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Abstract

In recent years, a variety of mechanical systems have been approaching quantum limits
to their sensitivity of continuous position measurements imposed by the Heisenberg Un-
certainty Principle. Most notably, gravitational wave interferomters, such as the Laser
Interferometer Gravitational wave Observatory (LIGO), operate within a factor of 10 of the
standard quantum limit. Here we characterize and manipulate quantum noise in a variety of
alternative topologies which may lead to higher sensitivity GW detectors, and also provide
an excellent testbed for fundamental quantum mechanics. Techniques considered include
injection and generation of non-classical (squeezed) states of light, and cooling and trapping
of macroscopic mirror degrees of freedom by manipulation of the optomechanical coupling
between radiation pressure and mirror motion. A computational tool is developed to model
complex optomechanical systems in which these effects arise. The simulation tool is used to
design an apparatus capable of demonstrating a variety of radiation pressure effects, most
notably ponderomotive squeezing and the optical spring effect. A series of experiments
were performed, designed to approach measurement of these effects. The experiments use
a 1 gram mirror to show progressively stronger radiation pressure effects, but only in the
classical regime. The most significant result of these experiments is that we use radiation
pressure from two optical fields to shift the mechanical resonant frequency of a suspended
mirror from 172 Hz to 1.8 kHz, while simultaneously damping its motion. The technique
could prove useful in advanced gravitational wave interferometers by easing control issues,
and also has the side effect of effectively cooling the mirror by removing its thermal energy.
We show that with improvements, the technique may allow the quantum ground state of
the mirror to be approached. Finally, we discuss future prospects for approaching quantum
effects in the experiments.

Thesis Supervisor: Nergis Mavalvala
Title: Associate Professor
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Chapter 1

Quantum noise in gravitational

wave detectors

1.1 Introduction

With several gravitational wave (GW) observatories worldwide completed, or nearing com-

pletion [1], we are on the verge of the direct detection of gravitational waves from astro-

physical sources. The Laser Interferometer Gravitational wave Observatory (LIGO), the US

component of the worldwide effort, has completed an extended science data taking run at

its target sensitivity. Meanwhile, design, planning and construction, are underway for next-

generation detectors. The initial detectors have maximal strain sensitivity between 50 Hz

and 4 kHz as shown in Fig. 1-1, and are limited by seismic vibrations at low frequency,

and shot noise (poissonian noise in the number of photons detected) at high frequencies.

Improvements to the initial detectors, which include more powerful lasers, more effective

seismic isolation, new optical topologies, and higher quality mechanical components to re-

duce thermal noise, are expected to further increase the sensitivity by a factor of 10, and

to extend the frequency range down to 10 Hz, as in Advanced LIGO [2, 3], for example.

It is expected that the sensitivity of the future detectors will be predominately limited by

quantum noise that arises from the measurement process. One of the most important fea-

tures of next generation detectors is that they will operate at sufficiently high laser powers

that the radiation pressure acting on the suspended mirrors will become a dominant force.

The effects of the radiation pressure will manifest primarily in two ways: the shot noise of

12



Figure 1-1: Initial LIGO strain noise spectral density. Shown in blue is the measured
strain spectral noise density of the LIGO Hanford 4km interferometer taken on March 18,
2007. The design sensitivity is shown in green, the Standard Quantum Limit (SQL) in red
and the calculated quantum noise in cyan. Also shown is the quantum noise for 10x and
1000x higher input power. The calculated quantum noise does not reach the SQL because
a heterodyne readout scheme is being used, which introduces slightly excess shot noise [4].

the laser light will drive the mirror position and limit the sensitivity, and optical feedback

effects will radically alter the mechanical dynamics of the mirrors. The work presented in

this thesis was performed with the goal of exploring these effects.

The work presented in this thesis is focused on reducing the effects of quantum noise.

This chapter is organized as follows. First, we derive the input/output relations for an

ideal Michelson interferometer, and derive the quantum noise components that limit the

sensitivity to gravitational radiation. We then discuss techniques to reduce the quantum

noise, which include more advanced optical topologies and the injection of non-classical

light fields. This chapter is adapted from Ref [5].

1.2 Quantum noise in a Michelson interferometer

It is instructive to use a simple Michelson interferometer to demonstrate how quantum noise

enters a gravitational wave interferometer, and how it may be minimized. The configuration

consists of a laser incident on a beamsplitter, split into two arms, and reflected back to the

beamsplitter. The mirrors are suspended so that they are free to move under the influence of

13



gravitational waves. The distance between the beamsplitter and the two mirrors is assumed

to be nearly identical, so that the returning beams to the beamsplitter interfere destructively

at the antisymmetric port, and all the laser light returns towards the laser. The calculation

technique is similar to that presented in Ref. [6] for a Michelson interferometer with arm

cavities.

We may write the electric field entering the bright port of the beamsplitter as

Esym(t) = E0 cos(ω0t) + δEsym, (1.1)

where the first term represents the coherent laser field, and δEsym its fluctuations, which

could be quantum or classical in origin, E0 =
√

4πI0
Ac , I0 is the incident laser power, and A

is the effective cross sectional area of the laser field. However, because the output of the

Michelson interferometer is operated on a dark fringe (see Figure 1-2), the fluctuations of the

electric field entering from the symmetric, bright port do not enter the final measurement,

as they interfere destructively at the dark port, so we set δEsym = 0 for simplicity. It

has been shown [7, 8] that the lowest energy state of the electric field introduces vacuum

fluctuations into the dark port of the interferometer, as required by quantum mechanics.

Taking the beamsplitter to be precisely 50% transmissive, we may then write the electric

field of the vacuum at the frequency of the laser as

Easm(t) = cos(ω0t)

√
4π~ω0

Ac

∫ ∞

0

(
a1e

−iΩt + a†1e
+iΩt

) dΩ
2π

+

sin(ω0t)

√
4π~ω0

Ac

∫ ∞

0

(
a2e

−iΩt + a†2e
+iΩt

) dΩ
2π

, (1.2)

where a1 and a2 are quadrature operators for the electric field (see Chapter 4 or Refs. [6–8]).

For simplicity, we assume that the distance between the beamsplitter and each mirror is an

integer number of wavelengths, so that the laser field remains in the cosine quadrature at

each mirror. The electric field incident on M1 is therefore

E1(t) =
1√
2

[Esym(t) + Easm(t)] , (1.3)
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Figure 1-2: A Michelson interferometer showing the input and output fields. A laser beam is
split by a beamsplitter into two beams of equal power, which travel through arms of length L,
before being reflected back to the beamsplitter where they are interfered. The microscopic
positions of the mirrors are arranged so that the bulk of the laser light is returned towards
the laser (the bright port), and the light exiting this port is sensitive to the symmetric,
X1 + X2, motion of the mirrors. The fields exiting the dark port are sensitive to the
antisymmetric motion X1 − X2. In the top right axes, we show the vacuum fluctuations
entering the dark port, represented as uncertainty in phase space (the magnitude of the field
in the sine and cosine quadratures) of the electric field. Entering the dark port, the vacuum
fluctuations are equally large in each quadrature. In the bottom right axes, we show how the
interferometer transforms the electric field. First, the uncertainty in the electric field has
been modified by the radiation pressure, and has been transformed into a squeezed state,
signifying that the uncertainty is no longer equal in all quadratures as shown in Eq. 1.15.
Second, the mirror motions have been imprinted on the electric field in the sine quadrature
also shown in Eq. 1.15.
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and the electric field incident on M2 is

E2(t) =
1√
2

[Esym(t)− Easm(t)] , (1.4)

where we have ignored an overall time shift δt = ω0L/c. The time shift only creates a

multiple of 2π phase shift, and does not change our calculation. Any displacement X1(t) of

M1 creates a phase shift of the reflected electric field such that

E1r(t) =
1√
2

[
Esym(t− 2X1(t)

c
) + Easm(t− 2X1(t)

c
)
]

. (1.5)

Proper operation of the interferometer requires that 2ω0X1(t)
c ¿ 1, so we may make the

approximation

E1r(t) ≈ 1√
2

[
E0 cos(ω0t)− 2E0

ω0X1(t)
c

sin(ω0t) + Easm(t)
]

, (1.6)

and likewise for M2,

E2r(t) ≈ 1√
2

[
E0 cos(ω0t)− 2E0

ω0X2(t)
c

sin(ω0t)−Easm(t)
]

. (1.7)

The field that exits the dark port is then

Easm,r(t) =
1√
2

[E1r(t)− E2r(t)] = Easm(t) + E0
ω0 [X2(t)−X1(t)]

c
sin(ω0t). (1.8)

We now examine the terms that enter into X1,2(t). There are three primary terms:

classical displacements, including as seismic and thermal noise, quantum back-action, and

gravitational-wave induced motion. The back-action noise arises from the vacuum fluctu-

ations Easm(t) that enter from the dark port, creating intensity fluctuations of the laser

field, which then exert a fluctuating force on the mirrors and drive its motion. From Eq.

1.3, the fluctuating power (averaged over ω0) incident on M1 may be written as

δI1(t) =
√

I0~ω0

∫ ∞

0

(
a1e

−iΩt + a†1e
+iΩt

) dΩ
2π

. (1.9)

At this point, we transform into the frequency domain, taking the Fourier transform, we
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obtain

δĨ1 =
√

I0~ω0a1. (1.10)

The intensity fluctuations exert a fluctuating force F̃1 = 2δĨ1/c on the mirror. The mirror

behaves essentially as a free mass at the frequencies of interest (far greater than the mir-

ror’s suspension frequency), with mechanical susceptibility (MΩ)−2, where Ω is the Fourier

frequency of motion. The radiation pressure therefore creates the displacements

X̃1,ba =
2
√

I0~ω0

cMΩ2
a1 (1.11)

X̃2,ba = −2
√

I0~ω0

cMΩ2
a1 (1.12)

of each mirror. We may then write the total differential displacement as

X̃1 − X̃2 =
4
√

I0~ω0

cMΩ2
a1 + X̃cl,1 − X̃cl,2 + Lh̃, (1.13)

where X̃cl is the classical displacement noise, L is the length of the arms, and h is the

gravitational wave strain. We define the output quadratures b1,2 of the output field Easm,r

according to

Easm,r(t) = cos (ω0t)

√
4π~ω0

Ac

∫ ∞

0

(
b1e

−iΩt + b†1e
+iΩt

) dΩ
2π

+

sin (ω0t)

√
4π~ω0

Ac

∫ ∞

0

(
b2e

−iΩt + b†2e
+iΩt

) dΩ
2π

. (1.14)

Under this formalism,

b1 = a1 (1.15)

b2 = a2 − κa1 −
√

I0ω0

~c2

(
X̃cl,1 − X̃cl,2 + Lh̃

)
,

where κ = 4I0ω0
c2MΩ2 is the radiation pressure coupling coefficient. The b2 quadrature may be

measured using a homodyne or heterodyne readout scheme (see Ref. [4] for details and a

comparison between the two). Assuming an ideal detection of the b2 quadrature, which

may be accomplished by homodyne detection, and neglecting any classical noise, we obtain
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the strain spectral noise density of the detected field

Sh =
(
1 + κ2

) ~c2

4I0ω0L2
= (1/κ + κ)

h2
SQL

2
(1.16)

where

hSQL =

√
4~

MΩ2L2
(1.17)

is the “Standard Quantum Limit” (SQL) for strain sensitivity. We note that the SQL given

here differs from that given in Ref. [6] because we only use two mirrors, rather than four,

so the reduced mass for the system is twice as large. The SQL is a necessary result of the

Heisenberg Uncertainty Principle (HUP). As the positions of the mirrors are measured at

one instant, the HUP requires uncertainty in the momentum of the mirrors (back-action) in

proportion to the inverse of the uncertainty of the position measurement. The uncertainty

in the momentum then disrupts future measurements of the mirror position. The initial

uncertainty in the position of the mirror is represented in Eq. 1.16 by the 1/κ term, while

the back-action noise is represented by the κ term. For any continuous measurement, the

optimal performance is achieved when the measurement strength (the input power) is chosen

to balance the two noise terms (see Figure 1-1 for example). In our case, this is achieved

when the input power is set to

ISQL =
Mc2Ω2

4ω0
. (1.18)

The SQL may be overcome, however, and we demonstrate various ways to beat the limit

by manipulating the quadrature fields. At present, no interferometers have operated in the

κ > 1 regime at frequencies for which quantum noise is significant. Note that because of

the frequency dependence of κ, this should always occur for small Ω, but the effects of the

back-action noise are hidden underneath seismic or other classical noise and have never been

directly detected. We proceed to discuss methods to reduce the effects of quantum noise.

1.3 Quantum noise mitigation

In this section, we discuss techniques, both currently employed and planned for the future,

to reduce the effects of quantum noise. We defer a discussion of the use of squeezed light

injected to the dark port to Section 1.4.

18



1.3.1 Cavities and power recycling

With only a Michelson interferometer, unrealistically high levels of laser power would be

required to approach κ ≈ 1 near the GW frequency band. For example, with the 10 kg

mirrors used in LIGO, approximately 50 MW of input laser power would be required to

reach κ = 1 at 100 Hz. By placing an additional highly reflective mirror in each arm of the

Michelson interferometer in order to form an optical cavity, the laser power may circulate

in the arms many times before escaping. In the limit that the transmission of the input

mirror T is the dominant optical loss in the cavity (which is usually the case, for reasons

that we discuss), then each photon takes on order 4/T roundtrips within the cavity, and the

signal at the output is increased by a factor of the same order. We see from Eq. 1.16 that

we obtain an increase of order (4/T )2 in the effective power. While this technique does not

allow the SQL to be circumvented, it does allow for κ to be dramatically increased without

increasing the input power level, and so it has become standard in most GW interferometers.

Ideally, one would operate the cavity such that the light continues to circulate within the

cavity, until it is lost to imperfections in the mirror coatings or diffraction, in order to make

4/T as large as possible. This “impedance matching” is achieved when the transmission

of the input mirror, T , is equal to the round trip optical loss resulting from imperfections.

However, an important limitation generally prevents us from operating in that regime. The

bandwidth (or linewidth) of the cavity describes how quickly the cavity may respond to

external disturbances, as limited by the light travel time multiplied by the effective number

of round trips each photon makes within the cavity. If the mirror motion induced by

gravitational waves exceeds the bandwidth of the cavity, the slow response of the cavity

acts to average the GW signal, generating a low pass filter in the cavity response. The

corner frequency of this low pass filter, equivalent to the cavity’s half-linewidth, is given by

γ =
Tc

4L
. (1.19)

Considering the LIGO arm lengths of 4 km, and the expected optical losses of order 100

ppm, one could ideally operate with T = 10−4, leading to γ = 2π × 0.3 Hz. However, since

the desired peak sensitivity is near 100 Hz, the transmission of the input mirrors is limited

to 3% so that γ ≈ 2π × 100 Hz. In this regime, almost all of the laser power is reflected

back towards the laser.
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Since most of the light returns toward the laser, a partially transmitting power-recycling

mirror (PRM) may be placed between the laser source and the beam splitter to ‘recycle’

the light back into the interferometer [9] (see Fig. 1-3(a)). This technique allows the power

recycling cavity to be impedance matched, without the bandwidth constraints present with

arm cavities, so that the available laser power is optimized given the constraints of the optical

losses. In the Initial LIGO interferometers, a 10 W laser is increased to approximately 200 W

in the power recycling, and increased further to approximately 15 kW in the arm cavities,

within a factor of about 25 of the required power to reach the SQL at 100 Hz, despite

beginning with a 10 W laser.

1.3.2 Signal tuned interferometers

The optical configuration currently planned to achieve quantum-limited performance in Ad-

vanced LIGO uses the Resonant Sideband Extraction (RSE) technique [10], in addition to

power-recycling. In RSE, an additional partially transmitting mirror, the signal extraction

mirror (SEM), is placed between the antisymmetric port of the beam splitter and photode-

tector (see Fig 1-3(b)). The reflectivity of this signal extraction mirror and its microscopic

position (on the scale of the wavelength of the laser light, 1.064µm) significantly influence

the frequency response of the interferometer [11]. The resonance condition of the signal

extraction cavity – comprising the SEM and the input test-mass (ITM) mirrors of the arm

cavities – and the reflectivity of the SEM, control the frequency of peak response and the

bandwidth of the detector, respectively.

With cavities on resonance, the peak response is for signals at 0 frequency (DC). The

signal-recycling cavity allows one to utilize arm cavities with bandwidths significantly less

than the frequency of the desired signal to measure (which allows for higher power buildup

in the arm cavities) by detuning the resonance of the signal recycling cavity to the desired

frequency. This detuning has the profound consequence, however, that the frequency re-

sponse of the detuned configuration is no longer symmetric around the carrier frequency.

As a consequence, only one of the two (upper or lower) GW-induced sidebands is exactly

on resonance in the signal-recycling cavity. In general, the upper and lower GW sidebands

contribute asymmetrically to the total output field, which makes the GW signal appear

simultaneously in both quadratures of the output field [12]. Furthermore, use of the de-

tuned RSE to optimize the detector response has exposed some surprising features that
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are due to the dynamical correlations of the shot noise and radiation pressure noise [12].

These shot noise–radiation pressure noise correlations – which are manifestations of quan-

tum non-demolition (QND) in that the correlations lead to below-SQL noise limits – lead to

an optomechanical coupling that significantly modifies the dynamics of the interferometer

mirrors, introducing an additional resonance at which the sensitivity also peaks (see, e.g.,

the dark solid (blue) curve in Fig. 1-5) [12, 13]. We further discuss these correlations and

optomechanical couplings effects in Chapter 2.

Signal-tuned interferometers are already used in the GEO600 detector, and are part of

the baseline plan for the Advanced LIGO detectors.

1.3.3 Ponderomotive squeezing and the variational readout

Ponderomotive squeezing arises from the naturally occurring correlation of light intensity

fluctuations to mirror position fluctuations upon reflection of light from a mirror. Recall

from Eq. 1.16 that the intensity fluctuations couple to the phase fluctuations with cou-

pling constant κ. In the case that the phase quadrature is measured, the only effect of

this coupling is excess radiation pressure noise. However, if one allows for an arbitrary

quadrature

bθ = b1 cos θ + b2 sin θ (1.20)

to be measured (which may be accomplished by varying the phase of the local oscillator

in the homodyne readout), then more complex features may be revealed. Suppose that we

choose θ so as to eliminate the radiation pressure term (a1),

θZ = arctan
1
κ

, (1.21)

then

bθZ
=

[
a2 − 2

√
I0ω0

~c2

(
X̃cl,1 − X̃cl,2 + Lh̃

)]
sin θZ . (1.22)

In this regime, only shot noise, the classical noise, and the GW signal remain, and all terms

have been reduced by a factor sin θZ . The resulting noise spectral density for the GW signal

is

Sh =
h2

SQL

2κ
, (1.23)
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which is precisely what would be expected from shot noise alone. In this way, the effects of

radiation pressure noise may be completely eliminated by taking advantage of the correla-

tions with the intensity quadrature. It is critical to note that the detected quantum noise at

this quadrature is below the shot noise level. This is allowed under quantum mechanics, as

long as the Heisenberg Uncertainty Principle, related by the commutation relations between

b1 and b2, is satisfied. In our case, this requires that the noise in the quadrature orthogonal

to bθZ
exceed shot noise by at least the factor that bθZ

is below it. This type of output state

is called a squeezed state (see Figure 1-2, and we discuss it in greater detail in Section 1.4.

We point out that κ and therefore θZ is frequency dependent, and we may only choose

a single homodyne phase for detection, so it would at first appear impossible to achieve

the cancellation of radiation pressure noise at all frequencies simultaneously. However, it

has been pointed out [6] that by using filter cavities at the dark port before performing

the homodyne detection (see Figure 1-3), the frequency dependent cancellation may be

obtained. This scheme is called the “variational readout.” Achieving this cancellation in

practice is extremely difficult because the filter cavities require linewidths comparable to

the frequency at which the interferometer reaches the SQL, of order 100 Hz. The filter

cavity must also have very low optical loss, as any loss introduces additional uncorrelated

vacuum fields that destroy the a1 correlations. These requirements lead to very long filter

cavities, ranging from 15 m to 4 km in length. Additionally, optical losses intrinsic to the

interferometer itself destroy the correlations, limiting the potential benefit of this technique.

1.3.4 Speed meters

The principle of a speed meter is most easily understood in terms of the HUP applied

to position and momentum. We have highlighted how the momentum disturbance from

position measurements disrupts future measurements. This back-action obviously does not

make position a good QND observable. While a measurement of momentum certainly

perturbs the position of a test particle as required by the HUP, that position kick does

not influence the time evolution of the momentum, and hence there is no back-action.

Momentum measurements are thus inherently back-action evading 1 , provided no position

information is collected. Interferometric measurements that measure the speed – similar in
1Momentum is a constant of the motion for a free particle; it commutes with itself at different times and

is, therefore, a good QND variable.
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behavior to the momentum – of the mirrors were first proposed by Braginsky et al. [14] and

refined into more practical designs by Purdue and Chen [15].

Many Michelson-based variants of interferometric speed meters rely on the addition of

a “sloshing” cavity at the output port of an otherwise position sensitive interferometer.

The role of the “sloshing” cavity is to completely cancel the momentum “kick” due to the

position measurement at an earlier time by providing an equal and opposite “kick” by the

fields stored in the sloshing cavity. Optically, this occurs due to a π phase shift in the

coupling constant that connects the sloshing cavity field to the interferometer field. This

behavior is analogous to that of two weakly coupled oscillators: when a mode other than a

normal mode of the system is excited, energy “sloshes“ between the two oscillators, with a

π phase shift after each “slosh” cycle. A schematic representation of a sample speed meter

interferometer is shown in Fig. 1-3(d). The unused port of the readout mirror that connects

the sloshing cavity (sc) to the signal extraction cavity (sec) can with be plugged (with

the dashed mirror), or it can be used for squeezed vacuum injection. We do not include

noise curves corresponding to various speed meter configurations here, but these appear in

Ref. [15].

1.4 Squeezing

The vacuum fields that enter the dark port of the interferometer are the source of shot noise.

Recall that equal magnitudes of noise are present in both the sine and cosine quadratures

of the electric field of the vacuum. However, the magnitude of noise in each quadrature is

only limited by their commutation relations, as described by the Heisenberg Uncertainty

Principle. It is possible in principle to reduce, for example, the magnitude of the noise in the

sine quadrature, while increasing the noise in the cosine quadrature, thereby “squeezing” the

uncertainty of the vacuum field in phase space. This may be done prior to the vacuum noise

entering the interferometer (contrary to ponderomotive squeezing, which is the squeezing

produced by the interferometer itself) as shown in Figure 1-3.

Since the earliest experiments to generate squeezed states of light were carried out in the

1980’s [16,17], there has been steady progress in both the degree of squeezing achieved [18]

as well as the stability and long-term operation of squeezing experiments [19]. The use of

squeezed light in various applications has nudged squeezed state generation from delicate
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Figure 1-3: Schematic representations of some sample interferometer configurations. In all
cases shown except (c) we have chosen extensions of a power-recycled Michelson interfer-
ometer with Fabry-Perot cavities in each arm as the basic interferometer; this configuration
is shown in (a). (a) Power-recycled Michelson interferometer with Fabry-Perot arm cavities
(PRFPMI); (b) Signal-tuned PRFPMI; (c) PRFPMI with variational readout and (optional)
squeezed input; and (d) PRFPMI-based speed meter with (optional) squeezing. Acronyms
used: ac = arm cavity, prc = power-recycling cavity, sec = signal extraction cavity, sc =
sloshing cavity.

laboratory set-ups with millisecond durations to the realm of stable sources of strongly

squeezed light that operate robustly for several hours at a time. The present state of

the science for CW squeezed light is about 10 dB of squeezing at 5 MHz [20], and 4 dB

at 10 Hz [21]. Demonstrations of squeezing-enhanced interferometers on both tabletop

experiments [22, 23] and suspended prototype interferometers [24] have been performed,

and plans to squeeze a 4 km LIGO interferometers are currently being developed. With

these advancements, all of the requirements for squeezing GW interferometers placed on

the squeezed state source have been satisfied.
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Figure 1-4: Noise curves for a power-recycled interferometer (with initial LIGO parameters)
with squeezing and with a variational readout [6]. The solid dark (black) curve uses the
standard, or baseline, initial LIGO parameters but power at the beamsplitter that gives
SQL-limited performance at 100 Hz, i.e. (I0 = ISQL ' 10 kW; the solid light (gray) curve
is the sensitivity for the same interferometer but with squeezing injected at a frequency-
dependent optimal squeeze angle; the dash-dot (green) curve is for the same interferometer
but using a frequency-dependent homodyne readout that measures the optimal quadrature
at each frequency; the lighter dashed curve (blue) uses a variational readout as well as 10
dB of squeezing injected. No losses are included in the noise curves plotted here, but the
treatment including losses can be found in Ref. [6].

1.4.1 Applications of squeezing to gravitational-wave interferometers

In this section we describe some of the effects of using squeezed light in GW interferometers.

We assume availability of 10 dB of vacuum squeezing available from DC to 10 kHz. Here

we do not include losses, but the effect of losses are described in Sec. 1.4.2. We consider

the use of squeezed light in a few typical GW detector configurations.

Power-recycled interferometers

Several variations have been proposed to turn these “conventional” interferometers into

QND devices. The sensitivity curves for these are shown in Fig. 1-4.

• In the squeezed-input interferometer squeezed vacuum is injected into the antisymmet-

ric port of the interferometer. Squeezing has the effect of increasing the fluctuations

in one quadrature, while decreasing fluctuations in the other. Since radiation-pressure

noise and shot noise dominate in different frequency regions and depend on different
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input quadratures, the squeeze angle that achieves optimal performance is frequency

dependent. One possible configuration is choosing a frequency independent squeeze

angle that decreases shot noise and increases radiation pressure noise. This configura-

tion is equivalent to an unsqueezed interferometer with an increase to the laser power

by the squeeze factor [8]. To obtain a broadband performance increase, two long

(required for low losses) filter cavities can produce the required frequency dependent

squeeze angle from a fixed squeeze angle source. In this configuration, the noise is

reduced by the squeeze factor at all frequencies.

• In the squeezed-variational interferometer, two filter cavities are used to perform a

frequency dependent homodyne detection of the signal. This detection method elim-

inates radiation-pressure noise from the signal by taking advantage of correlations

between the shot noise and radiation-pressure noise. As a result, squeezing must re-

duce only the shot noise, and the radiation-pressure noise may be disregarded, which

results in a frequency independent squeeze angle, and the noise is reduced by the

squeeze factor at all frequencies.

Signal tuned interferometers

It is constructive to consider the detuned RSE interferometers planned for Advanced LIGO

and show that there are reasonable gains to be made even with frequency-independent

squeezing.

The detuning of the signal recycling cavity has the effect of mixing the quadratures in

the input/output relations of the interferometer. This allows the shot noise and radiation

pressure noise to become correlated, producing the two resonances typical (see Figure 1-5)

of signal recycled interferometers [12].

To improve the performance of this configuration, we inject squeezed vacuum into the

dark port. The mixing of the quadratures results in a modification of the optimal squeeze an-

gle from the power-recycled case. It has been shown that this frequency-dependent squeeze

angle can be produced by kilometer scale filter cavities [6,25]. Due to the inherent difficulty

of using long filter cavities, we consider the case of a fixed squeeze angle in the Advanced

LIGO configuration.

For Advanced LIGO, the signal recycling cavity is detuned to place the resonances near
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Figure 1-5: Left panel: Noise curves for Advanced LIGO with different levels of squeezing
included. The dark solid curve is the standard, or baseline, Advanced LIGO sensitivity
when limited by quantum noise; the dashed (purple) curve corresponds to a broadband
configuration that is better suited for squeezing (but no squeezing is injected); the dash-dot
(cyan) curve is for the broadband configuration with 5 dB of squeezing; the lighter solid
curve (green) has 10 dB of squeezing injected. The dotted (yellow) curve is an estimate of
the thermal noise, assuming 40 kg silica test masses limited by internal thermal noise [2].
Right panel: The optimal squeeze angle for three interferometer considered. The dashed
curve (gray) is for a conventional power-recycled interferometer; the dotted curve (purple)
is for the standard (baseline) Advanced LIGO configuration; the solid (black) curve is for
the optimized broadband Advanced LIGO configuration.

100 Hz to achieve the best performance in the GW frequency band. This results in the

optimal squeeze angle being strongly frequency dependent and broadband improvements

impossible. By choosing the optimal squeeze angle for a particular frequency band, narrow-

band improvements can be achieved, at the cost of worse performance at other frequencies.

To increase the broadband performance, we must modify the detuning of the signal recycling

cavity so as to reduce the variance of the optimal squeeze angle. We choose a detuned signal

extraction cavity, such that carrier light with angular frequency ωl obtains a net phase shift

of π
2 in one pass through the cavity. In this configuration, the optimal squeeze angle varies

much less than in the standard configuration. We choose a squeeze angle to optimize the

noise performance at 200 Hz. This choice allows us to improve the performance over the

bulk of our frequency range. The performance of the squeezed configuration is comparable

to the unsqueezed configuration in the frequency range 10 Hz to 300 Hz, and dramatically

better at 300 Hz to 10 kHz.
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1.4.2 The role of losses

Optical losses play an important role in the performance of a squeezed interferometer. There

are two mechanisms that must be considered simultaneously when evaluating the effects of

losses: (i) The dissipation leads to smaller signals, which is a purely classical effect; and (ii)

A lossy port allows ordinary (unsqueezed) vacuum to enter and superpose on the squeezed

field in the interferometer, thus destroying the effects of the squeezing.

In general, the significance of the different losses in an interferometer or associated injec-

tion/readout scheme depends on the interferometer configuration. Squeezed light injection

losses are obviously problematic, since they correspond to pure degradation of the level of

squeezing. The sensitivity to optical losses in an interferometer depends on the build-up of

signal and noise fields in the various part of the interferometer. In the variational and/or

squeezed-variational interferometer of Fig. 1-3(c), for example, the losses in the arm cavities

dominate the overall performance of the detector [6].

In this section we consider the effect of losses in the signal-tuned interferometer described

in Sec. 1.4.1, as an example. The effects of the losses are strongly dependent on the buildup

of the noise fields in the signal extraction cavity and in the arm cavities. There are four

types of losses we consider:

• Injection losses are losses associated with the injection of squeezed light into the dark

port. This effectively limits the squeezing magnitude, and we assume that these are

included in the squeezing magnitudes used, and are subsequently ignored.

• Detection losses are due to quantum inefficiencies in the detection of the signal light.

These losses allow a small amount of vacuum fluctuations to leak into the measure-

ment, decreasing its precision. The vacuum fluctuations are small relative to the

radiation pressure noise at low frequencies, and thus have little effect where radiation

pressure noise dominates. The vacuum fluctuations are significant relative to shot

noise, however, and hurt performance at high frequencies where shot noise dominates.

• Signal recycling losses are produced by the beamsplitter, signal recycling mirror, and

the anti-reflective coatings on the initial test masses. These losses are either amplified

or suppressed depending on the buildup of the noise fields in the signal extraction

cavity. The frequency-dependent phase shift experienced by the noise fields in inter-

acting with the arm cavities results in the signal recycling cavity being resonant at
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Figure 1-6: Noise curves for a squeezed input signal-tuned interferometer (with broadband
Advanced LIGO parameters) including losses. The solid gray curve is for the broadband
Advanced LIGO configuration shown as the dashed (purple) curve in Fig. 1-5; the dashed
gray curve is the sensitivity for the same interferometer but with additional losses (see
below) ; the solid black curve is for the lossless interferometer squeezing injected (same
as the lighter solid (green) curve of Fig. 1-5; the dashed curve black curve includes losses.
The losses assumed in these curves are 50 ppm per high-reflection surface, 200 ppm per
anti-reflection surface and photodetection efficiency of 98%.

high frequencies, and anti-resonant at low frequencies; thus the effects of the losses

are amplified at high frequencies and suppressed at low frequencies.

