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Abstract

According to General Relativity a perturbed black hole will return to a stable config-

uration by the emission of gravitational radiation in a superposition of quasi-normal

modes. Such a perturbation will occur due to the coalescence of a black hole binary,

following their inspiral and subsequent merger. At late times the waveform, which we

refer to as a ringdown, is expected to be dominated by a single mode. As the wave-

form is well-known the method of matched filtering can be implemented to search for

this signal using LIGO data. LIGO is sensitive to the dominant mode of perturbed

black holes with masses between 10 and 500 M�, the regime of intermediate-mass

black holes, to a distance of up to 300 Mpc. We present a search for gravitational

waves from black hole ringdowns using data from the fourth LIGO science run. We

implement a blind analysis of the data. We use Monte Carlo simulations of the ex-

pected waveform, and an estimation of the background from timeslides to tune the

search. We present an analysis of the waveform parameter estimation and estimate

the efficiency of the search. As there were no gravitational wave candidates found,

we place an upper limit on the rate of black hole ringdowns in the local universe.
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Chapter 1

Introduction

Black hole ringdowns are amongst the most promising sources of gravitational waves,

detectable with current detectors out to very large distances, as far as 300 Mpc

from the Earth. The ringdown is the final phase of a binary black hole coalescence,

following the inspiral and merger.

A central result of general relativity is that gravitational waves are emitted from

an accelerating mass. It has been established using black hole perturbation theory

that the waveform emitted by a perturbed black hole can be modeled as a superpo-

sition of quasi-normal modes, with “quasi” referring to the fact that the oscillation

is damped. It is expected that at late times the oscillation will be dominated by a

single mode. Throughout this analysis we will refer to a gravitational wave emitted

from a perturbed black hole as a “ringdown waveform” or just “ringdown”.

This thesis presents the results of a search for gravitational waves from perturbed

black holes using data from the Laser Interferometer Gravitational Wave Observatory

(LIGO), a project dedicated to the detection of gravitational waves. LIGO is run

jointly between Caltech and MIT, and funded by the National Science Foundation.

The observatory consists of three detectors at two sites; Hanford, WA hosts a 4 km

interferometer (H1) and a 2 km interferometer (H2), and Livingston, LA is home to a

second 4 km interferometer (L1). Construction of the interferometers began in 1996,

starting the Initial LIGO phase. After several engineering runs the first LIGO science

run (S1) began on August 23rd, 2002 and lasted a little over two weeks. Between

then and mid-2005 three more science runs took place at a rate of about one per
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year with S2 and S4 lasting approximately one month each and S3 collecting three

months of data. By late 2005, LIGO reached its initial design sensitivity, and on

November 4th, 2005, S5 began. The goal of S5 was to collect one year’s worth of

triple coincidence data; this was achieved by September 30th, 2007. At the time of

writing, the LIGO detectors are undergoing significant upgrades for the Enhanced

LIGO phase [1], which will implement many of the Advanced LIGO technologies and

see a factor of 2–3 increase in sensitivity. This will culminate in the S6 run, scheduled

to start in the autumn of 2009.

We begin in chapter 2 with an introduction to gravitational waves; we discuss how

they may be detected through laser interferometry and outline some possible sources

of gravitational waves. In chapter 3 we provide the motivation for the search. We

discuss theoretical and astrophysical black holes and introduce the waveform we are

searching for. Chapter 4 describes the method of matched filtering and the template

bank used in the search. The pipeline that has been created to implement a search

for ringdowns is detailed in chapter 5. In chapter 6 we describe some of the important

details about the S4 science run. We describe the tools used to tune the search in

chapter 7, and explain how the final values of the constraints were arrived at. In

chapter 8 we describe the results of a large scale Monte Carlo run. We evaluate the

efficiency of the search, compare the expected and detected waveform parameters,

and compare the recovered parameters between pairs of detectors. We also estimate

the background and compare it to a subset of the data. In chapter 9 we describe the

results of the search. We did not find any plausible gravitational wave candidates in

the S4 data set. We place an upper limit on the rate of ringdowns and investigate

some of the loudest candidate events. In chapter 10 we investigate the effect that

the presence of an inspiral and merger preceding the ringdown would have on our

ability to detect and estimate the parameters of ringdowns. In chapter 11 we make

some recommendations for future ringdown searches and document some issues we

encountered in the course of the search. We give a brief summary of our results and

a final conclusion in chapter 12.
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Chapter 2

Gravitational Waves

In this chapter we introduce gravitational waves and outline how they may be detected

using laser interferometry, in particular by the LIGO detectors. We also describe some

of the likely sources of gravitational waves.

2.1 Gravitational Waves in General Relativity

“Spacetime grips mass, telling it how to move, and mass grips spacetime, telling it

how to curve”, a famous quote of John Wheeler’s summarizing the mutual dependence

of mass and spacetime in the theory of general relativity. This was a central result

of Einstein’s theory of general relativity, expressed mathematically by Einstein in

what is now known as the Einstein equation, a set of ten nonlinear partial differential

equations for ten metric coefficients, gαβ(x), relating the Einstein curvature tensor

Gαβ (a measure of local spacetime curvature) to the stress-energy tensor of matter

Tαβ (a measure of matter energy density),

Gαβ (gαβ) =
8πG

c4
Tαβ, (2.1)

where G is Newton’s constant and c is the speed of light. A general solution for

this equation has not been found, however various techniques exist for solving the

equations under particular circumstances. One such case is weak time-varying fields

producing “ripples in spacetime” or gravitational waves.
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Under the assumption that the gravitational waves produced by the source are

weak, the metric can be written as a small perturbation hαβ of the flat spacetime

metric in Minkowski coordinates ηαβ = diag(−1, +1, +1, +1), where |hαβ| � 1,

gαβ(x) = ηαβ + hαβ(x). (2.2)

In the weak field limit the non-linear Einstein equation can be approximated as linear,

and with the choice of the transverse-traceless gauge, is given by the wave equation

(
− 1

c2

∂2

∂t2
+
−→
∇2

)
hαβ(x) = 0. (2.3)

The solution to this equation is

hαβ(x) = aαβeik·x, (2.4)

where aαβ is a symmetric 4 × 4 matrix of constants giving the amplitudes of the

various components of the wave, and k is the wave vector such that

k · x = −ktt +
−→
k · −→x . (2.5)

Substituting equation (2.4) into equation (2.3) gives the condition

kαkα = 0, (2.6)

showing that the wave propagates at the speed of light. Our choice of gauge gives us

the following constraints:

kαaαβ = 0 (2.7)

aα
α = 0 (2.8)

aαβuβ = 0, (2.9)
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where uβ is some fixed four-velocity. The first constraint restricts aαβ to be orthogonal

or transverse to kα, the second requires that the matrix is traceless and the third,

if we orient the coordinate axes such that the direction of propagation is along the

z-axis, implies that aαz = 0. These conditions reduce the number of components of

aαβ from ten to just four,

aαβ =


0 0 0 0

0 axx axy 0

0 axy −axx 0

0 0 0 0

 . (2.10)

We write the final form of the solution to the source-free, linearized Einstein equation

as

hαβ =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 eiω(z−t). (2.11)

Thus the transverse traceless gravitational wave travels at the speed of light and is

composed of two independent polarizations; h+ is known as the plus polarization and

h× is the cross-polarization.

The energy density is given by the stress-energy tensor

TGW =
1

32π

c2

G

∑
i,j

〈
hTT

i,j,0, h
TT
i,j,0

〉
=

1

16π

c2

G

〈
|h+,0|2 + |h×,0|2

〉
, (2.12)

where 〈...〉 denotes an average over several wavelengths [2].
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2.2 Detection of Gravitational Waves

2.2.1 Effects of Gravitational Waves on Test Masses

The effects of a gravitational wave cannot be seen in isolated bodies, but only by

observing the change in separation between pairs of masses. Take as an example a

pair of test masses separated by a distance L (as measured in the unperturbed flat

spacetime) along the x-axis, and a gravitational wave propagating along the z-axis.

In the perturbed spacetime the distance between the test masses L′ is

L′(t) =

∫ L

0

[1 + hxx (t, x)]1/2 dx (2.13)

which, in the long wavelength approximation can be expressed as

L′(t) ≈ L

[
1 +

1

2
hxx (t, 0)

]
(2.14)

and thus for a change in distance between the two test masses δL′ = L′−L, the strain

produced by the gravitational wave is

δL′ (t, 0)

L
=

1

2
hxx (t, 0) . (2.15)

An illustration of the effects of a gravitational wave is shown in figures 2.1 and

2.2. These show a circular configuration of free test masses in the z = 0 plane. From

the view point of the central test mass the gravitational wave manifests itself by

stretching space between it and the other test masses in one direction transverse to

the direction of propagation and contracting in the orthogonal direction in the same

plane, changing the circular pattern of the test masses to an elliptical configuration.

Half a period later the effect is reversed; those masses which were displaced furthest

from the central test mass are now brought closest and vice versa. The gravitational

wave polarization which causes maximal stretching along the x and y axes is known

as the plus polarization. Rotating the coordinate axes by 45◦ in the z = 0 plane

demonstrates the cross polarization. The most general gravitational wave traveling
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in the z direction is a linear superposition of these two polarizations.

Figure 2.1: Illustration of the effect of a gravitational wave with plus polarization on
a ring of test particles when the direction of propagation of the gravitational wave is
orthogonal to the plane of the particles.

Figure 2.2: Illustration of the effect of a gravitational wave with cross polarization on
a ring of test particles when the direction of propagation of the gravitational wave is
orthogonal to the plane of the particles.

It is evident from figures 2.1 and 2.2, the gravitational wave is invariant under a

rotation of 180◦ about its direction of propagation, θinv = 180◦. This is related to the

spin S of the zero-mass particle associated with the field, which in the case of gravity

is the graviton, by the relation S = 360◦/θinv, and thus is a consequence of the fact

that the graviton is spin-2 (the quantum analogue of a classical rank-2 tensor field)

[3].

2.2.2 Detecting Gravitational Waves with Laser Interferom-

etry

The detection of gravitational waves through laser interferometry takes advantage of

the effects just described, and uses laser light as a displacement measuring device. We

replace the central test mass in the configuration above with a 50% reflecting mirror

known as a beam splitter (BS), and replace the ring of test masses with two highly

reflecting mirrors placed at an equal distance from, but in orthogonal directions to the
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BS. These mirrors are referred to as end test masses in the x and y direction, ETMX

and ETMY. The BS directs an input beam of laser light towards the ETMs. If the

distance between the ETMs and the beamsplitter is the same in the two arms, the

phase of the light reflected from the ETMs is the same. A gravitational wave traveling

in a direction orthogonal to the plane of the detector will increase the distance between

the BS and the ETM in one arm and decrease the distance in the other arm. This

will produce a phase difference on the light received by a photodiode at the output

of the interferometer. The longer the distance the light has to travel the greater the

phase shift will be. This optical configuration describes a Michelson interferometer

[4].

2.2.3 The Laser Interferometer Gravitational Wave Obser-

vatory, LIGO

The LIGO detectors are Michelson interferometers with the additional feature of

Fabry-Perot arms. These are resonant cavities, formed by placing an additional mirror

just after the laser in both arms at an integral number of wavelengths from the ETM.

These mirrors are known as input test masses, ITMX and ITMY. These resonant

cavities allow the light to circulate many times, effectively increasing the length of

the arms. The ITMs and ETMs are separated by 4 km in H1 and L1, and by 2 km in

H2. The light circulates in the resonant cavities approximately 200 times. LIGO also

employs power recycling, in which an additional mirror (the power recycling mirror

PRM) is placed between the laser and the BS, resonantly enhancing the light stored

in the interferometer. A schematic of the LIGO detectors is shown in figure 2.3.

As mentioned in chapter 1 LIGO has successfully completed six science runs since

2002. In figure 2.4 we show the best strain sensitivity curves from each of the five

science runs, along with the design sensitivity curve. The plot demonstrates the large

increases in sensitivity achieved between runs to the point where, in S5, the LIGO

detectors achieved design sensitivity. The plot also shows that the LIGO detectors

are most sensitive to gravitational waves between ∼ 40 Hz and 2 kHz.
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Figure 2.3: Schematic of the LIGO interferometer. Picture courtesy of LIGO lab.

2.2.3.1 Calibration of the LIGO Detectors

Calibration of the data is essential to determining the sensitivity to distant sources

of gravitational radiation [5, 6]. Here we describe how it is achieved.

The data to be analysed is taken from the gravitational wave channel DARM ERR,

q(t). This is the error signal on the feedback loop which is used to control the differ-

ential motion of the interferometer arms (DARM). It is related to the gravitational

wave strain in the Fourier domain h(f) by the response function R(f)

h(f) = R(f)q(f). (2.16)

Accurate reconstruction of the strain from the error signal, i.e., determination of the

response function R(f), is essential and is done through the process of calibration

[5, 6].

The response of the interferometer to a gravitational wave strain can be charac-

terized by a loop gain function G(f), which is parameterized by three functions, a

sensing function C(f), an actuation function A(f), and a digital filter function D(f),

by

G(f) = C(f)D(f)A(f). (2.17)
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Figure 2.4: Best LIGO strain sensitivity curves for the science runs S1 to S5. The
LIGO design sensitivity curve is shown in black.

The control loop is shown in figure 2.5. A control strain sc subtracts from the grav-

itational wave strain plus noise, h = sGW + n, leaving a residual strain sres. The

sensing function C(t, f) = γ(t)C0(f) consists of a reference sensing function C0 and a

loop gain γ(t), which depends on the light power stored in the arms. C0 is dominated

by the cavity pole frequency response (1 + f/fp)
−1, with fp ≈ 90 Hz. As described

in the next section, γ(t) is a relative measurement which changes over time as the

alignment of the mirrors varies. The sensing function converts the residual strain

into a digital error signal q which is read out by the channel DARM ERR in arbi-

trary units of counts at a rate of 16384 Hz. The digital filter D(f) converts the error

signal to a control signal d that is sent to the mirrors as an actuation. This quantity

is known precisely. The actuation function converts the control signal to strain by

sending a current to coils surrounding magnets which are attached to the mirrors.

This produces a force and hence a displacement of the mirrors, adjusting the lengths
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of the cavities. From the figure we can see that

q(f) = γ(t)C0(f)sres, (2.18)

h = sres + sc, (2.19)

and

sc = sresC0γ(t)D(f)A(f). (2.20)

Substituting these quantities in equation (2.16) and solving for R gives the response

function

R(f) =
1 + γ(t)G0(f)

γ(t)C0(f)
, (2.21)

where G0 = C0(f)D(f)A(f) is the reference open loop gain.

Figure 2.5: Detector control loop

2.2.3.2 Calibration Lines

As was mentioned above, the calibration coefficient γ is a function of time. In practice

it changes on the order of minutes. In order to track these changes, sinusoidal signals

of known frequency are added to the control signal. For the S4 run these were at

46.7, 393.1, and 1144.3 Hz for H1; 54.1, 407.3, and 1159.7 Hz for H2; and 54.7, 396.7,
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and 1151.5 Hz for L1. By digitally heterodyning the error signal, the control signals,

and the excitation signal with the injected sinusoid, the calibration coefficients can

be found.

2.2.4 Antenna Response and Effective Distance

Up until now we have been concerned with gravitational waves propagating from

directly above (or below) the interferometer, so-called “optimally positioned and ori-

ented” sources that give the maximum response in the interferometer. However, in

reality not only can a gravitational wave come from any direction in the sky but its

orientation may be such that the detectors can only capture some portion of it. In

calculating the strain produced by a given source these considerations need to be

accounted for. Figure 2.6 displays coordinates for the emission, propagation, and

reception of a gravitational wave. The source has axes (x, y, z), with the z-axis in the

direction of the angular momentum. The line between the source and the detector r

makes an angle ι with the z-axis. This is the angle of inclination. At the detector the

local coordinate axes are (x′, y′, z′), with x′ and y′ along the arms of the interferome-

ter. r makes an angle θ with the z′ axis and an angle φ with the x′ axis. In between

we have the propagation coordinates, (x′′, y′′, z′′) such that z′′ lies along r and the x′′

and y′′ axis make an angle Ψ with the x′ and y′ axes. This is the polarization angle.

Thus the strain produced at the detector is given by

h(t) = h+(t)F+(θ, φ, Ψ) + h×(t)F×(θ, φ, Ψ), (2.22)

where the plus and cross detector beam functions F+ and F× [7] are given by

F+ = −1

2
(1 + cos2 θ) cos 2φ cos 2Ψ− cos θ sin 2φ sin 2Ψ (2.23)

F× =
1

2
(1 + cos2 θ) cos 2φ sin 2Ψ− cos θ sin 2φ cos 2Ψ. (2.24)

The detector plus, cross, and unpolarized combination
√

F 2
+ + F 2

× are shown in figure

2.7. The figures show that there is a null point in the antenna pattern. If a gravita-
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Figure 2.6: Illustration of source (x, y, z), radiation (x′′, y′′, z′′) and detector (x′, y′, z′)
frames.

tional wave is traveling in a direction orthogonal to the plane of the detector and the

polarization angle is at 45 degrees to the x′ and y′ axes the effect of the gravitational

wave will be the same in both arms and no phase shift will be produced.

We define the effective distance Deff as the distance to an optimally positioned

and oriented source that produces the same strain in the detector as a source at a

given position, polarization, and inclination at a distance D,

Deff =
D√

F 2
+ (1 + cos2 ι)2 /4 + F 2

× cos2 ι
. (2.25)

2.3 Sources of Gravitational Waves

Even though gravitational waves have not yet been directly observed, their existence

has been inferred through careful monitoring of the orbital period of the binary pulsar

PSR 1913+16, discovered by Hulse and Taylor in 1974 [9]. They observed that the

orbital period of the binary system was decreasing in a manner precisely consistent
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Figure 2.7: The plus, cross, and unpolarized combination
√

F 2
+ + F 2

× antenna patterns
for the LIGO detectors. (This figure was taken from [8].)

with the loss of energy and angular momentum due to gravitational radiation. For

this they were awarded the Nobel Prize in 1993.

Below we briefly outline the main sources of gravitational waves, categorized by

waveform type. The LIGO Scientific Collaboration (LSC) data analysis efforts are

structured around searches for these different waveform morphologies.

2.3.1 Binary Coalescence

A system composed of either two neutron stars, two black holes, or one of each

bound together by gravity forms a binary system. According to general relativity

the objects will lose energy through the emission of gravitational radiation. As a

result their orbits shrink and the two stars spiral in towards one another eventually

combining to form a single star, most likely a black hole. This process is called binary

coalescence. The coalescence can be divided into three phases according to how well

we can model the waveform at different times. The “inspiral phase” is defined as

that time while the two stars are distinct objects orbiting around one another and

the gravitational waveform emitted can be well approximated by the post-Newtonian

model (i.e., the velocities are low). The post-Newtonian approximation breaks down

as the stars begin their final few orbits and plunge in towards one another. We refer

to this as the “merger” phase. Although numerical simulations are telling us more
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about the waveform produced at this stage (see chapter 10) it is still not represented

by an analytic waveform. We refer to this waveform as an unmodeled burst. (Searches

for this type of waveform will be discussed in the next section.) After the plunge,

the resulting star tries to return to a stable configuration by emitting gravitational

waves in a series of quasi-normal modes. These are also well modeled and this phase

is known as the “ringdown phase”.

The search for gravitational waves from the ringdown phase is the subject of this

thesis, thus we dedicate chapter 3 to a discussion of this waveform and black holes in

general.

The waveform produced during the inspiral phase is colloquially known as a chirp

waveform, because the frequency and amplitude of the signal increases rapidly with

time. For a binary of total mass M , separation a, and orbital period T at a distance

r, the characteristic strain expected from the inspiral can be approximated as [10]

h ∼ G

c4

Ek

r
, (2.26)

where Ek = M(πa/T )2 is the kinetic energy of an equal mass binary due to non-

spherical motion. Employing Kepler’s third law T 2 = 4π2a3/GM we can estimate

the strain as

h ∼ 10−20

(
6.3 kpc

r

) (
M

2.8 M�

)5/3 (
T

1 s

)−2/3

. (2.27)

As the signal is well known it can be searched for using the method of matched

filtering (introduced in chapter 4). Inspiral searches on LIGO data over the past five

data runs have targeted binaries containing neutron stars, stellar mass black holes,

and primordial black holes. Details of these analyses may be found in the following

papers [11, 12, 13, 14, 15, 16, 17].

2.3.2 Unmodeled Bursts

There are many astrophysical sources which are likely to emit what is best described

as a burst of gravitational waves whose exact form is not well known. This includes
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gravitational waves from the merger of two stars described above, supernova explo-

sions, gamma ray burst (GRB) engines, and possibly sources we are not even aware

of. Data analysis algorithms capable of identifying short-duration excesses of strain

power and correlating these between detectors are employed to search for unmod-

eled sources. A selection of papers describing results of LIGO burst analyses are

[18, 19, 20, 21, 22].

2.3.3 Periodic Sources

The mechanism by which a rapidly spinning neutron star is most likely to emit grav-

itational waves occurs if its shape deviates from axisymmetry. This deviation is

expressed as the ellipticity ε of the neutron star, ε = (Ixx − Iyy) /Izz, where Ijj rep-

resent the moments of inertia about the principle axes. The resulting gravitational

wave has a frequency twice the rotational frequency frot. The expected strain for a

neutron star at a distance r is

h ∼ 4π2G

c4

Izzfrotε

r
(2.28)

= 2× 10−26

(
frot

1 kHz

)2 (
10 kpc

r

) ( ε

10−6

)
(2.29)

[10]. Both all-sky and targeted searches have been undertaken within the LSC, details

may be found in the following papers: [23, 24, 25, 26, 27, 28].

2.3.4 Stochastic Background

Analogous to the cosmic microwave background of electromagnetic radiation is the

stochastic background of gravitational radiation. This may be composed of gravita-

tional waves of cosmological origin as well as of astrophysical origin. The latter is a

random superposition of weak signals from supernovae, binary coalescences, and ro-

tating neutron stars. Detection of gravitational waves of a cosmological origin would

provide a unique opportunity to explore the early universe, as other forms of radiation,

such as electromagnetic or neutrino, cannot probe such early times. Several searches
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for a stochastic gravitational background with LIGO data have been completed; see

[29, 30, 31, 32, 33] for more details.
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Chapter 3

Black Holes

3.1 Introduction

This chapter is concerned with theoretical and astrophysical black holes. We dis-

cuss the solution to the Einstein equation for perturbed black holes and the analytic

waveform of the emitted gravitational radiation far from the source, the – ringdown

waveform. This motivates the search for ringdowns in LIGO data described in later

chapters. We discuss astrophysical black holes and outline previous searches for ring-

downs.

3.2 Theoretical Black Holes

The first reference to objects now known as black holes came from the British geologist

John Michell in 1784 [34]. In a letter to Henry Cavendish describing a method of

determining a star’s distance, magnitude, and mass, he discusses the possibility of a

star with such a large gravitational force that light would be prevented from escaping

its surface:

“If the semi-diameter of a sphere of the same density as the Sun were to

exceed that of the Sun in the proportion of 500 to 1, a body falling from

an infinite height towards it would have acquired at its surface greater ve-

locity than that of light, and consequently supposing light to be attracted

by the same force in proportion to its vis inertiae (inertial mass), with
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other bodies, all light emitted from such a body would be made to return

towards it by its own proper gravity.”

It took another hundred and thirty two years for this notion to be revisited. Soon after

Einstein published his theory of general relativity in 1915 Karl Schwarzschild found

an exact solution to the Einstein equation for the geometry outside of a non-spinning

spherically symmetric star [35]. He found that if a star of mass M is confined to a

radius R = 2GM/c2, electromagnetic radiation is infinitely red-shifted and the star

appears dark. This radius later became known as the Schwarzschild radius. In 1939,

Oppenheimer and Snyder performed the first rigorous calculation demonstrating the

formation of a black hole from the implosion of an idealized star using the formalism

of general relativity [36]. The name black hole itself was coined by John Wheeler in

1968 [37].

General relativity tells us that a black hole is a region of spacetime where the

gravitational field is so powerful that nothing, not even light can escape. At the

center is the singularity, a point of zero volume and infinite density where all of

the black hole’s mass is located. Spacetime is infinitely curved at this point. The

singularity is enclosed by the event horizon. A black hole can be completely specified

by three parameters: its mass, spin and charge. All observable properties of the black

hole depend only on those three parameters; this is the so-called “no hair” theorem

[38].

The geometry outside of a non-spinning black hole is given by the Schwarzschild

metric,

ds2 = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2 (3.1)

and the geometry outside of an uncharged spinning black hole with angular momen-

tum J is described, in terms of the Boyer-Lindquist coordinates (t, r, θ, φ), by the
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Kerr metric,

ds2 = −
(

1− 2GMr

c2ρ2

)
c2dt2 − 4GMar sin2 θ

cρ2
dφdt +

ρ2

4
dr2

+ρ2dθ2 +

(
r2 + a2 +

2GMra2 sin2 θ

c2ρ2

)
sin2 θdφ2, (3.2)

where the spin a ≡ J/cM , ρ2 ≡ r2 + a2 cos2 θ and 4 ≡ r2 − 2GMr/c2 + a2.

