however only a fraction of

them will emit detectable gravitational waves. The strength of the radiation pro-

duced by these binaries and the time required for the pair to merge depend strongly

how closely the compact objects approach one another in their orbits, with very close

binaries emitting stronger signals and spiraling in more rapidly. In situ formation

occurs when a binary remains intact after both of its member stars leave the main

sequence. If such a binary is born with a wide separation and remains isolated,

then its orbit will remain relatively unchanged. In less secluded regions, interac-

tions with passing stars can alter the binary’s orbit. If a close dynamical encounter

causes the binary members to pass each other closely, then their gravitational wave

emission will increase, making a merger possible. Therefore, environments in which

many close dynamical encounters occur are expected to be efficient producers of

gravitational wave sources.

Globular clusters are one such environment. Boasting large numbers of stars and

high densities, globular clusters are known to facilitate close interactions. Because

the stellar populations of globulars tend to be older than those in a galactic disk,
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sufficient time has passed for a significant number of stars to have evolved into

compact objects. Neutron stars and black holes, in particular, are significantly

more massive than the remaining main sequence population, and they sink rapidly

to the center of the cluster. The resulting over-abundance of compact objects in

the dense cluster center increases the probability that neutron stars and black holes

will interact dynamically. For those already in binaries, close encounters can enable

them to shrink and eventually emit detectable radiation. Close interactions benefit

single compact objects as well, by promoting exchanges. This allows lone black holes

and neutron stars to swap into binaries, making it much more likely that they will

become gravitational radiation sources.

Much like globular clusters, galactic nuclei have large number densities and con-

tain abundant reservoirs of compact objects. The dense environments of galactic

nuclei foster close encounters between stellar-mass black hole binaries and stars,

which often lead to mergers. This is an important source for LIGO and other

ground-based detectors. Supermassive black holes (SMBHs) lurk at the centers

of most large galaxies, where they are likely to capture low-mass objects such as

stellar-mass black holes onto close orbits that will lead to mergers. As they spiral

in, stellar-mass black holes act as test particles, producing gravitational wave sig-

nals that map the rotating spacetime around the supermassive black hole. These

extreme mass ratio inspirals are among the most important target sources for LISA,

the planned space-based detector. Galactic nuclei, therefore, are excellent settings

for the study of gravitational radiation, producing sources in both low- and high-

frequency regimes.

With gravitational wave detectors in development and coming online, the near

future holds fantastic opportunities. We will rediscover objects of previous study,

understand working theories with newfound rigor, and undoubtedly discover aspects
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of the universe that have long been invisible. Gravitational waves carry a vast

amount of information that is waiting to be explored, and the study of potential

sources is a key step in ensuring our success on this frontier. With this dissertation,

we use numerical simulations to investigate new potential formation channels for

sources of gravitational radiation: tidal separation of binaries by supermassive black

holes and induced mergers of stellar-mass black holes in the centers of galaxies.

In §1.2 of this introductory chapter, we discuss gravitational waves, and in §1.3

we consider the dynamics of dense stellar systems. §1.4 follows with analysis of

double black hole mergers in small galaxies, and in §1.5 we consider the production

of LISA and LIGO sources in larger galaxies. Finally, §1.6 outlines the remainder

of this dissertation.

1.2 Gravitational Waves and Detectors

In reenvisioning gravity as the curvature of spacetime, Einstein was able to clear

up several unresolved issues with the established theory, including the problem of

“action at a distance.” In Newton’s theory of gravity, the effects of a changing

gravitational field are felt instantaneously by all observers. This aspect of Newton’s

work troubled some of his peers. In general relativity, however, there is a reciprocal

relationship between matter, which curves spacetime, and the curvature of space-

time, which determines the motion of that matter. As an object moves it causes

the curvature of spacetime to change, which in turn alters the path of matter. The

communication of a change in a gravitational field does not arrive instantly every-

where in the universe, but rather propagates outward at the speed of light in the

form of gravitational radiation.

A gravitational wave is a distortion of spacetime, which is generated by the ac-
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celeration of mass that is in an asymmetric configuration. As this distortion propa-

gates, it affects matter by changing the separation of objects that are floating freely

in space. Gravitational waves are transverse, and have two polarization modes, h+

and h×, the linear combination of which yields the dimensionless strain amplitude,

h(t). This strain is a measure of the strength of a gravitational wave, and is given

by

h(t) = 2
δL

L
. (1.1)

Here δL is the change in position of two masses separated by a distance, L. To

see the effects of this radiation it is useful to imagine how a passing gravitational

wave distorts a ring of freely floating masses. Figure 1.1 (Schutz 1996) shows the

distortion of a circle of test masses caused by each linear polarization mode. The h×

mode is offset from h+ by 45◦. This figure illustrates to scale the warpage caused by

a wave with an amplitude of h(t) = 0.2, but in reality gravitational waves are not

nearly this strong. In fact, a relatively strong signal from the merger of a double

neutron star binary in a nearby galaxy cluster would have an amplitude of ∼ 10−20

(Thorne 1996). This is such a tiny disturbance that it would only cause masses

separated by 10 km to oscillate by about one tenth of a proton radius. Measuring

extremely small displacements to this level of precision is the goal that must be

accomplished by gravitational wave detectors.

There are two classes of interferometric gravitational radiation detectors in var-

ious stages of development: ground-based detectors, such as LIGO, and the space-

based detector LISA. The frequency of gravitational radiation produced by a source

is inversely proportional to its mass, therefore detectors that operate in a certain

frequency range will be attuned to sources with a particular set of masses. Fig-

ure 1.2 compares the sensitivity curves of LISA and LIGO, indicating the types of

objects that will be observable which each detector. Ground-based detectors are

7



Figure 1.1: (Schutz 1996) Two polarization modes of gravitational radiation.

sensitive to higher-frequency, lower-mass sources, such as merging neutron stars and

stellar-mass black holes, while LISA will be more responsive to supermassive black

hole binaries. The shapes of the sensitivity curves are determined by the restrictions

imposed in large part by a variety of noise sources, and one of the primary challenges

for detector developers is finding ways to overcome these limits.

While they differ greatly in scale and setting, LISA and LIGO have similar

basic designs. Both instruments are laser interferometers, and each is configured

with long arms, which house a laser at the vertex and test masses situated at the

ends. An incident gravitational wave will change the length of one arm with respect

to the other, which will produce an interference pattern when the laser light is

recombined. LIGO consists of two L-shaped detectors in two sites in the United

States separated by ∼3000 km, each with arms measuring 4 km in length, and a

third 2 km detector at the Washington State site. While three detectors might seem

redundant, multiple locations will provide information about source positions, and

will also confirm that signals originate from gravitational waves rather than some
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Figure 1.2: Sensitivity curves of the LISA and LIGO detectors. LISA will operate at low
frequencies, where signals from supermassive black holes will fall. LIGO and other ground-
based detectors are sensitive to high-frequency signals such as those produced by neutron
star and stellar-mass black hole coalescences. The curves are shaped in part by noise
sources which limit the sensitivities of the instruments. (Source: www.srl.caltech.edu)

Earth-bound noise source. When LISA flies, it will be composed of 3 independent

spacecraft forming an equilateral triangle of ∼ 5 × 106 km on a side. Because it is

comprised of three sets of arms, LISA is actually designed to be three interferometers

in one, which will work in concert to determine source positions. The sensitivities

of LISA and LIGO are limited on the high-frequency end by shot noise that results

from the finite number of photons in the laser beams. LIGO must also contend

with thermal noise in its mirrors, which affects the middle of its frequency range, as

well as seismic noise at the low-frequency end. LISA will be removed from seismic

disturbances, but will be buffeted by solar outflows and cosmic rays.

LIGO is a multi-stage project. After decades of planning and five years of con-

struction, operation began at the two sites in 2002. The initial goal for the detectors

was to take data for one full year at the design sensitivity, which would detect sig-
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nals with h(t) ∼ 10−22. This goal was met with the fifth scientific run (S5), which

concluded in 2007. No detections were made, but non-detection sets a new upper

limit for signals for nearby sources such as the Crab pulsar. After S5, the 4 km

instruments were taken out of service in order to begin a series of upgrades that

will eventually lead to Advanced LIGO. As an intermediary step, dubbed Enhanced

LIGO, an upgraded laser and improved readout will boost LIGO sensitivity by a

factor of 2. The planned science run with this configuration will be a useful testing

ground for Advanced LIGO technology. The development of Advanced LIGO is a

collaboration with two European detectors, Virgo and GEO 600, and will require

the replacement of all of the major LIGO components, save the vacuum system. The

upgrades will include a more powerful and more stable laser, improved optics, and

a more robust system for seismic isolation. These improvements will give Advanced

LIGO a tenfold increase in sensitivity over its predecessor, which translates into an

increase in the volume of detection by a factor of 103, as illustrated by Figure 1.3.

When Advanced LIGO is commissioned in 2014, it is expected to detect hundreds

of signals per year.

Because it is still in a developmental phase, LISA has a longer timeline before it

will begin to take data. Building a detector composed of three independent space-

craft that will fly in formation while measuring disturbances to one part in 1023

is an extremely ambitious undertaking. While being in space has the clear bene-

fits of a natural vacuum and absence of seismic disturbances, conducting precise

measurements over 106 km armlengths is difficult. Many challenges arise because

the arm lengths of the interferometer are not fixed, partially because Earth’s grav-

ity introduces perturbations to the system (Shaddock 2008). The motions of the

spacecraft cause the laser frequency to be Doppler shifted, which produces noise.

Each spacecraft houses a freely floating test mass, which it must shield from exter-
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Figure 1.3: Illustration of the detectable regions for initial LIGO and Advanced LIGO.
Advanced LIGO, which is scheduled to begin operation in 2014, will see to ten times the
distance, and therefore 103 times the volume of the initial LIGO configuration (Source:
www.ligo.caltech.edu).

nal disturbances. Unwanted acceleration of these proof masses creates noise at low

frequencies. To minimize this, actuators will keep the test masses centered while

microNewton thrusters will correct the spacecraft trajectory by counteracting ac-

celerations due to the solar wind. Teams in Europe and in the U.S., at Goddard

Space Flight Center, for instance, continue to develop and test these technologies.

A planned precursor mission, LISA Pathfinder, will test the capabilities of the test

mass housing and related hardware, and it is scheduled for launch in 2010. LISA is

estimated to follow in 2018-2025.

Following the path to gravitational wave detection that has been set by general

relativistic theory does not stop at the development of detectors. Once measure-
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ments are made, the task of isolating and identifying individual signals in the data

will begin. Gravitational wave detectors are not pointed instruments, rather they

will measure sources from across the sky, and the resulting data will contain a com-

bination of many sources. Strong signals will be straightforward to find, but for

weaker sources the prospects of detection greatly improve if the properties of the

signals are predicted in advance. This is achieved by creating theoretical waveforms

corresponding to sources with a wide range of properties and then searching the

data for matches. LIGO data will be abundant, and this method of matched filter-

ing will improve the effective sensitivity of the instrument by a factor of ten (Thorne

1996). For LISA, all of the data taken over a run of two years will fit on a single

CD, with many signals occupying the same ranges of frequency. Theoretical wave-

forms will be used to produce templates that will then be compared to the data,

allowing for sources with similar properties to be isolated from the din. The com-

putation of waveforms requires analysis of sources and their potential hosts, such

as galactic centers. In later chapters, we will focus on two main classes of galaxies:

small galaxies with nuclear star clusters at their centers and larger galaxies that are

known to host massive black holes. In the case of nuclear star clusters, we show

that stellar-mass black holes are often induced to merge, producing LIGO sources.

We also demonstrate that binaries in larger galaxies can become sources for both

LISA and LIGO.

1.3 Dynamics in Star Clusters

Galactic centers are fairly compact regions with ∼ 106 − 107 stars and number

densities that can exceed 106 pc−3, making them excellent environments for close

encounters. We can demonstrate this with a quick calculation. Consider a binary
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with a relatively moderate semimajor axis, a ∼ 1 AU, in a galactic nucleus with

n ∼ 106 pc−3. If the average speed in such a nucleus is v = 100 km s−1, then the

encounter rate is

τ−1 = nΣv = few × 10−9yr−1 , (1.2)

where Σ ∼ a2 is the cross section of the binary. From this, we expect the binary

to interact once every few hundred million years. Let’s compare this to the social

schedule that this binary would have if it lived in a galactic region similar to our

solar neighborhood. Here, n ∼ 1 pc−3, and relative velocities are slower, v ∼ 20 km

s−1, and the interaction rate is

τ−1 = few × 10−16yr−1 . (1.3)

In the solitary environment of the galactic disk, a binary remains unperturbed by

encounters, having ∼ one interaction per 105 Hubble times. Therefore, when it

comes to the frequency of dynamical encounters, binaries in dense clusters are at a

distinct advantage.

The large scale dynamics of such systems take place over the course of a relax-

ation time,

trel ≈
N

8lnN
tc . (1.4)

Here the crossing time is tc = R/v for a nucleus of radius R (Binney & Tremaine

1987). The relaxation time is the timescale in which energy distribution occurs

within the nucleus, and in this time a star will have its velocity changed by of order

itself. In this work, we will primarily consider small-to-moderate galaxies. For

instance, a nuclear star cluster in a small galaxy typically has N ∼ 106, v ∼ 50 km

s−1, and R ∼ 1 pc, which gives trel ∼ 108 yr. Such a short relaxation time ensures not

only that these systems are in rough dynamic equilibrium, but also that individual

stars will have had ample opportunity to interact with one another. Larger galaxies
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with N ∼ 107 stars in their central R ∼ 3 pc, will have larger stellar velocities

on average. For v ∼ 100 km s−1, the relaxation time is trel ∼ 109 yr. While this

larger galaxy, with its ∼ 1011 stars, will not have relaxed as a whole, its central few

parsecs will have undergone several relaxation times. From Eqn (1.2), we know that

a binary in such a nucleus will have a few interactions over the course of a billion

year relaxation time. Therefore, we see that central regions of both small and mid-

sized galaxies are conducive to multiple dynamical encounters between stars. This

treatment assumes stars of equal mass. More realistic scenarios that incorporate a

range in masses show that more massive objects sink to the centermost region of a

galaxy long before their lighter counterparts.

Massive objects such as stellar-mass black holes (BHs) will sink through the field

of lower mass stars that populate the galactic nucleus, while lighter objects tend to

move further out (e.g., Freitag et al. 2006). The time required for an object of mass

M to sink to the center is given by its local relaxation time, trel(r), which is (Spitzer

1987)

trel(r) =
0.339

ln Λ

σ3(r)

G2m∗Mn(r)
, (1.5)

where m∗ is the average mass of field stars, and ln Λ ∼ 10 is the Coulomb logarithm.

The more massive an object, the more quickly it sinks. For instance, the relaxation

time of a 1.4 M% neutron star is about 14 times longer than that of a BH with

M ∼ 20 M%. In fact, simulations that track black holes in a population of lighter

stars find that BHs sink to the center very rapidly, and come to dominate the

innermost region of the nucleus (Freitag et al. 2006). Binaries, also being more

massive than the average star, will sink quickly as well. Therefore, galactic centers

will contain much larger fractions of compact objects and binaries than a galactic

disk, making it likely that BHs will not only interact frequently, but will have

multiple encounters with other BHs, neutron stars, and binaries. Numerical results

14



have determined that if a close encounter between a single object and a binary results

in an exchange, then the final binary tends to consist of the two most massive

objects (Heggie 1975). As a result, interactions tend to swap BHs into binaries.

When these binaries are formed, they are typically too widely separated to produce

significant gravitational radiation. Whether they ever become gravitational wave

sources depends on the outcome of subsequent dynamical interactions.

The result of an encounter depends in large part on how the kinetic energy of

the single object compares to the internal energy of the binary. In a nucleus with

stars of average mass, m∗, and velocity dispersion, σ, a binary with binding energy

E is considered hard if

|E|
m∗σ2

> 1 , (1.6)

and soft if

|E|
m∗σ2

< 1 . (1.7)

Typically, a hard binary will shrink, or harden, while a soft binary will widen further,

or soften, as a result of a close encounter (Heggie 1975). While this has been

determined numerically, there is a qualitative argument that offers insight into this

trend. Consider a binary-single interaction between three equal-mass objects. If the

binary is hard, then the initial speed of the single object is less than the binary’s

orbital speed. At the end of the encounter, the single typically leaves with a speed

roughly equal to the initial orbital speed of the binary. It has, therefore, gained

energy, which means that the binary is more tightly bound, and its semimajor axis

has decreased. In contrast, when the binary is soft the initial speed of the single

object is greater than the orbital speed. In fact, for a very soft binary, the orbital

speed is so slow that one can approximate that it is stationary as the single object

passes. The effect felt by the binary is then dominated by the pull of the single

object on the closest binary member. The high-velocity interloper will attempt to
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equilibrate its energy with the binary member, hence increasing its orbital speed.

As a result, the binary is less bound, and widens (Binney & Tremaine 1987). The

process of hardening has a substantially different effect on the fate of a binary than

that of softening. When a binary hardens, its cross section decreases and it is less

likely to have another interaction. The opposite is true for a softened binary, for

which a subsequent encounter becomes more likely. Each time a soft binary has an

encounter it is likely to grow softer, and its interaction cross section increases. This

runaway process heightens the probability that the binary will be ionized, leaving

both of the binary members and the interloping star unbound. For this reason, it

is reasonable to assume that soft binaries in dense environments do not survive for

long.

Observations of dense star systems support the picture that binaries have fre-

quent dynamical encounters. In the galactic disk, the fraction of stars in binaries is

fb ∼ 0.7, or approximately one binary for each single star. These stars must be born

in binaries, because number densities are too low for them to have come together dy-

namically. It is reasonable to assume that the mechanism of star formation is similar

in dense clusters such as globulars, which would lead to a comparable percentage of

binaries, however, far lower values of fb, from 0.05-0.2, are observed in these systems

(e.g. Albrow et al. 2001). Close encounters with stars are likely to blame for this

discrepancy. One means by which interactions deplete the population is by elimi-

nating soft binaries though repeated softening and eventual ionization. Also, in an

encounter with a hard binary, the binary shrinks and receives a recoil kick that can

easily exceed the escape velocity of a globular cluster. These kicks add energy to

central region of the system by increasing the velocities of single stars, which is the

primary mechanism that keeps the cores of globular clusters from collapsing. In ad-

dition, low-mass x-ray binaries, are more abundant in globulars than in the galactic
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disk. These are close binaries in which a neutron star accretes from a companion,

resulting in x-ray emission, and their relative abundance in globulars indicates that

dynamical encounters greatly increase their formation. These observations provide

a basis with which to estimate gravitational wave detection rates from neutron star

binaries, but no such observational anchor exists in the case of black hole binaries.

Instead, BH merger rate estimates largely depend on population synthesis models.

1.4 Black Hole Mergers in Dense Star Clusters:

LIGO Sources

While population synthesis simulations produce results for neutron star binaries that

are consistent with merger estimates based on observations of known double neutron

stars, their predicted rates for double black hole (BH-BH) mergers vary from 1 per

year to 500 per year with Advanced LIGO (Belczyński et al. 2007). Though it is

known that stars are often born in binaries, and that a large fraction of binaries

contain stars of similar mass, it is not known whether a massive binary star will

in turn evolve into a BH-BH binary in isolation. The main source of uncertainty

lies in the common envelope phase of evolution. This occurs after one of the stars

has become a black hole, and the other enters the red giant phase. The giant is so

large that its black hole companion is engulfed, which produces a drag on its orbit

and can cause the BH to merge with the core of the star. Depending on the details

of the common envelope model used, in-situ formation of BH-BH binaries that are

small enough to merge by gravitational radiation within a Hubble time might be

greatly inhibited, hence the uncertainty in the LIGO rates. The distribution of

BH-BH binaries that survive the common envelope phase is flat across a range of

low masses, as seen in Figure 1.4. Therefore, these models predict that mergers
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of isolated BH-BH binaries will involve low mass BHs, which is in contrast with

BH-BH mergers formed by dynamical interactions in dense systems.

Figure 1.4: Distribution of close BH-BH binaries produced by population synthesis sim-
ulations (Belczyński et al. 2007). The horizontal axis is Mchirp – a particular combination
of the two masses of the binary members. The vertical line shows Mchirp for two 10 M!
BHs, which demonstrates that BH-BH mergers from this mechanism are of low mass.

If mergers of BH-BH binaries formed in isolation are suppressed by the common

envelope phase, then it is likely that merger rates are dominated by dynamical en-

counters in dense clusters. In addition to decreasing the semimajor axis of a hard

binary, interactions with stars also tend to cause the eccentricity of the pair to wan-

der. The strength of the gravitational radiation emitted by the binary depends on

the distance of the closest approach, or pericenter, of the binary members, therefore

a change in eccentricity can have a significant effect. The timescale for a binary with

masses m1 and m2, semimajor axis a, and eccentricity e to merge by gravitational

radiation is given by (Peters 1964)

tinsp ≈ 6× 1017 yr
(1 M%)3

m1m2(m1 + m2)

(
a

1 AU

)4

(1− e2)7/2 . (1.8)
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For example, if m1 = m2 = 10M%, a = 0.1AU and e = 0.9, then tinsp ∼ 90 Myr.

Figure 1.5 illustrates how such dynamically-triggered mergers might take place.

Figure 1.5: Illustration of a dynamically-induced merger. After a close encounter with
a star, the binary pericenter decreases, which increases gravitational wave emission. It
then spirals together and eventually merges.