• Arm cavity losses are incurred in the arm cavities due to diffraction and absorption.

Due to the suppression of the noise fields at low frequencies in the signal recycling

cavity, and to the suppression of the noise fields at high frequencies in the arm cavities,

the noise fields do not resonate strongly in the arm cavities. This effect reduces the

importance of arm cavity losses.

While not apparent from Fig. 1-6, we have determined that the dominant losses in this

configuration arise from the signal recycling cavity, and that the effects of the losses are

the worst at frequencies above 300 Hz, and limit the amount of squeezing that is beneficial

at these frequencies. The losses are largely unimportant at frequencies below 300 Hz. As

mentioned above, the effect of these losses is amplified or suppressed, depending on the

resonance condition in the signal extraction cavity.

29



1.5 Overview

We have attempted to give a very broad survey of our understanding of quantum noise in

GW interferometers. With regard to laser interferometer gravitational-wave detectors, the

stage was set in the late 1970s and early 1980s by the work of Caves, Thorne, Braginsky

et al., and many others, which introduced the conceptual and mathematical formulation

of the problem of quantum noise limits in macroscopic measurements and the possibility

of circumventing them by quantum non-demolition techniques, using squeezed light, for

example. These ideas were deemed not to be realizable in GW detectors at the time 2.

In the following decade, there were significant enough advances in the generation of non-

classical states of light [16,17,19,26] and their use to make modest gains in interferometric

measurements below the quantum limit [22,27], that once again renewed interest in the topic

at the turn of the millennium. The work of Buonanno and Chen [12,13], building on that of

Kimble et al. [6], led to better understanding of the important role that naturally occurring

quantum correlations can play in advanced GW detectors with higher power, hence non-

negligible back action noise. At the present time, we have entered an era of vigorous

activity and interest in the possibility of sub-SQL measurement techniques that aim to

take advantage of (i) squeezed-state generation and injection; (ii) the naturally occurring

ponderomotive squeezing in interferometers; (iii) other back-action evading measurement

techniques based on speed meters [15]; and a variety of other techniques that we have not

described here.

The remaining chapters in this thesis are organized as follows: In Chapter 2, we describe

a scheme to filter the squeezed light in order to give the squeezing a frequency dependent

amplitude, rather than the frequency dependent squeeze angle already discussed. We argue

that this technique is easier, and analyze the benefits that it could provide to the detec-

tion of GWs from astrophysical sources. Chapter 3 provides an overview of the theory

of optomechanical coupling in detuned cavities, and discusses the effects arising from this

coupling. Chapter 4 presents a mathematical technique to calculate the propagation of

classical and quantum optical fields in complex interferometers, including optomechanical

coupling. Chapter 5 develops an experimental design for a small-scale experiment capable of
2In the Conclusions section of his 1981 paper [8], Caves wrote: “The squeeze-state technique outlined in

this paper will not be easy to implement... Difficult or not [it] might turn out at some stage to be the only
way to improve sensitivity of detectors designed to detect gravitational waves...”
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demonstrating a number of the optomechanical effects discussed, including ponderomotive

squeezing and radiation pressure noise. Chapter 6 describes a series of experiments that

have been performed in the context of the design presented in Chapter 5, and demonstrate

a number of strong optomechanical effects. Chapter 7 discusses how these experiments may

have other applications in exploring how quantum mechanics influence macroscopic objects,

in the context of optical cooling and trapping. In Chapter 8, we conclude with an outlook

for the future of these experiments.
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Chapter 2

Filter cavities for squeezed light

We explore the use of Fabry-Pérot cavities as high-pass filters for squeezed light, and show

that they can increase the sensitivity of interferometric gravitational-wave detectors without

the need for long (kilometer scale) filter cavities. We derive the parameters for the filters,

and analyze the performance of several possible cavity configurations in the context of

a future gravitational-wave interferometer with squeezed light (vacuum) injected into the

output port. This chapter is adapted from Ref. [28].

2.1 Introduction

To achieve broadband noise reduction using squeezed light, it is necessary to produce

squeezing with a frequency-dependent squeeze angle. Kimble et al. [6] recognized that

squeezed vacuum reflected from appropriately detuned filter cavities could match the re-

quired squeeze angle over a broad range of frequencies and give broadband performance

below the SQL. Squeezing in signal-tuned interferometers was analyzed in Refs. [5, 29, 30].

Frequency-dependent squeezing using optical cavities offers excellent performance, but it is

likely to be difficult and costly to implement because it requires long (kilometer scale) filter

cavities to reduce losses so that the squeezing is not destroyed in the process [6, 29].

Here we propose using an alternative type of filter cavity that, instead of giving a

frequency-dependent squeeze angle, act as high-pass filters for the squeeze amplitude. In

using this design, we reduce the harmful effects of squeezing with a constant squeeze angle

and the need for a low-loss cavity, while retaining the benefits of squeezing at high frequen-

cies. The premise of our filter is that at high frequencies the input beam is entirely reflected
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by the filter cavity and the squeezing is preserved, while at low frequencies, it is entirely

transmitted and the cavity losses cause ordinary vacuum to replace the (anti-) squeezed vac-

uum noise. The cavities have a visibility of nearly unity. In general, we attempt to choose

a transition frequency above which the squeezing is preserved and below which we destroy

the anti-squeezing. For any realistic cavity, however, there is a transition region in which

the squeezing is also partially destroyed. The use of multiple cavities allows manipulation,

and hence optimization, of this transition region.

In this chapter we evaluate the performance of these filter cavities and propose config-

urations that reduce the extent of the transition region. We initially consider the use of

a single filter cavity, [Fig. 2-1 (b)]; in Section 2.6, we consider the extension to multiple

cavities. In each case the filter cavities are placed between the squeeze source and unused

output port of the beam splitter, as shown in Fig. 2-1 (a). We evaluate the performance

using three astrophysical criteria simultaneously: (i) the signal-to-noise ratio (SNR) for de-

tecting a stochastic background of gravitational-waves, (ii) the signal-to-noise ratio (SNR)

for inspiraling neutron star binaries, and (iii) the strain sensitivity at higher frequencies,

where pulsars are expected to be detectable.

2.2 Filter description

We consider a triangular cavity with three mirrors, as shown in Fig. 2-1 (b), where Ri, Ti

and Ai are the power reflectivity, transmission and loss, respectively, of each mirror such

that

Ri + Ti + Ai = 1, with i = 1, 2, 3. (2.1)

The field incident on the the cavity comprises a carrier at frequency, ω0, and sidebands

at frequencies, ω0 ± Ω. When the cavity is resonant with the carrier frequency, ω0, the

roundtrip length of the cavity, l, is an integer number of carrier half-wavelengths and the

ω0 + Ω component of the incident field experiences a frequency-dependent phase shift,

Φ = Ωl
c for a single round trip of the cavity. Cavity amplitude reflection and transmission

coefficients are then given by
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Figure 2-1: Panel (a) displays the placement of the filter in a squeezed-input interferometer.
Panel (b) shows the single filter configuration, where a is the beam to be filtered, b is
unsqueezed vacuum, c is the filtered beam and d is the transmitted beam.

ρ (Ω) =
c

a
=

√
R1 − T1

√
R2 R3 e2iΦ

1−√R1 R2 R3 e2iΦ
, (2.2)

τ (Ω) =
d

a
=

√
T1 T2 eiΦ

1−√R1 R2 R3 e2iΦ
. (2.3)

To make the cavity act as a high-pass filter for the reflected light at frequency Ω (relative to

the carrier frequency, ω0), a cavity with no reflected light at Ω = 0 is desired, so we require

that ρ(0) = 0. We constrain the values of R1 and R2 R3 at a fixed value of A1 by choosing

a value for the half-linewidth of the cavity

γf ≡ c

4l
(1−R1 R2 R3), (2.4)

R1 =

√
1− 4lγf

c
(1−A1) , (2.5)

R2 R3 =

√
1− 4lγf

c

(1−A1)
, (2.6)

resulting in a reflected beam of the form
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ρ (Ω) =
√

R(1− e2iΦ)

1−
√

1− 4lγf

c e2iΦ

≈ Ω
iγf + Ω

. (2.7)

Eqn. (2.7) shows that the performance of the cavity depends only on its linewidth. R2 R3

must be less than 1 − A2 − A3 ≈ 1 − 2A1, which requires A1 <
2lγf

3c . The finesse of the

cavity is F = πc
2lγ .

2.3 Filtered squeezed states

Since the cavity is not detuned from resonance and there is no rotation of the quadratures,

it is straightforward to extend this result to the Caves-Schumaker two-photon formalism

[31,32]. Referring to Fig. 2-1 (b), a and b are the (complex) amplitudes of fields at sideband

frequency, Ω, incident on mirror M1 and M2, respectively. The field reflected from the

cavity, c, has the form

ci = ρai + τbi +
√

1− |ρ|2 − |τ |2 vi , (2.8)

where i = 1, 2 and the vi are the quadrature field amplitudes of the unsqueezed vacuum

that leaks in due to the losses in the cavity. In the case where the light incident on M2 is

also unsqueezed vacuum 1, the reflected field takes the form

ci = ρai +
√

1− |ρ|2 vi. (2.9)

Now suppose squeezed vacuum is incident on the cavity, i.e. a is squeezed. Since ρ(Ω)

has the response of a high pass filter, we see from Eqn. (2.9) that at low frequencies where

ρ(Ω < γf ) ∼ 0, the second term dominates and the filter output field, c, is in an ordinary

vacuum state given by v, while at high frequencies where (1 − |ρ|2) ∼ 0, the output field

contains primarily the squeezed input vacuum, a.

The reflected beam is, in general, not a pure squeezed state 2. Two parameters char-

acterize the effects of the cavity on the squeezed state: the attenuation factor, α, and
1Since the vacuum fluctuations entering the cavity due to losses and those due to finite transmissivity

are uncorrelated, we add them in quadrature.
2A “pure” squeezed state refers to the case where the variance of the noise in one quadrature increases

by exactly the same amount as that in the orthogonal quadrature is reduced, i.e. the area of the noise ellipse
is unity. When excess noise is present in one quadrature, this condition is not satisfied.
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the vacuum leakage, β. The attenuation factor measures the effect on the anti-squeezed

quadrature, while the vacuum leakage measures the effect on the squeezed quadrature by

measuring the vacuum noise that enters the beam. Defining x = Ω/γf , we find

α = |ρ|2 ≈ x2

1 + x2
, (2.10)

β = 1− |ρ|2 ≈ 1
1 + x2

, (2.11)

α + β = 1. (2.12)

We define the corner frequency, ξ = x1/2γf , of the filter to be the frequency at which

α = β = 1
2 , which gives x1/2 ≈ 1. The parameters α and β as a function of (normalized)

frequency are plotted as the solid curves in Fig. 2-2. Discussion of multiple filters, also

shown in Fig. 2-2, is deferred to Section 2.6.

2.4 Application to gravitational-wave interferometers

2.4.1 Conventional interferometer

It is instructive to study the performance of the amplitude filter cavity with a conventional

GW interferometer operated at the optimum power required to reach the standard quantum

limit at Ω = γ [6]. Here γ is the linewidth of the arm cavities of the interferometer, distinct

from γf , which is the linewidth of the filter cavity. Though γ may be adjusted to optimize the

detector performance under certain circumstances, we restrict ourselves to γ = 2π×100 Hz.

A phase-squeezed vacuum beam is filtered by the cavity and then injected into the

otherwise unused output port of the interferometer, as shown in Fig. 2-1 (a). To maintain

the same input/output relations as developed in Ref. [6], the interferometer input (cavity

output) beam is given in the form 3

a′1 =
√

α eRa1 +
√

β v1 (2.13)

a′2 =
√

α e−Ra2 +
√

β v2. (2.14)

For an interferometer with arm lengths, L, mirror masses, m, and injection squeeze factor,
3A unitary transformation was applied to the operator equation a′i =

√
α ai +

√
β vi acting on a squeezed

state |sqz〉, such that a1,2 → e±R a1,2 and |sqz〉 → |0〉.
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Figure 2-2: A plot of the attenuation, α, and maximum possible squeezing, β for a single
(blue, solid), series (red, dashed) and parallel (green, dotted) filter. The subscripts S and
P refer to series and parallel filters, respectively; these filter configurations are described
in Section 2.6. The series filter increases the effective corner frequency and the attenuation
factor, while the parallel filter decreases the effective corner frequency but increases the
maximum squeezing.
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R, this leads to the noise spectral density

Sh =
h2

SQL

2κ

[
α

(
e−2R + κ2e2R

)
+ β

(
1 + κ2

)]
, (2.15)

where

hSQL ≡
√

8~
mΩ2 L2

(2.16)

is the noise spectral density of the dimensionless gravitational-wave strain at the standard

quantum limit for an interferometer with uncorrelated shot noise and radiation-pressure

noise, and

κ =
2 (I0/ISQL) γ4

Ω2 (γ2 + Ω2)
(2.17)

is the effective coupling constant that relates the output signal to the motion of the inter-

ferometer mirrors [6].

In Fig. 2-3, we plot the noise spectral densities for a conventional interferometer with

squeezed input parameter e−2 R = 0.1, using different filter cavity configurations. The

unfiltered squeezed input gives significantly higher noise at Ω < γ. When the squeezed input

is filtered by a single filter, there is a frequency band Ω/γ > 1.5 in which the sensitivity is

worse than the the unfiltered squeezed case, and a corresponding range Ω/γ < 1 in which

the sensitivity is worse than the unsqueezed case. We refer to this band around Ω/γ ∼ 1 as

the “transition region”; it is a consequence of the frequency response of the filter. In Section

2.6 we examine some methods to reduce the frequency extent of this transition region such

that the low-frequency noise of the squeezed input interferometer approaches that of an

interferometer with no squeezing, while preserving the noise reduction at high frequencies.

It is also possible to define a critical frequency above which squeezing is desirable, and

below which it is deleterious 4. Inserting α + β = 1 into eqn. (2.15) for Sh, we get

Sh =
h2

SQL

2κ

{
α

[(
e2R − 1

)
κ2 − (

1− e−2R
)]

+
(
1 + κ2

)}
. (2.18)

The coefficient of the term in α switches sign at the critical frequency, Ω/γ = 1.44, which

corresponds to the frequency at which the curves in Fig. 2-3 cross. Since β = 0 and α = 1

when no filtering is applied, we always have α < 1 in the filtered case. More generally then,
4The critical frequency was first pointed out by Yanbei Chen.
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Figure 2-3: The noise spectral density, normalized by hSQL, for a conventional interferom-
eter with (i) no squeezed input (“Unsqueezed”); (ii) squeezed vacuum injected (“Unfiltered
Squeezing”); (iii) squeezed input filtered by a filter cavity (“Amplitude filtered squeezing”);
and (iv) frequency-dependent squeeze angle (“Frequency-dependent squeeze angle”).

the noise for the unfiltered case is better at frequencies higher than the critical frequency

(where κ is small), and worse at frequencies below the critical frequency. Moreover, at the

critical frequency, the coefficient of α in eqn. (2.18) is zero and the value of α does not

matter. This also explains why the curves for a variety of filter configurations in Fig. 2-4 all

cross at a single frequency. It becomes evident in Section 2.5, however, that in optimizing

the filter performance using astrophysical criteria, the critical frequency does not play a

significant role.
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2.4.2 Signal-recycled interferometer

The amplitude filter cavities can also be used in conjunction with a squeezed-input signal-

recycled interferometer. The introduction of signal recycling has the effect of mixing the

quadratures in the input/output relations of the interferometer. This allows the shot noise

and radiation-pressure noise to become correlated, typically producing two resonances [12]:

the lower frequency dip is due to an optical-mechanical coupling and the higher frequency

one is a purely optical resonance due to the storage time of the gravitational wave signal

in the interferometer. The mixing of the quadratures results in the optimal squeeze angle

having a strong frequency dependence compared to the conventional interferometer [29].

The sensitivity curve can be shaped by an appropriate choice of the reflectivity of the signal

extraction mirror (SEM) and the detuning of the signal extraction cavity (SEC) [30]. The

noise curves shown in Fig. 2-4 are for a narrowband signal-recycled interferometer where the

detuning of the SEC is chosen to place the optical resonance at 200 Hz. An alternative choice

of detuning, where the carrier light with angular frequency ωl obtains a net phase shift of π
2

in one pass through the cavity, gives a broadband response. This choice reduces the variation

of the optimal squeeze angle with frequency and allows for improvement in the performance

over a large frequency range. The broadband interferometer with squeezed input does not,

however, benefit from the amplitude filtering unless the squeezed state is not pure. We,

therefore, limit our discussion to the narrowband case shown in Fig. 2-4. Furthermore,

we discuss the narrowband signal-recycled interferometer in term of real frequency, in Hz,

since the normalization to an arm cavity inverse storage time is not meaningful when the

gravtitational-wave signal storage time depends on both the arm cavity and the (detuned)

signal extraction cavity.

The performance of the squeezed configuration is comparable to the unsqueezed config-

uration in the frequency range 10 Hz to 300 Hz, and considerably better between 300 Hz

to 10 kHz.

2.5 Filter performance

To evaluate the performance of these amplitude filters with parameters that can be realized

we invoke some simple astrophysical arguments. The amplitude filters are best suited to

optimizing the gravitational-wave detector performance at high frequencies without com-
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Figure 2-4: The square root of the noise spectral density for a signal-recycled narrowband
Advanced LIGO interferometer with (i) no squeezing (“Unsqueezed”); (ii) squeezed vacuum
injected directly into the output port of the beamsplitter (“Unfiltered squeezing”); (iii)
squeezed vacuum injected after filtering with an amplitude filter cavity (“Amplitude filtered
squeezing”); and (iv) squeezed vacuum injected after filtering to get a “Frequency-dependent
squeeze angle”.
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promising the low-frequency performance as severely as a fixed squeeze angle input with no

filtering. To this end, three frequency bands are of interest: (i) high frequencies Ω/γ ∼ 10

where we expect to carry out searches for GW emission from pulsars, for example; (ii) the

minimum in Sh around Ω/γ ∼ 1 which is important for detection of radiation from inspi-

raling binary systems; and (iii) low frequencies Ω/γ < 1 which are especially important for

detection of a stochastic gravitational-wave background of cosmological origin by correlat-

ing the outputs of two spatially separated terrestrial detectors 5. The performance in each

of these frequency bands is characterized by the signal from the targeted source compared

with the noise in the detectors. In Table 2.1, we compare the sensitivity or signal-to-noise

ratio (SNR) for pulsars, binary neutron star inspirals and a stochastic background for sev-

eral amplitude filter cavity configurations with a conventional interferometer with varying

input power levels.

Most generally, the square of the signal-to-noise ratio (assuming optimum filtering) is

given by [33].

(
S

N

)2

∝
∫ +∞

0

|h(f)|2
Sh(f)

df (2.19)

where h(f) is the Fourier transform of the strain signal from the source and Sh(f) is the

single-sided noise spectral density of the detector.

For periodic sources such as a pulsar at a fixed frequency Ωs, and ignoring any other

modulation effects, the SNR can be expressed as

(
S

N

)2

per

∝
∫ +∞

0

δ(2πf − Ωs)
Sh(f)

df (2.20)

where δ(2πΩs) is a Dirac delta function. For our purposes it is convenient to assume

Ωs = 10 γ, and the signal-to-noise ratio is simply proportional to the inverse of the detector

noise spectral density at that frequency.

For the inspiral phase of binary neutron star systems, the Newtonian quadrupole ap-

proximation gives |h(f)|2 ∝ f−7/3. We estimate the SNR for inspiraling neutron stars

by

(
S

N

)2

ins

∝
∫ +∞

10 Hz

1
f7/3 Sh(f)

df (2.21)

5We recall that γ = 2π × 100 Hz for the conventional interferometer considered here.
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where Sh(f) is given by the curves in Figures 2-3 and 2-4 and a lower cut-off frequency of

Ω/γ = 0.1 is used to account for seismic noise 6.

For a stochastic background of cosmological origin, the spectrum of gravitational-waves

is given by

|h(f)|2 =
3H2

0

10π2
f−3Egw(f) (2.22)

where H0 is the present day Hubble expansion rate and Egw(f) is the gravitational-wave

energy density per logarithmic frequency, divided by the critical energy density required

to close the Universe. Assuming that Egw(f) = constant = E0, and that the waves are

isotropic, unpolarized, stationary and Gaussian, we arrive at |h(f)|2 ∝ f−3/2. Limits on

the stochastic background can be set by cross-correlating the outputs of two detectors.

To ensure that noise in the detectors is not correlated by shared local effects, we use two

widely separated detectors, e.g. detectors at the two LIGO Observatories, which are nearly

co-planar and co-aligned but separated by a distance ds = 3001 km. The cross-correlation

depends on an additional quantity, η(f), the overlap reduction function, which characterizes

the reduction in sensitivity due to the separation time delay and relative orientation of the

detectors. For the LIGO detectors in Louisiana and Washington, η(f) can be expressed

in terms of Bessel functions, Ji : η(f) = −0.124842J0 (2πfds/c) − 2.90014 J1 (2πfds/c) +

3.00837J2 (2πfds/c) [34], which gives η(f = 0 Hz ) ≈ 0.9 with a sharp reduction above

50 Hz. The square of the signal-to-noise ratio for the stochastic background obtained by

cross-correlating two detectors with noise spectra, Sh1(f) and Sh2(f), is given by

(
S

N

)2

sb

∝
∫ +∞

−∞

η(f)2

f6 Sh1(f) Sh2(f)
df (2.23)

≈
∫ +∞

−∞

η(f)2

f6 S2
h(f)

df (2.24)

The result of Eqn. (2.24) assumes that the noise spectra of the two detectors are Gaussian,

stationary and identical, i.e. Sh1(f) = Sh2(f), and that optimal filtering was used [35].
6Strictly speaking, there is also an upper cut-off frequency associated with the innermost stable circular

orbit (ISCO) of the binary system. Above fISCO ≈ 4400 Hz (M/M¯)−1, where M/M¯ is the total mass of
the binary system per solar mass, the binary system enters the merger phase and the spectrum of |h(f)|2 is
not expected to retain a f−7/3 dependence. This upper cut-off frequency does not affect the estimate of the
SNR here.
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Configuration
γf

γ
Stochastic NS Inspiral Periodic

Conventional interferometer – 1.00 1.00 1.00
Unfiltered fixed-angle squeeze – 0.32 1.16 3.16

Single filter 1 0.89 1.00 3.03
Single filter 5 0.99 0.98 1.89

Series filter 1/
√

2 0.98 1.02 3.03
Series filter 5/

√
2 1.00 1.01 1.86

Parallel filter
√

2 0.89 1.09 1.12
Parallel filter 5

√
2 0.99 0.98 2.24

FD squeeze – 3.16 3.16 3.16

Table 2.1: Comparison of performance of a conventional interferometer with different filter
configurations using three criteria: the signal-to-noise ratios for detecting (i) a stochastic
background of gravitational-waves, (ii) the inspiral phase of a neutron star binary system
(NS SNR), and (iii) a periodic source at Ω/γ = 10 (which is simply the inverse strain
spectral density, 1/

√
Sh, at that frequency). We use the square root of the SNRs defined

in Eqns. (2.20), (2.21) and (2.22) with Sh corresponding to the various interferometer and
filter configurations listed. All SNRs are normalized to that of a conventional interferometer
with no squeezing. The series and parallel filter configurations are described in Section 2.6.

Table 2.1 and Fig. 2-3 show that the best overall configuration is no doubt the frequency-

dependent squeeze angle. Assuming that the interferometers are operated at the maximum

power possible, then the only way to improve the high frequency noise is to use squeezing. If

no filtering is used, the binary inspiral SNR is significantly reduced. If an amplitude filter is

used in conjunction with the squeezed input, a moderate reduction in binary inspiral SNR is

traded off against the benefits of squeezing at higher frequencies. The choice of bandwidth

of the filter influences this trade off. Furthermore, the amplitude filtered squeezing can

be used to increase sensitivity to binary inspirals by lowering the power, and using the

squeezing to not completely worsen the high frequency noise. In the likely event that the

multiple kilometer-scale filter cavities needed to achieve the frequency-dependent squeeze

angle are not feasible in the upcoming generation of interferometers, amplitude filters such

as the ones we propose are promising candidates for broadband improvement in the detector

sensitivity.

To explore the feasibility of these filter cavities further, we give some physical param-

eters for the amplitude filter cavities. For a conventional interferometer with initial LIGO
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Configuration
γf

100 Hz
NS Inspiral

1√
Sh

(
Ω
2π

= 1 kHz
)

1√
Sh

(
Ω
2π

= 10 kHz
)

SR IFO – 1.00 1.00 1.00
Unfiltered – 0.654 3.16 3.08

Single filter 3 0.854 2.39 3.07
Single filter 5 0.924 1.89 3.05
Single filter 10 0.974 1.35 2.96

FD squeeze – 3.16 3.16 3.16

Table 2.2: Comparison of performance of a narrowband signal-recycled interferometer with
different filter configurations using two criteria: The signal-to-noise ratio for (i) inspiraling
neutron star binaries (NS Inspiral), and (ii) periodic sources radiating at 1 kHz and 10 kHz,
respectively. All SNRs are normalized to that of a signal-recycled interferometer with no
squeezing.

parameters γ ' 2π × 100 Hz. From Table 2.1, we see that γ < γf < 5 γ, implying that

the filter cavity linewidth is typically equal to, or a few times larger, than the arm cavity

linewidth, or 500Hz > γf/(2π) > 100Hz. For a 10 meter long filter cavity, this would

correspond to a finesse of 15000 to 75000, or average losses of 70 to 14 parts-per-million per

mirror. If the filter cavities can be made longer (upto ∼ 30 m is feasible in the output train

of LIGO), the limit on the mirror losses can be accordingly relaxed.

For completeness we evaluate the performance of a narrowband signal-recycled interfer-

ometer as well. As with the conventional interferometer, the narrowband signal-recycled

configuration of Fig. 2-4 and Table 2.2 benefits at all frequencies from squeezed input with

a frequency-dependent squeeze angle. We intentionally use a narrowband configuration to

highlight the differences between it and the conventional interferometer. It is evident from

Fig. 2-4 that for the narrowband signal-recycled configuration, the amplitude filter gives

significant improvement for detection of neutron star binary inspirals (the SNR is most

sensitive to detector noise in the minimum between 40 and 400 Hz), but would certainly

deteriorate the detector performance for the stochastic background (the overlap reduction

function strongly favors frequencies below 50 Hz). In Table 2.2 it is interesting to note that

the filter cavity can provide substantial benefit at high frequencies even with considerably

higher resonance bandwidths, e.g. 1 kHz.
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2.6 Extension to multiple filters

In this section we explore methods to reduce the frequency extent of the transition region

between the reduced noise at high frequencies (due to squeezing) and the increased noise

at low frequencies, that can be made to approach the noise level of an interferometer with

no squeezing.

2.6.1 Series filters

The most straightforward way to reduce the transition region is to connect two filters in

series, as shown in Fig. 2-5(a). Extending Eqns. 2.7, 2.11 and 2.12, we find

αS = |ρ|4 ≈ x4

x4 + 2x2 + 1
, (2.25)

βS = 1− |ρ|4 ≈ 2x2 + 1
x4 + 2x2 + 1

, (2.26)

x1/2 ≈
(√

2 + 1
) 1

2 . (2.27)

Comparing the solid curves with the dotted curves in Fig. 2-2, we see that the addition

of the second filter has the effect of increasing the attenuation factor, while shifting the

vacuum leakage by a factor of
√

2 in frequency at frequencies Ω > γ. By reducing the

linewidth of both filters by a factor
√

2, we obtain nearly the same vacuum leakage along

with an increased attenuation factor, thereby reducing the size of the transition region. For

ease of comparison, in the “series filter” curve of Fig. 2-6 the linewidth of each filter cavity is

reduced by
√

2 compared to an equivalent single filter. We also note that further gains could

be made by double-passing the input squeezed light through each filter, or, alternatively,

reducing the number of filters required, and hence reducing the complexity.

2.6.2 Parallel filters

To decrease the vacuum leakage, we inject the filtered beam from one filter into the input

port of another filter, as shown in Fig. 2-5 (b). We assume that the input light in each

filter is squeezed in the same quadrature. We also assume that the filters are lossless for

simplicity. The output from the combined filters is
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Figure 2-5: Panel (a) shows the series filter, in which the input beam passes through two
filters. Panel (b) shows the parallel filter, in which a filtered beam is injected instead of
vacuum.

ci = ρ (ai + τbi) + τ2vi (2.28)

where ai is the field injected in the first filter, and bi is the field injected into the second

filter. Using the relation that |ρ|2 + |τ |2 = 1 for a lossless filter, we find that

αP = |ρ|2 (
2− |ρ|2) ≈ x4 + 2x2

x4 + 2x2 + 1
, (2.29)

βP =
(
1− |ρ|2)2 ≈ 1

x4 + 2x2 + 1
, (2.30)

x1/2 ≈
(√

2− 1
) 1

2 . (2.31)

As shown in the dashed curves of Fig. 2-2, the parallel filter has the effect of decreasing

the vacuum leakage, while shifting the attenuation factor by a factor of
√

2 in frequency

at frequencies Ω < γ. By increasing the linewidth of both filters by a factor
√

2, we can

obtain nearly the same attenuation factor along with reduced vacuum leakage, once again

reducing the size of the transition region.
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Figure 2-6: The square root of the noise spectral density is shown for a conventional in-
terferometer with (i) no squeezed input (“Unsqueezed”), (ii) Squeezed vacuum injected
(“Unfiltered”); Squeezed input filtered by (iii) a single filter cavity (“Single Filter”), (iv)
series filter cavities (“Series Filter”), (v) parallel filter cavities (“Parallel Filter”); and (vi)
frequency-dependent squeeze angle (“FD Squeeze Angle”).

2.6.3 Filter performance

It is instructive to evaluate the sensitivity of the interferometer with squeezed input filtered

by the multiple cavity configurations. For conciseness, we apply multiple filters only to

the conventional interferometer described in Section 2.4.1. The performance measures are

listed in the series and parallel filter sections of Table 2.1, where we apply the same criteria

as those described in Section 2.5, namely, the signal-to-noise ratios for detecting gravita-

tional radiation from (i) a stochastic background using widely separated detectors, (ii) an

inspiraling neutron star binary system, and (iii) a perfectly periodic source at Ω/γ = 10.
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2.7 Summary

Recognizing the operational complexity of using kilometer-scale filter cavities in conjunction

with a squeezed input in long-baseline gravitational-wave interferometers, we have proposed

an alternative type of filter cavity that acts as a high-pass filter for the squeeze amplitude.

We evaluate the performance of these amplitude filters with parameters that can be realized

and find them to be effective in improving the high-frequency performance of a squeezed

input gravitational-wave detector without drastically compromising the low-frequency sen-

sitivity. From Table. 2.1, we see that that significant improvements can be achieved with

the amplitude-filtered squeezed input interferometer compared with an interferometer with

no squeezing, or with a frequency-independent squeezed-input interferometer, depending on

the target astrophysical source and the interferometer and filter parameters. The amplitude

filters do not give the broadband improvement afforded by the (multiple) kilometer-scale

filter cavities that give a frequency-dependent squeeze angle, but they are an attractive

alternative since they are a few meters in length and require finesses well under 105, mak-

ing them more feasible in the output train of gravitational-wave detectors. Moreover, the

amplitude filters can suppress noise in excess of the anti-squeezed quantum-limited noise.