From this point forth when talking about spin we refer to the dimensionless spin

parameter â = Jc/GM2. This ranges between 0 for a Schwarzschild black hole

and 1 for an extreme Kerr black hole. It is related to the spin a defined above by

â = ac2/GM .

3.3 Quasi-Normal Modes of Black Hole Oscillation

An astrophysical black hole can become perturbed by a number of processes, for

example by a massive object falling into it, by the merger of two black holes, or in

its formation through the asymmetric core collapse of a massive star. In this section

we discuss the emitted gravitational waveform.

3.3.1 Schwarzschild Black Holes

In 1957 Regge and Wheeler [39] investigated the stability of the Schwarzschild black

hole to small perturbations. Their study found that a disturbance of the black hole

from sphericity would not grow with time, but would oscillate about the equilibrium

configuration in a superposition of quasi-normal modes. They found that the solution

to the linearized Einstein equation could be expressed in terms of spherical harmonics

Ylm. Each mode has a characteristic complex angular frequency ωlm; the real part is

the angular frequency and the imaginary part is the inverse of the damping time τ .

In subsequent sections we will express ωlm in terms of the oscillation frequency flm
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and the quality factor Qlm:

ωlm = 2πflm − iτ−1
lm = 2πflm − i

πflm

Qlm

. (3.3)

In 1985 Leaver [40] determined the fundamental l = 2 and l = 3 modes, as well

as the first 62 overtones, indexed by n. The first of these are listed in table 3.1 [40].

The most slowly damped mode (i.e., that with the lowest value of the imaginary

part of the frequency) was found to be the l = 2, n = 0 mode. Figure 3.1 [40, 41]

shows the real part versus the imaginary part of the frequency, for a selection of

the l = 2 and l = 3 modes. The figure demonstrates that the imaginary part of

the frequency grows very quickly with n indicating that higher-order modes do not

contribute significantly to the emitted gravitational radiation. In contrast, the real

part of the frequency asymptotes to a constant value. The l = 2, n = 0 mode is

marked with a box in the figure. It was verified in 1993 that an infinity of these

modes exist [42].

Table 3.1: Quasi-normal modes of oscillation for a non-spinning black hole [40].

l n Mω
2 0 0.3737− ı0.0890

1 0.3467− ı0.2739
2 0.3011− ı0.4783

3 0 0.5994− ı0.0927
1 0.5826− ı0.2813
2 0.5517− ı0.4791

3.3.2 Kerr Black Holes

In 1973 Teukolsky [43] addressed the problem of perturbations of a rotating black

hole. In this case the linear equations describing the gravitational perturbations were

decoupled into spin-weighted spheroidal harmonics sSlm, where the spin weight s is

-2 for gravitational perturbations. In the same study as referenced above, Leaver
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Figure 3.1: The imaginary part of the frequency ωI versus the real part ωR for
overtones of the l = 2 and l = 3 modes of a Schwarzschild black hole. The most
slowly damped mode has l = 2, n = 0 is marked by a black box. (The data in the
plot is from [40] and [41].)

presented the l = 2 modes for different m and spin, showing that spin removed the

2l + 1 degeneracy in m. This is demonstrated in figure 3.2 [44] where the spin of the

l = 2, n = 0 mode (shown as a single point in figure 3.1) is allowed to vary from

0 ≤ â < 1 resulting in five different quasi-normal frequencies for each value of â. The

point where the five lines converge has â = 0. In figure 3.3 we plot the real part of

the frequency as a function of the spin for the l = 3 and l = 2 modes. Note that for

the l = m = 2 mode MωR ranges from 0.37 for a non-spinning black hole to 0.9 for

a maximally spinning black hole. In figure 3.3 we plot the real part of the frequency

as a function of the spin for the l = 3 and l = 2 modes.

Other major contributions to the understanding of the quasi-normal modes of a

black hole came from Vishveshwara [45], Zerilli [46], Press [47], Price [48], Chan-

drasekhar and Detweiler [49], Ferrari and Mashhoon [50]. A nice review of quasi-

normal modes can be found in [51].
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Figure 3.2: A demonstration of how spin removes the degeneracy in m for the l = 2
mode. The cyan, magenta, green, red, and blue sets of points correspond to m = −2,
m = −1, m = 0, m = 1, and m = 2, respectively. The frequency where the points
converge corresponds to â = 0. (The data in this plot is from [44].)

Figure 3.3: The real part of Mω as a function of spin for the l = 3 (upper group) and
l = 2 (lower group) modes. (The data in this plot is from [44].)
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3.3.3 The l = m = 2 Mode

3.3.3.1 The Black Hole Physical Parameters

Echeverria [52] found an analytic fit to Leaver’s calculations, relating the complex

frequency of the l = m = 2 mode to the black hole’s physical parameters mass M

and dimensionless spin parameter â,

f220 =
1

2π

c3

GM

[
1− 0.63 (1− â)

3
10

]
(3.4)

Q220 = 2 (1− â)−
9
20 . (3.5)

The inverse of these equations is given by

M =
1

2π

c3

Gf220

[
1− 0.63

(
2

Q220

) 2
3

]
(3.6)

â = 1−
(

2

Q220

) 20
9

. (3.7)

Note that the spin of the black hole depends only on the quality factor, as shown

in figure 3.4, whereas the mass depends on both quality and frequency. Figure 3.5

shows the frequency as a function of mass for three spin values, â = 0, 0.5, 0.98. The

mass range reflects the sources that LIGO is most sensitive to.

We can use a simple model from continuum wave mechanics to predict the fre-

quency for a given mass. Taking the wavelength λ to be the circumference of the

black hole at the Schwarzschild radius, λ = 2π (2GM/c2), the frequency is given by

f0 =
c

λ
=

c3

4πGM
, (3.8)

which is the same order of magnitude as equation (3.4). The quality factor is related

to the rate of dissipation of energy,

2πf0

Q
=

dε/dt

ε
. (3.9)

Energy is lost from the perturbation due to gravitational waves escaping to infinity or
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Figure 3.4: Quality factor versus dimensionless spin factor for the l = m = 2 mode.

Figure 3.5: Frequency versus mass for â = 0 (blue line), â = 0.5 (green dashes), and
â = 0.98 (red dash-dot) for the l = m = 2, n = 0 mode.
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falling in to the hole. We see from equation (3.5) that the quality factor grows with

the spin â. One explanation for this is that as the black hole spins, the spin energy

couples to the perturbation, amplifying it and decreasing the damping time. This is

analogous to the r-mode instability in rotating neutron stars [53].

From this point on we assume that the gravitational wave far from the source is

dominated by the most slowly damped mode, l = m = 2 and neglect any contributions

from higher-order modes. We write the central frequency of the waveform as f0 and

the quality as Q.

3.3.3.2 The Ringdown Waveform

Far from the source the waveform can be approximated by

h0(t) = <
{
A
r

e−ıωt

}
= <

{
A
r

e−ı(2πf0−ıπf0/Q)t

}
(3.10)

where A is the amplitude of the l = m = 2 mode and r is the distance from the

source. This is usually expressed as

h0(t) =
A
r

e−
πf0
Q

t cos (2πf0t) (3.11)

and this is the form we will use in subsequent chapters. An example of three ringdown

waveforms with f0 = 100 Hz and Q = 2, 10, 20 for a source at a distance of 100 Mpc

is shown in figure 3.6. The plus and cross polarizations of the wave are

h+(t) =
(
1 + cos2 ι

)
h0(t) (3.12)

h×(t) = 2 cos ι h0(t) (3.13)

where ι is the inclination angle of the source. The strain produced in the detector is

then

h(t) = h+(t)F+(θ, φ, Ψ) + h×(t)F×(θ, φ, Ψ) (3.14)

(as described in section 2.2.4).
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Figure 3.6: The ringdown waveform produced by a source radiating 1% of its mass
in gravitational wave located at a distance of 100 Mpc with frequency of 100 Hz and
quality factor of 2 (blue), 10 (green), and 20 (red).

3.3.3.3 The Ringdown Peak Amplitude

We can evaluate A from the stress-energy tensor, equation (2.12). If ε is the fraction

of the black hole’s mass radiated as gravitational waves, then

εMc2 =

∫
V

T00 dV =
1

16π

c2

G

∫
V

dV (ḣ2
+(t) + ḣ2

×(t)). (3.15)

Solving this equation for A gives

A =

√
5

2
ε

(
GM

c2

)
Q− 1

2 F (Q)−
1
2 g(a)−

1
2 (3.16)

where

F (Q) = 1 +
7

24Q2

g(a) = 1− 0.63 (1− a)3/10 .
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3.3.4 Energy Emitted as Gravitational Waves

The amount of energy emitted as gravitational waves during the ringdown phase, ε,

depends on the magnitude of the perturbation. For the example of a mass m falling

into a black hole of mass M it is reasonable to expect that the energy released is

proportional to some function of the ratio m/M . This was first calculated by Davis,

Ruffini, Press, and Price in 1971 [54], for the case of a mass m � M falling into a

non-spinning black hole. They found that the energy emitted was given by [54],

ε ≈ 0.0104
( m

M

)2

, (3.17)

with ∼ 90% of the radiation emitted in the l = 2 mode and ∼ 8% in the l = 3 mode.

Flanagan and Hughes [55] estimate an upper limit of 3% on the energy emitted

in the l = m = 2 mode for the binary coalescence of equal-mass black holes by

considering the mode’s amplitude when the distortion of the horizon of the black hole

is of order unity. For an unequal-mass binary they assume that the amount of energy

emitted is reduced by the factor (4µ/MT )2, where µ is the reduced mass of the binary

and MT is the total mass.

Numerical simulations of binary coalescence can tell us how much energy is ra-

diated at various stages of the evolution. Figure 3.7 [56] shows a plot of Mω as a

function of time for an equal-mass non-spinning binary. The plot is annotated with

the amount of energy emitted. From this we can clearly see that the value of ε depends

on how we define the start point of the ringdown. For our purposes, an estimate of

ε = 1% is reasonable.

3.4 Astrophysical Black Holes

Black holes do not emit electromagnetic radiation, and thus cannot be observed with

a telescope. However the influence of their strong gravitational field on nearby matter

can be observed electromagnetically and it is by this indirect means that astronomers

can infer the presence of a dark compact object. If there is sufficient evidence to
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Figure 3.7: Mω as a function of time for the gravitational wave emitted as an equal-
mass black hole binary undergoes coalescence. The energy emitted is indicated by the
annotations. ωc and ωλ correspond to different methods for extracting the frequency
from the numerical waveforms. This figure was taken from Buonanno et al. [56].

rule out alternative sources such as a cluster of neutron stars or brown dwarfs it is

called a black hole candidate. Only the detection of gravitational waves will provide

unambiguous evidence for the presence of a black hole. However the gravitational

wave community can benefit from astronomers’ observations of the electromagnetic

signature of an event that could be accompanied by gravitational waves such as a

supernova or gamma ray burst.

Astrophysical black holes have been divided by mass into three categories. Stellar

mass black holes, which are believed to form as the end points of stellar evolution, lie

in the range 3 ≤ M/M� ≤ 20; 3 M� is the upper limit on the mass of the neutron star

[57]. Supermassive black holes, the engines behind radio galaxies and quasars, are

observed to have masses in excess of 106 M� and little is known about their formation
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[58]. Recent claims of evidence of black holes with masses in between these categories

prompted the creation of a third category, intermediate-mass black holes, with a mass

interval roughly defined as 102 ≤ M/M� ≤ 105. It remains to be seen whether these

are the high (low) mass end of the stellar mass (supermassive) black hole population

or distinct population. An excellent review of intermediate-mass black holes may be

found in [59].

3.5 Previous Searches for Gravitational Waves from

Perturbed Black Holes

The first LSC ringdown search was carried out by Creighton [60] on data from the

LIGO 40 m prototype in 1994 using the GRASP software [61]. A single filter was

used to demonstrate the implementation of matched filtering in a gravitational wave

search. Although the poor detector sensitivity made detection extremely unlikely,

the methods used laid the foundations for subsequent searches, including the analysis

described in later chapters. The method of coincidence analysis was demonstrated

by dividing the data set in two and treating one half as if it originated from a second

detector located 3000 km from the first.

In 2004 Adhikari [62] performed a matched filter ringdown search with coincidence

analysis from the 300-hour-long second LIGO science run (S2) using the LIGO Al-

gorithm Library (LAL) [63] software package. In this analysis simulated signals were

injected (in software) into the data stream and a detection efficiency was calculated

as a function of strain. For the most sensitive band of the detector at Livingston,

150–450 Hz, the 50% efficiency was located at a peak strain of 5× 10−20.

The TAMA collaboration also carried out a search for ringdowns using data from

their 300 m interferometer [64]. In total they analysed 1000 hours of data from

their sixth and eighth science runs in 2001 and 2003, respectively. The detectors were

maximally sensitive to ringdowns at a frequency of ∼ 1 kHz at a strain of ∼ 5×10−21.

This was approximately a factor of 2 more sensitive at 1 kHz than the S2 LIGO data,
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but at least an order of magnitude less sensitive than LIGO at 200 Hz for the S2 run.

The search described in this thesis was carried out on data from the fourth LIGO

science run (S4) which amounted to ∼ 360 hours of triple coincident data at sig-

nificantly improved strain sensitivity than any of the previous searches. Matched

filtering was implemented using the LAL software. We performed a coincidence anal-

ysis between each of the three LIGO detectors and, using a study of simulated signals,

present an upper limit on the rate of ringdowns in the local universe.
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Chapter 4

Matched Filtering

4.1 Introduction

In chapter 2 we described the generation and propagation of gravitational waves from

perturbed black holes and the general form of the wave far from the source. We

discussed the output of the detectors which may or may not contain a signal buried

in the noise. This chapter is concerned with how to uncover such a signal. When the

signal is known, the optimal method of extracting the signal from Gaussian noise is

matched filtering [65, 66, 67]; we will demonstrate this in section 4.2.

The convention used for the Fourier transform of a signal w(t) in this analysis is

w̃(f) =

∫ ∞

−∞
w(t)e−2πıftdt (4.1)

and for the inverse Fourier transform is

w(t) =

∫ ∞

−∞
w̃(f)e2πıftdf. (4.2)
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4.2 Wiener Optimal Filtering

Consider a detector output s(t) which may or may not contain a weak signal of known

form h(t) superimposed on the noise n(t)

s(t) =

 n(t) signal absent

n(t) + h(t) signal present.
(4.3)

We assume without loss of generality that the signal, if present, occurs at t = 0. We

also assume that the detector output is a stationary random process with zero mean,

Gaussian probability distribution, and a one-sided power spectrum Sn(f) defined by

1

2
δ(f − f ′)Sn(f) = 〈ñ(f)ñ(f ′)〉 . (4.4)

As we know the form of the signal we are looking for, the best way to ascertain

whether or not it is present in the data is to pass the detector output through a filter

K(t). The output Z of the filter is a number given by

Z ≡
∫ ∞

−∞
K(t)s(t)dt. (4.5)

Our aim is to choose K(t) such that Z will have a large value if the signal is present

and a small value if it is not. We define

H ≡
∫ ∞

−∞
K(t)h(t)dt and N ≡

∫ ∞

−∞
K(t)n(t)dt (4.6)

where H is the filtered signal, N is the filtered noise and

Z = H + N (4.7)
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if a signal is present. Note however that whereas h(t) is a well-defined signal with

finite duration, n(t) is a random process

N(t) ≡
∫ ∞

−∞
K(t− t′)n(t′)dt′ (4.8)

and thus we average over an ensemble of instantiations of the noise,

〈
N2

〉
=

∫ ∞

0

|K̃(f)|2Sn(f)df. (4.9)

Using the convolution theorem and the fact that K(t) and h(t) are real (and so

K̃(−f) = K̃∗(f) and h̃(−f) = h̃∗(f)) we can write the filtered signal as

H = 2

∫ ∞

0

K̃∗(f)h̃(f)df. (4.10)

Next we define a statistic, the signal-to-noise ratio (SNR) ξ, and aim to find a filter

K(t) that maximizes this quantity:

ξ ≡ H2

〈N2〉
(4.11)

=
4
∣∣∣∫ ∞

0
K̃∗(f)h̃(f)df

∣∣∣2∫ ∞
0

∣∣∣K̃(f)
∣∣∣2 Sn(f) df

(4.12)

=
4
∣∣∣∫ ∞

0

[
K̃∗(f)

√
Sn(f)

] [
h̃(f)/

√
Sn(f)

]
df

∣∣∣2∫ ∞
0

∣∣∣K̃(f)
∣∣∣2 Sn(f) df

. (4.13)

The Cauchy-Schwarz inequality tells us that for two arbitrary functions A(f) and

B(f) ∣∣∣∣∫ A(f)B(f)df

∣∣∣∣2 ≤ ∫
|A(f)|2 df

∫
|B(f)|2 df. (4.14)

Identifying K̃(f)
√

Sn(f) with A(f) and h̃(f)/
√

Sn(f) with B(f) we can see that to

attain the maximum value of ξ, we need the equality in equation 4.14 to hold, which
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only occurs when A and B are equal up to a constant C, thus,

K̃(f)
√

Sn(f) = C
h̃(f)√
Sn(f)

(4.15)

or

K̃(f) = C
h̃(f)

Sn(f)
. (4.16)

Thus the optimal filter for detecting signals of known form in coloured Gaussian

noise is the Fourier transform of the signal h̃(f) weighted by the inverse of the power

spectrum.

4.3 Detection Statistic for Gravitational Wave Searches

We can employ the method of matched filtering in the search for gravitational waves

from perturbed black holes, as the waveform is known; it is a damped sinusoid,

h(t) = cos (2πf0t) e−
πf0
Q

t. (4.17)

In this section we derive the statistic to be employed in the ringdown search.

Returning to our initial equation for the filter output equation (4.5), and allowing

the signal to occur at some unknown time, the filter output is

Z(t) = C

∫ ∞

−∞
K(t− t′)s(t′)dt′. (4.18)

Using the convolution theorem this can be expressed as

Z(t) = C

∫ ∞

−∞
s̃(f)K̃∗(f)eı2πftdf (4.19)

and substituting in the expression for the optimal filter, equation (4.16), we get

Z(t) = C

∫ ∞

−∞

s̃(f)h̃∗(f)eı2πft

Sn(f)
df. (4.20)
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At this stage we could choose a threshold value of |Z| above which a signal would be

defined as being present and below which the signal is absent. However rather than

thresholding directly on the filter output we first normalise by the variance of the

optimal filter σ2,

σ2 = 2

∫ ∞

0

h̃(f)h̃∗(f)

Sn(f)
df, (4.21)

for which C = 2. We define a statistic ρ, the SNR of the normalize output of the

optimal filter, as

ρ(t) =
|Z(t)|

σ
(4.22)

and choose a value ρ∗ on which to threshold. Thus

if ρ

 < ρ∗ the signal is absent

≥ ρ∗ the signal is present.
(4.23)

With this comes the possibility of false alarm and false dismissal; the former occurs

when ρ ≥ ρ∗ and no signal is present and the latter occurs when ρ < ρ∗ and a signal

is present. Thus ρ∗ must be chosen carefully so as to minimize the rate of false alarms

and false dismissals. As will be described in chapter 6, the data we are dealing with

in this search is non-Gaussian and non-stationary and so we need to apply further

measures to minimize the rate of false alarms and false dismissals.

It is convenient to define the inner product of a and b as

(a|b) = 2

∫ ∞

−∞

ã(f)b̃∗(f)

Sn(f)
df = 4<

[∫ ∞

0

ã(f)b̃∗(f)

Sn(f)
df

]
, (4.24)

where < [X] denotes the real part of X. This allows us to express σ2 as

σ2 = (h|h) (4.25)

and the SNR as

ρ(t) =
1

σ
(s|h(t)) =

(s|h(t))√
(h|h)

. (4.26)
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4.4 Discrete Quantities

As described in chapter 2.2.3.1 the output of the detector is not continuous but a

discrete time series sampled every ∆t seconds. Thus, in order to filter the data we

need to modify the expressions described above. First consider time; we have N data

points (where we assume N is even) sampled over a time T . The discretized time

series can be expressed as

tj = j∆t j = 0, 1, . . . , N − 1 (4.27)

and a function of time w(t) when discretized is denoted by w(tj). When we Fourier

transform a function we seek a discrete frequency array

fk =
k

N∆t
, k = −N

2
, . . . ,

N

2
(4.28)

where k is an integer. A continuous function of frequency w(f), once discretized, is

written as w(fk). Thus the Fourier transform in equation (4.1) can be approximated

by the sum

w̃(f) ≈
N−1∑
j=0

w(tj)e
−ı2πfktj∆t

=
N−1∑
j=0

wje
−ı2π(k/N∆t)∆tj∆t

= ∆t

N−1∑
j=0

wje
−ı2πjk/N

= w̃k∆t, (4.29)
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where the quantity w̃k is the discrete Fourier transform. Similarly the inverse Fourier

transform, equation (4.2), can be approximated by the sum

w(t) ≈
N−1∑
k=0

w̃(fk)e
ı2πfktj∆f

=
N−1∑
k=0

∆tw̃ke
ı2π(k/N∆t)∆tj

1

N∆t

=
1

N

N−1∑
k=0

w̃ke
ı2πjk/N , (4.30)

where we have used that

∆f = fk+1 − fk =
k + 1

N∆t
− k

N∆t
=

1

N∆t
. (4.31)

The discrete form of the waveform we are searching for is

h(tj) = cos (2πf0j∆t) e−πf0j∆t/Q. (4.32)

In a similar manner we can express the filter output and the estimated variance as a

sum of discrete quantities;

Z(tj) = 4

N
2
−1∑

k=0

s̃∗(fk)h̃(fk)

Sn(fk)
e−ı2πfktj∆f

= 4

N
2
−1∑

k=0

∆ts̃∗k∆th̃k

Sn(fk)
e−ı2π(k/N∆t)∆tj 1

N∆t

=
4∆t

N

N
2
−1∑

k=0

s̃∗kh̃k

Sn(fk)
e−ı2πjk/N (4.33)
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and

σ2 = 4

N
2
−1∑

k=0

h̃∗(fk)h̃(fk)

Sn(fk)
∆f

= 4

N
2
−1∑

k=0

∆th̃∗k∆th̃k

Sn(fk)

1

N∆t

=
4∆t

N

N
2
−1∑

k=0

h̃∗kh̃k

Sn(fk)
. (4.34)

We will use these equations in chapter 5 when describing the pipeline.

4.5 Templated Matched Filtering Searches

In section 4.2 we demonstrated that the optimum filter to use in extracting a signal

from noise when the signal is known is the matched filter. However it is often the case,

particularly in the gravitational wave searches that we are concerned with here, that

although the form of the signal is known, the exact values of the intrinsic parameters

λi (these parameters are central frequency and quality in the ringdown search) are

unknown. To overcome this we can create an array of filters, a template bank, such

that each template has a different value of the intrinsic parameters covering the space

of parameters of interest, and filter the data with each one. Of course, given that

these are discretely placed over the parameter space, it is not likely that one of the

filters will have the exact parameters of the waveform we are looking for, but if the

parameters are close enough, then the SNR will be high and may exceed the threshold.

In practice, templates are laid out in a very specific way, covering the entire space with

as few templates as possible. A nice discussion of template spacing for gravitational

wave searches can be found in [68]. Some of the main points are illustrated here. We

define the match M between two templates ũ(f ; µ, λ) and ũ(f ; µ+∆µ, λ+∆λ) as the

inner product between the two templates maximized over the extrinsic parameters µ
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(such as time of arrival and phase),

M(λ, ∆λ) ≡ maxµ,∆µ (u(µ, λ)|u(µ + ∆µ, λ + ∆λ)) . (4.35)

This is the fraction of the maximum SNR achieved by filtering a signal with a template

with the same form but slightly different parameters. Expanding M in a power series

about ∆λ = 0 gives

M(λ, ∆λ) ≈ 1 +
1

2

(
∂2M

∂∆λi∂ ∆λj

)
∆λk=0

∆λi ∆λj (4.36)

from which we can define the metric

gij(λ) = −1

2

(
∂2M

∂∆λi ∂∆λj

)
∆λk=0

(4.37)

so that the mismatch (1 −M) between two nearby templates is equal to the square

of the proper distance between them

ds2
ij = gij ∆λi ∆λj. (4.38)

For the ringdown templates the mismatch between two templates differing in fre-

quency by df0 and in quality by dQ is given by [61]

ds2 =
1

8

[
3 + 16Q4

Q2(1 + 4Q2)2
dQ2 − 2

3 + 4Q2

f0Q(1 + 4Q2)
dQ df0

+
3 + 8Q2

f 2
0

df 2
0

]
. (4.39)

We will find it useful when laying out the template bank to define φ = log(f0), as

then the metric coefficients no longer depend on f0,

ds2 =
1

8

[
3 + 16Q4

Q2(1 + 4Q2)2
dQ2 − 2

3 + 4Q2

Q(1 + 4Q2)
dQ dφ +

(
3 + 8Q2

)
dφ2

]
(4.40)

= gQQ dQ2 + gQφ dQ dφ + gφφ dφ2. (4.41)
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The templates form a two-dimensional lattice whose unit cell has sides of proper

length dl2. The highest mismatch will occur for a signal whose parameters lie in the

middle of the cell, that is for ds2 = dl2/2.
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Chapter 5

The Search Pipeline

5.1 Overview

The set of steps we take in analysing data output from the interferometers in order to

detect gravitational waves is known as a search pipeline. As discussed in chapter 4,

for the case where the waveform is known we implement the method of matched fil-

tering. However, as the noise in the data stream is non-stationary and non-Gaussian,

matched filtering alone is not enough to extract a gravitational wave from the noise.