While globular clusters are ideal environments for fostering close interactions, it

is not clear that they are able to retain their black hole populations. Observations

of BHs in globular clusters are rare, but this fact could simply be because they

are invisible unless they have a partner from which to accrete. However, the low

escape speeds of globulars suggest that BH populations are not simply hiding. Each
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successive hardening of the binary imparts a recoil that can exceed the modest 40-

50 km s−1 escape velocities that are typical for massive globular clusters. In fact,

simulations show that the vast majority of binaries will be ejected from globulars

before they have the opportunity to merge (Portegies Zwart & McMillan 2000;

Sigurdsson & Hernquist 1993). Additionally, BHs might be ejected from clusters

by the kicks that they receive at birth from supernovae. At least one known BH

x-ray binary has been observed to have a 100 km s−1 supernova kick (Mirabel et al.

2002), which is sufficient to eject it from any globular cluster with ease. In contrast

to globulars, galactic nuclei are conducive to close encounters, abundant in compact

objects, and have escape velocities large enough to withstand both natal BH kicks

and three-body recoil.

There is increasing evidence that a large fraction of small galaxies have nuclear

star clusters (NSCs) in their centers, and that many NSCs may not host massive

black holes. Surveys suggest that 50% – 80% of small galaxies have such clusters,

and that NSCs follow a trend similar to the relation that correlates the masses

of SMBHs to the central velocity dispersions of larger galaxies (Ferrarese et al.

2006). NSCs have masses that range from 106−107M% and one dimensional velocity

dispersions that extend from σ ∼ 13 − 30 km s−1, with six clusters having σ > 25

km s−1. The relaxation time of these systems is much less than a Hubble time,

so BHs will have had ample time to sink into the cluster centers. As in globular

clusters, compact objects in NSCs are likely to swap into binaries that will then have

repeated encounters with stars. However, NSCs have much higher escape velocities,

vesc ∼ 100− 200 kms−1, and will therefore be more likely to retain their BHs in the

event of natal or three-body kicks. This makes NSCs prime locations for BH-BH

mergers, and due to the multiple exchanges that the binaries will likely undergo,

we expect that mergers will involve much more massive BHs than in the isolated
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case. Hence, BH-BH mergers in NSCs are a distinct new source for LIGO and other

ground-based detectors.

1.5 Larger Galaxies: Sources for LIGO and LISA

Like their smaller counterparts, larger galaxies are promising environments for the

production of LIGO sources such as BH-BH mergers, but the presence of SMBHs in

their centers introduces the potential for an additional type of gravitational radiation

source: extreme mass ratio inspirals.

1.5.1 Extreme Mass Ratio Inspirals

Extreme mass ratio inspirals (EMRIs) are key sources for the future space-based

gravitational radiation detector LISA (Danzmann & et al. 1996). EMRIs are events

in which a low-mass object such as a white dwarf, neutron star, or BH spirals into a

SMBH. Of these compact objects, BHs are the most massive, hence their inspirals

are observable to the largest distances. The strain amplitude of an EMRI goes like

h ∼ m(MSMBH)2/3 , (1.9)

where m is the mass of the smaller object. An EMRI involving a 10 M% BH can

be observed at a distance ∼10 times greater than an event involving a 1 M% object

(Freitag et al. 2006), which increases the volume of detection by 103. EMRIs are

extremely important because they provide means to directly test general relativity

through the comparison of theoretical waveforms to the signals received by LISA. In

effect, as the BH spirals in, it acts as a test particle, providing a map of the curved

spacetime surrounding the rotating SMBH (Ryan 1995, 1997).

There are several ways in which EMRIs are thought to be produced. The most

widely-discussed formation mechanism involves the capture of a single stellar-mass
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black hole by a SMBH, as illustrated in Figure 1.6. The two-body capture scenario

begins with a BH in a distant orbit around a SMBH. The cumulative effect of dis-

tant encounters with much lighter field stars slowly decreases the semimajor axis of

the BH orbit and causes its eccentricity to wander away from its initial value. If

the pericenter of the BH orbit reaches a value such that a significant amount of en-

ergy is dissipated by gravitational radiation, then capture can occur. This required

pericenter is quite small, of order 0.1 AU. The two-body capture process typically

results in high-eccentricity orbits with apocenters that are very large, frequently

exceeding 0.1 pc (Hils & Bender 1995; Hopman & Alexander 2005). Because of

these large apocenters, it is likely that passing stars will perturb the orbit of the

BH, which will often prevent it from becoming a detectable EMRI. In some cases,

the encounter will significantly lower the eccentricity such that the emission of grav-

itational radiation becomes negligible, halting the inspiral. At the other extreme,

a perturbation can send the BH into a direct plunge before the orbit reaches the

frequency range required for a detectable LISA signal (Hils & Bender 1995). As

many as 80%− 90% of would-be EMRIs might be lost in this manner (Hopman &

Alexander 2005). EMRIs with apocenters that are sufficiently small to avoid per-

turbation will have considerable eccentricities and random inclinations when they

reach the LISA sensitivity band (Freitag 2003).

A second formation scenario invokes an accretion disk around the SMBH. If a

BH plunges through the disk, the resultant energy loss can dampen its motion and

bring its orbit into the plane of the disk. Subsequent gas drag then simultaneously

shrinks and circularizes the BH orbit until it is small enough that gravitational

radiation takes over, leading to inspiral and merger. This process creates circular

EMRIs with zero inclination.

Binaries provide a means of depositing stellar-mass black holes very close to
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Figure 1.6: Capture of a BH by a SMBH via gravitational radiation emission. The
resultant orbit is large and very eccentric, with an apocenter of ∼ 104 AU, which makes
the BH susceptible to plunge-inducing perturbations by passing stars. When such objects
survive to become EMRIs, they produce eccentric, inclined LISA sources.

the SMBH without requiring energy dissipation (Miller et al. 2005). Like that of its

single counterpart, the orbit of a black hole binary is altered by two-body relaxation.

As the binary sinks through the field of less massive stars, the semimajor axis of its

orbit around the SMBH decreases and its eccentricity wanders. When the BH-BH

binary gets close to the SMBH, tidal forces pull the binary apart, causing one of the

BHs to be captured into a close orbit, while the other is flung off at a high speed, as
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shown in Figure 1.7. The capture radius, at which tidal forces separate the binary,

Figure 1.7: Tidal separation of BH-BH binary by a SMBH. One binary member is
captured into a small orbit, and the other is ejected. The captured orbit has a larger
pericenter (typically ∼ 10 AU) and a smaller apocenter (∼ few hundred to 1000 AU) than
in the two-body capture case. When the EMRI reaches the LISA band, it will be circular
with random inclination.

is given by (Miller et al. 2005)

rtide ≈ abin

(
3MSMBH

mbin

)1/3

, (1.10)

where mbin and abin are the total mass and semimajor axis of the binary. For mbin =

10 M%, a = 0.1 AU, and MSMBH = 106M%, rtide ≈ 7 AU. For comparison, two-body
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capture with the same masses requires a pericenter pass rp ≈ 0.1 AU. Figure 1.8

shows a three-body simulation that results in the tidal separation of the binary,

which demonstrates the capture of a BH into a moderately-sized orbit. The binary

separation mechanism allows the BH to be captured at a much greater distance

from the SMBH than in the two-body process. Also, the apocenter distance after

tidal separation is typically only ∼ one hundred times the pericenter distance, or

∼ 1000 AU, compared to ∼ 0.1 pc for two-body capture. This reduces the threat

of orbital perturbation by field stars. The newly-captured orbit of the BH around

the SMBH has a larger pericenter than in the two-body capture case. This allows

for circularization of the orbit by gravitational wave emission, producing very low-

eccentricity events when the EMRI reaches the LISA band. In future observations,

the distinction between high- and low-eccentricity, and high- and low-inclination

events will not only provide direct insight into these formation mechanisms, but will

also yield information about the fraction of BH binaries that exist in galactic nuclei.

1.5.2 Influence of SMBH on Binary Dynamics

As a BH-BH binary sinks through the nucleus, it will have multiple encounters with

single stars. While this is reminiscent of the fates of binaries in NSCs, the presence of

an SMBH makes the nuclei of larger galaxies less quiescent than those of their smaller

relations. Within the central ∼ 1 pc of a nucleus, the dynamics are dominated by

the SMBH. Whereas in NSCs the stellar velocities are constant throughout, this

is not the case in regions that are SMBH-influenced, where velocities increase as

one approaches the center. In this region, the velocity dispersion is related to the

distance from the SMBH, r, by

σ(r) ∝ r−1/2 (1.11)
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Figure 1.8: Results of a 3-body simulation in which a BH-BH binary is tidally separated
by a SMBH. The axes are in AU. The light green curve shows the path of the ejected
BH, and the dark blue curve is the captured orbit.

As discussed in Section 1.3, whether a binary is hard or soft determines how fre-

quently it interacts and impacts the outcome of those encounters. Hardness and

softness depends on how the binding energy of the binary compares to the kinetic

energy of interloping stars, therefore a binary that remains internally unchanged

will be softer if it encounters faster stars. This is precisely what happens as a bi-

nary sinks towards the center of the galactic nucleus where the velocity dispersion is

higher. Because binaries become softer as they sink, subsequent encounters tend to

soften them further, which leads to frequent ionizations. Additionally, wider bina-

ries are tidally disrupted at a greater distance from the SMBH, which increases the

time required for the BH to spiral in to the region where it will become a detectable
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EMRI. Even with this caveat, some BHs will have initial inspiral times ≤ 109 yr,

and many others likely will be perturbed by passing stars into orbits that will spiral

in. Lastly, we find that those binaries that are not separated by the SMBH often un-

dergo dynamically-induced mergers. Therefore, galactic nuclei are excellent settings

for the production of both LIGO and LISA sources.

1.6 Dissertation Overview

Chapters 2 and 3 of this dissertation give more detailed background information

about gravitational radiation and nuclear star clusters. We then analyze BH-BH

mergers in NSCs in Chapter 4. We investigate the formation of circular EMRIs via

the tidal separation of BH-BH binaries in Chapter 5, and in Chapter 6 we present

a study of BH-BH dynamics in galaxies containing SMBHs.
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Chapter 2

Gravitational Radiation

“It is enjoyable to make things visible which are invisible.”

—Eric Cantona

2.1 Introduction

Astronomy, by its nature, is the study of objects at a distance. We can’t dissect a

star, or form a quasar in a lab, or, with the exception of objects within our solar

system, travel to astronomical bodies in order to analyze them. For some of Earth’s

nearest relatives–comets, asteroids, rocky planets, and satellites–we can directly test

some properties, such as the characteristics of rock fracture and ice formation, and

we have even directly sampled the surfaces of a select few. However, the vast multi-

tude of celestial objects lie beyond our reach, and we must determine their properties

remotely by analyzing their light. Luckily, light contains information about compo-

sition, temperature, and a host of attributes from which astronomers have built a

taxonomy of the astronomical menagerie. Detection of gravitational radiation will

add another dimension to our knowledge set, complimenting electromagnetic obser-

vations by allowing us to study the details of black hole mergers, probe the interior
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structure of neutron stars, and perhaps examine the first moments after the Big

Bang.

2.2 Overview

Gravitational waves communicate the acceleration of an asymmetric distribution of

mass, resulting in the squeezing and stretching of spacetime. In an analog to elec-

tromagnetism (see Jackson 1998), the gravitational potential can be expressed in

terms of moments (following e.g. Misner et al. 1973); for radiation to be produced,

there must be a frame-independent variation of a moment with time. In order to de-

termine the lowest order gravitational wave radiation, we begin our electromagnetic

analogy with the electric monopole, which is

∫
ρe(r)d

3r (2.1)

where ρe(r) is the charge density. This is the total charge of the system, and since

the total charge does not vary, there is no electromagnetic monopolar radiation.

Similarly, for a mass density ρ(r), the gravitational monopole is

∫
ρ(r)d3r , (2.2)

or the total mass-energy of the system, which is constant, thereby excluding the

possibility of gravitational monopolar radiation. Next, we have the electric dipole

moment
∫

ρe(r)rd
3r , (2.3)

which is not conserved, therefore electric dipole radiation is possible. The gravita-

tional equivalent is
∫

ρ(r)rd3r , (2.4)
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but this is the center of mass-energy, which is constant in the center-of-mass frame

and can not radiate. The next possibility is the magnetic dipole, which in electro-

magnetism is
∫

ρe(r)r× v(r)d3r , (2.5)

the variation of which leads to magnetic dipole radiation. The gravitational analog

is
∫

ρ(r)r× v(r)d3r , (2.6)

which is the angular momentum of the system, another conserved quantity, so there

is no magnetic dipolar gravitational radiation. The next possibility is the static

gravitational quadrupole moment

Iij =
∫

ρ(r)rirjd
3r . (2.7)

This is the first moment for which there is no applicable conservation law, there-

fore quadrupolar gravitational radiation can exist. Furthermore, the lowest order

radiation is generally the strongest, so gravitational radiation is dominated by the

quadrupole moment. Therefore, gravitational wave sources are limited to objects

with non-axisymmetric configurations.

There are several astrophysical scenarios that break axisymmetry, which leads

to a variety of potential gravitational radiation sources. For example, compact

object binaries, the asymmetric collapse of stars, non-axisymmetric processes in the

early universe, and rotating lumpy neutron stars are all candidates. As we will

discuss in §2.2, many of the details of these prospective sources and their associated

signal strengths are unknown at present. Binaries, however, are the best understood

class due, in large part, to electromagnetic observations of neutron star and white

dwarf binaries. While potential sources are widely varied, their asymmetric motions

have a similar effect: causing the stretching and squeezing of spacetime. Though
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the objects that produce detectable gravitational radiation are very massive, the

resulting waves are quite diminutive.

We can estimate the strength of the gravitational wave strain produced by an

astrophysical source by using the Newtonian-quadrupole approximation (following

Thorne 1996). The relation states that

h(t) ∼ G

c4 r
Q̈ , (2.8)

where Q̈ is the second time derivative of the quadrupole moment of a system a dis-

tance r away. A source producing significant gravitational waves will be elongated,

so we can assume that

Q ∼ML2 . (2.9)

This has units of

Q ∼ (mass)× (distance)2 . (2.10)

Taking the first derivative gives

Q̇ ∼ (mass)× (distance)2

(time)
, (2.11)

and from the second we have

Q̈ ∼ (mass)× (distance)2

(time)2

∼ (mass)× (velocity)2

∼ Ekin . (2.12)

Combining this and Equation (2.8) produces,

h ∼ few×
(

G

c4 r

)
Ekin , (2.13)

where Ekin is the kinetic energy. It is clear from the factor of G/c4 in Equation

(2.13), that h will be extremely small unless the observer is close to a very rapidly-

moving source. For instance, consider a binary consisting of two 1.4M% neutron
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stars with an orbital period, P , at a distance, r, from Earth. The strength of the

resulting gravitational radiation is measured by the strain (Schutz 1996)

h ≈ 10−22
(

M

2.8M%

)5/3(0.01 sec

P

)2/3(100 Mpc

r

)
. (2.14)

This shows that a relatively nearby binary, in the Virgo cluster at 18 Mpc, for

instance, will only produce a signal amplitude of h ∼ 10−21. These systems are

rare—there are only ( a few known double neutron stars in the Milky Way that will

merge within a Hubble time (see e.g. Phinney 1991)—so it is clear that a successful

detection will require that instruments be sensitive enough to detect sources at great

distances. This will come into reach when detectors sensitive to h ∼ 10−22 and better

are operational. In making the painstaking measurements that are required to detect

gravitational waves, scientists hope to reap incredible rewards: singular insight into

the mysteries of neutron stars and black holes, and, possibly, an unparalleled look

back to the first seconds of the universe.

2.3 Sources

Several models for potential gravitational radiation sources have been considered,

and they fall into a handful of broad categories: bursts, continuous sources, binaries,

and stochastic sources. Of these, binaries are the only sources that are known to

emit gravitational waves at detectable amplitudes, but we will briefly discuss other

possible sources as well.

32



2.3.1 Burst Sources

Bursts of gravitational waves are expected to be released immediately prior to a

supernova explosion when the core of the progenitor star collapses. This collapse,

which will almost certainly be asymmetric (Ott 2009), releases a large amount of

energy, possibly ∼15% of the rest mass-energy of the core, but this is largely in the

form of neutrinos (Ciufolini et al. 2001). Uncertainties in the theory of neutron star

interiors and lack of knowledge of the degree to which the collapse is asymmetric

make it very difficult to predict the amount of energy released as gravitational

waves. It is possible that only ∼ 10−6 of the mass-energy becomes gravitational

radiation, which would limit our hopes of detection to our own galaxy. Supernovae

are rare, only occurring once every ∼ 50 years in our galaxy, therefore detections

with advanced ground-based detectors will likely be infrequent (Schutz 2003). After

the burst of its formation, it is possible that a rapidly spinning neutron star might

produce a continuous gravitational wave signal.

2.3.2 Continuous Sources

A rotating neutron star could produce detectable gravitational waves if it is asym-

metric. If its spin axis is misaligned with its principal moment of inertia axis, then

it will wobble by an angle, θw, as it rotates. A typical spinning, non-spherical star

will generate waves with a strain amplitude (Thorne 1996)

h ∼ 6× 10−25
(

frot
500 Hz

)2(1 kpc

r

)(
εe or θwεp

10−6

)
, (2.15)

where the deviation of the star from a sphere is given by its equatorial and poloidal

ellipticities, εe and εp. While this gravitational wave amplitude is quite small, rotat-

ing stars might be detectable over many cycles if the change in frequency with time

is known. The frequency of the gravitational radiation, f , is a combination of the
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rotation frequency, frot, and the precession frequency that arises due to the wobble,

fprec

f = frot + fprec . (2.16)

If such radiation is detected from a known pulsar, then the analysis of these two

frequencies in concert with the timing of the pulses could yield insight into the inter-

nal structure of the neutron star. Unfortunately, so little is known about the degree

to which a typical neutron star deviates from a sphere, or how much wobble is ex-

pected, that it is difficult to predict detection rates. Upper limits on neutron star

ellipticity vary from 10−4 to 10−6, however these might be far greater than the aver-

age (Thorne 1996). The necessary asymmetries for the production of gravitational

waves might come in the form of either lumps or waves, and several mechanisms of

producing them have been proposed.

In order to generate continuous gravitational radiation, neutron stars must have

sustained asymmetry. If a neutron star is spinning extremely rapidly immediately

after it forms, there is a chance that it could elongate enough before it hardens

to radiate detectable waves. This scenario of dynamically-produced lumps is likely

uncommon at best (Thorne 1996). All known neutron stars rotate far too slowly to

make this mechanism feasible. It is also possible that magnetic pressure from very

strong fields within a neutron star might produce triaxiality, however the signal

strength from such a source is difficult to predict without knowledge of the interior

properties of the stars. Sustained asymmetric accretion onto a non-spherical star

has also been proposed as a means of producing radiation by increasing θw and

therefore strengthening emission. In each of these scenarios, uncertainties make the

prediction of signal strength difficult. If detections are made, then we will learn

a great deal about the internal properties of neutron stars, and in the worst case,

non-detection will provide a useful upper limit on neutron star ellipticities.
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Waves, or deformations that move with respect to the surface of a neutron star,

might result from unstable modes, however it is unclear whether such waves are

detectable or sustained. Surface waves might be produced on rapidly rotating stars

via the CFS instability (Chandrasekhar 1970; Friedman & Schutz 1978). In this

scenario, density perturbations move in the direction opposite to the rotation of the

star, however as the star spins it drags the waves forward. From the perspective

of a distant observer, the propagation of the waves is prograde and gravitational

radiation is emitted. From the perspective of an observer on the surface of the star,

however, the wave motion is retrograde, and the gravitational radiation appears to

carry away negative energy, hence amplifying the waves (Thorne 1996). These waves

can reach large amplitudes in perfect fluids, but the expected amplitudes in neutron

stars are unknown. It is possible that magnetic fields damp the waves (Rezzolla

et al. 2001), and viscosity in the neutron fluid also likely plays a role in decreasing

the amplitude of the modes (Schutz 1996). Because the viscosity depends on the

interior temperature of the star, the range of viscosity in which the CFS instability

will operate corresponds to a limited range in temperature. In fact, it is believed that

CFS waves will only be produced in the first few years after a neutron star forms,

when the temperature is 109 K ≤ T ≤ 1010 K (Thorne 1996), and it is possible

that detectable gravitational radiation might last as briefly as a few seconds (Schutz

1996).

In any case, coherent signals are easier to detect than bursts of comparable am-

plitude, and although very little can be predicted at present about signal strengths

from rotating neutron stars, it could be that such sources will be detectable even if

their signals are weak. Because these signals are periodic, it is possible to increase

the effective sensitivity of a detector such as LIGO by integrating over many cycles

and matching signals in the data to the patterns predicted from theory (Schutz
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2003). The effective signal strength is then increased by the factor
√

n, where

(Thorne 1996)

√
n =

√
frot τ̂ = 105

(
frot

1000 Hz

)1/2( τ̂

4 months

)1/2

. (2.17)

Here frot is, again, the spin frequency, and τ̂ is the integration time. This technique

of using matched filtering to search for signals over an integration time of many

months is a computationally demanding form of data analysis, but this effort will

make ground-based detectors significantly more sensitive to periodic signals. It is

important to note that all known millisecond pulsars are too weak to be detected,

even if their spindown is entirely due to gravitational radiation. If wide searches

are conducted, they could lead to the discovery of unknown neutron stars, though

such searches present even more taxing computational challenges. Any detections

would give direct insight into the evolution of massive stars and physics at high

densities and in strong magnetic fields, which motivates the continued development

of matched filtering techniques.