We also point out that some of the broadband benefit afforded by the frequency-dependent

squeeze angle – or any other filtering scheme – is likely to be compromised by other noise

sources, e.g., thermal noise, which were not considered in this work.

49



Chapter 3

Optomechanical coupling

In this chapter, we derive the equations governing classical optomechanical coupling in de-

tuned cavities. The effects of weak ponderomotive forces have been studied experimentally

decades ago [36,37], and been proposed for use in GW interferometers relatively recently [38].

Cavities provide a way to couple the motion of a mirror to the radiation pressure that is

exerted on it. It is convenient to interpret this coupling in terms of a spring constant.

We begin by deriving the optomechanical spring constant, and then apply it to a variety

of mechanical regimes to demonstrate its effects. Due to the calculational complexity, we

defer discussions of the behavior of the quantum noise in these systems to Chapter 4, where

we introduce a computational model.

3.1 Adiabatic optical spring constant

First, let us consider a cavity as shown in Figure 3-1, with a partially transmissive, stationary

input mirror, and a perfectly reflecting, movable end mirror, pumped with a laser beam.

If the distance between the mirrors and the frequency of the laser are arranged so that

the light entering the cavity is in phase with the light already inside the cavity, then the

intracavity field is resonantly enhanced.

When operated slightly detuned from this resonance, an optical feedback mechanism

occurs in which the intracavity power is linearly dependent on the position of the mirrors,

which acts to couple mirror motion to intensity fluctuations (see Figure 3-2), which then

push on the mirror via radiation pressure. The feedback can profoundly modify the dy-

namics of both the mechanical and optical systems at high power levels. To model these
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Figure 3-1: A cavity is pumped by a laser of power I0 and frequency ω0 from the left side.
The input mirror has power transmissivity T = τ2 =

√
1− ρ2 and is immovable. The end

mirror, with mass M is perfectly reflective and moves freely.

effects, we assume that the motion of the mirror is small, and break the intracavity fields

into a constant, pumping field, which is solely determined by the steady state positions of

the mirrors and the input power, and the fluctuating fields that vary in time. To find the

steady state fields, we relate the fields at each position:

d = τa− ρh (3.1)

f = eiθd (3.2)

g = −f (3.3)

h = eiθg (3.4)

b = ρa + τh (3.5)

θ =
ω0L

c
mod 2π, (3.6)

where ρ and τ are the amplitude reflectivity and transmissivity, such that ρ2 + τ2 = 1.

Solving these equations for the field incident on the end mirror, we find

b =
τeiθ

1− ρe2iθ
a. (3.7)
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Figure 3-2: The intracavity power incident on the end mirror for T = 0.01 is shown as
a function of δγ . The radiation pressure exerted on the end mirror is proportional to the
intracavity power.

The force on the mirror is proportional to the intensity of the field:

|b|2 =
4
T

1
1 + δ2

γ

|a|2, (3.8)

δγ =
θc

Lγ
, (3.9)

γ =
Tc

4L
, (3.10)

T = τ2, (3.11)

where δγ is the detuning of the cavity in units of its linewidth, and we have approximated

to first order in T and second order in θ. The power incident on the end mirror is then

IE =
4
T

1
1 + δ2

γ

I0. (3.12)

Recall that the radiation pressure exerted on the mirror is 2IE/c, so that for any small and

adiabatic (sufficiently slow that the response of the cavity may be regarded as instantaneous)

displacements around an equilibrium position, the mirror experiences a change in force

δF =
2
c

dIE

dL
δL. (3.13)
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Figure 3-3: The adiabatic spring constant is shown. The spring constant vanishes for δγ = 0,
and changes signs depending on the sign of the detuning. The maximum amplitude of spring
constant is achieved for δγ = ±1/

√
3.

The change in force is equivalent to having the cavity mirrors connected with by a spring

with spring constant

K = −2
c

dIE

dL
= −64I0ω0

T 2c2

δγ

(1 + δ2
γ)2

, (3.14)

which is shown in Figure 3-3.

3.2 Full optical spring constant

In the above calculation, we have assumed that the mirror motion is slow and that the

intracavity fields respond instantaneously. This is a poor assumption when the frequency

of motion is comparable to the response time of the cavity γ−1. To calculate the full time

dependent response, we first assume that the carrier is in the cosine quadrature at the

end mirror (which may always be arranged by adjusting the phase of the input field). We

perform the calculations in the frequency domain, using the notation presented in Chapter

1 for the fluctuating fields, and taking the convention

a =




a1

a2


 . (3.15)
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We may relate the field operators and the mirror motion X with

a = 0 (3.16)

d = −ρh (3.17)

f = R(θ)eiφd (3.18)

g = −f + 2

√
IEω0

~c2




0

1


X (3.19)

h = R(θ)eiφg (3.20)

−MΩ2X = F0 +
2
√

IE~ω0

c




1

0




T

f (3.21)

φ =
ΩL

c
, (3.22)

where

R(Θ) =




cosΘ − sin Θ

sinΘ cos Θ


 , (3.23)

and F0 is ambient force noise on the mirror.

In the general case of a cavity not on resonance, the fields propagating in free space

mix the quadratures (the R terms act to rotate the quadratures), which allow the phase

disturbance from mirror motion to couple into intensity fluctuations. We point out that if

the cavity is on resonance (θ = 0), then this does not occur. We have assumed the input

fluctuations a are 0, because we are focusing only on the change in dynamics of the mirror

and not on the quantum noise. We may rearrange these equations to find the equation of

motion for the mirror:

−MΩ2X = F0 + KOSX, (3.24)

where

KOS(Ω) = −8IEω0ρ

c2
eiφ




1

0




T

R(θ)
(
I− ρR (2θ) e2iφ

)−1
eiφR(θ)




0

1


 , (3.25)

= −8IEω0ρeiφ

c2

sin 2θ

1 + ρ2e4iφ − 2ρe2iφ cos 2θ
(3.26)
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is the optical spring constant. We may simplify this expression, by making the assumptions

φ ¿ 1, θ ¿ 1, expanding ρ to first order in T , the denominator to second order in φ and

third order in θ to obtain

KOS =
K0

δ2
γ + (1 + iΩγ)2

, (3.27)

where Ωγ = Ω/γ and

K0 = −16IEω0δγ

Tc2
, (3.28)

= −64I0ω0

T 2c2

δγ

1 + δ2
γ

. (3.29)

We note that the form of the full spring constant is identical to the form of a damped har-

monic oscillator with resonant frequency Ωγ,0 =
√

1 + δ2
γ and quality factor Ωγ,0/2. This

resonant frequency is for the optical spring constant, not for the mirror motion itself. The

full spring constant contains both real and imaginary terms. The real component corre-

sponds to the usual frictionless spring constant, and the imaginary component corresponds

to a viscous damping force. Note that if we set Ω = 0, the imaginary component vanishes,

and we recover the adiabatic spring constant given in Eq. 3.14. The effects of the spring

constant are different depending on the magnitude of the real and imaginary components

relative to their mechanical counterparts, and relative to which mode of mirror motion is

considered. It is convenient to form two divisions of the coupling: the optical spring regime,

and the parametric instability regime.

3.3 Optical spring regime

In the derivation of the optical spring constant above, we neglected any mechanical spring

constant present in the system. It is, however, straightforward to include a mechanical

spring:

−MΩ2X = −(KM + KOS)X + MΩΓMX + F0, (3.30)

where KM is the mechanical spring constant, and ΓM is the mechanical damping rate.

The mechanical spring could be a pendulum suspension of a mirror, as used in LIGO, or

an acoustic mode of vibration of the mirror. In general, the radiation pressure couples to
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Figure 3-4: Bode plots of spring constants for δγ = 1/
√

3, 1, 5, 20 are shown.

any available degree of freedom of the mirror, but each of the modes may be considered

independently.

First, we consider the case that the real part of the optical spring constant dominates

the mechanical spring constant, or |KOS | À KM . If the cavity is operated with δγ < 0, the

optical spring constant is anti-restoring, indicating that the radiation pressure reinforces any

position disturbance. This configuration is, therefore, unstable and in general undesirable,

so we limit our consideration to the case that δγ > 0 and the radiation pressure is a restoring

force. For this configuration, the primary effect of the optical spring constant is to shift the

mechanical resonant frequency of the mirror to

Θ =

√
K2

M + K2
OS

M
. (3.31)

The consequences of this change are revealed when we consider the effects of force (or GW)

disturbances:

X/F0 =
1

−Ω2 + Θ2 + MΩΓM
. (3.32)

At the new resonant frequency of the optomechanical oscillator, the mechanical motion is

amplified, and it has been shown that this amplification may reduce the quantum noise

level of the detector, even below the free mass SQL [12]. Below the new resonant frequency,
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the optical response to external disturbances is reduced by a factor

Θ2 − Ω2

Ω2
M − Ω2

. (3.33)

The reduction modifies the coupling of quantum noise which we discuss in Chapter 5, and

also provides some practical benefits that will be discussed in Chapter 6.

3.4 Parametric instability and cold damping

The optical spring may also profoundly impact the dynamics of the system if its imagi-

nary component, which corresponds to damping forces, dominates the mechanical damping

forces. It is usually desirable to minimize damping effects in experiments in order to reduce

the effects of thermal noise in the measurement. This leads to oscillators with extremely

high quality factors that routinely exceed 106. Therefore, even a small imaginary component

in the optical spring constant can overwhelm the mechanical damping, even if the change

in resonant frequency of the oscillator is negligible. The optical damping rate is given by

ΓOS =
Imag(KOS)

MΩ
=
−2K0

Mγ
× 1

(1 + δ2
γ − Ω2

γ)2 + 4Ω2
γ

. (3.34)

We point out that the sign of the damping constant opposes the sign of the optical spring.

This indicates that when the optical spring forms a restoring force, the imaginary component

forms an anti-damping force. Therefore, in most cases, the system experiences an unstable

force – either anti-restoring or anti-damping. There is a special case, which occurs for

frequencies Ωγ > 1 + δ2
γ , in which the force experienced by a mode at that frequency may

be both restoring and damping (see the phase behavior at high frequency in Figure 3-4 for

example). However, this regime may not be described as a simple spring constant because

the spring constant itself is strongly frequency dependent.

There is a large variety of systems for which the mode of mirror motion is extremely

stiff so that KM > |KOS |, but ΓM < ΓOS . In this case, the resonant frequency of the

mode is essentially unchanged by the optical spring, but the damping of the mode may

be dramatically altered. Depending on the side of the detuning, the optical damping may

either reinforce the mechanical damping (cold damping) and reduce the quality factor of

the mode, or oppose the mechanical damping which results in parametric instabilities if
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the optical damping exceeds the mechanical damping. This often occurs for the acoustic

internal modes in macroscopic mirrors [48], and for vibrational modes of micromechanical

oscillators [68,70,72]. The effect is further discussed in Chapter 6.

The theory of the optical spring effect developed here will be central to the experiments

described in Chapters 5 and 6 and 7.
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Chapter 4

Computational basis

We present a mathematical framework for simulation of optical fields in complex GW in-

terferometers. The simulation framework uses the two-photon formalism [31,32] for optical

fields and includes radiation pressure effects, an important addition required for simulating

signal and noise fields in next-generation interferometers with high circulating power. We

present a comparison of results from the simulation with analytical calculation and show

that accurate agreement is achieved. This chapter is adapted from Ref. [39]. The technique

is an extension to the basic calculations presented in Chapters 1 and 2.

4.1 Introduction

The need for optical field simulation for GW interferometer design has been addressed

in the past with a variety of simulation tools, both in the frequency domain (e.g., twid-

dle [40] and finesse [41]) and in the time domain (e.g., the LIGO end-to-end simulation

program [42]). Although time-domain simulations can study issues associated with large

mirror displacements and non-linear effects, e.g., the lock acquisition of the interferome-

ter, they are computationally costly; in addition, full time-domain simulations are also less

straightforward to quantize. In order to study the performance of gravitational-wave de-

tectors, it suffices to stay in the linear regime near the operation point. For such a linear

problem, frequency-domain simulations are dramatically simpler than time-domain ones;

it is straightforward to obtain frequency-domain transfer functions, and, therefore, noise

spectra. In addition, since the system is linear, the propagation of quantum Heisenberg

operators are identical to those of classical field amplitudes, therefore, it suffices to build
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an essentially classical propagator.

In low-power situations where radiation-pressure-induced mirror motion is negligible

and no non-linear optical elements (e.g., squeezers) are used, when linearizing over mirror

displacements, propagation of electromagnetic fields at different frequencies are indepen-

dent, and the transfer functions can be established for each different frequency separately.

One only needs to take into account that, for the inputs to this linear system: (i) mirror

motion (with frequency Ω) creates phase modulation of the carrier (with frequency ω0),

which is equivalent to generating two equally spaced sidebands on the carrier frequency (at

ω0 ± Ω, where ω0 is the carrier frequency and we denote ω0 + Ω and ω0 − Ω as the upper

and lower sidebands, respectively) with opposite amplitudes, and that (ii) laser noise can

usually be decomposed into amplitude noise and phase noise, with the former contributing

equally to the upper and lower sidebands, and the latter oppositely. These considerations

have been the conceptual foundations of previous frequency-domain simulation programs.

For high-power interferometers, the above strategy must be modified: the radiation-

pressure forces acting on the mirrors, at frequency Ω, depend on both upper and lower

sideband fields; the induced mirror motion again contributes to both sidebands — this

makes it necessary to propagate pairs of upper and lower sidebands simultaneously. The

mathematical formalism most convenient for this problem, at least in the case of only one

carrier frequency, is the Caves-Schumaker two-photon formalism [31,32]. In this chapter, we

adopt this formalism and present a mathematical framework for calculating the propagation

of fields in an arbitrary optical system that includes the dynamical response of the mirrors to

the light field. Namely, we divide complex interferometers into inter-connected elementary

subsystems, and provide a general procedure for building a set of linear equations for all

optical fields propagating between these systems – based on each individual system’s input-

output relation, i.e., transformation matrices relating output fields to input ones and the

incoming GW. We also describe the way in which these subsystems are connected to each

other. Solving these equations provides us with the optical fields, in terms of vacuum

fluctuations entering the system from open ports, laser noise, and incoming GWs. While

this mathematical framework, and the resulting numerical simulation tool, were developed

to model quantum correlation effects in gravitational-wave interferometers, the method is

general and can be used in any system where optical fields couple to mechanical oscillation

modes.
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This chapter is organized as follows: In Sec. 4.2 we introduce the mathematical frame-

work for the simulation, and illustrate it with a simple example; in Sec. 4.3 we provide

input-output relations of basic optical elements that may be present in a laser interfer-

ometer, ignoring radiation-pressure effects and the presence of gravitational waves — by

re-formatting well-known results in optics; in Sec. 4.4, we take radiation-pressure-induced

mirror motion into account, and provide input-output relations for movable mirrors and

beamsplitters (up to linear order in mirror motion), which have not been obtained before in

the most general form; in Sec. 4.5, we take into account the presence of GWs by introducing

modulation of cavity lengths, and treat the corresponding effect on light propagation up to

linear order in L/λGW (with L the length of the interferometer). In Appendix A the formu-

lation is applied to a novel interferometer designed to extract squeezed vacuum states that

are created by a strong opto-mechanical coupling; and, finally, conclusions are summarized

in Section 4.6.

4.2 Mathematical framework

4.2.1 Two-photon quantum optical formalism

We use the two-photon formalism developed by Caves and Schumaker [31, 32] to describe

GW interferometers with significant radiation-pressure effects. In this formalism, any quasi-

monochromatic optical field with frequency near the carrier frequency ω0 is written as

E(t) = E1(t) cos(ω0 t) + E2(t) sin(ω0 t)

=
[

cosω0t sinω0t
]

 E1(t)

E2(t)


 , (4.1)

where E1(t) and E2(t) are called quadrature fields, which vary on timescales much longer

than that of the optical oscillation, 1/ω0. The quadrature formalism replaces E(t) by

E =


 E1(t)

E2(t)


 . (4.2)
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The DC components of E1,2(t) can be regarded as monochromatic carrier light. In partic-

ular, carrier light with amplitude Deiϕ is represented as

Deiϕ ⇔ (
Deiϕ

)
e−iω0t ⇔ D


 cosϕ

sinϕ


 . (4.3)

AC components of E1,2(t), which we denote by A1,2(t), are called sideband fields, which are

usually more convenient to study once transformed into the frequency domain,

Ã1,2(Ω) =
∫ +∞

−∞
A1,2(t)eiΩtdt . (4.4)

In quantum two-photon optics, it is convenient to use a particular normalization for

sideband fields:

A1,2(t) =

√
4π~ω0

Ac

∫ +∞

0

dΩ
2π

[
a1,2(Ω)e−iΩt + H.c.

]
. (4.5)

In this way, we have a convenient set of commutation relations (for Ω ¿ ω0) [31,32]:

[a1, a
′
1] = [a2, a

′
2] = [a1, a

′†
1 ] = [a2, a

′†
2 ] = 0 , (4.6a)

[a1, a
′†
2 ] = −[a2, a

′†
1 ] = 2πiδ(Ω− Ω′) . (4.6b)

Here we have denoted a1,2 ≡ a1,2(Ω), a′1,2 ≡ a1,2(Ω′).

4.2.2 General prescription

As mentioned above, the presence of opto-mechanical coupling dictates that we propagate

the upper and lower sidebands simultaneously, which means that for each frequency Ω, we

have to work with the two-dimensional linear space spanned by the upper [a(ω0 + Ω)] and

lower [a(ω0 − Ω)] sidebands 1. Within the two-photon formalism, developed by Schumaker

and Caves [31,32], and outlined above, instead of a(ω0±Ω), the two quadrature fields a1,2(Ω)

1Strictly speaking, we must consider the four-dimensional linear space spanned by a(ω0 + Ω), a(ω0 − Ω)
and their Hermitian conjugates, a†(ω0 + Ω), a†(ω0 −Ω). However, the fact that the sideband fields are real
functions in the time domain limits us to a two-dimensional subspace.
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a

b

c

d

Figure 4-1: A sample configuration is shown. A beam block is connected to a mirror, which
is in turn connected to a detector. Input fields incident on the mirror, a and d, are related
to the output fields, b and c, by matrix operators derived in Sections 4.2, 4.3 and 4.4.

are chosen as the basis vectors. For simplicity of notation, we generally denote

a ≡

 a1

a2


 (4.7)

and suppress the dependence of a on Ω.

We consider optomechanical systems formed by the following elementary subsystems:

movable mirrors, beamsplitters and free space propagators. We also include a “linear

squeezer”, which turns an ordinary vacuum state into a two-mode squeezed field with arbi-

trary squeeze factor and squeeze angle. Auxiliary to these optical elements, we introduce the

beam block and the photodetector to deal with open ports which are either left undetected

and those detected with unit quantum efficiency; we also introduce the laser as an optical

element, which injects monochromatic carrier light and laser noise into the interferometer.

Quadrature optical fields undergo linear transformations when propagating through such

elementary systems, and quadrature fields with different Ω’s propagate independently from

each other. These linear transformations are described mathematically by the input-output

relation, namely a set of equations relating the output fields to the input ones, including

vacuum fluctuations, the carrier laser and laser fields, as well as to incoming GWs. We

provide these input-output relations in Secs. 4.3–4.5.

However, we note that propagation of sideband quadratures (Ω 6= 0), although indepen-

dent from each other, all depend on the propagation of the carrier quadratures (Ω = 0),

i.e., the amplitude and phase of the carrier incident on each subsystem. Fortunately, the

propagation of the carrier is not affected by that of the sidebands, and can be carried out
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independently at the beginning. This said, we begin to formulate our general method of

simulation.

We build the following system of linear equations (for each sideband frequency Ω)




M11 · · · M1N

... · · · ...

MN1 · · · MNN







a(1)

...

a(N)


 =




u(1)

...

u(N)


 , (4.8)

where a(i), i = 1, . . . , N are the N quadrature fields (each of them a two-dimensional

vector) propagating in every part of the system, u(i), i = 1, . . . N are N generalized input

quadrature fields (each of them again a two-dimensional vector). The Mij , i, j = 1, . . . N

are 2 × 2 matrices which depend on the details of the optical system, and the u(i) can be

written schematically as

u(i) = v(i) + l(i) + H(i)h , (4.9)

where v(i) arises from vacuum fluctuations entering from the detection port or other lossy

ports (Secs. 4.2.3, 4.3 and 4.4), l(i) from the laser (Sec. 4.2.3), and H(i)h from GW-induced

phase modulation, with h the GW amplitude (Sec. 4.5); depending on the location of this

generalized input field, some or all of the above three contributions could also be zero.

Henceforth, we shall consider each pair of quadrature fields as one object. Inverting the

matrix Mij gives a(i) in terms of u(i), and hence all of the necessary transfer functions.

Now let us provide a universal prescription for constructing Eq. (4.8), suitable for mod-

elling generic systems. We break this procedure into two steps:

1. Suppose we have n elementary subsystems mentioned above, with the kth subsystem

having pk ports. The entire system then has P ≡ ∑n
k=1 pk ports. Because we formally

include beam blocks and photodetectors as subsystems, none of our ports are formally

open, i.e., left unconnected to some other port. This means that we have P/2 pairs of

connections. For each pair of connections, we have two fields, one propagating in each

direction. This means we have a total of P fields (each in turn has two quadrature

components).

2. For each system k, with pk ports, we also have pk input fields and pk output fields,

and the input-output relation provides us pk equations. All subsystems together then
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provide us with P equations (each with two components), exactly the number needed.

4.2.3 Example with beam block, photodetector and a mirror

Next we illustrate the generic construction procedure with a simple example, which also

clarifies the formal roles of beam blocks, photodetectors, and lasers. We first propagate

fields between three basic elements of an optical train: a beam block, a partially reflecting

mirror, and a photodetector. Referring to Fig. 4-1, the beam block is connected to the

mirror, which is in turn connected to a detector. For simplicity, we assume that the mirror

is lossless and fixed in position.

As a first step, we identify the fields in consideration. The beam block and the pho-

todetector are 1-port systems, the mirror is a 2-port system; we have a total of 4 ports,

and 4/2 = 2 connections. There are two fields associated with each connection; we label

them a, b, and c, d, respectively, as done in Fig. 4-1. Note that each field in turn has two

quadrature components, so the system is 8-dimensional, and we need 8 scalar equations.

Now we have to provide the input-output relations for each object. For the mirror with

amplitude reflectivity ρ and transmissivity τ , and neglecting radiation pressure effects, we

have 


b

c


 =



−ρ τ

τ ρ







a

d


 ≡ MMir




a

d


 . (4.10)

Note that Eq. (4.10) contains 4 scalar equations, and that ρ and τ are really 2 × 2 scalar

matrices, ρI, and τI (this is true because our mirror does not mix quadratures) — we have

suppressed the identity matrix I for simplicity. To comply with the format of Eq. (4.8), we

write


 −ρ −1 0 τ

τ 0 −1 ρ







a

b

c

d




=


 0

0


 . (4.11)

The photodetector and beam block simply act as as source of vacuum fluctuations (inde-

pendent from the input fields):

a = v(1) , d = v(2) , (4.12)
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Here we assume implicitly that the photodetector is detecting the field c with unit quantum

efficiency. In order to model imperfect photodetectors, we could add a mirror with zero

reflectivity and non-zero loss in front of the ideal photodetector.

Combining Eqs. (4.11) and (4.12), we have




−1 0 0 0

−ρ −1 0 τ

τ 0 −1 ρ

0 0 0 −1




︸ ︷︷ ︸
M




a

b

c

d




=




−v(1)

0

0

−v(2)




, (4.13)

which are the 8 scalar equations we need. Inverting M gives us each of the propagating

fields in terms of the input vacuum fields.

Now suppose the beam block is replaced by a laser source, coupled to the spatial mode

of a field, then we only need to replace the vacuum field v(1) in Eqs. (4.12) and (4.13) by

the laser field, l(1): at Ω = 0, carrier quadratures, while at Ω 6= 0, it gives the laser noises.

Here we note that all diagonal elements of M are equal to −1 — this is in fact not a

coincidence, but a universal feature of our construction procedure. In order to understand

this, we need to realize that every field a(k) is the output field of exactly one subsystem.

In the input-output relation of that unique subsystem, there is exactly one line that relates

a(k) to the input fields of this subsystem, which reads:

a(k) = [terms not involving a(k)] . (4.14)

This equation corresponds to, after moving a(k) to the right-hand side of the equation,

moving any non-a(j), j = 1, . . . , N terms to the left-hand side, and swapping left and right,

( · · · −1︸︷︷︸
kth column

· · · )




a(1)

...

a(k)

...

a(N)




= . . . . (4.15)
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It is obvious that the lines of equation found by this way for different a(k)’s are different.

As a consequence, we can arrange to have the line corresponding to a(k) appear on the kth

row of M, and thus have all its diagonal elements equal to −1.

4.3 Matrices for static optical elements

In this section, we derive the matrices for some standard objects used in simulating quantum

noise in a GW interferometer. Here we neglect radiation pressure effects and the presence

of GWs (they are dealt with in Secs. 4.4 and 4.5, respectively). As a consequence, our

derivation only involves some re-formatting of previously well-known results.

4.3.1 Mirrors

Field transformations due to a mirror were introduced in the example of Section 4.2. The

transformation matrix for a lossless mirror is given in Eq. (4.10). We now derive more

complete equations for the mirror that include losses. We ascribe a power loss A to the

mirror in Fig. 4-1 such that ρ2 + τ2 + A = 1. The introduction of losses gives rise to an

additional vacuum field of amplitude
√

A/(1−A) that is added to each input of the mirror.

The (1−A)−1 factor accounts for part of the loss field being lost to the mirror. This can

be verified by having shot-noise-limited fields, a and d, incident on the mirror. The field

returning to the beam block

−ρ

(
a +

√
A

1−A
v(3)

)
+ τ

(
d +

√
A

1−A
v(4)

)
(4.16)

must also be at the shot noise level, such that

ρ2

(
1 +

A

1−A

)
+ τ2

(
1 +

A

1−A

)
=

1−A

1−A
= 1. (4.17)

The new equations governing the mirror are




b

c


 =



−ρ τ

τ ρ







a +

√
A

1−A
v(3)

d +

√
A

1−A
v(4)


 (4.18)

where v(3) and v(4) are the vacuum fluctuations that enter due to the presence of loss.
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Free space

a

b

c

d

Figure 4-2: The fields entering and exiting a region of free space are shown. Propagation
operators are characterized by the propagation distance (and orientation relative to the
source polarization, in the case of the GW signal).

Equation (4.18) may be rewritten as




b

c


 =



−ρ τ

τ ρ







a

d


 +

√
A




v(3)′

v(4)′


 , (4.19)

where

v(3)′ ≡
√

1
1−A

(
−ρv(3) + τ v(4)

)
(4.20)

v(4)′ ≡
√

1
1−A

(
τ v(3) + ρv(4)

)
. (4.21)

v(3)′ and v(4)′ are uncorrelated vacuum fields in this representation. We can subsequently

write the mirror’s contribution to Eq. (4.8) as


 −ρ −1 0 τ

τ 0 −1 ρ







a

b

c

d




=


 −√Av(3)′

−√Av(4)′


 . (4.22)

This method may also be used to inject losses in beamsplitters or cavities.

4.3.2 Free space propagation

Since optical cavities are present in virtually all optical configurations of GW interferome-

ters, we must give a transformation matrix for them as an element of our arbitrary optical
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train. To do so we introduce an operator to transform the field as it propagates through

free space between any two other optical elements (in the case of an optical cavity, these

would be mirrors). Using the convention of Fig. 4-2, the matrix for propagation through a

length L transforms input fields a and d according to




b

c


 = MProp




a

d


 (4.23)

where the matrix for the propagator is

MProp ≡ eiφ




0 RΘ

RΘ 0


 . (4.24)

Here

Θ ≡ ω0L

c
, (4.25)

φ ≡ ΩL

c
, (4.26)

are the one-way phase shift on the carrier light at frequency, ω0, and on modulation side-

bands at frequency, Ω, respectively, and

RΘ ≡




cos Θ − sinΘ

sinΘ cosΘ


 (4.27)

is the rotation operator on quadrature fields.

4.3.3 Beamsplitters

Another essential optical element of an interferometer is the beamsplitter. We consider

a beamsplitter with amplitude reflectivity and transmissivity, ρ and τ , respectively. The

beamsplitter transforms the input fields, shown in Figure 4-3, according to the matrix

equation
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Figure 4-3: Treating the beamsplitter as a four-port device, definitions for the fields, in-
cluding sign conventions, are shown.




a

c

e

g




= MBS




d

b

h

f




(4.28)

where

MBS ≡




−ρ 0 0 τ

0 −ρ τ 0

0 τ ρ 0

τ 0 0 ρ




. (4.29)

In presence of optical loss, assuming ρ2+τ2+A = 1, and going through similar arguments

to Sec. 4.3.1, we simply add a column vector of vacuum fields −√Av(i) (i = 1, 2, 3, 4) onto

the right-hand side of Eq. (4.28).
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4.3.4 Correlators

The correlator module of the simulation allows for the inclusion of squeezed light or vacuum

fields in the interferometer. It is essentially a one-way device: only fields entering from

one direction are transformed; fields entering from the other direction pass through the

correlator unmodified. Taking a to be the input field, the field at the output of the correlator,

b, is defined by

b = S (r, φ)a, (4.30)

where S (r, φ) is the squeeze operator with squeeze factor r and squeeze angle φ:

S (r, φ) ≡


cosh r + sinh r cos 2φ sinh r sin 2φ

sinh r sin 2φ cosh r − sinh r cos 2φ


 . (4.31)

4.4 Radiation pressure

Sideband quadrature fields create amplitude modulations to the carrier field, and the as-

sociated power modulation drives the motion of optical elements, which, in turn, phase

modulates the carrier, thereby creating sideband quadrature fields. Details of this sideband-

to-sideband conversion depend on the phases (this determines which quadrature gets con-

verted into which) and amplitudes (this determines the conversion strength) of the carrier

field propagating in different parts of the interferometer. Therefore, it is necessary to sep-

arate the fields into carrier (Ω = 0) and sideband (Ω 6= 0) components at this point. The

radiation pressure force due to the carrier field itself is a time independent force and can

be ignored (in reality they are balanced by a static force exerted on the optical elements,

e.g., the pendulum restoring force on a suspended mirror). The effect of interest is the

time-dependent part of the force, due to sideband components, which is the subject of this

section. As a foundation, we must first of all calculate the phase and amplitude of the carrier

fields at each location. But this we can already do by building the general equation (4.8)

out of input-output relations of static optical elements, which have already been derived in

Sec. 4.3, and solving it.

Before incorporating radiation pressure into the treatment of specific systems, let us

study the electromagnetic momentum flux carried by optical fields in the two-photon for-
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malism. In quadrature representation, we decompose the total quadrature field Etotal
j (here

Ej can be a, b, c or d for the configuration in Fig. 4-1) into the following two terms:

Etotal
j = Ecarrier

j + Esb
j . (4.32)

The monochromatic carrier field in Eq. (4.32) can be written more explicitly in terms

of power Ij , phase θj and effective beam area A as

Ecarrier
j =

√
8πIj

Ac


 cos θj

sin θj


 , (4.33)

while the sideband field can be written as an integral over all sideband frequencies:

Esb
j (t) =

√
4π~ω0

Ac

∫ +∞

0

dΩ
2π

[
j(Ω)e−iΩt + H.c.