Noise can often mimic the signal we are searching for, and so a large effort goes into

characterizing the noise to best separate it from a potential gravitational wave signal.

We implement several consistency checks on any candidate events to increase our

detection confidence.

The ringdown search pipeline is summarized in figure 5.1. Each step will be

explained in detail in this chapter, but in brief the main steps are as follows:

• Data from each detector is read in from frame files and conditioned.

• The template bank is generated and the data is filtered, yielding a set of trigger

files for each detector.

• The triggers from each detector are then brought together and compared (i.e.,

put through a coincidence test).

• Those triggers failing the coincidence test are discarded and those that pass are

followed up on as candidate events.
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Figure 5.1: The ringdown search pipeline.

The pipeline is run on large computer clusters using the Condor high-throughput

computing system [69], a specialized workload management system for compute-

intensive jobs. The steps in the pipeline can be broken into individual jobs which are

scheduled by DAG Man (Directed Acyclic Graph Manager) and submitted to Condor

to run in an order specified by a directed acyclic graph (DAG). Condor places the

jobs in a queue, chooses what cluster node to run them on and allows the user to

monitor their progress.

5.2 Preliminaries

Prior to launching the pipeline three files are required: list of times to be analysed, a

list of times to be vetoed, and a configuration file containing arguments required by

the search pipeline.
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5.2.1 Segment Lists

We begin by generating a list of times for which data is available for each detector.

This segment file contains the GPS start time, GPS end time, and duration of each

interval of time for which the detector was taking science quality data. A sample

of a segment file is shown in table 5.1. In generating the list we apply category 1

vetoes which preclude times when the quality of the data was unacceptable from the

segment list (see section 6.3 for more details).

Table 5.1: A sample of the H1 S4 segment list

segment number GPS start time GPS end time Duration
1 793154953 793155973 1020
2 793162453 793162693 240
3 793166413 793170673 4260
4 793171813 793175893 4080
5 793176613 793179853 3240

5.2.2 Create the Veto Lists

We also create a list of times when the quality of the data was suboptimal due

to a known source of noise making the detection of gravitational waves impossible.

Triggers during these times are removed before the coincidence stage of the pipeline.

These are known as category 2 and 3 vetoes (and are described further in section 6.3).

5.2.3 Create the Configuration File

The configuration file lists all of the arguments needed by the pipeline. All of the

parameters mentioned in the following sections, such as thresholds, coincidence win-

dows, clustering windows, and template bank boundaries are specified in this file. An

example of the configuration file used in the S4 search can be found in appendix A.
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5.3 Launch the Pipeline

The pipeline is launched by running the python script lalapps inspiral hipe.

This reads in the parameters listed in the configuration file, and generates a set of

files with instructions on how the different parts of the pipeline are to run.

The first step is the segmentation of the data. The input lists of variable-length

science segments are subdivided into contiguous 2176-s-long analysis segments over-

lapping each other by 128 s on each end, and written to a file. If there is a non-integer

number of 2176 s analysis segments in the science segment, with the remainder n s

in length, then the final analysis segment begins (2176-n) s earlier, overlapping the

previous analysis segment, but only the previously unanalysed data is analysed (see

appendix B for an example of segmentation).

Files containing instructions on how each of the main jobs, “datafind”, “ring-

down”, and “rinca” is to run are also created;

• The datafind job runs LSCdataFind to get the location of the frame files on

disk.

• The ringdown job runs the main data conditioning and filtering code

lalapps ring.

• The rinca job runs the coincidence step of the analysis lalapps rinca.

The DAG file is submitted to the Condor pool with the condor submit dag com-

mand. The DAG specifies that the datafind jobs run first, followed by the ringdown

jobs and then the rinca jobs.

5.4 The Filtering Section of the Pipeline

Each of the steps described in this section are run on an individual analysis segment

basis.
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5.4.1 Read In and Condition the Data

The uncalibrated data read in from frame files is sampled at 16384 s−1; however to

reduce the computational cost we re-sample to 8192 s−1, and a Butterworth low-pass

filter is used to remove any power above the new Nyquist frequency, 4096 s−1. The

data is then high-pass filtered to remove power below the frequency range of interest,

40 Hz. Although our basic analysis segment is 2176 s in length, an additional 8 s of

science data is read in before the start time of the segment and after the end time

defining each analysis segment. This padding data is used for these data conditioning

steps in order to avoid any corruption of the data in the analysis segment. Once these

data conditioning steps have been completed, the 16 s of padding data is removed.

No data between contiguous segments is lost, however the first 72 s at the start of a

science segment and the last 72 s at the end of the science segment are not used in

the search. (An example of segmentation is given in appendix B.)

5.4.2 Calculate the Response Function

Next the response function R(f) for the segment is calculated. As discussed in section

2.2.3.1 the output of the gravitational wave channel is converted to strain via the

response function using the calibration coefficients read in for that particular epoch.

The numerical value of the response function is very small, ∼ 10−15, and so to save

the computational cost of extra precision we scale this quantity by the dynamical

range factor dyn = 1020. The scaled response function, shown in figure 5.2 has units

of strain counts−1.

5.4.3 Calculate the Power Spectrum

The interferometer noise is characterized by the one-sided power spectral density

Sn(f) introduced in chapter 4. For this search it is calculated using the median-

mean method. In each 2176 s segment the first and last 64 s are discarded and the

remaining 2048 s is split into sixteen 256 s blocks which overlap each other by 128 s.

(This segmentation is discussed in more detail in appendix B.) These are divided (by
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Figure 5.2: The response function (scaled by dyn) for H1 between GPS times
793165201 and 793167377.

block number) into even and odd groups and are transformed to the Fourier domain.

The bin-by-bin median of the even blocks is calculated, as is the bin-by-bin median

of the odd blocks. The uncalibrated spectral density Sv(f) in units of s counts2 is

then the bin-by-bin mean of these two medians. In practice it is the inverse of this

quantity that is required and so we invert it to get the inverse uncalibrated power

spectrum S−1
v , with units of s−1 counts−2. We calibrate the spectrum by dividing

by the square of the (scaled) response function. Finally, the inverse calibrated power

spectrum shown in figure 5.3 in units of s−1 strain−2 can be written as

1

Sn(f)
=

1

dyn2R2
S−1

v . (5.1)
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Figure 5.3: The inverse calibrated spectrum for H1 between GPS times 793165201
and 793167377

5.4.4 Calibrate and Fourier Transform the Data

Next, 2176 s of data s(t) is read in in units of ADC counts, and divided into sixteen 256

s overlapping blocks. Each block is Fourier transformed and calibrated, converting it

into units of s strain. Finally we multiply the data by the inverse calibrated spectrum,

giving the frequency series
S−1

v

dyn R
∆t s̃k, (5.2)

with units of strain−1.

5.4.5 Generate the Template Bank

Five user specified parameters are required to lay out the template bank; the max-

imum mismatch ds2
max (the maximum value of the mismatch between a signal and

the nearest template that will be tolerated in the search, see section 4.5), and the

frequency and quality boundaries, fmin, fmax, Qmin, and Qmax (the tuning of these
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constraints is discussed in section 7.4.1). Recall from section 4.5 that if we de-

fine φ = log(f0) the metric coefficients no longer depend on f0 and so we use

φmin = log(fmin) and φmax = log(fmax). Then, starting at the point (Qmin, φmin)

one moves across the Qmin line incrementing φ in steps of
√

2ds2
max/gφφ until φmax is

reached. Then Q is incremented by
√

2ds2
max/gQQ and the process is repeated until

the point (φmax, Qmax) is reached. The tuning of these parameters is discussed in

section 7.4.1 and the final template bank is shown in figure 7.5.

5.4.6 Create the Template

As discussed in section 4.4, the template used in this search is given in its discrete

form by

hj = e−
πf0j∆t

Q cos(2πf0j∆t), (5.3)

where, as mentioned earlier ∆t = 1/8192 s. The length of the template was set to ten

e-folding times, tmax = 10 τ where τ = Q/πf0. The template time series is Fourier

transformed to give

h̃(fk) = ∆t h̃k (5.4)

with units of strain/Hz.

5.4.7 Filter the Data

The filtering step is done template by template for each of the sixteen 256 s overlap-

ping blocks of data in a 2176 s analysis segment. We multiply the template and the

data weighted by the power spectrum and inverse Fourier transform to get the time

series

z(tj) =
2

∆t N
<


N
2
−1∑

k=0

S−1
v

dyn R
(∆t s̃∗k) (∆t h̃k)e

ı2πjk/N

 . (5.5)
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The variance of the template σT is evaluated according to equation (4.34) as

σ2
T =

4

N∆t

N
2
−1∑

k=0

S−1
v

dyn2 |R|2
[
<(∆t h̃k)

2 + =(∆t h̃k)
2
]
dyn2. (5.6)

Next, using the user-defined threshold on the SNR, ρ∗, we calculate the equivalent

threshold on the filter output, z∗, for a given template, T ,

z∗ = ρ∗
σT

2 dyn
(5.7)

and compare the series z(t) to z∗. Note that this is done on a template by template

basis for each 256 s block of data.

5.4.8 Cluster the Filter Output

For data handling purposes it is preferable at this stage to cluster those triggers above

threshold in time. This is achieved with a sliding window of 1 s in width; starting at

the beginning of the time series, the loudest trigger is temporarily assigned to zmax

and the window is moved so that the left edge coincides with the time of zmax, t(zmax).

If a trigger within this new window exceeds zmax, then this becomes the new zmax and

the window moves once more. In order for this to be a symmetric window, the sliding

is continued until a window is reached where there are no further triggers above zmax.

When this occurs, t(zmax) is deemed to be the time of the trigger and written out

to a file. The window is shifted by 1 s and the process starts again, continuing until

the end of the block is reached. This is illustrated by figure 5.4; the threshold z∗ is

denoted by the green horizontal lines, and it is clear that there are four groups of

data points with z > z∗ which are separated from one another by more than 1 s. The

loudest data point in each of these clusters, denoted by a red circle, is recorded as a

trigger. This process is repeated for each template. The effectiveness of this method

of clustering in reducing the level of background is discussed in section 7.4.2.
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Figure 5.4: An example of single-template clustering with a window of 1 s. The
threshold is marked by a horizontal green line; triggers between the two lines are
below threshold. The red circles mark the loudest trigger in the cluster.

5.4.9 Calculate and Record the Trigger Parameters

The SNR of the clustered triggers is calculated as

ρ(tj) = z(tj)
2 dyn

σT

. (5.8)

The amplitude A is calculated from the template parameters f0 and Q according to

equation (3.16) with ε = 0.01. The sensitivity σ of the detector to a signal at 1 Mpc

is evaluated as

σ2 = (1 Mpc) σ2
T A2, (5.9)

from which the effective distance of the trigger is calculated

Deff = (1 Mpc)
σ

ρ
. (5.10)
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All of the parameters mentioned here are recorded for each trigger. The triggers from

all of the templates in each of the 256 s blocks are written out to a file.

5.5 Coincidence Analysis

Prior to comparing triggers from multiple detectors, category 2 and 3 vetoes are

applied, and the triggers are clustered across all templates in the bank. Then, the

remaining triggers from all three detectors are brought together and compared. Those

that fail the coincidence test are discarded and those that pass are written out to a

file to undergo further examination. There are four possible types of coincidence:

a triple coincidence consisting of triggers from H1, H2, and L1 and three types of

double coincidence, H1H2, H1L1, and H2L1.

5.5.1 Apply Category 2 and 3 Vetoes

Contiguous trigger files written out from the filtering stage are read in together by

the coincidence code lalapps rinca for each of the detectors. Category 2 and 3

vetoes are applied to the data at this stage. The reason these times were not vetoed

at the segment selection stage is because the science segments would be interrupted

further and the likelihood of data being lost increases (recall a minimum science

segment length of 2176 s is required in the analysis). The data during times flagged

as category 2 and 3 is not so bad that including it adversely effects the calculation

of the power spectrum. (This is not true for category 1 times and they are removed

at the segment selection stage.) Thus, as the detection of gravitational waves during

category 2 or 3 times would be very difficult, these times are removed before we

compare data from multiple detectors.
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5.5.2 Cluster the Single Detector Triggers Across the Tem-

plate Bank

The most information that we need at the end of the coincidence stage is whether

or not triggers from different detectors were coincident in f0 and Q at a particular

time, i.e., coincidence of a single pair of templates is sufficient to draw our attention

to a particular time; we do not need to know about every pair of templates that were

found in coincidence at that time. In theory the template closest in f0 and Q to the

actual signal will ring off the loudest; in practice noise will change this somewhat,

however we expect the values of these parameters to be close in different detectors.

Thus, recording the loudest trigger in a time interval shorter than the duration of

the gravitational waves we are sensitive to is sufficient. Therefore, before we compare

triggers, we first cluster over all templates in a (fixed) time window of 1 ms, retaining

the loudest trigger in that interval.

5.5.3 Implement the Time Coincidence Test

The time coincidence test requires that triggers be seen within a given time window

δt of each other for co-located detectors, and δt + 10 ms for the Hanford-Livingston

pairs, to allow for the extreme case where gravitational waves are emitted from a

distant source along the line connecting the two detectors. As will be explained in

section 7.4.3, the value of δt is determined by evaluating how wide this window needs

to be in order to recover as many simulated signals added to the data as possible,

while keeping the rate of accidental coincidences low. The optimal value for this

search was found to be δt = 2 ms. (Note that the window is applied to each trigger

in a pair; thus triggers can be a total of 2δt s apart.)

5.5.4 Implement the Parameter Coincidence Test

For triggers surviving the time coincidence test the next consideration is the waveform

parameters. As demonstrated in section (5.4.5) the templates are not distributed
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Figure 5.5: Contours of ds2 = 0.03 for the portion of the template bank between
f = 1600 Hz and 2100 Hz and Q = 2 to 30.

uniformly throughout the bank. Thus the use of fixed windows δf0 and δQ is not a

suitable coincidence test. A more appropriate test is based on the metric distance ds2

as this quantity depends on both f0 and Q. Thus it may be used to define a window

that essentially varies the size of δf0 and δQ depending on the region of the bank

under investigation. This is illustrated in figure 5.5. This window can be described

as a contour of a constant ds2 about each template.

5.5.5 Implement a H1H2 Distance Cut

If a gravitational wave ringdown is detected in both H1 and H2, then given that H1

is twice as long as H2 and they have correlated displacement noise, we expect that

ρH1 ≈ 2ρH2. Furthermore, σ2
H1 ≈ 2σ2

H2 and thus we would expect the effective dis-

tance measured by each instrument to be consistent. Inconsistent effective distances

from co-located detectors would suggest that the coincident pair was not due to a

gravitational wave signal but caused by noise. Thus a coincidence including a H1H2
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trigger is retained only if
deffH1

deffH2

> κ, (5.11)

where κ has a user-specified value. As will be discussed in section 7.4.4, the conser-

vative value of κ = 2 was used in the search.

This test is not possible to implement in L1 primarily because the arms of this

detector are not aligned with those of the Hanford detectors, nor do the arms lie in

the same plane. Thus, one could imagine a situation where a source was optimally

aligned and oriented for L1 producing a loud trigger, whereas in the Hanford detectors

the signal would be weaker by a factor γ. Assuming comparable sensitivities of the

two 4 km interferometers, this would mean that the effective distance calculated for

H1 would be a factor of γ higher than that calculated for L1.

After the time coincidence, parameter coincidence, and distance cut are imposed,

the resulting list of coincident groups (i.e., H1H2L1 triple coincidences, H1L1 double

coincidences, H1H2 double coincidences, and H2L1 double coincidences) are time

sorted, with the members of each group listed alphabetically by interferometer name.

This list of coincidences (which contains all the information from the original trigger

files) is written out to a table.

5.5.6 Cluster the Coincidences

The output coincidence files generally have multiple groups of coincident triggers

lying in a short time window, as a noise event (or indeed a gravitational wave signal)

will ring up several templates, a number of which may be found in coincidence with

one or more templates in the second and possibly the third interferometer. As just

one group is sufficient for drawing our attention to a particular time we can cluster

the coincident groups of triggers within a short time window, retaining the most

“significant” group, using the LAL program lalapps coincringread. A (fixed)

window of 10 s was used in this analysis. Ranking the significance of the groups is

achieved by defining a detection statistic ρDS, discussed below. The final clustered

groups were once more written out to a sngl ringdown table and followed up as
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detection candidates.

5.5.7 The Detection Statistic

Defining a detection statistic is a mechanism for ranking groups of coincidences. It

is a process whereby a single number is assigned to a coincident group of triggers

describing the collective significance of the group. In choosing a detection statistic the

aim is to find one which will best discriminate between signal and background. We use

the detection statistic in a number of stages throughout the analysis: for clustering,

for comparison of foreground and background, and in deciding which coincidences to

follow up at the end of the pipeline.

There are a number of valid criteria that one could impose in the choice of detection

statistic, for example one could choose the group of coincident triggers whose elements

are closest in time, or which have the smallest ds2. The parameter we choose to use

for the selection process is SNR, i.e., we measure the loudness of the group. For triple

coincidences a good statistic to discriminate between signal and background is the

sum of the squares of the SNRs,

ρDS = ρ2
H1 + ρ2

H2 + ρ2
L1. (5.12)

For doubles, the above statistic was impractical because of the high level of non-

Gaussian noise. Instead, we required a ρDS that prevents a high-SNR glitch in one

interferometer from (unfairly) influencing which group is chosen as the most signifi-

cant. Hence for a double coincidence in interferometers 1 and 2 the detection statistic

used is the chopped-L;1

ρDS = min{ρifo1 + ρifo2, aρifo1 + b, aρifo2 + b}, (5.13)

where a and b are parameters that are tuned for the particular search. A discusssion

of the detection statistics and the tuning of a and b is given in section 7.4.4.

1This is similar to the bitten-L used in the inspiral analysis, but with a flat “bite”.
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Chapter 6

The S4 Data Set

6.1 Introduction

In this chapter we discuss general aspects of the S4 run.

6.2 The Fourth LIGO Science Run

The fourth LIGO Science (S4) run took place between February 22nd and March 24th,

2005, — GPS times 793130413 to 795679213, a total of 708 hours. This yielded 567.4

hours of analysable data from H1, 571.3 hours from H2, and 514.7 hours from L1.

In this analysis we require that data be available from at least two detectors at any

given time. This results in approximately 364 hours of triple coincidence and 210

hours of double coincidence as shown in figure 6.1.

At their best during S4, H1 and L1 had comparable sensitivities at high frequen-

cies, and H1 was more sensitive below ∼ 200 Hz. H2 was about a factor of two less

sensitive than the 4 km interferometers. Figure 6.2 displays the best noise curves for

each of the interferometers during the S4 run.

6.3 Data Quality and Veto Categorization

There are times during each science run when some component of the instrument

malfunctions or an external disturbance couples to the gravitational wave channel
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Figure 6.1: Time in hours of analysable S4 data

Figure 6.2: S4 strain sensitivity
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introducing short bursts of noise into the data stream. This is troublesome for data

analysis as these glitches can often match many templates in a matched filter search,

producing high SNR triggers. This is of particular concern to the ringdown search

as the templates are short in duration, just like the glitches. This increases the false

alarm rate making it more difficult to detect a gravitational wave. In many cases

glitches can also be seen in auxiliary channels, for example, a glitch in the gravita-

tional wave channel due to a seismic disturbance can also be seen in the seismometer

channels. During and after a science run, times during which it was known that the

quality of the data was compromised because of noise are flagged. We refer to these

as data quality flags.

Members of the inspiral and burst analysis groups within the LIGO Scientific Col-

laboration have used information from auxiliary channels to flag times when the level

of noise in the detector was unacceptably high or the quality was questionable, and

grouped these times into four categories depending on the severity of the disturbance.

The categorization of data quality flags depends primarily on two quantities: (i) the

efficiency, that is the number of noise triggers above a particular SNR that it vetoes,

and (ii) the dead-time, the total science time cut by applying the veto. Ideally we

want to veto times with maximum efficiency and minimum dead-time.

The first category of data quality flags vetoes time when the data is of very poor

quality and should not be analysed. These are applied at the segment selection

stages. We try to keep this set to a minimum because, as described in section 5.3, a

minimum analysis segment length of 2176 s is required for filtering. Thus we want to

avoid unnecessarily breaking up the data.

Data during which detection of a gravitational wave is not possible because of

a known correlation between an environmental or instrumental disturbance and the

gravitational wave channel is marked by category 2 data quality flags. Examples

include times during which hardware injections (an actuation on one of the test masses

simulating a gravitational wave) are being performed (accounting for approximately

1% of the data) and overflows in any of the digital signals used in feedback loops

controlling the detector lengths. Category 2 vetoes effect 4% of the triple coincidence
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data, 56% of the H1L1 data, 3% of the H1H2 data, and 27% of the L1H2 data [70].

The third category of data quality flags includes those times during which there

was a statistical correlation between the gravitational wave channel and an external

disturbance. A gravitational wave may be searched for, but caution must be taken

when determining confidence levels. Data quality flags under this category include

elevated levels of dust reported by a particle counter in the vicinity of photo-detectors.

These times may be associated with glitches in the gravitational wave channel due to

a dust particle passing across the beam.

For S4, triggers from the binary neutron star inspiral search were used to evaluate

efficiency and dead-times which led to the data quality flag categorization. This

categorization was then implemented in the binary black hole inspiral search (BBH)

[16] and the ringdown search. In the inspiral analysis, data with category 2 data

quality flags is searched over for gravitational wave candidates but not included in the

upper limit calculation, while category three data is included. The inspiral analyses

implement various tests to check the consistency of the data around a given trigger

with nearby templates, so-called signal-based vetoes. In the ringdown analysis we

do not implement signal-based vetoes and for this reason category 2 and 3 vetoes

were combined and no data lying in either category was used in the calculation of the

upper limit. This affected 12% of triple time, 8% H1-H2 time, 62% of H1-L1 time,

and 29% of H2-L1 time.

Times flagged as category four showed a weak but positive correlation with false

alarms. Data from these times were not vetoed, but the presence of such a flag on a

candidate event decrease our confidence in it being caused by a gravitational wave.

6.4 Horizon Distance

Using the noise curves discussed in section 6.2 we can get a sense of how sensitive

we are to gravitational waves from a particular black hole. The horizon distance DH

is the distance at which we can detect a ringdown from an optimally oriented and
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located black hole with signal-to-noise ratio (SNR) of 8, and is given by

DH(f) =
1

8

(
2

Sn(f)

) 1
2

hrss (1 Mpc) (6.1)

where Sn(f) is the average power spectral density of the detector noise and hrss is

the root sum squared of the strain for a signal with optimal orientation at 1 Mpc,

h2
rss =

(
A

1 Mpc

)2 (
2

πf0

)
Q

(
1 + 2Q2

1 + 4Q2

)
(6.2)

and A is given by equation (3.16). The physical distance of the source is always less

than or equal to the horizon distance. Figure 6.3 shows that in S4 a gravitational

wave from an optimally oriented black hole of mass 250 M� at a distance of 350 Mpc

directly above (or below) the detector, will produce an SNR of 8 in H1. The source

would need to be at 140 Mpc and 270 Mpc to produce the same SNR in H2 and L1

respectively. In this calculation we have assumed that the black hole is spinning with

â = 0.9 and that 1% of the mass is radiated as gravitational waves. To put this into

an astrophysical context consider figure 6.4. This shows the universe out to ∼ 300

Mpc. According to [71], there are approximately three million large galaxies in this

region of the sky. From [72] we can estimate the number of sources as 2.2× 106 L10

or 1.3× 106 MWEG.

A standard figure of merit used in the control room is the “inspiral horizon dis-

tance”; this is the distance out to which an optimally oriented and located 1.4 M�−

1.4 M� binary neutron star system can be seen with an SNR of 8. This quantity has

been used throughout the five science runs as a means of evaluating the sensitivity

of the detector during a run and as a comparison between different science runs. We

can make an analogous plot for ringdowns; we choose as our standard candle a source

that gives the maximum horizon distance in the above plot. This corresponds to an

optimally located and oriented black hole with mass 250 M� and spin â = 0.9 with

ε = 1%. Using the value of σ output from the filter with these parameters we can

plot the horizon distance as a function of time for the duration of the run. As can
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Figure 6.3: S4 ringdown horizon distance versus mass and frequency for â = 0.9 and
ε = 1%.