2.3.3 Stochastic Sources

In addition to carrying the signatures of exotic objects in our galaxy, it could be

that gravitational waves also bear the imprint of the Big Bang itself. Gravitational

radiation interacts so weakly that the waves generated very soon after the Big Bang

make their way to us unaltered. This fact has lead to a great deal of enthusiasm for

what could potentially be learned about the early universe if we can harness this

radiation. If we consider the wealth of knowledge gained by studying the cosmic

microwave background, which hails from ∼ 105 years after the Big Bang, then it is

clear that our understanding would be revolutionized if we could analyze gravita-

tional radiation originating from only ∼ 10−35 seconds after the birth of the universe

(Schutz 1996).
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While the motivating factors are clear, the detectability of these waves is highly

uncertain. The models proposed for the generation of primordial gravitational waves

are very speculative, and are rooted in the poorly understood physics of inflation

and early universe phase transitions. The standard model of inflation would predict

amplitudes well below the sensitivity of any planned detector, and phase transitions

can only produce detectable radiation if one takes into account very optimistic

parameters (Schutz 2003). While we can be sure that a wealth of information

would accompany a background of primordial gravitational waves, we know so little

about the epoch in which it was produced that it is difficult to feel confident that

we will detect it. In contrast, there are sources that are not nearly as mysterious.

In fact, we have observed the effects of gravitational waves within these systems,

and with every measure undertaken to increase detector sensitivity we come closer

to detecting their radiation directly. They are compact object binaries.

2.3.4 Binary Sources

Merging compact object binaries stand out when compared to bursts, spinning

neutron stars, and the primordial background as the most completely understood

sources of gravitational radiation. This is due to observations as well as our ability

to model the inspiral stage analytically, and, with recent computational advances, to

simulate the mergers themselves. We can discuss the effect of gravitational radiation

on a binary by first considering the orbital energy

E = −Gm1m2

2a
. (2.18)

Because gravitational waves carry energy, the total energy of the orbit must decrease

as the radiation leaves the system. The binding energy becomes more negative,

hence the semimajor axis of the orbit decreases. We know from Kepler’s laws that
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the orbital frequency, ω, semimajor axis, and mass of the binary, Mtot, are related

by

ω2a3 = GMtot , (2.19)

therefore the orbital frequency increases as the binary shrinks. From Equation

(2.14), it follows that the strength of the gravitational radiation increases as the

binary orbits more rapidly, which speeds up the energy loss. Thus, this is a runaway

process in which the binary members spiral together more and more quickly, and

eventually coalesce. The effect of gravitational radiation on a non-circular binary

can be understood qualitatively by considering a binary with a large eccentricity.

The gravitational radiation of such a binary is considerably stronger at pericenter,

where the bodies pass each other closely, therefore the energy loss at close approach

dominates. If we imagine this as an impulse, then energy is removed from the

orbit, which decreases the semimajor axis while the pericenter distance remains

fixed. This means that the apocenter distance must decrease, thereby resulting in

a less eccentric orbit. We see, then, that gravitational radiation simultaneously

circularizes and shrinks the orbits of binaries. Peters (1964) formulated the loss of

energy and angular momentum and showed that the semimajor axis and eccentricity

will change with respect to time such that

〈
da

dt

〉
= −64

5

G3m1m2(m1 + m2)

c5a3(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
, (2.20)

and
〈

de

dt

〉
= −304

15

G3m1m2(m1 + m2)

c5a4(1− e2)5/2

(
e +

121

304
e3

)
. (2.21)

The first confirmation of this energy loss came with the observations of a binary

pulsar by Hulse & Taylor (1974).

The observation of PSR1913+16, taken in 1974 at the Arecibo telescope, would

become the first empirical confirmation of gravitational wave theory. The first pe-
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culiarity noted about this pulsar was its short orbital period of ∼ 8 hr (Hulse &

Taylor 1974), which indicates that the pulsar is orbiting at the relativistic speed of

∼ 0.1% c. With follow-up observations, Taylor determined that each binary member

has a mass of ∼ 1.4 M% (Taylor et al. 1976), revealing that the unseen companion

of the pulsar is a neutron star as well. Because the semimajor axis of the binary and

the masses of its constituents are known to a high accuracy, it is possible to calculate

the orbital decay due to gravitational radiation. The measured rate of shrinking is

(2.4349 ± 0.010) × 10−12 seconds per second (Schutz 1996), which agrees within

the uncertainties with theoretical predictions. Although PSR1913+16 is too widely

separated to be observed by any planned detector, this Nobel Prize winning work

is an astounding verification of general relativity in the limit of weak gravity.

As a binary shrinks, the frequency of the gravitational radiation it emits in-

creases. Because of the quadrupolar nature of gravitational waves, the gravitational

radiation frequency, fgw, of a circular binary is twice the orbital frequency

fgw = 2ω . (2.22)

For an eccentric binary, the signal will have the same fundamental frequency, fgw,

but will also contain harmonics that are dependent on the eccentricity. The ampli-

tude of the gravitational radiation goes like (see, e.g. Schutz 1996)

h ∝
f 2/3

gw M5/3
c

r
, (2.23)

where Mc is the chirp mass of a binary with reduced mass µ (see, e.g. Thorne 1996),

Mc ≡
(m1m2)3/5

(m1 + m2)1/5
= µ3/5M2/5

tot , (2.24)

which determines the rate at which the frequency changes (Schutz 1996)

d lnfgw

dt
∝M5/3

c fgwf 8/3
gw . (2.25)
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Figure 2.1 demonstrates the effect of frequency changes on the detectability of binary

sources. It shows estimated sensitivity curves for first-generation and advanced

ground-based gravitational wave detectors overlaid with the paths traced by neutron

star and black hole binaries as they sweep to higher frequencies during inspiral.

Figure 2.2 is similar, showing the motion of massive black hole sources through

the operational frequency range of LISA. Measurement of the frequency sweep,

amplitude, and harmonic content of a source will yield its chirp mass, eccentricity,

inclination, and distance.

2.3.5 Merging Black Holes

As discussed in the introductory chapter, gravitational waves will provide a direct

observational foundation on which to ground our knowledge of black hole binaries,

however until they are detected, we rely on our theoretical understanding of the

evolution of these binaries from inspiral to merger and ringdown. The inspiral

stage can be modeled analytically using Newtonian gravity via the Peters formulae

(Equations 2.21 and 2.22), however when the black holes are separated by a ∼few

gravitational radii, the quadrupole approximation is no longer sufficient. In this

regime, post-Newtonian terms are added to the equations of motion to represent

higher moments.

When the black holes enter the plunge phase, analytical approximations are not

as accurate as general relativistic simulations in determining the waveforms. Within

the past few years, several separate groups of numerical relativists have developed

independent methods of simulating the overlapping event horizons of merging black

holes and the resulting gravitational waves, and their results are comparable (Miller

2007b). In the wake of the merger process, the resultant black hole will initially

have a complicated, lumpy horizon. General relativity dictates, however, that a
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Figure 2.1: (Thorne 1996) Estimated sensitivity curves for both first-generation and
advanced ground-based gravitational wave detectors. Dashed arrows show the paths
made by neutron star and black hole binaries at various distances as they sweep to higher
frequencies during inspiral. The curves labeled hsb represent the sensitivities required
for high-confidence detections, while the curves labeled hrms are the optimal, root-mean-
square sensitivities.

black hole in isolation is described completely by its mass and spin, and that its

geometry is described by the comparatively simple Kerr spacetime metric. This

means that the lumpy merger remnant must settle into a smoother state, and it

does so by radiating gravitational waves. Like the inspiral phase, the radiation from

this ringdown process has been calculated analytically (Teukolsky 1973). With the

addition of advances in numerical relativity, we can now paint a much more complete

picture of black hole coalescence than was possible even a few years ago.
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Figure 2.2: (Thorne 1996) Estimated sensitivity curve of LISA, showing the white dwarf
population and primordial background as well as the sweeping paths of merging black
hole binaries.

2.4 Sources and Detectors

Gravitational wave sources radiate at a wide range of frequencies, hence a variety

of detectors have been designed to be sensitive in different frequency bands. Fig-

ure 2.3 shows several different classes of sources, their expected frequencies, and

the detectors that will operate at those frequencies. Primordial gravitational waves

might leave a polarization signature on the cosmic microwave background, known

as B-mode CMB polarization. Space-based missions operating at the very low end

of the frequency spectrum, such as the Planck satellite or the future Cosmic Infla-

tion Probe, will search for such a signature. Pulsar timing arrays, which operate at

frequencies below those of ground- and space-based detectors, might make the first

direct measurements of gravitational waves. These arrays are sensitive to super-
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massive black hole binaries and stochastic background sources. Moving to slightly

higher frequencies, space-based detectors such as LISA will detect nearby neutron

star and white dwarf binaries, with the latter being numerous enough to constitute a

stochastic noise source. Extragalactic black hole binaries and the inspirals of stellar-

mass black holes into massive black holes are important LISA sources. In addition, if

gravitational waves from processes in the early universe are sufficiently strong, then

LISA will operate in the correct frequency band to detect them. High frequency,

ground-based interferometers such as LIGO are also promising candidates to make

the first gravitational radiation detection, and they are sensitive to coalescing neu-

tron stars and stellar-mass black holes. If bursts from collapsing stars and rotating

galactic neutron stars are detectable, then they will also be in this high-frequency

range.

2.5 Summary

We have discussed gravitational radiation, detectors, and sources. Coalescing bina-

ries are the most promising sources, and the detection of gravitational waves will be

an important landmark in our understanding of compact object binaries and black

holes, in particular. In the next chapter, we will discuss a promising host for black

hole mergers: star clusters in the centers of small galaxies.
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Figure 2.3: (Source: NASA) Diagram showing the frequencies of various gravitational
wave sources and the instruments that could detect them. Ground-based detectors oper-
ate at the high frequency end, and are sensitive to coalescing neutron stars, black holes,
and, possibly, collapsing stars and rotating neutron stars. Space-based detectors oper-
ate at lower frequencies where extragalactic stellar-mass and massive black holes radiate.
Pulsar timing arrays operate at yet lower frequencies, and are sensitive to supermassive
black hole binaries. At the low frequency end, the Planck satellite and the future Cosmic
Inflation Probe will look for gravitational wave signatures in the CMB.
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Chapter 3

Nuclear Star Clusters

“Many a small thing has been made large by the right kind of advertis-

ing.”

—Mark Twain

3.1 Introduction

In recent years, the improvement in optical resolution made possible with the Hubble

Space Telescope (HST), has led to the discovery that very dense clusters of stars

are common in the centers of galaxies across a broad range of Hubble types (Böker

2008). While nuclear star clusters (NSCs) were identified in late-type spirals through

ground-based observations (Matthews & Gallagher 1997), HST surveys have since

discovered NSCs in earlier-type spirals (Carollo et al. 1997) and spheroidal galaxies

(Côté et al. 2006). The prevalence of NSCs across galaxy type contributes to the

body of evidence that indicates that the formation and evolution of nuclei and their

host galaxies are linked.

Nuclear star clusters are very compact (Geha et al. 2002) and luminous (Böker
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et al. 2002), and are located at the dynamical centers of their galaxies; though they

are similar in size to typical globular clusters, NSCs are significantly more massive.

The mass densities of NSCs appear to be related to those of globulars and other

compact clusters (Walcher et al. 2005). This has lead to speculation that some

globular clusters might be the remains of NSCs that survived the destruction of

their original hosts during mergers.

Like globular clusters, NSCs are dense stellar environments that are conducive

to the formation of compact object binaries. In such a setting, compact binaries will

have close encounters with stars, which could cause the binaries to be ejected before

they have the chance to merge. Globular clusters, with their low escape speeds,

likely lose most of their black holes due to post-encounter recoil kicks (Portegies

Zwart & McMillan 2000; Sigurdsson & Hernquist 1993), or possibly due to large

natal kicks delivered to the black hole by its supernova (Mirabel et al. 2002). NSCs,

on the other hand, have both high densities and high escape speeds, hence they are

promising potential hosts of gravitational radiation sources.

In §3.2 of this chapter, we discuss the properties of NSCs, following with possible

formation scenarios in §3.3. §3.4 considers possible links between NSCs, globular

clusters, and compact dwarf galaxies, and in §3.5 we discuss possible connections

with supermassive black holes.

3.2 Properties of Nuclear Star Clusters

3.2.1 Prevalence

One of the most intriguing properties of NSCs is how common they are. There

are confirmed NSC detections in 70% of E and S0 galaxies (Côté et al. 2006), 50%

of Sa-Sc spirals (Carollo et al. 1997), and 75% of late-type spirals (Böker et al.
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2002). In general, the presence of a NSC is determined by a marked increase in

surface brightness at or near the photometric center of the galaxy, which exceeds

the inward extrapolation of the underlying bulge/disk profile. Figure 3.1 is a selec-

tion of HST images from the Böker et al. (2002) survey of bright central clusters

in late-type, low surface brightness spirals. In galaxies with less prominent NSCs,

the locations of the clusters are circled. Figure 3.2 shows the corresponding surface

brightness profiles (diamond symbols), where the best fits for the inward extrapola-

tion of the disk are plotted as solid lines. Here, the dashed lines represent the level

of constant surface brightness measured at the radius at which the disk profile and

the surface brightness diverge (Böker et al. 2002). In the interior regions of galaxies

with prominent NSCs, the surface brightness profiles are well above the estimated

magnitude of the inner disk. For comparison, in galaxies appearing to lack NSCs,

the surface brightness profiles match well with their disk profiles, as illustrated in

Figure 3.3. It is difficult to pinpoint the centers of many late-type spirals, which are

often bulgeless (Walcher et al. 2005), therefore NSCs could be more prevalent than

indicated by the percentages above. In addition, many early-type galaxies have sur-

face brightness profiles that are too steep for NSCs to be observable, because there

is insufficient contrast between the clusters and their surroundings (Böker 2008).

3.2.2 Size and Luminosity

Regardless of the Hubble types of their host galaxies, NSCs are similar in size to

globular clusters, yet they are far more luminous. Late-type spirals have central

clusters with half-light radii ranging from 2 to 5 pc (Böker et al. 2004), and a large

survey of early-type galaxies yields a comparable median half-light radius of ∼4 pc

(Côté et al. 2006). In the I-band, NSCs are ∼4 magnitudes more luminous than

the average globular cluster, with absolute magnitudes of order -14 to -10 (Böker
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2008). The luminosities of some bright NSCs can reach as high as ∼2 orders of

magnitude greater than the most luminous globulars in the Milky Way. NSCs have

larger luminosities because they tend to contain both more mass and younger stars

than their globular cluster counterparts.

3.2.3 Mass and Mass Density

While typical globular clusters are less massive, the measured mass densities of

NSCs align them more closely with globulars and other compact clusters than with

small galactic bulges (Walcher et al. 2005). The first directly-determined NSC mass

was calculated using the stellar velocity dispersion and assuming virialization in the

central cluster in IC 342, which yields a mass of 6× 106 M% (Böker et al. 1999). A

subsequent HST study of nine NSCs found a range in masses from 106 − 107 M%,

thereby establishing NSCs as considerably more massive than Milky Way globulars,

which fall in the 104 − 106 M% range (Walcher et al. 2005). The mean surface

densities of NSCs are among the highest measured in any type of compact cluster to

date, and can reach ∼ 105 M% pc−2. Figure 3.4 (Walcher et al. 2005) shows the mean

projected mass density versus the total mass for a variety of systems. NSCs in late-

type spirals lie in the same region as Milky Way and extra-galactic globulars, super

star clusters, ultra-compact dwarfs, and dwarf elliptical nuclei, however nuclear

clusters are clearly distinct from galactic spheroids. In fact, typical dwarf spheroids

are ∼4 orders of magnitude less dense than the most massive NSCs (Böker 2008).

The fact that NSCs are similar in structure to other compact clusters could indicate

that they are evolutionarily linked.
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3.2.4 Star Formation History and Age

A number of observations demonstrate that the stars in NSCs are of varying age,

which suggests that these clusters undergo recurrent star formation events. Spec-

troscopic and photometric studies indicate that NSCs tend to contain much younger

stars than do globular clusters (Seth et al. 2006). The Walcher et al. (2006) study of

nine NSCs found that the most recent bouts of star formation in clusters occurred

as recently as 34 Myr ago, and every NSC in this sample contains stars with ages

< 100 Myr. A larger survey of 40 galaxies found that 50% of NSCs have stars with

ages < 1 Gyr, and that the clusters are best-fit with multiple-age models in all cases

(Rossa et al. 2006). This study also discovered that the ages of stellar populations in

NSCs differ across Hubble-types, with mean ages of ∼ 250 Myr in late-type spirals

and ∼ 1.6 Gyr in early-type spirals.

While it is possible to rebuild the recent star formation history of NSCs by ob-

serving young and moderately-aged stars, establishing the time of cluster formation

requires the determination of the ages of the oldest stars. This is a difficult analysis

in late-type spirals because the NSC spectra are dominated by bright young stars,

which makes the older stars difficult to detect. There are fewer young stars in the

comparably gas-deficient early-types, yet the lack of contrast between NSCs and

the bright backgrounds of these galaxies make detection and spectral analysis of the

clusters difficult (Böker 2008). However, analysis of mass-to-light ratios suggests

that large numbers of old stars underly the younger population, contributing the

bulk of the mass while producing very little light (Rossa et al. 2006). Additionally,

the overall colors of NSCs in dwarf nuclei are congruous with older populations with

ages > 1 Gyr (Stiavelli et al. 2001). Because older stars can easily hide, it is likely

that any age estimates are lower limits.
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3.2.5 Extension of Scaling Relations

A number of scaling relations link the properties of galactic nuclei to those of their

host galaxies, which indicates that these regions share a common evolutionary his-

tory despite vastly differing scales. Among the most often discussed correlations are

those between the mass of the nuclear supermassive black hole, MSMBH, and a variety

of bulge characteristics, such as luminosity (Kormendy & Richstone 1995), velocity

dispersion (Ferrarese & Merritt 2000; Gebhardt et al. 2000), and mass (Magorrian

et al. 1998). As discussed in §3.2.3, NSCs extend the high end of globular cluster

trends in both mass and mass density, and recent work has also revealed that, like

massive black holes, some properties of NSCs scale with those of their hosts.

Figure 3.5 (Ferrarese et al. 2006) shows that NSCs follow a trend similar to

the established MSMBH − σ relation, which links supermassive black hole masses to

bulge velocity dispersions in luminous spiral and spheroidal galaxies. The similarity

in the trends followed by both NSCs and SMBHs have sparked speculation about

the possibility that these classes of objects share common formation mechanisms,

however it should be noted that the M−σ relation followed by NSCs is clearly offset

from the M−σ trend for black holes.

3.3 NSC Genesis

There are two primary classes of mechanisms that have been proposed to explain the

formation of NSCs: gradual build up via the accretion of globular clusters (Böker

et al. 2004), and in-situ formation by the infall of gas and ensuing star formation

(Milosavljević 2004). There is support for each category, both from simulations and

observations.

As globular clusters orbit a galaxy, dynamical friction can cause them to spiral
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in and ultimately merge with the galactic nucleus (Tremaine et al. 1975). N-body

simulations have demonstrated that globular clusters orbiting an initially triaxial

galactic center can sink and form a nuclear cluster in well under a Hubble time, and

the resultant NSC has a surface density, mass, and velocity dispersion comparable

to observed values (Capuzzo-Dolcetta & Miocchi 2008). It is as yet unclear how

dependent the success of this mechanism is on the initial conditions (Böker 2008).

The second class of formation scenarios requires a mechanism to channel gas into

the galactic center, which in turn leads to star formation and the eventual growth of

a NSC. Several such mechanisms have been proposed. For example, the magneto-

rotational instability has been demonstrated to be a viable process by which gas

can be transported in sufficient quantities to form NSCs (Milosavljević 2004). Bar

instabilities are another possible mechanism, with supporting evidence provided by

observations by Schinnerer et al. (2007), which show that a bar has funneled gas

into the central 60 pc of NGC 6946, leading to a build-up of mass and increased

star formation. It has, therefore, been suggested that a NSC might currently be

forming in this galaxy. Young stars were recently discovered in extended structures

surrounding NSCs in several galaxies, providing additional evidence that new stars

form episodically in gas disks and later assume the spherical structure of the NSC,

possibly by dynamical heating (Seth et al. 2006). It also has been suggested that the

inflow of gas into the nucleus is simply a by-product of galaxy formation. Emsellem

& van de Ven (2008) demonstrated that the tidal field of a shallow potential is

compressive on the scales of typical NSCs, which can result in the compression

of gas and star formation. This scenario could clarify why NSCs are so prevalent

regardless of Hubble type, and could provide a natural explanation for the scaling

trends discussed in §3.2.5 that link NSCs to their hosts.
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3.4 Forced Retirement as Globulars or Ultra-Compact

Dwarfs

After discussing the births of NSCs, perhaps it is natural to consider their twilight

years. It is possible that some NSCs are stripped from galactic nuclei and later be-

come globular clusters or ultra-compact dwarfs. As discussed in §3.2.3, the NSCs in

late-type spirals share structural similarities with these classes of compact clusters

and galaxies. As first suggested by Freeman (1993), some globular clusters might

have formed as compact clusters in the nuclei of small galaxies, which then under-

went merger events. In this scenario, the nuclear cluster survives the merger, and is

left to orbit in the halo of the merged galaxy. This might explain the composite-age

populations observed in some Milky Way globulars (Lee et al. 2007). Similarities in

structure (Walcher et al. 2005), size, luminosity, and color (Côté et al. 2006) have

also lead to the suggestion that some ultra-compact dwarfs are the surviving NSCs

of tidally shredded galaxies.