]
. (4.34)

The total momentum flow carried by the field is

A
4π

(
Ecarrier

j + Esb
j

)2
. (4.35)

Removing the static (dc) and optical frequency (ω0) components, the Fourier transform of

the time-averaged (over a time scale much shorter than the GW period, but much longer

than 1/ω0) AC momentum flow carried by this field is

Ṗj(Ω) =

√
~ω0

c2
DT

j j(Ω) , (4.36)

where we have defined

Dj ≡
√
Ac

4π
Ecarrier

j =
√

2Ij


 cos θj

sin θj


 (4.37)

as the carrier quadrature field, and j(Ω) is the sideband component at angular frequency

Ω.

In the remainder of this Section we derive explicit input-output relations for mirrors

and beamsplitters, including radiation pressure effects. Our results are more general than

previously obtained results by allowing the carrier fields incident from different ports to
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have different phases.

4.4.1 Mirrors

Let us once again consider the mirror in Fig. 4-1. Assuming that the mirror behaves as a

free particle with mass M when no radiation-pressure forces are exerted (valid for suspended

mirrors when frequencies greater than the pendulum resonant frequency are considered),

the Fourier transform for the equation of motion for the mirror is

−MΩ2X =
∑

j

ηjṖj (4.38)

where X is the displacement of the mirror induced by all the sideband fields (X is positive

to the left in Fig. 4-1, and the j refer to a,b, c,d). The summation is performed over all

the fields entering and exiting the mirror; the coefficients ηa = ηb = −1 and ηc = ηd = 1

account for the directions of propagation. The displacement of the mirror due to the

radiation pressure forces, X, can be written explicitly as [see Eq. (4.36)]

X =
1

MΩ2

√
~ω0

c2

[ (
DT

a −DT
d

)

 a

d




+
(

DT
b −DT

c

)

 b

c




]
. (4.39)

Given a (time-dependent) displacement X(t) of the mirror, the input-output relation can

be written as (if Ẋ ¿ c)

Etotal
b (t) = −ρEtotal

a

[
t +

2X(t)
c

]
+ τEtotal

d (t) (4.40a)

Etotal
c (t) = τEtotal

a (t) + ρEtotal
d

[
t− 2X(t)

c

]
. (4.40b)

c in the argument of Etotal
j for the j-th field is the speed of light and should be distinguished

from c in the subscript of Etotal
j , which refers to the field c. In quadrature representation,
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to leading order in X and in the sideband field amplitudes, we have,

Etotal
j

[
t∓ 2X(t)

c

]

⇔ Ecarrier
j + Esb

j (t)± 2ω0 X(t)
c

RΘ=π/2 Ecarrier
j ,

= Ecarrier
j + Esb

j (t)∓ 2ω0 X(t)
c

[
Ecarrier

j

]∗
. (4.41)

Here ∗ refers to a rotation by π/2, as described by −RΘ=π/2 in Eq. (4.41). Accordingly,

for any quadrature field v, we define

v∗ ≡

 v2

−v1


 , for v =


 v1

v2


 . (4.42)

Equation (4.41) implies that time delays, or phase modulations, create sideband quadratures

orthogonal to the carrier, as illustrated in terms of phasors in Fig. 4-4. The sideband part,

i.e., the AC components in Eqs. (4.40a) and (4.40b), can be obtained using Eq. (4.41):


 b

c


 = Mmirror


 a

d


− 2 ρω0 X

c
√
~ω0


 D∗

a

D∗
d


 . (4.43)

Inserting Eq. (4.39) into Eq. (4.43) gives


I + Π


 D∗

a

D∗
d




(
DT

b −DT
c

)




 b

c




=


Mmirror −Π


 D∗

a

D∗
d




(
DT

a −DT
d

)




 a

d


 . . (4.44)

where

Π ≡ 2 ρω0

M Ω2 c2
(4.45)

is a quantity with units of inverse power or W−1. [For lossy mirrors with ρ2 + τ2 + A = 1,

we simply insert a column vector −√Av(i), i = 1, 2 onto the right-hand sides of Eq. (4.43)

and (4.44), Cf. Sec. 4.3.1.]

To solve for b and c, the matrix on the left hand side of Eq. (4.44) must be inverted. It
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Figure 4-4: Here we show that the phase modulation sideband generated by the radiation
pressure force is perpendicular to the carrier field, which is why the generated signal has a
D∗ dependence.

is straightforward to find a complete set of eigenvectors for this matrix, they are:

[ξ1, ξ2, ξ3, ξ4] =





 D∗

b

0


 ,


 0

D∗
c


 ,


 Dc

Db


 ,


 D∗

a

D∗
d





 . (4.46)

Since the first three vectors are orthogonal to
(

DT
b −DT

c

)
, the three corresponding

eigenvalues are λ1 = λ2 = λ3 = 1; the last eigenvalue is

λ4 = 1 + Π
[
DT

b D∗
a −DT

c D∗
d

]

= 1 + 2 τ ΠDT
d D∗

a

= 1 +
8 ρ τ ω0

√
Ia Id

M Ω2 c2
sin(θa − θd) . (4.47)

Inverting the eigenvalue λ4 yields a pair of resonant frequencies at

±ΩM = ±
[−8 ρ τ ω0

√
Ia Id

M c2
sin(θa − θd)

]1/2

. (4.48)

Physically, this resonance comes about because the sideband fields generated by mirror

motion can exert radiation pressure back onto the mirror. Let us for a moment consider

classical motion of the mirror. As was mentioned after Eq. (4.43), for any given input

carrier field, the sideband field generated upon reflection from the moving mirror is π/2

phase shifted relative to the input carrier, so the sideband does not beat with the reflected
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carrier to induce any force on the mirror [see Eq. (4.36)] — force can only be induced

by beating this motion-induced sideband field with the transmitted carrier, which must

have non-zero amplitude and must have a phase difference other than π/2 relative to the

sideband. This explains why the resonant frequency vanishes if either ρ = 0 or τ = 0 (no

reflected or transmitted field), or if θa − θd = Nπ (no phase difference between the two

input fields).

When the two input carrier fields, Da and Dd, have the same phase (or differ by Nπ),

the phasors corresponding to Da, Db, Dc and Dd all become parallel to each other. This is

true for almost all interferometers that have been treated explicitly analytically. This case

is rather special from a mathematical point of view, since the matrix we are inverting does

not have a complete set of eigenvectors. Fortunately, the inverse is just


I + Π


 D∗

a

D∗
d




(
DT

b −DT
c

)


−1

=


I−Π


 D∗

a

D∗
d




(
DT

b −DT
c

)

 , if Da ‖ Dd ; (4.49)

since 



 D∗

a

D∗
d




(
DT

b −DT
c

)



2

= 0 , if Da ‖ Dd . (4.50)

(This identity originates from the fact that the sideband field is orthogonal to the carrier

field about which it is generated.) Using this fact, we can further simplify the input-output

relation to


 b

c


 =

[
Mmirror − 2ρΠ


 D∗

a

D∗
d




(
DT

a −DT
d

)

 ρ −τ

τ ρ




]
 a

d


 , if Da ‖ Dd . (4.51)

[Here for simplicity we have assumed the mirror to be lossless.] In practice, although

Eq. (4.44) does not give the output fields b and c explicitly in terms of the input fields a

and d, it can be incorporated to the matrix M (and into u(i), in presence of optical losses)

without any trouble [cf. Eq. (4.8)]: its inversion takes place automatically when M−1 is

76



calculated. [However, doing so makes it impossible to have −1 all along the diagonal of

M.] Alternatively, the variable X may be added to our system of variables, with Eq. (4.39)

providing the additional equation necessary. The equations governing a mirror may then

be replaced with Eq. (4.43) to include the dependence on X. In this way, the −1 diagonal

components are preserved, without the need to invert additional matrices.

4.4.2 Beamsplitter

Referring to the fields shown in Fig. 4-3, the displacement due to radiation pressure on a

beamsplitter (normal to its reflective face) is

XN =
Xx + Xy√

2
=

1
MΩ2

√
~ω0

2c2
×




(
DT

a DT
c −DT

e −DT
g

)




a

c

e

g




+
(

DT
d DT

b −DT
h −DT

f

)




d

b

h

f







. (4.52)

where Xx is the displacement along the x-axis and Xy is the displacement along the y-

axis. Similar to the case of a cavity mirror, this motion induces phase fluctuations on

the impinging fields upon reflection, and introduces additional terms in the input-output

relation. Following a procedure similar to the one with which we obtain Eq. (4.43), we get




a

c

e

g




= MBS




d

b

h

f



−
√

2ρω0XN

c
√
~ω0




D∗
d

D∗
b

D∗
h

D∗
f




. (4.53)
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Inserting Eq. (4.52) into Eq. (4.53) gives



I +

Π
2




D∗
d

D∗
b

D∗
h

D∗
f




(
DT

a DT
c −DT

e −DT
g

)







a

c

e

g




=



MBS − Π

2




D∗
d

D∗
b

D∗
h

D∗
f




(
DT

d DT
b −DT

h −DT
f

)







d

b

h

f




(4.54)

Equation (4.54) is quite similar in nature to Eq. (4.44); optical losses can also be incorpo-

rated in a similar fashion, by adding −√Av(i), i = 1, 2, 3, 4 on to its right-hand side, where

ρ2 + τ2 + A = 1. Again, in the generic case where

(
DT

a DT
c −DT

e −DT
g

)




D∗
d

D∗
b

D∗
h

D∗
f



6= 0 , (4.55)

the matrix on the LHS of Eq. (4.54) has eight linearly independent eigenvectors, of which

seven have unit eigenvalue, while the eighth has

λ8 = 1 +
Π
2

(
DT

a DT
c −DT

e −DT
g

)




D∗
d

D∗
b

D∗
h

D∗
f




= 1 + τΠ(DT
f D∗

d + DT
h D∗

b)

= 1 +
4ρτω0

MΩ2c2

[√
IfId sin(θf − θd) +

√
IhIb sin(θh − θb)

]
, (4.56)

which corresponds to an opto-mechanical resonance at angular frequency

±ΩBS = ±
{
− 4ρτω0

Mc2

[√
IhIb sin(θh − θb) +

√
IfId sin(θf − θd)

]}1/2

. (4.57)
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In the special case of

(
DT

a DT
c −DT

e −DT
g

)




D∗
d

D∗
b

D∗
h

D∗
f




= 0 , (4.58)

i.e., all input carrier fields are in phase with each other (modulo π) we get




a

c

e

g




=



MBS − ρΠ




D∗
d

D∗
b

D∗
h

D∗
f




(
DT

d DT
b −DT

h −DT
f

)




ρ −τ

ρ −τ

τ ρ

τ ρ










d

b

h

f




,

if Db ‖ Dd ‖ Df ‖ Dh . .(4.59)

For simplicity, we assume the beamsplitter to be lossless in the above equation. This

is particularly true for the beamsplitter in Michelson- and Sagnac-type GW interferome-

ters [29]. Similar to the case of the mirror, for the purposes of simulation, we incorporate

the position of the beamsplitter as an additional variable in M, in order to preserve the −1

diagonal elements and to avoid the inversion of additional matrices.

4.5 Gravitational wave signal and the output field

4.5.1 Gravitational wave contribution

In our set of optical elements, only optical cavities have significant propagation distances,

so we model the effect of GWs by introducing a phase shift to the carrier light as it passes

through a cavity. To calculate the propagation of these fields, all that must be done is to

add a source term in the equation governing the cavity. Referring to the fields in Fig. 4-2,

the cavity field becomes
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c = eiφRΘa− η
ω0Lh

2c
√
~ω0

D∗
c

= RΘ

[
eiφa− η

ω0 Lh

2 c
√
~ω0

D∗
a

]
(4.60)

where h is the Fourier transform of the GW amplitude. An h-dependent term is also added

to the equation relating b and d using D∗
d in place of D∗

a. The parameter η takes values

from −1 to 1 depending on the orientation of the cavity and the polarization state of the

incoming GW. For example, for a linearly polarized incoming GW, and for an optimally

aligned Michelson interferometer, we have η = 1 for one and −1 for the other.

It is straightforward to incorporate Eq. (4.60) into the general equation Eq. (4.8). In

particular, the term containing h on RHS contributes to the GW part of the general input

field u, i.e., to the third term of Eq. (4.9), with

H = −η
ω0L

2c
√
~ω0

D∗
c , (4.61)

4.5.2 Photodetection: signal and noise

For our purposes, the photodetector serves two roles: first, it represents an open port, from

which vacuum fluctuations enter the interferometer; second, it determines the measurement

point. For the former, the input-output relation of a photodetector, as it contributes to

the matrix M and the generalized input vector u(i), is trivial and has been discussed in

Sec. 4.2.3. Here we focus on the latter. At zero frequency, there is only contribution to

b from the carrier laser, while at non-zero sideband frequencies, the detected fields at a

photodetector comprise three components: the GW signal, classical laser noise, and noise

due to vacuum fluctuations in the detected mode. The outgoing field being detected, b, has

the general form [see Eqs. (4.8) and (4.9)]:

b =
∑

i

[M−1
]
bi

[
v(i) + l(i) + H(i)h

]

≡
∑

i

Tbi

[
v(i) + l(i) + H(i)h

]
. (4.62)
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The summation is performed over all fields. We note that contributions to v(i) exist only

for fields that emerge from beam blocks or lossy optical elements, those to l(i) exist only

for the field that emerges from the laser, and those to H(i) only for fields that emerge from

cavities.

We suppose homodyne detection at quadrature angle, ζ, is performed such that the

measured field is

bζ = b1 cos ζ + b2 sin ζ. (4.63)

For a complete simulation, ζ should be the phase of the carrier that emerges at this port.

However, in theoretical studies, we could also assign another value to ζ, assuming that the

local-oscillator phase is modified by some other means the simulation does not address.

For the detected field, the quantum noise spectral density is (see, e.g., Sec. III of Ref. [6])

(
N2

Q

)
b
=

∑

i

[
cos ζ sin ζ

]
TbiSviT †bi


 cos ζ

sin ζ


 . (4.64)

Because vi is always proportional to a vacuum field, we have used Svi to denote the noise

spectral density which is identical for all its quadratures. Here we have added the power

of different loss contributions, since we assume the vacuum fields to be independent to

each other. In general, laser noise is neither quantum-limited, nor are the magnitudes of

phase and amplitude fluctuations equal; there could also be correlations between the laser

amplitude and phase noise, even as the laser field enters the system. Taking these into

account, we have a laser noise spectral density of

(
N2

L

)
b
=

[
cos ζ sin ζ

]
TblSLT †bl


 cos ζ

sin ζ


 , (4.65)

where l corresponds to the input laser field, and

SL ≡

 S11 S12

S12 S22


 (4.66)

describes noise of the laser as it first enters the interferometer, with S11(22) being the noise

spectral density of the first (second) quadrature, and S12 the cross spectral density between

the two quadratures. [In the usual convention of having input laser in the first quadrature,
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1 corresponds to the amplitude quadrature, hence amplitude noise, while 2 corresponds to

the phase quadrature, hence phase noise.] The transfer function for the GW signal is

Hb ≡
∑

i

[
cos ζ sin ζ

]
TbiH(i) . (4.67)

Note that GW contributions from different parts of the system add up coherently. The

displacement (strain) noise spectral density from quantum noise is then given by

Sh =
N2

Q + N2
L

|H|2 . (4.68)

The mathematical formulation described in Sections 4.2 through 4.5 was encoded into

a simulation program written in C++. In Appendix A we describe tests of the simulation

code for a complex interferometer configuration, where the simulation results were compared

with analytic calculations with excellent agreement.

4.6 Summary

The main purpose of this work was to develop a mathematical framework for the simulation

of quantum fields in a complex interferometer that includes radiation pressure effects. We

work in the linear regime around the operation point of this interferometer; in this regime,

after adopting the Heisenberg picture of quantum mechanics, the quantum equations of

motion (Heisenberg operators) of observables are identical to classical ones.

During the development of this framework, we augmented previous treatments of mirrors

(and beamsplitters) by allowing the carrier phases at the four (eight) ports to be different.

This extension gives rise to the optical spring effect even without detuned optical cavities.

Based on this mathematical framework, we developed a simulation code that can allow

arbitrary optical topologies, and applied it to specific examples of the interferometer shown

in Fig. A-1 and also one described in Chapter 5. This interferometer was shown to be

capable of squeezing the vacuum modes that enter – and subsequently exit – the differential

port of the beamsplitter. We introduced optical spring effects by detuning the arm cavities

as a means of mitigating the detrimental effects of thermal noise. We studied not only the

quantum noise, but also laser noise couplings from the symmetric (input or bright) port to

the output (antisymmetric or dark) port. Good agreement was found between numerical
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results given by this code and analytical ones derived independently. This agreement makes

us confident that the simulation is working correctly for this rather complex interferometer.

During our study of the laser noise couplings, we found a novel method of evading

the laser noise by introducing artificial but controlled asymmetries. This is crucial for the

practical implementation of this interferometer, and is likely to find applications in many

other experiments.
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Chapter 5

Ponderomotive squeezer design

We propose an experiment to extract ponderomotive squeezing from an interferometer with

high circulating power and low mass mirrors as shown in Figure 5-1. In this interferometer,

optical resonances of the arm cavities are detuned from the laser frequency, creating a

mechanical rigidity that dramatically suppresses displacement noises. After taking into

account imperfection of optical elements, laser noise, and other technical noise consistent

with existing laser and optical technologies and typical laboratory environments, we expect

the output light from the interferometer to have measurable squeezing of 5 dB, with a

frequency-independent squeeze angle for frequencies below 1 kHz. This design provides an

experimental test of quantum-limited radiation pressure effects, which have not previously

been tested. The apparatus serves as the basis for the experimental work presented in the

following chapters. This chapter is adapted from Ref. [43].

5.1 Optical configuration

We begin by motivating the use of detuned cavities and optical springs for extraction of

ponderomotive squeezing. We argue that the ideal configuration is to observe squeezing

below the resonant frequency of the optical spring. First, consider that in the case of a

suspended mass, the radiation pressure coupling constant above the suspension frequency

scales as κ(Ω) ∝ Ω−2. Recall from Eq. 1.21 that in the absence of any filter cavities,

the squeezed quadrature is frequency dependent. We also point out that for large κ, the

squeezing is observed only a small range of quadratures (see Figure 5-2). One may show
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FI

PRE-STABILIZED 
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Figure 5-1: Schematic of a an interferometer designed to extract ponderomotively squeezed
light due to radiation-pressure-induced motion of the low-mass end mirrors. Light from a
highly amplitude- and phase-stabilized laser source is incident on the beamsplitter. High-
finesse Fabry-Perot cavities in the arms of the Michelson interferometer are used to build
up the carrier field incident on the end mirrors of the cavity. All interferometer components
in the shaded triangle are mounted on a seismically isolated platform in vacuum. The input
optical path comprises a pre-stabilized 10 Watt laser, equipped with both an intensity
stabilization servo and a frequency stabilization servo. FI is a Faraday Isolator.
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that sub-shot noise levels are observed over a range

δζ = arctan
2
κ
≈ 2

κ
, (5.1)

which becomes a challenging experimental hurdle for large κ. For the cavity parameters

and input power presented in this Chapter, we would reach κ ≈ 103 near 300 Hz. Ironi-

cally, more modest levels of squeezing are more easily observed than extremely large values.

Furthermore, we wish to minimize the effect of classical motion of the mirror. Since this

motion couples into the phase quadrature of the output, and so we must optimize the mea-

surement quadrature to reduce the combined effect of the classical noise and the quantum

noise. Figure 5-3 shows that in the regime where classical noise is significant (when clas-

sical noise exceeds shot noise in the phase quadrature), that having a large κ is desirable

to having more squeezing. However, if we provide sufficient power levels to achieve large

κ, but then use an optical spring to suppress the mirror motion back to a smaller κ, we

reduce our dependence on the classical noise. Therefore, a stiff optical spring allows us to

use high power levels to reduce the effects of classical noise, while maintaining a modest

and frequency independent κ to make squeezing observable over a broad and frequency

independent quadrature range at frequencies below the optical spring resonance.

Cavities typically require high levels of mechanical stability with length fluctuations less

than the linewidth of the cavity for proper operation. For the cavities proposed here, this

requires length stability at the level of 0.1 nm. However, to achieve low thermal noise,

the mirrors are individually suspended and typically have RMS motions on the order of

1 micron (most of the motion occurs at frequencies below 10 Hz). This gap in stability

is typically overcome by the use of control systems that detect and stabilize the motion

in complex feedback systems. However, with a ponderomotive squeezer, one is presented

with two problems: (i) if the output light is used in the feedback system, it cannot be

used as a source for squeezed states; and (ii) noise introduced by the feedback destroys

the squeezed state. Recall that the optical spring virtually connects the two cavity mirrors

by a stiff material, which greatly reduces their relative motion, providing a useful method

for overcoming the stabilization gap without the need for external feedback. The optical

anti-damping does, however, require active stabilization, but this may be accomplished in

a narrow frequency range around the resonance, the effects of which may be minized in the
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Figure 5-2: The noise of an output field of the form bζ = (cos ζ − κ sin ζ)a1 + sin ζa2 is
shown, where ζ is the measurement quadrature; a1 and a2 are assumed to be vacuum fields,
and L refers to optical loss. The range of quadratures over which squeezing is observable
degrades as κ increases. Going from the blue curve to the red curve may be achieved by
increasing the input power, which gives greater levels of squeezing, but over a smaller range
of quadratures.

squeezing frequency band. We discuss this limitation in Section 5.3.3.

5.1.1 Quadrature coupling and squeezing

This section demonstrates the basic principles behind the ponderomotive squeezer. How-

ever, a full calculation of the vacuum states in an imperfect interferometer are prohibitive

to derive here. Instead, for the calculations presented later, we rely on the simulation tool

described in Chapter 4.

Assuming no external forces acting on the mirrors, and solving Eqs. 3.16 to 3.22 while

allowing for non-zero a, one obtains

b = R(α)


 1 0

−2κ(Ω) 1


R(α)a, (5.2)

where

α = arctan
(

1 + ρ

1− ρ
tan θ

)
. (5.3)
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Figure 5-3: The noise of an output field of the form bζ = (cos ζ−κ sin ζ)a1+sin ζa2+C sin ζ
is shown, where ζ is the measurement quadrature, a1 and a2 are assumed to be vacuum
fields, and C is assumed to exceed shot noise by the levels described in the legend. If one
introduces the optical spring, reducing both κ and the classical noise level, squeezing over
a broader quadrature range with reduced dependence on classical noise. A loss of 10% is
assumed for all curves.
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The rotation terms act only to rotate the quadratures and are irrelevant to our discussion

of squeezing, so they are disregarded. Under the same approximations as used to obtain

Eq. 3.27, and further looking only at the low frequency behavior Ω ¿ Θ where Θ is the

opto-mechanical resonant frequency from Eq. 3.31, we obtain the coupling constant

κ(Ω) =
1
δγ

. (5.4)

Clearly, κ couples the output amplitude and phase quadratures, and gives rise to squeezing

in the output state.

In order to quantify squeezing, we look at the quadrature field measured by a homodyne

detector, which is given by

2b(t) cos(ω0t− Φ− ζ) = (A + b1) cos ζ + b2 sin ζ , (5.5)

where ζ is the homodyne angle, with a convention in which ζ = 0 corresponds to the simple

amplitude detection of the output field. The fluctuating part of the output quadrature is

b1 cos ζ + b2 sin ζ = aA[cos ζ − 2κ sin ζ] + aP sin ζ , (5.6)

with a spectral density of

Sζ(Ω) = 1 + 2κ2 − 2κ[sin 2ζ + κ cos 2ζ] ≡ ξ2
ζ (Ω) . (5.7)

Note that for vacuum state we have Sζ(Ω) = 1.

By minimizing ξζ(Ω) over quadratures, we obtain the amplitude squeeze factor

ξmin(Ω) =
1

|κ(Ω)|+
√

1 + κ2(Ω)
, (5.8)

which is achieved at

ζmin(Ω) =
1
2

arctan
1

κ(Ω)
. (5.9)

We have a constant κ = 1/δγ , which means we have a frequency independent squeezed
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state. The amplitude squeeze factor and squeeze angle of this state are:

ξmin [Ω ¿ |Θ|] =
|δγ |

1 +
√

δ2
γ + 1

, (5.10)

ζmin [Ω ¿ |Θ|] =
1
2

arctan δγ . (5.11)

Consequently, we obtain a frequency-independent ponderomotively squeezed source with

squeeze factor ξmin (which depends only on the detuning parameter δγ), and bandwidth

Θ. Although the squeeze factor ξmin can be lowered indefinitely by taking δγ → 0, the

bandwidth Θ also drops in this process as we reduce the magnitude of the optical spring.

As discussed in the introduction, such a squeezed state can be transformed into frequency

dependent squeezed states by optical filters [6,28,29,44,45]. Technically, the independence

in frequency makes it easier to reduce laser noise, allowing broad-band squeezing, as we

shall discuss in Section 5.3.4; it also simplifies our readout scheme.

5.1.2 Radiation-pressure-driven instabilities

The quasistatic approximation we used in this section cannot describe the ponderomotive

damping associated with optical rigidity. Recall from Eq. 3.27 that the full optical spring

constant is given by

K (s) = −K0
1

(1 + iΩγ)2 + δ2
γ

, (5.12)

where

K0 =
4ω0 I0 δγ

c2

[
4
T

1
1 + δ2

γ

]2

, (5.13)

The effects of the damping force associated with the imaginary component of the optical

spring is usually evident in two ways. The first is that the center-of-mass motion of the

mirrors, already frequency shifted by the optical spring, is made dynamically unstable as a

result of the anti-damping force. Approximating Eq. 5.12, one may show that for Ωγ ¿ 1,

which is usually valid for the optical spring, that the damping is given by

Γ ≈ 2Θ2

γ (1 + δγ)2
. (5.14)
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The optical spring instability can be suppressed by a narrowband feedback system acting in a

restricted band around Θ, while leaving the frequency band of interest Ω ¿ Θ uncontrolled.

The control system for suppressing this instability is detailed in Section 5.3.3.

High circulating power in the detuned cavities, coupled with high quality factor me-

chanical modes of the mirrors, may give rise to another type of radiation-pressure induced

instability [47]. The internal modes of the mirrors, while very stiff, have very small damping

rates due to their high Q’s. The small damping rates can potentially be overwhelmed by the

optical anti-damping detailed above, leading to these modes becoming unstable. This in-

stability, which has been experimentally observed and characterized for the acoustic modes

of the input mirror of our experiment [48], is well outside the bandwidth of the proposed

squeezing experiment, and stabilizing it with a narrowband velocity damping loop has little

effect on the experiment. The modes of the end mirror are likely to be too high in frequency

(compared to the cavity linewidth) to become unstable.

Radiation-pressure-induced torques can also lead to angular instability. Fabry-Perot

cavities with suspended mirrors are susceptible to a dynamical tilt instability [49]: as the

cavity mirrors tilt, the beam spots also walk away from the center of the mirrors, which

induces a torque that drives the mirrors further away. This effect is considered in detail in

Section 5.2.1.

5.1.3 Optical losses

When a cavity with non-zero losses is considered, the noise spectrum at the ζ quadrature

becomes

Sloss
ζ (Ω) =

TI Sζ(Ω) +A
TI +A , (5.15)

where Sζ(Ω) is the lossless noise spectrum of Eq. (5.7), and A is the total loss per bounce

in the cavity. Assuming that A/TI ¿ ξmin and A ¿ TI , we have

ξloss
min(Ω) ≈ ξmin(Ω) +

A
2 TI

. (5.16)

With the parameters assumed in Table 5.2, we expect optical losses to be a significant

limitation, but we do not expect that they will preclude the observation of squeezing.
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5.2 Experimental design

In this section we describe the optical and mechanical design of a realistic experimental

apparatus capable of producing observable ponderomotive squeezing. The interferometer

configuration shown in Fig. 5-1 is the baseline design for the experiment. The interferometer

is similar to that used in GW detection: a Michelson interferometer with Fabry-Perot

cavities in each arm. All the mirrors of the interferometer are suspended as pendulums.

While squeezed light could be produced with the use of a single cavity and suspended mirror,

the use of interferometry is necessary to introduce common mode rejection of the laser noise,

which would otherwise mask the squeezed light. Moreover, dark fringe operation of the

Michelson interferometer allows for keeping the DC power below photodetector saturation

levels 1.

We consider the design features most critical to the goal of achieving measurable levels

of squeezing. The optical design, described in Section 5.2.1, includes:

• A powerful input laser beam with stringent but achievable requirements on frequency

and intensity stability to mitigate the effects of laser noise coupling;

• A Michelson interferometer with good contrast for common-mode rejection of laser

noise at the output;

• Fabry-Perot cavities with

– high finesse to realize the large optical power incident on the suspended mirror,

– substantial detuning (comparable to the cavity linewidth) to create the optical

spring,

– a geometric design that mitigates the effects of radiation-pressure-induced angu-

lar instability;

• An efficient readout chain to detect the squeezing.

The mechanical design of the mirror oscillator, also crucial to the performance of the

interferometer, is described in Section 5.2.5.
1An alternative would be to use much lower input power and much higher finesse cavities, which is

generally not feasible.
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Parameter Symbol Value Units
Light wavelength λ0 1064 nm
Input mirror trans. TI 8× 10−4 –
Input mirror mass MI 0.25 kg
End mirror mass ME 1 g
Arm cavity finesse F 8× 103 –
Loss per bounce A/2 5× 10−6 –
Input power I0 4 W
Arm cavity detuning δ 1.8× 104 rad/sec
BS refl. imbalance ∆BS 0.01 –
Mich. phase imbalance ∆αM

Mich. loss imbalance ∆εM

Input mirror mismatch ∆T 25× 10−6 –
Detuning mismatch ∆δ 10−6 λ0

Arm cavity loss mismatch ∆ε 5× 10−6 –
Laser intensity noise – 10−8 Hz−1/2

Laser phase noise – 10−6 –
Susp. resonant freq. Ω0 0.7 Hz
Susp. mech. Q Q 105 –
Parallel coating loss angle φ‖ 4× 10−4

Perpendicular coating loss angle φ⊥ 4× 10−4

Substrate Young’s modulus Y 7.3× 1010 Nm−2

Coating Young’s modulus Y ′ 1.1× 1011 Nm−2

Coating thickness d 10 µm
Beam radius w 1 mm
Detection loss εdet 0.1
Temperature T 293 K

Table 5.1: Select interferometer parameters and the nominal values we assume for them.
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5.2.1 Optical design

The optical configuration is shown in Fig. 5-1, and upper section of Table 5.1 lists the

optical parameters that we assume in designing the experiment.

5.2.2 Detuned arm cavities

The optical spring is the predominant feature of the detuned arm cavity. In particular, when

a cavity is detuned, the optical spring modifies the response function of the differential mode

from a free mass (here we ignore the pendulum frequency) to a harmonic oscillator with

resonant frequency Θ. Our frequency band of interest is Ω ¿ Θ, in which the response

of cavity lengths to external disturbances (e.g., driven by seismic and/or thermal forces)

is suppressed by Θ2/Ω2, and the (ideal) output state is a frequency-independent squeezed

vacuum with squeeze factor as a function of δγ = δ/γ [Eq. (5.10)]. Based on this qualitative

understanding, in order to obtain a substantial squeeze factor up to around 1 kHz, we need

to choose an optical configuration such that Θ is at least several kHz, and δ of the same

order of magnitude as γ. This lead us to a high-power, low-mass, substantially detuned

arm cavity.