Figure 6.4: Illustration of the galaxies with ∼ 300 Mpc of the Earth. Picture Credit:
Richard Powell [71].
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be seen from figure 6.5, H2 was the most stable of the three detectors, particularly

during the first half of the run, with an average horizon distance of ∼ 150 Mpc.

During the last 15 days the horizon distance fluctuated about this value. H1 had the

largest horizon distance for this source, averaging ∼ 320 Mpc. The small-scale fluctu-

ations can be attributed to the diurnal activities in the area with a minimum in the

horizon distance usually occurring around 10am local time, and the quietest time of

day occurring around 11pm. The larger dips were attributed instrumental problems

such as the beam drifting in the interferometer causing mis-alignment, or prolonged

environmental disturbances such as high wind (in excess of 15 mph) causing increased

seismic noise. The L1 range was consistently lower than H1 for the run, reaching at

best ∼ 320 Mpc. This dropped to 120 Mpc for days 6–15 because of lower light power

in the interferometer.

Figure 6.5: S4 ringdown horizon distance versus time for an optimally located and
oriented black hole of mass 250 M�, spin of 0.9 and ε = 1% producing an SNR of 8
in the detector.
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6.5 Detection of Binary Compact Coalescence

As mentioned in section 2.3.1, a promising source of gravitational waves is expected

to be from compact binary coalescences, in which case the ringdown will be preceded

by an inspiral and merger. In this section we examine which of the searches, the

inspiral or ringdown, is more sensitive to gravitational waves from a given binary.

Compact binaries can be composed of two neutron stars (NS-NS), two black holes

(BH-BS), or a neutron star and a black hole (NS-BH). As discussed in section 3.4,

neutron stars have a maximum mass of 3 M� and stellar mass black holes are believed

to lie in the range 3 M� < M < 20 M�. Black holes with masses above 20 M�

are referred to as intermediate-mass black holes, however, their existence is still in

question.

In figure 6.6 we plot the strain of a number of compact binaries at an arbitrary

distance as the frequency of their emitted radiation passes through the Initial LIGO

band. The binaries considered are the NS-NS pair, 1.4 M�–1.4 M�, a NS-BH binary

with component masses 1.4 M�–3 M�, and BH-BH pairs with equal mass components

of 10 M�, 20 M�, 40 M�, and 100 M�. The blue line describes the inspiral, as it

sweeps through a range of frequencies. The end-point of the inspiral for the four least

massive binaries is at the inner-most stable circular orbit (ISCO), at which point the

frequency is fISCO = c3/(6
√

6πGM). The plot shows that for these binaries a large

proportion of the inspiral is in the LIGO band. In order to detect the inspiral from

the higher mass binaries with a matched filter however, it is necessary to evolve the

waveform further, to the light-ring, at which point the frequency of the gravitational

waves is fLR = c3/(3
√

3πGM). It is clear from the figure that as the mass of the

binaries increases, less and less of the inspiral is in-band. The ringdown on the

other hand, which appears as a dot marking the single frequency of the gravitational

radiation emitted, is out of the LIGO band for the low mass binaries, but as the

masses increase, the ringdown frequency decreases, bringing it into the LIGO band.

For the 100 M� pair the ringdown is at the most sensitive frequency of the LIGO

detectors. In calculating the ringdown strain, we assume that the final black hole
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has a spin of 0.7 (this is the expected spin for a the black hole formed following the

merger of two equal-mass, non-spinning compact objects) and that 1% of the mass is

radiated.

Figure 6.6: A plot of S4 strain sensitivity versus frequency (red). The blue lines
represent the inspiral phase of a binary coalescence for binaries with masses (from
bottom to top): 1.4-1.4, 1.4-3, 3-3, 10-10, 20-20, 40-40, and 100-100, in units of M�.
The green dots represent the ringdown (for the same list of binaries) for a final black
hole with a spin of 0.7 and assuming 1% of the mass has been radiated.

We can estimate how sensitive each of the searches is to a given source by calcu-

lating the horizon distance. As before, the horizon distance is the maximum distance

to which an optimally oriented and located black hole will produce an SNR of 8 in the

detector. In this section we calculate the ringdown horizon distance for a black hole

with spin â = 0.7. Figure 6.7 shows the H1 inspiral and ringdown horizon distances

for binaries with (total) mass of up to 100 M�, using the S4 noise curve. The plot

shows that the maximum inspiral horizon distance, ∼ 95 Mpc is attained for a binary

with a total mass of ∼ 30 M�. For this mass, the ringdown search is only able to see

to ∼ 10 Mpc, and therefore, we are much less sensitive to the ringdown than we are to
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the inspiral of a black hole binary with that mass. As the mass increases however, the

ringdown search becomes more sensitive and the inspiral search becomes less sensi-

tive, with the cross-over point occurring at ∼ 62 M�. Figure 6.8 shows the ringdown

horizon distance for the entire ringdown mass range along with the inspiral horizon

distance, demonstrating how much wider the ringdown mass range and further the

distance is for ringdowns.

Figure 6.7: The horizon distance as a function of mass for the S4 inspiral and ringdown
searches up to 100 M�. A final spin of 0.7 and ε = 1% are assumed in the calculation
of the ringdown horizon distance.

6.6 Predicted Ringdown Rates

Here we discuss the predicted rate of ringdowns for the S4 search.
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Figure 6.8: The horizon distance as a function of mass for the S4 inspiral and ringdown
searches, covering the full mass range of the ringdown search. A final spin of 0.7 and
ε = 1% are assumed in the calculation of the ringdown horizon distance.

6.6.1 Stellar Mass Black Holes

Blue light luminosity is a tracer of massive star formation, and therefore is also

expected to scale linearly with the binary coalescence of massive stars [73]. We

measure luminosity in terms of the blue light luminosity, in units of L10 which is

defined as L10 = 1010LB,�, and LB,� = 2.16 × 1033 erg s−1 is the solar blue light

luminosity. Population synthesis models predict that the merger rate, R, of 10 M�-

10 M� black hole binaries is R = 0.4 L−1
10 Myr−1 [74]. Figure 6.7 showed that for a

20 M� black hole the ringdown search can see to approximately 3 Mpc. We can see

how many sources we are sensitive to at that distance with figure 6.9, the cumulative

blue light luminosity CL as a function of distance. This plot shows that at 3 Mpc we

can see approximately 5 L10. Therefore the expected rate of stellar mass black hole

coalescences detectable at S4 sensitivity, RS4, is RS4 = RCL = 0.4 L10 Myr−1 × 5

L10 = 2 Myr−1. Thus, given the sensitivity (and thus the distance reach) of S4, the
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detection of a stellar mass black hole ringdowns is unlikely. However at these low

masses the S4 ringdown search is sensitive to the local group of galaxies, and thus

should an event have occurred there during the run, the ringdown search would be

capable of detecting it.

Figure 6.9: The cumulative blue light luminosity as a function of horizon distance.
This figure was taken from [72].

6.6.2 Intermediate-Mass Black Holes

The most likely formation scenario for an intermediate-mass black hole (IMBH) is by

core collapse of a very massive star [75]. Recent simulations have indicated that star

clusters with binary fractions larger than 10% will produce two IMBHs which will

form a binary (IMBHB), which will eventually merge [76]. A model to predict the

rate of ringdowns from IMBHB merger for a given detector sensitivity [77] is

RS4 = R
4π

3

(
DH

2.26

)3

ρGC g, (6.3)
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where R is the rate of IMBHB merger per cluster, taken to be the age of the universe

(as this is expected to occur just once in each cluster) (13.7)−1 Gyr−1; DH is the

horizon distance, which, from figure 6.8 is 300 Mpc for a final black hole mass of 200

M�; ρGC is the number density of star clusters sufficiently massive to produce an

IMBH, taken to be the current density of globular clusters, ρGC = 8h3 Mpc−3; and

g, the fraction of globular clusters with a binary fraction high enough to produce an

IMBHB, is the most uncertain term in the model and is taken to be 10%. With these

values the predicted rate is RS4 = 1× 10−4 yr−1. Therefore, once again we see that it

is not expected that this type of event would occur within the range of the S4 search.

However, our knowledge of IMBHs from electromagnetic observations is very poor,

and hence there is a large uncertainty associated with the assumptions made in the

calculation just described. Gravitational wave searches could provide the evidence

needed to affirm the existence of this population of black holes.
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Chapter 7

Tuning the Search

7.1 Overview

In chapter 5 we outlined the analysis pipeline, the set of steps that are followed to

analyse data with the aim of detecting any gravitational wave ringdown signals that

may be present. We described a number of thresholds, cuts, coincidence windows,

and clustering techniques that are implemented to isolate the most likely gravitational

wave candidates. In LIGO matched filtering searches we adopt the “blind search”

philosophy, whereby the constraints are decided upon prior to looking at the full data

set. In this chapter we discuss methods used to determine optimal values for each

of these constraints in the S4 search, i.e., we tune the search. To achieve this we

employ the following three tools, each of which will be described in more detail in

this chapter:

• Monte Carlo simulations of the ringdown waveform (injections),

• time-shifted data sets (timeslides),

• a representative subset of the data (playground).

To tune the search we run the pipeline several times on injections, timeslides and

playground each time modifying the constraints on the pipeline to get the desired

result. Once the tuning has been finalized the data set is unblinded, or in LIGO

language, the box is opened. Implementing a blind search prevents any bias on the

part of the analyst when tuning the search from influencing the result.
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7.2 Implementing an Injection Analysis

Injections are simulations of the signals we are trying to detect whose parameters are

randomized within a given distribution. These simulated signals are added to the

data stream and the pipeline is used to recover them from the noise. We employ

injections for many purposes in the course of the analysis; in this section we discuss

the use of injections to tune the search. We utilize injections and timeslides in tan-

dem to find a balance between recovering as many simulated signals in coincidence

between multiple detectors as possible while keeping the rate of false coincidences

to a minimum. (Background estimation via timeslides will be discussed in the next

section.)

7.2.1 Creating the Injection File

A table of injection parameters is created using the LAL program lalapps rinj

based on a set of input arguments.

• Time: Injections are placed at a random time within an interval of 250 s every

7000/π seconds. This ensures that (i) there is not more than one injection per

analysis segment, (ii) the injection does always occur at the same number of

seconds after the start of the analysis segment, and (iii) the injection does not

occur at the same fraction of a second each time.

• Frequency and Quality: For the purpose of tuning we want to cover the param-

eter space available to the search (this is dependent on the detector sensitivity).

Injections are made uniformly in quality factor Q between values of 2 and 22 and

in logarithmic frequency log10(f0) with 45 Hz ≤ f0 ≤ 2500 Hz. The distribution

of injections in frequency is shown in figure 7.1.

• Sky location and source orientation: The injections are placed uniformly in

logarithmic distance between 1 kpc and 200 Mpc and uniformly in sky position

(right ascension α and declination δ), as shown in figure 7.2. The inclination ι
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and polarization Ψ angles and initial phase φ0 of the injection are also uniformly

distributed.

• From these parameters the amplitude A, mass, spin, and the arrival time and

effective distance at each site are calculated using equations (3.16), (3.6), (3.7),

and (2.25) . The percentage of mass radiated as gravitational waves ε is fixed

at 1%.

Figure 7.1: Distribution of injections in frequency over nine injection runs.

7.2.2 Adding the Injection to the Data

In the context of the pipeline described in chapter 5, the injection list is read in

directly after the raw data. The injection parameters are passed to the ringdown

waveform generation code which creates a time series array for the plus and cross
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Figure 7.2: Distribution of injections’ sky location over nine injection runs.

amplitudes, a+ and a×, the frequency f and phase φ, where

a+(t) = A(1 + cos2 ι) e−
πf0
Q

t, (7.1)

a×(t) = A(2 sin ι) e−
πf0
Q

t, (7.2)

f(t) = f0, (7.3)

φ(t) = 2πf0t + φ0. (7.4)

From these the plus and cross polarizations of the gravitational wave are created:

h+inj
(t) = a+ cos(2πf0t + φ0), (7.5)

h×inj
(t) = a× sin(2πf0t + φ0). (7.6)

Using information about the source and detector positions, the detector antenna

patterns F+(α, δ, Ψ) and F×(α, δ, Ψ) are calculated and the injection waveform is
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then given by

hinj(t) = h+inj
(t)F+(α, δ, Ψ) + h×inj

(t)F×(α, δ, Ψ). (7.7)

The transfer function (the inverse of the response function) is applied to the

waveform so that it has the same units as the raw data, counts. The waveform is

then added data point by data point to the raw data as shown in figure 7.3, and the

pipeline continues as normal. (As can be seen from figure 7.3 there is a discontinuity

where the injection starts. This did not have an impact on our ability to recover the

injections or on the accuracy of the parameter estimation.)

Figure 7.3: Demonstration of the addition of an injection to the raw data; amplitude
(in arbitrary units of countes) versus time for 70 ms of raw data (blue) and raw data
plus an injection (red). The green line marks the time of the injection according to
the injection file. The inset zooms in on the injection, tinj = 0.
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7.2.3 Identifying the Injection Triggers

The output of the pipeline is a list of coincident triggers consisting of the signals that

were injected and coincidences in the data. In order to keep the search blind, at this

stage we only want to examine the times at which we added a simulated signal. We

do this by invoking the injection options in lalapps coincringread. The input

list of injections is read in along with the coincident triggers, and only those groups

of coincidences within a 100 ms time window of each injection are examined further.

As before, the coincident groups are clustered according to the detection statistic. It

is important to note that, even though additional information about the waveform

such as the waveform parameters, we do not utilize this as we want to apply a method

that can also be applied to the zero-lag data where this additional information is not

available. We can, however, use this knowledge after the fact to evaluate how well

the injections are recovered (that is the subject of chapter 8). The parameters of the

successfully recovered injections were written to a “found” file, while those that were

not recovered were written to a “missed” file. Injections in the list for times where

data was not available are discarded, reserving the missed category for injections that

were added to the data but were not recovered.

7.3 Background Estimation via Timeslides

As with any search it is important to get an estimate of the background or false alarm

rate. Unlike a particle detector we cannot simply turn off the source, or change the

orientation of the instrument like one would do in astronomy. Because we require

coincidence in time between triggers in multiple detectors, an alternative is to take

the trigger files from the filtering stage of two instruments and shift one set in time

with respect with the other by a time much longer than the expected length of the

signal (and light travel time for separated detectors) and look for coincidences. This is

illustrated by the cartoon in figure 7.4, where we can see that the timeslides are done

on a ring ensuring that each timeslide contains the same duration of data. In pairs
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of detectors with uncorrelated noise (H1L1 and H2L1) this provides a good estimate

rate of accidental coincidences of noise triggers as the noise sources are completely

independent. In the case of H1H2 this is not such a good estimate because by sliding

the data sets we are removing known noise correlations from the background and

actually under-estimating the rate of false coincidences. We slide L1 fifty times in

steps of 5 s and fifty times in steps of −5 s, H2 in steps of ±10 s, while H1 stays

in place. Timeslides are implemented at the coincidence stage of the pipeline and

are initiated by including the “timeslide” option in the configuration file. Just as

with the zero-lag and injection runs we cluster the coincidences and write them to a

sngl ringdown table.

Figure 7.4: Cartoon illustrating timeslides; data is time-shifted such that any coinci-
dences are accidental, providing an estimate of the rate of false alarms. (Picture from
R. Tucker.)

7.4 Tuning the Constraints

Next we describe the process involved in tuning the various constraints using injec-

tions and timeslides and the final values chosen.
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7.4.1 SNR Threshold, Template Bank Limits, and Sampling

Rate

On the first run through the data the SNR threshold was set to 6 in each detector. The

template bank frequency limits reflected the sensitivity range of the interferometers,

fmin = 50 Hz, fmax = 2000 Hz, and the quality factor range Qmin = 2 and Qmax = 20,

was chosen based on the likely range of spins from black holes 0 ≤ â ≤ 0.98. The

maximum mismatch of the template bank was set to 3%. We downsampled from 16384

s−1 to a new sampling rate of 4096 s−1. As this yielded a very low rate of background

events it was decided to lower the threshold to 5.5 and extend the template bank to

search between 40 Hz and 4 kHz. This new fmax necessitated a higher sampling rate

and thus 8192 s−1 was used. The result was a factor of two increase in the number of

triggers in H1 and L1 and a factor of four increase in the number of H2 triggers, giving

approximately 106 triggers from each interferometer in the playground. However, for

reasons outlined in section 11.1.4 the increased scope of the template bank was not

feasible and it so was returned to its previous frequency range. The threshold and

sampling rate remained at 5.5 and 8192 s−1, respectively. This resulted in a drop

of about 10% in the number of triggers in H1 and L1 and about 20% from H2. To

summarize, the final values were:

• threshold: ρ∗ = 5.5,

• sampling rate: 8192 s−1,

• maximum mismatch: ds2
max = 0.03,

• template bank boundaries: fmin = 50 Hz, fmax = 2000 Hz, Qmin = 2, Qmax = 20.

With these values the final bank, shown in figure 7.5 consisted of 583 templates. The

same template bank was used for each detector throughout the run.
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Figure 7.5: The template bank for the S4 ringdown search which, with the parameters
Qmin = 2, Qmax = 20, fmin = 50 Hz, fmax = 2000 Hz, and ds2

max = 0.03 contained
584 templates.

7.4.2 Clustering the Filter Output

In section 5.4.8 we described a method of clustering the matched filter output using a

sliding window. This method is implemented to reduce the number of output triggers.

It assumes that any triggers occurring within 1 s of each other are correlated. Of

course there is the possibility that a noisy block of data could be clustered entirely,

giving one trigger for a particular template out of the 256 s of data, but our threshold

is sufficiently high that this does not occur. We call the length of time clustered over

the dead-time. The upper panel of figure 7.6 displays the dead-time before each of the

triggers in H1 during S4 and the upper panel of figure 7.7 displays the dead-time after

the trigger. The plots show that a high proportion of triggers have dead-times longer

than 5 s associated with time. However looking just at the triggers that survive the

category 2 and 3 vetoes (the lower panels in figures 7.6 and 7.7), it is apparent that

many of these long dead-times occurred during noisy times, and thus the clustering
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successfully reduces the number of noise triggers output from each filter.

Figure 7.6: Dead-time before triggers in H1 due to clustering of the filter output. The
upper panel shows all the triggers while the lower panel only shows those that are
not cut by category 2 or 3 vetoes.

7.4.3 Coincidence Windows

To tune the coincidence windows described in section 5.5 we ran the pipeline on

injections and timeslides several times, starting with very wide windows and each

time narrowing the windows and comparing the results. Starting with ds2
coinc = 1

(recall that in addition to being used for template placement the mismatch is also

used to define the parameter coincidence test) and time window δt = 5 ms (on

either side of the trigger) these parameters were decreased until we reached the point

where we started to lose injections. It was observed throughout this iterative process

that as one window was tightened the accuracy of the other generally increased.

This demonstrates that the clustering techniques described in chapter 5 were not too

stringent. The final tuned values were ds2
coinc = 0.05 and δt = 2 ms for H1H2, and
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Figure 7.7: Dead-time after triggers in H1 due to clustering of the filter output. The
upper panel shows all the triggers while the lower panel only shows those that are
not cut by category 2 or 3 vetoes.

δt = 12 ms for Hanford-Livingston pairs to allow for the maximum gravitational wave

travel time between the sites.

7.4.4 H1H2 Distance Cut

When the coincidence windows had been fixed, the effective distance distributions of

injections and timeslides were considered. As discussed in section 5.5.5 we expect the

values of effective distance found by H1 and H2 to be similar for real signals whereas

for false coincidences they should be more randomly distributed. Figure 7.8, a plot of

H1-recovered effective distance for injections and timeslides, shows that even though

the distributions overlap, there is some portion of the timeslides that can be isolated

from the injections. We choose a value of κ = deffH1
/deffH2

= 2, denoted in the plot

by a green line. With this value we easily retained all of our injections and were able

to reduce the background by 15%. Figure 7.9 displays a normalized histogram of
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κ = 2 for injections and timeslides.

Figure 7.8: The effective distance of H2 versus H1 for injections (red) and timeslides
(blue). The green line marks the distance cut; all triggers below this line are discarded.

7.4.5 Detection Statistic

As discussed in section 5.5.7, the detection statistic is a ranking mechanism using

the SNRs of coincident triggers. The exact form of the detection statistic for a given

population (doubles or triples) depends on the properties of the SNR distributions

of simulated signals and background signals. For triple coincidences the level of

background is very low and the SNRs of the false coincidences all tended to have low

values of SNR. As distant simulated signals have a similar distribution the most logical

detection statistic is the sum of the squares of the individual triggers. This, however,

is not so for double coincidence background events; these tend to have long “tails”,

that is, coincidences with a very loud SNR in one detector and a much lower SNR

in the other. The contour plot of the H1L1 background SNR distribution shown in

figure 7.10 illustrates this. Injections on the other hand generally lie on the diagonal,
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Figure 7.9: The normalized κ = deffH1
/deffH2

histograms of injections (red) and
timeslides (blue). The green line marks the distance cut; all triggers to the right of
this line are discarded.

— the component SNRs are comparable. If we implemented the triples’ detection

statistic for doubles then the background trigger at the point (5.5,1000) in figure 7.10

would be given the same significance as a trigger at (250,250) (250 = 102.4). Clearly

this does not make sense. Thus, while we cannot rule out the possibility that a real

signal lies in the tails, we do not want to give it a high significance. Our choice of

detection statistic should reflect this.

A simple statistic to do this is the “chopped-L” statistic; for a coincidence with

signal-to-noise ratio (SNR) ρifo1 in detector 1 and ρifo2 in detector 2 the ranking in

significance is

ρDS = min{ρifo1 + ρifo2, a1ρifo1 + b1, a2ρifo2 + b2}. (7.8)

The values of a and b were chosen by considering both the injections and the timeslide

distributions. For simplicity we choose a symmetric statistic a1 = a2 = a, b1 =
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Figure 7.10: A contour plot of the L1 signal-to-noise ratio versus the H1 signal-to
noise-ratio for double coincident timeslide event. The colour-bar represents log10(N)
where N is the number of triggers.

b2 = b. Figure 7.11 shows the SNR distribution of H1L1 timeslides and injections

with detection statistic contours of constant values of the detection statistic marked.

Tuning the values of a and b essentially amounts to varying where the horizontal and

vertical lines cross the diagonal for a given contour. The aim is to find a balance

between having as many injections lie on the diagonal while keeping the horizontal

and vertical lines forward of the tails. Suitable values for this search were found to

be a = 2, b = 2.2.

7.5 Playground

A trigger at GPS time t is in the playground if it satisfies

mod(t− tS2, 6370) < 600 (7.9)
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Figure 7.11: The H1L1 SNR distribution for timeslides (black) and injections (red).
Contours of constant values of the detection statistic with a = 2 and b = 2.2 are
marked in green.

where tS2 is the GPS start time of the second LIGO science run 729273613. This

constitutes approximately 9.5% of the data set. In the development of the pipeline

and in the tuning process we are allowed to look at this representative subset and

leave the remaining 90.5% blind until all the parameters have been decided upon. It

is, of course, possible that a gravitational wave may lie in the playground; this by

no means invalidates the detection. However information from the playground is not

used in determining an upper limit, in order to avoid bias on the part of the analyst

from influencing cuts that determine the upper limit.

In this analysis we did not use the playground directly for tuning, however it

was used in the development of the pipeline for testing code. The distribution of

coincident events found in the playground is discussed in section 8.5.
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Chapter 8

Parameter Estimation

8.1 Introduction

In the previous chapter we discussed how the search was tuned, with our goal being

to recover as many injections as possible while keeping the rate of false alarms to a

minimum. Once all of the constraints were decided upon we ran a large scale injection

run; the findings of the injection run are described in this chapter. In particular

we discuss the efficiency of the search and the accuracy with which we recover the

injected parameters. We also compare recovered parameters between detectors and

the parameters of accidental coincidences. In addition we unblind a fraction of the

data, the playground, and compare this to our estimated false alarm rate.

8.2 Recovery of Simulated Signals

Nine injection runs were made into times when all three interferometers were in science

mode (hereafter referred to as triple time). As discussed in section 7.2, injections were

made at a maximum rate of one per 2176 s analysis segment, totaling 5142 injections

over the nine runs. The primary purpose for such a large scale Monte Carlo simulation

is to evaluate the efficiency, which is needed to calculate an upper limit. As we intend

to place an upper limit on the rate of triple coincidences, we do not perform injections

into times when data was available from only two instruments (double time).
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8.2.1 Single Interferometer Injections

Before delving into the results of the coincidence analysis it is interesting to con-

sider the single detector results; we choose H2 as an example. We can compare

the triggers from the output of the filtering stage to the list of injections using

lalapps ringread (in much the same way as we use lalapps coincringread

for the coincidence analysis, as described in section 5.5.6) to ascertain how many in-

jections were missed and how many were found. As we discussed in relation to the

coincidence analysis, this process does not make use of any information regarding

the injections, apart from the time interval into which they were injected. As a con-

sequence, a trigger due to noise occurring within that time interval with a higher

signal-to-noise ratio (SNR) than the injection would be erroneously identified with

the injection. In such a situation the recovered waveform parameters (frequency and

quality) will most likely not be close to those injected.