3.5 NSCs and Black Holes

As discussed in §3.2.5, the masses of NSCs are related to the bulge velocity dis-

persions of their host galaxies in a manner similar to the well-known MSMBH − σ

relation. This discovery prompted the idea that NSCs and SMBHs together might

constitute a class of “Central Massive Objects” (CMOs) that are ubiquitous among

galaxies. In this picture, NSCs populate the low-mass end, and are present in low-

to intermediate-luminosity galaxies, and SMBHs are found in bright galaxies with

masses > 1010 M% (Ferrarese et al. 2006). This scenario is intriguing because it

would indicate that there is a formation mechanism common to both SMBHs and
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NSCs, and that the type of CMO that forms in a particular galaxy is determined by

the mass of that galaxy. However, it is unclear that this picture can account for the

fact that the M-σ relation for NSCs is clearly offset from the M-σ trend for SMBHs.

Observations have shown that many galaxies with NSCs evidently do not host

massive black holes, however this is not always the case (see e.g. Graham & Spitler

2009). In a recent large survey of galaxies of varying Hubble types, Seth et al.

(2008) find that ∼ 10% of galaxies appear to host both an AGN and a NSC. Further

work will be necessary to determine whether the CMO scenario is consistent with

observations of coincident NSCs and SMBHs, or with observations of galaxies that

do not appear to have either type of central object (Böker 2008).

3.6 Summary

NSCs are massive, luminous, compact clusters that reside in the centers of a large

fraction of galaxies − 75% in the case of late-type spirals. They contain multiple

stellar populations, which might indicate that they have undergone episodic star

formation. NSCs appear to have formed either by multiple mergers of globular clus-

ters or in-situ via star formation resulting from the inflow of gas to the nucleus. In

addition, evidence, such as structural similarity, points to NSCs as possible progeni-

tors to some globular clusters and ultra-compact dwarf galaxies. Various properties

of NSCs have been found to correlate with those of their galactic hosts, which might

indicate that the formation of NSCs is intimately related to that of galaxies as a

whole. While it appears that many NSCs do not contain massive black holes, some

fraction of galaxies have been observed to host both AGN and NSCs.

The high densities in NSCs are conducive to close encounters between binaries

and single stars. With this in mind, we investigate NSCs as potential hosts of
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stellar-mass black hole mergers in the following chapter.
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Figure 3.1: (Böker et al. 2002) Selected HST images from a survey of bright central
clusters in late-type, low surface brightness spirals. In galaxies with less prominent NSCs,
the clusters are circled. The lines in the upper right of each panel indicate north (arrow)
and east.
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Figure 3.2: (Böker et al. 2002) Surface brightness profiles (diamond symbols) correspond-
ing to the images in Figure 3.1. The solid lines are best fits for the inward extrapolation
of the disk, and dashed lines represent the level of constant surface brightness measured
at the radius at which the disk profile and the surface brightness diverge. In the interior
regions of galaxies with prominent NSCs, the surface brightness profiles are well above
the estimated magnitudes of the inner disks.
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Figure 3.3: (Böker et al. 2002) Galaxies for which the measured surface brightness
profiles match well with the estimated disk profiles. These appear to lack NSCs.
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Figure 3.4: (Walcher et al. 2005) Mean projected mass density versus the total mass for
a variety of systems. NSCs in late-type spirals lie in the same region as Milky Way and
extra-galactic globulars, super star clusters, ultra-compact dwarfs, and dwarf elliptical
nuclei. However, NSCs are clearly distinct from galactic spheroids.
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Figure 3.5: (Ferrarese et al. 2006) Mass versus velocity dispersion. Black circles are
spiral and spheroidal galaxies containing SMBHs, and red squares are early-type galaxies
with NSCs. While the trends are somewhat similar, the M-σ relation for NSCs is clearly
offset from the M-σ trend for SMBHs.
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Chapter 4

Mergers of Stellar-Mass Black

Holes in Nuclear Star Clusters

4.1 Introduction

Ground-based gravitational wave detectors have now achieved their initial sensitivity

goals (e.g., Abbott & et al. 2007). In the next few years, these sensitivities are

expected to improve by a factor of ∼ 10, which will increase the observable volume

by a factor of ∼ 103 and will lead to many detections per year (Thorne 1996).

As we discussed in Ch. 1, one of the most intriguing possible sources for such

detectors is the coalescence of a double stellar-mass black hole (BH-BH) binary.

Such binaries are inherently invisible, meaning that we have no direct observational

guide to how common they are or their masses, spin magnitudes, or orientations.

Comparison of the observed waveforms (or of waveforms from merging supermas-

sive black holes [SMBHs]) with predictions based on approximate solutions and

numerical relativity will be a strong test of the predictions of strong-gravity general

relativity.
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The fact that we can not detect these sources electromagnetically makes it chal-

lenging to estimate rates, because we are left to derive our only observational handles

on BH-BH binaries from observations of their possible progenitors. For example,

a commonly discussed scenario involves the effectively isolated evolution of a field

binary containing two massive stars into a binary with two black holes (BHs) that

will eventually merge (e.g., Belczyński & Bulik 1999; Lipunov et al. 1997). There

are profound uncertainties involved in calculations of these rates due to the lack of

knowledge of the details of the common envelope phase in these systems and the ab-

sence of guides to the distribution of supernova kicks delivered to BHs. For example,

note that the Advanced LIGO detection rate of BH-BH coalescences is estimated

to be anywhere between ∼ 1 − 500 yr−1 by Belczyński et al. (2007), depending on

how common envelopes are modeled.

Another promising location for BH-BH mergers is globular clusters, where stellar

number densities are high enough to cause multiple encounters and hardening of

binaries. Even though binaries are kicked out before they merge (Kulkarni et al.

1993; O’Leary et al. 2006; Portegies Zwart & McMillan 2000; Sigurdsson & Hernquist

1993; Sigurdsson & Phinney 1993, 1995), these clusters can still serve as breeding

grounds for gravitational wave sources. Indeed, O’Leary et al. (2007) estimate a

rate of 0.5 yr−1 for initial LIGO and 500 yr−1 for Advanced LIGO via this channel.

There is, however, little direct evidence for BHs in most globulars, which could be

because they are simply difficult to see or perhaps because globulars do not retain

their BH populations. In support of the latter, at least one BH in a low-mass X-ray

binary apparently received a >∼ 100 km s−1 kick from its supernova (GRO J1655–

40; see Mirabel et al. 2002). This is double the escape speed from the centers of

even fairly massive globulars (Webbink 1985), which leads to uncertainties about

the initial BH population and current merger rates in these clusters.
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Here we propose that mergers occur frequently in the nuclear star clusters that

may be in the centers of many low-mass galaxies (Böker et al. 2002; Ferrarese et al.

2006; Wehner & Harris 2006; note that some of these are based on small deviations

from smooth surface brightness profiles and are thus still under discussion). It has

recently been recognized that in these galaxies, which may not have SMBHs (for

a status report on ongoing searches for low-mass central black holes, see Greene

& Ho 2007), the nuclear clusters have masses that are correlated with the one-

dimensional velocity dispersion σ1D,bulge at one galactic effective radius as M ≈

107 M%(σ1D,bulge/54 km s−1)4.3 (Ferrarese et al. 2006). A black hole with a mass a

factor of a few below the M-σ relation would be undetectable dynamically. Note

that this velocity dispersion is typically a factor of ∼ 2 larger than the measured

one-dimensional volume-weighted velocity dispersion σ1D of the nuclear star cluster

itself (compare σ1D and M for the clusters in Walcher et al. 2005 with the values

predicted with the Ferrarese et al. 2006 relation above). Measurements indicate that

σ1D is commonly in the range 24 − 34 km s−1, as is the case for seven of the ten

total nuclear star clusters described in Walcher et al. 2005 and Seth et al. 2008. If

the velocity distribution is isotropic, then the three-dimensional velocity dispersion

σ3D =
√

3σ1D is often between σ3D ∼ 40− 60 km s−1.

At these three-dimensional velocity dispersions, the half-mass relaxation time is

small enough that BHs (which have ∼ 20× the average stellar mass) can sink to

the center in much less than a Hubble time. In addition, although systems with

equal-mass objects require roughly 15 half-mass relaxation times to undergo core

collapse (Binney & Tremaine 1987), studies show that systems with a wide range

of stellar masses experience core collapse within ∼ 0.2× the half-mass relaxation

time (Gürkan et al. 2004; Portegies Zwart & McMillan 2002). Combined with the

Ferrarese et al. (2006) relation between cluster mass and σ1D,bulge, we find that
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clusters with masses less than ∼ few × 107 M% and no central SMBH (or a highly

undermassive SMBH) will have collapsed by now and hence increased the escape

speed from the center, allowing retention of most of their BHs.

As we show in this chapter, nuclear star clusters are therefore excellent candidates

for stellar-mass black hole binary mergers because they keep their BHs while also

evolving rapidly enough that the BHs can sink to a region of high density. If tens

of percent of the BHs in eligible galaxies undergo such mergers, the resulting rate

for Advanced LIGO is tens per year. In § 4.2 we quantify these statements and

results more precisely and discuss our numerical three-body method. We give our

conclusions in § 4.3.

4.2 Method and Results

4.2.1 Characteristic Times and Initial Setup

Our approach is similar to that of O’Leary et al. (2006), who focus on globular

clusters with velocity dispersions σ1D≤ 20 km s−1. Here, however, we concentrate

on the more massive and tightly bound nuclear star clusters. Our departure point

is the relation found by Ferrarese et al. (2006) between the masses and velocity

dispersions of such clusters:

Mnuc = 106.91±0.11
(
σ1D,bulge/54 km s−1

)4.27±0.61
M% . (4.1)

Assuming that there is no massive central black hole for these low velocity disper-

sions, the half-mass relaxation time for the system is (see Binney & Tremaine 1987)

trel ≈ N/2
8 ln N tcross where N ≈ Mnuc/0.5 M% is the number of stars in the system (as-

suming an average mass of 0.5 M%) and tcross ≈ R/σ3D is the crossing time. Here

R = GMnuc/σ2
3D is the radius of the cluster. If we assume that σ3D =

√
3σ1D and
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that typically σ1D,bulge ≈ 2σ1D ≈ σ3D, this gives

trel ≈ 1.3× 1010 yr
(
σ3D/54 km s−1

)5.5
. (4.2)

The relaxation time scales inversely with the mass of an individual star (Binney &

Tremaine 1987), so a 10 M% BH binary will settle in roughly 1/20 of this time. Also

note that large N-body simulations with broad mass functions evolve to core collapse

within roughly 0.2 half-mass relaxation times (Gürkan et al. 2004; Portegies Zwart

& McMillan 2002), hence in the current universe clusters with velocity dispersions

σ3D < 60 km s−1 will have had their central potentials deepened significantly.

The amount of deepening of the potential, and thus the escape speed from the

center of the cluster, depends on uncertain details such as the initial radial depen-

dence of the density and the binary fraction. Given that the timescale for segregation

of the BHs in the center is much less than a Hubble time, we will assume that the

escape speed is roughly 5σ1D, as is the case for relatively rich globular clusters (Web-

bink 1985). This may well be somewhat conservative, because the higher velocity

dispersion here than in globulars suggests that a larger fraction of binaries will be

destroyed in nuclear star clusters. This could lead to less efficient central energy

production and hence deeper core collapse than is typical in globulars.

With this setup, our task is to follow the interactions of black holes in the central

regions of nuclear star clusters, where we will scale by stellar number densities

of n ∼ 106 pc−3 (a characteristic value near the center of the Milky Way; see

Genzel et al. 2003) because of density enhancements caused by relaxation and mass

segregation. We expect to find that binary-single interactions will (1) allow BHs to

swap into binaries even if they began as single objects, and (2) harden BH binaries

to the extent that they can merge while still in the nuclear star cluster. If a BH

starts its life with a binary companion then the interaction time is short, because

every interaction it has will be a binary-single encounter that has high cross section.
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If instead the BH begins as a single object, the binary-single interaction rate is much

less because it relies on the BH encountering comparatively rare binaries. This is

the case we will consider, because if there is enough time for a BH to capture into a

binary and then harden there is certainly enough time for a black hole that is born

into a binary to harden.

All binaries in the cluster will be hard, i.e., will have internal energies greater

than the average kinetic energy of a field star, because otherwise they will be softened

and ionized quickly (e.g., Binney & Tremaine 1987). If, for example, we consider

binaries of two 1 M% stars in a system with σ3D = 50 km s−1, then for the binary

to be hard the semimajor axis has to be less than amax ∼ 1 AU. Studies of main

sequence binaries in globular clusters, which have σ1D ∼ 10 km s−1, suggest that

after billions of years roughly 5–20% of them survive, with the rest falling victim

to ionization or collisions (Ivanova et al. 2005). The binary fraction will be lower

in nuclear star clusters due to their enhanced velocity dispersion, but since when

binaries are born they appear to have a constant distribution across the log of the

semimajor axis from ∼ 10−2 − 103 AU (e.g., Abt 1983; Duquennoy & Mayor 1991)

the reduction is not necessarily by a large factor. We will scale by a binary fraction

fbin = 0.01, which is likely to be somewhat low and thus we will slightly overestimate

the time needed for a BH to be captured into a binary.

If a BH with mass MBH gets within a couple of semimajor axes of a main se-

quence binary, the binary will tidally separate and the BH will acquire a com-

panion. The timescale on which this happens is tbin = (nΣσ3D)−1, where Σ =

πr2
p [1 + 2GMtot/(σ3D

2rp)] is the interaction cross section for pericenter distances

≤ rp when gravitational focusing is included. Here Mtot is the mass of the BH plus

the mass of the binary. If we assume that MBH = 10 M% (the mean BH mass in the

Milky Way, see e.g. Kubota & Makishima 2005), and it interacts with a binary with
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two 1 M% members and an a = 1 AU semimajor axis, then the typical timescale on

which a three-body interaction and capture of one of the stars occurs is

t3−bod = (nΣσ3D)−1 ≈ 3× 109 yr
(

n

106 pc−3

)−1( fbin

0.01

)−1( σ3D

50 km s−1

)(
a

1 AU

)−1

.

(4.3)

With rapid sinking, BHs can form a subcluster in the galaxy core. This will decrease

the number density of main sequence stars in the core, and hence of main sequence

binaries (although binaries, being heavier than single stars, will be over-represented).

The exchange process might thus take somewhat longer. The timescale in equa-

tion (4.3) is, however, small enough compared to a Hubble time that we start our

simulations by assuming that each BH has exchanged into a hard binary, and follow

its evolution from there.

Another important question is whether, after a three-body interaction, a BH

binary will shed the kinetic energy of its center of mass via dynamical friction and

sink to the center of the cluster before another three-body encounter. If not, the

kick speeds will add in a random walk, thus increasing the ejection fraction.

To calculate this we note that the local relaxation time of a binary is

trel =
0.34

ln Λ

σ3D
3

G2〈m〉Mbinn
(4.4)

(Spitzer 1987) where ln Λ ∼ 10 is the Coulomb logarithm, 〈m〉 is the average mass

of interloping stars, n is their number density, and Mbin is the mass of the binary.

The timescale for a three-body interaction is t3−bod = (nΣσ3D)−1 as above. Note,

however, that for this calculation we assume that the BH has already captured into a

binary. Therefore, it can interact with every star instead of just those in binaries, and

thus the factor fbin is no longer applicable and the timescale is typically 100 times

less than indicated by the numerical factor in equation (4.3). For a gravitationally

focused binary, which is of greatest interest because only these could in principle
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produce three-body recoil sufficient to eject binaries or singles, rp < GMbin/σ3D
2.

If we also assume that the total mass Mtot of the three-body system is close to

Mbin because most of the interlopers have much less mass than the BH, then Σ ≈

2πrpGMbin/σ3D
2 and

t3−bod ≈
σ3D

2πnrpGMbin
. (4.5)

If we let rp = qGMbin/σ3D
2, with q < 1, then

t3−bod ≈
σ3D

3

2πqG2M2
binn

(4.6)

so that

trel/t3−bod ≈
2q

ln Λ

Mbin

〈m〉 . (4.7)

The encounters most likely to deliver strong kicks to the binary occur when the

binary is very hard, q - 1, hence this quantity is typically less than unity, meaning

that after a three-body encounter a binary has an opportunity to share its excess

kinetic energy via two-body encounters and thus settle back to the center of the

cluster. We therefore treat the encounters separately rather than adding the kick

speeds in a random walk.

In a given encounter, suppose that a binary of total mass Mbin = M1 + M2,

a reduced mass µ = M1M2/Mbin, and a semimajor axis ainit interacts with an in-

terloper of mass mint, and that the kinetic energy of the interloper at infinity is

much less than the binding energy of the binary (i.e., this is a very hard inter-

action). If after the interaction the semimajor axis is afin < ainit, then energy

and momentum conservation mean that the recoil speed of the binary is given

by v2
bin = Gµ mint

Mbin+mint
(1/afin − 1/ainit), and the recoil speed of the interloper is

vint = (Mbin/mint)vbin. For example, suppose that M1 = M2 = 10 M%, Mint = 1 M%,

ainit = 0.1 AU, and afin = 0.09 AU. The binary then recoils at vbin = 15 km s−1

and stays in the cluster, whereas the interloper recoils at vint = 300 km s−1 and is
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ejected.

We treat all three objects as point masses, but in fact main sequence stars

are extended enough that they have a good chance of being tidally disrupted in

an encounter with a BH binary. Almost all of the disrupted mass is eventually

ejected at speeds comparable to the binary orbital speed, hence we assume that

tidal disruptions of main sequence stars have the same effect on the energy of the

binary as normal 3-body ejections. Note, however, that in this case the ejected

mass will not go in a single direction, therefore it is likely that tidal disruptions

will not cause the binary to recoil as much as encounters with point masses. Thus

such interactions are likely to result in a somewhat greater retention fraction than

we calculate. We also find that close approach distances are large enough during

interactions that post-Newtonian corrections are not necessary, and that a small

enough fraction of stars are involved in these encounters that the effect on the

mass distribution due to mergers and ejections is negligible. In addition, we assume

throughout our calculations that nuclear star clusters do not have massive black

holes at their centers.

4.2.2 Results

The central regions of the clusters undergo significant mass segregation, and there-

fore their mass functions will be at least flattened, and possibly inverted. This has

been observed for globular clusters (see Table 3 of Sosin 1997 or Table 1 of De

Marchi et al. 2007) and is also seen in numerical simulations (e.g., Baumgardt et al.

2008 or Gill et al. 2008). To include this effect we implement two steps when we

consider the mass of a BH, its companion, and the interloping third object. First we

select a zero age main sequence (ZAMS) mass between 0.2 M% and 100 M% using

a simple power law distribution dN/dM ∝ M−α. While there is evidence that the
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upper limit of the ZAMS might be > 120M% (Oey & Clarke 2005), we chose the

more traditional value of 100M% (Kroupa & Weidner 2003) to be conservative. We

allow α to range anywhere from 2.35 (the unmodified Salpeter distribution) to −1.0,

where smaller values indicate the effects of mass segregation. Second, we evolve the

ZAMS mass to a current mass. Our mapping is that for MZAMS < Mms,max, where

Mms,max is 1 M% or 3 M% depending on the model used, the star is still on the main

sequence and retains its original mass; for 1 M% < MZAMS < 8 M% the star has

evolved to a white dwarf, with mass MWD = 0.6 M%+0.4 M%(MZAMS/M%−0.6)1/3;

for 8 M% < MZAMS < 25 M% the star has evolved to a neutron star, with mass

MNS = 1.5 M%+0.5 M%(MZAMS− 8 M%)/17 M%; and for MZAMS > 25 M% the star

has evolved to a BH with mass MBH = 3 M% + 17 M%(MZAMS − 25 M%)/75 M%.

Therefore, we assume that BH masses range from 3 M% to 20 M%.

These prescriptions are overly simplified in many ways. We therefore explore

different mass function slopes, main sequence cutoffs, and so on, and find that our

general picture is robust against specific assumptions. Note that, consistent with

O’Leary et al. (2006), we find that there is a strong tendency for the merged black

holes to be biased towards high masses. Therefore, if BHs with masses > 20 M%

are common, then these will dominate the merger rates. This is important for data

analysis strategies, because the low-frequency cutoff of ground-based gravitational

wave detectors implies that higher-mass BHs will have proportionally more of their

signal in the late inspiral, merger, and ringdown.

The three-body interactions themselves are assumed to be Newtonian interac-

tions between point masses, and are computed using the hierarchical N-body code

HNBody (K. Rauch and D. Hamilton, in preparation), using the driver IABL devel-

oped by Kayhan Gültekin (see Gültekin et al. 2004, 2006 for a detailed description).

Between interactions, we use the Peters equations (Peters 1964) to follow the grad-

69



ual inspiral and circularization of the binary via emission of gravitational radiation.

This is negligible except near the end of any given evolution.

We begin by selecting the mass of the BH and of its companion (which does not

need to be a BH) from the evolved mass function. We also begin with a semimajor

axis that is 1/4 of the value needed to ensure that the binary is hard. We do this

because soft binaries are likely to be ionized and thus become single stars rather than

merge. We also select an eccentricity from a thermal distribution P (e)de = 2ede. We

then allow the binary to interact with single field stars drawn from the evolved mass

function, one at a time, until (1) the binary merges due to gravitational radiation,

(2) the binary is split apart and thus ionized (this is exceedingly rare given our

initial conditions), or (3) the binary is ejected from the cluster. The entire set of

interactions until merger typically takes millions to tens of millions of years, and

only rarely more than a hundred million years, so it finishes in much less than a

Hubble time. This implies that the total time for an initially single BH to merge

with another object is dominated by the few billion years needed to capture into a

binary rather than by subsequent interactions. In the course of these interactions

there are typically a number of exchanges, which usually swap in more massive for

less massive members of the binary. This is the cause of the bias towards high-mass

mergers that was also found by O’Leary et al. (2006). As shown in Table 1, for α < 1

most BHs acquire a BH companion in the process of exchanges, and for α ≤ 0.5

virtually all do.