We have chosen to realize our optical-spring squeezer by a Michelson interferometer with

Fabry-Perot cavities formed by a large, suspended mirror as the input mirror (IM), and a

small, light, highly reflective mirror as the end mirror (EM). The EM is chosen to be 1 g, as

light as we deem possible with current experimental techniques. We note that the optical

spring could also be created with a detuned signal recycling mirror, as is done in Advanced

LIGO [12], but that would require an additional mirror and optical cavity, increasing the

complexity of the system. The suspensions are primarily necessary to allow the mirrors to

behave as free masses in the experimental frequency band, but also have the added benefit

of isolation from seismic noise. To achieve these benefits, a pendulum resonant frequency

of 0.7 Hz is chosen. The arm cavities must be placed in vacuum chambers due to the

high finesse and circulating power, and also to meet the length stability requirements. The

mechanical design of the suspension of the end mirror is discussed in the next section.

Next we discuss the optical parameters of system. We first set an “ideal” target squeeze

factor of 17 dB, i.e., the squeeze factor of the system in absence of optical losses and technical

noises. This allows for the contribution of the vacuum fluctuations from the anti-symmetric
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port to the total noise to be small. This determines δγ ≈ 0.31. As a next step, we fix the

finesse of the arm cavity, which should be high because we would like to have the optical-

spring resonance Θ as high as possible, for a better noise suppression. Although this could

be achieved by increasing input power alone, it is much more efficient to increase the finesse,

because Θ ∝ √
I0/T , see Eq. (3.27), note that we need to maintain δγ for a fixed target

squeeze factor); a higher input power is also undesirable because of the associated increase

in amplitude and phase noise. On the other hand, cavities with too high a finesse limit the

output squeeze factor through increased optical losses, and also increase the instability from

the optical spring. In the end, we set the transmission of the input mirror to be 800 ppm,

which, if assumed to be the dominant loss in the cavity, gives a finesse of 8× 103. In this

system, for a 4W input laser power, we have a circulating power of roughly 9 kW, and

Θ ≈ 2π × 5 kHz.

5.2.3 Angular instability

Our discussion of the optical properties of the cavities so far has been restricted to the

longitudinal resonances. In this section we consider the geometrical properties of the cavity,

necessary to avoid angular instability due to radiation-pressure-induced torque [49]. For a

cavity with two spherical mirrors, the equations of motion of the two mirrors are rather

straightforward, if the motion frequency is much lower than the cavity bandwidth (which

is trivially true in our case). Suppose θI,E are the tilt angles of two mirrors with radii of

curvature RI,E , separated by L, then the equations of motion of θI,E are given by (here and

henceforth we denote IM by I and EM by E)


 θ̈I

θ̈E


 = M


 θI

θE


 , (5.17)

with

M =
1

1− gIgE


 gEω2

I −ω2
I

−ω2
E gIω

2
E


−


 ω2

I

ω2
E


 . (5.18)
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k r (cm) d (cm) Mk (g) Jk (g·cm2) ωk/(2π) (Hz)
W = 9 kW

IM 4.25 2.00 250 1211 0.11
EM 0.60 0.30 1.00 0.098 12.4

Table 5.2: Moments of inertia of the mirrors along their tilt axes. we model the mirrors as
a cylinder with radius r and thickness T , and J = Mr2/4 + MT 2/12. Circulating powers
of 9 kW are assumed.

Here ΩI,E are the resonant frequencies of the tilt degrees of freedom of the mirrors in the

absence of radiation pressure,2 and gI,E are the g-factors, defined by

gk = 1− L

Rk
, k = I, E. (5.19)

The angular frequencies ωI,E are given by

ω2
k ≡

2IcL

cJk
, k = I, E , (5.20)

where Jk are the moments of inertia of each mirror along the tilt axis under consideration.

These frequencies set the time scales of tilt-induced dynamics associated with each mirror.

In Table 5.2, we list the relevant parameters for our IM and EM, along with the resulting

ωk. Note that ωE does seem to be in a regime (a few Hz) where we have to worry about

tile instability. As pointed out by Sidles and Sigg [49], in the absence of external restoring

forces, (i.e., as ΩI,E → 0), we have

detM = −ω2
Iω

2
E/(1− gIgE) < 0 , (5.21)

which means M always has one positive eigenvalue (pure instability) and one negative

eigenvalue (stable resonant mode). On the other hand, the ΩI,E terms, if large enough,

stabilize the system.

Let us first examine the case without external restoring force. The resonant frequencies

are in general given by
2We consider two types of tilt angles, pitch and yaw, described in Section 5.2.5 for our mirrors. In the

ideal situation, pitch and yaw are orthogonal degrees of freedom and can be considered separately. The
resonant frequencies of the IMs and EMs when they are “free” masses, ΩI,E , do, however, differ from each
other, as does the pitch and yaw mode frequencies for each optic.
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ω2
± =

1
2(1− gIgE)

[
− (gEω2

I + gIω
2
E)

±
√

(gEω2
I + gIω2

E)2 + 4 (1− gIgE)ω2
Iω

2
E

]
. (5.22)

Noticing that we have ω2
I /ω2

E ≈ 8 × 10−5 ¿ 1, we can expand the unstable resonant

frequency up to the leading order in ω2
I /ω2

E. We also have to require that gE is not very close

to 0 (|gE| À ω2
I /ω2

E). Now if we pay attention only to ω2−, which is the unstable resonant

frequency, then we have

ω2
− =





− gIω
2
E

1− gIgE
gI, gE > 0

ω2
I

gE
gI, gE < 0 .

(5.23)

This confirms, in our special case, that cavities with negative g factors are less unstable,

as argued by Sidles and Sigg [49]. Moreover, each mirror itself, when the other mirror is

held fixed, is stable in the case of negative g-factors (since diagonal elements in M are both

negative).

Now let us study the stability when external restoring forces are available. In general

the resonant frequencies ω are given by

det
[
M + ω2I

]
= 0 . (5.24)

The stability condition can be stated more formally as having M negative definite, which

means requiring

(1− gIgE)ω2
I − gEω2

I > 0 (5.25)

(1− gIgE)ω2
E − gIω

2
E > 0 (5.26)

detM > 0 , (5.27)

with
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detM > 0

⇔
[
ω2

I −
gEω2

I

1− gIgE

] [
ω2

E −
gIω

2
E

1− gIgE

]
>

ω2
Iω

2
E

(1− gIgE)2
.

(5.28)

For negative g-factor cavities, which start out to be less unstable, the stabilization is

easy: Eqs. (5.25) and (5.26) are automatically satisfied (since the diagonal elements are

already negative in absence of external restoring force), while Eq. (5.28) can be satisfied

without requiring any EM external stabilization, if

ΩI > ωI/|gI| , (5.29)

Stabilization is less straightforward for positive g-factor cavities: ΩI,E must be at least of

the same order as ωI,E , unless we fine-tune gI,E . For example, Eqs. (5.25) and (5.26) already

impose

ΩI,E >

√
g2,1

1− g1gE
ωI,E , (5.30)

which suggests that ΩE must be at least comparable to ωE, unless we make gI very small,

which is undesirable due to decreased stability of spatial optical modes. Defining

Ω2
I,E = (1 + σI,E)

gE,I ω2
I,E

1− gIgE
, (gI,E > 0) , (5.31)

the stability condition can be written as

σI > 0 , σE > 0 , σIσE >
1

gIgE
. (5.32)

For stability reasons, we propose using negative g-factor cavities. To minimize the

angular instability and simultaneously maximize the beam spot size at the mirrors in order

to reduce the effects of the coating thermal noise, as discussed in Section 5.3.2, we propose

cavities of length L ∼ 1 m, with the mirrors having a radius of curvature slightly greater

than 0.5 m, in order to have g ∼ −0.8.

From Eq. (5.29), we find a stabilizing IM frequency of 0.12 Hz, which is trivially satisfied,

to be sufficient to stabilize the system without an active control system.
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5.2.4 Optical readout

Ideally, the squeezed field would be measured at the antisymmetric port with a homodyne

detector. In this setup, a strong local oscillator (LO) field is mixed on a beamsplitter with

the squeezed field, and the two resulting fields are measured by photodiodes and the resulting

photocurrents are subtracted, eliminating the component of the signal due to the LO alone.

This scheme is advantageous because it allows for an arbitrary quadrature of the squeezed

field to be measured, simply by changing the phase of the LO. The disadvantage of this

scheme, however, is that the LO field must be much stronger than the carrier component of

the squeezed field. Due to mismatches in the system, a portion of the carrier light couples

out the antisymmetric port. With the parameters for contrast defect and other optical

imperfection listed in Table 5.1, we expect the carrier light at the output to be on the order

of 1 mW. While a LO level that is an order of magnitude larger is readily achievable, we

begin to reach the saturation limits of our photodetectors.

An alternative readout scheme is to simply measure the squeezed field with a photode-

tector. In this scheme, only the amplitude fluctuations of the light exiting the antisymmetric

port may be measured. However, our optimization scheme for laser noise, as described in

Sec 5.3.4, has the side effect of aligning the squeezed quadrature with the amplitude quadra-

ture of the light exiting the antisymmetric port. While this limits us to measuring only the

amplitude fluctuations of the light, this is precisely the quadrature in which the squeezing

occurs. The homodyne readout scheme is preferable, but the direct readout is a viable

alternative to avoid power constraints.

In practice, since we wish to control the interferometer degrees of freedom, we use the

detection scheme shown in Fig. 5-7. A small fraction of the antisymmetric port light (R ¿ 1

in power) is sampled to generate an error signal for the control loop, while the majority is

preserved for injection into an interferometer or for detection of squeezing using either the

homodyne or direct detection methods described above.

5.2.5 Mechanical design

Both the input and end mirrors of the cavities are suspended from pendulums. The input

mirrors have a mass of 250 g and a 75 mm diameter; they are identical to the suspended

optics used in the input modecleaner of the initial LIGO detectors [50]. Greater care must be
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2a

2b

h

l

Figure 5-4: Front and side view of the end mirror suspension. The dot represents the center
of mass of the mirror. The fibers are attached to a point a distance h, which could be
negative, above the mirror center of mass. The distance between the attachment points at
the mirror is 2b, and at the top of the suspension is 2a. Not drawn to scale.
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taken in the suspension of the end mirrors of the cavities, however – due to their small mass

of 1 g, the EMs have greater susceptibility to thermal noise. We use a monolithic fused silica

suspension, in which thin fused silica fibers are welded to the side of the mirror substrate

using a CO2 laser. This technique has been demonstrated to produce a pendulum mode Q

of approximately 107 [51]. The suspension design consists of two fibers, each approximately

10 µm in diameter, welded or glued to the mirror, as shown in Fig. 5-4.

To maintain high circulating power in the arm cavities, and minimize interference from

higher-order spatial modes, alignment of the mirror is critical. Controlling the pitch (rota-

tion about the horizontal diameter of the mirror) is a particularly important consideration,

since we expect large pitch angles due to static displacement of the EM with 9 kW of laser

power impinging on it. The frequency of the pitch mode is determined by the location of

the attachment point between the fiber and the mirror substrate, and the diameter of the

fiber [52]. For our regime of fiber lengths, typically 0.5 m, the frequency of the pitch mode

frequency, is approximately

ωpitch =

√
T (h + ∆)

Jpitch
, (5.33)

assuming ∆ + h ¿ l, where ∆ is the characteristic length at which the fiber bends above

its attachment point, h is the distance of the attachment point from the mirror center of

mass, l is the length of the suspension wire, T is the tension in the fiber, and Jpitch is the

moment of inertia for the pitch degree of freedom (given in Table 5.2). A higher frequency,

ωpitch, requires a larger force to control the pitch of the mirror. Minimizing the necessary

force, and hence ∆ + h is desirable to limit the actuator range. For fibers with a diameter

of 100µm, ∆ ≈ 8.5 mm, while for 10µm, ∆ ≈ 8.5 × 10−2 mm. In the 100µm case, it

would be impossible to make ∆ + h smaller than a few millimeters, while for the 10µm

case, it can be made very small by choosing h appropriately. Consideration of the necessary

torques that must be supplied, and the torques that may be generated by actuators, as

well as the ability to create and work with thin fibers, leads to a choice of fiber diameter of

approximately 10µm. Taking ∆ + h = 100µm, Jpitch = 0.098 g cm2, T = 98 dyne, we get

ωpitch ≈ 2π × 0.50 Hz. The yaw frequency, again assuming that ∆ + h ¿ l, is

ωyaw =

√
2T a b

l Jyaw
(5.34)
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where 2a is the separation between attachment points of the fibers at the top end of the

suspension, 2b is the distance between the attachment points on either side of the mirror,

and Jyaw is the moment of inertia for the yaw degree of freedom. For a = 6 mm, b = 3 mm,

Jyaw = 0.098 dyne, we get ωyaw ≈ 2π × 0.43 Hz.

Control of the longitudinal motion of the end mirror is a difficult task. When the 9 kW

of power in the cavity is incident on the end mirror, the mirror feels a constant force,

which must be balanced. We choose to balance the constant (dc) radiation pressure force

with gravity. When the mirror is displaced by a few millimeters from its equilibrium (with

no laser light present), for a given (fixed) pendulum length, the gravitational restoring

force is equal to the constant radiation pressure force. In order to lock the cavity at

full power, we propose the following scheme: First, we use an electromagnetic actuator

to offset the mirror the required distance from its equilibrium position. Next, we lock

the cavities with very small circulating powers, such that the radiation pressure forces

are negligible. We slowly increase the power in the system, which increases the radiation

pressure forces on the mirrors. Simultaneously, we reduce the pulling force of the actuator,

which is counteracted by the increasing radiation pressure force, keeping the mirror at a

fixed position. When the power reaches its design value, the mirror is held in place by a

balance of the radiation pressure, gravitational restoring, and electromagnetic forces. This

provides a way of controlling the longitudinal degree of freedom of the mirror.

5.3 Noise couplings

In this section, we estimate the contribution of expected noise sources to the total noise

budget. These include thermal noise from the suspended mirrors (including thermal noise

from the optical coatings on the substrates), as well as laser intensity and phase noise. In

Figs. 5-5 and 5-6, we show the spectral density of the dominant noise sources both in terms

of noise power relative to the vacuum level in a given quadrature, and also in terms of

(free mass) displacement, which does not include the suppression from the optical spring.

Furthermore, we shall see that the coupling of laser noise has a very strong dependence on

the quadrature to be measured. Careful choice of the measurement quadrature is critical

to successful extraction of the squeezing; this is analyzed in Section 5.3.4.
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Figure 5-5: The different noise sources relative to the vacuum level, as a function of fre-
quency. The dominant noise below 1 kHz is optical losses, which are primarily comprised
of detection losses (10%) and the optimization losses (13% in one arm).
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Figure 5-6: The same noise sources in terms of equivalent displacement of a free mass
(the displacement noise that each noise source would exhibit if the optical spring were not
present). We estimate that a sensitivity of 5 × 10−16mHz−1/2 is necessary to measure
squeezing at 100 Hz, and the required sensitivity drops as frequency to the second power
at higher frequencies.
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5.3.1 Suspension thermal noise

Applying the Fluctuation Dissipation Theorem [53] to an object of mass M that is suspended

from a pendulum with mechanical quality factor Q and resonant frequency ΩR, we get the

free mass displacement noise spectrum [54]

Ssusp (Ω) =
4 kB T

M Ω Q

Ω2
R(

Ω2
R − Ω2

)2 + Ω4
R

Q2

, (5.35)

where T is the temperature and kB is the Boltzmann constant. The monolithic fused silica

suspension, described in Section 5.2.5, is used primarily to reduce φ. Metal wires and

alternative methods of attachment have higher losses, which would make the suspension

thermal noise more severe. As shown in the curve labelled “Suspension thermal” in Fig. 5-

5, the monolithic fused silica suspension places the suspension thermal noise at a level where

it does not have any measurable effect on the experiment.

5.3.2 Internal and coating thermal noise

The free mass displacement noise spectrum due to internal and coating thermal noise has

been approximated as [55]

SICTN (f) =
2kBT

π3/2f

1
w Y

[
φsubstrate

+
d

w
√

π

(
Y ′

Y
φ‖ +

Y

Y ′φ⊥

)]
. (5.36)

We assume that φsubstrate ¿ d
w
√

π

(
Y ′
Y φ‖ + Y

Y ′φ⊥
)
, so that the dominant thermal noise is

due to the optical coating. Using the parameters listed in Table 5.1, we calculate the coating

thermal noise shown in Fig. 5-5. We note that the coating thermal noise is potentially a

limiting noise source near 1 kHz.

5.3.3 Control system noise

As discussed in Section 5.1.2, the optomechanical resonance is unstable, i.e., the amplitude

of its oscillations grow in time. This instability must be controlled by use of a feedback

loop that stabilizes the unstable resonance by a damping-like control force.

Defining s = j Ω, the transfer function P (s) of the pendulum, including the optical
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spring effect, is given by

P (s) =
[
s2 +

Θ2γ2

(γ + s)2 + δ2

]−1

. (5.37)

This transfer function is straightforward to interpret; it is the transfer function of an

ideal spring, with a spring constant that is filtered by the cavity pole. In the limiting case

that γ À s and γ À δ, the transfer function of an ideal pendulum is obtained. This transfer

is unstable because it has poles in the right half plane (the real part of the pole is greater

than 0).

To stabilize this resonance, we apply a velocity damping force via a feedback control

system; a schematic for the control system is shown in Fig. 5-7. Ordinarily, we are interested

in the (squeezed) output field b that exits the ponderomotive interferometer (IFO), but we

need to detect a small fraction of b to generate a control signal for damping the unstable

resonance. We, therefore, insert a beamsplitter (BS) at the IFO output and use the field

u =
√

R b (R ¿ 1) in a feedback loop. The quadrature field u is converted into a force

by the transfer function F (s) and Q(s) converts force to quadrature fields. The velocity

damping term is included in F (s). Q(s) contains the force-to-displacement transfer function

P (s) [see Eqn. (5.37)], as well as the input-output relation that converts displacement to

quadrature field [see e.g. Eqns. (63) and (64) of Ref. [39]]. The majority of the squeezed

field, y =
√

T b, is preserved as a squeeze source. Vacuum noise fields n0, nc1 and nc2 enter

the open ports of the beamsplitter, and must be accounted for in the total noise budget.

Defining the open-loop gain of the feedback system as

G(s) = −
√

R F (s) Qζ(s) , (5.38)

the squeezed output field y is given by

yζ =

√
TMζ · a

1 + G(s)
+

Qζ

√
T

1 + G(s)
f

+
T G(s)

1 + G(s)
1√
R

(nc1)ζ −
√

R (nc1)ζ , (5.39)

where M is a matrix operator that converts the input field a to the output b, Q converts

forces into quadrature fields, and the subscript ζ denotes the projection on the quadrature

to be measured. Eqn. (5.39) warrants some discussion. The first term contains the squeezed
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Figure 5-7: Block diagram for the feedback loop. a and b are the input and output quadra-
ture fields; ni are vacuum noise fields entering the different port of the beamsplitter (BS)
that has power reflectivity R and transmission T . A small fraction of the output (squeezed)
field u =

√
R b is used to generate a shot-noise-limited error signal for a feedback loop to

control the position of the differential mode of the ponderomotive interferometer (IFO),
while the remainder y =

√
T b is used to make sub-quantum-noise-limited measurements.

The sample beam u is filtered by F (s), a transfer function that converts quadrature fields
into force, and Q(s) converts force back into quadrature fields. f are spurious forces that
act on the interferometer mirrors.
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output due to the input field a. In order to realize the squeezing without the influence of

the control system, it is necessary to make G(s) as small as possible in the band where

squeezing is to be measured. Similarly, when G(s) À 1, the last term dominates and R

should be kept small to couple as little of the vacuum noise (nc1)ζ to the output yζ .3 Finally,

to stabilize the optomechanical resonance, we need to introduce a damping term to P (s)

[implicitly included in G(s)]. We propose a filter transfer function that is equivalent to

applying a velocity damping:

F =
−sγd√

R
(5.40)

where γd is a damping constant chosen to stabilize the system. The open loop gain then

becomes

G(s) = s γd

[
s2 +

Θ2γ2

(γ + s)2 + δ2

]−1

, (5.41)

In addition to stabilizing the optomechanical resonance, we must minimize the additional

noise due to vacuum fluctuations that are introduced by the new beamsplitter. We consider

only the newly introduced vacuum noise that is detected by the feedback detector, which is

then fed back onto the position of the pendulum and thereby enters the signal detected by

the squeeze detector. We neglect the correlations between these vacuum fluctuations that

enter directly at the beamsplitter with those that enter through the feedback loop. This is a

valid assumption for frequencies at which |G(s)| ¿ 1, which is the case in our measurement

band. Assuming that the feedback detection is shot-noise-limited, then the power spectral

density of the additional noise, relative to shot noise, is

Sn ≤
√∣∣∣∣

G(s)
1 + G(s)

∣∣∣∣
1√
R

+
√

R (5.42)

[see the last two terms in Eqn. (5.39), with R ¿ 1 so that
√

1−R ≈ 1]. Choosing 3 to

10% for the nominal value of R gives acceptable levels of loss for the squeezed output beam,

while allowing for the stabilizing feedback. We note that for the case |G(s)| > 1, that these

expressions are not valid, and a detailed calculation of the correlations must be done. The

correlation between the last two terms in Eqn. (5.39) depends on the quadrature being

measured to do the feedback; we assume the worst case scenario for the noise, namely that
3We do not combine the last two terms containing (nc1)ζ because we assume that those two terms are

uncorrelated. This is not true, but at worst gives an underestimation by a factor of 2 of the noise, and for
the cases when |G| ¿ 1, the error is much smaller.

108



the two terms add in amplitude.

In order to keep the coupling of vacuum noise nc1 into yζ at a minimum, we must make

the loop gain G(s) as small as possible at frequencies within the squeezing measurement

band (about 100 Hz to 1 kHz), while still having sufficient gain at the optomechanical spring

resonance frequency (typically 5 kHz). We achieve this by including a sharp high-pass filter

in F (s), typically an elliptic filter with high-pass corner frequency at several 100 Hz to

preserve phase margin at the optical spring resonance. The resulting contribution to the

overall noise budget is show as the curve labeled “Control noise” in Fig. 5-5, where we set

γd = 7× 104 s−1, R = 3%, and a fourth-order elliptic high-pass filter with cut-off frequency

at 800 Hz. A detailed analysis of the control system can be found in Ref. [56].

5.3.4 Laser noise

Laser intensity and frequency noise couple to the output port of the interferometer through

imperfections and mismatch in the optical parameters of the interferometer. Analytic calcu-

lation of such noise couplings were carried out in Ref. [39]. The calculations lead to complex

formulae that, in our opinion, do not provide much insight into the couplings, except the

following qualitative features. For frequencies much below Θ and γ, and up to leading order

of ΘL/c, γL/c and δL/c, phase and amplitude noises both emerge in single quadratures (as

a result, there exist a phase-noise-free quadrature, and an amplitude-noise-free quadrature.)

The phase noise does not drive mirror motion, and emerges at the output at an orthog-

onal quadrature to the carrier leaking out from that port (i.e., the carrier coincides with

the phase-noise-free quadrature). The amplitude noise, on the other hand, drives mirror

motion, and emerges in a quadrature neither along nor orthogonal to the carrier. Different

types of mismatches direct laser amplitude and phase noises into different output quadra-

tures. Up to linear order in mismatch, the output phase (amplitude) noise can be expressed

in the quadrature representation as a sum of quadrature vectors, each arising from one type

of mismatch.

In full numerical results, we did not observe phase-noise-free and amplitude-noise-free

quadratures, but instead found output quadratures in which contributions from one of the

two laser noises has a rather deep minimum. The minimum-phase-noise and minimum-

amplitude-noise quadratures do not generically agree with each other, nor do they generi-

cally agree with the minimum-quantum-noise quadrature. However, we have discovered that
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Figure 5-8: The coupling of laser noise to the antisymmetric port is shown for the un-
optimized and optimized cases. The optimized case includes a Michelson detuning and
intentional loss in one of the arms.
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Figure 5-9: The coupling of laser and antisymmetric port noise to the output as a function of
the homodyne measurement quadrature for the unoptimized case. The red curves represent
the quantum optical noise, the blue curves represent laser intensity noise, the green curves
represent laser phase noise and the cyan curves represent the total noise. In (a), the minimal
noise quadratures for the different noise sources are not the same. In (b), the minimal noise
quadratures for the laser intensity noise and the vacuum fluctuations are now the same. For
this case, only a Michelson detuning has been added. In (c), the minimal noise quadratures
for the laser intensity noise, laser frequency noise and the vacuum fluctuations are now the
same. For this case, a Michelson detuning and a controlled loss in one arm (between the
beamsplitter and the input test mass) were used.

it is possible, by intentionally introducing controlled mismatches, to modify the quadrature

dependence of both of the output laser noises in such a way that both the minimum-phase-

noise and minimum-amplitude-noise quadratures align with the minimum-quantum-noise

quadrature. Such a procedure greatly reduces the importance of the laser noise, as long as

the noise in the minimum noise quadrature is concerned. This is shown in Figs. 5-8 and 5-9,

using our fiducial parameters in Table 5.2.

Let us describe the optimization procedure in more detail. Through the numerical simu-

lation [39], we determine that the noise quadratures may be optimized through two steps, as

shown in Fig. 5-9. The first step is to detune the Michelson from the dark fringe. The opti-

mal position for the Michelson detuning is that which aligns the minimum-amplitude-noise

quadrature to the minimum-quantum-noise quadrature. The second step is to introduce

an intentional loss into one arm of the Michelson, placed artificially between the beam-

splitter and one of the arm-cavity mirrors, such that both minimum-amplitude-noise and

minimum-phase-noise quadratures would align with the minimum-quantum-noise quadra-

ture. Interestingly, since the minimum-phase-noise quadrature coincides with the carrier

quadrature leaking out from the output port, the resulting squeezed output light is ampli-

tude squeezed.

111



As it turns out, the required artificial loss can be quite large; for our fiducial parameters

in Table 5.1, the optimal loss is approximately 10%. Such a large loss noticeably limits the

amount of squeezing that may be detected, but the reduction in the laser noise is necessary

to measure any squeezing at all. As shown in Figs. 5-8 and 5-9, the laser amplitude noise

(as measured in the squeezed quadrature) is reduced by more than 40 dB and the laser

frequency noise by more than 60 dB in this process — both of them now are far below the

quantum noise level.

It is difficult to predict exactly the mismatches that are present in the physical exper-

iment. Rather than making a priori predictions for the intentional mismatch needed to

optimize the noise couplings, we plan to perform this optimization empirically. We esti-

mate that the ability to control the loss at the level of 0.1% and the detuning at the level

of 10−4δγ is sufficient for the optimization.

Although we have greatly reduced the laser noise in the ideal quadrature, we have not

reduced its overall magnitude. This presents a limitation because we must control the

quadrature measurement angle to be precisely at the ideal quadrature. Small fluctuations

in this measurement angle couple noise in from the orthogonal quadrature, where the noise

is much larger. This is evident from the sharp features in Fig. 5-9, which shows that the

margin for error in the measurement quadrature is quite narrow due to the laser frequency

noise.

5.3.5 Quantum noise and losses

The quantum noise, due to output port vacuum fluctuations and optical losses, are also

calculated using the noise simulation code [39]. Considering only the noise that enters

through the output port, and neglecting other noise sources, including optical losses, the

vacuum field is squeezed by 17 dB inside the interferometer.

Next, we include optical losses at the levels given in Table 5.1. In particular, our simula-

tion code has automatically taken into account intracavity losses, losses due to transmission

through the IMs, losses of the beamsplitter, losses into the common mode due to mismatches,

and artificial losses introduced to mitigate laser noise in the detected quadrature. These

together lead to a noise spectrum at the level of ∼ 7 dB below shot noise (see Fig. 5-5). We

expect this to be the limit to measurable squeezing in most of our frequency band.
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Advantages of large value Advantages of small value
ME Ease of construction Large optical spring frequency

Ability to sense and actuate motion
Ti Large optical spring frequency Reduce optical spring instability

Reduce effective intracavity losses
Higher circulating power

MI Ease of construction Increase optical spring frequency 4

Work with existing sizes and solutions
I0 Large optical spring frequency Use available lasers

Circulating power
δγ Optimize δγ = 1/

√
3 for largest Use smaller δγ to increase squeezing level

squeezing bandwidth
w Reduce coating thermal noise Reduce angular instability of cavity
L For fixed beam size on mirror surfaces, Minimize optical anti-damping

longer length increases suppression of
higher order spatial modes
Larger mirror radii of curvature easier
to manufacture

Table 5.3: Design considerations for select interferometer parameters. Here we tabulate
some of the competing effects that led us to the choice of parameters listed in Table 5.1 and
discussed in Sections 5.2 and 5.3.

5.3.6 Summary of design considerations

Considerations of the detailed parameters of the experiment is a sequence of trade-offs

between achieving high levels of squeezing and keeping the noise couplings to a minimum.

In Table 5.3 we summarize the highly intertwined and often conflicting considerations that

informed the design in the preceding sections.

5.4 Summary

We have presented a design for an interferometer with movable light mirror oscillators,

such that the light (and vacuum) fields circulating in the interferometer are squeezed due

to the coupling of radiation pressure and motion of the mirrors. We show that even in

the presence of reasonable, experimentally realizable optical losses (at the level of 10−5

per bounce per optic), thermal noise (associated with oscillators with intrinsic loss factors

of order 10−7), and classical laser noise (relative intensity noise at the level of 10−8 and

frequency noise 10−4 Hz/
√

Hz), significant levels of squeezing can be extracted from such a

device. Specifically, we find that as much as 7 dB of squeezing at 100 Hz is possible, provided

great care is exerted to measure the quadrature where the laser noise coupling to the output

is minimized, as shown in Fig. 5-5. We note that the squeezed state produced by this device
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is far from a minimum uncertainty state (the noise in the anti-squeezed quadrature relative

to the squeezed quadrature is much greater than required by Heisenberg’s Uncertainty

Principle). This places requirements on the stability requirements for any device to which

the state is applied.

Two aspects of the design require great care: the optical performance of the high fi-

nesse, detuned arm cavities (described in Section 5.2.1); and the mechanical design of the

suspended 1 gram mirror oscillators, where thermal noise must be kept at low, and pitch,

yaw and longitudinal degrees of freedom must be controllable by application of external

forces outside the measurement band (described in Section 5.2.5).

In the following Chapters, we describe the experimental implementation of this design,

along with results from intermediate phases en route to the ultimate goal of measuring the

ponderomotively squeezed output.
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Chapter 6

Optomechanical experiments

We report on experimental observations of radiation-pressure induced effects in high-power

optical cavities. We measure the properties of an optical spring, created by coupling of an

intense laser field to the pendulum mode of a suspended mirror; and also the parametric

instability (PI) that arises from the nonlinear coupling between acoustic modes of the cavity

mirrors and the cavity optical mode. We also report on a stable optical trap suitable for a

macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation

pressure. The technique employs two frequency-offset laser fields to simultaneously create a

stiff optical restoring force and a viscous optical damping force. We show how these forces

may be used to optically trap a free mass without introducing thermal noise; and we demon-

strate the technique experimentally with a 1 gram mirror. The observed optical spring has

an inferred Young’s modulus of 1.2 TPa, 20% stiffer than diamond. The experimental work

is divided into 4 parts that signify physical differences in the experiment, as described in

Table 6.1. The phases of the experiment are incremental steps towards the goal of building

a ponderomotive squeezer, as described in the previous chapter.

6.1 The facility

The experiments take place at the LIGO Advanced System Test Interferometer (LASTI) at

MIT.