In figure 8.1 we plot the effective distance versus frequency of the injections missed

(in red) and found (in blue) in the nine injection runs. The plot shows that, for a

given frequency, there is a distance at which we begin to miss injections. As we move

across in frequency from 50 Hz this distance increases to a maximum of 200 Mpc at

approximately 90 Hz and then falls off again to 300 kpc at the high-frequency end

of the template bank. Superimposed is the expected horizon distance (discussed in

section 6.4) for a ringdown with an SNR of 5.5 and spin of 0.98 created using the

best S4 H2 noise curve. The boundary between missed and found injections follows

the horizon distance curve nicely, illustrating how features in the noise curve effect

the distance out to which an injection can be recovered. (Such features include the

calibration line at 54 Hz, the power line at 60 Hz and its harmonic at 120 Hz, and the

violin mode resonances of the test mass suspensions at 340 Hz.) This plot shows that

we find a trigger within 100 ms of every injection that we would expect to recover (i.e.,

below the horizon distance line). In addition we find some distant injections, however

in most of these cases, it is spurious noise in the detector that we are finding and

not the injection itself. We will see in the next section that this effect is dramatically
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reduced by requiring coincidence between detectors, illustrating of the power of the

coincidence test.

Figure 8.1: Hanford effective distance versus frequency for missed (red) and found
(blue) injections in the H2 single interferometer analysis. The cyan line is the horizon
distance for a source with a spin of 0.98 producing an SNR of 5.5 in the detector,
assuming that 1% of its mass is radiated as gravitational waves.

8.2.2 Coincident Injections

Running lalapps coincringread on the output of the coincidence step gives us

a list of the triggers identified with the injections, one coincidence for each injection

(as discussed in section 5.5.6). These can be categorized as injections found in triple

coincidence (referred to as triples in triple time, or simply triples) and injections found

in coincidence in two detectors (doubles in triple time, or doubles). The doubles are

further divided into those that were missed in the third detector because that time

was vetoed and those that were simply not seen in the third detector. Note that

intervals within triple time when one detector was vetoed are still regarded as triple

time; we consider this a loss of efficiency (of detecting triples) rather than a loss
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of live time. One could, in theory, account for the lost analysis time, however the

extra complexity this entails in terms of bookkeeping is not justified given the small

difference this makes.

8.2.2.1 Missed and Found Injections

Figure 8.2 shows a plot similar to that discussed above, the effective distance versus

frequency of missed and found injections from the coincidence analysis. The injections

found in triple coincidence are marked in blue and those injections found in two

detectors are denoted by green, cyan, and magenta stars for H1H2, H1L1, and H2L1

doubles, respectively. The injections vetoed in one detector and found in the other

two have a black circle surrounding the star to emphasize the fact that technically

they were not missed in the third detector (although they are treated that way in the

calculation of the efficiency). The doubles are shown on their own in figure 8.3. As

before, the missed injections are marked in red. Our sensitivity to triples is limited

by the least-sensitive instrument, H2, and thus the distance out to which we see

triples depends on how far H2 can see. For that reason the distance at which we no

longer find injections in triple coincidence is approximately the same as the distance

that we start missing H2 injections in figure 8.1. Beyond this limit H1 and L1 are

still sensitive enough to detect ringdowns, and so we see a thin line of H1L1 double

coincidences beyond the distance at which the triples end. At high frequencies there

is also a band of H1H2 injections mixed in with the triples. This is because during

the S4 run the sensitivity in L1 decreased as the laser power was lower (as discussed

in section 6.2), and thus injections made at large distances during this time were

missed in L1 while those made when L1 was running with full power were found.

The remaining uncircled doubles (i.e., those missed in the third detector) scattered

throughout the predominantly blue area should have been found in the third detector

and were followed up on an injection-by-injection basis. Further investigation showed

that these were predominantly due to excess noise in the third detector, causing the

SNR to peak at a frequency other than the injected frequency, and as a result this

detector failed the coincidence test. However, with these exceptions, this plot shows
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that we are recovering the all injections we would expect to recover, and this reassures

us that the tools we are employing in the analysis are sound.

Figure 8.2: Hanford effective distance versus frequency for injections missed (red
circles) and found in coincidence. Injections found in triple coincidence are marked
as blue crosses, injections found in double coincidence are shown as green (H1H2)
cyan (H1L1) and magenta (L1H2) stars and those that were vetoed are also marked
with a black circle.

8.2.2.2 Efficiency of Finding Triple Coincidences

We evaluate the efficiency ε of finding triples, that is the fraction of injections found in

triple coincidence, as a function of injected (physical) distance. This is implemented

by binning the injections in logarithmic distance and calculating the efficiency in each

bin. A plot of efficiency versus distance is shown in figure 8.4. The uncertainty in
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Figure 8.3: Hanford effective distance versus frequency for injections found in double
coincidence. The coloured stars represent each of the detector pairs (H1H2 doubles
are marked in green, H1L1 in cyan and L1H2 in magenta). The black circles mark
those doubles that were vetoed in the third detector.

the efficiency is assumed to be binomial,

σ2
ε =

ε(1− ε)

N
, (8.1)

where N is the total number of injections made.

The first thing to note is that the efficiency is never unity, even at small distances,

because, as mentioned in section 5.5 we apply category 2 and 3 vetoes, and thus

some injections that otherwise may have been found as triples are found as doubles

or not at all. The second feature of note is the gradual slope. This is because the

plot encompasses all frequencies and, as is obvious from figure 8.2, the efficiency is

a strong function of frequency. In chapter 9 we present analogous plots for smaller
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Figure 8.4: The efficiency of finding injections in triple coincidences as a function of
physical distance for injections made between 45 Hz and 2.5 kHz.

frequency bands. Considering injections at all values of the central frequency, we see

from figure 8.4 that the 50% efficiency point lies at a distance of approximately 4

Mpc.

8.3 Comparison of Injected and Detected Parame-

ters for Injections Found in Triple Coincidence

Comparing the recovered parameters to the injected parameters gives us a sense of

the accuracy with which we can expect to recover the parameters of a gravitational

wave ringdown. Here we compare the injected and detected time, metric distance,

and effective distance of injections found in triple coincidence.
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8.3.1 Time of Arrival

Figure 8.5 shows a histogram of the difference between the detected and injected

times δt for H1, H2, and L1. This distribution is highly asymmetric for all three

detectors with a peak close to zero and a tail extending to negative δt. Figure 8.6

shows that the accuracy of the time of the injection is a strong function of frequency

(L1 is shown, H1 and H2 displayed a similar trend), with largest δt occurring at low

frequencies and decreasing as the frequency increases. Further investigation showed

that this is because the injections turn on suddenly at t = 0 with a random phase

as demonstrated in figure 7.3. The templates have a phase of zero, and thus the

maximum time difference is inversely proportional to the frequency. The spread in δt

represents the randomness of the initial phase of the injection.

Figure 8.5: Histogram of difference between detected and injected time of arrival for
H1, H2, and L1 injections found in triple coincidence.
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Figure 8.6: Difference between L1 detected and injected time versus injected fre-
quency for injections found in triple coincidence.

8.3.2 Metric Distance

We can calculate the metric distance between the injection and the template that

rang off with the loudest SNR. Recall from section 5.4.5 that the template bank is

laid out such that the maximum metric distance between any point within the f0

and Q boundaries and the nearest template is less that ds2
max, where in this analysis

we have set ds2
max = 0.03. We can calculate this distance between an injection and

the template that recovered it using equation (4.39). In the implementation of the

coincidence test an error was made with the result that the metric distance is under-

estimated by a factor of 4. Therefore, in the context of the following discussion the

value of the maximum mismatch in the layout of the template bank is ds2 = 0.03/4 =

0.0075. A histogram of ds2 calculated between the injected and detected quantities

for H1, H2, and L1 triple coincident injections is shown in figure 8.7. The maximum

distance between a template and any point in the space is marked by a black vertical

line at ds2 = 0.0075; to the left of this line are all the injections that were found
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by the correct (i.e., the closest) template. This accounts for approximately ∼ 70%

of the injections and gives us a high level of confidence in our ability to recover the

parameters of ringdowns.

Figure 8.8 shows how ds2 varies with frequency in L1 (H1 and H2 displayed similar

structure). Not surprisingly, the points follow the general trend of the noise curve

(see figure 6.2) with the lower values of ds2 lying in the most sensitive frequency band

of the detector and higher values of ds2 at the highest and lowest frequencies. The

injections made outside the template bank obviously have the highest values of ds2,

as the nearest template is always going to have ds2 > 0.0075. The spread in ds2

for a given frequency can be attributed to the coarseness of the Q parameter in the

template bank. This is demonstrated by figure 8.9, a plot of ds2 versus quality factor.

Here we see that as the injected value of Q deviates from one of its five templates,

the mismatch increases until such point as the next Q template is closer than the

previous. Thus we see a series of arches, each with the same maximum height.

We can examine both f0 and Q on a scatter plot with ds2 as the colour scale; this

is shown in figure 8.10. From this we can see that the lowest value of the mismatch

between a template and an injection occurs along the lines of Q templates, indicated

by black lines. The highest values of ds2 occur, as expected, along the template

boundaries. However it is interesting to note that the frequency dependence that we

observed in figure 8.8 is most pronounced at low values of Q. Injections on the Q = 17

line are mostly found by the closest template (dark blue to cyan on the colour scale).

In contrast, on the Q = 3.6 line, injections are rarely found by the closest template

above an injected central frequency of ∼ 300 Hz.

8.3.3 Effective Distance

Another check we can make is between injected and detected effective distance. We

find the best way to evaluate this is by the fractional difference

δdeff

〈deff〉
=

2 [deff (det)− deff (inj)]

[deff (det) + deff (inj)]
(8.2)
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Figure 8.7: Histogram of the mismatch ds2 between injections and the templates they
were found with for H1, H2, and L1 triple coincidence injections. The black vertical
line marks ds2 = 0.0075, the template bank maximum mismatch. The plot shows
that ∼ 70% of the injections found in triple coincidence were found with the correct
template.

Figure 8.8: Plot of ds2 versus central frequency for the L1 component of injections
found in triple coincidence
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Figure 8.9: Plot of ds2 versus quality for the L1 component of injections found in
triple coincidence. The red lines mark the five values of Q in the template bank and
the black line marks the upper Q boundary of the template bank.

Figure 8.10: Plot of quality versus frequency for the L1 component of injections
found in triple coincidence. The colour scale is the mismatch between the injected
and recovered parameters ds2. Each horizontal line denotes the frequency range of
the templates for each of the five values of Q.
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where det stands for detected and inj for injected. A histogram of this quantity

evaluated for H1, H2, and L1 detected effective distances is shown in figure 8.11. From

this we see a distribution which is sharply peaked at zero with a slight asymmetry

in the tails for all three detectors. Figure 8.12 shows that the accuracy with which

the effective distance is recovered is frequency dependent in H2. Similar plots for

H1 (figure 8.13) and L1 (not shown) display a similar behaviour. Below 100 Hz and

above 1 kHz the noise increases and we become less accurate. It should be noted that

injections made below 50 Hz and above 2 kHz are outside the template bank and thus

are recovered by the “wrong” template. Therefore the SNR is less than the SNR of

an exactly matched template, and hence the effective distance is over estimated. This

explains the asymmetric tails seen in the histograms. The feature at approximately

340 Hz is believed to be due to the test mass suspension violin mode resonances.

Figure 8.11: Histogram of the fractional difference between detected and injected
effective distance in H1, H2 and L1 for injections found in triple coincidence.
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Figure 8.12: Plot of the fractional difference between detected and injected effective
distance versus frequency in H2 for injections found in triple coincidence.

Figure 8.13: Plot of the fractional difference between detected and injected effective
distance versus frequency in H1 for injections found in triple coincidence.
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8.4 Comparison of Recovered Parameters Between

Detectors

Comparing the recovered parameters between detectors is also a useful exercise, as

this gives us an idea how close we can expect the parameters of real signals to be. In

chapter 7 we discussed the importance of such a comparison for tuning the coincidence

test. Of course, these injections have survived the coincidence test and so we expect

the parameters to be similar in different detectors.

8.4.1 Time

The difference between recovered times in H1 and H2, δt(H1-H2), shown in figure

8.14 is a sharply peaked distribution, as expected given their co-locality, whereas the

difference between recovered times in the H1L1 δt(H1-L1) and H2L1 δt(H2-L1) pairs,

shown in figure 8.15, is a wide distribution where the light travel time of 10 ms can

be clearly seen.

The scatter plot of δt(H1-H2) shown in figure 8.16 displays interesting structure.

The data points lie on equally separated discrete (horizontal) lines in δt; the lines are

separated by the inverse of the sampling rate (8192)−1s, showing just how well the

time parameters are recovered for the majority of the injections. The next interesting

structure is the overall shape of the population of points surrounding the δt = 0

line, with the spread in δt increasing as the frequency decreases. This is the same

phenomenon discussed in section 8.3.1 for the comparison of detected and injected

times. The third feature of note is the second population of points following the same

shape, but separated from the main group by a larger |δt|. This population is actually

the coincidence between two waves out of phase by π. In other words, the first peak

of the injection in one detector was found in coincidence with the second peak in the

other detector. For example, for a 300 Hz ringdown a half cycle is ±1.7×10−3 s in

duration, and as can be seen from the plot, this is approximately where the second

population lies for this frequency. This plot gives important information regarding the
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Figure 8.14: Histogram of difference between H1 and H2 recovered times for injections
found in triple coincidence.

Figure 8.15: Histogram of difference between H1L1 (red) and H2L1 (blue) recovered
times for injections found in triple coincidence.
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Figure 8.16: Plot of difference between H1 and H2 recovered times as a function of
H1 recovered frequency for injections found in triple coincidence.

Figure 8.17: Plot of difference between H1L1 (blue) and H2L1 (red) recovered times
versus frequency for injections found in triple coincidence.
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time coincidence requirement, implying that the width of this window should depend

on the frequency (this will be discussed further in section 11.1.3). Noting that a third

population does not appear, we know that either that same peak or peaks separated

by one half cycle are found in coincidence.

A scatter plot of the H1L1 time difference is shown in figure 8.17. We begin to

see a spread in δt below 200 Hz, but this is not as pronounced as in the H1H2 case.

8.4.2 Metric Distance

The ds2 histogram in figure 8.18 summarizes the mismatch between the recovered

parameters in H1 and L1. The bar at ds2 = 0 indicates that approximately half of

the injections were found with exactly the same template in both H1 and L1. The

next bar at ds2 = 0.0075 are the injections found with the same Q and adjacent f0

values. The third highest bar at ds2 = 0.015 represent the injections found with the

same f0 but differing by one row of Q, and so on. The H1H2 and H2L1 plots show very

similar structure. In all, 37% of injections were found with the same template in all

three detectors. An interesting plot, shown in figure 8.19, is frequency versus distance

for H1 with ds2(H1,L1) as the colour axis. One might expect that as the effective

distance increases the parameter accuracy would degrade, in particular close to the

missed-found boundary seen in figure 8.2. The plot shows however that this was not

so; even weak signals can be accurately recovered. Noise at the lowest and highest

frequencies appear to have more of an effect as the plot shows an increased incidence of

higher mismatched templates at those frequencies. Note that the coincidence window

discussed in section 5.5 allows a window of ds2 = 0.05 on both templates in a pair,

allowing a total window of ds2 = 0.1, as the range of the colour-bar shows.

8.4.3 Effective Distance

When comparing injected and detected quantities, effective distance was one of the

parameters we looked at, as we expect to be able to reconstruct this quantity. How-

ever recall that effective distance is different for separated detectors as it depends on
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Figure 8.18: Histogram of ds2 between recovered parameters in H1 and L1 for injec-
tions found in triple coincidence.

Figure 8.19: Frequency versus effective distance for H1 with the colour-bar displaying
ds2(H1,L1), the metric distance between injections recovered in H1 and in L1.
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the sky location. Thus, in this section we should only expect to see a sharp narrow

peak at zero in the H1H2 case, as co-located detectors should measure similar values

of this quantity and this is the basis for the distance cut discussed in section 5.5.5.

However, just for comparison, we compare the effective distance in all detector combi-

nations. Once more we evaluate the fractional difference in effective distance defined

in equation (8.2)
δdeff

〈deff〉
=

2 [deff (det1)− deff (det2)]

[deff (det1) + deff (det2)]
, (8.3)

where det1 and det2 refer to detectors 1 and 2. Figure 8.20 shows three distribu-

tions in δdeff/ 〈deff〉. As expected, the H1H2 distribution is sharply peaked while

the H1L1 and H2L1 distributions are much broader. The latter two distributions are

symmetric about zero while the H1H2 shows a slight asymmetry. A scatter plot of

the H1H2 distribution revealed a frequency dependence not seen in the other com-

binations. Figure 8.21 shows that at low frequency δdeff/ 〈deff〉 rapidly falls off to

large negative values, indicating that the distance measured in H2 is greater than that

measured in H1. This can be explained by referring back to figures 8.12 and 8.13,

which compare injected and recovered parameters. Here we see that in both plots

δdeff/ 〈deff〉 increases as the frequency reaches the low- and high-frequency ends of

the template bank. However, in comparing these it is clear that in H2 δdeff/ 〈deff〉

increases faster than in H1 at low frequencies; that is, H2 is overestimating the dis-

tance to a larger degree than H1 is. Thus when we take the difference between these

two quantities we observe an asymmetric tail.

8.5 Comparison of the Background Estimation via

Time-slides with the Playground

We discussed the estimation of the rate of accidental coincidences in section 7.3 and

the definition of the playground data set in section 7.5. In this section we compare

the prediction of the background distribution of the final tuned pipeline with the

playground.
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Figure 8.20: Histogram of the fractional difference in H1H2 (green), H1L1 (red), and
(H2L1) blue recovered effective distance for injections found in triple coincidence.

Figure 8.21: Plot of the fractional difference in H1 and H2 recovered effective distance
versus H1 frequency for injections found in triple coincidence.
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8.5.1 Triple Coincidences

The number of background events found in triple coincidence was quite small; from

100 timeslides there were just 14 events, making the triple-time false alarm rate less

than one event per run. Figure 8.22 shows the projection of the SNR distribution

of triple coincident background triggers onto the H1L1 plane. The plot shows that

the background events were found at low SNR in all three detectors. There were

no events found in triple coincidence in the playground. This is consistent with the

prediction of the background from the timeslide estimate.

Figure 8.22: L1 SNR versus H1 SNR for background triggers found in triple coinci-
dence.

8.5.2 Double Coincidences

In contrast, however, the number of background events found in double coincidence

was considerably higher. From 100 timeslides we found an average of 620, 150, and

800 background events in H1L1, H1H2, and H2L1, respectively per timeslide. It
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should be noted that, as mentioned previously, the H1H2 false alarm rate is known

to be underestimated.

There were 53, 21 and 69 double coincidences found in H1L1, H1H2 and H2L1

respectively in the playground data set.

A plot of the SNR distribution for timeslides and playground found in double

coincidence in H1 and L1 is shown in figure 8.23, for H1 and H2 in figure 8.25, and

for H2 and L1 in figure 8.27. In addition to having a much larger false alarm rate

than triples, the double coincidence timeslide plots also show a different type of SNR

distribution; in addition to a central component close to the diagonal, the plots show

long tails extending to high SNR. Note that the H1H2 background distribution we

see the effects of the distance cut. The playground triggers were all found with SNRs

lower than 20.

We can compare the number of coincidences found in the playground to the es-

timated background. Figures 8.24, 8.26, and 8.28 show histograms of the number of

double coincidences in each of the one hundred timeslides, along with the number

of double coincidences found in the playground scaled to the full data set for H1L1,

H1H2, and H2L1 respectively. If the background estimate is an accurate measure of

the false alarm rate, one would expect that the scaled number of playground events

should be to be comparable to number of events in each timeslide. We find that,

although the scaled playground is lower than the average number of timeslide double

coincidences for H1L1 and H2L1, it is within the estimated error. As we have dis-

cussed previously the timeslide method of background estimation in H1H2 is flawed

and we expect to see a greater number of coincidences than predicted. Figure 8.26

shows that this is indeed the case.
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Figure 8.23: The signal-to-noise distribution of playground and timeslides found in
double coincidence in L1 and H1.

Figure 8.24: Histogram of number of H1L1 double coincidences per timeslide and in
the playground scaled to the full data set.
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Figure 8.25: The signal-to-noise distribution of playground and timeslides found in
double coincidence in H2 and H1 prior to the implementation of the distance cut.

Figure 8.26: Histogram of number of H1H2 double coincidences per timeslide and in
the playground scaled to the full data set.
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Figure 8.27: The signal-to-noise distribution of playground and timeslides found in
double coincidence in L1 and H2.

Figure 8.28: Histogram of number of H2L1 double coincidences per timeslide and in
the playground scaled to the full data set.
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8.6 Comparison of Recovered Injection Parameter

Accuracy for Timeslides found in Double Co-

incidence

We have just demonstrated that the expected rate of false alarms in double coinci-

dence is very high. Here we investigate the possibility that by comparing the accuracy

between timeslide components to the accuracy between injection components we could

distinguish between a signal and a noise event. We look at the mismatch between

pairs of detectors and the difference in recovered effective distance.

8.6.1 Metric Distance

First we compare how close in parameter space the background events were in com-

parison to the injections by plotting histograms of ds2 normalized to the total number

of events. (The injection distribution was already discussed in section 8.4.2.) Figure

8.29 shows a comparison between H1 and L1. Here again we see a series of peaks

due to the fact that the same template bank is used throughout the search. We see

that the fraction of timeslide coincidences is low, but not zero at ds2 = 0, telling us

that in double coincidence there is a non-negligible chance that two independent noise

triggers could be found with the exact same parameters in widely separated sites. In

fact the timeslide estimation of the H1L1 background predicts that in a typical S4

run we can expect 30 background events to be found in H1 and L1 with exactly the

same waveform parameters! The fraction of injections found at higher values of the

mismatch drops rapidly and the fraction of false alarms increases slightly, showing

that a candidate event found with a large values of ds2 is more likely to be back-

ground than a real signal. Almost identical distributions were seen for H1H2 and

H2L1 combinations.
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Figure 8.29: The normalized distribution of the mismatch between H1 and L1 for
injections (red) and double coincident timeslides (blue).

8.6.2 Effective Distance

Recall from our discussion in section 8.4.2 that we really can only make use of the

H1H2 comparison of effective distances as we expect these to be very close for real

signals. Figure 8.30 shows the comparison of δdeff/ 〈deff〉 between H1 and H2 for

timeslides and injections. The plot shows that, whereas the injection distribution is

peaked at δdeff/ 〈deff〉 = 0, the timeslide distribution is peaked at δdeff/ 〈deff〉 ∼ 0.3.

We can also see the point where the distance cut was implemented, beyond where

the injection distribution ended at δdeff/ 〈deff〉 = 0.67. This shows the advantage of

having a co-located half-length interferometer; if H2 was the same length as H1, the

timeslide peak would also lie at δdeff/ 〈deff〉 = 0.

The background distributions of δdeff/ 〈deff〉 = 0.67 in H1L1 and H2L1 are inter-

esting too. Firstly the plot shows that because the background distribution is broad

and peaked close to zero just like the injection distribution, we cannot implement a

distance cut. Both distributions display a second peak shifted from the first. This is
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because the L1 sensitivity was decreased for a period during the run, as the effective

distance is proportional to the sensitivity, the effective distance of the background

was also less.

From this study we can conclude that it is impossible to distinguish between a

signal and background from the accuracy of parameters between pair of detectors.

Figure 8.30: The normalized distribution of the fractional difference in effective dis-
tance between H1 and H2 for injections (red) and double coincident timeslides (blue).
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Figure 8.31: The normalized distribution of the fractional difference in effective dis-
tance between H1 and L1 for injections (red) and double coincident timeslides (blue).

Figure 8.32: The normalized distribution of the fractional difference in effective dis-
tance between L1 and H2 for injections (red) and double coincident timeslides (blue).
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Chapter 9

Results

9.1 Introduction

Once we were satisfied with the tuning of the search the pipeline was applied to the

full data set and the search was unblinded. A cumulative histogram of the detection

statistic of background events was compared to that of foreground events for each

category of coincidences. A significant excess of the foreground distribution above

the background distribution could indicate the presence of a gravitational wave. On

opening the box we found that no triple coincidence signals survived to the end of

the pipeline. As expected there were a number of foreground triggers found in double

coincidence and while some of those categories showed a slight excess above the back-

ground we did not find sufficient evidence to claim a detection of gravitational waves.

In section 9.2 we describe our findings on unblinding each category of coincidences in

the search. In section 9.3 the double coincidences with the highest detection statistic

are followed up. In each case the presence of instrumental artifacts or environmental

disturbances were sufficient to explain the coincident triggers. The upper limit on

the rate of ringdowns is calculated in section 9.4.