The results in Table 1 are focused on different mass function slopes and escape

speeds. As expected, we find that for Vesc > 150 km s−1 the overwhelming majority

of BH binaries merge in the nuclear star cluster rather than being ejected (see

Figure 4.1, which illustrates the main results). This is the difference from lower-σ

globular clusters, where the mergers happen outside the cluster. Note also that
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in addition to few binaries being ejected, there are typically only 1–2 single BHs

ejected per merger, showing that > 50% of black holes will merge. In contrast,

at the 50 km s−1 escape speed typical of globulars, > 20 single BHs are ejected

per merger, suggesting an efficiency of < 10%. For well-segregated clusters (with

α ≤ 0), the average mass of BHs that merge, binary ejection fraction, number of

singles ejected, and number of BHs that merge with each other instead of other

objects are all insensitive to the particular mass function slope. For less segregated

clusters with α > 0, the retention fraction of BHs rises rapidly to unity because most

of the objects that interact with the BHs are less massive stars. For example, in

clusters with α ≥ 1.0 about 10% of BH mergers occur with neutron stars, in contrast

to a few percent or less for more segregated clusters. In such clusters there might be

a channel by which the mass of a BH increases via accretion of main sequence stars,

but we expect α > 0 to be rare for nuclear star clusters because of the shortness of

the segregation times of BHs. Overall, there appears to be a wide range of realistic

parameters in which fewer than 10% of binary BHs are ejected before merging.

4.3 Discussion and Conclusions

We have shown that nuclear star clusters with velocity dispersions around σ3D ∼

40 − 60 km s−1 are promising breeding grounds for stellar-mass BH mergers. At

significantly lower velocity dispersions, as found in globulars, the escape speed is

low enough that the binaries are ejected before they merge. Significantly higher

velocity dispersions appear correlated with the presence of supermassive black holes

(Ferrarese & Merritt 2000; Gebhardt et al. 2000). In such an environment there

might also be interesting rates of BH mergers (see O’Leary & Loeb 2008 for a

recent discussion), but, as we will demonstrate in Ch. 6, the increasing velocity
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dispersion close to the central object means that binary fractions are lower and

softening, ionization, or tidal separation by the supermassive black hole itself are

strong possibilities for stellar-mass binaries (Miller et al. 2005).

To estimate the rate of detections with Advanced LIGO, we note that velocity

dispersions in the σ3D ∼ 40 − 60 km s−1 range correspond to roughly a factor of

∼ 5− 10 in galaxy luminosity (Ferrarese et al. 2006). Galaxy surveys suggest (e.g.,

Blanton et al. 2003) that for dim galaxies the luminosity function scales as roughly

dN/dL = φ∗(L/L∗)β, where φ∗ = 1.5×10−2h3 Mpc−3 ≈ 5×10−3 Mpc−3 for h = 0.71,

and β ≈ −1. This implies that there are nearly equal numbers of galaxies in equal

logarithmic bins of luminosity. A factor of 5 − 10 in luminosity is roughly e2, so

the number density of relevant galaxies is approximately 10−2 Mpc−3. To get the

rate per galaxy, we note that typical initial mass functions and estimates of the

mass needed to evolve into a BH combine to suggest that for a cluster of mass Mnuc,

approximately 3×10−3(Mnuc/M%) stars evolve into BHs (O’Leary et al. 2007). That

implies a few×104 BHs per nuclear star cluster. If a few tens of percent of these

merge in a Hubble time, and if the rate is slightly lower now because many of the

original BHs have already merged (see O’Leary et al. 2006), that suggests a merger

rate of > 0.1× few × 104/(1010 yr) per galaxy, or few×10−9 Mpc−3 yr−1.

Mergers of the original BHs are not expected to significantly decrease the de-

tection rates, for two basic reasons. First, nuclear star clusters are not isolated.

Instead, the cluster itself is surrounded by a stellar distribution. It is, after all,

the center of the galaxy; therefore unlike for globular clusters, nuclear star clusters

are not surrounded by vacuum. This distribution will include BHs. In time, those

holes will sink by dynamical friction into the nuclear star cluster itself. This helps

replenish the BHs that are kicked out by three-body processes in the cluster. For

example, if the number density scales as n ∝ r−2 (a reasonable approximation for
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many galactic centers) then there are as many stars (and presumably black holes)

from some radius R to 2R as from 0 to R, and from 2R to 3R as from R to 2R. In

such a circumstance the relaxation time scales as the square of the radius, so there

should be an abundant supply of BHs over any reasonable timescale.

The second reason is that the timescale for BHs to capture into a binary goes up

with increasing nuclear star cluster mass, because relaxation times all increase. As a

result, if clusters of the particular mass we suggested have been depleted significantly,

clusters of higher mass will not have been. This shifts the optimal cluster mass to

a larger value. However, as in the previous point, it seems reasonable that clusters

will be replenished anyway.

At the average detection distance of ∼ 1.15 Gpc at which Advanced LIGO

is expected to be able to see mergers of two 10 M% BHs (I. Mandel, personal

communication), the available volume is 6.4 × 109 Mpc3, for a rate of >∼ 30 per

year. Roughly 50–80% of galaxies in the eligible luminosity range appear to have

nuclear star clusters (see Ferrarese et al. 2006 for a summary). If the majority of

the clusters do not have a supermassive black hole, this suggests a final rate of tens

per year for Advanced LIGO. This could be augmented somewhat by small galaxies

that originally had supermassive black holes, but had them ejected after a merger

and then reformed a central cluster (Volonteri 2007; Volonteri et al. 2008).

For nearby (z < 0.1) events of this type it might be possible to identify the host

galaxy. However, for more typical z ∼ 0.5 ⇒ d ≈ 1.15 Gpc events the number of

candidates is too large. We can demonstrate this by adopting extremely optimistic

values for angular localization and distance accuracy. Even assuming angular local-

ization of ∆Ω = (1◦)2 and a distance accuracy of ∆d/d = 1%, the number of galaxies

in the right luminosity range is N ∼ 4π(1150 Mpc)3(∆Ω/4π)(∆d/d)(0.01 Mpc−3) ≈

45. Therefore, barring some unforeseen electromagnetic counterpart to the gravita-
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tional radiation, the host will usually not be obvious.

We anticipate that tens per year is a somewhat conservative rate. If stellar-

mass BHs with masses beyond 20 M% are common, this increases the detection

radius and hence the rate. For total masses ∼ 30 M% and at redshifts z ∼ 0.5, the

observer frame gravitational wave frequency at the innermost stable circular orbit

is fISCO ∼ 4400 Hz/[30(1 + z)] ∼ 100 Hz. This is close enough to the range where

the frequency sensitivity of ground-based gravitational wave detectors declines that

detection of many of these events will rely strongly on the signal obtained from the

last few orbits plus merger and ringdown. In much of this range, numerical relativity

is essential.

As a final point, we note that for the same reason that nuclear star clusters are

favorable environments for retention and mergers of stellar-mass BHs, they could

also be good birthplaces for more massive black holes. This could be prevented,

even for the relatively high escape speeds discussed here, if recoil from gravitational

radiation during the coalescence exceeds ∼ 200 km s−1. The key uncertainty here

is the spin magnitudes of the BHs at birth. Numerous simulations demonstrate

that high spins with significant projections in the binary orbital plane can produce

kicks of up to several thousand kilometers per second (González et al. 2007). If

there is significant processing of gas through accretion disks the spins are aligned

in a way that reduces the kick to below 200 km s−1 (Bogdanović et al. 2007),

but stellar-mass BHs cannot pick up enough mass from the interstellar medium

for this to be effective. For example, the Bondi-Hoyle accretion rate is ṀBondi ≈

10−13 M% yr−1(σ3D/50 km s−1)−3(ngas/100 cm−3)(M/10 M%)2, where ngas is the

particle number density in the gas. This means that to accrete the ∼ 1% of the

BH mass needed to realign the spin (Bogdanović et al. 2007) would require at least

a trillion years. Current estimates of stellar-mass BH spins suggest a/M > 0.5 in
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many cases (Liu et al. 2008; McClintock et al. 2006; Miller 2007a; Shafee et al.

2006). If the spins are isotropically oriented and uniformly distributed in the range

0 < a/M < 1, and the mass ratios are in the msmall/mbig ∼ 0.6− 0.8 range typical

in our simulations, then use of the Campanelli et al. (2007) or Baker et al. (2008)

kick formulae imply that roughly 84% of the recoils exceed 200 km s−1 and 78%

exceed 250 km s−1. This suggests that multiple mergers are rare unless there is

initially an extra-massive black hole as a seed (e.g., Holley-Bockelmann et al. 2008

for a discussion of the effects of gravitational wave recoil), but further study is

important.

In conclusion, we show that the compact nuclear star clusters found in the centers

of many small galaxies are ideal places to foster mergers between stellar-mass BHs.

It is not clear whether multiple rounds of mergers can lead to a runaway, but this is

a new potential source for ground-based detectors such as Advanced LIGO, where

numerical relativity will play an especially important role.

In the next chapter, we begin our discussion of BH binaries in larger galaxies by

examining one consequence of binary-single encounters in the vicinity of a SMBH:

tidal separation and the formation of extreme mass ratio inspirals.
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Table 4.1. Simulations of Nuclear Star Clustersa

Vesc (km s−1)b Mms,max
c αd 〈MBH〉(M!)e fmerge

f fnotBH
g 〈Mbin,merge〉(M!)h〈Nsingle,eject〉i

50 1M! 0 11.7 0.25 0.0 31.2 24.8
62.5 1M! 0 11.7 0.33 0.0 31.6 15.3
75 1M! 0 11.7 0.42 0.0 30.9 11.5

87.5 1M! 0 11.7 0.52 0.0 31.9 7.9
20 1M! 0 11.7 0.63 0.02 30.0 6.2

112.5 1M! 0 11.7 0.68 0.0 31.4 4.7
125 1M! 0 11.7 0.72 0.02 31.8 4.3

137.5 1M! 0 11.7 0.76 0.01 32.0 3.0
150 1M! 0 11.7 0.80 0.03 32.3 2.8

162.5 1M! 0 11.7 0.93 0.03 31.3 2.0
175 1M! 0 11.7 0.89 0.02 31.9 2.0

187.5 1M! 0 11.7 0.90 0.01 31.3 2.1
200 1M! 0 11.7 0.94 0.08 31.1 1.3

212.5 1M! 0 11.7 0.89 0.05 30.5 1.0
225 1M! 0 11.7 0.98 0.06 31.0 1.2

237.5 1M! 0 11.7 0.94 0.06 30.1 1.0
250 1M! 0 11.7 0.96 0.06 30.0 0.71
200 1M! -1.0 13.4 0.94 0 32.4 1.3
200 1M! -0.5 12.6 0.95 0.01 32.2 1.5
200 1M! 0.5 10.7 0.94 0.1 28.3 0.91
200 1M! 1.0 9.7 0.98 0.41 27.3 0.43
200 1M! 1.5 8.8 0.99 0.79 23.0 0.04
200 1M! 2.0 7.5 1.00 0.99 — 0
200 1M! 2.35 7.4 1.00 1.00 — 0
200 3M! -1.0 13.4 0.85 0.03 33.3 1.5
200 3M! -0.5 12.6 0.94 0.01 31.9 1.3
200 3M! 0 11.7 0.95 0.05 30.4 1.5
200 3M! 0.5 10.7 0.94 0.11 29.2 1.0
200 3M! 1.0 9.7 0.99 0.48 25.3 0.38
200 3M! 1.5 8.8 0.99 0.85 24.7 0.04
200 3M! 2.0 7.5 1.00 1.00 — 0
200 3M! 2.35 7.4 1.00 1.00 — 0

aAll runs had 100 realizations.
bEscape speed from cluster.
cMaximum mass of main sequence star.
dNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
eAverage mass of all black holes given α and our evolutionary assumptions.
fFraction of runs in which holes merged rather than being ejected.
gFraction of runs in which holes merged with something other than another black hole.
hAverage mass of double BH binaries that merged.
iAverage number of single black holes ejected per binary that merged.
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Figure 4.1: Fraction of binaries retained in the nuclear star cluster (solid line) and
average number of BHs ejected per BH merger (dotted line) as a function of the cluster
escape speed. Here the zero age main sequence distribution of masses is dN/dM ∝ M0,
to account for mass segregation in the cluster center, where most interactions occur. We
also assume a maximum black hole mass of 20 M! and a maximum main sequence mass of
1 M!, but most results are robust against variations of these quantities. All runs are done
with 100 realizations. We see, as expected, that the retention fraction increases rapidly
with escape speed, so that for nuclear star clusters most binaries stay in the cluster until
merger. We also see that at Vesc ∼ 200 km s−1 and above, tens of percent of BH singles
also stay in the cluster. This suggests a high merger efficiency.
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Chapter 5

Binary Encounters With

Supermassive Black Holes:

Zero-Eccentricity LISA Events

5.1 Introduction

Extreme mass ratio inspirals (EMRIs) of stellar-mass compact objects into super-

massive black holes are key targets for the Laser Interferometer Space Antenna

(LISA). From the fundamental physics standpoint, these events are expected to

provide the best available mapping of the spacetime around a rotating black hole

(Hughes 2003; Ryan 1995, 1997). Astrophysically, they may well reveal the numbers

of supermassive black holes in a mass range (∼ 105 − 107 M%) that is difficult to

probe otherwise (e.g., Greene & Ho 2004).

Recall from Ch. 1 that several studies of EMRI rates and properties (Freitag

2001, 2003; Hils & Bender 1995; Hopman & Alexander 2005; Ivanov 2002; Miralda-

Escudé & Gould 2000; Sigurdsson & Rees 1997) have focused exclusively on the
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capture of compact objects by emission of gravitational radiation during a close pass.

That is, a compact object (for example, a 10M% black hole) plunges close to the

central supermassive black hole (SMBH) and emits gravitational waves that shrink

its orbit significantly. The black hole then continues to orbit, and if its motion is

not perturbed significantly by interactions with other stars then it eventually spirals

into the SMBH. Orbits that allow capture need to have pericenter distances very

close to the SMBH (Freitag 2003; Hopman & Alexander 2005). Therefore, even

though gravitational radiation circularizes orbits (Glampedakis et al. 2002; Hughes

et al. 2005; Peters 1964), by the time the black hole is in the last year of inspiral,

when it can be detected with LISA, its orbit still has a significant eccentricity of

typically e ∼ 0.5 − 0.9 (Freitag 2003; Hopman & Alexander 2005, but see Ivanov

2002).

Here we consider a different process, in which a stellar-mass binary containing

a compact object comes close enough to the SMBH that the binary is tidally sepa-

rated, leaving one object bound to the SMBH and the other almost always ejected

to infinity at high speed. This process is reminiscent of the hydrodynamical tidal

disruption of main-sequence stars first mentioned by Hills (1975). With the excep-

tion of the work of Gould & Quillen (2003), the tidal separation of binaries has so

far been considered as a way to produce high-velocity stars (Brown et al. 2005; Hills

1988, 1991; Pfahl 2005; Yu & Tremaine 2003). It was also listed by Hils & Bender

(1995) and Freitag & Benz (2002) as a mechanism to be examined in the EMRI

context, but has not yet been explored quantitatively.

The key point about this process is that, unlike in the two-body capture scenario,

no energy needs to be dissipated in order to have a capture. As a result, capture

can occur at much larger radii than is possible in the two-body case: for example,

a binary with a semimajor axis of tenths of an AU can be captured at pericenter
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distances of tens of AU relative to the SMBH, compared with the ∼ 0.1 AU that

is required for two-body capture. In addition, the semimajor axis of the resulting

bound object will be modest, perhaps tens of times the pericenter distance (Hills

1991). EMRIs formed in this way are therefore relatively immune to perturbations

of their orbits that could cause them to plunge directly into the SMBH (which lowers

rates significantly for EMRIs formed by two-body capture; see Hils & Bender 1995;

Hopman & Alexander 2005). Combined with the higher cross section, this suggests

that the overall rate of EMRIs could have an important contribution from tidal

separation of binaries, even if only a few percent of compact objects are in binaries.

In addition, because the pericenter distance of the bound object after tidal sep-

aration is large, the orbital eccentricity at the point when the signal is detectable

with LISA (after, typically, shrinkage of the pericenter distance by factors of tens

or more) is extremely close to zero. This suggests that the EMRIs detected with

LISA will come in two distinct classes of eccentricity, with different histories. As we

discuss in this chapter, the relative rates of high-eccentricity and low-eccentricity

EMRI events detected by LISA will act as unique probes of stellar evolution and

dynamics in the central few parsecs of galaxies.

In § 5.2 we discuss this process in more quantitative detail. In § 5.3 we list some

of the questions that will have to be answered to get more specific predictions of

relative rates, and to interpret LISA observations when they arrive.

5.2 Tidal Separation and EMRIs

5.2.1 Capture Processes

Let us first discuss the process of two-body capture. Suppose that a point mass of

mass m orbiting the SMBH with an orbital speed v∞ at apocenter (assumed to be
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at a large distance) plunges towards a supermassive black hole of mass M 0 m. Its

orbit will be modified significantly if, during its motion, it releases at least 1
2mv2

∞

of energy in gravitational radiation. As derived by Quinlan & Shapiro (1989), this

condition implies

rp < rp,GW =
[

85π
√

2G7/2mM(m+M)3/2

12c5v2
∞

]2/7

≈ 0.13 AU
(

m
10 M"

)2/7(
M

106 M"

)5/7(
v∞

60 km s−1

)−4/7

.
(5.1)

We have scaled by 60 km s−1 because this is roughly the velocity dispersion in-

ferred for a galaxy with a central black hole mass of 106 M% (Barth et al. 2005;

Merritt & Ferrarese 2001; Tremaine et al. 2002). The time required to spiral into

the SMBH would then be much less than a Hubble time, except that other stars per-

turb the orbit significantly (see § 5.2.2). The gravitational radius is rg ≡ GM/c2 ≈

0.01 AU(M/106 M%). Therefore,

rp,GW/rg ≈ 13
(

m

10 M%

)2/7( M

106 M%

)−2/7( v∞
60 km s−1

)−4/7

. (5.2)

For comparison, the radius of the innermost stable circular orbit around a nonro-

tating SMBH is 6rg. As another comparison, detection of an EMRI with LISA will

be very difficult if the gravitational wave frequency is less than fGW ∼ 2− 3 mHz,

because at lower frequencies there is strong unresolvable foreground noise due to

double white dwarf binaries in our galaxy (Bender & Hils 1997; Farmer & Phinney

2003; Nelemans et al. 2001). For a circular orbit, the gravitational wave frequency is

double the orbital frequency (Peters & Mathews 1963). At 2 mHz, then, the radius

of a circular orbit is

r(2 mHz) ≈ 0.1 AU
(

M

106 M%

)1/3

≈ 10 rg

(
M

106 M%

)−2/3

. (5.3)

Therefore, a stellar-mass compact object needs to go very deep into the potential

well of an SMBH to be captured or to be observed with LISA.
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Now consider tidal separation. Suppose that a binary with a total mass m and

semimajor axis a plunges towards a supermassive black hole of mass M . If the

plunge has a pericenter distance less than

rtide ≈
(

3M
m

)1/3

a

≈ 7 AU
(

M
106 M"

)1/3(
m

10 M"

)−1/3(
a

0.1 AU

)
,

(5.4)

then the binary will be separated by the tidal field of the SMBH. Note that the

numerical coefficient in the expression (3M/m)1/3 is correct for a prograde binary

on a circular orbit around the SMBH, and rises to of order 4 for weakly hyperbolic

prograde orbits (Hamilton & Burns 1991, 1992). There is also a strong dependence

of the stability of the binary on its inclination. Retrograde orbits are more stable and

must plunge to roughly one-half rtide before they can be ripped apart. The cause of

this difference is the Coriolis acceleration which tends to stabilize retrograde orbits

while destabilizing prograde ones (Hamilton & Burns 1991). Binaries on inclined

orbits have effective tidal radii between these two extremes.

Therefore, depending on the semimajor axis of the stellar binary, the required

pericenter distance and hence the cross section could be several to thousands of

times larger than the pericenter distance needed for two-body capture. If a BH has

as a binary companion a much less massive object such as a main sequence star,

then some of the interactions will involve capture of the star instead of the BH,

reducing rates by a factor of a few. As we discuss in the next section, the enhanced

cross section does not translate directly into a rate, but the ultimate result is that

the rate per binary is expected to be 1-2 orders of magnitude times the rate per

single. Therefore if more than ∼ 1 − 10% of compact objects are in binaries then

the overall EMRI rate could be dominated by tidal separation events.

Using HNBody (see section 4.2.2), we have performed exploratory Newtonian

point-mass three-body simulations to evaluate the properties of the extreme mass
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ratio inspirals produced by tidal separation. For an initially hard circular binary

with component masses 10 M% and 10 M% in a hyperbolic pass by a 106 M% SMBH,

we find that the typical eccentricity is e ∼ 0.98 after capture, consistent with the

results of Hills (1991), who focused on tidal separation of main sequence binaries.

For an initial binary separation of a = 0.1 AU, the typical pericenter distance after

capture is a few AU, and the typical apocenter distance is a few hundred AU.

The typical pericenter and apocenter distances are proportional to the semimajor

axis of the original binary. We also simulated tidal separation of initially hard

circular binaries with component masses 10M% and 1 M% around a 106 M% SMBH,

representing for example a binary with a black hole and a white dwarf or a black

hole and a neutron star. We find that the 10M% object is captured in ∼ 40% of the

simulations, and that the apocenter distance in such cases is a factor of a few larger

than for the 10 M% − 10 M% simulations (as is expected given the smaller energy

transfer from the 1 M% object).