• The laser:

The laser used for these experiments is of the utmost importance. It must provide
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L (m) M (g) Susp. Freq. Susp. Q Finesse K (N/m) Θ/2π (Hz)
Phase 1 1 250/2 1 105 1000 3× 104 80
Phase 2 1 1/1 172 3× 103 8000 2× 106 5000

Phase 2.5 0.1 1/1 12.75 2× 104 8000 4× 104 1000
Phase 3 1 1/2 6.3 104 8000 5× 105 3000

Table 6.1: Parameters for each experimental stage are given. The masses given are the
reduced mass. Note that the shorter length of the cavity of Phase 2.5 dramatically increased
the parametric instability of the drumhead mode of the end mirror at 100 kHz, limiting
the power incident on the cavity. Phase 2.5 did not introduce any new optomechanical
dynamics, so it is discussed in Chapter 7. Phase 3 was the first iteration of the experiment
that implemented two cavities in an interferometer configuration.

high power levels of highly frequency and intensity stabilized light. The system used

is nearly identical to the Pre-Stabilized Laser (PSL) system in use in the Initial LIGO

interferometers [57]. The master-oscillator-power-amplifier (MOPA) laser, developed

by Lightwave Electronics Corp., outputs approximately 8 W of continuous-wave (CW)

light with wavelength of 1064 nm. The light couples through a mode cleaner with fixed

mirrors that rejects light that is not in the TEM00 mode. The cavity is controlled

through a piezo-electric element mounted on one mirror. A fraction of the transmitted

light is used for intensity stabilization [58] that feeds back to the current shunt driving

the laser. Another fraction passes through an acousto-optic modulator that frequency

shifts the light by 160 MHz before sending it to a monolithic suspended cavity. The

frequency of the laser is then stabilized to the length of this cavity. The driving signal

sent to the acousto-optic modulator is provided by a voltage-controlled oscillator that

may change its frequency when provided a voltage. This allows for the the bulk of the

laser light, which does not pass through the acousto-optic modulator, to be tuned,

while maintaining the stability provided by the suspended cavity.

• Vacuum envelope and seismic isolation system: The suspended-mirror cavities

used in these experiments are placed within a LIGO Horizontal Access Module (HAM)

chamber that is evacuated to the level of approximately 10−6 torr. The optics table

within this chamber rests on a series of masses and springs – a vibration isolation

stack that provide passive isolation from ground motion. The system also provides

the capability to actively sense and stabilize the motion at the base of the stack,

although this capability was not exploited until the third phase of the experiment.
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Figure 6-1: Schematic representation of the experiment, showing the 1 m long Fabry-Perot
cavity suspended in vacuum. Abbreviations are acoustooptic modulator (AOM), electroop-
tic modulator (EOM), photodiode (PD), polarizing beam splitter (PBS), and quarter-wave
plate (QWP). Most of the 10 W output of the 1064 nm Nd:YAG laser light is directed to
the suspended cavity. A small fraction of is pick-off and frequency shifted by double passing
through the AOM. The frequency shifted light is used to lock the laser frequency to the
reference cavity resonance with high bandwidth (> 500 kHz). Frequency shifting via the
AOM provides a means of high speed frequency modulation of the stabilized laser output;
it is an actuator for further stabilizing the laser frequency with reference to the suspended
cavity. The input mirror of the cavity has a transmission of 0.63%, giving a linewidth of 75
kHz. Not shown are feedback loops actuating on the cavity length and laser frequency (via
the AOM).

6.2 Phase 1 experiment

At the time of the experiment described here, the optical spring effect had been previously

demonstrated on a 1.2 g mass held in a flexure mount [59]. In that experiment the me-

chanical resonance of the mass/flexure structure at 303 Hz was altered by 3% with the

application of radiation pressure, corresponding to an optical rigidity of about 150 N/m.

Optical bistability experiments had also been performed, although they were not cast in the

framework of an optical spring [37]. Weak optical damping forces had also been observed

previously, far below the threshold for parametric instability [36]. The results presented

here appeared in Ref. [48], and were obtained nearly simultaneously with the optical spring

observed at the LIGO 40 meter interferometer [60].

In the experiment performed here, 0.25 kg mirrors are suspended as pendulums with a

resonant frequency of 1 Hz for the longitudinal mode (motion along the optic axis of the

cavity). With detuning of the cavity, the resonance is shifted upwards by nearly 2 orders

of magnitude. We also confirm the unstable nature of the resonance, and observe PI of an

internal mode of the mirrors.
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Figure 6-2: Two suspended optics located within the vacuum envelope and on the seismically
isolated optical table are shown.

6.2.1 Experimental description

The experimental set-up used to observe the PI and the optomechanical rigidity is shown

in Fig. 6-1. The input mirror to the cavity has a transmission of approximately T = 0.6%,

separated by 1 meter from the end mirror, giving a linewidth of γ = 75 × 2π kHz. The

cavity mirrors are suspended as pendulums with a longitudinal resonant frequency of 1 Hz.

Magnets are glued to the mirror (4 on the back surface, and 1 on each side), and devices

containing both shadow sensors and coils surround each magnet. The shadow sensors consist

of an LED facing a photodiode, with the magnet in between. When the mirror moves, the

amount of light hitting the photodiode changes, providing a measure of the mirror’s motion.

Currents may be pushed through the coils to create a magnetic field that exerts a force on

the mirrors via the magnets. The signals from the shadow sensors are decomposed into

modes of the mirror motion (longitudinal, pitch, yaw, side-to-side), filtered, then fed back

to the coils in order to damp the low frequency resonances of the suspension.
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Figure 6-3: Suspended optic is shown. The suspension is identical to small optic suspensions
in Initial LIGO.

Approximately 3.6 W (limited by the imperfections of the optics chain) of laser light

is injected to the cavity. The light is phase modulated with an electo-optic modulator

(EOM) at 25 MHz, which is used in the Pound-Drever-Hall (PDH) technique to provide a

measurement of the cavity motion.

6.2.2 Parametric instability

We begin our discussion with the PI because it was the first observed effect. In recent years

there has been some debate on the potential of PIs to adversely impact the performance of

second generation GW interferometers [46]. The risk of PIs in future detectors arises from

the high circulating power and the low mechanical loss (high quality factor, or Q) materials

planned for use in future test masses. High mechanical Q materials are required to limit

the effect of thermal noise on the sensitivity of the device [61].

Braginsky et al. [47] first reported on the danger of PIs in high power GW detectors.
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They suggested that for kilometer-scale cavities with high circulating power and low free

spectral range (FSR), a Stokes mode at the FSR could cause the cavity to become unstable.

They warned that the density of mechanical modes around the FSR of the cavity could

overlap with a higher order mode of the cavity, leading to instability. Application to realistic

interferometers by Zhao et al. [62] has confirmed that there are likely to be modes with

sufficient parametric gain to be unstable.

Parametric instabilities have been observed in resonant bar detectors with microwave

resonator readouts [63] and in optical micro-cavities [64]. Kippenberg et al. observed

radiation-pressure-induced parametric oscillation instabilities in ultrahigh-Q toroidal optical

microcavities, at frequencies of 4.4 to 49.8 MHz and modal masses of 10−8 to 10−9 kg. The

experiment reported here differs from these experiments in that it demonstrates PI at

28.188 kHz, in a suspended cavity apparatus with an effective mass of 0.125 kg. The mass

and frequency regime of this experiment are of particular relevance to GW detectors and

ponderomotive squeezing experiments [39,43].

To model the effects of the PI, we recall from Eq. 3.34 that the damping rate induced

by the optical spring is

ΓOS =
−2K0

Mγ
× 1

(1 + δ2
γ − Ω2

γ)2 + 4Ω2
γ

. (6.1)

Parameterizing the PI in terms of a gain, we define

R = −ΓOS

ΓM
, (6.2)

so that R = 0 corresponds to no optical damping, R = 1 corresponds to the threshold of

instability, and R = −1 corresponds to a doubling of the mechanical damping.

For measuring the PI, the cavity was controlled solely by feeding back the PDH error

signal to the coils of the input mirror. The feedback loop is operated with typical bandwidths

between 100 and 2 kHz, and the cavity is detuned by injecting an offset voltage into the PDH

error signal. The drumhead mode of the mirrors at 28.188 kHz with mechanical damping

rate 0.03 × 2π Hz, is the only mode for which PI is observed. Other internal modes have

poor spatial overlap with the laser beam and do not reach the threshold for PI.

To measure the value of R for this mode as a function of detuning and power, we

excite the mode and measure ringup and ringdown times at varying detunings and powers,
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which provides a direct measure of the damping rate. To ensure that the feedback does not

interfere with the measurements, a −60 dB notch filter at 28.188 kHz is added to the servo

to eliminate any interference of the servo system with the measurement of the drumhead

motion of the mirror. For the cases in which R > 1, we allow the mode to begin oscillating

and capture the ringup of the mode and fit an exponential to find the damping rate, which

in turn gives the value of R. To measure values at R < 1, we first detune the cavity to

a point where R > 1 and allow the mode to ring up, then quickly detune to the desired

point and capture the ring down, and fit an exponential decay to find the value of R. The

results of the measurements of R at various detunings, for a fixed input power, are shown

in Fig. 6-4. The value of M for this mode was treated as a free parameter that was fit to

the data; we found a value of 0.12 kg. The measurement of the mass of the drumhead mode

show good agreement with the predicted values provided by finite element model analysis.

We also measured R as a function of cavity power, with fixed detuning (set to 75% of the

maximum power), and established the linear dependence on power, also showing that R

goes to zero at zero injected power.

Figure 6-4: The instability measure R is plotted as a function of detuning of the cavity
from resonance, for fixed input power. The solid (blue) curve is the theoretical prediction
with fit parameter M ; the measured data are shown as colored squares. Also shown is the
power built up in the cavity, normalized to unity (green curve).
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6.2.3 Optical spring

Measuring the optical spring presented some challenges. The instability of the drumhead

mode must be stabilized before the measurement can be performed. To accomplish this

stabilization, we modify our servo so that we tune the frequency of the laser to follow the

length of the cavity at frequencies from 300 Hz to 50 kHz. The modified servo system

suppresses the formation of the 28.188 kHz sidebands that induce the PI. With sufficient

suppression at 28.188 kHz, the drumhead mode is not destabilized. The second difficulty

is that the intrinsic motion of the mirrors at low frequencies is quite large and requires a

strong servo system to hold the cavity on resonance. This has the unfortunate consequence

of placing the optical spring resonance within the bandwidth of the servo system. The

optical spring is characterized by injecting an excitation into the coils of the input mirror,

and measuring the response to this excitation at the PDH error signal, removing the effects

of the servo system.

The results from this measurement are shown in Fig. 6-5. We note that the transfer

function is similar to that of a simple harmonic oscillator, with one important exception:

that the resonance shows a negative damping constant (the phase increases by 180◦ at the

resonance), as predicted. We suspect that the smearing out of the sharp predicted peak

in the data is caused by fluctuations of the intracavity power. The measured response

is, however, consistent with the theoretical prediction, with no free parameters. From

the measured frequency of the optical spring resonance, we infer the optical rigidity to be

K = 3× 104 N/m.

6.3 Phase 2 experiment

6.3.1 Experimental description

The primary modification in this stage of the experiment was the change of the cavity

mirrors to provide both higher finesse, and lower mass. The input mirror was replaced by a

mirror with a transmission of 0.08%, about 8 times larger than in Phase 1, resulting in an

increase of a factor of 64 in the the optical rigidity, and giving a linewidth of 11× 2π kHz.

The end mirror was also replaced with a 1 gram optic in a double suspension, as shown in

Fig. 6-7. The 1 gram mirror is glued to two 300 micron diameter optical fibers, which are

in turn glued to a steel ring with the same dimensions as the input mirror. The resonant
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Figure 6-5: The transfer function of applied force to displacement of the end mirror of
the cavity, showing the optical spring resonance. The solid (red) curve is the theoretical
prediction with no free parameters, based on measurement of the intracavity power, and
the quadrangles are the measured data. The phase increases from 0 to 180 degrees at the
resonance, showing that the resonance is unstable.

frequency of the mirror within the ring is 172 Hz with a quality factor of 3200. The design

resonant frequency was 30 Hz. During the construction of the suspension, heat was applied

to cure the glue between the fibers, the mirror and the ring. The thermal expansion of steel

is much larger than that of glass, however, and the ring expanded while hot, and contracted

when the heat was removed after the glue was cured. The contraction left the fibers with

slack, creating a bow effect that accounts for larger than expected stiffness. However, given

the low mass and high optical rigidity, the expected optical spring frequency is much higher

than the 172 Hz, so the experiment proceeded despite this flaw.

A more complex control system was also developed to allow for greater flexibility in the

detuning of the cavity. In our experience with the Phase 1 experiment, the PDH technique

only allowed us to operate at detunings of about |δγ | < 0.5. In this phase of the experiment,
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Figure 6-6: Simplified schematic of the experiment. About 3 W of λ0 = 1064 nm Nd:YAG
laser light passes through a Faraday isolator (FI) before it is split into two paths by a
half-waveplate (HWP) and polarizing beamsplitter (PBS) combination that allows control
of the laser power in each path. The carrier (C) field comprises most of the light incident
on the suspended cavity. About 5% of the light is frequency-shifted by one free spectral
range (161.66 MHz) using an acousto-optic modulator (AOM), and phase modulated by
an electro-optic modulator (EOM); this subcarrier (SC) field can further be detuned from
resonance to create a second optical spring. The two beams are recombined on a second
PBS before being injected into the cavity, which is mounted on a seismic isolation platform
in a vacuum chamber (denoted by the shaded box). A Pound-Drever-Hall (PDH) error
signal derived from the SC light reflected from the cavity is used to lock it, with feedback
to both the cavity length as well as the laser frequency. By changing the frequency shift of
the SC, the C can be shifted off resonance by arbitrarily large detunings. The low power
SC beam (blue) passes through the EOM and AOM before being recombined with the high
power C beam (red).

we installed an AOM to frequency shift a fraction of the laser light, the subcarrier (SC),

which was then recombined at a polarizing beamsplitter and injected into the cavity, as

shown in Figure 6-6. If the frequency shift applied at the AOM is exactly equal to the free

spectral range of the cavity, then both fields are simultaneously resonant. The frequency

may then be slightly tuned, so that while the SC is resonant, the carrier may be arbitrarily

detuned. This allows for much greater flexibility in controlling the detuning of the cavities.

6.3.2 Stiff optical spring

This stage of the experiment is an important test for many aspects of the ponderomotive

squeezer. It operates with the identical mirrors and power levels that have been assumed,

so it allows the extremely high optical rigidity, and the power handling capability of the
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Figure 6-7: Suspension for 1 gram mirror is shown. The mirror is glue to two 300 micron
diameter optical fibers, which are in turn glued to a steel shell that is itself suspended.

mirrors to be verified. It should also allow for the cavity to be operated without control in

the squeezing frequency band at a few hundred Hz. To demonstrate these effects, the cavity

was operated using the PDH technique on the SC, which is frequency shifted to provide

δC ≈ 0.5 γ. Then, the response of the system to external forces is measured as increasing

power levels. At the highest input power level of about 3 W, we reach an intracavity power

level of about 10 kW, comparable to the power levels in the LIGO arm cavities. There were

no indications of damage to the mirrors or other negative effects at these power levels over

short periods of time. No study was done of long term effects.

The 172 Hz mechanical resonance of the 1 gram mirror is shifted as high as 5 kHz

(curve (a) in Fig. 6-10), corresponding to an optical rigidity of K = 2× 106 N/m. Consider

replacing the optical mode with a rigid beam with Young’s modulus E. The effective

Young’s modulus of this mode with area A of the beam spot (1.5 mm2) and length L = 0.9 m

of the cavity, is given by E = K L/A = 1.2 TPa, stiffer than any known material (but also
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Figure 6-8: The response of the cavity to an external force applied to the end mirror is
shown. The measurement is performed by injecting an excitation into the control system,
and measuring the response of the cavity to the excitation. A model of the purely mechanical
response is shown in green, while the other traces correspond to increasing power levels in
the carrier. The feature at about 350 Hz is due to the pitch resonance of the end mirror.
The feature near 170 Hz is due residual effects of the 172 Hz longitudinal resonance, and
from the yaw resonance at 155 Hz. Features visible above 1 kHz are either violin modes
from the suspension wire, or vibrational modes of the 300 micron fibers used in the end
mirror suspension.

with very small breaking strength). We may estimate the maximum force that the cavity

is capable of withstanding simply as 2P/c = 6× 10−5 N, where P is the intracavity power.

This corresponds to roughly 0.5% of the end mirror’s weight. Such extreme rigidity is

required to operate the cavity without external control and to reduce the classical noise,

while maintaining modest levels of squeezing. We were able to operate this cavity with

narrowband control around the optical spring resonance, and at low frequency (< 150

Hz), demonstrating that the cavity could be operated without control in the squeezing

bandwidth. However, we defer a discussion of the control system to Section 6.4.2. Laser

noise precludes the possibility of observing squeezing in the single cavity configuration.

6.3.3 Double optical spring

While we may operate the cavity without control in the squeezing bandwidth, we have

shown in Section 5.3.3 that we still have residual noise from the control, so there may be
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Figure 6-9: Graphical representation of the total optical rigidity due to both optical fields,
as a function of C and SC detuning, for fixed input power (power in the SC field is ∼ 1/20
the C power) and observation frequency (Ω = 2π× 1 kHz). The shaded regions correspond
to detunings where the total spring constant K and damping constant Γ are differently
positive or negative. Specifically, “stable” corresponds to K > 0 , Γ < 0, “anti-stable” to
K < 0 , Γ > 0, “statically unstable” to K < 0 , Γ < 0, and “dynamically unstable” to
K > 0 , Γ > 0. The (logarithmically spaced) contours shown are scaled according to K:
brighter regions have larger K. The labels (a) – (d) refer to the measurements shown in
Fig. 6-5.

benefits from not requiring a control system at all. However, recall that the optical spring

always require stabilization because of the optical anti-damping force that arises from the

finite response time of the intracavity light.

However, we show that the system may be stabilized by using two optical fields (and

two optical springs) that respond on different time scales. One field should respond quickly,

so that it makes a strong restoring force and only a weak anti-damping force. The other

field should respond slowly, so that it creates a strong damping force, with only a minor

anti-restoring force. This could be achieved with two cavities of differing bandwidths that

share a common end mirror. However, it is simpler to use a single cavity and two fields with

vastly different detunings. From Eqs. 3.27 and 3.34, taking Ω ¿ γ (valid at the optical
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spring resonant frequency), we find

ΓOS

KOS
=

2/ (M γ)
1 + (δ/γ)2

; (6.3)

we see that an optical field with larger detuning has less damping per stiffness. The physical

mechanism for this is that at larger detunings, the optical field resonates less strongly than

for smaller detunings, so the time scale for the cavity response is shorter, leading to smaller

optical damping. To create a stable system, we consider a carrier field (C) with large

detuning δC ≈ 3 γ that creates a restoring force, but also a small anti-damping force. To

counteract the anti-damping, a strong damping force is created by injecting a subcarrier

(SC) with small detuning δSC ≈ −0.5 γ. For properly chosen power levels in each field, the

resulting system is stable; we found a factor of 20 higher power in the carrier to be suitable

in this case. To illustrate the behavior of the system at all detunings, the various stability

regions are shown in Fig. 6-9 for this fixed power ratio. Point (d) in particular shows that

the system is stable for our chosen parameters. The overall spring constant of this combined

system is smaller because of the large detuning of the carrier field.

An experiment was performed to demonstrate the stable double optical spring. We

already operated with a second optical field, so with the suitable distribution of power be-

tween the carrier and subcarrier, we could detune the subcarrier by inserting an offset into

its PDH signal (which is sufficient for reaching the ideal detuning for maximal damping),

and detune the carrier by controlling the frequency of the AOM. We operated with ap-

proximately 3 W in the carrier field, and 0.15 W in the subcarrier field. In Figure 6-10 we

show response curves corresponding to various C and SC detunings. In curves (b), (c) and

(d), we detune the carrier by more than the cavity linewidth since the optical spring is less

unstable for large δC . With no SC detuning, the optomechanical resonant frequency reaches

Ωeff = 2 π × 2178 Hz, shown in curve (c). Note that the optical spring is unstable, as evi-

denced by the phase increase of 180◦ about the resonance (corresponding to anti-damping).

Next we detune the subcarrier in the same direction as the carrier, shown in curve (b),

which increases the resonant frequency and also increases the anti-damping, demonstrated

by the broadening of the resonant peak. For these two cases, electronic servo control is used

to keep the cavity locked. If the control system is disabled, the amplitude of the cavity field

and mirror oscillations grow exponentially at the optical spring frequency. Remarkably,
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Figure 6-10: The optical spring response for various power levels and detunings of the
carrier and subcarrier. Measured transfer functions of displacement per force are shown as
points, while the solid lines are theoretical curves. The dashed line shows the response of the
system with no optical spring. An unstable optical spring resonance with varying damping
and resonant frequency is produced when (a) δC = 0.5 γ , δSC = 0; (b) δC = 3 γ , δSC = 0.5 γ;
(c) δC = 3 γ , δSC = 0; and it is stabilized in (d) δC = 3 γ , δSC = −0.3 γ. Note that the
damping of the optical spring increases greatly as the optomechanical resonance frequency
increases, approaching Γeff ≈ Ωeff for the highest frequency optical spring.

when the subcarrier is detuned in the opposite direction from the carrier, the optical spring

resonance becomes stable, shown in curve (d), allowing operation of the cavity without elec-

tronic feedback at frequencies above 30 Hz; we note the change in phase behavior and the

reduction of the resonant frequency. The switching off of the control system was achieved

by a switchable 2nd order Sallen-Key elliptic lowpass filter. The low frequency control was

still necessary to counteract seismic motion. In order to maintain stability at the unity gain

frequency of the servo (between 30 and 150 Hz), it is necessary that the filter have a very

sharp phase response. The Sallen-Key topology allows us to create a filter with a frequency

response identical to that of a damped harmonic oscillator. By tuning the frequency of the

filter to match the mechanical resonant frequency of the end mirror, and giving the filter

a high quality factor, we may achieve an extremely sharp phase response and maintain the
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loop shape and phase below the resonant frequency. It is critical to match the frequency

of the filter to the mechanical frequency in order to avoid instability caused by the peaking

of the filter, which is cancelled by the notch in the optomechanical response (see Figure

6-14). These results demonstrate how the frequency and damping of the optical spring can

be independently controlled in the strong coupling regime.

6.4 Phase 3 experiment

Towards the purpose of measuring ponderomotive squeezing and quantum radiation pressure

noise, the experiment was upgraded to softer mechanical suspensions placed in two identical

cavities in a Michelson interferometer. The softer suspension is intended to reduce the

thermal noise, and the Michelson interferometer is intended to reduce the effects of classical

laser noise. The fundamental frequency of the end mirrors has dropped to 6.3 Hz, below

which the fiber suspensions no longer act as rods, but rather as pendulums. This limit

cannot be breached because it would not allow for alignment of the pitch of the end mirrors.

The pitch must be adjustable for a suspension in this regime, as the radiation pressure force

at high input power deflects the mirror sufficiently to misalign the cavity. At present, we do

not operate the system with a double optical spring because the beamsplitter’s reflectivity

is polarization dependent.

6.4.1 Experimental layout and control system

Figure 6-12 shows the experimental layout. We now outline the controls in several stages.

The bulk of the control system is operated in the digital domain. The digital control system

operates with a 32 kHz sampling rate, which is sufficiently fast for most, but not all of the

feedback loops. In particular, the common mode feedback to the laser frequency, and the

PI damping loops require special analog filters.

• Primary control concerns the three major degrees of freedom in the system: the length

of each arm cavity, and the Michelson degree of freedom (the relative phase of the

laser beam returning to the beamsplitter from each arm cavity). In a traditional inter-

ferometer with arm cavities arranged in a Michelson configuration with a heterodyne

readout scheme, phase sidebands are placed on the input laser beam with an EOM.

The frequency of these sidebands is chosen to be outside the bandwidth of the arm
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Figure 6-11: Picture of the in-vacuum layout of the Phase 3 experiment. The inset picture
shows a close-up view of an end-mirror suspension when the cavity is locked.

cavities, so they do not resonate, which allows them to act as a phase reference for the

carrier field. When the cavity length is not perfectly on resonance, the carrier field

becomes out of phase with the sidebands, and the phase modulation (PM) Is con-

verted to amplitude modulation (AM), which may be detected by a photodetector.

The signal is then demodulated. Recall from Chapter 1 that ideally the bright port

is only sensitive to common mirror motion, while the dark port is only sensitive to

differential mirror motion. To allow a portion of the PM to couple to the dark port,

and allow a heterodyne readout of the differential motion, a macroscopic “Schnupp”

asymmetry [65] in the distance between the beamsplitter and the two input mirrors

is necessary. The asymmetry, 10 cm in our case, allows for imperfect cancellation

of the phase sidebands while the carrier field remains dark because of the additional

phase. The asymmetry also allows for readout of the Michelson DOF at an alterna-

tive demodulation phase. The standard scheme relies on the carrier field experiencing

either a 0 or π phase shift upon reflection from the arm cavities, so that there is only

a signal as the cavity moves away from resonance. Unfortunately, this means that

the technique works very poorly when the cavities are operated detuned. Consider
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Figure 6-12: Diagram of the Phase 3 experiment. Signals used for control are shown in green.
The primary length signals are generated from amplitude sidebands on the carrier light. The
transmitted light through each cavity is temporarily used to acquire lock. Optical levers are
used on each end mirror to sense angular motion and damp the mirror’s resonances. FI refers
to Faraday Isolator, AM to amplitude modulator and QPD to quadrant photodetector.
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that for the case δγ = 1, the carrier experiences a π/2 phase shift from the cavity,

completely converting the PM to AM, destroying the sensitivity to cavity motion. To

operate well at this detuning, however, we instead inject AM sidebands, which are

converted entirely to phase sidebands when the cavity is operated at δγ = 1. Any

deviation from this position, and intensity sidebands are created, again creating a

readout for the cavity motion. For any other detuning, a combination of AM and PM

sidebands at the input allow for proper operation of the cavity. A detailed analysis of

the technique, with construction of a “universal” modulation is outlined in Ref. [66].

One limitation to the AM technique, however, is that it does not work unless both

arm cavities are maintained at δγ = 1. It is extremely difficult to transition to this

state when the mirrors are free swinging, because it requires that all 3 of our DOFs

are in the proper position simultaneously. To ease the process, we first lock each arm

cavity while allowing the Michelson DOF to remain uncontrolled. To do so, we use the

transmitted light through each cavity. At δγ = 1, the transmitted light provides an

excellent signal for the cavity length. To acquire lock of both arm cavities quickly, we

divide the signal into differential and common motion, derived from the transmitted

light signals. The common motion is fed back to both the laser frequency and as a

force on the input mirrors. When the mirrors swing through a resonance, typically

lasting only 10 microseconds, the feedback to the laser frequency allows the cavity to

stay near resonance long enough for the length feedback to lock the cavity. Once both

arms are locked in this way, the Michelson degree of freedom may then be locked,

and the feedback may be switched to use the demodulated heterodyne signals derived

from the AM sidebands. We typically operate with 10 to 50 kHz bandwidth in the

common mode feedback, with the laser feedback dominating above 1 kHz, and the

length feedback below. The differential feedback is typically operated with 1 kHz

bandwidth, as limited by the speed of our digital control system. The Michelson

feedback is operated with about 100 Hz bandwidth.

• Secondary control concerns all auxiliary degrees of freedom in the system. First, we

have found that the dominant motion of the able is the table pitching along its axes.

We may use the shadow sensors of the suspended optics as a sensor for this motion,

and then feed it back to the table supports. This allows for a reduction of a factor
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up to about 10 in the RMS of the motion. Second, the shadow sensors themselves

are used to sense the local motion of the mirror relative to its suspension cage. The

signals are decomposed into pitch, yaw, longitudinal, and side-to-side motion, and

each of these signals is fed back to the coil-magnet pairs to damp the low frequency

resonances. The longitudinal and side-to-side modes are about 1 Hz, and the pitch and

yaw modes are 0.5 to 0.7 Hz. Finally, the motion of the 1 gram mirrors can become

very large because the new resonant frequency of the longitudinal mode, 6.3 Hz, is

coincident with a resonant frequency of the table support structure. To counteract

this, we shine a HeNe laser on each end mirror, and use a quadrant photodetector

to detect the reflected beam. When the mirror moves, the signal on each quadrant

varies, allowing us to detect the angular motion of the mirror (the 6.3 Hz mode couples

significantly to pitch). We use narrowband feedback around each resonant frequency

(6.3 Hz longitudinal, 68 Hz pitch and 38 Hz yaw) to the coil-magnet pairs to damp

each resonance. The feedback greatly reduces the RMS motion of the mirror and

greatly eases lock acquisition. However, once the arm cavities are locked, noise from

the optical lever signal introduces broadband noise into the more sensitive primary

length sensing signals. Because the primary length signals are sensitive to the angular

DOFs, once the cavities are locked, we switch the angular feedback to use the length

signals instead of the optical levers.

• Parametric instability damping loops are required to eliminate the instability of the

drumhead motion. With the higher finesse cavities, the parametric gain R can be

significantly larger then in the Phase 1 experiment, but this mode remains the only

one to become unstable. We find that it is more robust to directly damp the drumhead

motion of each input mirror by feeding back to the coil-magnet pairs on each mirror,

using the transmitted light signals to sense the drumhead motion. We prefer to

damp the mode using digital feedback, as it allows for greater flexibility, but the 27.5

kHz mode (the mirror has slightly different frequencies than the one in Phase 1) lies

outside the Nyquist frequency of the control system. However, the motion at 27.5 kHz

is aliased in the analog-to-digital process, and imaged in the digital-to-analog process.

By taking advantage of these effects, and installing an extra aliasing filter in each of

the transmitted light signals, we may heavily damp the drumhead modes and avoid

instability.

134



6.4.2 Control issues with the optical spring

It is instructive to consider some of the control and feedback issues that arise in optome-

chanical systems. The Phase 3 experiment is an ideal system in which to discuss these

issues because it combines the softest suspension with the most complex control topology.

Suspended high finesse optical cavities present challenging control issues. Due to the flexible

suspensions, these systems often exhibit motion at the level of a few microns driven by the

motion of the ground at approximately 1 Hz. In our case, with a finesse of about 104, we

require the motion between the two cavity mirrors to be less than about 10−11 meters, which

therefore requires our control system to reduce the relative motion between the mirrors by

a factor greater than 105. This reduction is usually accomplished with servo control of the

cavity motion, feeding back to the position of the cavity mirrors, or to the laser frequency,

or to some combination of the two. The addition of the optical spring dramatically alters

the response of the cavity to forces applied to its mirrors, as well as to changes in the laser

frequency. The change in the response, we show, can dramatically change the topology of

the servo loop required to keep the cavity locked. Additionally, as discussed previously,

the response of the cavity to outside disturbances is dramatically reduced. If this reduction

exceeds the 105 factor, the cavity exhibits self-locking, in which the optical spring maintains

the stability of the cavity without the need for external control.

First, we consider the case when active control of the cavity is desired, or necessary.

The basic scheme is presented in Figure 6-13. Depending on the readout scheme, and the

cavity detuning, the response of the cavity to displacements varies in a frequency dependent

manner. However, this effect is typically counteracted electronically, and has no relevance

for this discussion, so we assume that C = 1 for simplicity. We note that the role of the

optical spring is identical to that of a feedback loop for which the feedback kernel H is

identical to the optical spring constant K. First, we consider the response of the system to

external forces on the end mirror. In the absence of the optical spring, the response is simply

Pe, the response of the pendulum to forces. With the optical spring present, however, the

response of the system to external forces becomes

P ′
e =

Pe

1− PeK
, (6.4)

and more relevant to our active control of the cavity, feedback applied to the input mirror
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Figure 6-13: Block diagram describing the optical spring in the context of a control system
is presented. Pi and Pe are the displacement to force transfer functions of the input and
end mirrors, H is an electronic filter function, C is the cavity’s response to mirror motion,
K is the optical spring, and F are external forces applied to the end mirror.