9.2 Opening the Box

In each of the cumulative histograms described in this section we plot the background

distribution scaled down by a factor of 100 (as this many timeslides were performed)
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for comparison with the zero-lag events. The histogram is a function of the detection

statistic, which for double coincidences is ρDS = min{ρ1+ρ2, 2ρ1+2.2, 2ρ2+2.2} where

ρ1 and ρ2 refer to the signal-to-noise ratio (SNR of triggers from interferometers 1

and 2. The error bars on the background distribution denote a one σ error, where

σ =
√

N/100 and N is the number of background events per bin. In all of the

scatter plots referred to in this section we plot all of the coincident events from 100

timeslides along with the zero-lag triggers. The inset in each plot zooms in on the

low-SNR region containing most of the zero-lag triggers. Tables detailing the ten

loudest candidate events in each category can be found in appendix C.

9.2.1 Triples in Triple Time

No triple coincident zero-lag events were found.

9.2.2 H1L1 Doubles in Triple Time

Figure 9.1 shows the cumulative histogram of H1L1 doubles in triple time. The plot

shows that the foreground was within the expected range of accidental coincidences.

Figure 9.2 shows the SNR from the individual zero-lag and background triggers.

9.2.3 H1H2 Doubles in Triple Time

Figure 9.3 shows the expected excess of zero-lag triggers due to our inability to predict

the H1H2 false alarm rate. There was one trigger with an exceptionally high detection

statistic, ρDS ∼ 63. Figure 9.4 shows the individual SNRs were ρH1 = 1300 and

ρH2 = 30.

9.2.4 H2L1 Doubles in Triple Time

Figure 9.5 shows that the H2L1 foreground was consistent with the background. A

plot of ρL1 versus ρH2 is shown in figure 9.6.
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9.2.5 H1L1 Doubles in Double Time

For this category we see a deficit of foreground triggers compared to background in

figure 9.7. Figure 9.8 shows the distribution of foreground and background triggers

in SNR.

9.2.6 H1H2 Doubles in Double Time

Once more we see an excess in the H1H2 foreground due to our inability to estimate

the background accurately. Figure 9.9 displays the H1H2 cumulative histogram and

figure 9.10 shows the ρH2 versus ρH1 scatter plot.

9.2.7 H2L1 Doubles in Double Time

Figure 9.11 shows that the H2L1 double time foreground was consistent with back-

ground. Figure 9.12 displays the ρL1 versus ρH2 scatter plot.

9.3 Following Up on the Loudest Candidates

Here we list a number of checks that can be applied to candidate events to increase

or decrease our confidence in each as being caused by a gravitational wave. The

histograms in the previous section showed that there were no events standing out

above the background and thus we do not believe that we have detected a gravitational

wave in this data set. However, as an exercise we apply this checklist to the three

loudest candidates in each of the triple time categories and the loudest candidate in

each of the double time categories and demonstrate how these candidates fail several

of the tests.

9.3.1 Follow-Up Procedures

• Check what data quality flags (if any) were in place at the time of the candidate

events. Candidate events occurring at the same time as category 4 data quality

flags were generally downgraded in significance.



118

Figure 9.1: Cumulative histogram of zero-lag and background coincidences: H1L1
doubles in triple time.

Figure 9.2: Scatter plot of L1 versus H1 signal-to-noise ratio for double coincident
zero-lag and background (100 timeslides) triggers in triple time. The inset is an
enlargement of the region ρ = 5 to 200.
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Figure 9.3: Cumulative histogram of zero-lag and background coincidences, H1H2
doubles in triple time.

Figure 9.4: Scatter plot of H2 versus H1 signal-to-noise ratio for double coincident
zero-lag and background (100 timeslides) triggers in triple time. The inset is an
enlargement of the region ρ = 5 to 200.
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Figure 9.5: Cumulative histogram of zero-lag and background coincidences, H2L1
doubles in triple time.

Figure 9.6: Scatter plot of L1 versus H2 signal-to-noise ratio for double coincident
zero-lag and background (100 timeslides) triggers in triple time. The inset is an
enlargement of the region ρ = 5 to 200.
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Figure 9.7: Cumulative histogram of zero-lag and background coincidences, H1L1
doubles in double time.

Figure 9.8: Scatter plot of L1 versus H1 signal-to-noise ratio for double coincident
zero-lag and background (100 timeslides) triggers in double time. The inset is an
enlargement of the region ρ = 5 to 200.
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Figure 9.9: Cumulative histogram of zero-lag and background coincidences, H1H2
doubles in double time.

Figure 9.10: Scatter plot of H2 versus H1 signal-to-noise ratio for double coincident
zero-lag and background (100 timeslides) triggers in double time. The inset is an
enlargement of the region ρ = 5 to 200.
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Figure 9.11: Cumulative histogram of zero-lag and background coincidences, H2L1
doubles in double time.

Figure 9.12: Scatter plot of L1 versus H2 signal-to-noise ratio for double coincident
zero-lag and background (100 timeslides) triggers in double time. The inset is an
enlargement of the region ρ = 5 to 200.
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• Run a qscan1 [78] on the time under investigation. This has a twofold purpose:

the first is to check if the signal in the gravitational wave channel is consistent

with what we expect for a ringdown (a short signal at a single frequency) or

an inspiral (a signal whose frequency increases with time), and the second is

to see if there was excess power in any of the auxiliary channels which could

explain the coupling of a non-gravitational wave source to the gravitational

wave channel. For an example of what we expect in a qscan of the gravitational

wave channel in the presence of a gravitational wave see the qscan of an inspiral-

merger-ringdown hardware injection in figure 9.13.

• Plot quantities such as the SNR time series, SNR versus frequency, and fre-

quency time series around the time of the candidate event using the trigger files

output after the filtering stage and compare with similar plots of injections and

background events.

• If a double coincident candidate event occurred during triple time, try to un-

derstand why it was not found in the third interferometer.

• See if the event was also found in other searches, such as the S4 binary black

hole search (S4 BBH) [16] or the S4 burst search [21].

9.3.2 H1L1 Doubles in Triple Time

Candidate number 1:

• t = 794949585, ρDS = 21, ρH1 = 9.4, ρL1 = 12.5.

• Examination of the data quality flag database shows that no category 4 data

quality flags were on during the time of this candidate event.

1Qscan is a script that creates time frequency maps of selected channels around a desired time. It
is a useful tool for obtaining an overview of excess power in the gravitational wave channel, excitation
channels, auxiliary channels, and environmental channels.
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Figure 9.13: The whitened spectrogram of the H1 gravitational wave channel showing
a hardware injection of an inspiral-merger-ringdown signal during S5.

• If this was a real signal we would expect that ρH2 ≈ 4.7. However this is below

the threshold for H2 and therefore if this was a gravitational wave it could not

have been found as a triple coincidence.

• This candidate was not in the top ten loudest candidates in the binary black

hole search.

• A qscan of the H1 and L1 gravitational wave channels at this time (shown

in figure 9.14) revealed a short broadband signal in each interferometer in an

otherwise quiet time window. These characteristics indicate that the signal is

not a ringdown (or an inspiral).

Candidate number 2:

• t = 793829533, ρDS = 20, ρH1 = 9, ρL1 = 11.

• The category 4 data quality flag L1:ASDC LOW THRESH was on at this time.

This flag represents times when the amount of light in the dark port exceeds a
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(a) H1 (b) L1

Figure 9.14: A qscan of the gravitational wave channel at GPS time 794949585, the
loudest H1L1 candidate event in triple time.

(a) H1 (b) L1

Figure 9.15: A qscan of the gravitational wave channel at GPS time 793829533, the
second loudest H1L1 candidate event in triple time.

certain threshold. This is usually indicates problems with alignment and raises

our suspicions about the validity of this candidate.

• The SNR of H1 indicates that this candidate was below the threshold for H2.

• This candidate was not among the BBH search loudest triggers.

• The qscan immediately eliminates this candidate. Figure 9.15 shows a long

broadband disturbance in L1.

Candidate number 3:

• t = 794291462, ρDS = 19, ρH1 = 8, ρL1 = 11.
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(a) H1 (b) L1

Figure 9.16: A qscan of the gravitational wave channel at GPS time 794291462, the
third loudest H1L1 candidate event in triple time.

• Like the previous two candidates this also was too quiet to have been seen in

H2.

• The qscan, figure 9.16, once more indicates a noisy time in L1 during which the

detection of gravitational waves would be unlikely.

9.3.3 H1H2 Doubles in Triple Time

Candidate number 1:

• t = 793253792, ρDS = 63, ρH1 = 1300, ρH2 = 30.

• The data quality flag H1H2 COHERENCE was on at the time, indicating times

of strongly coherent noise between H1 and H2. This decreases our confidence

in this coincidence as a candidate event.

• Looking at the qscan for this candidate, figure 9.17, we see a large broadband

glitch in both the H1 and H2 gravitational wave channels. While we can not

say with certainty what the cause of this glitch is, we can conclude that it does

not have the characteristics of a gravitational wave ringdown. It does appear

to be coincident in time with a glitch in a magnetometer channel, however a

correlation between these channels has not yet been firmly established.
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(a) H1 (b) H2

Figure 9.17: A qscan of gravitational wave channel at GPS time 793253792, the
loudest H1H2 candidate event in triple time.

Candidate number 2:

• t = 794654729, ρDS = 21, ρH1 = 13, ρH2 = 10.

• Figure 9.18, the qscan of the gravitational wave channel revealed a ∼ 0.5 s

long narrow-band signal in both H1 and H2. In addition, a large number of

environmental channels showed a significant disturbance. In the magnetometer

channels this manifested itself as a ∼ 7 s long broadband disturbance, as can

be seen in figure 9.19(a). All of the accelerometer channels that were triggered

displayed a shorter (< 0.5 s) glitch at ∼ 128 Hz; this can been seen in figure

9.19(b). This also appeared in the microphone channels with the same frequency

and in some voltmeter channels at ∼ 292 Hz. Some of the magnetometer

channels also showed this line feature at ∼ 192 Hz. This candidate is clearly

not a gravitational wave.

Candidate number 3:

• t = 795398069, ρDS = 15, ρH1 = 6, ρH2 = 8.

• The H1 category 4 data quality flag HIGH PIXEL FRACTION 1KHZ was on

at the time of the candidate, indicating a large deviation from Gaussianity,

making this coincidence more likely due to noise than a gravitational wave.
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(a) H1 (b) H2

Figure 9.18: A qscan of the gravitational wave channel at GPS time 794654729, the
second loudest H1H2 candidate event in triple time.

(a) The magnetometer channel H0:PEM-
LVEA MAGX.

(b) The accelerometer channel H0:PEM-
ISCT4 ACCX.

Figure 9.19: A qscan of two environmental channels triggered at 794654729.
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(a) H1 (b) H2

Figure 9.20: A qscan of the gravitational wave channel at GPS time 795398069, the
third loudest H1H2 candidate event in triple time.

• A plot of SNR versus frequency shows a large portion of the both banks rang

off over a small SNR range.

• For this candidate the gravitational wave channel qscan, figure 9.20, shows a

series of small glitches at various frequencies indicating a noisy period of time

in the detector.

9.3.4 H2L1 Doubles in Triple Time

Because of the similarity of the loudest three candidates in this category we discuss

them collectively.

• Candidate number 1: t = 794966223, ρDS = 20, ρH2 = 10, ρL1 = 10.

Candidate number 2: t = 794490884, ρDS = 17, ρH2 = 9, ρL1 = 8.

Candidate number 3: t = 793181575, ρDS = 16, ρH2 = 9, ρL1 = 7.

• The qscans of the gravitational wave channel for candidates 1, 2, and 3 are

shown in figures 9.21, 9.22, and 9.23 respectively. Each demonstrates that the

coincident triggers occurred during noisy times and are most likely false alarms.

• For each of the candidates H1 was in science mode and if the H2 signal was due

to a gravitational wave then, given that H1 is approximately a factor of 2 more

sensitive, the event would also have been seen in H1.
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(a) H2 (b) L1

Figure 9.21: A qscan of the gravitational wave channel at GPS time 794966223, the
loudest H2L1 candidate event in triple time.

(a) H2 (b) L1

Figure 9.22: A qscan of the gravitational wave channel at GPS time 794490884, the
second loudest H2L1 candidate event in triple time.

(a) H2 (b) L1

Figure 9.23: A qscan of gravitational wave channel at GPS time 794490884, the third
loudest H2L1 candidate event in triple time.
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(a) H1 (b) L1

Figure 9.24: A qscan of the gravitational wave channel at GPS time 793258551, the
loudest H1L1 candidate event in triple time.

• Several data quality flags were on for candidates 1 and 3, some of which were

category 4 flags reinforcing the false alarm claim. At the time of candidate 1

the H2 flag DUST ELEVATED indicating an increased particle count in the

dark port (which could be responsible for glitches) and the L1 category 4 flags

ACOUSTIC ELEVATED (indicating elevated acoustic noise in the 62–188 Hz

band) and ASDC LOW THRESH were on.

9.3.5 H1L1 Doubles in Double Time

Candidate number 1:

• t = 793258551, ρDS = 17, ρH1 = 7, ρH2 = 10.

• A qscan of the gravitatational wave channel is shown in figure 9.24.

9.3.6 H1H2 Doubles in Double Time

Candidate number 1:

• t = 793589170, ρDS = 17, ρH1 = 11, ρH2 = 8.

• The category 4 data quality flag SEISMIC 0D8 2D0 was on during this time

indicating an excess of seismic activity between 0.8 and 2.0 Hz. Such a distur-
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(a) H1 (b) L1

Figure 9.25: A qscan of the gravitational wave channel at GPS time 793589170, the
loudest H1H2 candidate event in triple time.

bance is likely to couple to both H1 and H2, producing the coincidence that we

see.

• A qscan of the gravitational wave channel at the time of this candidate event is

shown in figure 9.25.

• The category 4 data quality flag SEISMIC 0D8 2D0 was on during this time.

9.3.7 H2L1 Doubles in Double Time

Candidate number 1:

• t = 794432410, ρDS = 16, ρH1 = 9, ρH2 = 7.

• The qscan of this candidate, figure 9.26, is quite similar to the H2L1 double

coincident candidates in triple time; once more we find that the coincidence

occurred during a noisy time in the detector.

9.4 The Upper Limit

This goal of this search is to detect gravitational wave ringdowns. However if a

gravitation wave is not detected, as is the situation here, we can place an upper limit

on the rate of black hole ringdowns in a volume of space. In doing this we only consider
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(a) H2 (b) L1

Figure 9.26: A qscan of the gravitational wave channel at GPS time 794432410, the
loudest H2L1 candidate event in triple time.

times when it was possible to detect a signal in all three detectors. As we have seen

in previous chapters, the level of false alarms for two-detector coincidence was very

high, making detection confidence in those times very low. As we will demonstrate at

the end of this chapter, confining ourselves to triple time does not make a significant

difference to the upper limit we calculate.

Calculating an upper limit is achieved by taking the astrophysical population of

black holes and our ability to detect ringdowns into account. For now we express

this as the cumulative luminosity CL and explain this quantity in more detail in the

next section. We use the detection statistic of the loudest triple coincident event ρmax

detected as a threshold above which we evaluate CL and calculate an upper limit. In

this search there were no triple coincident events in the zero-lag data and so we set

the ρmax to the search threshold.

9.4.1 Bayesian and Frequentist Approaches to the Upper

Limit

Two schools of thought exist on how an upper limit should be calculated; one uses

Bayesian probabilities while the other employs frequentist probabilities. The primary

difference between the two methods is that the Bayesian method uses prior knowledge

about the rate in calculating probabilities whereas the frequentist method does not. A
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nice derivation and discussion of Bayesian and frequentist upper limits in gravitational

wave searches can be found in [79], and [80] is a detailed reference on Bayesian upper

limits for LIGO searches. Here we summarize the main points as they apply to the

ringdown search.

9.4.1.1 Frequentist

The probability that there were no gravitational wave events with SNR greater than

ρ is given by

P (ρ|R, T ) = e−RTCL(ρ) (9.1)

where R is the rate of ringdown events per unit cumulative luminoisty and T is the

observation time. If there was a background B present then the probability that no

background events were present with SNR greater than ρ, PB(ρ), may be taken into

account giving an overall probability of

P (ρ|R, T,B) = PBe−RTCL(ρ). (9.2)

We can choose a confidence level α at which we wish to evaluate the rate of events

above an SNR of ρmax and solve the equation 1 − α = P (ρmax|RT, B) for R. This

gives

Rα = − ln(1− α)− ln(PB(ρmax))

TCL(ρmax)
. (9.3)

In the ringdown analysis there were no events found in triple coincidence, and so CL

was evaluated at threshold. The level of foreground was perfectly consistent with

background (we had less than one event in both cases) and so the probability that a

foreground event was associated with noise is 1. Thus PB = 1, ln(PB) = 0, and the

90% confidence frequentist upper limit on the rate is

R90% =
2.303

TCL(ρmax)
. (9.4)
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9.4.1.2 Bayesian

A Bayesian upper limit is calculated from the posterior probability P (R < Rα, T |ρmax)

P (R < Rα, T |ρmax) = N−1

∫ Rα

0

p(R, T ) p(ρmax|R, T ) dR (9.5)

where p(R, T ) is the prior distribution on the event rate,N is a normalization constant

and the likelihood is

p(ρ|R, T,B) =
dP (ρ|R, T,B)

dρ
= −PBRT

dCL(ρ)

dρ
e−RTCL(ρ) (9.6)

where the second equality makes use of equation (9.2). The upper limit is determined

by solving P (R < Rα, T |ρmax) = α for Rα. In this search we do not have any

information on the rate of ringdowns and so we choose a uniform prior, p(R, T ) = 1,

and obtain

1− α = e−RαTCL(ρmax) [1 + ξ R T CL(ρmax)] (9.7)

where

ξ =

[
1− d ln(PB)

d ln(CL)

∣∣∣∣∣
CL(ρmax)

]−1

. (9.8)

In the ringdown search the loudest event was consistent with background, ξ = 0, and

thus the 90% rate upper limit is given by

R90% =
2.303

TCL(ρmax)
. (9.9)

Thus, in this particular case both the frequentist and Bayesian approaches give the

same upper limit.

9.4.2 Cumulative Luminosity

In the previous section we introduced the quantity CL, the cumulative blue light

luminosity, and stated that this was a measure of our ability to detect gravitational

wave ringdowns from a given population of sources. The sources of interest are black
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holes in the high end of the stellar mass ranges and in the lower end of the intermediate

mass range 6 M� < M < 600 M�. As described in chapter 3, we know very little

about the population of stellar mass black holes and even less about intermediate-

mass black holes, — indeed there has been no strong evidence to date for their

existence. However we do know that the formation of stars in general scales with the

blue-light luminosity emitted by galaxies, and as it is expected that the rate of binary

coalescence follows the rate of star formation, we work under the assumption that

the rate of binary coalescence also scales with blue light luminosity. In an effort to

interpret the results of LIGO binary coalescence searches a catalog of nearby galaxies

that could host compact binary systems was compiled [72]. Beyond ∼ 30 Mpc the

cumulative luminosity scales as the cube of distance; this is the regime of interest for

the current search. The relationship between cumulative luminosity and distance is

given by

CL = ρLVeff (9.10)

where ρL = (1.98 ± 0.16) × 10−2L10Mpc−3. CL has units of L10 which is defined as

L10 = 1010LB,�, and LB,� = 2.16×1033 erg s−1 is the solar blue light luminosity. The

effective volume Veff is the volume of space we are sensitive to, which we quantify in

terms of a detection efficiency expressed as a function of distance ε(r)

Veff (r) = 4π

∫
ε(r)r2dr. (9.11)

Thus, the rate of ringdowns is given in units of yr−1 L−1
10 by

R =
2.303

TρLVeff

. (9.12)

9.4.2.1 Efficiency

We evaluate the efficiency of detecting gravitational wave ringdowns from a hypo-

thetical population of sources by injecting simulated signals into the data stream

and searching for these signals, implementing the same pipeline used to detect a real

ringdown in the noise. This population was discussed in section 7.2, and our ability
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to detect them was discussed in chapter 8. The ratio of the number of injections

found in triple coincidence compared to the number injected gives a measure of the

efficiency for a given distance.

Evaluation of Veff is somewhat complicated by the fact that we evaluated the

efficiency as a function of logarithmic distance rather than linear distance. Thus we

need to make the substitution

u = log10(r) =
ln(r)

ln(10)
, (9.13)

which can be expressed as

r = 10u. (9.14)

This gives

du =
1

loge(10)

1

r
dr (9.15)

or in terms of dr

dr = loge(10)10udu. (9.16)

Equation (9.11) can be rewritten as

Veff (u) = 4π ln(10)

∫
ε(u)103udu. (9.17)

In practice ε and r are discrete quantities and so Veff is expressed as

Veff = 4π ln(10)
∑

i

ε(ui)r
3
i ∆u. (9.18)

9.4.3 Calculating the Upper Limit

As we saw from figure 8.2 the efficiency varies dramatically with frequency, and

therefore, in the calculation of the upper limit we divide the frequency space into

separate bands, based roughly on the different levels of sensitivity: 45–100 Hz, 100–

200 Hz, 200–500 Hz 500–1000 Hz, 1–2 kHz. For each band we calculate the efficiency

as a function of effective distance shown in figures 9.27 to 9.31, the effective volume
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Veff and corresponding radius reff =
(
Veff/

4π
3

)1/3
, a measure of the sensitivity VeffT ,

and the 90% rate upper limit R90. These quantities are displayed in table 9.1. As

mentioned above, the assumption of uniform density is only valid at large distances;

in the frequency bands with lower sensitivity we are restricted to short distances, and

so the calculation becomes invalid and thus we do not quote an upper limit for these.

This is denoted by “N/A” in the table.

Figure 9.27: The efficiency of detecting triples versus physical distance for injections
made in the 45–100 Hz band.

Table 9.1: Upper limit for triples in triple time

f-band (Hz) [45,100] [100,200] [200,500] [500,1000] [1000,2500]
M-band (M�), a = 0 [260,120] [120,60] [60,24] [24,12] [12,5]

M-band (M�), a = 0.994 [600,270] [270,140] [140,54] [54,27] [27,11]
Veff (Mpc3) 2.1×106 2.3×106 3.6×104 5.8×102 5.1×10−1

reff (Mpc) 79 82 20 5.2 0.49
T (yr) 0.0375 0.0375 0.0375 0.0375 0.0375

VeffT (Mpc3 yr) 7.9×104 8.6×104 1.3×103 2.2×101 2×10−2

R (yr−1 L−1
10 ) 1.5×10−3 1.4×10−3 N/A N/A N/A
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Figure 9.28: The efficiency of detecting triples versus physical distance for injections
made in the 100–200 Hz band.

Figure 9.29: The efficiency of detecting triples versus physical distance for injections
made in the 200–500 Hz band.
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Figure 9.30: The efficiency of detecting triples versus physical distance for injections
made in the 500–1000 Hz band.

Figure 9.31: The efficiency of detecting triples versus physical distance for injections
made in the 1000–2500 Hz band.
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9.4.4 Error Analysis

Due to our lack of knowledge about the population of black holes we assign no system-

atic error to the astrophysical source population. Similarly, the waveform uncertainty

is unquantifiable; the waveform we use is taken to be the definition of a black hole

ringdown. We limit ourselves to evaluating systematic errors associated with the

experimental apparatus and analysis method. The only systematic error associated

with the former is calibration of the data. The only systematic error associated with

the latter is with the limited number of Monte Carlo simulations to evaluate the

efficiency. We consider only the 100–200 Hz band.

As described in section (2.2.3.1) the response function is calculated from a ref-

erence loop gain function, a reference sensing function, and calibration coefficients

recorded every minute. Errors in the calibration can cause the SNR of a signal to

be incorrectly quantified, thus introducing inaccuracies in the distance. As the effi-

ciency is a function of distance, care has to be taken to adjust the efficiency curve

appropriately. The fractional uncertainty in amplitude δ was found from calibration

studies [5] to be 5%. Returning to equation (9.11), this means that we are actually

evaluating ε(r[1 + δ]). Making the substitution of u for r[1 + δ],

Veff = 4π

∫
1

(1 + δ)3
ε(u)u2du, (9.19)

shows we could be over- or under-estimating the effective volume by 15.67%. Thus the

error in the volume in the 100–200 Hz band due to the calibration is δVcal = 3.12×105

Mpc3.

The second source of error is due to the limited number of injections in our Monte

Carlo (MC) simulations to evaluate the efficiency. Assuming binomial errors, the

variance of the efficiency σ2
MC is

σ2
MC =

ε(1− ε)

N
(9.20)
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where N is the number of injections made. Thus the error in the effective volume,

evaluated by multiplying σ2
MC by the square of the volume of each bin,

σ2
VMC

=
∑

i

σ2
MCi

(dVi)
2, (9.21)

was found to be σVMC
= 9.1 × 105 Mpc3. Summing these errors in quadrature gives

a total error of σV = 9.6 × 105 Mpc3. Multiplying by 1.64 gives the 90% confidence

interval of δV = 1.57×106 Mpc3. To be conservative we apply a downward excursion

to the effective volume, giving an upper limit of R90% = 4.3× 10−3 yr−1L−1
10 .