The small apocenter distance after capture (typically a few hundred AU) implies

that although compact objects captured in this way may be perturbed by other

stars, the changes are small over one orbital period, in contrast to the case for single

compact objects captured by gravitational wave emission. The system therefore

evolves gradually, and eventually reaches a state in which inspiral via gravitational

radiation is shorter than the time to change because of perturbations. At this point

the pericenter distance is still much larger than it is for single compact objects.

At quadrupolar order, the evolution of the semimajor axis a and eccentricity e of

a binary was derived by (Peters 1964). The net result is that orbits with small

initial pericenter distances (the case for singles) still have measurable eccentricities

in the LISA sensitivity band (e ∼ 0.5 − 0.9 is typical; see Freitag 2003; Hopman

& Alexander 2005). However, for orbits with large initial pericenter distances (the
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case for separated binaries), the eccentricities will typically be e < 0.01. Therefore,

EMRI events from binary separation will be very distinct in eccentricity.

5.2.2 Effects of Nuclear Stellar Dynamics

Even though the cross section for tidal separation is vastly greater than for two-

body capture, the motion of a binary must still be close to radial in order to be

captured. For example, a binary with semimajor axis a ∼ 1 AU could be captured

if it passed within ∼ 100 AU of the SMBH, but this is tiny compared to the distance

of a few parsecs from the SMBH where most binaries presumably lie. It is therefore

important to map out some of the dynamical processes that will affect the injection

into these orbits. These are discussed in detail by many authors (e.g., Frank & Rees

1976; Lightman & Shapiro 1977; Magorrian & Tremaine 1999; Syer & Ulmer 1999),

so here we simply quote the results.

A supermassive black hole of mass M will dominate the dynamics out to the

radius of influence

rinfl =
GM

σ2
0

≈ 1 pc
(

M

106 M%

)(
60 km s−1

σ0

)2

, (5.5)

where σ0 is the velocity dispersion of stars far outside this radius. At radii r > rinfl,

a constant velocity dispersion implies a stellar mass density ρ ∼ r−2, whereas at

r < rinfl the density takes a different slope, ρ ∼ r−γ, for example γ = 3/2 or γ = 7/4

(e.g., Bahcall & Wolf 1976; Young 1980).

For r < rinfl the orbital time is torb = 2π(r3/GM)1/2, whereas for r > rinfl,

torb = 2π(r/rinfl)(GM/σ3
0). The relaxation time is the time required for the velocity

of a star to change by of order itself (in magnitude or direction), by deflections due

to two-body encounters. The local relaxation time for a compact object of mass
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mCO interacting with stars of average mass 〈m〉 is (Spitzer 1987)

trel(r) =
0.339

ln Λ

σ3(r)

G2〈m〉mCOn(r)
. (5.6)

Here σ3(r) is the local velocity dispersion (equal to the orbital speed when r < rinfl),

n(r) is the local number density, and ln Λ ∼ 10 is the Coulomb logarithm obtained

by integrating over the two-body encounters.

For an object on a very eccentric orbit, (1− e) - 1, the angular momentum is

much less than the angular momentum of a circular orbit with the same semimajor

axis. Therefore, the angular momentum only needs to change slightly to make an

order unity difference in the orbit. This timescale is tJ(r) ≈ (1 − e)trel(r) (e.g.,

Hopman & Alexander 2005).

In addition to two-body relaxation, a binary can undergo three-body interac-

tions. Only hard binaries, with Gmbin/a>∼σ2(r), can survive for a long time in

a dense environment because soft binaries are softened and ionized in a relatively

short time (see the discussion in Binney & Tremaine 1987). For such binaries, the

three-body interaction time is t3bod = 1/(n(r)Σv), where v ≈ σ(r) is the relative

speed and Σ is the effective cross section of interactions. For hard binaries, grav-

itational focusing dominates and hence Σ ≈ πa(2GmCO/σ2). The net result is

trel/t3bod ≈ (0.68π/ ln Λ)[σ2(r)a/(G〈m〉)], so for binaries in which G〈m〉/a 0 σ2(r)

two-body relaxation occurs on a shorter time scale than three-body interactions.

However, over several relaxation times, three-body interactions can occur, which

might allow initially solitary black holes to exchange into hard primordial binaries.

Once a black hole is in a hard binary it is relatively safe from dynamical disruption

by stellar-mass objects, but if multiple three-body interactions occur then collisions

with main-sequence stars or merger by gravitational radiation with compact objects

could reduce the number of binaries. It could also be that plunges through the

high-density, high-velocity stellar environment near the SMBH will soften binaries
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somewhat. A detailed study of these effects follows in Ch. 6.

For a given position R and speed V , the loss cone is defined as the set of directions

of the velocity -V leading to such small pericenter distances that the object of interest

is removed from the system. In the full loss cone regime, for which tJ < torb, objects

that enter the loss cone and are removed are immediately replaced, within an orbital

time, by objects that are deflected in from other orbits. In this regime, an object

that starts down the loss cone is likely to be deflected out of the cone during the

orbit. In the empty loss cone regime, for which tJ > torb, replacement of objects

through the loss cone has to occur over a relaxation time.

If the number of objects per radius (assuming spherical symmetry) is dN/dr and

the angle subtended by the loss cone at radius r is θLC(r), then the approximate

capture rates in the full and empty loss cone regimes are (see Syer & Ulmer 1999)

dṄfull
dr ∼ θ2

LC(r) (dN/dr)
torb

dṄempty

dr ∼ (dN/dr)
ln(1/θ2

LC(r))trel(r)
.

(5.7)

What are the relevant regimes for the single and binary captures? Suppose that

the pericenter distance for a single has to be 0.1 AU, and for a binary has to be

10 AU, for capture to occur. Consider a radius r 0 rinfl, and consider a density

profile that gives a number of objects within radius r of N(< r) = 107(r/5 pc).

This implies a relaxation time of trel ∼ 105(r/5 pc)torb. Since 1 pc≈ 2 × 105 AU,

the eccentricity of the single orbit is given by (1 − esingle) ≈ 10−7(5 pc/r) and the

eccentricity of the binary orbit is given by (1− ebinary) ≈ 10−5(5 pc/r). The angular

momentum diffusion times are then

tJ,single ≈ (1− esingle)trel ∼ 10−2torb

tJ,binary ≈ (1− ebinary)trel ∼ torb .
(5.8)

Therefore, when r 0 rinfl, the single stars are well within the full loss cone regime,

and the binary stars are marginally within the full loss cone regime. This means
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that well outside the radius of influence of the SMBH, the binaries have a much

higher rate of interaction than the singles because dṄ/dr ∝ θ2
LC. Because for

gravitationally focused encounters we have θ2
LC ∝ Rp, the pericenter distance, this

would suggest a ratio of rates of ∼ 100.

The overall ratio of rates is not quite that high, however. The increase in number

density towards the center, combined with the increased size of the loss cone at

smaller radii, turns out to mean that the overall rate is determined by the smallest

radius at which the loss cone is full (inside this radius, diffusion into the loss cone

is much less efficient). The smaller loss cone for the singles (hence the shorter time

required to diffuse across the cone) implies that the loss cone is still full at a smaller

radius than it is for binaries. To see this, consider the region r < rinfl. Within this

region the relaxation time is relatively insensitive to radius (in fact, for n(r) ∝ r−3/2

the relaxation time is constant). Since torb ∝ r3/2 and (1− e) ∝ r−1 (with e defined

by the loss cone), this implies tJ/torb ∝ r−5/2, so that the full/empty crossover would

be at the critical radius rcrit ∼ 0.1rinfl for our example singles, but rcrit ∼ rinfl for

our example binaries. The solid angle of the loss cone θ2
LC ∝ r−1, so it is ten times

larger at 0.1rinfl than at rinfl. At rinfl the rate is still a hundred times greater per

binary than per single, so the net rate enhancement is a factor of ten in favor of the

binaries.

As pointed out by Hils & Bender (1995) and analyzed by Hopman & Alexander

(2005), there is an additional major effect. A single compact object captured by

gravitational radiation emission typically has a very large apocenter distance, often

on the order of tenths of a parsec or more. As a result, even after it has first been

captured, it has a chance to be perturbed in the next orbit. If it is perturbed to

a larger pericenter, it will not merge by gravitational radiation, but in equilibrium

another orbit will be perturbed to a small pericenter and hence there is no net effect.

87



However, sometimes a perturbation will cause the orbit to be so close to radial that

the object plunges straight into the SMBH. Although this does not affect the merger

rate, such objects do not contribute to the LISA event rate, because they plunge

before their orbital period has become shorter than ≈ 103−4 s. Hopman & Alexander

(2005) estimate that ∼80-90% of the potential EMRI events are lost in this fashion

(note, however, that mass segregation of black holes into a dense subcluster may

reduce the impact of this effect; E. S. Phinney, personal communication).

In contrast, inspirals produced by separation of binaries are not susceptible to

this effect. The reason is that, as discussed in § 5.2.1, the apocenter distance is

usually only tens of times the pericenter distance. This close to the SMBH, the

time necessary to change the pericenter significantly is very large compared to the

orbital time. As a result, we expect that any perturbations will be gradual, hence

a decrease in the pericenter distance will produce greater gravitational radiation

emission and thus circularization rather than a plunge.

Some galactic potentials are found to be triaxial, in which case individual stars

still conserve their orbital energy over an orbital time, but their angular momentum

can change significantly faster than is possible in standard two-body relaxation

(Holley-Bockelmann et al. 2002; Merritt & Poon 2004; Poon & Merritt 2002). This

will tend to push the full loss cone regime to smaller radii, which will enhance rates.

Note, though, that well inside the radius of influence of the SMBH we expect the

potential to be nearly Keplerian and thus insensitive to asymmetries at greater radii.

It is therefore likely that the singles (with rcrit - rinfl) will be relatively unaffected by

global triaxiality, whereas binaries (with rcrit ∼ rinfl) could have their rates enhanced

moderately.
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5.3 Discussion and Conclusions

Our aim in this chapter has been to show that binaries may contribute significantly

to EMRI rates, and might even dominate. The net rate of detections with LISA

depends on several other factors, so we can parameterize the rate of LISA-detectable

compact object EMRIs originating from binaries relative to the rate originating from

singles as

Ṅbinary

Ṅsingle

=
fbRbinary〈fbinary,LISA〉
fsRsingle〈fsingle,LISA〉

, (5.9)

where fb is the fraction of compact objects that are in binaries; fs is the fraction that

are single; Rbinary is the total rate of tidal separations per binary; Rsingle is the total

rate of gravitational radiation captures per single; 〈fbinary,LISA〉 is the overall fraction

of binary sources captured in orbits tight enough to spiral into the LISA band within

a Hubble time; and 〈fsingle,LISA〉 is the overall fraction of captured singles that end

up detectable with LISA (rather than being perturbed into plunge orbits). Our

current best guesses are Rbinary/Rsingle ∼ 10 and 〈fbinary,LISA〉/〈fsingle,LISA〉 ∼ 1− 10.

Therefore, if the binary fraction is fb > 0.01 − 0.1, EMRIs from binaries could

dominate the total rates. Evaluation of the importance of the binary separation

process will thus depend crucially on both population synthesis models (to get the

binary fraction at birth; see Belczyński et al. 2004) and on models of the stellar

dynamical interactions of binaries and singles in the dense stellar environments of

galactic nuclei, such as exchange interactions that could allow initially solitary black

holes to acquire a companion (e.g., Heggie et al. 1996).

As discussed in § 5.2.1, the low eccentricity of tidal separation EMRIs will dis-

tinguish them strongly from two-body capture orbits. The rates of such events, as

well as the eccentricity distribution of EMRIs from singles as a function of SMBH

mass, are sensitive to binary stellar evolution as well as dynamical interactions.
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These effects relate to the very innermost regions of galaxies, which are otherwise

extremely difficult to observe. LISA observations of EMRIs will therefore provide a

unique window into the hearts of galaxies.

In the next chapter, we investigate the details of the fates of binaries in galaxies

that contain SMBHs. In particular, we explore the consequence of the ever increas-

ing encounter velocities near the SMBH on the overall fractions of binary mergers,

ionizations, and tidal separations.
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Chapter 6

Binaries in Galactic Nuclei with

SMBHs

6.1 Introduction

Galactic nuclei hold the keys to many phenomena on the scientific frontier, from

galaxy formation to gravitational radiation, and SMBHs play an important role.

Observations of star and gas kinematics show that SMBHs reside in most galactic

centers, and range in mass from 106 to 109 M% (Barth 2004; Ferrarese & Merritt

2000; Gebhardt et al. 2000). While the formation mechanism of these massive black

holes is not well-understood, it is likely coupled to the genesis of dark matter halos

and galaxies themselves (Fan et al. 2001). SMBHs are thought to grow from their less

massive progenitors through black hole coalescence after galaxy mergers (Begelman

et al. 1980) and via gas accretion, which fuels active galactic nuclei (Rees 1984).

SMBHs also exist in more docile environments, much like the modest ∼3× 106 M%

SMBH in our own galactic center (Genzel et al. 2003). In the case of AGN, the

luminous accretion onto the SMBHs dominates the light we see from nuclei, but
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massive black holes also dominate their surroundings in a less conspicuous way by

dictating the dynamics of the stars in their host nucleus.

The gravity of a central SMBH governs the orbits of the objects in the innermost

region of a galactic nucleus. The region inside of which the stellar dynamics are

dominated by the massive black hole is given by a sphere with a radius known as

the radius of influence,

rinfl =
GMSMBH

σ0
2

, (6.1)

where σ0 is the velocity dispersion well outside this area. Within this sphere, orbits

are Keplerian, and the local velocity dispersion at a distance r from the SMBH is

σ(r) =

√
GMSMBH

r
, (6.2)

so that velocities increase as objects move closer to the SMBH. Recall from Ch. 1

that a massive object such as a binary will sink toward the center of the nucleus

over the course of a relaxation time

trel(r) =
0.339

ln Λ

σ3(r)

G2mbinm∗n(r)
, (6.3)

where m∗ is the average mass of field stars, mbin is the binary mass, n(r) is the local

number density, and ln Λ ∼ 10 is the Coulomb logarithm. For compact galactic

nuclei containing SMBHs with MSMBH ≈ 106 − 107 M%, the relaxation time for a

binary is (Miller et al. 2005),

trel(r) ( 1.8× 108yr
(

σ

100km s−1

)3(10M%

mbin

)(
106M%pc−3

m∗n

)
, (6.4)

hence massive binaries, such as those containing BHs, will find themselves in the

central region of the nucleus in much less than a Hubble time. In fact, Monte Carlo

simulations of such nuclei show that BHs sink to the center in less than 3 Gyr,

and come to dominate the mass density in the inner 0.2 pc of the nucleus (Freitag
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et al. 2006). This leads to frequent close encounters between BH binaries and single

objects near the galactic center.

The consequence of such three-body encounters on a BH binary depends on

whether it hardens or softens significantly as it sinks. A hard binary, for which

the internal energy is much greater than the kinetic energy of the interloping star,

is not likely to harden significantly because its encounter cross section decreases

as it tightens. As discussed in the introductory chapter, this is not the case for

soft binaries. As a binary softens it is more likely to have additional encounters

that tend to soften it further, which often leads to ionization. The presence of a

SMBH increases the likelihood of softening, because the encounter speed increases

as the binary sinks. Therefore, a binary becomes softer by virtue of approaching

the SMBH.

In addition to promoting increased softening, the presence of a SMBH in a

galactic nucleus adds another potential fate for binaries that is not possible in nuclear

star clusters without massive black holes. While binaries in both types of galactic

nuclei can be ionized and undergo induced mergers, it is also possible that a SMBH

will tidally separate binaries, effectively capturing one binary member into a more

tightly bound orbit while flinging the other off at a high speed. Tidal separations

occur when a binary passes within the separation radius given by

rtide ≈ abin

(
3MSMBH

mbin

)1/3

, (6.5)

where abin is the semimajor axis of the binary. Tidal separations deposit BHs very

close to the SMBH, where they will potentially spiral into the SMBH and become

an EMRI, as discussed in Ch. 5.

As we will discuss in this chapter, the results of our simulations show that ion-

izations, mergers, and tidal separations are all likely consequences of the three-body

encounters that binaries experience in galactic nuclei. These outcomes will con-
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tribute to the detection rates of ground-based instruments, in the case of mergers,

and space-based detectors, in the case of tidal separations.

In §6.2 of this chapter, we describe the methods employed in carrying out these

simulations. We follow with results in §6.3, and then discuss the conclusions drawn

from this work as well as implications for LIGO detection rates in §6.4.

6.2 Method

6.2.1 Set Up

Our goal is to study the evolution of BH binaries in galactic nuclei containing

SMBHs, and we accomplish this by tracking the dynamics on two different scales:

the orbit of the center of mass of the binary around the SMBH as the binary moves

through the background of field stars; and the internal semimajor axis and eccen-

tricity of the binary, which change as a result of close encounters with single objects.

To track changes in the orbit around the SMBH, we calculate the effects of

distant two-body encounters between stars and the center of mass of the binary.

For a binary interacting with an interloper of mass m∗ with an initial relative speed

V0, we calculate the change in the velocity ∆v of the binary, which has components

(Binney & Tremaine 1987)

|∆v⊥| =
2m∗bV 3

0

G(mbin + m∗)2

[
1 +

b2V 4
0

G2(mbin + m∗)2

]−1

, (6.6)

and

|∆v‖| =
2m∗V0

mbin + m∗

[
1 +

b2V 4
0

G2(mbin + m∗)2

]−1

, (6.7)

where v⊥ and v‖ are perpendicular and parallel to V0, respectively. These individual

velocity changes are responsible for dynamical friction, which causes the binary to
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slow down. This deceleration decreases the semimajor axis of its orbit and increases

its eccentricity, bringing the pericenter of the binary’s orbit ever closer to the SMBH.

To track the internal evolution of the binary, we first calculate the probability

that the binary will meet a single object in a close interaction. In the event of a close

encounter, the full three-body calculation is performed using IABL, a binary-single

scattering code (Gültekin et al. 2004), in conjunction with HNBody, an N-body code

(Rauch & Hamilton, in preparation). To reduce the computation time, IABL uses

a two-body approximation routine which replaces the binary with a single object

during long orbits. If an encounter leaves the binary intact, or if there is an exchange,

then the internal semimajor axis and eccentricity of the binary are updated and it

continues on its orbit through the nucleus.

Binaries begin inside the radius of influence, hence all orbits are Keplerian, and

orbit through the nucleus until (1) the binary is ionized, and all three objects are

unbound; (2) the binary merges by gravitational radiation, which is calculated using

the Peters equations between encounters (see Ch. 2); (3) the binary is ejected from

the nucleus (recoil velocities are determined as discussed in Ch. 4 § 4.2.1); or (4)

the binary is tidally separated by the SMBH.

The technique described above is a method of isolating the effects of two-body

relaxation and close three-body encounters on binaries. While direct N-body calcu-

lations would provide insight into this scenario, treating the problem of binaries in

a nucleus is very computationally demanding. The largest-scale N-body simulations

to date require special purpose hardware such as GRAPE (Makino et al. 2003),

and are unable to include a significant binary fraction, or the number of particles

necessary for a realistic galactic nucleus (e.g., Freitag et al. 2006).

There are additional effects that can change the orbit of a binary around a SMBH.

If a nucleus is triaxial, then stellar orbits will no longer be Keplerian, however this
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is only effective on scales well outside the radius of influence (Merritt 2006). In

addition, at distances of ∼ 0.01 pc from the SMBH, resonant relaxation has been

shown to dramatically alter stellar eccentricities because the overlapping Keplerian

orbits of stars precess very slowly and exert torques on one another. All of our

simulations take place well inside the radius of influence, therefore we do not include

triaxiality. Also, in §6.3.4, we show that binaries tend to ionize, merge, or tidally

separate outside of the region where resonant relaxation operates. For this reason,

we do not include resonant relaxation in our simulations.

6.2.2 Simulations

The nuclei in these simulations contain a central black hole with mass MSMBH = 106

M%), and follow a Bahcall & Wolf (1976) density profile:

ρ(r) ∝ r−7/4 . (6.8)

The velocity dispersion well outside the radius of influence is assumed to be σ0 = 60

km s−1, in accordance with σ0 = 78km s−1(MSMBH/3 × 106 M%), as derived from

the M − σ relation (Tremaine et al. 2002), and the escape velocity is 5σ0 = 300 km

s−1. As in Ch. 4, we choose the zero-age main sequence mass of the BH, its binary

companion, and the interloper from a power law distribution dN/dM ∝ M−α, and

proceed to evolve each to a white dwarf, neutron star, or black hole mass if the

ZAMS mass is above the main sequence cutoff (See §4.2.2 for the conversions). We

can then explore the effects of mass segregation by choosing a range in α, with α ≤ 0

representing segregated nuclei, which have an overabundance of compact objects in

their central regions. We show in §4.2.1 that single BHs exchange into binaries in ≈

a few billion years, therefore we begin each simulation here with a binary containing

at least one BH. We divide the simulations into binaries that begin with two BHs
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(referred to as BH-BH binaries), and those that start with one BH plus a companion

of any type−BH, neutron star, white dwarf, or main sequence star (referred to as

BH-companion binaries).