(which is much heavier, and largely irrelevant to the optical spring) has a modified response

P ′
i =

Pi

1− PeK
. (6.5)

This modified response can have profound implications for the servo control system. In

Figure 6-14, we plot the measured cavity response for three different input power levels, with

the detuning of the cavity fixed, to demonstrate how the response changes as we increase

K. First, we note that the response below the optical spring frequency decreases as we

increase the power, as expected. Secondly, we note that the response has sharp features at

6.3 Hz (the fundamental frequency of the end mirror), 38 Hz (the yaw resonant frequency

of the end mirror), and 70 Hz (the pitch resonant frequency of the end mirror). These sharp
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Figure 6-14: Response of the differential motion of the arm cavities to a force applied to the
input mirror with an optical spring. A glitch corrupted the data near 1 kHz in the black
trace. The optical spring is visible near 100 Hz (black), 300 Hz (blue) and 1 kHz (red). The
phase lag above 1 kHz is due to time delays in the digital acquisition system.

notches in the response near these frequencies are present because a force applied to the

input mirror couples to the optical spring, which in turn pushes on the end mirror, which

excites these various modes. As a general rule, any resonance in the mechanical response of

the end mirror manifests as a notch in the modified response, as Pe is in the denominator

of Eq. 6.5. The presence of these notches, combined with the reduced response, can greatly

complicate control of the system, as it can create additional unity gain crossings in the servo

system, which can lead to instabilities. Feedback to the laser frequency experiences similar

difficulties, and the response to laser feedback is given by

R =
1

1− PeK
, (6.6)

which has identical features to those present in the input mirror feedback.

Next, we consider control strategies in the presence of an optical spring. There are

two regimes that we may consider. The first is the case in which the reduction in response

caused by the optical spring is large enough to require modification to the servo system, but

not strong enough to exhibit self-locking. This is the most challenging regime to work in, as

stabilization of the cavity is required, but the optical spring introduces additional features
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Figure 6-15: A measurement of the open loop gain of the servo control system for three
levels of input power at fixed detuning are shown. The servo system for the black and blue
traces are identical, while for the red trace, the compensation filter H has been modified to
eliminate the gain at low frequencies.

into the response. Creating a stable servo system in the presence of these notches, while

possible, creates requirements on the control system that limit the amount of stabilization

that it can provide. For that reason, this regime is usually undesirable. Examples of the

open loop gain for the same three input power levels is shown in Figure 6-15. Note that

the red and black traces operate in this regime, and they have multiple unity gain crossings

near 6, 40 and 70 Hz, corresponding to the mechanical mode frequencies of the end mirrors.

The second case is that in which the optical spring is sufficiently strong that external

feedback is not required to maintain stability of the cavity. This occurs when the magnitude

of Kopt/KM exceeds the gain requirements for stability, which for the Phase 3 experiment,

occurs with the optical spring near 1 kHz. If the previously described double optical spring

technique is used to generate a stable optical spring, then the need for external control is

completely negated. However, we currently do not operate in this regime because of the

polarization dependence of the beamsplitter’s reflectivity.
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Figure 6-16: The noise level in the differential degree of freedom is given in blue, observed
with 50 mW of input power and detuning δγ ≈ 1. The red trace indicates the nominal
sensitivity required to observe squeezing or quantum radiation pressure noise with 5 W of
input power. The closest approach to the required sensitivity is near 500 Hz, where the noise
level is a factor of 10 too large. The large peaks near 1 and 2 kHz correspond to resonances
of the fibers in the end mirror suspension. The sharp notch near 600 Hz is an artifact of
the calibration. The noise above 600 Hz is created in the analog-digital conversion process.
The noise below 600 Hz is not understood.

6.4.3 Current status

The system may be stably locked with all of its DOFs controlled. Work is currently under-

way to reduce technical noise in the system. The current sources of noise that we believe to

be limitations are electronics noise and scattered light (that reflects off secondary surfaces

and back into the main beam creating phase noise). It is anticipated that the thermal noise

from our low Q suspensions of the end mirror precludes radiation pressure noise or squeez-

ing to be observable. Work is currently underway to replace the end mirror with similar

suspensions, but with a glass ring in place of the steel ring, and with the fibers welded to

the ring and to the mirror. The current noise level in the differential degree of freedom is

shown in Figure 6-16.
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6.5 Summary

In this chapter, we have described experimental progress towards observation of pondero-

motive squeezing, including characterization of the optical spring and parametric instability

effects. In the final configuration, we operate close to the parameters assumed in Chapter

5, although at a higher noise level. In the next chapter, we explore how our experiments

may be applied to the field of macroscopic quantum measurement.
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Chapter 7

Cooling experiments

There has been considerable interest recently in approaching the quantum ground state of

macroscopic mechanical oscillators [67–77]. “Macroscopic” in this case refers to the oscilla-

tor consisting of many individual particles, ranging from picogram oscillators to kilogram

mirrors. The success of these efforts depends upon various cooling techniques that remove

thermal energy that ordinarily keeps the oscillators far from the ground state. Here we

discuss how the optical spring and optical damping effects, and sensitive optical readouts

in general, may be useful in these efforts. In this Chapter, we first introduce the concepts

of cold damping, cavity cooling and thermal dilution, then present a series of experiments

demonstrating these effects.

7.1 Cold damping and cavity cooling

The most common technique for removing thermal energy in these experiments is to detect

the motion that it induces, and to exert a (damping) force on the oscillator opposing

it, thereby increasing its damping, but also reducing its motion and temperature. When

the damping force is provided externally, the technique is called cold damping [69, 78, 79].

Alternatively, the optical damping force (or photothermal effect) may also provide the

same cooling [67, 68, 70–72, 75]. There are predominantly two limits to consider. First, the

oscillator may only be cooled until it becomes critically damped. A simple model of energy

conservation in the system requires that

ΓMT + ΓCDTCD = ΓeffTeff , (7.1)

141



where ΓCD and TCD are the damping rate and temperature associated with the damping

force, and Γeff = ΓM + ΓCD and Teff are the final damping rate and temperature. TCD

is primarily limited by the noise of the sensor, but let us assume for a moment that it is

effectively 0, then we obtain

Teff =
ΓM

Γeff
T, (7.2)

where T is the initial temperature. So as long as the thermal noise of the oscillator is the

limitation, the effective temperature is reduced by a factor ΓM/Γeff . In order to maintain

a mode of oscillation, we require that Γeff < 2×ΩM , resulting in a maximum cooling ratio

of twice the initial quality factor of the device. In order to reach the ground state of the

oscillator, we require the minimum thermal energy to be less than the ground state energy:

kBT

2Q
<

1
2
~ΩM . (7.3)

The second limitation arises from the noise of the initial measurement of the oscillator’s

position. We may estimate the precision by assuming that the measurement is limited

by the SQL. Neglecting factors of order unity, and assuming that the oscillator is nearly

critically damped, the RMS uncertainty of the mirror position may be estimated as

x2
RMS =

~
MΩM

. (7.4)

Then the number of phonons in the oscillator is (again neglecting factors of order unity)

N =
Mx2

RMSΩ2
M

~ΩM
= 1. (7.5)

So we may expect that if the measurement device operates near the SQL, the oscillator

should be able to approach the ground state. A full calculation has been performed demon-

strating that the ground state can be achieved in both the cold damping and cavity cooling

techniques, although with different requirements on the cavity used for detection [80]. We

point out that for an experiment with typical mass of 1 gram and resonant frequency of

order 1 kHz, we would require a mechanical Q of order 1010 to satisfy Eq. 7.3, which is a

prohibitive requirement with current technology. It is clear that if we wish to approach the

ground state at that mass scale, we require a more effective method of negating thermal

effects.
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7.2 Thermal dilution

In the LIGO interferometers, the wires in the suspensions for the optics are operated at a

significant fraction of their breaking strength. This is done so that the mechanical forces

acting on the mirror from the wire are as small as possible. The full equation of motion for

the mirror may be written as

M
d2x

dt2
= −(kgrav − kelas)x−MΓM

dx

dt
, (7.6)

where kgrav is the gravitationally induced spring constant, and kelas is the spring constant

induced by the internal stiffness of the suspension wire. It is shown by Saulson in Ref. [54]

that the thermal force noise exerted on the mass depends only on the damping ΓM . It is

also usually the case that the quantity

Φ =
ΓM√

kelas/M
, (7.7)

the “loss angle,” is roughly conserved (or at least monotonic for kelas) as a function of the

dimensions of the oscillator. Consequently, while a much thicker wire could be used in

the LIGO suspensions to operate far from the breaking strength, doing so would greatly

increase kelas and therefore ΓM , resulting in greater thermal noise. The resonant frequency

is completely determined by the gravitational spring constant because kgrav À kelas, yet

the thermal noise is completely independent of the gravitational force. This allows the

mechanical quality factor of the pendulum to greatly exceed the quality factor of an isolated

piece of wire, thereby “diluting” its thermal noise.

We propose using a similar technique to dilute the thermal noise in our experiments.

Although gravity is much too weak to be effective, the extreme stiffness of the optical spring

make it an ideal candidate. The optical spring does have an associated optical damping,

which must introduce extra noise. However, we note that the optical fields are not at

ambient room temperature, but are instead ultimately limited by vacuum fluctuations.

The vacuum fluctuations enforce the SQL, which we have shown in Eq. 7.5 allow the

system to approach the ground state. A full calculation of the limitations are currently

underway [81]. This technique allows us to greatly increase the cooling factor because

we effectively increase the mechanical quality factor by increasing the resonant frequency
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without introducing additional mechanical damping. The effectiveness of the technique with

regards to suppressing thermal noise is difficult to calculate in our system. Two different

models of thermal noise may be considered. In the standard viscous damping model, the

frictional damping force is assumed to be viscous (proportional to velocity) in nature, and

the damping is frequency independent. In an alternative model [54], the loss is modeled as

a complex spring constant

k = k0e
iΦ, (7.8)

where Φ is the loss angle. In this “structural damping” case, the damping scales as Ω−1,

which greatly reduces the thermal noise at higher frequency. In the viscous model, the

cooling factor is enhanced by a factor Θ/ΩM , while in the structural damping case, the

cooling factor is enhanced by a factor (Θ/ΩM )2. Unfortunately, we don’t know at this time

which model is correct for our system, as we have not directly observed thermal noise.

7.3 A cold all-optical trap (Phase 2)

The first cooling experiment we performed was with the stable double optical spring de-

scribed in Section 6.3. To demonstrate the cooling, we operated the cavity with slightly

varying detunings but fixed power levels to vary the optical damping, while maintaining a

constant resonant frequency. The feedback bandwidth was limited to below 170 Hz in all

cases, and heavily attenuated at higher frequencies. The limiting noise source is frequency

noise of the laser that is converted into intensity fluctuations in the detuned cavity, and

drives the mirror position. It is straightforward to calibrate the PDH error signal of the

subcarrier by injecting a frequency excitation into the laser, and measuring the response to

the excitation. We then convert to meters by the relationship

∆ω0

ω0
=

∆L

L
. (7.9)

We estimate the effective temperature of the optomechanical mode by measuring the dis-

placement of the mirror, and equating (1/2)Kx2
RMS = (1/2)kBTeff , where xRMS is the RMS

motion of the mirror. The RMS motion of the mirror is determined by integrating the

noise spectral density from 1500 to 2300 Hz. The displacement noise is shown in Fig. 7-1.

The lowest measured temperature of 0.8 K corresponds to a reduction in N by a factor of
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Figure 7-1: The measured noise spectral density of the cavity length is shown for several
configurations corresponding to different detunings. The lowest amplitude (magenta) curve
corresponds to δC ≈ 3 and δSC ≈ −0.5. The other (green and blue) curves are obtained by
reducing δSC and increasing δC in order to keep Θ approximately constant, while varying
Γeff . The spectrum is integrated between 1500 and 2300 Hz to calculate the RMS motion
of the oscillator mode, giving effective temperatures of 0.8, 3.8 and 12.2 K. The limiting
noise source here is not thermal noise, but in fact frequency noise of the laser, suggesting
that with reduced frequency noise, even lower temperatures could be attained.
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2.5× 103. We point out that if we were limited by thermal noise from viscous damping, we

would expect a temperature reduction closer to QM × (Θ/ΩM ) ≈ 3×104. These results are

reported in Ref. [73].

7.4 Cold damping of an optical spring (Phase 2.5)

From Eq. 7.9, we see that to easily mitigate the effect of laser frequency noise on a dis-

placement measurement, one need only shorten the cavity length. Therefore, we shortened

the Phase 2 cavity as much as possible, limited by the size of the suspension cages of the

mirrors, to about 10 cm. A reduction in the displacement noise by a factor of 10 should

imply a reduction of 102 in the temperature, which would increase the cooling factor to

approximately 2.5× 105. At that level, we would expect to be limited by the thermal noise

of the oscillator. In order to avoid this limitation, and also to gain experience with lower

frequency oscillators, we cut the optical fibers below their attachment to the mirror. This

reduced the resonant frequency of the mirror to 12.75 Hz from 172 Hz, and increased its

quality factor to 19, 950 from 3, 200, greatly reducing the thermal noise. The layout of the

experiment is shown in Figure 7-2. Results from this experiment appear in Ref. [76].

LASER

FIEOM HWP

PDH

Frequency Length

PBS 1 gram

250 gram

Figure 7-2: Simplified schematic of the experiment. About 100 mW of λ0 = 1064 nm
Nd:YAG laser light passes through a Faraday isolator (FI) and a half-waveplate (HWP)
and polarizing beamsplitter (PBS) combination that allows control of the laser power, be-
fore being injected into the cavity, which is mounted on a seismic isolation platform in a
vacuum chamber (denoted by the shaded box). A Pound-Drever-Hall (PDH) error signal
derived from the light reflected from the cavity is used to lock it, with feedback to both the
cavity length (actuated via magnets affixed to each suspended mirror), as well as the laser
frequency.

Several factors limit the performance of this shorter cavity, however. First, the FSR of
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the cavity is increased to 1.5 GHz, which is out of the range of our ability to easily produce

a subcarrier. Hence, we were limited to a single optical spring. Additionally, a parametric

instability of the drumhead motion of the 1 gram mirror (predicted to be 139.4 kHz by

finite element analysis) at 136.8 kHz occurred at modest power levels, limiting the optical

spring frequency to about 1 kHz. Unlike the input mirrors, we do not have magnets placed

directly on the mirror, and we have no actuator easily capable of providing feedback at this

frequency.

Despite these limitations, we are able to create a 1 kHz optical spring, which we then

cold damp through active feedback. The cavity is locked off-resonance to δγ ≈ 0.5, to

maximize the optical restoring force. The error signal for the locking servo, generated using

the Pound-Drever-Hall technique [82], is split between a high bandwidth analog path fed

back to the laser frequency, and a digital path fed back to the input mirror’s magnet/coil

actuators. The digital feedback is used at frequencies below 10 Hz to keep the cavity locked

in its operating state. The analog feedback to the laser frequency is arranged so that it

damps and cools the motion of the oscillator. The effective damping may be controlled

by adjusting the gain of the feedback loop. Additional analog feedback is supplied to the

magnet/coil actuators to damp a parametric instability of the input mirror at 28 kHz.

The noise in our experiment remains dominated by frequency noise of the laser at Θ.

We estimate the effective temperature of the optomechanical mode, as determined by this

noise. To determine xRMS in this experiment, we first find the resonant frequency and

damping of the oscillator by measuring its frequency dependent response to a driving force,

shown in Fig. 7-3. In the same configuration, we then measure the noise spectral density of

the error signal from the cavity, calibrated by injecting a frequency modulation of known

amplitude at 12 kHz. The measured displacement spectra, as the electronic damping was

varied, are shown in Fig. 7-4. Since the optical spring resonance is at Ω ≈ 2π × 1000 Hz,

we integrate the spectrum from 850 Hz to 1100 Hz to obtain an estimate of the motion of

the mirror. At other frequencies, sensing noise not present on the mirror itself is dominant.

To correct for the finite integration band, we assume a thermally driven displacement noise

spectrum for the oscillator, given by

〈
x2

〉
=

4 kB Teff Γeff/M

(Θ2 − Ω2)2 + (Ωeff Ω/Qeff)2
, (7.10)
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Figure 7-3: The transfer function of an applied force to mirror motion, for increasing levels
of damping [curves (a) to (d)]. The force is applied via the magnet/coil actuators, and the
response is measured by the PDH error signal. The points are measured data, and the lines
are fitted Lorentzians from which the resonant frequency and damping constant are derived
for each configuration. Statistical errors in the fit parameters are of order 1%.

and find Teff by setting our measured spectrum integral equal to a thermal spectrum in-

tegrated over the same frequency band. The lowest temperature reached is 6.9 ± 1.4 mK.

Thus the cooling factor from the ambient TM = 295 K is 43000±11000. Systematic error in

the calibration dominates statistical error in these uncertainty estimates. We note that the

mechanical quality factor was increased by a factor of about 80, from 19950 to 1.6×106, by

optical dilution. Without an optical spring, effective temperatures below 15 mK could not

have been reached given the mechanical losses of the oscillator. Further reduction of the

temperature for our cavities likely requires the use of a Michelson interferometer to reject

the laser noise.

7.5 LIGO cooling

While the optical spring provides a convenient method to dilute the thermal noise of our

oscillators, it is by no means the only method. The essential feature to all of these schemes

is a sensitive readout. The effectiveness of any technique is limited by how far the readout

noise is from the SQL. The LIGO interferometers operate a factor of about 10 above the SQL
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Figure 7-4: The measured noise spectral density of the mirror displacement. The curves (a)
to (d) correspond to increasing gain in the damping feedback loop; for each, the parameters
of the resonance are measured and depicted in Fig. 7-3. The spectra are integrated from
850 to 1100 Hz, the frequency range where the mirror motion is the dominant signal, to
obtain the RMS motion of the mirror and its effective temperature. The broad limiting
noise source is frequency noise of the laser. Narrow spectral features in addition to the
main optical spring resonance are due to coupling of acoustically driven phase noise.

at its closest approach near 150 Hz. The mirrors of the interferometer are usually considered

to behave as 0.7 Hz pendulums, yet this is only true when the mirrors are uncontrolled.

When the interferometer is operating, a control system acts to lock the mirrors of each

cavity to each other, in a way very similar to that of a spring. We show that with slight

modifications to the control system, we may make the servo behave almost identically to a

spring, thereby creating the thermal dilution.

The four mirrors of the LIGO interferometer (Fig. 7-5), each an extended object with

displacement along the optical beam direction xi (i = 1, . . . , 4), are suspended as pendulums.

The servo control system which keeps the interferometer mirrors at the resonant operating

point is an essential component of this study. While all longitudinal and angular degrees

of freedom of the mirrors are actively controlled, we limit our discussion to the differential

arm cavity motion, which is the degree of freedom excited by a passing gravitational wave,

and hence also the most sensitive to mirror displacements. This mode corresponds to the

differential motion of the centers of mass of the four mirrors, xc = (x1 − x2) − (x3 − x4),

and has a reduced mass of Mr = 2.7 kg. A signal proportional to differential length changes
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is measured at the antisymmetric output of the beam splitter, as shown in Fig. 7-5. This

signal is filtered by a servo compensation network before being applied as a force on the

differential degree of freedom, by voice coils that actuate magnets affixed to the mirrors.

Although this measurement and the cold damping of an optical spring measurement

both rely on a servo system, there is an important distinction in considering the calibration

of the mirror motion. In the cold damping case, we are limited by laser frequency noise that

drives the mirror motion. In the LIGO interferometer, we are limited by sensing noise at

the resonant frequency, not mirror motion. This is an important distinction, and we show

here that we require greater care in the calibration when the sensing noise is significant.

The degree of freedom that we intend to study as a quantum particle is the differential

mirror motion xc. However, optical measurements probe the location of the mirror surface

(averaged over the optical beam), which differs from center-of-mass location due to the

mirror’s internal thermal noise), and include an additional sensing noise due to the laser

shot noise. We combine these noises into a total displacement noise XN , and write the

output signal as

xs = xc + XN . (7.11)

The center-of-mass motion is also subject to a noise force FN (including for example, the

thermally driven motion of the mirror suspensions), and a feedback force that is proportional

to xs. The resulting equation of motion in the frequency domain is given by:

−Mr

[
Ω2 − iΩΩp φ(Ω)− Ω2

p

]
xc = FN −K(Ω)xs . (7.12)

Here K(Ω) is the frequency-domain feedback filter kernel, and the φ(Ω) term accounts

for mechanical damping. For a viscously damped pendulum with quality factor Qp =

Ωp/Γp (Ωp and Γp correspond to the real part and twice the imaginary part of the complex

eigenfrequency of the pendulum), φ(Ω) = 1/Qp. If the damping is not viscous, but instead

caused by internal friction φ(Ω) takes on a more complex form [54]. Combining Eqs. 7.11

and 7.12, we obtain the equation of motion for the center-of-mass:

−Mr

[
Ω2 − i ΩΩp φ(Ω)− Ω2

p −K(Ω)/Mr

]
xc = FN −K(Ω)XN . (7.13)
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In this experiment, we adjust the control kernel so that

K(Ω)/Mr ≈ Θ2 + iΩΓeff (7.14)

with Θ and Γeff much larger than Ωp and Γp, respectively, such that the modified dynamics

of xc are given by a damped oscillator driven by random forces:

−Mr[Ω2 − iΩΓeff −Θ2]xc = FN −K(Ω)XN . (7.15)

The output of our experiment measures xs, and in order to deduce true mirror motion

xc, we must consider the limiting source of noise. If noise predominantly drives the center-

of-mass motion, i.e. FN À K (Ω)XN , then xs ≈ xc (see Eq. 7.11) and the measured signal

corresponds to the center-of-mass motion. However, in the case that surface or sensing noise

dominates, i.e. K (Ω)XN À FN , then a correction factor must be applied to the measured

signal to deduce the center of mass motion. Taking Eqs. 7.11 and 7.15, in the limit that

FN = 0, we find that

xc =
K (Ω)
MrΩ2

xs. (7.16)

If the levels of each noise XN and FN are not precisely known, then one can make a

conservative correction by applying a factor max
(
1,K (Ω) /MrΩ2

)
to determine the worst

possible center-of mass-motion, thereby accounting for the fact that the servo can inject

noise back onto the oscillator. We may then determine the effective temperature of the

mode

Teff =
MrΘ2δx2

rms

kB
, (7.17)

where

δx2
rms =

∫ ∞

0
max

(
1,

K(Ω)
MrΩ2

)2

Sxs (Ω) dΩ ≡
∫ ∞

0
Sxd

dΩ . (7.18)

Sxs is the single-sided power spectral density of the measured motion xs, and Sxd
includes

the correction factor. We note that it is impossible to reliably measure the mirror motion

at arbitrarily high frequencies, and the integral in Eq. 7.18 diverges in any real system.

The integration therefore must be limited in its frequency band, as we later discuss.

151



Figure 7-5: Optical layout of a LIGO interferometer. Light reflected from the two Fabry-
Perot cavities formed by input and end mirrors, M1 – M4, is recombined at the beam splitter
(BS). To control the differential degree of freedom, an optical signal proportional to mirror
displacement is measured on the photodetector (PD), and fed back as a differential force
on the mirrors, after filtering to form restoring and damping forces.

Finally, the corresponding occupation number may be determined by

Neff =
kBTeff

~Θ
. (7.19)

We form K(Ω) of Eq. 7.14 by convolving the position-dependent output signal with

filter functions corresponding to the real and imaginary parts of the feedback kernel K(Ω).

In the LIGO feedback system, there are additional filters and propagation delays that cause

deviations from the ideal cold, damped spring, at high and low frequencies. Below 100 Hz,

K(Ω) increases sharply to suppress seismically driven motion; at high frequencies (above

a few kilohertz), K(Ω) decreases precipitously to prevent the control system from feeding

shot noise back onto the test masses. However, in the frequency band important for this

measurement (near the resonance), the feedback is well approximated by a spring and

damping force, as shown in Fig. 7-6.

Measurement results and discussion: Fig. 7-7 shows the amplitude spectral density

of mirror displacement for varying levels of cold damping. To infer the effective temperature

of the mode, we must determine its effective frequency Ωeff and estimate the root-mean-

square displacement fluctuation δxRMS. First we drive the differential mirror motion and

measure the response, shown in Fig. 7-6. These response functions are fit to a damped
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oscillator model; Θ and Qeff are products of the fit. Then δxRMS is computed by integrating

the spectrum in the band from 100 to 170 Hz. To correct for the finite integration band,

we scale the result by setting our measured spectrum equal to the integral over the same

frequency band of a thermally driven oscillator spectrum,

Sxth
(Ω) =

4kBTeffΓeff/M

(Θ2 − Ω2)2 + Ω2Γ2
eff

. (7.20)

In this way, we measure a minimum effective temperature Teff = 1.4±0.2 µK, corresponding

to thermal occupation number Neff = 234± 35. Systematic error of 15% in the calibration

dominates statistical error in these uncertainty estimates. The spectra in Fig. 7-7 are

predominantly limited by shot noise in the measurement band.

Cooling to the quantum limit: An interesting question arises as to whether this

technique can lead to ground state cooling of the electromechanical oscillator. The contin-

uous displacement measurement required for servo feedback does in fact introduce a small

additional term to uncertainty relation for the oscillator position and momentum fluctua-

tions, due to measurement-induced steady state decoherence. A sub-SQL noise spectrum

in the vicinity of Θ can circumvent this limit [81]. This can be achieved by injection of a

squeezed state into the antisymmetric port of the interferometer, for example. As classical

noises are suppressed, and the squeezing becomes stronger, the oscillator approaches the

ground state of the electro-optical potential well.

Future prospects with LIGO: In the coming years, two upgrades of the LIGO de-

tectors are planned. The first, Enhanced LIGO, is presently underway with an expected

completion date in 2009, and seeks to improve the sensitivity of the instruments above 40

Hz. The improvement in displacement sensitivity in the frequency band around 150 Hz,

where the cold spring measurements were performed, is expected to be about a factor of 2.

Subsequently, a major upgrade, Advanced LIGO, expected to be completed in 2014, should

give a factor of 10 to 15 improvement in displacement sensitivity relative to that of the

detector used for this work (with a concomitant factor of 4 increase in mass). In Advanced

LIGO, the circulating laser power increases to 800 kW, permitting strong restoring forces

to be generated optically. We expect Enhanced LIGO to reach ∼ 6 times lower occupation

number, approaching 40 quanta, and with Advanced LIGO, the detectors will operate at

the SQL, approaching the ground state of the electro-optical potential well.
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Figure 7-6: Response function of mirror displacement to an applied force, for various levels
of damping. The points are measured data, the thin lines are a zero fit parameter model of
the complete feedback loop, and the thick lines spanning the resonance (shown in the shaded
region) are fitted Lorentzians, from which the effective resonant frequency and quality factor
are derived for each configuration.
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Figure 7-7: Amplitude spectral density of displacement in the frequency band of integration.
The curves (from highest to lowest) were produced by applying increasingly strong cold
damping to the oscillator, corresponding to the measurements of Fig. 7-6. The depression
in the lowest curve is due to the shape of the background noise spectrum; the effects of the
servo are corrected for according to Eqs. 7.11 – 7.18. The narrow line features between 100
and 110 Hz are mechanical resonances of auxiliary subsystems, and a 120 Hz power line
harmonic is also visible.
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As they approach the SQL, these devices should enable novel experimental demonstra-

tions of quantum theory that involve kilogram-scale test masses with kilometer-scale sepa-

rations [6, 12, 83]. The present work, reaching microkelvin temperatures, supplies evidence

that interferometric gravitational wave detectors, designed as sensitive probes of general

relativity and astrophysical phenomena, can also become sensitive probes of macroscopic

quantum mechanics.

7.6 Summary

In this chapter, we have described how the experiments developed for the field of GW

interferometry may also be used in the field of macroscopic quantum measurement. As a

general rule, the effectiveness of a particular system is directly related to its distance from

the SQL, which makes GW interferometers prime candidates for macroscopic quantum

measurement experiments. We have applied optical and active feedback cooling techniques

to the MIT experiments as well as to the 4 km Hanford detector.
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Chapter 8

Future work

It appears that we have mostly exhausted the exploration of classical radiation pressure ef-

fects. In this section, we discuss the prospects for observing and utilizing quantum effects in

GW interferometers, and for exploration of quantum mechanics in macroscopic mechanical

systems.

8.1 Squeezed-input interferometers

Recent progress in squeezing technology [20–22, 24] has demonstrated that squeezers are

capable of producing squeezed states that satisfy the requirements for injection into a GW

interferometer. They have achieved squeezing within the entire GW frequency band, and

demonstrated 10 dB reduction of shot noise. Clearly the next step is the application of a

squeezer to a real GW interferometer, plans for which are already underway. The initial test

has been proposed to inject squeezed light into the dark port of the Hanford 4 km detector at

the conclusion of the Enhanced LIGO science run. If this test is completed successfully, there

will be a strong argument for bringing squeezing to Advanced LIGO. The use of squeezed

light not only allows for lower quantum noise, it also allows for identical noise performance

with lower input power. This could be a significant risk reduction factor for Advanced LIGO,

which may be threatened by thermally induced and parametric instabilities. Additionally,

the high power level circulating in the power recycling cavity requires challenging thermal

compensation. Therefore, it appears likely that squeezing will be an important tool in

the field of gravitational wave detection in the coming years. It is likely that the first

few implementations of squeezing in a GW interferometer will be performed without filter
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cavities, although, the long term success of squeezing will likely depend upon filter cavities

to provide broadband improvements.

8.2 Radiation pressure noise and squeezing

In the ponderomotive squeezing experiment, it may be quantum radiation pressure noise

that is most easily observable non-classical effect. Quantum radiation pressure noise has

yet to be observed in any experiment. The displacement noise sensitivity required is nearly

identical to that of observing squeezing, however, it may be done without the aid of an

optical spring. One unfortunate side effect of a stiff optical spring is that it suppresses

the signal at the photodetector, which has the side effect of amplifying any technical noise.

Most notably, light that scatters out of the laser beam reflects off any moving surface, then

scatters back into the main beam. This creates significant phase noise that appears as

cavity motion. The effects are severely amplified by the optical spring because the real

cavity motion is suppressed, but the scattered light is not. As the technical noise sources

in our system are reduced, it is likely that we will soon observe the thermal noise of our

end mirror oscillators, probably precluding the observation of quantum radiation pressure

noise. However, construction is currently underway of a monolithic fused silica suspension

for the end mirror that should have greatly reduced thermal noise. The noise is currently

about a factor of 10 too high in displacement sensitivity to allow for observation of quantum

radiation pressure noise (see Figure 6-16).

Once observation of quantum radiation pressure noise is achieved, the observation of

squeezing will likely require greater reductions of technical noise sources and an improved

end mirror suspension, as we noted above. Additionally, Advanced LIGO should provide

the capability to observe both radiation pressure noise and squeezing.