9.4.5 Including Doubles in the Upper Limit Calculation

Before opening the box on the analysis the decision was made to examine all double

and triple coincident triggers for a detection but consider only triples in the calculation

of the upper limit. We knew that in the absence of signal-based vetoes the level of

background was very high, and thus we would not gain very much by including

them. As an exercise we quantify this. The efficiency of detecting injections in

double coincidence in triple time was evaluated at the SNR of the loudest foreground

event for H1L1, H1H2, and H2L1 pairs. The calculated rate, along with intermediate

results of this calculation, are displayed in table 9.2. We did not perform injections

in double time, however we do not expect the efficiency of doubles in double time to

be significantly different from the efficiency of doubles in double time. We calculate

the efficiency of each of the three pairs at the loudest event found for each in double

time and using the double-time durations, calculated the upper limit. This is shown

in table 9.3. Comparing with the 100–200 Hz band in table 9.1, the results show that

doubles in triple time contribute an additional 7% to the sensitivity, while doubles

from double time contribute just 1%.
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Table 9.2: Upper limit for doubles in triple time

f-band (Hz) [45,100] [100,200] [200,500] [500,1000] [1000,2000]
M-band (M�), a = 0 [260,120] [120,60] [60,24] [24,12] [12,5]

M-band (M�), a = 0.994 [600,270] [270,140] [140,54] [54,27] [27,11]
Veff (Mpc3) 4.1×105 1.6×105 2.5×101 3.2×102 2.6×10−3

reff (Mpc) 46 34 1.8 0.91 0.085
T (yr) 0.0375 0.0375 0.0375 0.0375 0.0375

VeffT (Mpc3 yr) 1.5×104 5.9×103 9.4 ×10−1 1.2×10−1 9.6×10−5

R (yr−1 L−1
10 ) 7.6×10−3 2.0×10−2 1.2×102 9.8×103 1.2×106

Table 9.3: Upper limit for doubles in double time

f-band (Hz) [45,100] [100,200] [200,500] [500,1000] [1000,2000]
M-band (M�), a = 0 [260,120] [120,60] [60,24] [24,12] [12,5]

M-band (M�), a = 0.994 [600,270] [270,140] [140,54] [54,27] [27,11]
(VeffT )H1H2 (Mpc3 yr) 1.6×10−1 2.2 2.8×10−2 3.3×10−3 9.3×10−6

(VeffT )H1L1 (Mpc3 yr) 2.2×103 8.3×102 9.4×10−3 6.4×10−3 1.2×10−6

(VeffT )H2L1 (Mpc3 yr) 9.0 6.8 9.4×10−2 7.6×10−3 7.4×10−6∑
i(VeffT )i (Mpc3 yr) 2.2×103 8.4×102 1.3×10−1 1.7×10−2 1.8×10−5

R (yr−1 L−1
10 ) 5.4×10−2 1.4×10−1 8.9×102 6.8×103 6.5×106
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Chapter 10

Search with Simulated
Inspiral-Merger-Ringdown Signals

10.1 Introduction

As described in previous chapters, the simulated signals on which the pipeline was

tuned and the upper limit calculated consisted of isolated ringdown waveforms. How-

ever, an important source of gravitational wave ringdowns is expected to be binary

black hole coalescences, in which case the ringdown will be preceded by an inspiral

and merger. The inspiral and ringdown phases are well modeled, but analytic ex-

pressions of the merger waveform do not exist. However, recent breakthroughs in

numerical relativity have given us a clearer picture of what to expect from the merger

phase, and several groups are currently working on methods to utilize these results

to provide analytic waveforms for use in coherent matched-filter searches.

To complete our investigation into the presence of ringdowns in S4 data it is

necessary to check if the presence of an inspiral and merger would hamper or enhance

our ability to detect and estimate the parameters of the ringdown using a ringdown-

matched filter. To that end, we create inspiral-merger-ringdown (IMR) waveforms;

as described in detail below, these waveforms consist of an inspiral waveform which is

stitched in a continuous manner to a ringdown with the intervening signal representing

the merger. The calculation of the ringdown parameters from the inspiral parameters

is guided by the recent results of numerical relativity. Our simulations cover a much
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larger space than that for which numerical waveforms are currently available, and

thus for now should be viewed as an approximation to the true waveform. In this

analysis we inject both IMR and ringdown-only waveforms into the data and compare

the outputs of both the single and coincident detector analyses.

10.2 Numerical Relativity

Numerical relativity is a branch of computational physics concerned with solving

Einstein’s equation numerically. 2005 saw a major breakthrough in the field when

for the first time an equal mass non-spinning binary black hole system was evolved

from the last few orbits of inspiral through merger to ringdown, and the gravitational

wave was extracted [81]. These and subsequent results [82], [83], indicate that for

such a system the final spin of the black hole is expected to be close to 0.7. Studies of

unequal mass non-spinning black holes suggest that the amplitude of the l = m = 2

mode of the ringdown waveform decreases as the mass ratio of the binary components

increases whereas the amplitude of the l = m = 3 mode increases [84]. If the black

holes are initially spinning, simulations show that the spin of the final black hole and

the amount of radiation emitted also depend on the magnitude and inclination of the

spins with respect to the orbital angular momentum [85, 86, 87, 88].

Evolving a binary system from inspiral through to ringdown is computationally

expensive; creating a bank of these waveforms for use in matched filter searches is

simply not feasible. However efforts are currently underway within the LSC and

elsewhere to use the results from numerical simulations of non-spinning black holes

with mass ratios 1 : 1 to 1 : 4 in conjunction with the well-modeled inspiral waveform

to create IMR waveforms. One method [89] extracts the mass and spin of the final

black hole from the numerical waveforms, and from this calculates the fundamental

quasi-normal mode and two overtones of the ringdown. To this an inspiral waveform

(given by the effective one body model) is matched, giving a complete inspiral-merger-

ringdown waveform. A second method [90] constructs hybrid waveforms by matching

a post-Newtonian inspiral to the merger and ringdown of numerical simulations, and
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from these proposes a family of phenomenological waveforms which closely match the

hybrid waveform. Both these methods of creating accurate coalescence waveforms for

use in LIGO analyses are at early stages of development but promise to give a larger

range of sensitivity than templated searches for a single phase. This is illustrated

in figure 10.1 where, by using the initial LIGO sensitivity curve, a comparison is

made between the horizon distance attainable by the inspiral and ringdown searches

and the coherent IMR search described in [90]. The figure shows that the coherent

IMR search allows us to see to much larger distances. Model waveforms for spinning

binaries and binaries with larger mass ratios are also under development.

Figure 10.1: A preliminary assessment of the performance of a phenomenological
template bank (red line) for use in IMR searches compared to searches using only
inspiral (blue dots) and only ringdown (red dashes) templates. The ringdown curve
assumes ε = 0.7% and the shaded area represents 0.18% ≤ ε ≤ 2.7%, and can be
compared with figure 6.3 which displays the ringdown horizon distance for ε = 1%.
This figure is taken from [90].
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10.3 Creating the IMR Waveform

At the present time numerical waveforms encompassing the range of ringdown in-

jections made into S4 data are not available. We can, however, make an approx-

imation using the well-modeled inspiral and ringdown waveforms currently used in

those single-phase searches. Here we describe how the individual parts of the IMR

waveform were created from a set of initial conditions and stitched together to form

a coherent waveform for injection into the data.

As discussed in section 7.2, to inject a signal into the data (in software), the

user supplies a list of input parameters that the appropriate waveform generation

code uses to produce a waveform structure containing the plus and cross amplitudes,

phase, and frequency for each time series data point in the waveform. For the IMR

injections we start with the initial parameters of the inspiral phase. These include the

component masses and spins, distance, and source position and orientation. Using

this information a spinning inspiral waveform1 is created up until the point where the

binary separation is 6GM/c2. We denote the frequency at that point by f6M . The

next step is to estimate the parameters of the ringdown. The final spin of the black

hole â can be estimated from the masses m1 and m2 and the spins â1 and â2 of the

binary components using the results of numerical simulations as a guide [85],

â =

√
â2

1m
2
1

M2
T

+
â2

2m
2
2

M2
T

+
η

0.25
0.7 (10.1)

where MT is the sum of the individual masses and the last term is the contribution

of the orbital angular momentum with κ representing the symmetric mass ratio η =

m1m2/ (m1 + m2)
2. The estimation of final mass M also uses results from numerical

relativity [85],

M = MT

[
1− 0.01

(
1 + 6â2

)]
. (10.2)

Then, assuming that all the gravitational radiation is emitted in the l = m = 2 mode,

1For more details about searches for gravitational waves from inspiraling spinning black holes see
[91].
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the ringdown waveform parameters fr and Q may be calculated using equations (3.4)

and (3.6).

Now that we know both f6M and fr the challenge is to match these in a smooth

and continuous manner. This is implemented in two stages in the LAL [63] code. First

the evolution of the frequency from the inspiral stage is continued with ḟ ∼ f 11/3 until

90% of the ringdown frequency f0.9 is reached. From there the ringdown frequency is

approached exponentially

f(t) = fr −Ke−λt (10.3)

where K = fr − f0.9 and λ = ḟ/A. In a similar manner the phase evolution from the

inspiral stage is continued until f reaches f0.9 and then it is evolved as

φ(t) = φ0.9 + 2πft. (10.4)

The plus and cross amplitudes between the inspiral and ringdown are fit with a

quadratic,

A = α0 + α1 ∗ t + α2 ∗ t2 (10.5)

where α0 is the amplitude at the cut off point of the inspiral, α1 = α̇0 (i.e. , the rate

of change of the amplitude during the inspiral), and

α2 =
(γ − 1) (α0 + τα1)

(1− γ) τ 2 + 2τ
− τ, (10.6)

where γ is a damping factor and τ is the length of time between the end of the inspiral

and the start of the ringdown. Finally the ringdown plus and cross amplitudes,

frequency, and phase proceed as described in section 7.2.

Because we want to compare a simulated IMR signal with an isolated ringdown

it is important that an identical ringdown is generated in each case. Thus, for a

ringdown-only injection we create the full IMR waveform and set the inspiral and

merger amplitudes to zero. To be consistent with the S4 ringdown analysis we define

the ringdown to start at the point where the frequency becomes constant. Figure
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Figure 10.2: The inspiral-merger-ringdown for a binary black hole system with com-
ponent spins of 0.88 and 0.84 and masses of 8.9 M� and 6.3 M� (blue). Also shown
is the ringdown-only waveform for the same system (red).

Figure 10.3: The transition portion of the inspiral-merger-ringdown waveform (dots)
and the ringdown-only waveform (circles) from figure 10.2.
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Figure 10.4: The frequency time series of the coalescence. The inset zooms in on the
inspiral-merger transition and ringdown phase.

Figure 10.5: MωR versus (unitless) time for the coalescence of a black hole binary.
The final black hole has a spin of 0.9 and an MωR of 0.68, which agrees with figure
3.3 for the l = m = 2 mode.
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10.2 shows one example of IMR and ringdown-only waveforms produced for a system

with spins of 0.88 and 0.84 and masses of 8.9 M� and 6.3 M� respectively. The end

time of the inspiral and the start time of the ringdown are marked, and it is only after

the latter point that the amplitude of the ringdown-only injection becomes non-zero.

This is best seen in figure 10.3 which zooms in on the transition between the inspiral

and ringdown. After this point the amplitudes match exactly. Figure 10.4 shows the

frequency evolution of the same IMR waveform with the inset showing just the final

20 ms of the waveform. Here we see how the inspiral frequency increases rapidly until

the constant ringdown frequency is reached. This marks the ringdown start time. In

figure 10.5 we plot the same quantity in the dimensionless quantities. The final spin

of the black hole is 0.9 and the ringdown MωR = 0.68. This is in agreement with

figure 3.3 for the l = m = 2 mode. We can also compare this to figure 3.7.

If we want to evaluate how well we are recovering the injections it is necessary

to calculate and record the ringdown parameters to compare with the output of the

ringdown filter. Solving a+ and a× for A and ι in equations (7.1) and (7.2) enables us

to calculate the effective distance and the percentage of mass radiated as gravitational

waves ε. For every injection these parameters are written out to a sim ringdown

table.

10.4 Single Detector Analysis

The simulated signals were created uniformly in logarithmic component mass between

4 M� and 600 M�, with a maximum total mass of 650 M�. The distribution in

distance was also logarithmic between 0.1 and 1 Mpc. Each component black hole

had a spin â1, â2 whose magnitude was distributed uniformly in the range 0 and 1.

This investigation was composed of two separate runs; in the first run we injected

the full IMR waveform and in the second run only the ringdown was injected. The

same initial conditions were used in both runs ensuring that an identical ringdown

was injected each time.

Comparing the trigger files output from the pipeline with the injection file allows
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Figure 10.6: Number of IMR and ringdown-only injections recovered in H1 as a
function of the frequency of the final ringdown. The vertical lines denote the template
bank boundaries.

Figure 10.7: Detected versus injected ringdown frequency for IMR and ringdown-only
waveforms in H1.
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us to count how many injections were found and how well the parameters were re-

covered. As shown in figure 10.6, we found that approximately 18% more injections

were found in the IMR run than in the ringdown-only run, with the excess appearing

above an injected ringdown frequency finj of ∼ 600 Hz. Figure 10.7 shows that of

the injections that were found in common by the two runs, the detected frequency

fdet of injections with finj below about 200 Hz were fairly consistent between the two

runs. Those injections with finj > 200 Hz were not so consistent; the ringdown-only

injections were found with templates close to the injected ringdown parameters, but

the IMR injections were mostly found by templates in the 100–200 Hz band.

This can be explained as follows: for IMR injections with low ringdown frequency

the inspiral part of the waveform is outside the LIGO band. As we increase the

ringdown frequency, an increasing proportion of the inspiral and merger enters the

band, matching an increasing number of templates. This is demonstrated in figures

10.8 and 10.9, which show the templates that rang off during the 120 ms around a

ringdown-only and an IMR injection, respectively, where the ringdown frequency was

finj ∼ 1500 Hz. In the ringdown-only case the only templates that ring are close

in frequency to the frequency of the injection and do so right at the time of peak

amplitude of the waveform, as indicated by the dashed lines. For the IMR case,

however, most of the templates in the bank ring off. The templates ring off just as

expected for the characteristic chirp frequency evolution of an inspiral; the inspiral

enters the LIGO band at low frequency and its frequency increases until it reaches

the ringdown. The template that rings up the loudest (and hence is the template

associated with the injection) in this case is at ∼ 110 Hz, as indicated in the plot by

the red horizontal line. This is far from the ringdown frequency, denoted by the black

horizontal line, but it is where the LIGO strain sensitivity is best (see figure 6.2).

In figure 10.10 we plot the initial component masses of all the IMR injections

with finj > 50 Hz that were found at the correct ringdown frequency in red, and

those that were found incorrectly in green. The plot shows that the majority of the

injections that were found incorrectly by the ringdown search fall within the scope of

the S4 BBH search, and thus that search should be able to find the signal and correctly
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Figure 10.8: Frequency versus time for the templates that rang up around the time of
a ringdown-only injection. The colour of the data points represents the quality factor
of the template. The black lines represent the frequency and time of the injection,
and the red lines represent the frequency and time of the template with the largest
signal-to-noise ratio.

Figure 10.9: Frequency versus time for the templates that rang up around the time
of an IMR injection. The colour of the data points represents the quality factor
of the template. The black lines represent the frequency and time of the injection,
and the red lines represent the frequency and time of the template with the largest
signal-to-noise ratio.
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identify the component masses. Most of those injections that were correctly identified

lie outside that region, and so we can conclude that between the two searches the

mass space is covered quite well.

Our results concur with a study by Baumgarte et al. [92] in which two numerical

waveforms — one with ringdown frequency of ∼ 80 Hz and the other with f ∼ 280 Hz

— were filtered with ringdown templates. For the former waveform the best-matched

template triggered at the time of the ringdown, whereas in the latter case, when the

ringdown frequency was higher than LIGO’s most sensitive band, the best match

occurred earlier, during the inspiral phase.

Figure 10.10: Initial masses of the binary components for IMR injections found by
correct (red) and incorrect (green) ringdown templates. The black line represents the
upper limit to the mass range of the S4 binary black hole inspiral search.

10.5 Coincidence Analysis

Thus far we have ascertained that although a ringdown may be detected with a lower

frequency template, the presence of an inspiral and merger before the ringdown does
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not prevent it from being detected. The next important question is whether or not an

IMR injection survives the coincidence test, as this is a key test in our pipeline. Recall

from section 5.5 that for a given time window δt triggers from different detectors are

considered coincident if they lie within a specified parameter window ds2(f0, Q) of

each other. If multiple groups of coincidences (i.e., many triples and doubles) are

found within δt, then the group with the loudest value of the detection statistic is

chosen as the “correct” coincidence.

Ringdown-only and IMR injections were made into H1, H2, and L1 and the output

coincidence files compared to the injection list; the results are shown in figures 10.11

and 10.12, respectively, in plots of effective distance as measured at Hanford versus the

injected ringdown frequency. These plots show the injections that were found in triple

coincidence, those found in double coincidence (both because of vetoes and because

they were missed in the third detector), and the missed injections. The ringdown-only

results shown in figure 10.11, are, as expected, similar to those discussed in section

8.2. What is interesting about the IMR coincidence, however, is that even though

a large proportion of injections were found with the wrong ringdown parameters in

all detectors, these were close enough to each other to allow the injection to pass the

coincidence test! In fact, the efficiency of detection is higher in the IMR case than in

the ringdown-only case (recall that parameter accuracy is not taken into account when

calculating efficiencies). The high ringdown frequency injections that were missed in

the ringdown-only case (because of high levels of noise above 1 kHz) were found in

the IMR case because the inspiral part of the injection occurred at a less noisy (more

sensitive) region of the template bank. This is a very encouraging result.

10.6 Conclusion

The calculation of the upper limit on the rate of ringdowns described in section 9.4

was based on our ability to recover injected signals. For that study we used isolated

ringdown signals. The question here was how would this change if the ringdown was

preceded by an inspiral and merger. This investigation has shown that the presence
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Figure 10.11: Hanford effective distance versus injected ringdown frequency for
ringdown-only injections. The black vertical lines denote the template bank bound-
aries.

Figure 10.12: Hanford effective distance versus injected ringdown frequency for IMR
injections. The black vertical lines denote the template bank boundaries.
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of an additional signal before the ringdown does not in any way hinder our ability

to detect the signal. In fact, this model of an IMR injection improves our ability

to detect coalescences with high ringdown frequencies i.e., low black hole masses.

This increases our efficiency, which also positively impacts the upper limit we can

set. From this we can conclude that not only is the upper limit for the S4 ringdown

search presented in section 9.4 still valid, it may be regarded as a conservative upper

limit.

What is impacted, however, is our ability to correctly recover the black hole’s

physical parameters; this study demonstrated that we can only correctly identify

ringdown frequencies occurring below ∼ 200 Hz. However, this lower limit on the

accurate recovery of the mass of a black hole corresponds to the upper limit to the

scope of the binary black hole inspiral search. Thus, a low-mass binary black hole

coalescence will be detected by both searches and correctly parameterized by the

inspiral search, while high-mass coalescences should be detected and parameterized

by the ringdown search (of course, only within the distance reach of the searches).
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Chapter 11

The Future for Ringdown Searches

This thesis describes the first ringdown detection search in LIGO data and has demon-

strated that the pipeline is an effective method of searching for triple coincident

ringdown events. However this is just the beginning; with every science run comes

increased sensitivity and the possibility of exploring a much larger population of as-

trophysical sources.

In the course of the analysis we have gained an understanding of the character

of ringdown waveforms in noisy data. In this chapter we list some of the unsolved

issues, lessons learned, and future recommendations for this particular search. We

discuss some new ideas for combining searches for the individual inspiral, merger and

ringdown phases of the binary coalescence and discuss the parameter space available

to future ringdown searches.

11.1 Notes for Future Searches with the current

Pipeline

11.1.1 Searches for Triple Coincident Events

We saw that in the S4 search the rate of false alarms in triple coincidence was less

than one event per run. Now that we have some understanding of the characteristics

of simulated ringdown waveforms in data we can tolerate a somewhat higher level

of background and use these known features to veto false alarms. This gives us
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leeway to loosen some of the constraints on the search and gain sensitivity. We have

demonstrated that the coincidence windows were sufficiently loose and that we did

not lose any injections because of clustering. However the search signal to noise

thresholds could be lowered further. Given that a triple coincidence search is limited

by H2 we recommend lowering its SNR threshold. Decreasing the H2 threshold to

4 would allow triple coincident signals to be seen with SNRs as low as 8 in H1 and

L1 (as opposed to 11 in the current search). Given the rate of false alarms in double

coincidence, attaining this level of sensitivity without H2 is currently not possible.

11.1.2 Searches for Double Coincident Events

The results of the double coincidence analysis showed that the level of background

with the current pipeline was too high to detect gravitational waves at threshold of

5.5. We are a long way from being able to claim a detection of gravitational wave

ringdown from co-located detectors however requiring two site coincidence should

in theory provide sufficiently strong evidence. We just discussed how to increase our

sensitivity to triples without changing the pipeline. However increasing our sensitivity

to doubles will require significant additions to the pipeline. We will need to work

harder at reducing the level of false coincidences. One method of doing this is by

implementing signal-based vetoes; vetoes based on our knowledge of a signals shape

in the time and frequency domains [93]. These have been implemented in inspiral

searches and are effective in reducing the false alarm rate. Caution has to be exercised

however when implementing these in the ringdown search. The ringdown is a short

duration single frequency waveform and is likely (but not necessarily) to be preceded

by an inspiral and thus any signal-based vetoes must be tested on IMR waveforms to

allow for this possibility.

11.1.3 Coincidence Test

The coincidence test described in this analysis in which we use the metric to define

coincident windows is an vast improvement on the traditional rectangular coincidence
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test. However the results of the injection (section 8.4.1) run revealed that the differ-

ence in the time of arrival of the injected waveform was a strong function of frequency,

particularly for the H1H2 pair (see figure 8.16). This plot showed that at high fre-

quencies a much tighter time accuracy could be required. A frequency dependence

time soincidence test should be considered for future searches as it is likely to reduce

the false alarm rate considerably.

11.1.4 Extending the Template Bank

For the S4 search the region of frequency space searched over was from 50 Hz to 2

kHz. As mentioned in section 7.4.1 we had hoped to extend the template bank to

encompass a frequency range of 40Hz to 4kHz. However in the course of tuning the

search and following up on missed injections a peculiar feature was observed. In plots

of SNR versus frequency for injections, such as is shown in figure 11.1, the SNR falls

off from the injection frequency as expected, but then begins to increase on both sides

of the peak. This was observed in varying degrees of severity in every injection looked

at regardless of the frequency of the injection. This feature became problematic when

the templates far from the injection had higher SNR than those close to the injected

frequency. When this occurred in one detector the injection failed the coincidence

test and if it occurred in two or three detectors the injection was found at the wrong

frequency. In the example shown in figure 11.1 the injection was made at 200 Hz but

was found close to 4 kHz. Weeks of investigations were dedicated to this problem but

a solution was not found and so the smaller bank was reinstated. These “wings” are

still observable with the smaller bank but the effect is small enough that they do not

interfere with signal recovery.

This is an important problem to solve because the wider the frequency range we

can search over, the larger the number of black hole ringdowns we are sensitive to.

In particular, in increasing the upper frequency bound to 4 kHz we become sensitive

to gravitational waves from the entire mass range of non-spinning stellar mass black

holes. This would provide an excellent overlap with the binary black hole inspiral



163

search.

Figure 11.1: A demonstration of the high SNR “wings” observed when the template
bank was extended to include frequenies between 40 Hz and 4 kHz. This plot shows
the SNR versus frequency for a ringdown injection with central frequency of 200 Hz.

11.2 Future Searches

From an analysis point of view the hope for the future is to focus on IMR searches,

bringing together the efforts of the three stand-alone pipelines: the binary black

hole inspiral search, a burst search (which is sensitive to the merger phase) and

the ringdown search. As we demonstrated in chapter 10 there is a large degree of

overlap between the searches. This combined effort could be implemented by running

the filtering and coincidence steps separately and then comparing coincident triggers

from the three searches. Another possibility is to combine the outputs of the filtering

stage, and require coincidence between searches for each of the detectors and then

look for coincidences between detectors.
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The future holds exciting prospects for ringdown searches. This is best illustrated

by figure 11.2. Recall that the horizon distance is the distance to which we can detect

a ringdown from an optimally oriented and located black hole of spin â with a signal

to noise ratio of 8 in the detector. The figure shows horizon distance as a function

of black hole mass for the predicted sensitivities of Initial LIGO (the blue curve),

Enhanced LIGO (shown in green) and Advanced LIGO (shown in red) assuming that

1% of the mass is radiated as gravitational waves during the ringdown. The three

curves in each group correspond to different spins, â = (0, 0.49, 0.9) for the curves

from left to right, respectively. On the upper side of the horizontal axis the central

ringdown frequency for a spin of 0.49 is also marked.