We present the results of three sets of simulations here, which are characterized

by the following: (1) binaries of two equal-mass objects interacting with interlop-

ers of a single mass−a simplified set to reproduce known trends and compare to

published work; (2) BH-BH and BH-companion binaries in nuclei with a range of

initial mass functions−to study the effects of mass segregation; (3) BH-BH and BH-

companion binaries in a nucleus with a flat mass function (moderately segregated),

with a wide range of initial internal energies−to analyze the impact of whether the

binary is originally hard or soft. In this third set of simulations we parameterize the

degree of binary hard/softness with

ε =
|E|

m∗σ2
, (6.9)

such that binaries with ε - 1 are initially soft and those with ε 0 1 are initially

hard. At the outset, we expect to find that the increased velocities near the SMBH

will cause increased softening, leading to ionizations and increasing the distance

from the SMBH at which binaries are tidally separated. In addition, we anticipate

that few binaries will be ejected from the nucleus due to its large escape velocity.

6.3 Results

Figures 6.1 and 6.2 are examples of the evolution of the orbit of a binary as it sinks

through the nucleus, and changes in the internal properties of the binary due to

three-body encounters, respectively. In Figure 6.1, the semimajor axis decreases

while the eccentricity of its orbit increases, and the binary has increasingly close

passes with the SMBH at its orbital pericenter, thereby demonstrating the effects
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of dynamical friction. Figure 6.2 demonstrates the aftermath of multiple encounters

for one particular binary. This binary’s eccentricity rises and drops in value, and

its semimajor axis decreases slightly and then ultimately widens before it is tidally

disrupted by the SMBH. While these plots provide a sense of the types of journeys

experienced by individual binaries, we must look at the cumulative results of many

simulations to find general trends.

6.3.1 Equal-Mass Binaries

Simulations involving binaries and interlopers of equal mass have revealed well-

studied rules of three-body dynamics. Among these is Heggie’s Law, which states

that close interactions tend to cause hard binaries to harden and soft binaries to

soften (Heggie 1975). Because hard binaries transfer some of their binding energy

to single stars with each encounter that results in hardening, they have also been

researched as the likely energy source responsible for halting core collapse in globular

clusters. While binaries have been studied extensively in the context of clusters,

binary-star dynamics in galactic nuclei have also been examined.

The Fokker-Planck approximation was used in a recent paper to study the dy-

namics of a single-mass population including binaries near a SMBH (Hopman 2009,

hereafter H09). These simulations track the evolution of the energies and angu-

lar momenta of the binaries with respect to the SMBH. Additionally, results from

previous three-body simulations are used to calculate the probability of a change

in internal energy for each binary given the densities and speeds of nearby stars,

thereby making it possible to track the evolution of the semimajor axes of the bina-

ries. The main findings of H09 are that a large number of binaries are ionized due to

three-body encounters close to the SMBH, hard binaries do not harden appreciably

as they sink, binaries typically ionize before they undergo an exchange, and tidal
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separations occur largely when the binary is on a very eccentric orbit around the

SMBH. The lack of a mass spectrum within the population of binaries and single

stars is a serious limitation as described by the author, because multi-mass three-

body encounters have many more possible outcomes than do the comparatively

simple equal-mass interactions.

With our method, we are able to include a mass spectrum, however we first

present equal-mass results to compare with those in H09. In Table 1 we show results

from three sets of simulations with equal-mass binaries and single mass populations

of interlopers. In the first set, the masses of the binary members and interlopers

are mbin,1 = mbin,2 = m∗ = 1 M%; in the second, mbin,1 = mbin,2 = 5 M%, and

m∗ = 0.5 M%; and in the third mbin,1 = mbin,2 = 10 M%, and m∗ = 0.5 M%.

The first set corresponds to the simulations in H09, and we find large ionization

fractions for soft binaries with ε ≤ 1 that are consistent with the results of that

work. For binaries with ε = 0.1, H09 report ionization fractions of ∼ 90%, and

our simulations give a similar fraction of fi = 0.87. We also agree with H09 with

regard to the small numbers of exchanges−for all cases at most a few percent of

interactions result in an exchange. While H09 simulate regular stars, our focus is

compact objects, and we therefore track mergers by gravitational radiation. Table 2

details the merger results. As binaries increase in hardness−decreasing in semimajor

axis−the eccentricity required for merger decreases. This is expected because the

inspiral time due to gravitational radiation is ∝ a4(1 − e2)7/2. When binaries are

significantly more massive than the interlopers (in high-α populations), they undergo

far more encounters before they merge because each encounter has less of an effect on

the binary. Tidal separations are examined in Table 3, which shows that softening

increases the distances at which the binaries are separated. Tidal separations tend

to occur when the binary is on an eccentric orbit, though binaries that are initially
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Table 6.1. Simulations of Equal-Mass Binaries and Single Mass Interlopers in
Nuclei with SMBH a

M1 : M2 : Mint
b εc fm

d fi
e fts

f fej
g 〈aenc〉h 〈Nex〉i 〈Nint〉j 〈Nex/int〉k

1:1:1 0.1 0.01 0.87 0.12 0 0.5006 0.98 76.93 0.0127
1:1:1 0.3 0.04 0.67 0.29 0 0.47 1.77 53.54 0.0331
1:1:1 1.0 0.25 0.29 0.46 0 0.4525 1.62 40.58 0.0399
1:1:1 10.0 0.71 0 0.29 0 0.2281 0.37 5.575 0.0664

5:5:0.5 0.3 0.08 0.16 0.76 0 0.4999 0.01 1929 5.184e-06
5:5:0.5 1.0 0.5 0.06 0.44 0 0.4993 0.04 1229 3.255e-05
5:5:0.5 10.0 0.77 0 0.23 0 0.4855 0.02 123.4 0.0002

10:10:0.5 0.3 0 0.02 0.98 0 0.4985 0 3374 0
10:10:0.5 1.0 0.13 0.01 0.86 0 0.5001 0 2562 0
10:10:0.5 10.0 0.89 0 0.11 0 0.4937 0 352.7 0

aAll runs had 100 realizations, MSMBH = 106M!.
bMass of binary member: Mass of binary member: Mass of single stars (M!).
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dFraction of runs in which binary members merged.
eFraction of runs in which binary was ionized.
fFraction of runs in which binary was tidally separated.
gFraction of runs in which binary was ejected.
hAverage orbital semimajor axis where first encounter occurred (pc).
iAverage number of exchanges.
jAverage number of interactions.
kAverage number of exchanges per interaction.

soft can be separated at larger pericenter distances and therefore lower eccentricities.
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Table 6.2. Simulations of Equal-Mass Binaries and Single Mass Interlopers in
Nuclei with SMBH (Mergers)a

M1 : M2 : Mint
b εc fnotBH

d fNS
3 〈ebin,m〉f 〈am〉g 〈Mbin,m〉h 〈Nsingle,ej〉i 〈tm〉j 〈Nint〉k

1:1:1 0.1 1 — 0.9759 0.0184 — — 3.914e+09 37
1:1:1 0.3 1 — 0.9972 0.2192 — — 3.723e+08 10
1:1:1 1.0 1 — 0.9322 0.1745 — — 1.308e+09 8.44
1:1:1 10.0 1 — 0.6128 0.1668 — — 6.945e+08 2.042

5:5:0.5 0.3 0 — 0.9448 0.1745 10 — 9.131e+08 843.5
5:5:0.5 1.0 0.04 — 0.8744 0.1019 10 — 2.05e+09 517.4
5:5:0.5 10.0 0.026 — 0.7307 0.0640 10 — 1.977e+09 101.5

10:10:0.5 0.3 — — — — — — — —
10:10:0.5 1.0 0 — 0.6783 0.0550 20 — 2.227e+09 1296
10:10:0.5 10.0 0 — 0.641 0.0506 20 — 1.742e+09 323.7

aAll runs had 100 realizations, MSMBH = 106M!.
bMass of binary member: Mass of binary member: Mass of single stars (M!).
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dFraction of runs in which black hole merged with something other than another black hole.
eFraction of runs in which black hole merged with neutron star.
fAverage binary eccentricity prior to merger.
gAverage semimajor axis of orbit around SMBH where merger occurred (pc).
hAverage mass of binaries that merged (M!).
iAverage number of single black holes ejected per binary that merged.
jAverage time between first encounter and merger (years).
kAverage number of interactions before merger.
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6.3.2 Variation of Initial Mass Function

In Tables 4 through 9, we show the results of simulations with different mass popula-

tions, ranging from low-α, in which an overabundance of massive objects represents

a very mass-segregated nucleus, to the Salpeter value of α = 2.35 that characterizes

the stellar population in the solar neighborhood. The binaries in these simulations

are very mildly hard, with ε = 4.0. Again, we find that binaries in high-α nuclei

have many more interactions and do not experience significant softening due to the

small increments of energy they exchange with the low mass interlopers they en-

counter. This results in fewer ionizations and produces tidal separations closer to

the SMBH. These binaries generally end with mergers or tidal separation; mergers

occur if the internal eccentricity reaches a high value after an encounter, and tidal

separations happen if a high orbital eccentricity results in a close pericenter pass

with the SMBH.

Energetic encounters with massive interlopers in mass-segregated, low-α nuclei

result in significant softening that causes a large fraction of binaries to ionize (76%

when α = −1.0). Tidal separation of these softened binaries take place at increas-

ingly large distances from the SMBH as α decreases, and these binaries survive for

less time, regardless of whether they end with a merger, ionization, or tidal sepa-

ration. Independent of the mass function, exchanges tend to swap more massive

objects into the binaries, which means that mergers and tidal separations tend to

involve BHs of above average mass. The fractions of ionizations, mergers, and tidal

separations do not vary significantly when binaries begin as BH-companion rather

than BH-BH. Galactic nuclei will be mass-segregated to some degree because of the

inverse relationship between mass and relaxation time, hence we choose a flat mass

profile to examine the impact of a range in initial hardness on the fates of binaries.
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Table 6.4. Simulations of BH-companion Binaries in Nuclei with SMBHa

αb εc 〈MBH〉d fm
e fi

f fts
g fej

h 〈aenc〉i 〈Nex〉j 〈Nint〉k 〈Nex/int〉l

-1.0 4.0 13.4 0.156 0.756 0.086 0.002 0.494 2.912 50.61 0.0575
-0.5 4.0 12.6 0.182 0.720 0.094 0.004 0.4904 2.976 58.2 0.0511
0.0 4.0 11.7 0.232 0.634 0.132 0.002 0.4837 3.19 74.42 0.0429
0.5 4.0 10.7 0.27 0.544 0.182 0.004 0.4714 3.16 85.96 0.0368
1.0 4.0 9.7 0.296 0.404 0.3 0 0.4345 2.152 152.4 0.0141
1.5 4.0 8.8 0.38 0.232 0.386 0.002 0.3816 1.128 216.2 0.0052
2.0 4.0 7.5 0.438 0.092 0.47 0 0.3506 0.658 203 0.0032
2.35 4.0 7.4 0.482 0.064 0.454 0 0.3282 0.496 137.2 0.0036

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which binary members merged.
fFraction of runs in which binary was ionized.
gFraction of runs in which binary was tidally separated.
hFraction of runs in which binary was ejected.
iAverage orbital semimajor axis where first encounter occurred (pc).
jAverage number of exchanges.
kAverage number of interactions.
lAverage number of exchanges per interaction.
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Table 6.5. Simulations of BH-BH Binaries in Nuclei with SMBHa

αb εc 〈MBH〉d fm
e fi

f fts
g fej

h 〈aenc〉i 〈Nex〉j 〈Nint〉k 〈Nex/int〉l

-1.0 4.0 13.4 0.15 0.764 0.084 0.002 0.4973 2.764 57.65 0.0479
-0.5 4.0 12.6 0.164 0.744 0.092 0 0.4959 2.936 65.22 0.0450
0.0 4.0 11.7 0.198 0.662 0.14 0 0.493 2.944 69.54 0.0423
0.5 4.0 10.7 0.202 0.644 0.154 0 0.4919 2.892 110 0.0263
1.0 4.0 9.7 0.286 0.470 0.244 0 0.4873 2.274 200.8 0.0113
1.5 4.0 8.8 0.404 0.258 0.338 0 0.4863 1.12 408.3 0.0027
2.0 4.0 7.5 0.45 0.078 0.472 0 0.4777 0.216 588.8 0.0004
2.35 4.0 7.4 0.518 0.018 0.464 0 0.4769 0.082 602.2 0.0001

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which binary members merged.
fFraction of runs in which binary was ionized.
gFraction of runs in which binary was tidally separated.
hFraction of runs in which binary was ejected.
iAverage orbital semimajor axis where first encounter occurred (pc).
jAverage number of exchanges.
kAverage number of interactions.
lAverage number of exchanges per interaction.
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Table 6.6. Simulations of BH-companion Binaries in Nuclei with SMBH
(Mergers)a

αb εc 〈MBH〉d fnotBH
e fNS

f 〈ebin,m〉g 〈am〉h 〈Mbin,m〉i 〈Nsingle,ej〉j 〈tm〉k 〈Nint〉l

-1.0 4.0 13.4 0 0 0.916 0.1672 33.14 0.3333 1.818e+07 41.37
-0.5 4.0 12.6 0 0 0.8876 0.17 31.73 0.3956 2.232e+07 41.11
0.0 4.0 11.7 0.0259 0.0086 0.921 0.1619 31.16 0.3097 3.109e+07 44.84
0.5 4.0 10.7 0.0222 0 0.8884 0.1321 31.16 0.4015 6.643e+07 52.94
1.0 4.0 9.7 0.2838 0.0608 0.9209 0.1488 27.34 0.1698 1.968e+08 64.17
1.5 4.0 8.8 0.6842 0.0842 0.8955 0.0973 21.73 0.05 1.028e+09 79.82
2.0 4.0 7.5 0.9315 0.0502 0.8363 0.0635 16.94 0 2.372e+09 67.11
2.35 4.0 7.4 0.9876 0.0124 0.8027 0.0583 15.7 0 3.948e+09 70.24

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which black hole merged with something other than another black hole.
fFraction of runs in which black hole merged with neutron star.
gAverage binary eccentricity prior to merger.
hAverage semimajor axis of orbit around SMBH where merger occurred (pc).
iAverage mass of BH-BH binaries that merged (M!).
jAverage number of single black holes ejected per binary that merged.
kAverage time between first encounter and merger (years).
lAverage number of interactions before merger.
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Table 6.7. Simulations of BH-BH Binaries in Nuclei with SMBH (Mergers)a

αb εc 〈MBH〉d fnotBH
e fNS

f 〈ebin,m〉g 〈am〉h 〈Mbin,m〉i 〈Nsingle,ej〉j 〈tm〉k 〈Nint〉l

-1.0 4.0 13.4 0 0 0.8802 0.1602 32.89 0.5333 1.871e+07 40.89
-0.5 4.0 12.6 0 0 0.8991 0.1862 31.65 0.4146 1.986e+07 38.09
0.0 4.0 11.7 0 0 0.9147 0.1742 31.89 0.2626 2.904e+07 46.28
0.5 4.0 10.7 0.0099 0.0099 0.9292 0.1437 30.31 0.26 5.142e+07 57.42
1.0 4.0 9.7 0.0140 0.0070 0.8891 0.118 27.19 0.2057 1.631e+08 99.74
1.5 4.0 8.8 0.0594 0.0198 0.8605 0.0900 21.3 0.0316 6.212e+08 188
2.0 4.0 7.5 0.0356 0.0089 0.8212 0.0565 16.67 0.0046 1.904e+09 368.5
2.35 4.0 7.4 0.0425 0.0039 0.7637 0.0433 14.44 0 3.199e+09 360.2

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which black hole merged with something other than another black hole.
fFraction of runs in which black hole merged with neutron star.
gAverage binary eccentricity prior to merger.
hAverage semimajor axis of orbit around SMBH where merger occurred (pc).
iAverage mass of BH-BH binaries that merged (M!).
jAverage number of single black holes ejected per binary that merged.
kAverage time between first encounter and merger (years).
lAverage number of interactions before merger.
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6.3.3 Variation of Initial Binary Hardness

In the simulations in Tables 10 through 15 we use a moderately segregated value

of α = 0.0, and began with binaries ranging from very soft to very hard. As

expected, binaries that are initially hard have a higher merger fraction and they

merge with lower eccentricities, while soft binaries typically ionize. Moderately soft

and borderline (ε ≈ 1) binaries have the largest tidal separation fractions, because

they widen enough to make it possible for the SMBH to pull them apart without

requiring an extremely eccentric orbit, but they are not so soft that they undergo

rapid runaway softening and ionization. Tidal separations of hard binaries are less

frequent, and only occur when their orbits around the SMBH exceed e ∼ 0.9. The

small cross sections of hard binaries ensure that they encounter fewer interlopers

than soft binaries, however the interactions that they have are more likely to result

in an exchange or an ejection. Exchanges typically occur when the interloper is

temporarily bound to the binary and the three objects have a complicated series of

close passes. This generally happens when the speed of the interloper is smaller than

the orbital speed of the binary members, which is the case when the binary is hard.

Thus we find that the number of exchanges per interaction increases with increasing

hardness. Ejections take place when a binary hardens and transfers enough of its

binding energy to kinetic energy to result in a velocity kick in excess of the escape

velocity of the nucleus. For hard binaries, the rate of hardening is independent of

the hardness, meaning that the fraction of binding energy released by hardening

is the same for any binary regardless of its initial internal energy (see e.g. Binney

& Tremaine 1987). If, for instance the binding energy decreases by increments of

20% with each hardening encounter, then very hard binaries with large |E| lose

more energy than less hard binaries with smaller |E|. Therefore, the relatively
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infrequent encounters that a very hard binary experiences are more likely to result

in the ejection of the interloper and/or the binary. As in the previous section,

exchanges produce massive binaries, and the resultant mergers and tidal separations

occur with BHs that are on the high end of the mass spectrum. Again, there is no

significant change in the ionization, merger, and tidal separation fractions when

varying between binaries that begin as BH-companion or BH-BH. However, the

details of the mergers and tidal separations are slightly different; binaries that begin

as BH-companion and do not have multiple exchanges to swap in more massive BHs

typically meet their end with a smaller total mass. For binaries with mid-range ε

in Table 15, the increase in binary mass and decrease in the fraction that tidally

separate with a non-BH binary member are both due to the comparatively large

number of exchanges that those binaries undergo.
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Table 6.10. Simulations of BH-companion Binaries in Nuclei with SMBHa

αb εc 〈MBH〉d fm
e fi

f fts
g fej

h 〈aenc〉i 〈Nex〉j 〈Nint〉k 〈Nex/int〉l

0.0 0.01 11.7 0 0.914 0.086 0 0.499 0.016 38.65 0.0004
0.0 0.02 11.7 0 0.888 0.112 0 0.499 0.026 48.64 0.0005
0.0 0.05 11.7 0 0.886 0.114 0 0.498 0.072 57.35 0.0013
0.0 0.1 11.7 0 0.896 0.104 0 0.498 0.126 56.02 0.0022
0.0 0.2 11.7 0.002 0.866 0.132 0 0.498 0.242 52.19 0.0046
0.0 0.5 11.7 0.002 0.886 0.112 0 0.4965 0.596 49.1 0.0121
0.0 1.0 11.7 0.02 0.862 0.118 0 0.496 1.058 54.69 0.0194
0.0 2.0 11.7 0.096 0.802 0.1 0.002 0.490 2.064 62.79 0.0329
0.0 5.0 11.7 0.304 0.566 0.126 0.004 0.476 3.614 68.12 0.0531
0.0 10.0 11.7 0.532 0.342 0.122 0.004 0.467 4.45 56.33 0.079
0.0 20.0 11.7 0.78 0.130 0.088 0.002 0.438 3.828 36.49 0.1049
0.0 50.0 11.7 0.882 0.05 0.054 0.014 0.388 2.762 16.96 0.1629
0.0 100.0 11.7 0.918 0.032 0.042 0.008 0.330 1.62 9.701 0.167
0.0 200.0 11.7 0.938 0.006 0.048 0.008 0.274 0.99 5.615 0.1763
0.0 500.0 11.7 0.946 0.002 0.044 0.008 0.208 0.46 1.942 0.2369
0.0 1000.0 11.7 0.936 0 0.064 0 0.153 0.306 1.196 0.2559

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which binary members merged.
fFraction of runs in which binary was ionized.
gFraction of runs in which binary was tidally separated.
hFraction of runs in which binary was ejected.
iAverage orbital semimajor axis where first encounter occurred (pc).
jAverage number of exchanges.
kAverage number of interactions.
lAverage number of exchanges per interaction.
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Table 6.11. Simulations of BH-BH Binaries in Nuclei with SMBHa

αb εc 〈MBH〉d fm
e fi

f fts
g fej

h 〈aenc〉i 〈Nex〉j 〈Nint〉k 〈Nex/int〉l

0.0 0.01 11.7 0 0.964 0.036 0 0.499 0.004 45.71 0.00009
0.0 0.02 11.7 0 0.930 0.07 0 0.499 0.01 58.74 0.0002
0.0 0.05 11.7 0 0.828 0.172 0 0.499 0.054 61.08 0.0009
0.0 0.1 11.7 0 0.868 0.132 0 0.498 0.102 68.76 0.0015
0.0 0.2 11.7 0 0.844 0.156 0 0.497 0.186 67.23 0.0028
0.0 0.5 11.7 0 0.87 0.13 0 0.497 0.326 59.41 0.0055
0.0 1.0 11.7 0.016 0.874 0.11 0 0.497 0.818 58.83 0.0139
0.0 2.0 11.7 0.06 0.82 0.12 0 0.497 1.666 66.64 0.025
0.0 5.0 11.7 0.282 0.612 0.102 0.004 0.493 3.452 71.28 0.0484
0.0 10.0 11.7 0.562 0.348 0.084 0.006 0.483 4.458 54.87 0.0813
0.0 20.0 11.7 0.804 0.110 0.074 0.012 0.469 4.28 35.65 0.1201
0.0 50.0 11.7 0.91 0.046 0.036 0.008 0.436 2.962 19.47 0.1521
0.0 100.0 11.7 0.932 0.022 0.034 0.012 0.401 1.978 13.08 0.1512
0.0 200.0 11.7 0.956 0.008 0.026 0.01 0.350 1.222 6.685 0.1828
0.0 500.0 11.7 0.96 0.002 0.032 0.006 0.270 0.528 2.797 0.1888
0.0 1000.0 11.7 0.96 0 0.034 0.006 0.208 0.282 1.337 0.2109