8.3 The standard quantum limit

The largest goal in the field remains the direct observation of, as well as the overcoming of,

the Standard Quantum Limit. Initial LIGO remains the closest experiment to approaching

the SQL in optical systems at a factor of 10 away. The prospects for reaching the SQL in a

table top experiment such as the ones described in this thesis are extremely challenging, but

perhaps not impossible. The biggest challenge to reaching the SQL is to find a frequency
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band for which the thermal noise is sufficiently small. At low frequency, suspension thermal

noise dominates with either a Ω−2 or Ω−5/2 dependence. At high frequency, coating or

internal thermal noise is expected to dominate with a Ω−1/2 dependence. The hope is that

somewhere between the two thermal noise sources, the SQL (with Ω−1 dependence) will be

observable. Preliminary calculations suggest that it may be possible with somewhat smaller

masses, of order 0.1 grams. Pursuit of this goal is of critical importance, both as a precursor

to Advanced LIGO, which is expected to operate near or below the SQL, and as a path

towards non-classical behavior of macroscopic masses.

8.4 Entanglement

Entanglement is a quantum mechanical phenomenon in which the state of a system be-

comes inseparable from the state of another system. Observation of entanglement is a

strong demonstration that a system is behaving non-classically. In macroscopic optome-

chanical systems, there has been considerable interest in generating entanglement [84–87].

The entanglement is generated via the radiation pressure coupling, and may manifest as

entanglement between the oscillator and the optical field, between two oscillators, or be-

tween two optical fields. In [88], Wipf et al. calculate that in our double optical spring

configuration, the coupling of each optical field to the mirror position results in the optical

fields becoming entangled. Classical noises will tend to destroy the entanglement, although

it is expected that if we enter the regime where radiation pressure noise and squeezing are

observable, then entanglement should also be observable, and it is not necessary to operate

near the SQL. To operate our interferometer configuration with a double optical spring,

however, we will need to acquire a beamsplitter that is 50% reflective for two polarizations,

or to instead separate the fields only in frequency, not in polarization. Another exciting

prospect is to observe entanglement between the mirror and the optical field. Preliminary

calculations suggest that to achieve this goal in our system, sensitivity better than the SQL

is required, making optomechanical entanglement a tantalizing, but extremely challenging

goal [81,88].
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8.5 Ground state cooling

Reaching the quantum ground state with a mass of order 1 gram (or even more massive) will

be a symbolic milestone of quantum mechanics entering the macroscopic scale of everyday

objects. However, the question then becomes “what next?” One prospect is to place the

mirror into a squeezed state [89], in which its position uncertainty is less than the width of

its ground state wavefunction. We have shown that the injection of squeezed light allows

performance below the SQL, corresponding roughly to the ground state width. Another

prospect is to observe quantum jumps in the mirror’s energy state, which would require an

alternative readout scheme that measures the mirror’s energy as opposed to its position [90].

The requirements for this measurement are, however, likely not experimentally feasible for

our mass range in the near future.

8.6 Summary

In the coming years, a broad range of experiments will approach the quantum regime in

mechanical systems. It is likely that the first results will be observation of effects that

may be achieved far from the SQL: quantum radiation pressure noise and squeezed vacuum

and optical entanglement generated from mechanical coupling. Following these results, we

hope that the systems will progress to and beyond the SQL, allowing for a broad range

of tests of quantum mechanics. Advanced LIGO will likely be the quintessential system

that brings many of these effects together. It will operate at or below the SQL, may benefit

from input squeezed vacuum, and generate ponderomotive squeezing and quantum radiation

pressure noise at a mass scale (40 kg) that exceeds the nearest competitor by many orders

of magnitude, and is also capable of the direct detection of GWs.
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Appendix A

Code simulation results compared

to analytical calculations

In this appendeix, we consider an interferometer configuration that is shown in Fig. A-1,

and in Fig. A-2 we show fields propagating in the interferometer as well as modes of motion

of the mirrors. The interferometer is similar to that used in GW detection: a Michelson

interferometer with Fabry-Perot cavities in each arm. All the mirrors of the interferom-

eter are suspended as pendulums. Power-recycling is optional and is not included here.

The configuration shown has a few unusual features compared with a conventional inter-

ferometer, however. First, the end mirrors of the arm cavities are a common suspended

object, coated with a high-reflectivity coating on both surfaces and assumed to have an

opaque substrate. Second, this cavity end mirror object is very light, with a typical mass

of 1 g, and is suspended as a pendulum with resonant frequency of about 1 Hz. All re-

maining optics are assumed to have a mass of 250 g, and are also suspended as pendulums

with a resonant frequency of 1 Hz. Third, the cavities are detuned from resonance. The

configuration is designed to extract ponderomotive squeezing from the interferometer, but

an alternative design with seperate end mirrors was eventually chosen and that design is

detailed in Chapter 6.
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Figure A-1: Schematic of a an interferometer designed to extract ponderomotively squeezed
light due to radiation-pressure-induced motion of the ultra-light shared mirror. Light from a
highly intensity- and frequency-stabilized laser source is incident on the beamsplitter. High-
finesse Fabry-Perot cavities in the arms of the Michelson interferometer are used to build
up the carrier field incident on the end mirrors of the cavity, which are a single mechanical
object.

A.0.1 Ideal optical springs

In this section we study analytically a crucial component of the interferometer design: the

optical spring effect, especially in the case of two identical detuned cavities with a common

end mirror. The input-output relation of this system can be obtained by carrying out our

generic procedure analytically. In doing so, we extend previous results in Refs. [13, 30] to

include two new features. First, we consider motions of all three mirrors, with mass of

the input mirrors different from that of the common end mirror. Second, in our system

the carrier phases incident on mirrors are different; under such a circumstance, formulas

developed in Sec. 4.4 are non-trivial extensions to existing ones.

In order to make results intuitively understandable, we consider only the ideal system,

with the two input mirrors completely identical, the common mirror perfectly reflective on

both sides, the two cavities having exactly the same lengths, the carrier incident on both

input mirrors having equal amplitude and phase, and with a perfect beamsplitter. We also

ignore the free pendulum frequency, and consider the test masses to be free. Similar to
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Parameter Symbol Value Units
Light wavelength λ0 1064 nm
End mirror mass m 1 g
Input mirror mass M 0.25 kg
Input mirror transmission Ti 4× 10−4 –
Arm cavity finesse F 1.6× 104 –
Loss per bounce – 5× 10−6 –
Arm cavity detuning φ 10−5 λ0

Input power I0 1 W
BS reflectivity asymmetry ∆BS 0.01 –
Michelson phase imbalance ∆αM

Michelson loss imbalance ∆εM

Input mirror mismatch ∆T 5× 10−6 –
Detuning mismatch ∆φ 10−7 λ0

Arm cavity loss mismatch ∆ε 2× 10−6 –

Table A.1: Select interferometer parameters and their nominal values.

ε bandwidth (Ti + Te)c/(4L)
εL bandwidth due to loss Tec/(4L)
−λ resonant frequency φc/L
α characteristic quadrature rotation angle arctan(λ/ε)

Table A.2: Quantities associated with the detuned arm cavities .

previous studies, we assume a high-finesse cavity and ignore the interaction between the

motion of the input mirror and the carrier light outside the cavity. We retain terms only to

the leading order in εL/c, λL/c and ΩL/c, where L is the cavity length, c is the speed of

light, Ω is the sideband frequency, and (−λ− iε) is the complex optical resonant frequency

of the cavity with fixed mirrors [−λ denotes the resonant frequency and ε the bandwidth,

defined in Table A.2; and we ignore end-mirror loss].

Differential Mode

With the above assumptions, the differential optical mode couples only to differential modes

of mirror motion: those with the two input masses moving such that xA = −xB ≡ xD, and

arbitrary xm [see Fig. A-2]; such modes form a two-dimensional subspace of all possible

motions of the three mirrors. In the ideal case, we only need to study this mode. The
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Figure A-2: Optical fields propagating in the interferometer, and modes of motion of the
mirrors. In particular, αMA,B and εMA,B are artificial detunings and losses one can add to the
two arms of the Michelson interferometer, respectively, see Sec. A.0.2 for their significance.

differential input-output relation is given by


 b1

b2


 =

1
MD

Rα


CDR−α


 a1

a2


 + sD

[
x(0)

m + x
(0)
D

]

 , (A.1)

with

CD =


 −(Ω2 − λ2 + ε2)Ω2 − λιD 2ελΩ2

−2ελΩ2 + 2ειD −(Ω2 − λ2 + ε2)Ω2 − λιD


 ,

sD =
2
√

ειDΩ2

LhD
SQL


 λ

−ε + iΩ


 , (A.2)

and

MD = Ω2
[
(Ω + iε)2 − λ2

]
+ λιD . (A.3)
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Here x
(0)
m is the motion of a free end mirror with the same mass, x

(0)
D is the free differential

motion of the input mirrors (x(0)
A = −x

(0)
B = x

(0)
D ); α = arctan(λ/ε) is the carrier phase at

the end mirror. The carrier incident on the input mirrors has phase 0, the carrier inside the

cavity, leaving the input mirror has phase α−φ, while the carrier inside the cavity entering

the input mirror has phase α + φ. The quantity hD
SQL is the free-mass Standard Quantum

Limit associated with the differential mode, given by

hD
SQL =

√
2~

µDΩ2L2
, µD ≡ 2mM/(m + 2M) . (A.4)

The quantity ιD, defined by

ιD =
8ω0Ic

µDLc
, (A.5)

measures the strength of optomechanical coupling [notice the dependence on carrier inten-

sity Ic and the inverse dependence on the effective mass of the differential mode mechanical

oscillator µD]. Roots of MD are the (complex) resonant frequencies of the coupled optome-

chanical system. From ιD we define a characteristic frequency,

ΘD ≡
√

ιDλ/(ε2 + λ2) . (A.6)

For systems with ΘD ¿ ε, the two resonances are well separated, and are given approxi-

mately by ±ΘD [mechanical frequency due to optical spring] and (±λ− iε) [optical resonant

frequency], respectively — this is indeed the regime in which we construct our experiment.

The differential optical mode couples to a two-dimensional subspace of all possible mo-

tions of the three mirrors. It is instructive to look at the motion of separate mirrors, in the

regime of Ω ¿ ε, i.e. for sideband frequencies Ω well within the linewidth of the cavities:


 xm

xD


 =

1
Θ2

D − Ω2




Θ2
D

Λ2 + 1
− Ω2 − Λ2Θ2

D

Λ2 + 1

− Θ2
D

Λ2 + 1
Λ2Θ2

D

Λ2 + 1
− Ω2





 x

(0)
m

x
(0)
D


 . (A.7)
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Here we have defined Λ2 ≡ 2M/m. From Eq. (A.7), we conclude immediately that

xm + xD = − Ω2

Θ2
D − Ω2

[
x(0)

m + x
(0)
D

]
. (A.8)

This change in response is exactly what happens when a free test particle is connected to a

spring with mechanical resonant frequency ΘD. Equation (A.8) reveals a crucial advantage

of the optical spring — that the response of the cavity length to external disturbances (driven

by seismic and/or thermal forces, e.g.) is greatly suppressed from the corresponding value

for free-mass systems. Theoretically, this suppression is present even when a mechanical

spring is used. However, mechanical springs introduce thermal noise, usually of much higher

magnitude due to the intrinsic mechanical loss [30,91].

It is interesting to notice that the suppression of total cavity length fluctuations is

achieved collectively by the end mirror and the input mirror. As we see from Eq. (A.7), [in

the case of large Λ], the motion of the end mirrors xm is suppressed from its free mass value

by the factor in Eq. (A.8), while the motion of the input mirrors xD is not influenced by

the spring, since it is relatively massive. Fortunately, through the (1, 2) component of the

matrix on the RHS of Eq. (A.7), this motion of the input mirror is imposed onto the end

mirror with opposite sign, again suppressing the total cavity length fluctuations.

Now let us restrict ourselves to the regime of Ω < ΘD < ε, and study the quantum

fluctuations and classical component of the output field (due to classical disturbances to

the mirrors). As we shall see shortly, this regime has two crucial features: (i) the response

of the output field to x
(0)
m + x

(0)
D , and thus length fluctuations due to seismic and thermal

noise, are greatly suppressed by the optical spring and (ii) the output squeezed state is

frequency-independent.

For quantum fluctuations, we have

CD

MD

→

 −1 0

2ε/λ −1


 , (A.9)

which is frequency-independent. It is straightforward to derive that the quantum noise

spectrum in the bζ ≡ b1 cos ζ + b2 sin ζ quadrature [Cf. Eq. (4.64)]:

Sζ → 1 +
2ε2

λ2
− 2

√
ε2

λ2
+

ε4

λ4
cos(2ζ − 3α) . (A.10)
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In particular, terms in ε/λ are associated with squeezing, where the constant power squeeze

factor e2q (q > 0) is given by

sinh q = |ε/λ| . (A.11)

The minimum noise spectral density (Sζ = e−2q) is reached at ζ = 3α/2, while at ζ = α and

2α the noise spectrum is equal to the vacuum level (Sζ = 1). Values of ε/λ corresponding

to several power squeeze factors are listed in Table A.3. As shown, ε and λ will not differ

by a factor of more than ∼ 2, for typically desired squeeze factors.

Now for the classical component, given by the second term in Eq. (A.1), we have

1
MD

RαsD → 2
LhD

SQL

√
Ω2

Θ2
D

ε

λ


 sin 2α

− cos 2α


 . (A.12)

This means the entire signal due to differential displacement x
(0)
m + x

(0)
D is in the single

quadrature ζ = 2α + π/2, and there is no x
(0)
m + x

(0)
D signal in the ζ = 2α quadrature.

Interestingly, the quantum noise in this quadrature is right at vacuum level. In addition,

since hD
SQL ∝ 1/Ω, the response of bζ to x

(0)
m + x

(0)
D is proportional to Ω2 at this regime

– therefore not only the motion, but also the output field, has a suppressed response to

thermal and seismic noises. Note here that the suppression factor is proportional to
√

Ic

(since θD ∝ √
ιD ∝

√
Ic) – because motion is suppressed by Ic, while the optical sensing of

mirror motion is enhanced by
√

Ic. Now suppose we introduce a noisy force which induces

a spectral density SN
x on a free mass, then the output classical noise will be

SN
ζ = 4

Ω2

Θ2
D

ε

λ
sin2(ζ − 2α)

Sx

L2(hD
SQL)2

. (A.13)

At the minimum quantum noise quadrature, ζ = 3α/2, we have

SN
3α/2 =

2ε

λ

[
1− ε√

λ2 + ε2

]
Ω2

Θ2
D

Sx

L2(hD
SQL)2

≤ 0.6
Ω2

Θ2
D

Sx

L2(hD
SQL)2

, (A.14)

where the inequality is obtained by taking maximum over all ε and λ. We note that because

of the suppression factor Ω2/Θ2, the classical noise SN
x can be much higher than the free-

mass Standard Quantum Limit while still allowing the interferometer to generate squeezed
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vacuum!

Squeeze Factor (dB) 3 7 10 20
ε/λ 0.58 1.13 1.42 2.12

Table A.3: Relationship between power squeeze factor and ε/λ, see Eq. A.11.

Common Mode

We now consider the common optical mode, which couples with motion of the input mirrors

corresponding to xA = xB ≡ xC. This mode is irrelevant to an ideal interferometer with

identical arms and perfect contrast. In reality, however, the common mode will influence

the output via couplings induced by differences (mismatch) between the two cavities, for

example. Such effects can be quite important near the common-mode optomechanical

resonance.

The input-output relation of the common mode, similar to that of the differential mode

[cf. Eq. (A.1)], is given by:


 y1

y2


 =

1
MC

Rα


CCR−α


 z1

z2


 + sCx

(0)
C


 , (A.15)

with [cf. Eq. (A.2)]

CC =


 −(Ω2 − λ2 + ε2)Ω2 − λιC 2ελΩ2

−2ελΩ2 + 2ειC −(Ω2 − λ2 + ε2)Ω2 − λιC


 ,

sC =
2
√

ειCΩ2

LhC
SQL


 λ

−ε + iΩ


 , (A.16)

and [cf. Eq. (A.3)]

MC = Ω2
[
(Ω + iε)2 − λ2

]
+ λιC . (A.17)

hC
SQL, the SQL associated with the common mode, is given by [cf. Eq. (A.4)]

hC
SQL =

√
2~

µDΩ2L2
, µC = 2M . (A.18)
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∆(k) C(k) ϕC
(k)

∆ε

ε
− ελ

ε2 + λ2
2α + π/2

∆εL

ε
− ε√

ε2 + λ2
α

∆λ

λ

ελ

ε2 + λ2
2α + π/2

∆αM 1 2α + π/2

∆BS 0

∆εM −1
2 2α

Table A.4: Transfer function from carrier to differential output [see Eq. (A.29)], in the
leading-order approximation. The same coefficients apply to phase-noise coupling, i.e.,
NP

k = C(k), ϕP
k = ϕC

(k), in the low-frequency regime [see Eq. (A.33)].

The quantity ιC is given by [cf. Eq. (A.5)]

ιC =
8ω0Ic

µCLc
. (A.19)

For the common mode, we have a optomechanical resonant frequency of [cf. Eq. (A.6)]

ΘC ≡
√

ιCλ/(ε2 + λ2) , if ΘC ¿ ε . (A.20)

This frequency is in general much lower than its differential-mode counterpart, with

ΘC

ΘD

=
√

ιC
ιD

=
√

µD

µC

=
√

m

m + 2M
. (A.21)

A.0.2 Laser coupling to the antisymmetric port due to mismatch

Mismatch between the optical parameters of the two arm cavities, as well as imbalance

in the beamsplitter reflection/transmission ratio and imperfect contrast of the Michelson

interferometer, can couple the carrier and also the noise sidebands on the laser to the

differential detection port. For each arm, A and B, we denote the true value of the kth
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∆(k) NA
(k) NA

(k)(ΘC → 0) ϕA
(k)

∆ε

ε

ε2
h
ε2(Ω2 + Θ2

C)2 + 4λ2Θ4
C

i1/2

λ(ε2 + λ2)(Ω2 − Θ2
C

)

ε3

λ(ε2 + λ2)
2α− arctan

2λΘ2
C

ε(Ω2 + Θ2
C

)

∆εL

ε

ε2

λ
p

ε2 + λ2

ε2

λ
p

ε2 + λ2
α

∆λ

λ

ε
h
(λ2Ω2 − ε2Θ2

C)2 + 4ε2λ2Θ4
C

i1/2

λ(ε2 + λ2)(Ω2 − Θ2
C

)

ελ

ε2 + λ2
2α + arctan

2ελΘ2
C

λ2Ω2 − ε2Θ2
C

∆αM −

h
λ2(Ω2 − Θ2

C)2 + 4ε2Θ4
C

i1/2

λ(Ω2 − Θ2
C

)
−1 2α− arctan

2εΘ2
C

λ(Ω2 − Θ2
C

)

∆BS
2εΩ2

λ(Ω2 − Θ2
C

)

2ε

λ
2α

∆ εM

»h
(ε2 + λ2)Ω2 − (2ε2 + λ2)Θ2

C

i2
+ ε2λ2Θ4

C

–1/2

2λ
p

ε2 + λ2(Ω2 − Θ2
C

)

p
ε2 + λ2

2λ
α− arctan

ελΘ2
C

(ε2 + λ2)Ω2 − (2ε2 + λ2)Θ2
C

Table A.5: Laser amplitude noise coupling into the dark port, in the leading-order approx-
imation and low-frequency regime [see Eq. (A.33)].

quantity by its nominal value plus contributions due to imperfections, i.e.

X(k)A,B = X(k) ±
1
2
∆X(k) . (A.22)

Here the index k refers to the type of imperfection being considered. The beamsplitter

asymmetry is characterized by

∆BS = t2BS − r2
BS . (A.23)

Michelson imperfections can be characterized by the difference in the phase shifts and losses

when light travels from the beamsplitter to the input mirrors of the two arms:

αMA,B = αM ± 1
2
∆αM , εMA,B = εM ± 1

2
∆εM . (A.24)

In addition to ∆BS, ∆αM and ∆εM, which concern the beamsplitter, we consider the

following contributions to mismatch between the arms,

TiA,B ≡ Ti ± 1
2
∆T , (A.25)

TeA,B ≡ Te ± 1
2
∆ε , (A.26)

φA,B ≡ φ± 1
2
∆φ , (A.27)

that is, mismatch between input mirror power transmissivities, end mirror losses and cavity
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detuning, respectively. We replace these with the following more convenient quantities:

∆ε

ε
=

∆T

Ti + Te
,

∆εL

ε
=

∆ε

Ti + Te
,

∆λ

λ
=

∆φ

φ
. (A.28)

[See Table A.2 for definitions of ε, εL and λ.]

In the remainder of this section, we give the transfer functions from the carrier light

(DC), laser amplitude fluctuations and laser phase fluctuations to the differential output

port, to first order in the mismatch (recall that ideally, in the absence of imperfections,

these common-mode inputs do not appear in the differential output port). We keep our

formulae to the leading order in {ΩL/c, εL/c, λL/c}, and ignore the averaged losses, εL

and εM (but not ∆εL and ∆εM). We refer to this as the leading-order approximation.

Furthermore, in order to keep the analytical results understandable, we work only in the

regime of {Ω,ΘC} ¿ {ΘD, λ, ε}, which we shall refer to as the low-frequency regime.

Definitions and assumed values for ∆BS, ∆αM, ∆εM, ∆T, ∆φ, and ∆ε are given in

Table A.1.

The Carrier

The transfer function from the carrier to the differential output can be written as

∑

k

∆(k)C(k)


 cosϕC

(k)

sinϕC
(k)


 , (A.29)

where definitions of ∆(k), values of C(k) and ϕC
(k) are listed in Table A.4, assuming the

carrier at the beamsplitter is in the first (amplitude) quadrature.

Contributions listed in Table A.4 can all be obtained from simple considerations. First,

since each field that interferes at the beamsplitter is scaled by one transmission and one

reflection coefficient factor, ∆BS does not contribute to the output carrier light at the dif-

ferential port. Then, for all mismatches except the loss, one only has to notice that when

the arm cavities are lossless, carrier light with amplitude D and phase ϕ = 0 returns to the

beamsplitter with amplitude reduced to (1− εM), and quadrature rotated by 2α + 2αM. As

a consequence, the differential output port gets (D/2)(−∆εM) = (−∆εM/2)D in the ϕ = 2α
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quadrature (factor of 2 due to the beamsplitter), and

(D/2)∆[2α + 2αM]

=
[

ελ

ε2 + λ2

(
−∆ε

ε
+

∆λ

λ

)
+ ∆αM

]
D (A.30)

in the orthogonal quadrature, ϕ = 2α + π/2. The effect of the loss mismatch can be

understood when we decompose the (complex) reflectivity of the cavity into a sum of two

components:

√
Ree

2iφ −√Ri

1−√RiRee2iφ
=

1 + iλ/ε

1− iλ/ε
− εL

ε

2
1− iλ/ε

= e2iα − εL

ε

2ε√
ε2 + λ2

eiα (A.31)

Here we see that the loss εL creates an output at the ϕ = α quadrature, so an imbalance in

loss ∆εL will contribute (
−∆εL

ε

ε√
ε2 + λ2

)
D (A.32)

in the ϕ = α quadrature in the differential output port.

Amplitude (Intensity) and Phase (frequency) Noise

Under our simplifications, the laser amplitude noise z1 and phase noise z2 couple to single

(yet frequency dependent) quadratures in the differential output port, as parametrized by

∑

k

∆(k)

[
NA

(k)


 − sinϕA

(k)

cosϕA
(k)


 z1

+ NP
(k)


 − sinϕP

(k)

cosϕP
(k)


 z2

]
. (A.33)

Measurement of the output quadrature bζ ≡ b1 cos ζ + b2 sin ζ will include the laser noise:

∑

(k)

∆(k)

[
NA

(k)z1 sin(ϕA
(k) − ζ) + NP

(k)z2 sin(ϕP
(k) − ζ)

]
. (A.34)

In particular, the output quadrature ζ = ϕ
A(P)
(k) is not sensitive to the k-th contribution of

laser amplitude (phase) noise [note that we have switched the notation for ϕ from that of
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Eq. (A.29)].

As it also turns out, in the leading-order approximation and the low-frequency regime,[
NP

(k), ϕ
P
(k)

]
=

[
C(k), ϕ(k)

]
. Considering the different ways ϕ appears in Eqs. (A.29) and

(A.33), this means the phase noise coupled to the differential output port remains orthogonal

to the carrier. This can be argued for easily: since phase modulations on the carrier do not

drive mirror motion, the propagation of phase noise is not affected by the optical spring.

Amplitude modulations, on the other hand, do drive mirror motion and therefore should

couple to the differential port in a dramatically different way. We tabulate the quantities

NA
(k) and ϕA

(k) in Tab. A.5, from which we can see that the amplitude-noise coupling has

features around the common-mode optical-spring resonant frequency, ΘC.

Evading Laser Noise by Artificial Asymmetry

For realistically achievable symmetry between the two arms, laser noises turn out to be the

dominant noise source to our squeezer. Here we discuss a novel way of mitigating laser

noise coupling by introducing artificial asymmetries. According to the approximate results

(in the leading-order approximation and low-frequency regime) obtained in the previous

section, both amplitude and phase noise emerge from single quadratures (as vector sums

of contributions from different mechanisms). We can, therefore, eliminate the laser noise

totally, up to this order, if we make both of them emerge from the same quadrature ζ +π/2,

and make sure that the orthogonal quadrature, ζ, has a sub-vacuum noise spectrum. At

our disposal are two asymmetries that we can adjust manually: ∆αM and ∆εM.

At any given sideband frequency Ω, for a generic set of other asymmetries, it is always

possible to make both laser noise sources emerge at the ζ +π/2 quadrature (and, therefore,

to vanish at the ζ quadrature), by adjusting ∆αM and ∆εM, if the following non-degeneracy

condition is satisfied:

∆laser(Ω, ζ)

≡ det


 sin(ϕA

αM
− ζ)NA

∆αM
sin(ϕA

∆εM
− ζ)NA

∆εM

sin(ϕP
αM

− ζ)NP
∆αM

sin(ϕP
∆εM

− ζ)NP
∆εM




6= 0 . (A.35)

[See Eq. (A.33).]
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According to Tables A.4 and A.5, laser phase noise emerges in a frequency-independent

quadrature, but the amplitude noise does not. This means the elimination of laser noise

must be frequency-dependent, and we can only choose one particular frequency for perfect

laser noise evasion. However, if Ω À ΘC is also satisfied, then the frequency-dependence

goes away. We consider this special case, and choose a detection quadrature of ζ = 3α/2,

i.e., the one with minimum quantum noise. From Tabs. A.4 and A.5, we get

∆laser

(
Ω,

3
2
α

)∣∣∣∣
ΘC→0

= − ε

4
√

ε2 + λ2
6= 0 . (A.36)

Since the carrier always emerges π/2 away from the phase noise, it emerges in exactly the

same quadrature we propose to detect. In this way, the laser-noise-evading squeezer always

produces squeezed light with amplitude squeezing.

Finally, we note that, due to possible higher-order corrections, laser noise evasion may

not be as perfect as predicted by our first-order approximation, even at a single frequency.

The amount of residual laser noise, as well as the exact level of the deliberate asymmetries

we introduce, must be given by a more accurate calculation.

A.0.3 Comparison between analytical calculations and numerical simula-

tions

In Table A.1, we list the parameters used in modelling our interferometer. An important

feature of the numerical code is that it can handle imperfections in the optics quite naturally,

while for analytical techniques the solution becomes complicated rather dramatically when

more ingredients are added. To fully test this feature, we constructed a test case with

realistic imperfections. The imperfections included were those mentioned in Sec. A.0.2.

Using the parameters listed in Table A.1, we calculate the noise at the differential port due

to quantum fluctuations entering from this port and from lossy mirrors, as well as laser

amplitude and phase fluctuations entering from the symmetric port.

In Figs. A-3 and A-4, we show the calculated noise levels from numerical simulations in

curves, while those from the analytical treatment are shown as solid points. The agreement

between the two sets of calculations is reassuring. Now we discuss these noise spectrum in

more details. In Fig. A-3, we plot noises due to vacuum fluctuations entering from the dark

port (light curve and points), and due to vacuum fluctuations entering from mirror losses
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(dark curve and points). In both results, there is a rather dramatic resonant feature around

the differential-mode optical-spring resonant frequency, at ΘD ≈ 8 kHz, as can be expected

from Sec. A.0.1. The rather weak but still noticeable feature around the common-mode

optical-spring resonant frequency ΘC ≈ 360 Hz is solely due to optical parameter mismatch.

In Fig. A-4, we show laser amplitude (light curve and dots) and phase (dark curve and

points) noises; we have introduced artificial asymmetries αM and εM, with values obtained

empirically using the numerical simulation code, such that both laser noise sources are

evaded to a roughly maximal extent at 1 kHz. For this reason, contributions to the results

shown here are largely higher order, and we cannot hope to explain them using results

obtained in Sec. A.0.2. Here we do observe dramatic features around both the differential-

mode and the common-mode optical-spring resonances.
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Figure A-3: Spectra of noise power at the output port of the ponderomotive interferometer,
normalized to the vacuum noise level. The noise power is dimensionless, as compared to
vacuum; a pure vacuum (or shot noise) corresponds to unity. The lines are results of
the simulation code, while the data points are values calculated from the corresponding
analytic calculations. The vacuum noise level of the light exiting the antisymmetric port
is shown. The solid (blue) curve shows the vacuum noise due to the (unsqueezed) vacuum
fluctuations that enter via the antisymmetric port of the interferometer; the dashed (green)
plot represents the noise due to the vacuum fluctuations that enter via other optical losses
in the system. At all frequencies where the vacuum noise power is below unity, the vacuum
modes exiting the interferometer are squeezed due to radiation-pressure effects. For the
squeezing to be useful, all noise couplings must yield a lower noise power than the squeezed
vacuum. All parameters are listed in Table A.1.
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Figure A-4: Spectra of noise power at the output port of the ponderomotive interferometer,
normalized to the vacuum noise level. The noise power is dimensionless, as compared to
vacuum; a pure vacuum (or shot noise) corresponds to unity. The lines are results of the
simulation code, while the data points are values calculated from the corresponding analytic
calculations. We show the coupling of laser frequency (solid, blue) and laser amplitude
(dashed, green) noise fields to the output port, as calculated by the simulation code. Noise
levels of 10−4 Hz/Hz1/2 for frequency noise and 10−8 Hz−1/2 for amplitude noise are assumed
at the input to the interferometer; all other parameters are listed in Table A.1.
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Appendix B

Electronics diagram

Here we show block diagrams to the core electronics of the experiment. Almost all of the

feedback used in the system passes through the digital control system, a prototype of the

system to be used in Advanced LIGO, and detailed in Ref. [92]. Documents are available at

the LIGO Document Control Center [93] with the reference numbers given. The frequency

feedback to the laser is the only current analog feedback path specific to this experiment.
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Figure B-1: Length sensing and control (LSC) electronics. REFL and AS PD are the pho-
todetectors at the reflected and anti-symmetric ports. X and Y PD are photodetectors
that detect the light transmitted through each cavity. DEMOD demodulates the radio fre-
quency error signals to DC. FILTER and WHITENING prepare the signal for digitization.
AA (anti-alias) is a filter that prevents high frequency signals from appearing in-band. CM
(common-mode servo board) filters the error signal for the common degree of freedom of
the cavities before feeding it back to the laser frequency.
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Figure B-2: Suspension electronics. I/ETMX/Y are the input and end mirrors of the X
and Y cavities. BS is the beamsplitter. The optics interface with a Satellite Module (SM).
The signals from the shadow sensors interface with the RECEIVER before passing through
the AA filter and being digitized. Length control signals are interfaced back to coils on
the optics through the RECEIVER and SM, after being anti-imaged (AI) and generating a
current in the coil driver (CD).
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