Comparing figures 6.3 and 11.2 demonstrates that we can expect to see ∼ 100 Mpc

further for Initial LIGO at design sensitivity than we did for S4. Preparations are

currently underway to analyse data from the S5 run with the ringdown pipeline. S5

was the first science run at design sensitivity and includes one year of triple coincident

data.

Enhanced LIGO is due to come on-line by the end of 2008. As figure 11.2 shows,

we can expect a factor two increase in sensitivity as well as an extended mass range,

with the lower mass limit extending further into the stellar mass black hole range.

The Advanced LIGO sensitivity curve used here is for the low power configuration,

(optimized for low frequency signals by reducing the radiation pressure quantum

noise) and even at that the prediction is that our reach will be extended by an

order of magnitude entering the regime of cosmological distances. At higher power

this would be increased even further for low mass black hole ringdowns. The lower

frequency limit in Advanced LIGO will be 12 Hz. This corresponds to a mass of 1000

M� for non-spinning black holes up to 2300 M� for rapidly spinning black holes. This

makes the prospects for detection fro intermediate mass black holes very promising.
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Figure 11.2: Plot of horizon distance (distance to which a ringdown signal from an
optimally oriented and located source will produce an SNR of 8 in the detector) versus
mass for Initial LIGO (blue), Enhanced LIGO (green) and Advanced LIGO (red) in
a low-power configuration. We have assumed that 1% of the mass is radiated as
gravitational waves. The curves in each group are for spins of 0, 0.49 and 0.98 going
from left to right. The upper x-axis is the frequency for a spin of 0.49. (Plot from A.
Weinstein.)
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Chapter 12

Summary and Concluding Remarks

12.1 Aim of the Search

The gravitational radiation emitted by a perturbed black hole (e.g., the final stage

of a compact binary coalescence (CBC)) is well modeled and can be searched for

using the method of matched filtering. However in the presence of non-Gaussian

noise, optimal filtering alone is not sufficient to uncover a weak signal in the data. A

powerful method of reducing the rate of false alarms is to require that a trigger be

seen at the same time in multiple detectors with similar parameters in order to be

considered a candidate gravitational wave event.

In this study we have described the pipeline for a matched filter search with

coincidence analysis and applied the pipeline to data from the fourth LIGO science

run. The aim of the search was to detect gravitational waves from perturbed black

holes and in the absence of a detection to place an upper limit on the rate of black

hole ringdowns in the nearby universe.

12.2 The Analysis Method

We ran the search as a blind analysis to prevent any bias on the part of the analyst

from influencing the outcome of the search (for example setting cuts based on triggers

in the zero-lag data in order to get a better upper limit). We tuned cuts, thresholds

and coincidence windows with
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• a coincidence analysis of simulated ringdown signals to gauge how well we can

expect to recover the parameters of a real signal,

• a coincidence analysis of time shifted data sets to estimate the rate of false

alarms,

• and a representative subset of the data as a sanity check of the analysis pipeline

and a consistency check of the background estimation.

Tuning is an iterative process with the outcome of the previous run influencing the

constraints on the subsequent run until the point is reached where the maximum

number of injected signals are recovered while the rate of accidental coincidences

is kept to a minimum. Once the tuning was finalized a large scale Monte Carlo

simulation of ringdown waveforms was run to evaluate the efficiency of the search

and to facilitate parameter accuracy investigations. A final background analysis was

run to evaluate the false alarm rate.

It was decided in advance of unblinding the analysis to consider all double and

triple coincidences as possible gravitational wave candidates. However in the absence

of a detection only triple coincident signals would be used in setting an upper limit.

Finally the tuned pipeline was applied to the data.

In a separate study we investigated the effects of an inspiral and merger waveform

preceding the ringdown on our ability to detect gravitational waves with a ringdown

filter and on our ability to recover the ringdown waveform parameters. We injected

inspiral-merger-ringdown waveforms into S4 data and ran with the same pipeline and

tuning described above. We then repeated the run injecting only the ringdown part

of the pipeline and compared the results.
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12.3 Results

12.3.1 Opening the Box

No candidate events were found in triple coincidence. A large number of candidate

events were found in double coincidence, however the distribution was in agreement

with the expected false alarm rate to within 1 sigma. Thus there was no evidence in

the S4 data set of a detection of gravitational waves from perturbed black holes.

12.3.2 Calculation of the Upper Limit

Our Monte Carlo simulations revealed that the efficiency of detecting gravitational

wave ringdowns is highly frequency dependent. For that reason we divided the sim-

ulations into five frequency bands and evaluated the efficiency in each band. The

100-200 Hz band was found to be the most sensitive. This frequency range corre-

sponds to a mass range of 60 M� ≤ M ≤ 120 M� for non spinning black holes and

150 M� ≤ M ≤ 300 M� for maximally spinning black holes assuming that the wave-

form is dominated by the l = m = 2 mode. The 90% confidence upper limit of the rate

of ringdowns in the 100− 200 Hz band was found to be R90% = 4.3× 10−3 yr−1 L−1
10 ,

where L10 is a measure of the number of potential sources, equal to 1010 solar blue

light luminosity.

12.3.3 Parameter Accuracy

We compared the injected and detected quantities and found that the accuracy with

which the time of arrival of the injection could be determined was frequency depen-

dent due to the uncertainty in the phase of the waveform. The waveform parameter

accuracy was very high, with 70% of the triple coincident injections found with the

correct template. We found that the match between the injections and template

decreased with the combination of high frequency and low quality factor values.
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12.3.4 Background Estimation

Our background studies showed that with the chosen tuning the false alarm rate in

triple coincidence was very low, less than one event per S4 run. In double coincidence

the rate was much higher, more than 600 events per S4 run for two site coincidence. In

fact the false alarm rate for signals found in detectors located in two widely separated

sites with the exact same waveform parameters was 30 per S4 run. Clearly this is too

high a rate to be able to confidently detect gravitational waves at the chosen threshold

of ρDS ∼ 12. However at a higher threshold of ∼ 16, less that 0.2 background events

are expected in H1L1 and detection is possible.

12.3.5 Inspiral-Merger-Ringdown

We found that with the inclusion of the inspiral and merger waveforms our efficiency

of detecting simulated signals increased. Isolated ringdowns at high frequency are

more difficult to recover than those at low frequency because the level of noise above

500 Hz increases rapidly and our efficiency decreases. However the inspiral and merger

preceding the ringdown sweep up through the LIGO band finding a significant match

with ringdown templates in the process. We found that the part of the signal in

the most sensitive band of the detector, 100–200 Hz produced the loudest SNR and

the ringdown was “found” in this band. IMR injections with ringdown frequencies

above 200 Hz were generally detected with templates in the 100–200 Hz band. A

consequence of this was that our ringdown parameter estimation was not accurate for

IMRs with ringdown frequency above 200 Hz.

12.4 Conclusions

• We have demonstrated using simulated signals that the pipeline presented in

this study is an effective means of detecting gravitational waves from perturbed

black holes in triple coincidence.
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• Our results verify that the timeslide method of determining the false alarm rate

and distribution with SNR is accurate for detectors at widely separate sites,

but not for co-located detectors.

• We have found that the level of noise in double coincidence is too high to allow

the detection of gravitational waves with the chosen SNR threshold.

• We have shown that the accuracy with which the ringdown waveform parameters

can be recovered for ringdowns with frequency in excess of 200 Hz depends on

whether or not an inspiral and merger preceded the ringdown. If our assumption

that the radiation is dominated by the l = m = 2 mode is correct we can

estimate the mass of those ringdowns to a high degree of accuracy.

• The next few years are very promising for IMR searches. Enhanced LIGO will

come online within a year increasing our sensitivity by a factor of 2. In 2014

Advanced LIGO will push the range in which we can search out to cosmological

distances in addition to extending the population of black holes we are sensitive

to beyond 103 M�.
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Appendix A

Ringdown Search Configuration
File

; ringdown pipeline configuration script.

;

; Id

;

; this is the configuration file for the inspiral DAG generation

program

; lalapps inspiral hipe that creates a condor DAG to run the ringdown

; analysis pipeline.

[condor]

; setup of condor universe and location of executables

universe = standard

datafind = /opt/lscsoft/glue/bin/LSCdataFind

tmpltbank = /bin/false

inspiral = /archive/home/lgoggin/bin/lalapps ring

inca = /bin/false

thinca = /archive/home/lgoggin/bin/lalapps rinca

trigtotmplt = /bin/false
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sire = /bin/false

cohbank = /bin/false

chia = /bin/false

inspinj = /bin/false

frjoin = /archive/home/lgoggin/bin/lalapps frjoin

coire = /home/false

[pipeline]

; tagging information for the configure script

version = Id

cvs-tag = Name

; user-tag here can be overidden on the command line of

lalapps inspiral pipe

user-tag =

; data choice (playground only|exclude playground|all data)

playground-data-mask = all data

[input]

; the segments file should be the output from segwizard with DQ

flags applied

; if no segment file if specified, assumed no data from that IFO.

h1-segments = H1triplesegs.txt

h2-segments = H2triplesegs.txt

l1-segments = L1triplesegs.txt

g1-segments =

ligo-channel = LSC-DARM ERR

geo-channel =

geo-bank =

geo-bank =

ligo-type = RDS R L3
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geo-type =

; injection file (if blank then no injections)

injection-file = HL-INJECTIONS 8-793130413-2548800.xml

num-slides =

[calibration]

; location of the calibration cache and the cache files

path = /archive/home/lgoggin/projects/ringdown/s4/calibration

L1 = l1 calibration.cache

H1 = h1 calibration.cache

H2 = h2 calibration.cache

[datafind]

; type of data to use

type = RDS R L3

url-type = file

match = localhost/archive

[data]

; data conditioning parameters common to all ifos

pad-data = 8

;segment-length = 1048576

;number-of-segments = 16

;sample-rate = 4096

sample-rate = 8192

block-duration = 2176

segment-duration = 256

[ligo-data]

; data conditioning parameters for ligo data
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highpass-frequency = 40

cutoff-frequency = 45

dynamic-range-factor = 1.0e+20

[geo-data]

; data conditioning parameters for geo data

[tmpltbank]

; not used in ringdown pipeline

[tmpltbank-1]

; not used in ringdown pipeline

[tmpltbank-2]

; not used in ringdown pipeline

[inspiral]

; analysis parameters -- added to all ring jobs

bank-max-mismatch = 0.03

bank-min-frequency = 50

bank-max-frequency = 2000

bank-min-quality = 2.0

bank-max-quality = 20.0

bank-template-phase = 0

maximize-duration = 1

debug-level = 33

;approximant = ringdown

;segment-overlap = 64

[no-veto-inspiral]
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; not used in ringdown pipeline

[veto-inspiral]

; not used in ringdown pipeline

[h1-inspiral]

; h1 specific inspiral paramters

threshold = 5.5

[h2-inspiral]

; h2 specific inspiral parameters

threshold = 5.5

[l1-inspiral]

; l1 specific inspiral parameters

threshold = 5.5

[g1-inspiral]

[inspinj]

; not used in ringdown pipeline

[inca]

; not used in ringdown pipeline

[thinca]

; common coincidence parameters -- added to all thinca jobs

debug-level = 33

multi-ifo-coinc =

maximization-interval = 1
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parameter-test = ds sq

h1-time-accuracy = 2

h2-time-accuracy = 2

l1-time-accuracy = 2

;h1-freq-accuracy = 20

;h2-freq-accuracy = 20

;l1-freq-accuracy = 20

;h1-quality-accuracy = 3

;h2-quality-accuracy = 3

;l1-quality-accuracy = 3

h1-ds sq-accuracy = 0.05

h2-ds sq-accuracy = 0.05

l1-ds sq-accuracy = 0.05

do-veto =

h1-veto-file = combinedVetoesH1-23.list

h2-veto-file = combinedVetoesH2-23.list

l1-veto-file = combinedVetoesL1-23.list

[thinca-1]

; not used in ringdown pipeline

[thinca-2]

; not used in ringdown pipeline

[thinca-slide]

; time slide parameters

h1-slide = 0

h2-slide = 10

l1-slide = 5
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[trigtotmplt]

; not used in ringdown pipeline

[sire]

; not used in ringdown pipeline

[sire-inj]

; not used in ringdown pipeline

[coire]

; not used in ringdown pipeline

[coire-inj]

; not used in ringdown pipeline

[cohbank]

; not used in ringdown pipeline

[coh-trig]

; not used in ringdown pipeline

[chia]

; not used in ringdown pipeline
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Appendix B

Segmentation of the Data

Here we give a concrete example of how the data is segmented (segmentation was

initially discussed in chapter 5).

In section 5.3 we stated that the minimum length of an analysis segment was 2176

s. In table 5.1 we listed the first five H1 science segments. The first science segment

was 1020 s in duration and the second was 240 s in duration; both of these are too

short and have to be discarded. Therefore, the first analysis segment comes from

science segment number 3, beginning at GPS time 793166413 and ending at GPS

time 793170673, with a total duration of 4260 s, and from this we create the first

analysis segments.

As mentioned in section 5.4.1 an extra 8 s is read in before the start of each

analysis segment for data conditioning, and then removed again before the filtering

stage. However, for the first analysis segment in a science segment, there is no previous

analysis segment to “borrow” the 8 s of data from and so the first 8 s of the science

segment are effectively lost. Thus, the first analysis segment begins at 793166413+8 =

793166421 and ends 2176 s later at 793168597. An extra 8 s is also read in at the end

of the segment, and because the analysis segment is more than 2176 s long, this can

be taken from the next analysis segment.

For filtering purposes, the analysis segment is divided into sixteen 256 s blocks,

which overlap the previous block by 64 s and the next block by 64 s. Then, for each

block only triggers from the middle 128 s are recorded. As a consequence, no triggers

come from the first or last 64 s of the analysis segment. Once again, for this particular
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analysis segment there is no segment preceding it and thus, any triggers from this

time are lost. This is not so with the last 64 s of this first analysis segment; these

are analysed in the succeeding analysis segment. Therefore, for this analysis segment,

the first trigger will occur after 793166421 + 64 = 793166485 and the last trigger will

appear before 793166485 + 16 ∗ 128 = 793168533, 64 s before the end time of the

analysis segment.

The second segment begins 128 s before the first segment ended, at 793168597−

128 = 793168469 and ends 2176 s later, at 793170645. Now this time the extra 8 s at

the start of the segment can be read in from the previous segment and therefore, no

data is lost. Once more the segment is divided into sixteen 256 s blocks each of which

overlaps the previous and subsequent blocks by 64 s, and the middle 128 s of each is

analysed. As we started the second analysis segment 128 s before the first segment

ended, the first trigger from the second segment can occur immediately after the last

possible trigger in the first segment. Therefore, no data is lost here. The last trigger

in the second segment can occur at 793168469 + 2048 = 793170581.

Now the second segment ended 28 s before the end of the science segment; that

leaves 28 + 64 = 92 s of unanalysed data. We analyse this by creating a segment

that starts (2176+8) s before the end of the science segment, at 793168489, but only

analyse data after the last possible trigger in the second segment, (i.e., at 793170581).

As was the case at the start of the first analysis segment, the last 8 + 64 = 72 s are

discarded, and so in this particular example, we get 20 s of data from the last analysis

segment in the science segment. The last analysis segment ends at 793170665.
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Figure B.1: An illustration of how science segment number 3 (yellow box) is divided
into analysis segments (red, blue, and green dotted lines). The solid boxes denote the
times that are analysed in each analysis segment.
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Appendix C

Loudest Ten Events in Double
Coincidence

Table C.1: The ten loudest candidate events from H1L1 doubles in triple time

# t (s) f (Hz) Q deff (Mpc) ρ ρDS

1 794949585.625 107.56 3.46 186.60 9.42 21.05
794949585.614 103.84 10.04 149.07 12.50

2 793829533.702 81.39 10.04 303.72 8.76 19.72
793829533.693 79.43 10.04 84.72 11.41

3 794291462.267 73.83 10.04 313.25 8.41 19.03
794291462.254 81.99 5.91 70.34 11.32

4 794989787.461 87.56 10.04 288.37 9.48 18.93
794989787.458 81.99 5.91 190.72 9.45

5 794317560.631 65.36 10.04 338.90 7.86 17.93
794317560.629 68.63 17.01 19.13 31.51

6 794943595.760 153.33 10.04 151.11 8.87 17.71
794943595.771 153.65 17.01 118.65 8.84

7 794006110.807 132.55 3.46 216.83 7.23 16.67
794006110.795 127.60 2.00 46.28 10.38

8 793894630.682 63.86 17.01 318.93 7.75 16.03
793894630.673 64.79 17.01 78.58 8.29

9 795118144.597 85.44 5.91 272.38 8.31 15.94
795118144.604 79.43 10.04 276.42 7.63

10 794783103.777 50.00 5.91 323.03 6.87 15.93
794783103.776 50.00 5.91 105.96 15.78
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Table C.2: The ten loudest candidate events from H1H2 doubles in triple time

# t (s) f (Hz) Q deff (Mpc) ρ ρDS

1 793253792.205 63.20 2.00 1.55 1336.49 63.10
793253792.207 50.00 2.00 44.09 30.45

2 794654729.865 54.51 17.01 164.21 12.98 21.26
794654729.864 54.51 17.01 84.23 9.53

3 795398069.574 1803.63 5.91 0.91 6.72 15.35
795398069.570 1700.01 17.01 0.52 8.63

4 793728359.581 52.21 17.01 26.55 45.28 15.14
793728359.584 54.51 17.01 135.21 6.47

5 793726436.436 1559.35 17.01 0.87 7.78 14.81
793726436.440 1493.45 17.01 0.96 7.03

6 795400260.902 160.99 10.04 111.05 9.67 14.64
795400260.899 151.46 17.01 135.64 6.22

7 795273330.160 82.75 17.01 252.29 11.09 14.51
795273330.158 83.95 17.01 214.01 6.16

8 795441060.564 70.63 17.01 183.24 10.37 14.42
795441060.560 68.63 17.01 162.54 6.11

9 794115186.367 1628.16 17.01 1.12 6.62 14.35
794115186.370 1675.71 17.01 0.70 7.73

10 795437362.744 1589.49 10.04 1.04 7.12 14.32
795437362.747 1493.45 17.01 0.84 7.20
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Table C.3: The ten loudest candidate events from H2L1 doubles in triple time

# t (s) f (Hz) Q deff (Mpc) ρ ρDS

1 794966223.382 1795.38 10.04 0.45 10.65 20.27
794966223.393 1907.47 17.01 0.50 9.62

2 794490884.837 1660.93 5.91 0.60 9.48 17.32
794490884.844 1700.01 17.01 0.40 7.83

3 793181575.946 1991.64 17.01 0.36 9.17 16.38
793181575.951 1885.01 10.04 0.47 7.20

4 794934058.049 67.65 17.01 142.63 8.31 16.18
794934058.036 64.79 17.01 147.70 7.88

5 795117184.353 1088.11 17.01 2.15 7.16 16.17
795117184.352 1042.12 17.01 2.08 9.01

6 794477109.831 902.42 17.01 3.53 7.03 16.10
794477109.828 902.42 17.01 2.52 9.07

7 794925830.874 915.50 17.01 3.50 6.85 15.91
794925830.862 915.50 17.01 2.63 9.77

8 793676381.075 1593.87 5.91 0.78 7.87 15.89
793676381.068 1551.24 10.04 0.48 8.01

9 794484924.385 1203.45 17.01 1.52 7.75 15.86
794484924.373 1152.59 17.01 1.21 8.12

10 794939243.941 1148.01 3.46 1.76 7.18 15.71
794939243.940 931.57 3.46 2.54 8.53
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Table C.4: The ten loudest candidate events from H1L1 doubles in double time
# t (s) f (Hz) Q deff (Mpc) ρ ρDS

1 793258551.938 66.98 10.04 370.92 7.37 16.93
793258551.941 70.63 17.01 176.60 9.82

2 794506571.018 50.00 5.91 295.90 7.21 15.04
794506571.007 51.46 17.01 212.73 7.84

3 794368837.863 181.31 2.00 112.87 5.73 13.37
794368837.859 257.63 2.00 12.00 7.65

4 794195114.960 125.61 17.01 88.24 24.44 13.36
794195114.972 118.81 5.91 139.28 5.58

5 794361114.970 60.76 10.04 365.64 5.91 13.20
794361114.960 65.36 10.04 94.98 7.29

6 794958144.714 59.43 17.01 287.89 5.81 13.03
794958144.724 56.92 17.01 172.74 7.23

7 795477196.874 79.87 2.00 255.50 6.95 12.70
795477196.885 92.78 5.91 362.71 5.75

8 795601342.002 53.73 17.01 327.60 6.15 12.44
795601342.000 54.51 17.01 225.26 6.29

9 794368869.630 1885.01 10.04 0.93 5.82 12.36
794368869.629 1885.01 10.04 0.14 6.55

10 794362732.279 1130.17 10.04 2.95 5.75 12.35
794362732.280 1012.90 5.91 0.83 6.61
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Table C.5: The ten loudest candidate events from H1H2 doubles in double time
# t (s) f (Hz) Q deff (Mpc) ρ ρDS

1 793589170.965 71.65 17.01 223.57 10.80 17.10
793589170.967 72.05 10.04 161.15 7.45

2 795114450.689 78.68 5.91 213.69 11.61 16.88
795114450.691 75.65 10.04 173.89 7.34

3 794692945.319 1130.17 10.04 1.95 8.23 16.03
794692945.320 1169.30 17.01 1.40 7.80

4 795385587.580 648.09 17.01 6.64 8.53 15.58
795385587.576 614.69 10.04 7.55 7.04

5 795382679.975 568.84 5.91 9.57 7.39 14.10
795382679.972 585.98 17.01 9.28 6.71

6 793694651.919 1991.64 17.01 0.74 6.07 13.99
793694651.916 1991.64 17.01 0.43 7.93

7 795384035.598 1072.56 17.01 2.24 7.49 13.54
795384035.599 1119.89 17.01 2.14 6.05

8 795382177.870 1136.12 17.01 2.21 6.59 13.51
795382177.868 1186.25 17.01 1.48 6.92

9 794725076.726 69.53 5.91 350.69 7.70 13.36
794725076.726 63.20 2.00 185.92 5.66

10 794158080.377 52.50 10.04 252.45 9.12 13.32
794158080.380 52.21 17.01 153.64 5.56
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Table C.6: The ten loudest candidate events from H2L1 doubles in double time
# t (s) f (Hz) Q deff (Mpc) ρ ρDS

1 794432410.606 1724.65 17.01 0.50 9.16 16.15
794432410.597 1651.77 17.01 0.18 6.99

2 793572623.619 1724.65 17.01 0.61 8.03 14.72
793572623.628 1675.71 17.01 0.49 6.68

3 794448103.696 1072.56 17.01 1.64 9.27 14.64
794448103.699 1055.52 5.91 0.77 6.22

4 793242141.579 1350.32 17.01 0.99 8.63 14.26
793242141.586 1369.89 17.01 1.07 6.03

5 795389328.279 1331.02 17.01 0.87 9.20 14.20
795389328.291 1369.89 17.01 1.67 6.00

6 793674572.094 972.01 5.91 3.20 5.86 13.93
793674572.087 858.96 5.91 2.66 8.11

7 795069044.029 1493.45 17.01 0.87 7.52 13.71
795069044.020 1589.49 10.04 1.13 6.20

8 795407874.988 1515.11 17.01 0.70 8.31 13.64
795407874.994 1472.11 17.01 1.52 5.72

9 793735902.987 1931.50 10.04 0.51 7.45 13.61
793735902.984 1879.52 5.91 0.23 6.16

10 794877527.436 667.02 17.01 6.15 8.54 13.58
794877527.435 657.49 17.01 10.08 5.69
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Appendix D

Projects Undertaken at the 40 m
Interferometer

Prior to the construction of the LIGO 4 and 2 km interferometers the 40 m LIGO

prototype, an laser interferometer with 40 m long arms located on the Caltech campus

served as a test-bed for LIGO technologies. Currently it is used for testing Advanced

LIGO and future generation technologies.

I was part of the 40 m team during this upgrade period. My first project involved

modeling the interferometer optics [94]. For a given laser wavelength and length

constraints I used Matlab to trace the path of the beam through the interferometer

and made recommendations for the radii of curvature and placement of various in-

vacuum optics. These included the mode cleaner, a triangular configuration of mirrors

designed to isolate a single mode of light to send into the interferometer, and mode-

matching telescopes, a pair of lenses to match the light from the mode cleaner to the

beam-splitter.

Once the new laser and optics were installed we found be useful to see the beam

on various optics throughout the interferometer. Cameras were installed and con-

nected to an electronics rack linked to monitors in the control room. Using EPICS

(Experimental Physics and Industrial Control System) I created an interface for the

user in the control room to select a particular camera and a monitor in which to

display the image. A similar control system was employed to activate or deactivate

lamps illuminating the optics chambers.