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which binary members merged.
fFraction of runs in which binary was ionized.
gFraction of runs in which binary was tidally separated.
hFraction of runs in which binary was ejected.
iAverage orbital semimajor axis where first encounter occurred (pc).
jAverage number of exchanges.
kAverage number of interactions.
lAverage number of exchanges per interaction.
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Table 6.12. Simulations of BH-companion Binaries in Nuclei with SMBH
(Mergers)a

αb εc 〈MBH〉d fnotBH
e fNS

f 〈ebin,m〉g 〈am〉h 〈Mbin,m〉i 〈Nsingle,ej〉j 〈tm〉k 〈Nint〉l

0.0 0.01 11.7 — — — — — — — —
0.0 0.02 11.7 — — — — — — — —
0.0 0.05 11.7 — — — — — — — —
0.0 0.1 11.7 — — — — — — — —
0.0 0.2 11.7 0 0 0.9945 0.3549 30.25 0 3.91e+06 26
0.0 0.5 11.7 0 0 0.9439 0.0947 38.45 0 2.858e+07 106
0.0 1.0 11.7 0 0 0.8691 0.1743 31.52 0.2 2.641e+07 46.4
0.0 2.0 11.7 0.0208 0.0208 0.9261 0.1927 32.28 0.4894 2.699e+07 46.96
0.0 5.0 11.7 0.0132 0.0132 0.8774 0.1489 31.94 0.3133 3.223e+07 43.36
0.0 10.0 11.7 0.0150 0.0075 0.8868 0.1484 31.27 0.3588 3.794e+07 36.94
0.0 20.0 11.7 0.0333 0.0231 0.9065 0.1536 30.66 0.3634 3.494e+07 24.23
0.0 50.0 11.7 0.0658 0.0499 0.8872 0.1475 30.06 0.449 3.722e+07 14.84
0.0 100.0 11.7 0.150 0.1002 0.8174 0.1507 27.99 0.3846 2.86e+07 8.174
0.0 200.0 11.7 0.2004 0.1364 0.7211 0.15 26.36 0.3893 2.126e+07 4.936
0.0 500.0 11.7 0.2156 0.1522 0.563 0.1526 25.37 0.248 7.475e+06 1.945
0.0 1000.0 11.7 0.2137 0.1538 0.4467 0.1368 24.35 0.0978 1.123e+06 1.19

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which black hole merged with something other than another black hole.
fFraction of runs in which black hole merged with neutron star.
gAverage binary eccentricity prior to merger.
hAverage semimajor axis of orbit around SMBH where merger occurred (pc).
iAverage mass of BH-BH binaries that merged (M!).
jAverage number of single black holes ejected per binary that merged.
kAverage time between first encounter and merger (years).
lAverage number of interactions before merger.
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Table 6.13. Simulations of BH-BH Binaries in Nuclei with SMBH (Mergers)a

αb εc 〈MBH〉d fnotBH
e fNS

f 〈ebin,m〉g 〈am〉h 〈Mbin,m〉i 〈Nsingle,ej〉j 〈tm〉k 〈Nint〉l

0.0 0.01 11.7 — — — — — — — —
0.0 0.02 11.7 — — — — — — — —
0.0 0.05 11.7 — — — — — — — —
0.0 0.1 11.7 — — — — — — — —
0.0 0.2 11.7 — — — — — — — —
0.0 0.5 11.7 — — — — — — — —
0.0 1.0 11.7 0 0 0.9258 0.1432 31.08 0 2.145e+07 62.5
0.0 2.0 11.7 0 0 0.863 0.1493 31.32 0.3333 3.9e+07 54.77
0.0 5.0 11.7 0 0 0.8802 0.1569 31.57 0.4894 3.315e+07 43.62
0.0 10.0 11.7 0 0 0.9127 0.1623 31.46 0.3167 2.951e+07 34.95
0.0 20.0 11.7 0 0 0.8977 0.1612 31.53 0.3682 2.937e+07 27.42
0.0 50.0 11.7 0.002 0.002 0.9019 0.1547 30.28 0.4097 3.107e+07 16.76
0.0 100.0 11.7 0 0 0.8763 0.1554 28.62 0.4163 3.27e+07 10.7
0.0 200.0 11.7 0.002 0.002 0.7925 0.162 27.7 0.4696 2.431e+07 6.37
0.0 500.0 11.7 0 0 0.6014 0.1723 25.25 0.2708 1.2e+07 2.688
0.0 1000.0 11.7 0 0 0.4248 0.1812 24.21 0.1146 2.028e+06 1.335

aAll runs had 500 realizations, MSMBH = 106M!.
bNumber distribution of stars on zero age main sequence: dN/dM ∝M−α.
cHardness of initial binary at rinfl: ε = |E|/mavgσ2 .
dAverage mass of all black holes given α and our evolutionary assumptions (M!).
eFraction of runs in which black hole merged with something other than another black

hole.
fFraction of runs in which black hole merged with neutron star.
gAverage binary eccentricity prior to merger.
hAverage semimajor axis of orbit around SMBH where merger occurred (pc).
iAverage mass of BH-BH binaries that merged (M!).
jAverage number of single black holes ejected per binary that merged.
kAverage time between first encounter and merger (years).
lAverage number of interactions before merger.
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6.3.4 Details of Binary End States

Figure 6.3 is a histogram that shows the distance from the SMBH at which binaries

with borderline values of initial hardness (ε = 4) meet their end. Those that soften

significantly are usually ionized (shown in blue) at a few tenths of a pc, while those

that are not softened tend to merge closer to the SMBH at a peak distance of ∼ 0.1

pc. Tidal separations (in red) do not peak strongly at any radius. We see two distinct

paths here: borderline binaries that merge tend to have fewer encounters and soften

less than those that ionize, which allows them to sink further in the nucleus. Mergers

then typically occur when an encounter drives up the eccentricity to a large value. In

contrast, borderline binaries that soften have increasingly frequent encounters, and

therefore do not travel very far in the nucleus before they ionize. For comparison,

Figure 6.4 is a similar histogram, showing where hard binaries (ε = 50) reach their

end states. Most of these hard binaries merge at ∼0.1 pc, but those that do ionize

(open, blue) or tidally separate (filled, red) generally do so at smaller radii than in

the case of borderline binaries. We see from these plots that binaries tend to ionize,

merge, or tidally separate well outside of the region (r ∼ 0.01 pc) where resonant

relaxation is important, therefore we feel that it is unlikely that the addition of

resonant relaxation effects would greatly change our results.

We show in Figure 6.5 that mergers are strongly associated with very high binary

eccentricities. While successive hardening could lead to mergers, the gravitational

radiation inspiral time depends on the pericenter distance of the binary rather than

its semimajor axis. Therefore an encounter that causes a jump to a high eccentricity

will induce a merger.

Tidal separations occur predominantly at high eccentricities, as demonstrated

in Figure 6.6, which extends the results of H09 to unequal masses. A high orbital
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eccentricity is likely the factor that delineates binaries that are tidally separated

from those that ionize. Binaries that succumb to these two outcomes have similar

journeys. In both cases, the binaries tend to undergo multiple encounters which

cause them to soften. Those that wander to a high eccentricity without ionizing

have a close pericenter pass with the SMBH and are easily pulled apart, ending as

tidal separations. The lack of dependence of mergers on orbital eccentricity is not

surprising, since mergers are driven by large internal binary eccentricities.

Figure 6.7 is a scatter plot of the final hardness vs the initial hardness for binaries

that range in initial ε. Each horizontal strip represents BH-BH binaries of differing

initial hardness (as in e.g. Table 10), with very soft binaries at the bottom of the

plot, and those that are initially hard at the top. The green circles are binaries that

merged, red triangles are those that were tidally separated, and the blue squares are

ionized binaries. We see that the initial hardness of a binary determines its range

of possible end states. Those that are very hard to begin with merge, while those

that are soft typically ionize. A borderline binary has the widest array of possible

fates−merging or tidally separating if its internal or orbital eccentricity reaches a

high value, and ionizing if it experiences runaway softening.

Additionally, the degree to which the binding energy deviates from its initial

value is dependent on its initial hardness. Note that the hardness of very hard

binaries does not stray far from the initial value, and the same is true for initially

soft binaries. Very soft binaries are not around long before they are ionized, and hard

binaries simply do not interact enough to harden significantly. We can illustrate the

latter with a quick calculation. Recall that the interaction time is

tint =
1

nΣσ
, (6.10)

where Σ = πrp
2 + 2πrp(Gmbin/σ2) is the encounter cross section for an interac-

tion with close approach rp and encounter speed σ. For a gravitationally focused
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encounter,

Σ ≈ 2πrp(Gmbin/σ
2) , (6.11)

and substituting n = ρ/m∗ gives an interaction time of

tint =
m∗σ

2πGmbinρ rp
. (6.12)

The time that it takes for a hard binary to harden significantly is the time required

for it to interact with approximately its own mass in stars. For these binaries,

rp = 2Gmbin/σ2 , and the hardening timescale is

tharden =
(

mbin

m∗

)
tint =

σ3

4πG2mbinρ
. (6.13)

If we compare this to the time it takes for the binary to sink, or the relaxation time

trel =
1

3 ln Λ

σ3

G2mbinρ
(6.14)

then we find that

trel
tharden

=
4π

3 ln Λ
≈ 0.4 . (6.15)

A hard binary only interacts with ∼ 40% of its mass in interlopers before it sinks to

the center of the nucleus, which explains why our simulations show that very hard

binaries do not harden significantly. Figure 6.8 further illustrates this point with a

histogram of the ratio of initial to final binding energies for merging binaries with

three different values of initial hardness. The energies of very hard binaries (shown

in green) are largely unchanged, while the softer binaries (in red and blue) wander

farther away from their initial values.
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6.4 Discussion and Conclusions

6.4.1 The Fates of Binaries

If black hole binaries vary in initial hardness with equal numbers in equal log a,

as is the case for main-sequence binaries, then binaries in galactic nuclei have a

variety of possible end states. Hard binaries tend to merge when they reach high

eccentricities, while soft binaries are typically ionized. Tidal separations generally

occur when the orbit around the SMBH is highly eccentric, although the softening

that results from increasing encounter velocities near the SMBH makes it possible

for binaries to be pulled apart at lower eccentricities. Encounters with hard binaries

are more likely to lead to ejections, however ejections are rare due to the high escape

velocities of galactic nuclei. Exchanges tend to produce binaries of above average

mass, and, consequently, mergers and tidal separations involve BHs on the high end

of the mass spectrum. As a rule, the overall fractions of mergers, ionizations, and

tidal separations are very similar regardless of whether binaries begin with two BHs

or a BH and a less massive companion. Additionally, binaries typically meet their

fates within tens to hundreds of millions of years.

Binaries are tidally separated at distances of ∼ 103 − 104 AU from the SMBH,

depending on whether they are initially hard or soft. A newly-captured BH on

a circular orbit with semimajor axis a = 103 AU will spiral in to the SMBH in

∼ 2 × 1012 years, which is clearly too long for such BHs to produce detectable

EMRIs. However, this close to the SMBH, interactions with passing stars will cause

the eccentricity of the BH orbit to wander, and some percentage of these BHs will

be perturbed into orbits that will inspiral and produce the circular EMRIs discussed

in Ch. 5. We therefore view tidal separation of binaries as an important means of
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depositing BHs near the SMBH, which will contribute to the overall rate of EMRI

detections for LISA.

6.4.2 LIGO Detection Rates

Mergers of black hole binaries in galactic nuclei will produce sources for LIGO and

other ground-based instruments. The fraction of binaries that merge in moderately

segregated nuclei varies from zero for soft binaries to ∼ 96% for very hard binaries.

To be conservative in our estimate of LIGO detection rates, we will assume that

10% of BHs will merge in a Hubble time. If there is ∼ 106M% in stars within the

radius of influence, and 3×10−3(mass in stars/M%)= 3×103 BHs per nucleus, then

there will be 3×103×0.1
1.37×1010 = 2.2 × 10−8 mergers per year per galaxy. With a number

density of Milky Way equivalent galaxies of 10−2 Mpc−3, and if the merger of a 20

M% binary is observable to a volume of 6.4× 109 Mpc3, we expect a rate of (2.2×

10−8)(10−2)(6.4×109) ≈ 1.4 mergers per year to be detectable with Advanced LIGO.

This is a conservative estimate because the merger fraction could be significantly

higher due to the contribution from hard binaries, and because we have restricted

this calculation to within the radius of influence. The total number of BHs is likely

higher because massive objects will sink to the center from outside the radius of

influence in less than a Hubble time. Also, the observable volume of Advanced

LIGO assumes a binary mass of 20M%, however we find that merging binaries tend

to be more massive and could therefore be observed at greater distances. Given

these considerations, rates of tens per year with Advanced LIGO are easily within

reach.

122



6.4.3 Summary

In summary, black hole binaries in moderate-sized galactic nuclei containing SMBHs

will contribute to the detection rates of LIGO and LISA. Binaries are often ionized

due to high velocities at the galactic center, however significant fractions will merge

or be tidally separated. Mergers in galactic nuclei will contribute∼ tens of detections

per year with Advanced LIGO. In general, hard binaries do not harden significantly

as they sink, which means that they will not simply tighten continuously until they

are close enough to the SMBH to be tidally separated. The hardening rate is simply

not fast enough, and binaries ionize or merge before this scenario can play out.

Rather, binaries that are tidally separated typically have at distances of ∼ few

thousand AU, with eccentric orbits in excess of 0.85. The exception is very hard

binaries that essentially plunge directly into the SMBH on radial orbits and hence

do not contribute to the EMRI rate. The majority of tidal separations deposit BHs

very near the SMBH, which will provide a supply of BHs that could be scattered

into orbits that will spiral in and produce circular EMRI signals to be detected

with LISA. Therefore, galactic nuclei are a unique environment that will produce

gravitational wave sources in the sensitivity bands of both space- and ground-based

gravitational wave detectors.
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Figure 6.1: As the binary orbits the SMBH, its semimajor axis decreases (solid red curve
and left vertical axis) and its eccentricity increases (dashed blue curve and right vertical
axis) due to dynamical friction. This particular binary ends with a merger.

124



Figure 6.2: Multiple encounters cause the eccentricity (dashed blue curve and right
vertical axis) of the binary to vary. In this instance, the semimajor axis (solid red curve
and left vertical axis) of the binary decreases and subsequently increases prior to tidal
separation.
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Figure 6.3: Histogram of the final distance from the SMBH reached by borderline (ε = 4)
binaries. Ionizations (blue, open) occur at a few tenths of a pc, while mergers (green,
hatched) peak at ∼ 0.1 pc. Tidal separations (red, filled) do not peak strongly at any
radius. Borderline binaries that merge tend to have fewer encounters and soften less than
those that ionize, which allows them to sink further in the nucleus. Mergers then typically
occur when an encounter drives up the eccentricity to a large value. Borderline binaries
that soften have increasingly frequent encounters, and therefore do not travel very far in
the nucleus before they ionize.
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Figure 6.4: This is a similar histogram to Fig 6.3, but for harder binaries. Here we
show the final distance from the SMBH reached by hard (ε = 50) binaries. Most of these
hard binaries merge at ∼0.1 pc, but those that do ionize (open, blue) or tidally separate
(filled, red) generally do so at smaller radii than in the case of borderline binaries. This
figure and Figure 6.3 demonstrate that binaries are destroyed outside of the region where
resonant relaxation is effective (r ∼ 0.01 pc from the SMBH).
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Figure 6.5: Mergers (filled, green) tend to occur when the binary has a high eccentricity.
There is not a strong correlation for tidal separations (open, red).
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Figure 6.6: Binaries that wander to a high eccentricity without ionizing have a close
pericenter pass with the SMBH and are easily pulled apart, ending as tidal separations
(filled, red). The lack of dependence of mergers (in green, lightly hatched) on orbital
eccentricity is not surprising, since mergers are driven by large internal eccentricities in
binaries. Whether a binary is ionized depends on its softness, therefore ionizations (blue,
open) can occur at any orbital eccentricity.
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Figure 6.7: Scatter plot of the final hardness vs the initial hardness for binaries that
range in initial hardness. Each horizontal strip represents BH-BH binaries of differing
initial hardness with binaries that begin soft at the bottom of the plot, and those that
are initially hard at the top. The green circles are binaries that merged, red triangles are
those that were tidally separated, and the blue squares are ionized binaries. The initial
hardness of a binary determines its range of possible end states. Those that are very hard
to begin with merge, while those that are soft typically ionize. A borderline binary has
the widest array of possible fates−merging or tidally separating if its internal or orbital
eccentricity reaches a high value, and ionizing if it experiences runaway softening.
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Figure 6.8: Histogram of the ratio of initial to final binding energies for merging binaries
with three different values of initial hardness. The energies of very hard binaries (shown
in solid green) are largely unchanged, while the softer binaries (in open red and hatched
blue) wander farther away from their initial values.
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Chapter 7

Conclusions

“If you haven’t found something strange during the day, it hasn’t been

much of a day.”

—John A. Wheeler

In this dissertation we have investigated binaries as a means of producing grav-

itational wave sources on two galactic scales: small galaxies with central nuclear

star clusters but without massive black holes, and larger galaxies with supermassive

black holes at their centers. We have shown that both of these environments are

promising gravitational radiation hosts.

Our simulations show that binaries merge very efficiently in nuclear star clusters.

In clusters with Vesc > 150 km s−1 the overwhelming majority of BH binaries merge

in the nuclear star cluster rather than being ejected, which is in contrast with

globular clusters. Because globulars have comparatively low escape speeds, BH

binaries that form within clusters generally merge after being ejected. Not only do

nuclear star clusters tend to retain their BH binaries, but typically there are only

1–2 single BHs ejected per merger, which means that > 50% of BHs will merge. In

contrast, at the 50 km s−1 escape speed typical of globulars, > 20 single BHs are
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ejected per merger, which gives an efficiency of < 10%. In nuclear star clusters that

have undergone significant mass segregation, the average mass of BHs that merge,

binary ejection fraction, number of singles ejected per merger, and number of BHs

that merge with other BHs rather than another type of object are all robust against

variation in the slope of the mass function. For less segregated clusters, the fraction

of binaries retained rises quickly to unity because most of the objects that interact

with the BHs are less massive stars. On the whole, we find that there is a large

range of realistic parameters for which fewer than 10% of binary BHs are ejected

before merging, which distinguishes nuclear star clusters as very effective producers

of BH mergers. As such, we expect BH mergers in nuclear star clusters in small

galaxies to contribute ∼tens of events per year to Advanced LIGO rates.

When we leave behind the realm of nuclear star clusters and explore larger

galaxies that host supermassive black holes, a new type of gravitational radiation

source becomes possible: extreme-mass ratio inspirals. If a BH binary sinks through

the nucleus of such a galaxy, then we show that the SMBH can tidally separate the

binary and capture one of the BHs onto an orbit that will spiral in and merge within

a Hubble time. The resulting tidal separation EMRIs have larger pericenters and

smaller apocenters than EMRIs formed by two-body capture. This will produce

distinct classes of EMRI signals as detected by LISA: circular EMRIs resulting

from binary separation, and eccentric EMRIs resulting from two-body capture. In

addition, if ∼10% of BHs are in binaries, we find that tidal separation EMRIs could

dominate the overall rates. Therefore, the detected signals will not only provide

insight into the total number of BHs in nuclei, but also the fraction of those BHs

that are in binaries. The binary fraction depends in large part on how well binaries

are able to withstand multiple encounters in dense galactic centers.
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A binary will have increasingly fast encounters as it sinks through a galactic

nucleus toward the SMBH, which can lead to runaway softening and ionization.

Because BHs sink more rapidly than less massive stars, we expect that nuclei will

have undergone some degree of mass segregation. Hence, the factor that determines

the fates of binaries is their initial hardness. We find that if black hole binaries have

a range in initial internal energies, then ionizations, mergers, and tidal separations

are all likely outcomes of encounters in galactic nuclei. Hard binaries interact less

frequently and tend to merge when they reach high internal eccentricities, while soft

binaries have more encounters and are typically ionized. Tidal separations generally

occur when the orbit around the SMBH is highly eccentric, although the soften-

ing that results from the increase in encounter velocities near the SMBH makes it

possible for some binaries to be pulled apart at lower eccentricities. Tidal separa-

tions that occur at distances of ∼thousand AU are close enough to the SMBH that

passing stars can gradually perturb the BHs into orbits that will produce circular

EMRIs and thereby contribute to the LISA rate. We find that encounters with hard

binaries are more likely to cause ejections, however ejections are rare due to the

high escape velocities of galactic nuclei and the infrequency with which very hard

binaries interact. Massive BHs tend to swap into binaries, therefore mergers and

tidal separations involve BHs on the high end of the mass spectrum. Our conserva-

tive estimate of the Advanced LIGO rate from dynamically-induced BH mergers in

galactic nuclei is ∼tens per year.

In closing, we have demonstrated that mergers of BH binaries in nuclear star

clusters in small galaxies, as well as mergers and tidal separations in larger galaxies

with SMBHs are important sources of gravitational waves for both ground-based

and space-based detectors.
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